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1 Introduction

In the frictionless market of Black and Scholes (1973), we observe all prices with-
out error and every option price can be inverted to find the unique implied
volatility consistent with the observed prices. In reality, however, we observe
prices with errors stemming from finite quote precision, bid–ask spreads, non-
synchronous observations, and other measurement errors. This seemingly in-
nocuous difference turns implied volatility calculations into implied volatility
estimations and raises questions about the precision of the estimates. Implied
volatility estimates are imprecise when large changes in volatility produce small
changes in option prices, because, conversely, small errors in option prices or
other option characteristics produce large errors in implied volatilities. This is
especially true for options far from the money.

This paper shows that many implied volatility estimates are noisy and biased.
95% confidence intervals for implied volatility from an at-the-money stock option
with 20 days to maturity are on the order of plus or minus 6 percentage points.
Implied volatilities can also show pronounced “smiles” or “smirks,” even if all
of the Black–Scholes assumptions hold but we measure prices with plausible er-
rors. The bias arises because the lower absence of arbitrage bounds on option
prices systematically eliminate low implied volatilities. Option prices typically
are far from the upper absence of arbitrage boundary, so that the truncation is
one-sided. If dealers post prices that obey absence of arbitrage, then this trun-
cation is not directly observed but nonetheless biases implied volatilities. Since
the truncation bias is most severe for options away from the money, observed
implied volatilities show smiles or smirks.

To gauge and reduce the noise and bias in implied volatilities, this paper
shows how to (i) construct confidence intervals for implied volatility, (ii) con-
struct efficient estimators of implied volatilities, and (iii) assess and reduce the
bias in implied volatility estimates. Although the paper focuses on stock options
and stock index options under the Black–Scholes assumptions, the methods pro-
posed here translate directly to other options and option pricing models. The
only requirement is the ability to calculate option price derivatives with respect
to the options’ characteristics.

Researchers as early as Latané and Rendleman (1976), Chiras and Manas-
ter (1978), and Beckers (1981) tried to form weighted average implied volatilities
that give low weights to less informative implied volatilities and high weights
to more informative implied volatilities.1 The common theme of these weight-
ing schemes is that they pay exclusive attention to the sensitivity of volatility
to option price errors. Other errors are ignored. This paper derives efficient
implied volatility estimators when all option characteristics are measured with
errors. Variance decompositions show that the error from the underlying asset

1 Beckers (1981) chooses implied volatility to minimize the weighted sum of squared option
pricing errors. Whaley (1982) minimizes the equally-weighted sum of squared pricing errors
over implied volatility estimates since he is primarily concerned with option prices, not implied
volatility.
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2 Errors in Implied Volatility Estimation

price accounts for the majority of the variance in implied volatility estimates
from in-the-money options.

Recently, exchanges have begun to provide implied volatility indices, such
as the Chicago Board Options Exchange Market Volatility index, vix, based
on implied volatilities from eight s&p 100 options. The paper shows that the
vix-methodology produces a fairly efficient estimate of implied volatility—even
though the methods proposed here produce slightly more precise volatility esti-
mators. 95% confidence intervals for the vix are on the order of plus or minus
25 basis points. The three main sources of the vix’s precision are the focus
on near-the-money options, the low weights assigned to implied volatility from
options near expiration, and the averaging of implied volatilities from puts and
calls to cancel errors in the underlying asset price.

Implied volatilities appear to be neither unbiased nor efficient forecasts of fu-
ture volatility. Franks and Schwartz (1991), Lyons (1988), Day and Lewis (1988),
Chiras and Manaster (1978), Schmalensee and Trippi (1978), Canina and Fig-
lewski (1993), Fleming (1998), and Christensen and Prabhala (1999) document
this. The standard test of regressing realized volatility on past implied volatil-
ity produces a positive intercept and a slope coefficient that is significantly less
than one.2 Measurement error and upward bias in implied volatilities are broadly
consistent with this finding.

Implied volatility patterns like smiles or smirks appear to violate the Black–
Scholes model, and in particular the assumption that the underlying asset re-
turns are generated by a lognormal diffusion. Recent work by Andersen, Ben-
zoni, and Lund (2002), Bates (1996), Jones (2001), or Pan (2002), for example,
has focused on augmenting the return process to include stochastic volatility or
jumps in order to replicate the observed patterns in implied volatilities. This
paper points out that plausible measurement errors can induce smiles or smirks
in implied volatilities even when the Black–Scholes model is true. Although the
biases in implied volatilities stem from biases in observed prices, the non-linear
amplification of the price biases means that small biases in some option prices
lead to large biases in the associated implied volatilities. As a result, one has to
be careful when using implied volatilities to assess the performance of option
pricing models (see Rubinstein 1985, or Bakshi, Cao, and Chen 1997 in addition
to the papers cited above).3 The methods of this paper are designed to improve
the statistical assessment of the observed implied volatilities and can be adapted
to any option pricing model. Whether the primary cause of the observed patterns
in implied volatilities is stochastic volatility, jumps, or measurement errors is an

2 Some of these results must be interpreted with care. Christensen, Strunk Hansen, and Prab-
hala (2001) show that ols regression estimates are inconsistent and standard inference is inap-
propriate when the overlap between successive volatilities is large relative to the sample size and
the overlap varies over time.

3 Christoffersen and Jacobs (2001) make a related point when they show that the two-step pro-
cedure of first fitting an implied volatility function and then using the fitted implied volatilities to
compute theoretical option prices can be very different from the one-step procedure of directly
fitting a theoretical option pricing model.
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empirical question this paper does not answer, since the answer requires detailed
option price data.

For any option pricing model, there may be specification errors that lead to
“model errors” in implied volatility estimates. Ledoit and Santa-Clara (2000) ar-
gue that, as at-the-money options converge to zero time to expiration, Black–
Scholes implied volatility converges to true volatility, even if the Black–Scholes
model is wrong. Unfortunately, measurement errors limit the power of this
asymptotic argument. In the presence of measurement errors, at-the-money
options near expiration provide extremely noisy volatility estimates. Moreover,
near expiration even options with small differences between the strike price and
underlying asset price are far from the money. The paper shows that implied
volatilities from these options can have substantial upward bias.

Section 2 briefly explains how implied volatility is typically calculated and how
measurement errors in the inputs are propagated to implied volatility. Section 3
describes what the sources of error are, and just how sensitive implied volatility
can be to these errors. Section 4 shows how to form efficient estimates of implied
volatilities. Section 5, shows how measurement errors in prices can lead to biases
in implied volatility. Section 6 concludes.

2 Precision of Implied Volatility Calculations

Although implied volatility has to be computed numerically, this section derives
analytical results for errors in implied volatility conditional on errors in the un-
derlying prices. 4 To establish notation, I first restate the well-known Black–
Scholes (1973) and Merton (1973) option pricing formula.

2.1 The Black–Scholes option pricing formula

Black and Scholes (1973) derive the value of European options under the assump-
tion that the price of the underlying asset follows a geometric Brownian motion,
that agents can continuously trade any fraction of a non-dividend-paying asset
without transaction costs, and that agents can borrow and lend at a constant
riskless interest rate. Merton (1973) extends the Black–Scholes model to include
proportional dividends on the underlying asset. This model shows that the price,
C , of a European call option with strike price K and t years to expiration is

C(S, K, r , δ, t, σ ) = Se−δtΦ(z) − Ke−r tΦ(z − σ
√

t), (1)

where

z = ln
(
Se−δt/(Ke−r t)

)
σ

√
t

+ 1
2

σ
√

t. (2)

S is the price of the underlying asset, such as a stock or a stock index; r is the
riskless interest rate; δ is the dividend rate on the underlying asset; Φ(·) is the

4 The standard numerical solution for implied volatility uses the Newton–Raphson procedure
described in Manaster and Koehler (1982) to find the implied volatility that equates theoretical
and observed option prices.



4 Errors in Implied Volatility Estimation

standard normal cumulative density function; and σ is the standard deviation
of the annual log return of the underlying asset. By put call parity, the price of
a European put, P , is P = C − Se−δt + Ke−r t , which can be expanded to yield
formulas similar to equations (1) and (2).

2.2 Error sensitivity of implied volatility calculations

If the Black–Scholes model is correct and I observe prices without errors, there
is a unique implied volatility σ̃ that equates the theoretical option price at the
observed underlying prices S̃, K̃, r̃ , δ̃, and t̃ to the observed option price C̃ ,

C(S̃, K̃, r̃ , δ̃, t̃, σ̃ ) = C̃. (3)

The problem is that observed prices typically are contaminated by measure-
ment errors. If the observed prices contain measurement errors, so that C̃ =
C + dC for example, then the observed implied volatility, σ̃ , is equal to the true
volatility, σ , plus an error, dσ ,

C(S + dS, K + dK, r + dr , δ + dδ, t + dt, σ + dσ ) = C + dC, (4)

where dC , dS, dK, dr , dδ, and dt are measurement errors in prices.
For small measurement errors dxi, totally differentiating the definition of

implied volatility in equation (3) allows me to find the volatility error

dσ =
(

∂C
∂σ

)−1 {
dC − ∂C

∂S
dS − ∂C

∂K
dK − ∂C

∂r
dr − ∂C

∂δ
dδ − ∂C

∂t
dt

}
= ∂σ

∂x′ dx, (5)

where x = (C, S, K, r , δ, t)′ is the column vector of underlying prices. Given the
monotonicity of the call price in volatility, (∂C/∂σ )−1 = ∂σ /∂C . Equation (5)
also defines the remaining partial derivatives ∂σ /∂xi = −(∂C/∂xi)(∂C/∂σ )−1.
The relevant partial derivatives of the option price are

∂C
∂σ

= Se−δt
√

t φ(z) > 0 (6)

∂C
∂S

= e−δtΦ(z) > 0 (7)

∂C
∂K

= −e−r tΦ(z − σ
√

t) < 0 (8)

∂C
∂r

= tKe−r tΦ(z − σ
√

t) > 0 (9)

∂C
∂δ

= −tSe−δtΦ(z) < 0 (10)

∂C
∂t

= −δSe−δtΦ(z) + r Ke−r tΦ(z − σ
√

t) + σ Se−δt

2
√

t
φ(z) >< 0, (11)

where φ(·) is the standard normal probability density function.
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Equations (5) and (6) characterize the main problem. For options that are deep
in or out of the money, |z| is large and φ(z) is close to zero. Hence, ∂σ /∂C =
(∂C/∂σ )−1 is very large for options far from the money and small errors in any
of the inputs produce large errors in the implied volatility.

Equations (5)–(11) allow us to find the total error in implied volatility condi-
tional on knowing the individual component errors. By definition, the compo-
nent errors are unknown however, and we have to confine ourselves to comput-
ing the standard deviation or variance of dσ . If all of the component errors
are measurement errors, they have zero means and are mutually independent.
The mutual independence implies that the covariances of the component errors
vanish. Therefore,

V (dσ ) =
(

∂σ
∂C

)2
{

V (dC) +
(

∂C
∂S

)2

V (dS) +
(

∂C
∂K

)2

V (dK)+
(

∂C
∂r

)2

V (dr ) +
(

∂C
∂δ

)2

V (dδ) +
(

∂C
∂t

)2

V (dt)
}

. (12)

This variance is easily computed from the partial derivatives in equations (6)–
(11) and the variances of the component errors. For future convenience, it is
also possible to rewrite equation (12) in vector notation as

V (dσ ) = ∂σ
∂x′ Λ

∂σ
∂x

, (12a′)

where

Λ = E[dxdx′]. (12b′)

Due to the mutual independence of the measurement errors dxi, their covariance
matrix, Λ, is a diagonal matrix with the variances of the underlying price errors
on the diagonal, diag(Λ) =

(
V (dC), V (dS), . . . , V (dt)

)′.5

For implied volatility from a European put option, the variance can be found
by substituting the measurement error of the put option price, dP , for dC and
using the appropriate partial derivatives of the put price instead of the call price
derivatives. For American put options, this is more difficult since the possibility
of optimal early exercise prevents analytical pricing formulas and derivatives.

3 Error Sources and Magnitudes

A considerable amount of work has been done to improve the precision of im-
plied volatility estimates and investigate their behavior.6 Only scant attention
has been paid to the level of accuracy of these estimates. This section uses

5 Equation (12) can be viewed as an application of the “delta method.” The delta method is
used to find the standard error of an estimate that is a nonlinear function of other estimates for
which standard errors are available. See Gallant (1997), for example.

6 Examples are Latané and Rendleman (1976), Chiras and Manaster (1978), Schmalensee and
Trippi (1978), Patell and Wolfson (1979), Beckers (1981), Day and Lewis (1988), Harvey and Wha-
ley (1991), or Harvey and Whaley (1992).
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Table 1

Assumptions for Price Levels and Bid–Ask Spreads

Underlying Asset Levels Bid–Ask Spreads
S σ r δ S K r δ t

Stock 25 25% 5% 2.5% .25 0 .02% .02% 8 hours

Stock Index 500 15% 5% 2.5% 2.00 0 .02% .02% 8 hours

Assumptions for price levels, volatility levels, and bid–ask spreads used in the paper.

equation (12) to construct confidence intervals for implied volatility. To accom-
plish this, we need to compute the partial derivatives ∂σ /∂xi and specify the
measurement error variances in Λ.

The partial derivatives of the option price depend on price levels. I make as-
sumptions about price levels that are indicative of realistic prices. The results in
this paper are not sensitive to moderate variations in the price levels. I choose a
stock price of $25. During the period 1980–2000, the month-end closing prices
of New York Stock Exchange (nyse) stocks recorded on the Center for Research
in Securities Prices (crsp) database had mean and median values of $20.56 and
$34.35, respectively. I use a stock index level of 500, which is representative of
s&p 100 and s&p 500 levels in the early 1990s. Major u.s. stock indices have an-
nual volatility in the neighborhood of σ = 15%. Large corporations, whose shares
support stock options, have annual equity return volatility around σ = 25%. I
assume that the interest rate r = 5%. Finally, I assume that the dividend yield
δ = 2.5%. During 1980–2000, the dividend yield on the crsp value-weighted in-
dex averaged 3.9% but has fallen steadily. Although these rates vary over time
and across firms, the results of this paper are not sensitive to plausible varia-
tions in interest or dividend rates. Table 1 summarizes these price levels for the
underlying variables.

If the Black–Scholes model is true, measurement errors in the inputs, x =
(C, S, K, r , δ, t)′, are the only possible source of error in implied volatility. Apart
from clerical errors, the strike prices of ordinary options are measured perfectly.
The other five inputs, however, are all subject to systematic measurement errors.
For each of the market-determined inputs, C , S, r , and δ, there conceptually ex-
ists a unique market-clearing price at any time. These are the prices we should
use to compute implied volatility. Unfortunately, these “true” prices are typically
obscured by market structures like minimum tick sizes and bid–ask spreads. In
addition, non-synchronous prices can introduce errors even if we observe the
“true” prices at certain times. In practice, there are other measurement difficul-
ties in addition to finite quote precision, bid–ask spreads, and non-synchronous
quotes. Due to these omitted errors, the reported implied volatility errors are
almost certainly conservative estimates.7

7 Transaction costs beyond bid–ask spreads can add noise to price observations. Phillips and
Smith (1980) and Figlewski (1988) show that brokerage fees and other administrative costs may
be substantial relative to transaction value and that the fees vary widely by customer type and
transaction size. Due to the difficulty of assessing the applicable transaction costs, I ignore them.
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3.1 Finite quote precision

Unlike the idealized Black–Scholes market, the actual markets for options, un-
derlying securities and interest rates are not characterized by infinitely small
price increments. Tick sizes are part of the contract specifications for most
exchange-traded options and other securities. Tick sizes constitute a source
of measurement error, since the true price is not constrained to move in dis-
crete steps. Even though prices are recorded in discrete increments, traders
can achieve much more finely gradated average prices by splitting trades across
adjacent prices.8

If the true price is rounded to quote precision, then the true price is within
plus or minus one half tick size of the quoted price. If the typical price variation
is larger than the tick size, then the observed price equals the true price plus a
uniformly distributed error term with zero mean and a range of plus or minus
one half of the tick size. To keep matters simple, the remainder of the paper only
discusses normally distributed measurement errors based on bid–ask spreads.9

The main results are qualitatively similar if finite quote precision is the only
source of measurement error.

3.2 Bid–Ask spreads

In practice, we frequently observe “bid” and “ask” quotes. We typically average
these quotes to obtain a single price. In most markets, the bid–ask spread is
bigger than the tick size and obscures the true price beyond the uncertainty
caused by the finite quote precision.

Ho and Stoll (1981) show that, depending on the inventory of the dealer, the
true price is closer to the bid or the ask price at any particular point in time. Over
time, however, one would expect the bid–ask spread to be centered over the true
price. Nonetheless, the true price does not have to always lie between the bid
and ask quotes. Vijh (1990) documents that just over 4% of all option trades in
his sample of Chicago Board Options Exchange (cboe) options occur outside the
last quoted spread. In Vijh’s sample, transactions outside the spread are evenly
split between prices below the bid and above the ask. The transactions in the
underlying nyse stocks are similarly distributed in Vijh’s sample.

8 Prior to June 1997, stocks on the nyse generally traded in increments of 1/8 of a dollar per
share. In June 1997, the tick size declined to 1/16 of a dollar. On January 29, 2001, the tick size
declined to 1¢. Large equity indices, such as the s&p 100, are quoted in increments of 0.01, even
though they are not directly traded. The Chicago Board Options Exchange used to quote equity
and equity index options in 1/8 of a dollar per share for option prices above $3 and in 1/16 of
a dollar per share for option prices below $3. As part of decimalization, these tick sizes were
lowered to 10¢ and 5¢, respectively. The discount on u.s. Treasury bills is quoted in cents per
$100 of face value, which is roughly equivalent to quoting interest rates up to one basis point.
Dividends on common stocks are announced in cents, although fractions of a cent as small as
1/8 are not uncommon.

9 Olds (1952) shows how to compute the joint density of a convolution of uniform densities
with different supports. While this is a straightforward computation, it makes the exposition in
this paper cumbersome.
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There is no obvious distribution for the errors stemming from bid–ask quotes.
For convenience, I postulate that the errors have a normal distribution with a
zero mean and a standard deviation proportional to the magnitude of the bid–
ask spread. The data presented in Vijh (1990) can be broadly characterized as
stemming from a normal distribution with a zero mean and a standard deviation
of one quarter of the bid–ask spread.10

Table 1 also shows my bid–ask spread assumptions for the underlying prices.
Vijh (1990) reports that roughly half of all nyse stocks with cboe-traded options
are quoted with a bid–ask spread of 1/4 in his sample. I assume that K is observed
without error. The typical bid–ask spread of U.S. Treasury bills is 0.02% discount,
but widens to 0.1% discount, or more, for bills with less than about thirty days
to maturity.

There are no quoted bid and ask prices for the dividend rates on individual
stocks or stock indices. Although dividends are announced ahead of their pay-
ment date, there is considerable uncertainty about the level of dividends ahead
of the announcement. Although this is almost certainly an understatement of
the error in dividend rates, I assume that dividend rates are measured with an er-
ror equivalent to the bid–ask spread of the interest rates. I also assign a “spread”
to time to expiration, t. Time to expiration is typically measured in whole days,
regardless of when quotes are collected, or when the option expires.

Based on stylized facts, I assume that the bid–ask spreads for in-the-money
options are higher than the spreads for out-of-the-money options. The assumed
spreads fall in steps of 1/16. Figure 1 shows the spreads for call options. For
stock options, I assume that the bid–ask spread varies from 3/8 for in-the-money-
options to 1/8 for out-of-the-money options. For the maturities I consider here,
the in-the-money stock options at K/S = 0.8 have a theoretical price of C ≈
$5. For index options, I assume that the bid–ask spread varies from 3/4 for in-
the-money-options to 1/8 for out-of-the-money options. The in-the-money index
options at K/S = 0.9 have a theoretical price of C ≈ $50. Empirically, options
appear to have higher bid–ask spreads than what I assume here.11

3.3 Non-synchronous prices

In addition to the bid–ask spreads on the traded securities, table 1 also shows
a “bid–ask spread” for the non-traded index level. For the index level, a large
error typically comes from using closing prices for the options and index that
are measured fifteen minutes apart. This time difference can be reduced by using
transaction prices, but such careful alignment of prices is not typical. Even when
option prices and published index levels are perfectly synchronous, large indexes
often contain stale component prices. (See Scholes and Williams 1977.)

10 When the standard deviation of the errors is equal to one quarter of the bid–ask spread,
roughly 2 percent of all true prices are above the ask and below the bid quotes, respectively.

11 Phillips and Smith (1980) report that there are many options with values below fifty cents for
which the bid–ask spread exceeds 100% of the option value.
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Figure 1: Bid–Ask Spreads for Call Option Prices
The solid lines in the figure show the assumed bid–ask spreads for call options on a stock or a
stock index. For comparison, the dashed line shows the Black–Scholes (1973) call option prices
for options with 20 days to maturity. For the stock options in the left panel, S = 25, r = 5%,
δ = 2.5%, and σ = 25%. For the stock index options in the right panel, S = 500, r = 5%, δ = 2.5%,
and σ = 15%.

If returns follow an i.i.d. random walk in calendar time with an annual vola-
tility of 15%, then the standard deviation of half-hour returns is 0.113%. Based
on this volatility, I construct a “bid–ask spread” for the assumed index level of
500, so that the volatility is one quarter of the spread. This constructed “bid–ask
spread” is equal to 2.26. I round this value down to 2.0, which corresponds to a
23 minute alignment error.

3.4 Effects on implied volatility

Figure 2 shows 95% confidence intervals for implied volatility estimates based on
equation (12) and input errors with variances equal to one quarter of the bid–ask
spreads summarized in table 1 and figure 1. The left panel shows confidence
intervals for implied volatility from a call option on a stock; the right panel
shows confidence intervals for implied volatility from a call option on a stock
index. The plotted range of moneyness may seem extreme. In practice, however,
listed options cover a larger range of moneyness than is shown in the figure.12

The small jumps in the confidence intervals, most noticeable in the left panel,
stem from the discrete changes in the bid–ask spread for the option price.

For at-the-money or slightly out-of-the-money stock options with ninety days
until maturity, the 95% confidence interval is just over ±2.8 percentage points
wide. From there, the interval widens dramatically as the option moves in or
out of the money or approaches maturity. With twenty days until maturity, the
95% confidence intervals are at least ±5.9 percentage points wide. Stock options
with 20 days to maturity that are more than 5% in or out of the money contain

12 For stock options, cboe rules space strike prices every 21/2 points when the strike price is
between $5 and $25, every 5 points when the strike price is between $25 and $200, and every
10 points when the strike price is above $200. According to these rules, the plotted range only
covers 3 cboe-listed stock options at K = {22.5, 25, 30}. For s&p 100 and s&p 500 index options,
cboe rules space strike prices every 5 points for near expiration months. Accordingly, the plotted
range for stock index options covers 21 strike prices at K = {450, 460, . . . , 550}.
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Figure 2: 95% Confidence Intervals for Implied Volatility

The figure shows 95% confidence intervals for the implied volatility from individual call options
with three different times to maturity, t. The left panel shows results for call options on a
stock. The right panel shows results for call options on a stock index. The confidence intervals
were constructed based on mutually independent, normally distributed measurement errors with
standard deviations of one quarter of the bid–ask spreads shown in table 1 and figure 1.

virtually no information about volatility. Based on the assumed measurement er-
rors, stock index options deliver more precise implied volatility estimates. (Note
the different scales for the two panels.) Nonetheless, even for index options, the
precision of implied volatility is low for options near expiration or away from the
money. Jackwerth and Rubinstein (1996) observe these features in their s&p 500

options data: They find large volatility of implied volatilities for options away
from the money and rising volatility of implied volatility as the options move
farther from the money.

The widths of the confidence intervals in figure 2 depend on the level of vol-
atility. All else equal, higher volatility implies that an option with K/S 6= 1 has a
higher probability of reaching K/S = 1 by maturity. In this sense, higher volatil-
ity makes these options closer to the money. As a result, the confidence bands
have less curvature at higher volatility. At low volatility, nearly all options are
far from the money and contain little information about implied volatility. For
options at K/S = 1, however, the confidence intervals are nearly independent
of the level of volatility. For example, the width of the 95% confidence intervals
for stock index options with 20 days to maturity is ±1.250 percentage points
at σ = 5%, ±1.193 at σ = 15%, ±1.193 at σ = 25%, ±1.201 at σ = 35%, and
±1.221 percentage points at σ = 45%.

Figure 2 demonstrates the limitations of two widely used rules of thumb. First,
the figure shows that options near expiration do not provide more precise im-
plied volatility estimates than similar options farther from expiration. In general,
there is a trade-off between the lower bid–ask spread for options near expiration
and the inherently more precise volatility estimates from longer-dated options.
I assume that the at-the-money index options in figure 2 have a bid–ask spread
of 7/16. The 95% confidence intervals for the at-the-money index options are
±1.193 percentage points with 20 days to maturity and ±0.589 percentage points
with 90 days to maturity. To fall to the level of precision of the 20-day at-the-
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money index option, the 90-day option would have to have a bid–ask spread of
2-1/8, all else equal. That is almost five times the spread I assume.

Second, the figure shows that it is not generally true that at-the-money options
provide the most precise estimates of implied volatility when inputs besides
the option price are measured with error. It is important to recognize that the
asymmetry in the precision of implied volatility estimates is not a result of the
pattern in bid–ask spreads shown in figure 1. For in-the-money options, errors in
the underlying asset price contribute most of the uncertainty in implied volatility.
The larger confidence intervals for implied volatility from in-the-money options
stem from the increasing importance of errors from the underlying asset price.
For out-of-the-money options, errors in the option price contribute most of the
uncertainty in implied volatility.

Based on the assumptions in table 1 and figure 1, variance decompositions
of the implied volatility errors show that, for most options, price errors from
options and underlying assets dominate the total error variance. Only for options
with maturities of a year or more do errors from interest and dividend rates
contribute materially to the overall error variance.13 For the magnitudes shown
in table 1 and figure 1, errors in the time to expiration never make substantive
contributions to the overall error in implied volatility.

It is interesting to compare the confidence intervals in figure 2 to confidence
intervals for historical volatility estimates. If returns follow a random walk in
calendar time, a sample of 50 stock returns with annual standard deviation σ =
25% produces 95% confidence intervals of ±5 percentage points.14 A sample of
200 stock index returns with annual standard deviation σ = 15% produces 95%
confidence intervals of ±1.5 percentage points.

The same analysis used to derive confidence intervals for implied volatilities is
useful in deriving confidence intervals for option prices and option price deriva-
tives based on implied volatility estimates. These confidence intervals include
the direct contributions of errors in the underlying prices and the indirect contri-
bution of these errors through errors in implied volatility. This analysis reveals
that, for options that are five or ten percent out of the money and have less than
a month to expiration, 95% confidence intervals for prices quickly reach zero and
twice the true price. Even for at-the-money calls with 20 days to maturity, how-
ever, confidence intervals include prices between 75% and 125% of the true price.
For an option near expiration, the errors in the underlying prices and implied
volatility also result in very noisy estimates of the option’s delta.

13 For long-term options, however, dividend rates may also be far less certain than is implied
by the numbers in table 1. When the dividend rate has a “bid–ask spread” of 0.25%, the dividend
rate accounts for less than 3% of the overall variability of the errors in the implied volatilities
for options with 90 days or less to maturity. For stock index options with 3 years to maturity,
however, the same errors in the dividend rate account for 75% of the variance of implied volatility
errors. The corresponding variance share for stock options is 15%.

14 For a sample of N i.i.d. returns, the annualized sample standard deviation of returns sampled

h times per year,
√

h σh, has variance equal to σ 2/(2N) regardless of sampling frequency h.
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4 Efficient Implied Volatility Estimation

The previous section discussed the precision of an implied volatility estimate
from a single option when prices are observed with measurement errors. In prac-
tice, we frequently observe a vector of implied volatilities, σ̃ = {σ̃1, σ̃2, . . . , σ̃n}′,
from several options on the same underlying asset. This section shows how to
exploit information in volatility estimates from multiple options to form efficient
estimates of implied volatility.

The main issues are that the n implied volatilities, σ̃, contain n errors, dσ,
that are heteroskedastic and correlated with each other. The heteroskedasticity
stems directly from the fact that some implied volatilities are more sensitive
to errors in underlying prices than others. The correlations of the errors in
implied volatility arise because we typically try to synchronize all prices. If the
observations of S, r , δ, and t are identical across all options in a cross-section,
so are their measurement errors dS, dr , dδ, and dt.15 These common errors
induce correlations in the errors in implied volatility, dσi.

With mutually independent measurement errors on perfectly synchronized
prices, the covariance matrix for implied volatilities from a cross-section of
options is a straightforward generalization of the scalar case. Now V (dσ) =
E[dσ dσ′] = Σ is a matrix and

Σ = ∂σ
∂x′ Λ

∂σ
∂x

. (13)

Λ = E[dxdx′] is still the covariance matrix of the underlying errors. But now
diag(Λ) =

(
V (dC1), . . . , V (dCn), V (dS), . . . , V (dt)

)′ because there are n option
prices in x = (C1, . . . , Cn, S, . . . , t)′. ∂σ/∂x′ is the Jacobian matrix of implied
volatility derivatives, (∂σi/∂Ci)(∂Ci/∂xj).

If implied volatilities from European put options with prices Pl are part of the
cross-section, their variances and covariances can be found from equation (13)
as well. This merely involves an expansion of the underlying price vector x to
include the put prices, as well as an expansion of the covariance matrix Λ to
include their measurement error variances.

Following historical developments, and to build intuition, I now present a
sequence of implied volatility estimators in order of increasing complexity.

4.1 Estimation across strike prices

If we restrict all options with a common maturity date to have the same implied
volatility, regardless of strike price, there exists a weighted average σ̂ = ω′σ̃
of the observed implied volatilities that is minimum variance among all such
unbiased weighted averages. By standard least squares arguments, this efficient

15 Even if not all the measurements are simultaneous, it is common practice to use the same set
of measurements on S, r , δ, and t for options whose prices were observed at slightly different
times. If strike prices are observed without error, the errors resulting from this procedure have
the same covariance matrix as errors from synchronous prices.
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estimator is the gls weighted average obtained by regressing implied volatilities
on a constant,

σ̃ = ισ + dσ, (14)

where ι is an n-vector of ones. The gls estimate is

σ̂ = ω′σ̃ = (ι′Σ−1ι)−1ι′Σ−1σ̃. (15)

In practice, implied volatility and the weights have to be found by iteration
because the partial derivatives, ∂σ/∂x, in equation (13) depend on the level of
volatility. All weighting methods that rely on option sensitivities share this fea-
ture. Since the iterations usually converge quickly and the partial derivatives are
easy to compute, the iterations are not burdensome.

Using the covariances in equation (13) and the assumptions in table 1 and fig-
ure 1, one can work out theoretical confidence intervals for different weighted
averages of implied volatilities. These calculations reveal three general con-
clusions: (i) an equally weighted average of implied volatilities produces ex-
tremely noisy volatility estimates; (ii) the Chiras–Manaster (1978) method per-
forms very poorly when deep-out-of-the-money options are included because it
assigns large weights to these options; and (iii) the Chiras–Manaster (1978) and
Latané–Rendleman (1976) methods perform relatively poorly when measurement
errors other than those for option prices make material contributions to errors
in implied volatility.16

The weights derived in equation (15) are by construction optimal for any given
covariance matrix Σ. Unfortunately, we don’t know or observe the true covari-
ance matrix. Therefore, the optimal weights involve an estimate of the true co-
variance matrix, and are themselves subject to estimation error.

Equation (15) is homogeneous of degree zero in Σ, and the gls weights are in-
dependent of the scale of the covariance matrix. Unfortunately, when the relative
error is not the same for all variance and covariance estimates, the weights, ω,
are suboptimal. This fact notwithstanding, there are no known superior weights.

In simulations, the gls weighting method performs very well, even when the
individual measurement error variances used in the construction of the covari-
ance matrix are between 0.01 and 100 times the true variances. The weights are
not sensitive to substantial variation in measurement error variances. Only when
the error variances used in the construction of the covariance matrix approach
zero, do the weights change materially. In this extreme case, the weight vector
tries to exploit the covariances by using very large positive and negative weights.

16 The Latané–Rendleman (1976) weights are similar to the gls weights when option price errors
are the most important errors. Unlike the Latané–Rendleman weights, some of the gls weights
may be negative. In principle, negative weights may generate a negative estimate of implied vol-
atility. This is unlikely, however, since the weight ωi for σ̃i generally declines with the variance
of dσi. Nonnegative weights can be found through standard iterative quadratic programming
algorithms but prevent analytical solutions. (See chapter 14 in Luenberger 1984, for example.)
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These large weights can produce noisy volatility estimates when the true errors
are large.

In this paper, my strategy for developing feasible gls estimators for implied
volatility is first to make plausible assumptions about bid–ask spreads and sec-
ond to make plausible assumptions about how bid–ask spreads translate in mea-
surement error variances, diag(Λ) = λ. For n options with synchronous price
measurements, λ contains n + 4 variances if strike prices are observed without
error. We then can generate the full n×n gls covariance matrix Σ from the n+4
variances in λ and the known option pricing model derivatives ∂σ/∂x′ according
to equation (13). The experiments described above verify that the gls estimators
are not sensitive to changes in λ. Based on the framework developed here, how-
ever, there are at least two other feasible gls estimators. If we observe bid–ask
spreads, we can dispense with the first assumptions and use the observed bid–
ask spreads. Alternatively, we can try to estimate λ without either assumption
about how the variances were generated. If we are willing to place restrictions
on how λ depends on option characteristics or how λ changes over time, we can
estimate λ as part of the gls procedure. Even for moderate n, this is much easier
than estimating Σ directly.

The simple regression in equation (14) generalizes easily. We can specify a
volatility smile for options with different strike prices but a common expiration
date. For example, we can fit a polynomial in moneyness to implied volatilities
for a single maturity. A quadratic specification of a volatility smile is

σ̃ = ιβ0 + (K/S − ι)β1 + (K/S − ι)2β2 + dσ

= Xβ + dσ, (16)

where K = (K1, K2, . . . , Kn)′ is the column vector of strike prices, β = (β0, β1, β2)′,
and X =

[
ι, (K/S − ι), (K/S − ι)2

]
. In this case, the efficient fitted volatilities are

based on the gls estimate of β,

σ̂ = Xβ̂ = X
(

X′Σ−1X
)−1

X′Σ−1σ̃, (17)

where Σ is the covariance matrix in equation (13). Section 5 contains extensive
simulation results for implied volatility estimates from regressions like equa-
tion (16). I defer the simulation results to section 5, so I can use the simulations
to simultaneously investigate biases in implied volatilities.17

17 The regressors in equation (16) contain measurement error through the error in the underly-
ing asset price. For synchronized prices, dS is a single measurement error affecting all observa-
tions. In a particular regression, this error biases the intercept. Since E[dS] = 0 and Var(dS) is
small, however, the average bias is very small. The main effect of the measurement error dS is to
introduce additional noise in the estimate of the intercept. The simulations in section 5 confirm
this analysis.



Sec. 4] Efficient Implied Volatility Estimation 15

4.2 Estimation across strike prices and maturities

Generally, we are unwilling to assume that volatility is constant over time and
standard practice forms separate implied volatility estimates for each maturity.
Even in this case, one can theoretically increase the precision of volatility esti-
mates by estimating implied volatilities simultaneously if measurement errors
are correlated across observed implied volatilities. For perfectly synchronous
prices, the measurement errors for all of the underlying variables—except for
the option prices—are identical.

If a sample contains options with q times to maturity, t1, . . . , tq, then the effi-
cient implied volatility estimate that restricts volatilities to be the same for all op-
tions with identical expiration dates consists of q volatilities, σ̂ = {σ̂1, . . . , σ̂q}′.
If the sample contains ni options for each maturity ti, we can order them by ma-
turity and stack their observed implied volatilities into a vector σ̃. The resulting
system of equations stacks q versions of equation (14) as

σ̃ =


ιn1 0n1 · · · 0n1

0n2

. . .
...

...
. . . 0nq−1

0nq · · · 0nq ιnq




σ1
...
...

σq

 +


dσ1

...

...
dσq

 ,

or

σ̃ = Jσ + dσ, (18)

where ιni is an ni × 1 vector of ones, and 0ni is an ni × 1 vector of zeros. Due to
correlations across the measurement errors, dσ, this is a seemingly unrelated
regression equations (sure) problem. The gls–sure estimator for the q implied
volatilities is

σ̂ = Ω′σ̃ =
(

J′Σ−1J
)−1

J′Σ−1σ̃, (19)

where Σ is the covariance matrix of the errors dσ. As before, Σ can be found by
applying the logic of equation (13) to the errors dσ.

This approach generalizes to cases where implied volatilities are a function
of moneyness and time to expiration. Dumas, Fleming, and Whaley (1998) and
Brandt and Wu (2001) contain recent examples of such volatility surfaces. For
example, a quadratic volatility surface is obtained by specifying X = [ι, (K/S −
ι), t, (K/S − ι)2, t2, (K/S − ι) � t] in equation (17).18

Put–call parity restricts puts and calls with the same strike price and maturity
to have the same implied volatility. We can impose put-call parity by fitting
a single curve or surface to the implied volatilities from puts and calls with
the same strike price and maturity in the data set. In this case, the implied
volatility estimator can largely cancel the errors from the underlying asset prices

18 The symbol � stands for element-by-element multiplication of matrices. Exponents also
apply on an element-by-element basis here.
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and dividend rates. 19 Unfortunately, many authors preclude the cancellation
of errors across puts and calls by using only the more liquid out-of-the-money
options. Unless underlying asset prices and dividend rates are observed with
high precision, this practice can result in a substantial loss of efficiency.

4.3 VIX Volatility Estimates

One popular volatility measure that averages implied volatilities from puts and
calls and two separate maturities is the Market Volatility Index, vix, of the cboe.
The vix is an average of eight implied volatilities from near-the-money puts and
calls for the s&p 100 option contract closest to expiration and the next-shortest
maturity.20 For each maturity and strike price, the vix averages implied volatil-
ities from puts and calls. Next, for each maturity, the vix linearly interpolates
the volatilities from the high and low strike prices to an at-the-money volatility.
Finally, the vix linearly interpolates these two volatilities to a single volatility for
a 30-day maturity. For details on the construction of the vix see Whaley (1993).21

The vix employs several devices that mimic the gls–sure estimates in equa-
tion (19). Averaging volatilities across puts and calls with the same strike price
and maturity partially cancels the effects of measurement error in the underlying
asset price, since a measurement error in the underlying asset price has roughly
opposite effects on put and call prices. Averaging these volatilities across strike
prices near the money, further reduces noise. Finally, the noisy volatility es-
timates from options near expiration receive low weights when volatilities are
interpolated to 30-day maturities.

Figure 3 directly compares the volatility weights employed by the vix and gls–
sure implied volatility estimators. For this comparison, the gls–sure volatility
estimates in equation (19) use the same eight options as the vix. To form a single
implied volatility, I interpolate the two gls–sure volatility estimates to the one-
month maturity employed by the vix. This interpolation also can be thought of
as a further transformation of the weights Ω in equation (19). The figure shows
the weights on all eight options in the cross-section for three different times to
maturity and moneyness. The call options are identified as Ci,j . For i = 1, the call
has the lower of the two strike prices; for i = 2, it has the higher of the two strike
prices. For j = 1, the call has the shorter of the two times to maturity; for j = 2, it
has the longer of the two times to maturity. Put options are similarly identified
as Pi,j . Overall, the vix and interpolated gls–sure weights are quite similar.
The main difference is that the vix ultimately focuses on two options, one call
and one put, when these are at the money and have one month to maturity.
In the same situation, the interpolated gls–sure estimator continues to place

19 Put prices change with underlying asset prices as (∂P/∂S) = (∂C/∂S)[1 − 1/Φ(z)]. For near-
the-money options, Φ(z) ≈ 0.5, so that (∂P/∂S) ≈ −(∂C/∂S). A similar argument applies to
option price changes due to the dividend rate, (∂P/∂δ) ≈ −(∂C/∂δ).

20 The cboe publishes a similar volatility index, vxn, for the nasdaq–100 index.

21 The s&p 100 options used in the construction of the vix are American options. For simplicity,
I assume that all options are European.
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Figure 3: vix and Interpolated gls–sure Volatility Weights

The figure compares the interpolated gls–sure weights proposed here to the vix weights sug-
gested by Whaley (1993). Price levels are as given in table 1. Measurement errors for the option
prices are assumed to be mutually independent and normally distributed with standard devia-
tions of 1/4 of the bid–ask spreads in table 1. The other inputs are assumed to be measured
with errors that are identical for all options but independent across inputs. These errors are
also normally distributed with standard deviations of 1/4 of the bid–ask spreads in table 1 and
figure 1.
All estimates use eight stock index options: four calls and four puts. The options are just in or
just out of the money and expire on the nearest expiration date or the next one. The call options
are identified as Ci,j . For i = 1, the call has the lower of the two strike prices; for i = 2, it has the
higher of the two strike prices. For j = 1, the call has the shorter of the two times to maturity;
for j = 2, it has the longer of the two times to maturity. Put options are similarly identified as
Pi,j . The title in each panel lists moneyness for the lower strike price, S − K1 and the shorter
maturity in days, t1. The higher strike price is K2 = K1 + 5; the longer maturity is t2 = t1 + 30
days.

positive weights on the two options away from the money but with one month
to expiration. The options with two months to expiration receive no weight due
to the interpolation, not because they contain no information about volatility. In
many ways, the vix implements equation (19) using an approximation of Σ.22

We can also use the gls–sure estimator of implied volatility to assess the
precision of vix volatility estimates. The left panel of figure 4 shows upper

22 Figure 2 also suggests a possible improvement on the vix estimator that is no harder to
compute: Form the simple average of the implied volatilities from the four options with the
same maturity, then interpolate these two average volatilities to one month.
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Figure 4: Precision of VIX Estimates, σ = 15%

The left panel of the figure shows the upper 95% confidence bounds for the vix implied volatility
estimates. The lower confidence bounds are omitted for clarity. The upper and lower bounds are
symmetric about the true volatility level of 15%. The right panel shows the upper 95% confidence
bounds for interpolated efficient implied volatility estimates from two separate maturities using
the same 8 options as the vix. The figure shows confidence bounds for a range of shorter
maturities, t1 = {5, . . . , 35} calendar days, and lower strike prices, K1 = {S, . . . , S − 5}. The
longer maturity is t2 = t1 + 30 days; the higher strike price is K2 = K1 + 5. All calculations are
based on the price and measurement error assumptions in table 1 and figure 1.

95% confidence bounds for the vix based on the price level and measurement
error assumptions in table 1 and figure 1. The lower bounds are omitted for
clarity but are symmetric about the assumed, constant volatility of 15%. Under
the vix choice of options, there are two maturities and two strike prices. The
figure shows upper 95% confidence bounds for a range of short maturities, t1 =
{5, . . . , 35} calendar days, and lower strike prices, K1 = {495, 496, . . . , 500}. The
longer maturity is t2 = t1 + 30 days and the higher strike price is K2 = K1 + 5.

Based on this analysis, one cannot rule out that vix variations of 20 or 30
basis points are measurement error noise. For comparison, Fleming, Ostdiek,
and Whaley (1995) report that the standard deviation of daily changes in the vix

averages 130 basis points between 1986 and 1992 when volatility changes during
October 1987 and October 1989 are omitted. If the variance of volatility scales in
calendar time, this translates to hourly volatility of volatility of 27 basis points. If
the variance of volatility scales in trading time, this translates to hourly volatility
of volatility of 46 basis points. With plausible measurement errors, the vix seems
to contain limited information about high-frequency variations in volatility.

The right panel of figure 4 shows the upper 95% confidence intervals for in-
terpolated gls–sure estimates of implied volatility using the same eight options
as the vix. The two gls–sure estimates of implied volatility in σ̂ based on equa-
tion (19) are interpolated to a constant 30-day calendar maturity. The figure
assumes that volatility is constant at 15%, but the gls–sure estimates obviously
do not exploit this assumption. The gls–sure estimate of implied volatility has
a slightly tighter confidence interval than the vix, but the difference is modest.
When either strike price is far from the money, then the interpolated gls–sure
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estimates are slightly more efficient. This difference grows as the options move
farther away from the money and may become important for volatility indexes
for other assets with widely spaced strike prices.

Although exploiting the information across multiple maturities according to
equation (19) reduces the noise in the implied volatility estimates, it is not com-
monly done. For the remainder of the paper, I focus on volatility estimates from
a single maturity.

5 Bias in implied volatility

Thus far, I have assumed that errors in implied volatility have a mean of zero.
This section shows that this assumption is not warranted. Nonetheless, the tech-
niques designed to minimize noise in implied volatility estimates are also effec-
tive at reducing bias.

Bias in implied volatilities arises due to the systematic elimination of low
implied volatilities. Implied volatilities are eliminated when option prices violate
absence of arbitrage boundary conditions and there is no positive volatility that
is consistent with the prices. This induces an upward bias because violations of
the lower absence-of-arbitrage bounds is much more likely than violation of the
upper absence-of-arbitrage bounds.23 The bias is largest for deep-in- and deep-
out-of-the-money options since their true prices are closest to the lower bounds
and their implied volatilities are especially sensitive to price errors.24

The bias can arise in two distinct ways. First, researchers can mis-align prices
to induce violations of the boundary conditions even though the actual prices
satisfy absence of arbitrage. When a sample contains option prices that cannot be
inverted into implied volatilities, the sample of implied volatilities is “censored.”
We observe the option characteristics but no associated implied volatility. Not
carefully treating these observations causes bias. Closely matched transactions
prices minimize this source of error.

A second, systematic, and unavoidable source of bias stems from the fact
that dealers have strong incentives to post option prices that obey absence of
arbitrage. For out-of-the-money options, the true price converges to zero as the
option moves farther out of the money. The dealer, however, must set a non-
negative bid price. The bid price typically converges to zero. The dealer also
has to set an ask price that is an integer multiple of the tick size and above
the bid price. Typically, the ask price converges to a tick or two. For deep-out-
of-the-money options, the bid–ask average price is above the true price. Even
transactions prices are biased upward, however, because no customer will sell

23 For call options, the lower absence-of-arbitrage bound is max{Se−δt −Ke−r t , 0} and the upper
absence-of-arbitrage bound is Se−δt .

24 Implied volatility is a nonlinear function of the underlying prices. Hence, implied volatility
also suffers from a Jensen’s inequality bias if the other variables are stochastic. The magnitude
of the bias in implied volatility induced by option price errors should be similar to the magnitude
of the bias in option prices induced by volatility errors. Simulation studies of Boyle and Anan-
thanarayanan (1977) and Butler and Schachter (1986) show that the latter bias is small. Jensen’s
inequality effects do not induce large biases in implied volatility.
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at nonpositive prices, and all observed transactions for deep-out-of-the-money
options occur at the ask price.

The upward bias in prices for deep-out-of-the-money options induces an up-
ward bias in implied volatilities from these options. Yet, the resulting volatility
smirk is statistically insignificant in the sense that the implied volatility is be-
tween the bid and ask volatilities. Because the bid volatility is zero, the interval
of bid volatility to ask volatility includes all nonnegative volatility levels below
the observed implied volatility for deep-out-of-the-money options. For deep-in-
the-money options, the true price is also close to the lower absence of arbitrage
boundary. Consequently, we would expect a similar upward bias in observed
implied volatilities from deep-in-the-money options.

Although the true errors for option prices have a mean of zero, when a large
negative error is drawn, the option price violates absence of arbitrage and is never
posted. Posted option prices that satisfy absence of arbitrage form a “truncated”
sample. This truncation only occurs at the lower boundary for options away
from the money, because only there do true prices approach the absence of arbi-
trage boundaries. This truncation is not directly observable by researchers. The
recorded prices obey absence of arbitrage and the option prices can be inverted
into implied volatilities. Yet, option prices that would have led to low implied
volatilities are systematically missing from the sample because they would have
presented arbitrage opportunities. Even when all observed option prices can be
inverted into implied volatilities, the implied volatilities may suffer from sub-
stantial truncation bias.

One can think of the posted option prices in one of two equivalent ways. Er-
rors are drawn until they result in option prices that satisfy absence of arbitrage.
Equivalently, errors for option prices are drawn from a distribution that is trun-
cated so that the observed option prices obey absence of arbitrage. Either mech-
anism results in the same positive truncation bias in observed option prices.

I use simulations to show examples of the systematic biases of implied volatil-
ity estimates in the presence of measurement errors. The reported results focus
on the unobserved price truncation and associated bias. I compute Black–Scholes
call option prices for stock options and stock index options. The options use the
price levels shown in table 1 and have 20 days to maturity. I simulate a cross-
section of options with a range of strike prices. Then, I perturb all prices with
normal errors that have zero means and standard deviations equal to one fourth
the bid–ask spreads shown in table 1 and figure 1. This yields a different option
price error for each strike price in the cross-section. Each of the other prices is
constant within each cross-section, however, so that the underlying price error,
for example, is the same within each cross-section. The option price errors are
drawn from a normal distribution with zero mean and standard deviation equal
to one quarter the bid–ask spread in figure 1 that is truncated so that the op-
tion price plus error obeys absence of arbitrage given the observed underlying
prices. I then compute implied volatilities for the cross-section. I repeat these
simulations 10,000 times. The repetitions are independent of each other.
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Figure 5: Truncation Bias in Implied Volatility

The figure shows the means, 97.5th percentiles, and 2.5th percentiles for implied volatilities
from simulated prices. The statistics are for options with a given moneyness. The left panel
shows results for call options on a stock; the right panel shows results for call options on a stock
index. For both cases, the samples are truncated: implied volatilities from options that violate
boundary conditions are replaced. All options have 20 days to maturity.
The simulated prices obey all of the Black–Scholes assumptions, except that prices are perturbed
by independent normal measurement errors. The measurement errors have zero means and
standard deviations equal to 1/4 of the bid–ask spreads in table 1 and figure 1. The price levels
are also shown in table 1. Each statistic is based on a sample of 10,000 observations.

5.1 Bias by moneyness

Figure 5 plots statistics for simulated implied volatilities by moneyness. Circles
mark the mean of implied volatility for a given moneyness. The empirical 95%
confidence interval is marked with downward triangles for the 2.5th percentiles
and upward triangles for the 97.5th percentiles of the simulated implied volatili-
ties. The statistics are based on 10,000 implied volatilities for a given moneyness.
The left panel shows implied volatilities for stock options. For these options, the
true value of volatility is 25%. The right panel shows implied volatilities for stock
index options. For these options, the true value of volatility is 15%.

The size of the biases shown in figure 5 depends on the level of volatility. At
lower levels of volatility, options away from K/S = 1 are farther from the money
and the size of the bias increases dramatically. An index option at K/S = 0.95,
for example, provides nearly unbiased implied volatility when true volatility is
15%. If true volatility is 10%, however, the same option overestimates implied
volatility by 2.2 percentage points on average. If true volatility is 5%, the upward
bias rises to 7.5 percentage points. At higher levels of volatility, all options are
closer to the money and the size of the biases falls.

The pattern of rising implied volatilities as the underlying options move
deeper in or out of the money has been widely reported and is referred to as
an “implied volatility smile.” With measurement errors in prices, the existence
of implied volatility smiles does not reject the Black–Scholes (1973) and Mer-
ton (1973) model. A striking feature of figure 5 is the fact that, in truncated
samples, the range of implied volatilities excludes the true value for options
away from the money. In the presence of realistic measurement errors, the bias
in implied volatilities quickly becomes so severe that the finding of volatility
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smiles is inevitable even when all other Black–Scholes assumptions hold.

Realistic measurement errors can also account for implied volatility smirks.
For the stock index options in the right panel of figure 5, the errors result in
a bias that is asymmetric around K/S = 1. In this example, the asymmetry is
due to the fact that the error in the underlying asset price is more important for
in-the-money options.25 This feature is unlikely to fully explain the observed
volatility smirks, however, since the smirk extracted from a matched set of put
options tends to go the other way. Under the assumptions of this paper, impos-
ing put-call parity on the implied volatilities from a matched set of puts and calls
whose strike prices are symmetric about K/S = 1 produces a roughly symmetric
volatility smile.

Although not shown in the figure, it is nonetheless true that the truncation
bias is more severe for options near maturity and less severe for otherwise iden-
tical options far from maturity. This bias pattern is broadly consistent with
Das and Sundaram’s (1999) report that “the volatility smile in most markets is
deepest at short maturities and flattens out monotonically as maturity increases”
(p. 216). Bakshi, Cao, and Chen (1997) and Äıt-Sahalia and Lo (1998) report this
pattern for s&p 500 options. In large part, this pattern stems from the fact that
volatility until expiration, σ

√
t, not volatility alone, σ , matters in determining

how likely the spot price is to cross the strike price by the option’s expiration
date. Dumas, Fleming, and Whaley (1998) propose a time-adjusted measure of
moneyness to control for this effect.

5.2 Bias in cross-sectional averages

Standard regression techniques for truncated samples should be useful in re-
ducing the bias in average implied volatilities. Unfortunately, many of the tech-
niques are limited by their reliance on asymptotic results that are unlikely to
hold for the typically small cross-sections of options with the same maturity
date. 26 Moreover, standard solutions to this problem, such as Tobit regres-
sions or Heckman’s (1976) two-step procedure, are known to be inconsistent
under non-normality or heteroskedasticity of the errors. Under the gls weight-
ing scheme proposed here, volatility estimates from options that are away from
the money are likely to receive low weights, which mitigates this bias but does
not necessarily eliminate it.

Table 2 reports sample statistics for unweighted and weighted cross-sectional
estimates of implied volatility across 10,000 replications. The statistics are the
mean, median, standard deviation, root-mean-squared-error (rmse), mean abso-
lute deviation (mad), minimum, and maximum for each estimator, as well as the
correlations across estimates. The unweighted estimates are the cross-sectional
mean, the cross-sectional median, implied volatility computed only from the at-

25 For stock index options, the volatility smile in figure 5 is asymmetric about K/S = 1. Nonethe-
less, options that are far out of the money also produce implied volatilities with an upward bias.

26 See chapter 10 in Amemiya (1985) or chapter 6 in Maddala (1983) for details.
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the-money option, and a Tobit estimate of the mean.27 The weighted estimates
are the Latané–Rendleman weighted average, the Beckers weighted average, the
gls weighted average based on equations (13) and (15), and a Tobit estimate that
uses the diagonal of the covariance matrix in equation (13).28 In the presence of a
non-diagonal covariance matrix of the errors, maximum likelihood estimation of
the Tobit regression requires numerical integration of n-dimensional multivari-
ate normal cumulative distribution function, where n is the number of observa-
tions in the regression. Hajivassiliou and Ruud (1994) discuss fast methods for
evaluating these integrals but the computations remain burdensome. To speed
up the simulations, I ignore covariances in the Tobit estimators. Nonetheless, I
provide results for Tobit estimators that account for the heteroskedasticity in-
dicated by the diagonal terms of the covariance matrix in equation (13). I label
these Tobit–hc.

The covariance and weighting matrices for the estimators whose weights de-
pend on volatility (Tobit–hc, Latané–Rendleman, and Hentschel) are not based
on the true volatility but iteratively compute implied volatility and weighting
matrices until both converge. The gls computations also randomly perturb the
assumed distribution of the input errors. In each iteration, the covariance matri-
ces are computed using bid–ask spreads drawn independently from a uniform
distribution that has a mean and range equal to the true bid–ask spreads. For
stock index options, for example, the gls computations draw the bid–ask spread
of the index level from a uniform distribution on the interval from 1 to 3, U(1,3),
in each iteration. The spread used in generating the data is 2.

Many of the estimators in table 2 show severe upward bias. For the mean
and median estimators, the bias stems directly from the truncation of the low
volatility estimates. Although the Tobit-style estimator explicitly accounts for
the truncation, heteroskedasticity biases this estimator.29 The “at-the-money”
estimator shows no bias. Since the vix focuses on options that are essentially
at the money, the bias of the vix estimates is likely to be small.30 Weighting
the implied volatilities using the gls matrix based on equation (13) turns out
to sharply reduce the truncation bias. This is true for the gls average, as well
as the Tobit–hc maximum likelihood estimates that account for truncation and
heteroskedasticity. Since the weighted Tobit estimators perform no better than
the simple gls mean, the additional computational burden of the Tobit estima-
tors does not seem worthwhile in this application. When several near-the-money

27 In case two options are equally close to the money, I designate the closest-to-the-money in-
the-money option as the “at-the-money” option.

28 Latané and Rendleman (1976) compute the average implied volatility by taking the square
root of the average of the squares of the weighted volatilities. This induces an upward bias due
to Jensen’s inequality. I apply the Latané–Rendleman weights directly to the implied volatilities.

29 The term Tobit regression is sometimes reserved for regressions with censored but not trun-
cated samples. My Tobit estimators are full maximum likelihood estimators of the mean for
truncated samples from an i.i.d. normal population.

30 The absence of truncation bias and the relatively precise measurements suggest that measure-
ment problems alone are unlikely to account for Fleming, Ostdiek, and Whaley’s (1995) finding
that vix volatility is not an unbiased predictor of future volatility.
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options are available, as in panel B, the gls estimator has substantially lower
variance than the “at-the-money” estimator. Nonetheless, when most of the op-
tions are well away from the money, as in panel A, the gls estimator places such
low weights on their implied volatilities that it effectively collapses to the “at-the-
money” estimator. Although not designed to reduce the effects of truncation, the
gls estimator proposed in this paper performs best among these estimators.

Simulation for cross sections that contain call and put options show similar
results. The main difference is that all estimates are more precise because the
inclusion of call and put options allows more efficient cancellation of measure-
ment errors in the underlying asset price.31 The addition of the put options,
however, does not materially reduce the bias of the cross-sectional implied vol-
atility estimates. When put options are included, the rmses of the simple mean
of the index volatilities falls from 1.507 to 0.705; for the at-the-money estimate,
the rmse drops from 0.616 to 0.173; for the gls estimate, the rmse falls from
0.225 to 0.058.

5.3 Bias in volatility function estimates

Instead of trying to construct a single efficient volatility estimate from a set of
options with the same maturity, attention has increasingly turned to estimat-
ing a volatility function in which implied volatilities are smoothed across strike
prices (“volatility smile”) and time to maturity (“volatility surface”). (See Dumas,
Fleming, and Whaley 1998 or Brandt and Wu 2001, for example.) Since the Black–
Scholes assumptions specify a single volatility for each maturity, testing whether
implied volatility is constant across strike prices can be thought of as a specifi-
cation test of the Black–Scholes assumptions. More generally, there is interest
in extracting implied volatilities for option pricing models that permit Black–
Scholes implied volatilities to depend on moneyness.

To illustrate the effects of errors in implied volatilities on volatility functions,
I investigate the performance of several parametric and non-parametric estima-
tors for volatility smiles. The simulations assume that all of the Black–Scholes
assumptions hold, but that prices are observed with the same errors as before.
As before, this leads to unobserved truncation when all prices are required to
satisfy absence of arbitrage. As shown in figure 4, this truncation can lead to
pronounced biases in the observed implied volatilities. For each cross-section
of implied volatilities, I now estimate a volatility smile to fit the observed im-
plied volatilities. Naturally, many estimators fit the bias in the observed implied
volatilities. Due to the small cross-sections for the stock options, I only perform
these simulation for the stock index options.

The parametric estimates smooth the observed implied volatilities, σ̃i, as a
quadratic function of moneyness, (Ki/S − 1),

σ̃i = β0 + β1(Ki/S − 1) + β2(Ki/S − 1)2 + εi. (20)

31 In these cross-sections, the at-the-money estimator averages the implied volatilities from the
closest-to-the-money call and put options.
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The quadratic form for the parametric regressions is a compromise between a
desire for flexibility and the difficulty of estimating a large number of param-
eters from 21 observations at a time.32 Specifying moneyness as (K/S − 1) is
attractive because it implies that the regressors are orthogonal when the included
strike prices are symmetric about S, as is true here. I estimate these quadratic
regressions using least squares or Tobit procedures. Both estimation methods
are simulated in two different ways: ignoring heteroskedasticity and correlation
for the errors, or accounting for these features using the covariance matrix in
equation (13).

Least squares can use the full covariance matrix from equation (13) to spec-
ify generalized least squares, gls. The Tobit–hc estimator accounts for het-
eroskedasticity using the diagonal of the covariance matrix but ignores correla-
tions. As before, these estimators exploit the structure of the covariance matrix
but not precise knowledge of the underlying error variances. In each iteration,
the bid–ask spreads used in the construction of the covariance matrix are drawn
independently from a uniform distribution that has a mean and range equal to
the true bid–ask spreads.

Table 3 reports means, medians (in brackets), and standard deviations (in
parentheses) of the simulation results. The at-the-money estimate of volatility,
β̂0, is generally close to the true value of 15%. All of the homoskedastic estima-
tors erroneously conclude there is a volatility smile, however, since the linear
and quadratic coefficients are individually and jointly significant according to
the standard t- and F -tests. The estimators that account for heteroskedasticity
behave much better. The coefficient estimates are generally closer to their true
values and the significance tests frequently cannot reject the hypothesis that
β̂1 = β̂2 = 0. Nonetheless, in these small cross-sections, none of the estimators
and tests are perfect. In theory, a Tobit estimator accounting for truncation,
heteroskedasticity, and correlation should account for all of the features of the
data and be well behaved. The Tobit–hc estimator ignores the correlations of
the residuals to speed up the calculations. This omission is enough to bias the
estimator toward finding volatility smiles when there are none. Although the
gls estimator accounts for the correlations, it ignores the effects of truncation.
Since the observations that are most affected by truncation are also the ones
that receive low weights under the gls estimator, the gls estimator performs
best among these estimators.

Table 4 summarizes the empirical distributions of the t- and F -statistics. For
each estimator, the table shows the following percentiles: 2.5, 97.5, 5, and 95.
The table clearly shows that, for these samples, all of the tests are far from their
nominal size. All of the significance tests overstate the true differences.

In addition to the parametric methods described above, I also investigate
two non-parametric procedures: a standard locally-constant kernel regression,

32 Experiments with higher-order specifications produce noisier parameter estimates and fitted
values. This is true because the richer specifications add more parameters that are unnecessary
under the constant volatility assumption.
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Table 3

Volatility Smile Regressions

β0 = 15% β1 = 0 β2 = 0 F(β̂1 = β̂2 = 0)
Estimator β̂0×100 t β̂1×100 t β̂2×100 t F P

ols 14.500 −0.794 −19.630 −4.716 362.182 4.275 74.136 0.020
[14.576] [−0.911] [−16.178] [−3.135] [342.926] [3.382] [21.091] [0.000]

(0.887) (1.871) (20.511) (5.375) (164.646) (2.759) (114.523) (0.079)
ols (White) 14.500 −1.077 −19.630 −4.243 362.182 4.299 66.379 0.019

[14.576] [−1.390] [−16.178] [−2.671] [342.926] [3.412] [18.123] [0.000]
(0.887) (2.406) (20.511) (5.123) (164.646) (2.952) (132.137) (0.081)

Tobit 14.500 −0.857 −19.630 −5.094 362.182 4.617 86.492 0.016
[14.576] [−0.984] [−16.178] [−3.386] [342.926] [3.653] [24.606] [0.000]

(0.887) (2.021) (20.511) (5.806) (164.646) (2.980) (133.611) (0.072)
Tobit–hc 15.029 −0.005 −1.652 −0.539 16.974 0.452 20.214 0.072

[15.007] [0.062] [−0.236] [−0.048] [6.584] [0.099] [10.993] [0.001]
(0.694) (5.752) (18.729) (3.882) (188.186) (2.882) (26.500) (0.176)

ls–hc 15.024 −0.629 −2.329 −0.686 30.534 0.566 28.700 0.070
[15.010] [0.136] [−0.528] [−0.136] [10.828] [0.164] [15.044] [0.000]

(0.672) (6.651) (21.049) (5.029) (233.779) (3.282) (38.211) (0.178)
gls 14.904 −1.061 2.680 0.615 −30.879 −0.359 9.340 0.142

[14.960] [−0.292] [1.376] [0.260] [−15.189] [−0.195] [4.819] [0.019]
(0.499) (3.668) (13.872) (2.554) (153.721) (1.910) (14.183) (0.234)

The table reports simulation results for cross-sectional volatility smile regressions

σ̃i = β0 + β1 (Ki/S − 1) + β2 (Ki/S − 1)2 + εi. (20)

The table shows simulation means for the scaled point estimates, β̂j × 100, the t-statistics, t, for

the tests that β0 = 15%, β1 = 0, and β2 = 0, F -statistics for the test β̂1 = β̂2 = 0, F , and P -values
associated with the F -test, P . The numbers in square brackets are sample medians; the numbers
in parentheses are sample standard deviations.
Implied volatilities, σ̃i, are generated by simulating 10,000 independent cross-sections of Black–
Scholes prices for call options on a stock index. The options have 20 days to maturity. In
the simulations, σ = 15%, S = 500, K = {450, 455, 460, . . . , 550}, r = 5%, δ = 2.5%. Each
cross-section contains 21 call options. All prices are observed with errors based on table 1 and
figure 1.
The regressions are estimated using one of the methods listed in the first column: ordinary least
squares (ols), ordinary least squares with heteroskedasticity-consistent standard errors based
on White (1980) (ols (White)), Tobit, Tobit taking into account the heteroskedasticity of the errors
but ignoring their correlation (Tobit–hc), least squares taking into account the heteroskedasticity
of the errors but ignoring their correlation (ls–hc), or generalized least squares (gls).

and a locally-linear kernel regression.33 The performance of the different non-
parametric methods is similar and I only show results for the locally-linear regres-
sions. Although the differences are small, the locally-linear regressions perform
better in this application. For both locally-linear and locally-constant kernel re-
gressions the choice of bandwidth is important. In these simulations, the plug-in
methods summarized in Simonoff (1996) outperform cross-validation. I only re-
port the locally-linear results based on the plug-in method.

33 Given a kernel function θ(·) and bandwidth h, a locally-constant regression finds γ0 to mini-
mize

∑
i[yi−γ0]2θ((x−xi)/h) for all observations yi = f (xi)+εi. The locally-linear regression

generalizes the objective function to
∑

i[yi − γ0 − γ1(x − xi)]2θ((x − xi)/h). When the true
function, f (·), is not constant near the boundaries of the sample, locally-linear regressions are
less biased than locally-constant regressions.
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Table 4

Significance Tests in Volatility Smile Regressions

t(β0 = 15%) t(β1 = 0) t(β2 = 0) F(β̂1 = β̂2 = 0)
Estimator t t t t t t F F

Panel A: 2.5% and 97.5%

Nominal −2.093 2.093 −2.093 2.093 −2.093 2.093 0.025 4.507

ols −3.997 3.261 −17.406 1.855 0.817 11.112 1.679 402.008
ols (White) −4.775 4.130 −17.065 1.898 0.794 12.099 1.685 422.448
Tobit −4.317 3.522 −18.801 2.003 0.882 12.003 1.959 469.010
Tobit–hc −11.455 10.341 −9.190 5.961 −4.400 6.895 0.354 92.646
ls–hc −14.623 9.607 −11.180 7.602 −4.874 7.555 0.321 135.638
gls −9.810 4.006 −3.327 6.167 −4.334 2.916 0.168 47.790

Panel B: 5% and 95%

Nominal −1.729 1.729 −1.729 1.729 −1.729 1.729 0.051 3.522

ols −3.587 2.460 −15.218 1.393 1.179 9.820 2.629 314.544
ols (White) −4.377 3.173 −14.387 1.406 1.125 10.248 2.620 296.366
Tobit −3.874 2.657 −16.438 1.505 1.274 10.606 3.067 366.968
Tobit–hc −9.546 9.103 −7.616 5.013 −3.680 5.696 0.728 70.874
ls–hc −12.311 8.482 −9.613 6.566 −4.106 6.454 0.696 102.079
gls −8.006 3.502 −2.861 5.234 −3.642 2.452 0.328 34.197

The table reports empirical critical values for tests in the volatility smile regressions

σ̃i = β0 + β1 (Ki/S − 1) + β2 (Ki/S − 1)2 + εi. (20)

The table shows empirical 2.5, 97.5, 5, and 95% critical values for the t-statistics of the tests that
β0 = 15%, β1 = 0, and β2 = 0. The table shows the same empirical crictical values for the F -test
that β̂1 = β̂2 = 0. The results are based on 10,000 independent simulations. The nominal values
are shown for comparison.
Implied volatilities, σ̃i, are generated by simulating 10,000 independent cross-sections of Black–
Scholes prices for call options on a stock index. The options have 20 days to maturity. In
the simulations, σ = 15%, S = 500, K = {450, 455, 460, . . . , 550}, r = 5%, δ = 2.5%. Each
cross-section contains 21 call options. All prices are observed with errors based on table 1 and
figure 1.
The regressions are estimated using one of the methods listed in the first column: ordinary least
squares (ols), ordinary least squares with heteroskedasticity-consistent standard errors based
on White (1980) (ols (White)), Tobit, Tobit taking into account the heteroskedasticity of the errors
but ignoring their correlation (Tobit–hc), least squares taking into account the heteroskedasticity
of the errors but ignoring their correlation (ls–hc), or generalized least squares (gls).

The locally-linear non-parametric regressions can also be modified to locally-
linear generalized least squared regressions. Unfortunately, for about 1% of all
simulations this procedure produced volatility estimates in excess of 1,000%.
Since there was no sharp cut-off between acceptable and obviously bad fits, I
modify the locally-linear regressions to account for heteroskedasticity but ig-
nore correlations. These regressions are well behaved. They are labeled “Locally-
linear–hc.”34

Figure 6 shows means and medians of the fitted values and empirical 95%
confidence intervals for the six volatility smile estimators. The top three pan-
els in the figure show results for estimators that assume homoskedastic and

34 There is no known non-parametric estimator that accounts for truncation. See Khan and
Lewbel (2002) for semi-parametric estimation of truncated regression models.



Sec. 5] Bias in implied volatility 29

0.90 0.95 1.00 1.05 1.10
5

10

15

20

25

K/S

σ 
(%

)
OLS

0.90 0.95 1.00 1.05 1.10
5

10

15

20

25

K/S

σ 
(%

)

Tobit

0.90 0.95 1.00 1.05 1.10
5

10

15

20

25

K/S

σ 
(%

)

Locally-linear

0.90 0.95 1.00 1.05 1.10
5

10

15

20

25

K/S

σ 
(%

)

GLS

0.90 0.95 1.00 1.05 1.10
5

10

15

20

25

K/S

σ 
(%

)

Tobit–HC

0.90 0.95 1.00 1.05 1.10
5

10

15

20

25

K/S

σ 
(%

)

Locally-linear–HC

Figure 6: Volatility Smile Estimates
The figure shows mean fitted values (solid lines), median fitted values (dotted lines), and empirical
95% confidence intervals (dashed lines) for volatility smile estimators when the Black–Scholes
assumption are true but prices are observed with measurement errors. True volatility is constant
at σ = 15%. The parametric estimators, ols, gls, Tobit, Tobit–hc, assume that implied volatility
is a quadratic function of moneyness, (Ki/S − 1). The locally-linear non-parametric estimator
uses plug-in bandwidth estimates. All options and underlying prices are observed with the errors
described in table 1 and figure 1.
The estimators in the top panels (erroneously) assume that the implied volatilities are ho-
moskedastic and uncorrelated. The estimators in the bottom panels make corrections for het-
eroskedasticity or correlations. The gls estimator employs covariance matrix estimates based
on equation (13). The Tobit-hc and locally-linear–hc estimators only use the diagonal elements
of the covariance matrix.
Implied volatilities, σ̃i, are generated by simulating 10,000 independent cross-sections of Black–
Scholes prices for call options on a stock index. The options have 20 days to maturity. In
the simulations, S = 500, K = {450, 455, 460, . . . , 550}, r = 5%, δ = 2.5%. Each cross-section
contains 21 call options.

uncorrelated errors. All three estimators, ols, Tobit, and the locally-linear
non-parametric regression, show substantial bias and low precision for implied
volatilities from options far from the money. The figure shows in striking fashion
that these estimators almost surely find a volatility smile even though all of the
Black–Scholes assumptions hold—except that prices are measured with small er-
rors. In the bottom three panels, the estimators account for heteroskedasticity.
gls also accounts for correlation among the errors. This modification materially
reduces the bias and noise of the estimators. On average, the two parametric
estimators correctly fit a constant implied volatility function.

Results for cross-sections including calls and puts are generally similar. Ig-
noring heteroskedasticity and correlation in the errors still leads to noisy and
biased fitted values. Nonetheless, the addition of the put options has two no-
ticeable effects. First, the addition of the put options helps to cancel the errors
from the underlying asset price and the fitted values are more precise. This also
has the effect that the Tobit–hc estimator becomes the most efficient estimator,
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Figure 7: RMSEs for Volatility Smile Estimates

The figure shows root-mean-squared errors (rmse) for implied volatility estimators using call op-
tions on a stock index. The parametric estimators, ols, gls, Tobit, Tobit–hc, assume that implied
volatility is a quadratic function of moneyness, (Ki/S − 1). The locally-linear non-parametric es-
timator uses plug-in bandwidth estimates. All options and underlying prices are observed with
the errors described in table 1 and figure 1.
The estimators in the left panel (erroneously) assume that the implied volatility estimates are ho-
moskedastic and uncorrelated. (The ols and Tobit estimators perform identically in this case and
only the ols line is visible.) The estimators in the right panel make corrections for heteroskedas-
ticity or correlations. The gls estimator employs the covariance matrix estimates based on equa-
tion (13). The Tobit-hc and locally-linear–hc estimators only use the diagonal elements of the
covariance matrix. In both panels, the rmse of the individual Black–Scholes implied volatilities
is marked by an x.
Implied volatilities, σ̃i, are generated by simulating 10,000 independent cross-sections of Black–
Scholes prices for call options on a stock index. The options have 20 days to maturity. In the
simulations, σ = 15%, S = 500, K = {450, 455, 460, . . . , 550}, r = 5%, δ = 2.5%. Each cross-
sections contains 21 call options.

since the gls estimator no longer gains a big advantage by exploiting the corre-
lations stemming from the error in the underlying asset price. Second, the bias
in the fitted values becomes more symmetric about K/S = 1. There is more of a
smile rather than the smirk shown in figure 6.

Finally, figure 7 compares the root-mean-squared errors (rmse) for several vol-
atility smile estimators. There are three general findings in figure 7. First, the low-
dimensional parametrically smoothed volatility smiles have lower rmses than
the individual implied volatilities or the non-parametrically smoothed volatili-
ties. Frequently these differences are large. Strikingly, a non-parametric smooth
of implied volatilities from call options has basically the same rmses as the indi-
vidual implied volatilities. This is a typical outcome for an estimator that over-
fits the data. Second, smoothing is most effective for the least reliable implied
volatility estimates, those farthest from the money. Third, even for a low-order
polynomial, estimating a volatility smile when volatility is constant is inefficient.
Table 2 shows that the gls mean of implied volatilities has a rmse of 0.225%.
The quadratic gls estimates in the right panel of figure 7 have a rmse of 0.518
for at-the-money options.35 This is about twice as high as the rmse of 0.225
for the constant gls estimate reported in the bottom panel of table 2. Yet, for

35 The minimum rmse for the gls estimates in figure 7 is 0.190%.
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options away from the money, the rmse of the quadratic estimates quickly rises
to 10 times the rmse of the constant estimates. Of course, when there really is a
volatility smile, restricting volatility to be constant across strike prices produces
inconsistent volatility estimates. Once again, adding puts to the cross-section of
options leaves the qualitative conclusions unchanged. Nonetheless, the addition
of puts roughly halves the rmses.

6 Conclusion

This paper shows that even if the Black–Scholes assumptions hold perfectly—
except that we observe prices with measurement errors—estimates of implied
volatility are subject to considerable noise and bias.

Measurement errors in option characteristics, especially in the option price
and underlying asset price, directly translate into measurement errors in implied
volatility. Implied volatilities from options away from the money are especially
sensitive to such measurement errors. To gauge the magnitude of this noise,
the paper constructs confidence intervals for implied volatilities. Based on con-
servative assumptions for measurement errors, the 95% confidence intervals for
implied volatility from an at-the-money stock option with 20 days to maturity
are on the order of plus or minus 6 percentage points.

If dealers post option prices that obey absence of arbitrage, observed implied
volatilities are biased upward. This bias occurs because negative option price
errors quickly lead to violations of absence of arbitrage for options away from
the money. By posting only prices that obey absence of arbitrage, dealers trun-
cate posted option prices and their associated implied volatilities. In simulations,
stock options that have 20 days to expiration and are 10% in the money have aver-
age observed implied volatility of 33% when true volatility is 25%; stock options
that have 20 days to expiration and are 20% in the money have average observed
implied volatility of 58% when true volatility is 25%.

The paper constructs feasible gls estimators of implied volatility. The estima-
tors are designed to minimize the noise the implied volatility estimates but also
sharply reduce the bias of the estimates. The methods apply to volatility esti-
mators that model implied volatility as constant across moneyness, as volatility
smiles across moneyness, or as volatility surfaces across moneyness and time
to expiration. These gls estimators outperform all of the previously proposed
implied volatility estimators by considerable margins. The two principal rea-
sons for this superior performance are that the gls estimators proposed here
recognize that the measurement error of the underlying asset price can make
an important contribution to the total error in implied volatility and that the
measurement errors of the option characteristics are highly correlated across
options.

Given the potentially large errors, and their pattern, the errors may contribute
to explanations of some of the reported patterns in implied volatility. The stan-
dard finding that regressing realized volatility on implied volatility yields a co-
efficient less than 1 is consistent with measurement errors in implied volatility.
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The fact that other models of volatility, such as the models of generalized au-
toregressive heteroskedasticity (garch), introduced by Bollerslev (1987), have
predictive power for volatility over and above observed implied volatility is also
consistent with measurement errors in implied volatility.

The bias in implied volatility may contribute to explanations of the widely re-
ported volatility smiles. The bias appears in individual implied volatilities and in
standard estimates of volatility smiles or surfaces. The feasible gls estimators
proposed here largely eliminate these biases. The dramatic increase in the bias
in implied volatility as options near expiration may play a role in the rise in mea-
sured implied volatility just prior to expiration reported in Day and Lewis (1988).

The abundant evidence on time-varying volatility in stock returns makes it
unlikely that measurement errors are the only source of the observed deviations
from Black–Scholes option prices and the associated patterns in implied volatil-
ities. Nonetheless, it would be interesting to apply the proposed estimators to
option data to see what fraction of the observed structure in implied volatility
can be explained by noise and bias due to measurement errors. Ferri (2001)
argues that accounting for tick sizes and the truncation bias due to absence of
arbitrage is sufficient to explain the observed volatility smiles in foreign currency
options.
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