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Abstract

A method to quantify the error probability at the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange is introduced.
The types of errors due to statistical inaccuracies in noise voltage measurements are classified and the error probability is
calculated. The most interesting finding is that the error probability decays exponentially with the duration of the time
window of single bit exchange. The results indicate that it is feasible to have so small error probabilities of the exchanged
bits that error correction algorithms are not required. The results are demonstrated with practical considerations.
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Introduction

1.1 The KLJN secure key exchange
In today’s era, network security has become one of the most

important aspects in everyday life. Whether it is a large, small,

private, or a government organization, it is very important to focus

on security, especially when the data being sent, received, or stored

contain confidential, sensitive information, such as personal

information.

In private-key based secure communication, the two commu-

nicating parties (Alice and Bob) generate and share a secure key,

which is typically represented by a random bit sequence. It is

important to note that the security of a communication cannot be

better than the security of the exchange of the key it uses. During

this key exchange, the eavesdropper (often referred to as Eve) is

continuously monitoring the related data. In today’s Internet-

based secure communications, typically a software–based key

generation and distribution is utilized. However, in this method

the whole information about the secure key is publicly available

[1] and Eve’s access to this information is limited only by her

computational power. In other words, this method provides only a

(computationally) conditional security level, which represents a non-

future-proof-security [2–4]. It means that with a sufficiently

enhanced computation power or an efficient future algorithm, Eve

may be able to crack the key and all the information in the

communication may become accessible.

Therefore, scientists and researchers have been working on

exploring proper laws of physics to find new key exchange schemes

where the information that can be measured by Eve is zero.

Particularly, they have been exploring key exchange schemes

where the amount of information extracted by Eve does not

depend on her computational power. When the security measures

are determined at Eve’s maximal ability (limited only by the laws

of physics and the protocols working conditions), that is referred as

unconditional security, a term that is often interchanged with

information theoretic security [1]. Information theoretic (unconditional)

security can be perfect if Eve can extract no information, or imperfect,

if Eve can extract only a small, commonly accepted amount of

information. (This is allowed for practical purpose because this

small information leak can further be decreased by privacy

amplification, if the fidelity of the key exchange between Alice and

Bob is good enough.) These terms are often misunderstood, and it

is a frequent mistake in claims to misuse unconditional security and

imply perfect security by that.

It is important to emphasize that the goal to generate/distribute

a perfectly secure key is similar to approaching infinity. Perfectly

secure key distribution of a key of finite length can never be

reached with a real physical system within a finite duration of time.

However, it is one of the goals of physical informatics to find out

schemes that can arbitrarily approach (though never reach) perfect

security [2].

The earliest and most famous scheme based on the laws of

physics that is claiming unconditional security is the Quantum

Key Distribution (QKD) [5]. The information theoretic security of

this scheme is usually based on the assumption that Eve’s actions

will disturb the system (in accordance with the theory of quantum

measurements and the no-cloning theorem) and cause errors,

which uncover the eavesdropping. Note, there are some promising

non-QKD initiatives that involve new types of quantum effects

[6,7].

At the fundamental side, there are ongoing debates between

experts about the reachable levels of security in QKD [8–12]. At

the practical side, there are some issues associated with this

scheme, such as range, price, and robustness. Moreover, it is

interesting to note that recently all the commercial QKD devices

and many laboratory devices have been cracked by quantum-

hacking [13–27]. While most of these practical weaknesses seem to

be design flaws, not fundamental security problems; they still mean

that current practical QKD has yet conditional security: the

conditions are that Eve is not knowledgeable enough or she does

not have the proper hardware to utilize the design flaws for an

attack. The impressive list of papers [13–27] shows that there are
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enough knowledgeable Eves out with sufficient resources at the

moment.

Until 2005 QKD was the only accepted scheme that was able to

offer a key exchange with information theoretic security in the

ideal (mathematical) situation. In 2005, the Kirchhoff-Law-

Johnson-(like)-Noise (KLJN) secure key distribution was intro-

duced [28], where the term "totally secure" was used instead of the

correct "perfectly secure" expression. Later (2006), the KLJN

system had been built and demonstrated [29]. KLJN is also a key

exchange scheme with information theoretic security [3] and it is

based on Kirchhoff’s Loop Law of quasi-static electrodynamics

and the Fluctuation and Dissipation theorem of statistical physics.

Its security against passive attacks is ultimately based on the

Second Law of Thermodynamics [28], which means that it is as

hard to crack the key exchange as to build a perpetual motion

machine (of the second kind). At practical conditions it uses

enhanced (electronically generated) Johnson noise with high noise

temperature, where quasi-static and thermodynamic aspects must

be emulated as exactly as possible in order to approach perfect

security.

First, we present a brief description (based on [2–4,28]) of the

working principle of the KLJN system. The core KLJN system,

without the defense circuitry against invasive attacks and

vulnerabilities represented by non-ideal building elements is

shown in the following figure.

The core KLJN channel, see Fig. 1, is a wire line to which Alice

and Bob connect randomly selected resistors RA and RB,

respectively, where RA,RB[ R0,R1f g. R0 represents the low (0)

bit and R1 the high (1) bit, respectively [28]. At the beginning of

each bit exchange period, BEP, (also called KLJN clock period),

Alice and Bob, who possess identical pairs of the resistors R0 and

R1, randomly select and connect one of these resistors. The

Gaussian voltage noise generators represent either the Johnson

noises of the resistors or external noise generators delivering band-

limited white noise with publicly known bandwidth and effective

noise temperature Teff [2,3,28,29]. The noise voltages of Alice and

Bob are uA(t) and uB(t), respectively, where

uA(t)[ u0,A(t),u1,A(t)f g and uB(t)[ u0,B(t),u1,B(t)f g yield a channel

noise voltage uch(t) between the wire line and the ground and a

channel noise current ich(t) in the wire.

Alice and Bob measure the mean-square noise voltage and/or

current amplitudes, that is Su2
ch(t)Tand/or Si2

ch(t)T, within the

BEP in the line. Thus, by applying Johnson’s noise formula and

Kirchhoff’s loop law the theoretical prediction is that the mean-

square noise voltage and current (i.e. the integral of the

corresponding power spectral densities [2,28]) for a given channel

noise bandwidth BKLJN and temperature Teff are given as follows:

Su2
ch(t)T~Su,ch(f )BKLJN~4kTeff RjjBKLJN

Si2
ch(t)T~Si,ch(f )BKLJN~4kTeff

1

Rloop

BKLJN , ð1Þ

where ST represents ideal (infinite-time) time average, Su,ch(f ) is

the power density spectrum of channel voltage noise, Si,ch(f ) is the

power density spectrum of channel current noise, k is the

Boltzmann constant, Rjj~RARB=(RAzRB) and Rloop~RAz

RB.

Ideally, by comparing the result of the accurate measurement of

the mean-square channel voltage or current with the correspond-

ing theoretical value in Eq. 1, the total loop resistance will be

publicly known. Alice and Bob know their own resistor values and

thus they can deduce that resistance value from the loop resistance

to learn the resistance at the other end. Consequently, they can

distill the actual bit value at the other side of the wire.

If Alice and Bob use the same resistance values, Eve can also

recognize that bit situation because the total resistance is either the

lowest or the highest value of the three possible resistance values.

Thus, the resistor situations (R0,R0) and (R1,R1) represent a non-

secure bit exchange since Eve can also find out the resistors values,

their exact locations, and the status of the bits. On the other hand,

the cases (R0,R1) and (R1,R0), which yield identical mean-square

noise in the line, represent a secure bit exchange situation because

Eve is unable to locate the resistors, therefore, she cannot decide if

Alice (and Bob) has a bit 1 or 0. This security is provided by the

Second Law of Thermodynamics, which prohibits any directional

information concerning the resistors at the two sides in thermal

equilibrium [2,28]. In other words, it is as difficult to extract these

secure bits by Eve as to build a perpetual motion machine (of the

second kind). In conclusion, on average, 50% of the bits can be

kept because they are secure. The other 50% of the bits

representing the non-secure situations is discarded by the protocol.

Note: the securely exchanged bits have opposite values at Alice

and Bob, thus they must publicly agree which one of them will

invert the exchanged bit to have identical keys at the two ends.

The fully armed KLJN system is secure even against the man-

in-the-middle-attack [30]. One of the important potential appli-

cations [32] is to integrate the KLJN system on computer chips

and provide unconditional security within computers and high-

security instrumentations where the processors, hard drives,

keyboards, etc. would secure their communications by keys shared

via the KLJN protocol. Another, potential application is, at a

much greater scale, to build a network of KLJN systems utilizing

already existing wire lines [4,33,34], particularly, realizing and

unconditionally secure "smart grid" [4] (advanced electrical power

distribution network).

1.2 Known attack types
Below, based on [2], we briefly survey all the published attack

types. Due to the simplicity of the KLJN system, there are very few

attack types available. The method of comparing the instanta-

Figure 1. Outline of the core KLJN secure exchange scheme [2–
4,28] without the defense elements against active (invasive)
attacks or attacks utilizing non-ideal components and condi-
tions. RA, uA(t), RB, and uB(t) are the resistor values and noise voltages
at Alice and Bob, respectively. uch(t) and ich(t) are channel noise voltage
and current, respectively.
doi:10.1371/journal.pone.0081103.g001
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neous values of voltage and current at the two ends and discarding

risky 01/10 bits [28,30,31] (not discussed here in details) protects

against all these types of attacks. But even without discarding the

risky bits, passive attacks by Eve utilizing non-idealities suffer from

weak signal-to-noise ratio due to poor statistics, see below.

A practically unimportant but theoretically valid type of attack

was shown by Hao [36] who pointed out that the non-ideal

situation of different temperatures could separate the noise levels

of the 01 and 10 bit situations, thus they could give out some

information to Eve. In a response by Kish [37], it was pointed out

that practical problems of accuracy do not challenge the

conceptual security of ideal schemes and was estimated that, even

at practical situations, the information leak is negligible due to this

attack. Later, it was shown in the experimental paper of Mingesz

et al. [29] that a modest 14-bit accuracy of temperatures (noise

generators) practically prohibit Eve to extract any useful informa-

tion (with information leak less than 10210) by utilizing the Hao

attack.

Scheuer and Yariv [38] analyzed the case of non-zero wire

resistance where the mean-square voltages are different at the two

ends in the case of the 01 and 10 bit situations. However, their

calculation was incorrect including the physical units of some of

the main results. Kish and Scheuer [39] carried out new, correct

calculations and showed that the actual effect is about 1000 times

weaker than predicted by Scheuer and Yariv. Earlier, Kish

pointed out [37] in his response to [36] that at similar conditions

Eve’s statistic was very poor and the extracted information was

practically miniscule even without the defense of discarding the

risky bits. This claim was experimentally verified by Mingesz et al.

[29], who showed that at clock period of 50 times of the noise

correlation time, R0~2000V, R1~9000V, and wire resistance

200V, the information leak of exchanged raw bits to Eve was

0.19% while the fidelity between Alice and Bob was 99.98%.

These results indicate that the key exchange has excellent fidelity

even without error correction and that the security can be made

reasonably good even without dropping the risky 01/10 bits (after

current/voltage comparison at the two ends) and without privacy

amplification [29].

Liu [41] used a cable simulator to evaluate the impact of delays

and reflections on the security. He obtained the surprising results

that, with the experimental parameters [6], Eve successfully

guessed 70-80% of the key bits. In a critical study of Lui’s

simulations, Kish and Horvath [31] pointed out that the chosen

wave impedances of the simulated cable to reach these results were

unphysical: for example, a center wire diameter of 1 millimeter

implies a coaxial cable with outer diameter of 28000 times greater

than the size of the known universe.

Observing transients after switching the resistors has been

mentioned as a potential source of information leak; however, so

far they have never been utilized. During the experimental studies,

the noise was ramped up at the beginning of the clock period and

ramped down at the end, thus the switching of resistors took place

when the voltage and currents were zero in the line.

Note, a fully transient-free protocol is described in a recent work

[48].

According to [40], one of the most efficient attack types would

be utilizing capacitive currents via the cable capacitance, though it

has never been tested. Mingesz et al. [29] showed a hardware

based defense "capacitance killer" against this attack. Ultimately,

the method of discarding the risky bits after current/voltage

comparison at the two ends [28,30,31] and/or, in the case of

negligible error probability, privacy amplification [35] are the

tools to approach perfect security.

1.3 Bit errors in the KLJN key exchange
Due to the finite duration t of the bit exchange period BEP, the

measurement results of mean-square amplitudes have statistical

inaccuracies. The duration t of the BEP must be long-enough

compared to the correlation time of the noise (approximately the

reciprocal noise-bandwidthB{1
KLJN ) to achieve a satisfactory statis-

tics and safely distinguish between the different resistor situations.

Still, with a low probability, these uncertainties can trigger a bit

error.

In the experimental demonstration Mingesz et al. [29] were able

to optimize the system to have a fidelity of 99.98% (error

probability 0.02%) however no mathematical analysis or design

tools have been shown to address this problem. Therefore, our

goal in this paper is to classify the different types of bit errors in the

ideal KLJN system and analyze their impact.

Discussion and Results

2.1 KLJN Errors
In this "startup" paper about error analysis, we assume the ideal

situation of the KLJN system where all the non-ideal features of

real systems are neglected. The error analysis of non-ideal systems

will be done in future works.

Bit errors occur when the actual value of the mean-square noise

results in an incorrect bit interpretation. Figure 2 represents the

mean-square channel noise voltage levels, where STt indicates

finite (t) time average implying random fluctuations (statistical

errors) around the real mean-square value.

The 11 bit situation (when Bob’s and Alice’s chosen resistors are

R1 and their noise voltages are u1,A(t) and u1,B(t), respectively)

results in the mean-square channel noise voltage Su2
11(t)Tt.

Similarly the 01/10 situations yield Su2
01=10(t)Tt and the 00 bit

arrangement results in Su2
00(t)Tt. The threshold values D1 and D2

Figure 2. Illustration of the fluctuations of the finite-time
mean-square voltage levels around their exact value and
thresholds for interpretation (the scale is arbitrary). Su2

11(t)Tt,
Su2

01=10(t)Tt , Su2
00(t)Tt are the measured mean-square channel noise

voltages at the 11, 01/10 and 00 bit situations, respectively. The solid
lines with the quantities in ST represent ideal (infinite-time) averages.
For the sake of simplicity we assume R0~R and, R1~aR withaww1.
doi:10.1371/journal.pone.0081103.g002
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provide the boundaries to interpret the measured mean-square

channel voltage over the t time window, see Fig. 2. The bit

interpretation is 00 whenSu2
ch(t)TtvSu2

00(t)TzD1, and 11 when

Su2
ch(t)TtwSu2

11(t)T{D2. The secure bit situation 01/10is inter-

preted whenSu2
00(t)TzD1ƒSu2

ch(t)TtƒSu2
11(t)T{D2.

An example for a bit error is the rare occurrence when the

finite-time mean-square voltage of the 00 case,

Su2
00(t)Tt§Su2

00(t)TzD1, is interpreted as the 01/10 bit situation,

which is incorrect and an example of a bit error.

The different types of errors are shown in Table 1.

Some of the errors situations, as shown in Table 1, are

considered to be self-corrected by the protocol. This is because, as

aforementioned, the 00 and 11 bit situations are discarded.

The rest of the paper is dealing with the analysis of errors

indicated with * in Table 1.

2.2 Error probabilities in the KLJN scheme
Alice and Bob can calculate the total resistance in the system by

measuring the mean-square noise voltage and/or current ampli-

tudes, that is, Su2
ch(t)Tt and/or Si2

ch(t)Tt. Below we evaluate the

errors in the former case while the case of current-based

evaluation can be done in a very similar fashion.

2.2.1 Error probability due to inaccuracies in noise
voltage measurements. a) Probability of the 00 = = .

01/10 type errors.
Let R0~R and R1~aR with aww1. Note, the choice of a

does not influence the resulting equations but it determines the

upper limit at choosing the values of D1 and D2 (see Eqs. 1). Then,

the mean-square channel noise voltage for infinite-time average at

the 00 bit situation is given as:

Su2
00(t)T~S00(f )BKLJN , (2)

where S00(f )~Su,ch(f ) at the bit situation 00. Because

Rjj~R=2, from Eqs. 1, we obtain:

Su2
00(t)T~2kTeff RBKLJN ð3Þ

During the BEP, only the duration t is available for Alice, Bob

and Eve to determine the mean-square channel noise because,

after that, a new bit exchange begins. The block diagram of the

measurement process is shown in Fig. 3.

The channel voltage enters into a squaring unit. At its output,

the signal is still voltage (because it is a voltage-signal-based

electronics) and the numerical value of its instantaneous amplitude

is equal to the square of the instantaneous amplitude of the input

voltage. This fact is mathematically expressed by Du2
00(t), where

D~
1

Volt
is the transfer coefficient of the device to provide a Volt

unit also for the square [42]. After averaging for the finite-time t
duration, the obtained measurement result is

SDu2
00(t)Tt~SDu2

00(t)Tzut(t), where the averaging can be

represented by a low-pass filtering with cut-off frequency fB&1=t.

While u2
00(t) is not Gaussian, its finite-time average ut(t) is

Gaussian with high accuracy due to the Central Limit Theorem,

because t is much longer than the correlation time of the AC

component u2,00(t)~Du2
00(t){SDu2

00(t)T of Du2
00(t), as

fBvvBKLJN . The probability of 00 = = . 01/10 type errors is

the probability that the AC component remaining after the finite-

time average of Du2
00(t) defined as ut(t)~SDu2

00(t)Tt{SDu2
00(t)T

is beyond the threshold: ut(t)wD1. This can be evaluated by the

error function, however, requires numerical integration.

To have an analytic formula, which is a good approximation

and has the exact scaling in the small error probability limit, that

is, when ut(t)vvD1 is satisfied, we can use Rice’s formula [43,44]

of threshold crossing frequency, see similar solutions for estimating

Table 1. Types of errors in the KLJN bit exchange.

Actual Situation

00 11 01/10

Measurement Interpretation
(Decision)

00 Correct (no error) Error, removed (automatically) Error, removed (automatically)

11 Error, removed (automatically) Correct (no error) Error, removed (automatically)

1/10 Error* (probability?) Error* (probability?) Correct (no error)

*The rest of the paper addresses these errors and their probability.
doi:10.1371/journal.pone.0081103.t001

Figure 3. Illustration of the measurement process at 00. D is
calibration coefficient of the squaring device to provide a Volt unit with
the correct numerical value for the squaring operation.
doi:10.1371/journal.pone.0081103.g003

Bit Errors during KLJN Operation
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the probability of thermal noise induced switching errors [45–47].

The estimation of error probability is based on the fact that, in the

small error limit, the probability of repeated threshold crossings

within the correlation time of the band-limited noise converges to

zero. The correlation time of ut(t) is also equal to t thus each

threshold crossing (in a chosen but fixed direction) indicates an

independent error. The ratio of the mean threshold crossing

frequency n(D1) and t is a good estimation of the error probability

in this limit [45,46]. We compared the predictions of the Rice

formula with the prediction based on numerically evaluated error

function and found that the Rice formula gave always more

pessimistic error estimation. The variation of the threshold

resulted in changing the error probability prediction by the Rice

formula and the error function by factors of ,1043 and ,1044,

respectively. In the large error probability situation, the Rice

formula predicted about 2 times greater error while, in the low

error probability situation, about 18 times greater error. This is a

negligible difference not only due to the 1043 – 1044 variation

during the study but also because the exact error probability

slightly depends on the fine details of the protocol not discussed

here. To have analytic error estimation, we proceed as follows.

According to Rice, the mean frequency n of crossing the level D1

by a Gaussian with power density spectrum St(f ) is given as:

n(D1)~
2

ûut
exp

{D2
1

2ûu2
t

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið?
0

f 2St(f )df

s
ð4Þ

where St(f ) is the power density spectrum of ut(t) and ûut is its

RMS value, ûut~~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið?
0

St(f )df

s
.

For normalization purposes, we choose the D1 threshold level as

a fraction of the measured mean-square channel noise, where the

transfer coefficient D of the squaring unit is also taken into the

account:

D1~bSDu2
00(t)T~bDS00(f )BKLJN , where 0vbv1: ð5Þ

According to [42], the power density spectrum, S2,00(f ), of the

AC component u2,00(t) of the (non-averaged) u2
00(t) is given as

(note typos of missing factor of 2 in Eqs. 6 and 7 in [42], see Fig. 4):

S2,00(f )~2D2BKLJN S2
00(f )(1{

f

2BKLJN

) for 0ƒfƒ2BKLJN

and S2,00(f)~0 otherwise

ð6Þ

The low-pass filtering effect of the time averaging cuts off this

spectrum for f wfB but keeps the S2,00(f ) spectrum for f vfB.

Because fBvvBKLJN , the value of S2,00(f ) within the fB

frequency band can be approximated by its maximum,

St(f )&S2,00(0). Figure 5 summarizes these findings.

Let us suppose that BKLJN=fB~c. Then

ûut~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið?
0

St(f )df

s
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fBS2,00(0)

p
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2cf 2

B S2
00(f )

q
ð7Þ

see text above and Figure 3 for explanation of the approxima-

tion. The frequency n:(D1) of unidirectional level crossings is half

of the level crossing frequency predicted by the Rice formula:

Figure 4. Power Spectral Density (PSD) of the product of two
independent noises. S2,00(f ) is the power density spectrum of the AC
component u2,00(t) of the (non-averaged) u2

00(t).
doi:10.1371/journal.pone.0081103.g004

Figure 5. Spectra at the 00 bit situation. The low-pass filtering
effect of the time averaging cuts off this spectrum for f wfB but keeps
the S2,00(f ) spectrum for f vfB . Since f vvBKLJN , the value of S2,00(f )
within the frequency band fB can be approximated by its maximum, so
that St(f )&S2,00(0)~2D2BKLJN S2

00(f ).
doi:10.1371/journal.pone.0081103.g005

Bit Errors during KLJN Operation
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n:(D1)~
1

ûut
exp

{D2
1

2ûu2
t

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið?
0

f 2St(f )df

s
, ð8Þ

where

D1~bDS00(f )cfB ð9Þ

From Eqs. 7 and 9, we obtain

n:(D1)~
fBffiffiffi

3
p exp

{b2D2S2
00(f )c2f 2

B

4D2cf 2
B S2

00(f )

 !
~

fBffiffiffi
3
p exp

{b2c

4

 !
ð10Þ

In the high threshold situation the errors follow a Poisson

statistics, thus the error probability during a time interval is equal

to the expected numbers of errors within this interval provided this

number is much less than 1.

Thus the probability e00 of 00 = = .01/10 type of errors in the

case of e00vv1 is:

e00&n:(D1)t&
n:(D1)

fB

~
1ffiffiffi
3
p exp

{b2c

4

 !
ð11Þ

It is important to realize that the error probability is an

exponential function of the parameters. The cparameter (which is

proportional to the length of time average) is particularly

important because it is not limited in size.

b) Probability of the 11 = = . 01/10 type errors
We can follow the same procedure as above. Instead of b we

introduce d with similar meaning, see Fig. 2 and Eq. 5:

D2~dSDu2
11(t)T~dDS11(f )BKLJN~dcDS11(f )fB 0vdv1, ð12Þ

where D2 is the threshold for the 11 = = .01/10 type errors

and S11(f ) is the channel noise spectrum at the 11 bit situation.

The same type of calculations as given above yields the

probability e11 of 11 = = .01/10 type errors:

e11~
n(D2)

fB

~
1ffiffiffi
3
p exp

{d2c

4

 !
for 0vdv1 ð13Þ

The error probability is again an exponential function of the

parameters.

2.3 Illustration of the results with practical parameters
To demonstrate the results, we assign possible practical values to

the parameters.

For c~100 and b~0:5 (a choice allowed due to the aww1
condition, see Eqs. 1) the bit error probability e00 is:

e00~
1ffiffiffi
3
p exp

{b2c

4

 !
&0:001, ð14Þ

which is a value near to the experimental value (0.0002)

obtained in [29] with the same c~100 value (note the b value is

not available in [29] however the b~0:5 choice is a practical one).

If this value is too large, just by increasing the c parameter (and

the time average window t) by a factor of 2, and in this way

slowing down the bit exchange by the same factor, will result in the

square of the above error probability value:

e00&10{6, ð15Þ

which is satisfactory for most applications. It is important to

note that no error correction algorithm is used for this error

reduction.

Methods and Conclusions

We have classified and analyzed the types of errors of bit

exchange between Alice and Bob in the KLJN secure key

exchange. Some types of errors are automatically removed by the

original protocol. We mathematically analyzed the error proba-

bilities and their dependence on the KLJN parameters of the

errors that are not removed by the protocol. We identified the

important parameters and the results show that the error

probability decays exponentially by increasing these parameters.

The most important of such parameters is the duration t of key

exchange because its value is not limited. The results indicate that

it is reasonable to achieve error probabilities that are small enough

to avoid the need for error correction algorithms.

Further open questions are how to combine current and voltage

measurements to further reduce these errors and what is the error

situation in the new advanced KLJN protocols proposed recently

[48].

Acknowledgments

Related discussions with Elias Gonzalez and Claes-Göran Granqvist are
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