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Abstract. When correcting for biases in general circulation

model (GCM) output, for example when statistically down-

scaling for regional and local impacts studies, a common as-

sumption is that the GCM biases can be characterized by

comparing model simulations and observations for a histor-

ical period. We demonstrate some complications in this as-

sumption, with GCM biases varying between mean and ex-

treme values and for different sets of historical years. Daily

precipitation and maximum and minimum temperature from

late 20th century simulations by four GCMs over the United

States were compared to gridded observations. Using random

years from the historical record we select a “base” set and a

10 yr independent “projected” set. We compare differences in

biases between these sets at median and extreme percentiles.

On average a base set with as few as 4 randomly-selected

years is often adequate to characterize the biases in daily

GCM precipitation and temperature, at both median and ex-

treme values; 12 yr provided higher confidence that bias cor-

rection would be successful. This suggests that some of the

GCM bias is time invariant. When characterizing bias with a

set of consecutive years, the set must be long enough to ac-

commodate regional low frequency variability, since the bias

also exhibits this variability. Newer climate models included

in the Intergovernmental Panel on Climate Change fifth as-

sessment will allow extending this study for a longer obser-

vational period and to finer scales.

1 Introduction

The prospect of continued and intensifying climate change

has motivated the assessment of impacts at the local to re-

gional scale, which entails the prerequisite use of down-

scaling methods to translate large-scale general circulation

model (GCM) output to a regionally relevant scale (Carter et

al., 2007; Christensen et al., 2007). This downscaling is typ-

ically categorized into two types: dynamical, using a higher

resolution climate model that better represents the finer-scale

processes and terrain in the region of interest; and statisti-

cal, where relationships are developed between large-scale

climate statistics and those at a fine scale (Fowler et al.,

2007). While dynamical downscaling has the advantage of

producing complete, physically consistent fields, its com-

putational demands preclude its common use when using

multiple GCMs in a climate change impact assessment. We

thus focus our attention on statistical downscaling, and more

specifically on the bias correction inherently included in it.

With the development of coordinated GCM output, with

standardized experiments, formats, and archiving (Meehl et

al., 2007), impact assessments can more readily use an en-

semble of output from multiple GCMs. This allows the sepa-

ration of various sources of uncertainties and the assessment

to some degree of the uncertainty due to GCM representation

of climate sensitivity (Hawkins and Sutton, 2009; Knutti et

al., 2008; Wehner, 2010). In combining a selection of GCMs

to form an ensemble, the inherent errors in each GCM must

be accommodated. In the ideal case, if all GCM biases were

stationary in time (and with projected trends in the future),
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removing the bias during an observed period and applying

the same bias correction into the future should produce a

projection into the future with lower bias as well. Ultimately

this would place all GCM projections on a more or less equal

footing.

Some past studies support the assumption of time-

invariant GCM biases in bias correction schemes. For ex-

ample, Macadam et al. (2010), who demonstrate that using

GCM abilities to reproduce near-surface temperature anoma-

lies (where biases in mean state are removed) was found to

produce inconsistent rankings (from best to worst) of GCMs

for different 20 yr periods in the 20th century. However,

Macadam et al. (2010) found when actual temperatures were

used to assess model performance, a more stable GCM rank-

ing was produced. While studying regional climate model

biases, Christensen et al. (2008) found systematic biases in

precipitation and temperature related to observed mean val-

ues, although the biases between different subsets of years

increased when they differed in temperature by 4–6 ◦C.

Biases in GCM output have been attributed to various cli-

mate model deficiencies such as the coarse representation of

terrain (Masson and Knutti, 2011), cloud and convective pre-

cipitation parameterization (Sun et al., 2006), surface albedo

feedback (Randall et al., 2007), and representation of land-

atmosphere interactions (Haerter et al., 2011) for example.

Some of these deficiencies, as persistent model characteris-

tics, would be expected to result in biases in the GCM output

that are similar during different historical periods and into

the future. For example, errors in GCM simulations of tem-

perature occur in regions of sharp elevation changes that are

not captured by the coarse GCM spatial scale (Randall et al.,

2007); these errors would be expected to be evident to some

degree in model simulations for any time period. However, as

Haerter et al. (2011) state “. . . bias correction cannot correct

for incorrect representations of dynamical and/or physical

processes . . . ”, which points toward the issue of some GCM

deficiencies producing different biases in land surface vari-

ables as the climate warms, generically referred to as time-

and state-dependent biases (Buser et al., 2009; Ehret et al.,

2012). For example, Hall et al. (2008) show that biases in

the representation of spring snow albedo feedback in a GCM

can modify the summer temperature change sensitivity. This

implies that as global temperatures climb in future decades,

some biases could be amplified by this feedback process.

While we do not assess the sources of GCM biases explic-

itly, we aim to examine where different GCMs exhibit simi-

lar precipitation and temperature biases between two sets of

independent years, which may carry implications as to which

sources of error are important in different regions.

Many of the prior assessments of GCM bias have been

based on GCM simulations of monthly, seasonal, or an-

nual mean quantities. Recognizing the important role of ex-

treme events in the projected impacts of climate change

(Christensen et al., 2007), statistical downscaling of daily

GCM output can been used to provide information on the

projected changes in regional extremes (e.g., Bürger et al.,

2012; Fowler et al., 2007; Tryhorn and DeGaetano, 2011).

While accounting for biases at longer timescales, such as

monthly, can reduce the bias in daily GCM output, the daily

variability of GCM output may have biases (such as exces-

sive drizzle; e.g., Piani et al., 2010) that cannot be addressed

by a correction at longer timescales. By addressing biases at

the daily scale, we can assess the ability to correct for biases

at a timescale appropriate for many extreme events (Frich et

al., 2002).

Biases in daily GCM output can be removed in many

ways. At its simplest, the perturbation, or “delta” method

shifts the observed mean by the GCM simulated mean

change, effectively accounting for GCM mean bias only

(Hewitson, 2003), which is useful but has its limitations

(Ballester et al., 2010). Separate perturbations can be applied

to different magnitude events (e.g., Vicuna et al., 2010) to

capture some of the potentially asymmetric biases in differ-

ent portions of the observed probability distribution function.

In its limit, perturbations can be applied along a continu-

ous distribution, resulting in a quantile mapping technique

(Maraun et al., 2010; Panofsky and Brier, 1968). This type

of approach has been applied in a variety of formulations

for bias correcting monthly and daily climate model outputs

(e.g., Abatzoglou and Brown, 2012; Boé et al., 2007; Ines

and Hansen, 2006; Li et al., 2010; Piani et al., 2010; Themeßl

et al., 2012; Thrasher et al., 2012), and has been shown to

compare favorably to other statistical bias correction meth-

ods (Lafon et al., 2012). Regardless of the approach, all of

these methods of bias removal assume that biases relative to

historic observations will be the same during the projections.

For this study, we examine the biases in daily GCM out-

put over the conterminous United States. We address the fol-

lowing questions: (1) are the daily biases the same between

median and extreme values? (2) Are biases the same over

different randomly selected sets of years (i.e., time invari-

ant)? We address these using daily output from four GCMs

for precipitation, and maximum and minimum daily temper-

ature. We consider biases at both median and extreme values

because, as attention focuses on extreme events such as heat

waves, peak energy demand, and floods, the assumptions in

bias correction of daily data at these extremes becomes at

least as important as at mean conditions.

2 Methods and data

The domain used for this study is the conterminous United

States, as represented by 20 individual 2◦ by 2◦ (lati-

tude/longitude) grid boxes, shown in Fig. 1. For the pe-

riod 1950–1999, daily precipitation, maximum and mini-

mum temperature output were obtained from simulations

of four GCMs listed in Table 1. These four GCM runs

were those selected for a wider project aimed at comparing

different statistical and dynamical downscaling techniques

Hydrol. Earth Syst. Sci., 17, 2147–2159, 2013 www.hydrol-earth-syst-sci.net/17/2147/2013/
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Table 1. GCM names and runs used in this study.

Modeling Group GCM Name Model Runs Primary Reference

Centre National de Recherches Meteorologiques, France CNRM CNRM CM3: 20c3m run 1 Salas-Mélia et al. (2005)

Geophysical Fluid Dynamics Laboratory, USA GFDL GFDL 2.1: 20c3m run 1 Delworth et al. (2006)

National Center for Atmospheric Research, USA PCM NCAR PCM1: 20c3m run 2 Washington et al. (2000)

National Center for Atmospheric Research, USA CCSM NCAR CCSM3: 20c3m run 5 Kiehl et al. (1998)

Fig. 1. Location of the 20 grid cells used in this analysis.

in California and the Western United States (Pierce et al.,

2013). All GCMs were regridded onto a common 2-degree

grid to allow direct comparisons of model output. While this

coarse resolution inevitably results in a reduction of daily ex-

tremes that would be experienced at smaller scales due to

effects of spatial averaging (Yevjevich, 1972), GCM-scale

daily extremes are widely used to characterize projected fu-

ture changes in important measures of impacts (Tebaldi et al.,

2006).

As an observational baseline the 1/8 degree Maurer et

al. (2002) data set for the 1950–1999 period was used, which

was aggregated to the same 2-degree spatial resolution as the

GCMs. This data set consists of gridded daily cooperative

observer station observations, with precipitation rescaled (us-

ing a multiplicative factor) to match the 1961–1990 monthly

means of the widely-used PRISM data set (Daly et al., 1994),

which incorporates additional data sources for more com-

plete coverage. This data set has been extensively validated,

and has been shown to produce high quality streamflow sim-

ulations (Maurer et al., 2002). This data set was spatially av-

eraged, by averaging all 1/8 degree grid cells within each of

the 2-degree GCM-scale grid boxes, which represent approx-

imately 40 000 km2. While GCM biases have been shown to

have some sensitivity to the data set used as the observational

benchmark (Masson and Knutti, 2011), the relatively high

density station observations (averaging one station per 700–

1000 km2 (Maurer et al., 2002), much more than an order of

magnitude smaller than the area of the 2-degree GCM cells)

in the observational data set provides a reasonable baseline

against which to assess GCM biases, especially when aggre-

gated to the GCM scale.

To assess the variability of biases with time, the historical

record was first divided into two pools: one of even years and

the other of odd years. From each of these pools, years were

randomly selected (without replacement) from the historical

record: (1) a “base” set (between 2 and 20 yr in size) ran-

domly selected from the even-year pool; (2) a “projected” set

of 10 randomly-selected years drawn from the odd-year pool.

As in Piani et al. (2010), a decade for the projected set size

provides a compromise between the preference for as long

a period as possible to characterize climate and the need for

non-overlapping periods in a 50 yr observational record. In

addition, the motivation for fixing a relatively short 10 yr set

size derives from this study being connected to that of Pierce

et al. (2013). In the Pierce et al. (2013) study the challenge

was to bias correct climate model simulations consisting of

a single decade in the 20th century and another decade of

future projection, and the question arose as to whether the

base period was of adequate size for bias correction. While

longer climatological periods are favorable and more typical

for characterizing climate model biases (e.g., Wood et al.,

2004), recent research suggests that in some cases periods as

short as a decade may suffice, adding only a minor source of

additional uncertainty (Chen et al., 2011).

The same sets of years were used from both the GCM out-

put and the observed data. There is no reason for year-to-year

correspondence between the GCM output and the historical

record as reflected in the observations, since GCM simula-

tions are only one possible realization for the time period.

However, the longer-term climate represented by many years

should be comparable, and it is the aggregate statistics of

all years in the sample that are assessed. For each of these

sets, cumulative distribution functions (CDFs) were prepared

by taking all of the days in a season: summer, June–August

(JJA) for maximum daily temperature (Tmax); or winter,

December–February (DJF) for precipitation (Pr) and mini-

mum daily temperature (Tmin). The use of a single season

for each variable is for the purpose of capturing summer and

winter extreme values for temperature, and cold season pre-

cipitation extremes, which are of particular importance in the

Western United States where winter precipitation dominates

the hydroclimatic characteristics (Pyke, 1972). We recognize

the importance of other seasonal variables for different re-

gions of the domain, especially related to precipitation (e.g.,

www.hydrol-earth-syst-sci.net/17/2147/2013/ Hydrol. Earth Syst. Sci., 17, 2147–2159, 2013
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Karl et al., 2009), but reserve a more comprehensive effort

for future research. Within each season, two percentiles are

selected for analysis: the median and the 95th percentile for

Pr and Tmax, and the median and 5th percentile for Tmin.

A Monte Carlo experiment was performed by repeating

100 times the random selection of “base” sets and 10 yr “pro-

jected” sets. This number of simulations was chosen to pro-

vide adequate (so that repeated computations produced com-

parable results) sampling for all selections of sets of years

without approaching the maximum number of combinations

for the most limiting case, that is, 300 possible combinations

of 2 yr selected from a pool of 25 yr. Also, a second set of 100

Monte Carlo simulations was performed, which produced in-

distinguishable results, showing this number of simulations

is adequate for producing consistent results. For each of the

base and projected sets, the constructed CDFs were used to

determine the 50th and 95th (Tmax and Pr) or 5th and 50th

(Tmin) percentiles for both observations and GCM output.

The GCM biases relative to observations were calculated,

composing two arrays of 100 values at each percentile.

At each percentile and for each Monte Carlo simulation,

the samples are compared using the following R index:

R =
|BP − BB|

(|BP| + |BB|)
/

2
(1)

where B is the bias, the difference between the GCM value

and the observed value, and the subscripts “P” and “B” in-

dicate the projected and base sets, respectively; the vertical

bars are the absolute value operator. What this index repre-

sents is the ratio of the difference in bias between the base

and projected sets and the average bias of the base and pro-

jected sets. A value of R greater than one indicates a larger

difference in bias between the two sets than the average bias

of the GCM, meaning a higher likelihood that bias correction

would degrade the GCM output rather than improve it. R has

a range of 0 ≤ R ≤ 2. This index is similar to that used by

Maraun (2012) to characterize the effectiveness of bias cor-

rection of temperatures produced by regional climate mod-

els. The principal difference in the R index to that of Ma-

raun (2012) is that the R index is normalized by an estimate

of the mean bias; since in this case both the base and pro-

jected sets are selected from the historical record, the mean

of the two bias estimates (for the base and projected sets) is

used to estimate the average bias. The above procedure is re-

peated at each of the 20 selected grid cells and for the four

GCMs included in this analysis.

As an alternative, the mean bias in the denominator could

be estimated differently, such as using only the base period

bias BB. The advantage of using the R formulation above

is that it is insensitive to which set is designated as “pro-

jected” and which is “base”. For example, BB = 4, BP = 2

and BB = 2, BP = 4 produce the same R value, but would

not if only BB or BP were used in the denominator. This pro-

vides the additional advantage that, since both the base and

projected sets are randomly drawn from the historical record

Fig. 2. Comparison of cumulative distribution functions of daily

summer (JJA) maximum temperature between a GCM (NCAR

CCSM3 in this case) and observations for a single grid point at

39◦ N, 121◦ W (cell 2 in Fig. 1). Base set is a 20 yr random sample

from 1950–1999 (left panel); projected is a different 10 yr random

sample from the same period (center panel), and bias (right panel)

is calculated at 19 evenly spaced quantiles (0.05, 0.10, . . . , 0.95).

and since the R index is insensitive to this designation, re-

sults for varying base set sizes with a fixed projected set size

would be the same as those for varying projected set sizes

and a fixed base set size.

3 Results and discussion

Examples of CDFs for JJA Tmax for a single grid cell for

the NCAR CCSM3 GCM are illustrated in Fig. 2. For a

random 20 yr base set (left panel) the GCM overestimates

Tmax (relative to observations) at all quantiles, and the bias

appears similar for low and high extreme values. For the

10 yr projected set (center panel), the bias appears similar

to the base set, with the GCM overestimating Tmax at all

quantiles. However, the bias (right panel), calculated at 19

evenly spaced quantiles (0.05, 0.10, . . . , 0.95) shows asym-

metry across the quantiles. Especially noticeable is that at

low quantiles, representing extreme low Tmax values, the

bias for the base set is more than 1 ◦C greater than for the pro-

jected set, while at median values the base and projected set

biases are closer. While this represents just one random base

and projected set, it illustrates some of the potential compli-

cations in assuming biases are systematic in GCM simula-

tions.

For each of 100 Monte Carlo simulations, biases relative to

observations for the base and projected sets are calculated, as

is the difference between the bias for the base and projected

sets, and finally the R index. The results across the domain

for daily JJA Tmax are illustrated in Figs. 3–5 for the GFDL

model output.

Figure 3 shows that the mean (of the 100 Monte Carlo sim-

ulations) JJA Tmax GFDL model biases (left panels) vary

across the domain. These vary from large negative values

(a cool bias) in the northern Rocky Mountain region and

Hydrol. Earth Syst. Sci., 17, 2147–2159, 2013 www.hydrol-earth-syst-sci.net/17/2147/2013/
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a warm bias throughout the central plains, especially at the

high extreme (95th percentile), well known characteristics of

this version of the model (Klein et al., 2006). The magnitude

of the GCM bias at specific grid cells in Fig. 3 (left panels)

shows consistency for any sample of years from the late 20th

century, demonstrating that there is some spatial and tempo-

ral consistency in the GCM bias. This supports the concept

of model deficiencies in representing detailed terrain and re-

gional processes playing a role in creating the biases. Rather

than the magnitude of the biases, the focus here is on deter-

mining whether at each point across the domain these biases

are the same between two different randomly selected sets of

years.

Figure 3 also shows that the mean differences between the

two sets (base and projected) of biases in GCM Tmax for

both the 50th and 95th percentiles (center panels) are gener-

ally smaller than the GCM bias (left panels). This is reflected

in most of the R values (right panels) having a mean below

one, with the worst case being with the smallest base set sam-

ple (4 yr) for the extreme 95th percentile Tmax statistic. Also

of note in Fig. 3 is that there is a decline in the number of

grid cells where R exceeds one between the 4 and 12 yr base

set size, while little difference is evident between the 12 and

20 yr base set size. This suggests that, for daily simulations

of JJA Tmax, a 12 yr base set works nearly as well as a 20 yr

base set for characterizing GCM biases, both for median and

extreme values, and that there is a diminishing return for us-

ing larger base sets for characterizing bias. The potential for

using base sets of different sizes is discussed in greater detail

below.

Figure 4 shows the bias and changes in bias for Tmin for

the GFDL model. Of note is that the locations of high and

low biases in Tmin, as with Tmax, occur in the same regions

for any base set size, again supporting the concept of a time-

invariant, geographically based model deficiency underlying

at least a portion of the bias. It is interesting to observe in

Fig. 4 that the location of greatest bias, the grid cells with

the greatest change in bias, and the points with R exceeding

one, are all different from Fig. 3. This suggests that the fac-

tors driving biases in Tmin are distinct from those affecting

Tmax, though it is beyond the scope of this effort to deter-

mine the sources of the biases in GCM output. In addition,

the R index values in Fig. 4 are generally larger than in Fig. 3,

with more grid cells exceeding a mean value of one for both

the median and extreme at all base set sizes. This indicates

that there are more grid cells in the domain where Tmin bi-

ases are time dependent than for Tmax for this GCM.

Figure 5 shows the GFDL model bias for winter precipi-

tation. The left column of the biases in median and extreme

daily precipitation shows one distinct pattern not as evident

as in the figures of Tmax and Tmin. In particular, the biases

are substantially larger for the extremes, consistent with the

broad interpretation of Randall et al. (2007) that tempera-

ture extremes are simulated with greater success by GCMs

than precipitation extremes. As evident for Tmin (Fig. 4) the

Fig. 3. Mean bias (of 100 Monte Carlo simulations) in daily JJA

Tmax for the GFDL model output for three different base set sizes

(left panels), the mean difference in bias between the base and pro-

jected sets (center panels), and the mean R index value (right pan-

els). Grid cells with dark outlines indicate where R values are not

consistently less than 1 at 95 % confidence. Projected set size is

10 yr.

number of occurrences of mean R < 1 in Fig. 5 (summarized

in Table 2) is fairly consistent between all base set sizes. This

indicates that, in the mean, a short base set of 4 randomly-

selected years provides nearly as good a representation of

the systematic GCM biases as a 20 yr set. The number of

occurrences where the 95th percentile R (estimated as the

95th largest value of the 100 Monte Carlo samples) exceeds

1 drops sharply between a 4 and 12 yr base period. This indi-

cates that, in the mean, a short base set of 4 yr provides nearly

as good a representation of the systematic GCM biases as a

20 yr set. For a 95 % confidence threshold, however, a longer

base set of 12 yr provides improvement in bias correction re-

sults.

www.hydrol-earth-syst-sci.net/17/2147/2013/ Hydrol. Earth Syst. Sci., 17, 2147–2159, 2013



2152 E. P. Maurer et al.: Errors in climate model daily precipitation and temperature output

Table 2. Number of grid cells (out of the 20 in the domain) with mean (of 100 Monte Carlo simulations) R > 1 and, in parentheses, the

number of occurrences where the 95th percentile of R exceeds 1, for three base set sizes and two percentiles.

Tmax Tmin Pr

GCM Median Extreme Median Extreme Median Extreme

CNRM 4 yr: 2(5) 4 yr: 2(5) 4 yr: 6(15)) 4 yr: 7(10) 4 yr: 7(15) 4 yr: 8(13)

12 yr: 1(3) 12 yr: 2(5) 12yr: 5(10) 12 yr: 7(10) 12 yr: 6(11) 12 yr: 8(13)

20 yr: 1(3) 20 yr: 2(5) 20 yr: 5(8) 20 yr: 7(10) 20 yr: 5(10) 20 yr: 8(13)

GFDL 4 yr: 6(14) 4 yr: 3(9) 4 yr: 9(18) 4 yr: 5(10) 4 yr: 3(14) 4 yr: 4(8)

12 yr: 2(10) 12 yr: 3(9) 12 yr: 6(14) 12 yr: 5(10) 12 yr: 3(9) 12 yr: 4(8)

20 yr: 2(8) 20 yr: 3(9) 20 yr: 5(12) 20 yr: 5(10) 20 yr: 3(7) 20 yr: 4(8)

PCM 4 yr: 4(8) 4 yr: 5(11) 4 yr: 6(16) 4 yr: 6(12) 4 yr: 6(11) 4 yr: 6(16)

12 yr: 5(6) 12 yr: 4(9) 12 yr: 5(9) 12 yr: 3(7) 12 yr: 2(7) 12 yr: 5(10)

20 yr: 5(6) 20 yr: 3(8) 20 yr: 4(9) 20 yr: 2(7) 20 yr: 2(7) 20 yr: 5(10)

CCSM 4 yr: 5(12) 4 yr: 2(3) 4 yr: 3(14) 4 yr: 11(18) 4 yr: 6(11) 4 yr: 3(9)

12 yr: 4(8) 12 yr: 2(3) 12 yr: 3(6) 12 yr: 11(18) 12 yr: 4(10) 12 yr: 3(9)

20 yr: 4(8) 20 yr: 2(3) 20 yr: 2(5) 20 yr: 11(18) 20 yr: 3(8) 20 yr: 3(9)

Fig. 4. Same as Fig. 3 but for DJF minimum daily temperature. Fig. 5. Same as Fig. 3, for DJF precipitation.

Hydrol. Earth Syst. Sci., 17, 2147–2159, 2013 www.hydrol-earth-syst-sci.net/17/2147/2013/
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Table 2 summarizes the right columns in Figs. 3, 4, and 5

as well as the results for the other three GCMs included in

this study, to assess whether some of the same patterns ob-

served for the GFDL model are shared across the four GCMs.

Table 2 shows the pattern of larger base sets providing fewer

occurrences of R > 1. This is more evident between 4 yr and

12 yr base sets; between 12 and 20 yr sets the results are

broadly similar. However, in many cases both median and

extreme values show comparable numbers of R > 1 occur-

rences at all base set sizes, with the exceptions in only a few

cases (e.g., GFDL median Tmax and Tmin, and PCM and

CCSM median Pr). This shows that for Tmax and Pr, in the

mean, bias correction would be successful in most cases us-

ing base set sizes of only 4 randomly selected years. The sin-

gle case where bias correction for more than half of the cells

would fail, ultimately worsening the bias, is CCSM extreme

Tmin, where 11 grid cells show R > 1 on average. For this

case, even a 20 yr base set size does not alleviate the prob-

lem. This suggests that if the bias cannot be characterized

with a few years of daily data, it may lack adequate time in-

variance to be amenable to this form of bias correction with

any number of years constituting a base set. It is interesting

that this same model has the fewest number of occurrences

of R > 1 for median daily Tmin, and demonstrates success-

ful bias correction even with a base set of 4 yr. Thus, different

processes are likely responsible for the CCSM model biases

in mean and extreme daily Tmin values.

The above discussion focused on grid cells where the mean

R index exceeded one, in which case on average the bias cor-

rection degrades the skill. To examine a more stringent stan-

dard, Table 2 also summarizes the number of grid cells in

each case where the 95th percentile R values for each GCM,

variable, and base set size, exceeds 1. This approximates the

number of cells (outlined in Figs. 3–5) where a 95 % con-

fidence that R < 1 cannot be claimed. Of the 20 grid cells

analyzed in this study, as many as 18 show the R < 1 hypoth-

esis being rejected (CCSM extreme Tmin and GFDL median

Tmin) and in other cases as few as 3 occurrences (CNRM

median Tmax, CCSM extreme Tmax). While bias correction

has a positive effect in the mean, the value of R being below

one with a high confidence (95 %) is not strongly supported,

especially for Tmin and Pr.

A final observation in Table 2 of the mean number of oc-

currences of R > 1 is that the GCM showing the fewest num-

ber of cases varies for different variables, base set sizes, and

whether median or extreme statistics are considered. Since

the relative rank among GCMs is not consistent across vari-

ables, it can be concluded that among the models used in this

study no GCM can be broadly characterized as producing

output that is more likely to benefit from statistical bias cor-

rection than any other GCM. However, in the case where a

specific variable is of interest, some GCMs can clearly out-

perform others. For example, for maximum temperatures the

CNRM model demonstrates more time invariance in biases

than the other GCMs. Thus, the apparent time invariance of

Fig. 6. R values for a 12 yr base set and a 10 yr projected set for

Tmax, Tmin, and Pr for the 4 GCMs included in this study. As with

Figs. 3–5, grid cells with dark outlines indicate where R values are

not consistently less than 1 at 95 % confidence.

biases for a specific variable and spatial domain of interest

may be considered as a criterion for GCM selection when

constructing ensembles, though a more comprehensive eval-

uation of the effectiveness of this is reserved for future re-

search.

To illustrate some of the results in Table 2, Fig. 6 shows

the mean R values at all grid cells for a base set size of 12 yr

and a projected set size of 10 yr. The most important fea-

ture to note is that in most cases the grid cells where average

R > 1 are not the same for the different GCMs. The excep-

tions to this, where more than two of the four GCMs show

R > 1, are the 5th percentile of minimum temperature (cells

3, 12, 15, 17), the median precipitation (cells 1, 20) and the

95th percentile precipitation (cells 6, 15, and 14). Thus, dif-

ferent GCMs in general exhibit time-varying biases at differ-

ent locations. This suggests that by relying on an ensemble

of GCMs, a quantile mapping bias correction will be more

likely on average to have a beneficial effect in removing bi-

ases.

While the above assesses the time invariance of GCM

biases for random sets of years, it is standard practice in

statistical bias correction to use sets of consecutive years
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Fig. 7. Biases in seasonal statistics of daily Tmax, Tmin, and Pr based on the GFDL model from 1950–1999 at grid cell 2 (see Fig. 1). Points

are biases in the median for the seasonal statistic for each year, dashed line is a 5 yr running mean, and the solid line is an 11 yr mean.

Fig. 8. Same as Fig. 7, for cell 17 (see Fig. 1).

for both the base and projected sets. With long-term per-

sistence due to oceanic teleconnections producing decadal-

scale variations in climate (e.g., Cayan et al., 1998), and

GCMs showing improving capability to simulate similar

variability (AchutaRao and Sperber, 2006), biases would be

likely to show similar low frequency variability since there

would not be temporal correspondence between observations

and GCM simulated low frequency variations. Figures 7 and

8 show two examples of this phenomenon using the GFDL

model at two locations (other models show similar behavior).

It should be emphasized that because of the lack of temporal

correspondence, the biases in any one year cannot be used

to evaluate the GCM performance; Figs. 7 and 8 are shown

only to demonstrate the low frequency variability evident in

the biases. These two locations correspond to cells 2 and 17

(see Fig. 1), being roughly located over northern California

and the Ohio River valley, respectively. While the smoothed

lines in Figs. 7 and 8 are continuous through the record, only

the seasonal statistics are presented, so for example, there is

one value of JJA Tmax for each year. While the 50 yr period

for which data were available for this study is inadequate

for a robust statistical analysis of bias stability using sam-

ples of independent consecutive periods, these figures sug-

gest that using a shorter period of 5 yr or fewer could pro-

duce GCM biases that are more time dependent. However, a

series length of 11 yr appears to remove most of the effects of

the low frequency oscillations, though some small effects do

remain for temperature for the West Coast site. This could

be due to the teleconnections between the Pacific Decadal

Oscillation, which exhibits multidecadal persistence (Mantua
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Fig. 9. For cell number 2 (see Fig. 1), R index values for base set

sizes from 2 to 20 yr. Points are for the mean R value for the me-

dian values of the variables; the bar indicates one standard deviation

centered around the point.

and Hare, 2002), and western US climate (e.g., Hidalgo and

Dracup, 2003). The presence of low frequency oscillations

will vary for different locations and variables. While, as ex-

plained above, a time series analysis at each grid cell is not

performed as part of this study, the base set size used for

statistical bias correction for any region should consider the

presence and frequency of regionally-important oscillations.

The variation in the base set size needed to characterize the

systematic bias at different locations is further complicated

by the variation in the ability of GCMs to simulate certain

oscillations and their teleconnections to regional precipita-

tion and temperature anomalies. For the same two grid cells

shown in Figs. 7 and 8, the variation in R index values for

base set sizes from 2 to 20 yr is shown in Figs. 9 and 10. At

both of these points bias in the median value for daily Tmax

can be removed effectively, with R index values reaching a

low plateau with base set sizes with fewer than 10 yr of data.

The variability among GCMs is much greater for Tmin, with

GFDL displaying the greatest R values, which remain above

1.0 even with a 20 yr base set size for cell 2. By contrast,

GFDL performs best of all the GCMs at cell 17, with low R

index values achieved at 5–10 yr of base set size. Similarly,

for precipitation there is a stark contrast between the GCM

that shows the least ability to have its errors successfully re-

moved by bias correction at the two locations. If the ability

to apply bias correction successfully is to be considered as a

criterion for GCM selection for a regional study, Figs. 9 and

10 demonstrate that the selection would be highly dependent

on the variable and location of interest.

Recognizing that the 20 yr base set size is large relative

to the size of the pool from which values are selected, this

raises a concern of the degree to which the limited number

of years included in this study may be affecting the results

illustrated in Figs. 9 and 10, especially regarding the limited

benefit of using base sets larger than about 12 yr in quan-

tile mapping bias correction of daily data. While extended

gridded daily observational data sets for the domain are still

Fig. 10. Same as Fig. 9, but for cell 17.

in production (Livneh et al., 2013), we obtained the data

for the regions included in Figs. 9 and 10. These extended

data were produced in a manner generally consistent with

the original base data but includes observed data beginning

in 1915, albeit with sparser station density underlying the

gridded data for the earliest periods. For the GCMs included

in the study, two of them (GFDL, PCM) had daily histori-

cal precipitation, maximum and minimum temperature data

archived for 1915–1999, which we used as our extended pe-

riod of analysis. We aggregated the gridded observed precipi-

tation, maximum and minimum temperature data to the same

2-degree spatial resolution for the two GCM-scale grid cells

featured in Figs. 9 and 10 and repeated the analysis, with re-

sults shown in Figs. 11 and 12.

Figure 11 shows similar results to Fig. 9 for Tmax. The

R index values for Tmin and Pr are similar to Fig. 9 for the

GFDL model, but are larger for PCM, showing greater vari-

ability in bias with time for PCM for the extended period

analysis. However, base set sizes above about 12 yr, as with

Fig. 9, appear to provide limited additional benefit in char-

acterizing bias. Figure 12 is very similar to Fig. 10 for both

GCMs and all 3 variables, both in the magnitude of the R

values and the rate of decline in mean R value as the base

set size increases. While limited in extent, this comparison

between time invariance of biases using a shorter and an ex-

tended base data set suggests that the analysis is relatively

robust with regard to the finding that base set sizes longer

than about 12 yr provide small marginal benefit.

4 Summary and conclusions

We examined simulated daily precipitation and maximum

and minimum temperatures from four GCMs over the conter-

minous United States, and compared the simulated values to

daily observations aggregated to the GCM scale. Our motiva-

tion was to examine some of the basic assumptions involved

in statistical bias correction techniques used to treat the GCM

output in climate change impact studies. The techniques as-

sume that the biases can be represented as the difference
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Fig. 11. Similar to Fig. 9, but using an extended observational base

period and GCM output.

between observations and GCM simulated values, and that

these biases will remain the same into the future.

We performed Monte Carlo simulations, randomly select-

ing years from the historic record to represent the base set,

which varied in size, and a non-overlapping 10 yr projected

set (drawn from a different set of years in the historical pe-

riod). The biases for each Monte Carlo simulation were com-

piled for a median value of each variable, and one extreme

value: the 95 % (non-exceedence) precipitation, 95 % Tmax,

and 5 % Tmin. For each Monte Carlo simulation, an indica-

tor, here termed the R index, was computed. The R index

represents the change in bias between the base and projected

sets, and normalizes this by the mean bias. The mean and ap-

proximate 95 % value of the R index were calculated to as-

sess the likelihood that bias correction could be successfully

applied at each grid cell for each variable.

Our principal findings are:

1. In most locations, on average the GCM bias is statisti-

cally the same between two different sets of years. This

means a quantile-mapping bias correction on average

can have a positive effect in removing a portion of the

GCM bias.

2. For characterizing daily GCM output, our findings indi-

cate variability in the number of years required to char-

acterize bias for different GCMs and variables. On av-

erage a base set with as few as 4 randomly-selected

years is often adequate to characterize the biases in daily

GCM precipitation and temperature, at both median and

extreme values. A base set of 12 yr provided improve-

ment in the number of grid cells where high confidence

in successful bias correction could be claimed.

3. For most variables and GCMs the characterization of

the bias shows little improvement with base set sizes

larger than about 10 yr. In a few cases the variability in

bias between different sets of years is high enough that

even a 20 yr base set size cannot provide the necessary

Fig. 12. Similar to Fig. 10, but using an extended observational base

period and GCM output.

time invariance between sets of years to allow success-

ful bias correction with quantile mapping.

4. When considering consecutive rather than randomly se-

lected years, the GCM biases exhibit low frequency

variability similar to observations, and the selected base

period must be long enough to remove their effect.

5. At any location, the biases in the base and projected

sets of years for a particular variable were fairly con-

sistent for any given GCM, regardless of base set size.

This reflects that there are geographical manifestations

to some of the GCM shortcomings that cause bias, such

as the inadequate topography represented at coarse res-

olutions. There are differences between the magnitude

of biases at the mean and extreme values (especially for

precipitation), but the differences in the biases between

the base and projected sets of years are comparable for

both mean and extreme values.

These findings can be interpreted as cautiously encouraging

to those who use quantile mapping to bias correct GCM out-

put to estimate climate change impacts. Our results suggest

that a statistical removal of the GCM bias, characterized by

comparing GCM simulations for a historic period to obser-

vations, is on average justified and robust. There were rare

cases where at one location (for a specific variable and statis-

tic) an individual GCM might on average have biases that

vary in time to the point where the bias correction would ac-

tually increase bias. However, other GCMs did not generally

exhibit this characteristic at the same point. This suggests

that as long as an ensemble of many GCMs is used, on aver-

age the bias correction will be beneficial. Where only one or

a few GCMs are used for a climate impact study, it may be

advisable to investigate the time dependence of GCM biases

before using the bias corrected output for climate impacts

analysis. In addition, the time invariance of biases for vari-

ables and locations of interest could potentially be used as a

means to favor using certain GCMs for regional studies.
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Since this study only examined the stationarity in time

of daily GCM biases, those at longer timescales are not ex-

plicitly addressed. However, Maurer et al. (2010) show that

a quantile mapping bias correction of daily data can result

in the removal of most biases in monthly GCM output. In

another study, Coats et al. (2013), with details in Coats et

al. (2010), found that quantile mapping of precipitation at

the daily timescale resulted in monthly and annual distribu-

tions in remarkably good agreement with observations. This

suggests that by bias correcting at a daily scale the biases at

longer timescales may also be accommodated.

Future work will extend this analysis for the new model

formulations producing climate simulations for the IPCC

Fifth Assessment for a larger ensemble and a longer observa-

tional period. This will allow the testing of model simulations

for a longer observational period including the most recent

decade, when large-scale warming has accelerated, provid-

ing more extreme cases for the above tests. Biases and their

time invariance will also be investigated at scales finer than

the 2◦ resolution used in this study, reflecting both the finer

resolution of the new GCMs and the latest implementations

of quantile mapping bias correction at finer scales. In addi-

tion, new daily observational data sets of close to 100 yr in

length (e.g., Casola et al., 2009) will allow more intensive

investigation of GCM biases by facilitating compositing on

different conditions such as regional climate or oscillation

phase.
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