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Errors in RNA-Seq quantification affect
genes of relevance to human disease
Christelle Robert1 and Mick Watson2*

Abstract

Background: RNA-Seq has emerged as the standard for measuring gene expression and is an important technique

often used in studies of human disease. Gene expression quantification involves comparison of the sequenced

reads to a known genomic or transcriptomic reference. The accuracy of that quantification relies on there being

enough unique information in the reads to enable bioinformatics tools to accurately assign the reads to the correct

gene.

Results: We apply 12 common methods to estimate gene expression from RNA-Seq data and show that there are

hundreds of genes whose expression is underestimated by one or more of those methods. Many of these genes

have been implicated in human disease, and we describe their roles. We go on to propose a two-stage analysis of

RNA-Seq data in which multi-mapped or ambiguous reads can instead be uniquely assigned to groups of genes.

We apply this method to a recently published mouse cancer study, and demonstrate that we can extract relevant

biological signal from data that would otherwise have been discarded.

Conclusions: For hundreds of genes in the human genome, RNA-Seq is unable to measure expression accurately.

These genes are enriched for gene families, and many of them have been implicated in human disease. We show

that it is possible to use data that may otherwise have been discarded to measure group-level expression, and that

such data contains biologically relevant information.

Background

Transcriptomics is an important approach that has

helped researchers understand the molecular basis of

disease in a range of species. Whilst for many years mi-

croarrays were the tool of choice, RNA-Seq [1] has now

emerged as the standard method for analysing the tran-

scriptome, contributing to thousands of publications in

the biomedical literature. High throughput, second gen-

eration sequencers routinely output several hundred mil-

lion reads at very low cost, and RNA-Seq is the

application of those sequencers to RNA that has under-

gone conversion to cDNA. The result is that researchers

can cheaply generate tens of millions of reads per sample,

allowing them to both measure expression and recon-

struct splice isoforms [2]. RNA-Seq is now fundamental

to many large functional annotation projects, such as

ENCODE [3], a large multi-national effort to define

functional elements in the human genome.

There are many existing bioinformatics approaches to

RNA-Seq quantification — the conversion of raw se-

quencing reads into estimates of gene expression. The

most popular approach involves aligning the reads to a

reference genome (or transcriptome) using a spliced

aligner such as TopHat [4] or STAR [5]. The alignment

step is very computationally intensive, with each sample

taking many hours, depending on tool and parameter

choices. The result is that each read (or fragment) is

assigned zero, one or many putative locations within the

reference sequence. Reads that map in multiple locations

are described as multi-mapped; in addition, any given

mapping location may overlap with multiple genes in

the annotation, and these are described as ambiguously

mapped reads. How the multi-mapped/ambiguous reads

are handled and reported is dependent on the software

chosen, and is a major source of error in RNA-Seq quanti-

fication. Given a set of alignments, additional tools are

needed to assign reads to genes to quantify gene
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expression. Some use simple counting techniques against

a known annotation [6], whereas others simultaneously

construct transcripts and model-based estimates of gene

expression [2].

Short-read alignment is a complex problem, and in

RNA-Seq this is further compounded by gene families.

Having many members with identical or close-to-

identical sequences, gene families are often enriched for

multi-mapped reads; therefore, the results of RNA-Seq

quantification depend on the choice of aligner, the

choice of the reference, a huge array of parameters, and

algorithmic details relating to how multi-mapped reads

are handled and reported. The choice of quantification

tool also has a huge effect, as these also differ in the way

they handle aligned data and multi-mapped/ambiguous

reads.

Recently, Patro et al. [7] described a new method

which builds an index of unique kmers within tran-

scripts, and uses those to estimate gene expression dir-

ectly from the raw reads. The algorithm reports a 25

times faster run time than other approaches, with

equivalent accuracy. However, it is unable to discover

novel transcript isoforms or splice junctions (a key bene-

fit of RNA-Seq), and by relying on kmers, which are ne-

cessarily less than the read length, they are likely to

suffer similar issues to those caused by multi-mapped

reads.

At the heart of RNA-Seq is an assumption that the

method produces reliable measurements of gene expres-

sion, and a recent paper has suggested that this may not

be the case [8]. In this study we test biases introduced

by the bioinformatics aspects of RNA-Seq quantification —

that is, the conversion of raw sequencing reads into esti-

mates of gene expression. We test a wide range of tech-

niques and find systematic biases within each of them,

resulting in severe underestimation or overestimation of

gene expression in hundreds of genes, many of which

have relevance to human disease. We go on to propose

a two-stage RNA-Seq analysis that allows researchers to

discover biological signal within data that may otherwise

have been discarded.

Results

Simulation of reads from all protein-coding genes

We simulated 1000 perfect RNA-Seq read pairs from

each of 19,654 protein-coding genes, and estimated

their gene expression using 12 different methods (see

“Materials and methods”; Table 1). Of 19,654 million

read pairs, TopHat reported 850,613 fragments without

a unique mapping (4.33 %) whereas STAR reported

583,308 (2.97 %).

Read counts and estimates of gene expression for the

12 methods and 19,654 genes can be seen in Additional

file 1: Table S1. In total, 843 (4.31 %) genes were

assigned a read count less than 100 by at least one of

the methods, and 586 (2.98 %) were assigned a read

count of zero, suggesting that those genes are com-

pletely undetectable by the method(s) in question. A

total of 187 genes were assigned a read count greater

than 1900 by at least one of the methods. The two lists

(<100 or >1900) are not mutually exclusive, as some

genes were underestimated by one method yet overesti-

mated by another. In total, 958 genes were assigned

vastly under- or overestimated read counts by at least

one method.

When comparing expected with reported FPKM (frag-

ments per kilobase per million; see “Materials and

Methods”) values, Sailfish (r = 0.953), TopHat plus Cuf-

flinks (r = 0.953) and STAR plus Cufflinks (r = 0.951)

performed best, although the accuracy of the Cufflinks

Table 1 Method description

Method Aligner Quantification Quantification notes

star.htseq. u STAR 2.4.0 htseq-count (HTSeq 0.6.1) -m union

star.htseq.ine STAR 2.4.0 htseq-count (HTSeq 0.6.1) -m intersection-strict

star.htseq. is STAR 2.4.0 htseq-count (HTSeq 0.6.1) -m intersection-nonempty

tophat.htseq. u TopHat 2.0.12 htseq-count (HTSeq 0.6.1) -m union

tophat.htseq.ine TopHat 2.0.12 htseq-count (HTSeq 0.6.1) -m intersection-strict

tophat.htseq. is TopHat 2.0.12 htseq-count (HTSeq 0.6.1) -m intersection-nonempty

star.cufflinks STAR 2.4.0 Cufflinks 2.2.1

star.cufflinks.mr STAR 2.4.0 Cufflinks 2.2.1 –multi-read-correct

tophat.cufflinks TopHat 2.0.12 Cufflinks 2.2.1

tophat.cufflinks.mr TopHat 2.0.12 Cufflinks 2.2.1 –multi-read-correct

sailfish NA Sailfish 0.6.3 quant.sf

sailfish NA Sailfish 0.6.3 quant_bias_corrected.sf

A description of the RNA-Seq alignment and quantification methods used. NA not applicable
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methods dropped to r = 0.899 and r = 0.907, respectively,

once the –multi-read-correct parameter was chosen.

The bias correction values from Sailfish performed ter-

ribly (r = 0.083), and we suspect some problem with the

bias correction model on these data (Table 2).

The scatterplots in Fig. 1a show observed versus ex-

pected FPKM for all methods. In general, the methods

using HTSeq show a linear relationship between ob-

served and expected values, but also provide the most

false negatives (where expected FPKM > > observed

FPKM). The results from Cufflinks show two distinct

trends in all cases: a distinct curved relationship between

observed and expected FPKM, and an overall trend to

overestimate the FPKM. The overestimation is greater

for shorter transcripts. Correcting for multi-mapped

reads in Cufflinks increases the number of false nega-

tives. Finally, the Sailfish results show a very linear rela-

tionship between observed and expected, albeit with a

slight tendency for overestimation. The Sailfish graph is

distorted by a single gene whose expression is vastly

overestimated — GAGE2E, a member of the GAGE gene

family that has been implicated in many types of cancer

(see below). The bias-corrected Sailfish results show al-

most no relationship between observed and expected

FPKM.

The barplots in Fig. 1b show histograms of the esti-

mated number of reads assigned to each gene, and we

would expect to see a single large peak at 1000. The read

counts data confirm the results from the FPKM data —

all but one method (Sailfish bias-corrected) has a large

peak close to 1000; read counts from HTSeq have a very

strong peak at 1000, but tend to show a long tail of false

negatives; read counts from Cufflinks have a peak at

1000, but a wider distribution in general and show a ten-

dency to overestimate; Sailfish appears to be very accur-

ate; and the Sailfish bias-correction method hasn’t

worked well on these data. Of note is the star.htseq.

is.count histogram, which shows a peak below 1000, and

a larger number of false negatives. This pattern is not

seen in the tophat.htseq. is.count, suggesting that there

is an aligner-specific effect of the “intersection strict”

parameter in HTSeq.

Finally, the heatmap in Fig. 1c includes all genes where

the estimated number of reads is less than 100 (n = 843)

or greater than 1900 (n = 187) in at least one method

(n = 958). We can see large numbers of genes whose

expression is underestimated by HTSeq-based ap-

proaches. Whilst some of those genes are accurately

measured by Cufflinks-based approaches, others are ei-

ther over- or underestimated. The overall impression is

that none of the methods provide an accurate picture

of the expression of all of these genes, with each

method showing relatively large numbers of genes with

either under- or overestimated read counts.

Characteristics of problematic genes

Having identified 958 problematic genes whose expres-

sion is either severely over- or underestimated by at least

one method, we looked to see if there were any general

characteristics of the problematic genes. Minimum,

maximum and mean exon length, total number of exons,

transcript length, percentage GC, and the number of

reads overlapping the transcripts from both the TopHat

and STAR alignments were calculated for all 19,654

genes. Figure 2 shows a boxplot comparing those statis-

tics for the 958 problematic and 18,696 remaining genes.

In the group of problematic genes, the longest exon

tended to be shorter, as did the mean exon length. Prob-

lematic genes tended to have a slightly lower number of

exons, and the transcripts tended to be shorter. There

was a very slight tendency for problematic genes to have

a higher GC content; however, most striking is the num-

ber of reads overlapping problematic genes. On average,

problematic genes had 2164 unique fragments overlap-

ping their exons from the STAR alignment, and 2680

unique fragments overlapping their exons from the

TopHat alignment. As we simulated 1000 reads from

each gene, this indicates that one of the major issues for

RNA-Seq quantification is multi-mapped reads and the

resolution of mapped fragments to a single gene.

The heatmap in Fig. 1c includes all genes where the esti-

mated number of reads is less than 100 (n = 843) or greater

than 1900 (n = 187) in at least one method (n = 958). The

heatmap can be broken down into four groups: at the top

is a group of genes where the accuracy is high for HTSeq-

based approaches and Sailfish, but where Cufflinks

Table 2 Method performance on global simulated data

Method Description Pearson
correlation
coefficient

Star.htseq. u STAR, HTSeq (union) 0.78

Star.htseq.ine STAR, HTSeq (intersection-nonempty) 0.88

Star.htseq. is STAR, HTSeq (intersection-strict) 0.86

Tophat.htseq. u TopHat2, HTSeq (union) 0.78

Tophat.htseq.ine TopHat2, HTSeq (intersection-
nonempty)

0.87

Tophat.htseq. is TopHat2, HTSeq (intersection-strict) 0.86

Star.cufflinks STAR, Cufflinks 0.95

Star.cufflinks.mr STAR, Cufflinks (multi-read-correct) 0.91

Tophat.cufflinks TopHat2, Cufflinks 0.95

Tophat.cufflinks.mr TopHat2, Cufflinks (multi-read-correct) 0.90

Sailfish Sailfish (RPKM) 0.95

Sailfish Sailfish bias-corrected (RPKM) 0.08

Pearson correlation coefficients between FPKM from each method and the

expected FPKM from simulated data for 19,654 human protein-coding genes.

RPKM reads per kilobase per million (see “Materials and Methods”)
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overestimates. These genes tend to be very short, with

low numbers of exons, and have relatively low numbers

of multi-mapped reads (Additional file 2: Figure S1).

Below that group is a group of genes where the read

count is underestimated by HTSeq, overestimated by

Cufflinks, and where Sailfish is accurate. These genes

also tend to be short in length, with low numbers of

exons, but have high numbers of multi-mapped reads

(Additional file 3: Figure S2). The third group is a group

of genes where the read count is underestimated by

HTSeq, and both Sailfish and Cufflinks approaches are

accurate. These genes are of normal length, and have

high numbers of multi-mapped reads (Additional file 4:

Figure S3). The fourth group is very similar to the third,

except the addition of the –multi-read-correct param-

eter to Cufflinks results in underestimation. This group

also contains a group of genes which Sailfish overesti-

mates. These genes again tend to be shorter than nor-

mal, with very high numbers of multi-mapped reads

(Additional file 5: Figure S4).

RNA-Seq underestimates expression in genes relevant to

human disease

Having identified a set of genes whose gene expression

current bioinformatics methods are unable to accurately

measure, we wanted to identify and emphasize the im-

portance of those genes in human disease. The full re-

sults, including estimates of read counts and FPKM,

from all 12 methods for all 19,654 genes can be seen in

Additional file 1: Table S1.

The Y-chromosome deleted-in-azoospermia (DAZ)

gene family is associated with the AZFc (azoospermia

Fig. 1 Comparison of methods on global simulated data. a Scatter plots comparing FPKM for each of the 12 methods against the known FPKM

from simulated data. The red line indicates the y = x line. b Histograms of read counts for each of the 12 methods. All methods should have a

single peak at 1000. c A heatmap of read counts from 843 grossly underestimated genes and 187 grossly overestimated genes. Black and darker

colours indicate read counts close to 1000 (accurate); green colours indicate underestimation and red colours overestimation
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factor c) phenotype of male infertility [9]. The AZFc re-

gion of the Y chromosome is highly susceptible to struc-

tural variations due to the presence of repetitive

amplicons. Four DAZ gene copies are located on the Y

chromosome in palindromic duplications and are

expressed in the human testis with highly polymorphic

expression [10]. Deletion of DAZ genes in humans has

been correlated with male infertility in both a South

Chinese [11] and a Tunisian population [12]. Similarly,

RPS4Y2 lies within the AZFb locus, also suggesting a

link with male infertility [13]. RBMY1, part of the RBMY

gene family, has been shown to be involved in the regu-

lation of sperm motility [14], and deletion of it has been

associated with male infertility [15]. Ten genes in the

dataset are annotated as DAZ1 to DAZ4. Expression of

all the DAZ genes (DAZ1–DAZ4) is totally missed by

the HTSeq methods, with all read counts close to zero.

Sailfish reports read counts and RPKM (reads per kilo-

base per million) close to zero for seven of the ten genes,

and overestimates the gene expression by 1.65 to 5.36

times the expected FPKM value for the remaining three.

The Cufflinks approaches do reasonably well on four

DAZ transcripts, but underestimate in the other six

(read counts < 210), and the multi-read-correction par-

ameter results in all transcripts having FPKM and read

counts close to zero. Two genes are annotated as

RPS4Y2 in our data. HTSeq approaches assign a read

count of zero to both members. Tophat.cufflinks and

star.cufflinks overestimate the read count (almost three

times) and FPKM for one copy, yet assigns values of

zero to the second, whereas Sailfish produces accurate

estimates for both. There are ten members of the

RBMY1 gene family. HTSeq underestimates in all cases;

both Cufflinks methods perform variably with slight

Fig. 2 General characteristics of problematic genes. Boxplots comparing the length of the shortest exon, the length of the longest exon, the

mean exon length, the total number of exons, the transcript length, transcript percentage GC, the number of reads overlapping from the STAR

alignment and the number of reads overlapping the TopHat alignment for the 958 problematic genes and the 18,696 other genes
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under- and overestimates. Sailfish overestimates for five

of the genes, yet underestimates for the remaining five.

Genes in the cancer/testis (CT) multigene families are

expressed in numerous cancer types and members are

the targets for cancer immunotherapy [16]. Two classes

of CT gene families are defined based on the genomic

locations of their gene members: genes are either located

on autosomes or located often as clusters of genes on

the X chromosome. The CT47A subfamily consists of

13 genes arranged as direct tandem repeats within the

Xq24 region of the X chromosome, recently resolved by

longer read lengths (36–42 kb) achieved by the MinION

Nanopore sequencers [17]. The biomedical relevance of

this gene family is further highlighted by the fact that

the Xq24 genomic region and the CT47A locus have

been reported to contain structural variants associated

with X-linked intellectual disability [18] and X-linked

mental retardation [19]. A related gene family member,

CT45A7, has been reported to be expressed in lung can-

cer [20]. Twelve genes are annotated as being part of the

CT47A gene family in our simulated dataset. HTSeq

misses the expression of all the genes in this family;

Sailfish strongly underestimates the gene expression of 7

out of the 12 CT47A genes (with a ratio of observed ver-

sus expected FPKM values of 0.04 to 0.08), strongly

overestimates the gene expression of a further two

genes, and reports an FPKM close to the truth for a fur-

ther three. The tophat.cufflinks method works best here,

reporting FPKM values between 42 and 59 where the ex-

pected value is 39. However, the use of the –multi-read-

correct parameter results in highly inaccurate results.

Interestingly, star.cufflinks underestimates the expres-

sion of these genes in all cases (FPKM values between

0.26 and 6.8). On further inspection, whilst TopHat re-

ports between 9829 and 11,077 (mulit-mapped) reads

overlapping these genes, STAR only reports between 131

and 398.

The GAGE cancer/testis antigens are expressed in a

large number of cancers [21–24] and have been shown

to have anti-apoptotic characteristics [25]. Consisting of

at least 16 genes within tandem repeats, these are likely

to be due to replication under positive selection [26].

GAGE antigens are known targets for tumour-specific

cytotoxic lymphocytes in melanoma [27]. Twelve genes

are annotated as being part of the GAGE family in our

simulated data. All read counts are underestimated by

more than 50 % by the HTSeq-based methods, except

for GAGE1, which is assigned a read count between 825

and 851 depending on the aligner and parameters

chosen. Both tophat.cufflinks and star.cufflinks report

read counts and FPKM values above zero for these

genes, but almost all are underestimates, and tophat.cuf-

flinks performs better than star.cufflinks. Sailfish reports

a read count of zero for four of the GAGE genes,

underestimates a further six, yet strongly overestimates

the final two. One of these, GAGE2E, is the outlier vis-

ible in Fig. 1a — assigned over 8000 reads, and with the

reported RPKM over five times that of the expected

FPKM.

The UTY genes are located within the male-specific

region of the Y chromosome (MSY), and Ensembl predicts

there are 13 paralogous genes within the group. The genes

encode the “ubiquitously transcribed Y chromosome tetra-

tricopeptide repeat protein”. Haplogroup I [28] — a com-

mon European lineage of the Y chromosome — is known

to be associated with an increased risk of coronary artery

disease [29]. This predisposition to coronary artery disease

was shown to be associated with the down-regulation of

UTY genes (amongst others) in macrophages. Again, 12

genes are annotated as UTY in our simulated dataset. All

HTSeq methods underestimate the number of reads in all

cases, with most estimates being zero or close to zero.

Both star.cufflinks and tophat.cufflinks report FPKM

values greater than zero, and both methods under- and

overestimate for different members of the family (read

counts range from 228 to 2347). Use of the –multi-read-

correct parameter did not change the estimates signifi-

cantly. Sailfish underestimates ten of the members, two

with read counts close to zero, and overestimates the final

two.

TSPY1 (Testis-specific protein, Y-linked 1) copy num-

ber variation impacts on spermatogenetic efficiency and

low copy numbers have been associated with infertility

in males [30]. The TSPY1 gene is located within the

gonadoblastoma locus on the Y chromosome (GBY), and

in women presenting abnormal karyotypes the TSPY1

gene is thought to play a major role in gonadoblastoma

tumorigenesis [31]. The TSPY gene family has been

shown to play a role in testicular germ cell tumours [32]

and was proposed as a biomarker for male hepatocellu-

lar carcinoma [33]. Additionally, the TSPY gene is

expressed in the brain, suggesting a role in neural devel-

opment [34]. Thirteen genes are annotated as being part

of the TSPY gene family in our simulated data. Again,

the HTSeq methods grossly underestimate read counts

in all cases. Both the star.cufflinks and tophat.cufflinks

methods are reasonably accurate, yet this accuracy is

removed when using the –multi-read-correct param-

eter. Sailfish reports a range, from severe underestima-

tion (zero), to overestimation (1.85 times the expected

FPKM).

Members of the USP17 family have been linked to

apoptosis [35]. NPIPA3 is a member of the NPIP gene

family, members of which are expressed in the macula

and have been proposed as a susceptibility locus for age-

related macular degeneration [36]. TBC1D3C is a mem-

ber of the TBC1D3 gene family, which has been linked

to prostate cancer [37] and tumour formation in mice
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[38]. DUX4 is a pro-apoptotic protein [39] in the D4Z4

locus, made up of tandem copies of a 3.3-kb repeat,

which has been linked to facioscapulohumeral muscular

dystrophy [40]. All of the above families display now fa-

miliar patterns: HTSeq-based approaches tend to se-

verely underestimate, and star.cufflinks, tophat.cufflinks

and Sailfish perform variably, including severe underesti-

mation, severe overestimation or occasionally accurate.

In most cases, the use of the –multi-read-correct param-

eter in the Cufflinks methods decreases accuracy.

It is beyond the scope of this paper to analyse all 958

genes; however, by focusing on the subset above, we

have demonstrated that RNA-Seq often underestimates

the expression of many genes which are relevant to hu-

man disease, and that no single method is accurate in all

cases.

Simulation of reads from problematic genes

Having assigned the same number of reads to each gene

in the previous section, we then simulated a second

dataset with a variable numbers of reads to test whether

we had unfairly biased the results towards a particular

method. Using the 958 problematic genes identified

above, we simulated a random number of reads between

100 and 100,000 from each gene. In total we simulated

49 million read pairs; in this second dataset, STAR re-

ported 15.37 million read pairs without a unique map-

ping (31 %) whereas TopHat reported 16.12 million

non-unique fragments (32 %).

Full results can be seen in Additional file 6: Table S2.

As expected, each method performs significantly worse

on the subset of difficult genes than on the global data-

set (Table 3). The two Cufflinks methods perform best

(r = 0.90), though these drop to 0.83 and 0.82 when the

–multi-read-correct parameter is chosen. The HTSeq

(union) methods perform particularly badly (r = 0.58)

and the Sailfish bias corrected method again appears not

to have worked on these data.

The scatterplots in Fig. 3a show expected versus calcu-

lated FPKM values for the 12 methods, and Fig. 3b

shows the expected versus observed number of reads.

These results reinforce those from the previous section:

the HTSeq methods all show large numbers of false neg-

atives; the Cufflinks methods have a tendency to over-

estimate the FPKM, and the –multi-read-correct

parameter increases the number of false negatives; and

Sailfish shows a good linear relationship between ex-

pected and observed FPKM, albeit with a tendency to

overestimate, with a few very-large overestimations.

Assigning multi-mapped reads to gene-groups reveals

biological signal

In our global simulated data, the mapping approaches

failed to assign between 2.97 % and 4.33 % of the reads

uniquely to a gene. We have used these data to define a

list of genes whose expression is difficult to estimate by

commonly used methods. Those results are from perfect

reads that were simulated from the same reference we

use for expression estimation, and we hypothesize that

the results would be far worse in real experiments. Many

of the problems stem from multi-mapped or ambiguous

reads, and there may not be enough information in

RNA-Seq data to assign these reads accurately to a sin-

gle gene.

We therefore propose a two stage analysis: in stage 1,

reads are assigned uniquely to genes; and in stage 2,

reads that map to multiple genes are assigned uniquely

to “multi-map groups” (MMGs). MMGs can be de-

scribed as groups of genes that multi-mapped reads

uniquely map to, consistently across the dataset (see

“Materials and methods”). MMGs do not rely on existing

annotation, and are derived from the data themselves

(see “Materials and methods”).

To demonstrate the efficacy of this approach, we re-

analysed five datasets from a recent study of mouse lung

cancer [35]. The authors used RNA-Seq and demon-

strated cell type-specific differences between the tumour

and normal transcriptome in five populations of cells.

We re-analysed the data using STAR to align reads to

the genome, and HTSeq to count reads that can be

uniquely assigned to genes (Additional file 7: Table S3).

Using this method, we were unable to assign between

27.8 % and 43.9 % of the reads to a single gene. The

major reason for this was the high proportion of

multi-mapped reads, although many reads also over-

lapped either multiple or no features in the annotation.

Figure 4a shows the results of a principal components

analysis of the resulting FPKM values; despite ignoring

Table 3 Method performance on targeted simulated data

Method Description Pearson
correlation
coefficient

Star.htseq. u STAR, HTSeq (union) 0.58

Star.htseq.ine STAR, HTSeq (intersection-nonempty) 0.76

Star.htseq. is STAR, HTSeq (intersection-strict) 0.75

Tophat.htseq. u TopHat2, HTSeq (union) 0.58

Tophat.htseq.ine TopHat2, HTSeq (intersection-nonempty) 0.75

Tophat.htseq. is TopHat2, HTSeq (intersection-strict) 0.75

Star.cufflinks STAR, Cufflinks 0.90

Star.cufflinks.mr STAR, Cufflinks (multi-read-correct) 0.83

Tophat.cufflinks TopHat2, Cufflinks 0.90

Tophat.cufflinks.mr TopHat2, Cufflinks (multi-read-correct) 0.82

Sailfish Sailfish (RPKM) 0.85

Sailfish Sailfish bias-corrected (RPKM) −0.14

Pearson correlation coefficients between FPKM from each method and the

expected FPKM from simulated data for 958 difficult genes
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Fig. 3 Comparison of methods on difficult genes. a Scatter plots comparing observed FPKM for each of the 12 methods against the known

FPKM from simulated data. The red line indicates the y = x line. b Scatter plots comparing observed read counts for each of the 12 methods

against the known read counts from simulated data. The red line indicates the y = x line

Robert and Watson Genome Biology  (2015) 16:177 Page 8 of 16



between 27.8 % and 43.9 % of the reads, this method is

able to reproduce the results from Choi et al. [35]. We can

see cell type-specific differences between tumour and nor-

mal samples in all five datasets.

We then implemented the stage 2 analysis. Using only

reads that otherwise would have been discarded, we

assigned all unassigned reads uniquely to an MMG. To

reduce noise, only MMGs that had more than 100 reads

assigned to them in over 13 of the 27 datasets were kept

for further analysis. We collapsed large groups (n ≥ 5) by

merging two groups if one was completely contained

within the other. Using this method, we were able to

“rescue” between 21.6 % and 48.4 % of the discarded

reads to 4847 MMGs (Additional file 8: Table S4) con-

taining 5544 genes (genes may be members of more

than one MMG). The minimum group size was 1, the

maximum 47, and the mean size 3.2. MMGs may be size

1 because sometimes all multi-mapped locations overlap

the same gene; at other times, one or more mapped re-

gions may be intronic/intergenic, and one or more over-

lap a gene. In all cases, htseq-count discards the read. In

total, 1051 of our MMGs were of size 1, and it would be

possible to add these MMGs to the single gene analysis.

Of the 4847 MMGs identified, 2431 (50.2 %) contain at

least one pseudogene, 4299 contain at least one protein

coding gene, and 1402 contain two or more protein cod-

ing genes.

Figure 4b shows the results of a principal components

analysis on the resulting log FPM (fragments per

million) values. We can see that by estimating the

expression of MMGs, we can reveal relevant biological

signal within the data that would have been discarded by

the stage 1 analysis, and we again see cell type-specific

differences between tumour and normal samples.

Differential expression of MMGs

Having accurately and uniquely assigned reads to

MMGs, it is now possible to carry out differential ex-

pression analysis to identify MMGs that are differentially

expressed between tumour and normal samples. Once

an MMG has been identified, researchers may use a

more targeted technique, such as quantitative PCR, to

calculate which genes within the group are differentially

expressed.

We first carried out differential expression between

tumour and normal lung cells based on the gene counts

from unique reads using edgeR [36]. This process identified

a total of 5620 differentially expressed genes (Additional

file 9: Table S5).

We then carried out an identical analysis on the

MMGs, and identified 1541 differentially expressed

MMGs between tumour and lung cells, including data

on 2292 genes (Additional file 10: Table S6). Of these,

1610 are not found in the list of 5620 differentially

expressed genes from the unique counts, indicating that

MMG analysis is capable of discovering significant re-

sults that might otherwise have been ignored.

To demonstrate that analysis of MMGs can discover

information not present in the analysis of unique counts,

we removed all groups from the list of differentially

Fig. 4 Principle components analysis (PCA) of mouse cancer study. a PCA of tumour (red) and normal (blue) RNA-Seq datasets from each of five

cell types. Input data are log(FPKM) values after mapping data using STAR and counting only uniquely mapped reads against known mouse

genes (stage 1 analysis) (b) PCA of tumour (red) and normal (blue) RNA-Seq datasets from each of five cell types. Input data are log(FPM) values

of reads that cannot be assigned to a single gene but can be uniquely assigned to a multi-map group (MMG). The reads used in (b) are only

those reads discarded from (a)
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expressed MMGs that contained a member of the 5620

differentially expressed genes from stage 1. This leaves

672 MMGs (Additional file 11: Table S7). A heatmap of

the log FPM (fragments per million) values is shown in

Fig. 5, and demonstrates that MMGs which are exclusive

of differentially expressed genes from unique counts can

be used to separate tumour from normal samples.

To highlight further that MMG analysis can discover

information not present in the analysis of unique counts,

we show data from two relatively highly expressed

MMGs (logCPM ≥ 7).

MG4194 contains a single gene, “ENSMUSG00000024121”,

a protein-coding gene for Atp6v0c (ATPase, H+ transport-

ing, lysosomal V0 subunit C). ENSMUSG00000024121

was not found to be differentially expressed by the unique

read analysis, but MG4194 was found to be differentially

expressed by the MMG analysis. A comparison of the per-

centage of mapped reads is shown in Fig. 6, and we see a

clear difference between tumour and normal samples in

the MMG data. This gene is known to be expressed in the

lung [37], and inhibition of ATPases has been shown to

reduce the activity of prometastatic proteases [38].

Finally, MG994 contains three genes, Plac9a

(ENSMUSG00000095304), Plac9b (ENSMUSG00000072674)

and pseudogene Gm9780 (ENSMUSG00000094800). The

unique read analysis assigns a read count of zero to all

three genes, yet analysis of the MMG shows that there are

several thousand reads mapping to the normal cell sam-

ples, and several hundred to the tumour cell sample

(Table 4). This MMG is reported as differentially expressed

by edgeR.

Discussion and conclusions

We have shown that popular methods used to estimate

gene expression from RNA-Seq data often under- or over-

estimate the expression of hundreds of genes, and many

of those are relevant to human disease. We propose a sim-

ple but effective method that can be generically applied

and which can reveal biological signal in data that would

otherwise have been discarded.

Logically, any method which uses sequence similarity

to assign reads to a given annotation will struggle when

features within that annotation share high sequence

similarity themselves. Thus, gene families within the hu-

man genome present a problem for RNA-Seq, as bio-

informatics methods will find it difficult to determine

the correct gene from which a given read originates. The

843 genes assigned a read count less than 100 by at least

one of the methods we tested are enriched for paralo-

gues (Fisher’s exact test, p = 0.00012), which supports

our observation that gene families are problematic. Fur-

thermore, it has been widely reported that human

monogenic disorders are enriched for gene duplications

[34], which led us to the hypothesis that RNA-Seq may

struggle to estimate the expression of many genes of

relevance to human health and disease. Indeed this ap-

pears to be the case — in this paper we identify hundreds

of genes whose expression is grossly underestimated or

overestimated by a range of methods, and we describe

many of their roles in disease.

The fact that RNA-Seq does not measure all genes ac-

curately is in itself not novel; however, many “unknown

unknowns” remain; not only does RNA-Seq not measure

accurately the expression of certain genes, but re-

searchers do not know which genes are affected. By pub-

lishing the results of 12 commonly used methods on

19,654 human protein-coding genes, we reveal the ac-

curacy of each method for each gene. This is an import-

ant resource for researchers carrying out RNA-Seq in

humans. Not only can researchers look up lists of genes

to see whether they can be accurately estimated, but

these data will also help inform the choice of bioinfor-

matics software if researchers know a priori which genes

are likely to be involved in their study; alternatively, re-

searchers may choose to run several different pipelines

and take a consensus approach.

The purpose of our study is not to criticise the methods

themselves — they are all accurate methods for estimating

gene expression. However, as sequencing comes closer to

the clinic, and with the possibility that sequencing data

may be used to inform clinical decisions, it is important to

focus not only on what we can measure accurately, but

also what we cannot.

The performance of the methods we tested varied, and

no single method accurately estimated gene expression

in all cases. By simulating reads with zero errors, and

using the same reference genome to both simulate and

quantify expression, we are giving the tested methods

the best possible chance of success. Therefore, any prob-

lems we encountered indicate systematic biases in the

methods themselves. With data from real experiments,

less than perfect data from a transcriptome which is

noisier than the reference, the results are likely to be far

worse.

The various methods can be classified into model-

based and count-based methods. The HTSeq methods

are count-based and produce a pleasing linear relation-

ship between expected and observed FPKM for genes

with high proportions of uniquely mapped reads. How-

ever, by ignoring multi-mapped reads (a deliberate

choice [6]), the software produces many more false neg-

atives than other approaches. HTSeq makes no attempt

to re-assign multi-mapped reads to the correct gene,

and multi-mapped reads are discarded by default. As

well as increasing the number of false negatives, it also

eliminates false positives. The union, intersection-strict

and intersection-non-empty parameters affect how HTSeq

deals with uniquely mapped reads and the features they
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overlap. The intersection-strict method is the most strict,

and only assigns reads to a feature if those reads are com-

pletely contained within a single feature. Both the union

and intersection-non-empty approaches allow partial

overlaps with features, and union attempts to resolve

reads that overlap two features whereas intersection-non-

empty does not. The use of the intersection-strict ap-

proach seemed to negatively impact the results from

STAR more than the results from TopHat. Inspection of

the HTSeq output reveals that the star.htseq. is.count ap-

proach had a far higher number of alignments assigned to

the group “__no_feature” (1,451,559) than tophat.htseq.

is.count (201,658). The “__no_feature” group is used by

HTSeq when reads overhang the end of exon features, or

overlap introns. The set of genes where tophap.htseq.

is.count is accurate and star.htseq. is.count is not includes

many genes with very short exons, and it may be that

TopHat is slightly better than STAR at aligning reads pre-

cisely to short exons. A deeper comparison of these two

aligners is required, but is outside the scope of this

manuscript.

Globally, the choice of aligner doesn’t appear to have a

huge effect on the results, although differences in the

parameter settings and algorithms can produce very dif-

ferent results for certain genes, as seen with the number

of reads reported for the CT47A genes.

Cufflinks is a model-based approach, and whilst the

overall correlation between expected and observed is

high in all cases, they do not share a linear relationship.

The curved relationship between expected and observed

FPKM is due to the “effective length” adjustment per-

formed by Cufflinks. This approach attempts to deter-

mine the actual length of transcripts from the data

themselves, rather than from the genome annotation.

However, we simulated reads from the entire length of

transcripts, so annotated length and effective length

should be equal. That they are not reveals a potential

bias in this approach, which is applied by default, and

which can be switched off using the –no-effective-

length-correction parameter. The bias more seriously af-

fects shorter genes, and their FPKMs are overestimated.

Sailfish is also model-based, and shows the highest cor-

relation between expected and observed. Sailfish RPKM’s

show a linear relationship with expected FPKM, albeit

with a slight tendency to overestimate. The case of

GAGE2E reveals an obvious error in the software. There

Fig. 5 Heatmap of novel multi-map groups (MMGs). A heatmap of

the log FPM (fragments per million) values for 672 differentially

expressed MMGs that do not contain any genes present in the list

of differentially expressed genes from an analysis of unique counts.

The heatmap demonstrates that MMGs which are exclusive of

differentially expressed genes from unique counts can be used to

separate tumour from normal samples
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are other genes where Sailfish vastly overestimates the

number of reads (Additional file 1: Table S1), including

members of the DAZ, CT47, GAGE and UTY gene fam-

ilies. All of these have very high numbers of multi-

mapped reads, and belong to gene families with a high

amount of sequence homology. This suggests that there

are simply not enough unique kmers within the Sailfish

index to accurately measure the expression of these

genes. The complete failure of the bias-correction step

in Sailfish is likely to be because our simulated data do

not fit the assumptions of Sailfish’s bias-correction

model.

By avoiding the alignment stage, it may be that

methods such as Sailfish have an advantage over Cuf-

flinks and HTSeq. When measuring gene expression

against a known annotation, Sailfish is able to consider

all reads in the input dataset; however, Cufflinks and

HTSeq are only able to consider those reads that map to

locations that overlap genes in the annotation file; in

other words, Sailfish can access all of the input reads,

whereas Cufflinks and HTSeq only access a subset.

In this paper we propose a two-stage analysis of RNA-

Seq data whereby those reads that cannot be uniquely

assigned to a single gene in stage 1 are instead assigned

uniquely to a group of genes (a MMG) in stage 2. The

benefit of this approach is that the MMGs can be de-

rived from the data themselves and do not rely on an

existing annotation. We make no assumption about the

relatedness of genes within each MMG, other than to

state that RNA-Seq reads consistently multi-map to all

genes within each group across the dataset. In fact, many

groups represent known relationships — for example,

MG1 consists of genes ENSMUSG00000038646,

ENSMUSG00000074826, and ENSMUSG00000094437,

which are identified as paralogues within Ensembl. We

didn’t use this known paralogous relationship in the ana-

lysis — MG1 was derived solely from the multi-mapped

reads. Whilst it is not a focus of this paper, finding

Table 4 Gene and MMG counts for MG994

Lung cells tumour
1

Lung cells tumour
2

Lung cells tumour
3

Lung cells normal
1

Lung cells normal
2

Lung cells normal
3

ENSMUSG00000072674 0 0 0 0 0 0

ENSMUSG00000094800 0 0 0 0 0 0

ENSMUSG00000095304 0 0 0 0 0 0

MG994 (raw counts) 541 721 325 3298 3268 1471

MG994 (percentage
total)

0.007 0.009 0.004 0.043 0.037 0.019

Counts data for MG994. The three genes included in MG994 have a read count of zero from the unique read analysis. However, MG994 has many reads that map

uniquely within the group, and is differentially expressed between normal and tumour cells

Fig. 6 Comparison of read counts for (a) ENSMUSG00000024121 and (b) MG4194. Read counts expressed as a percentage of the mapped reads

for gene ENSMUSG00000024121, and MG4194, a single-gene MMG that contains only ENSMUSG00000024121. ENSMUSG00000024121 was not

found to be differentially expressed by the unique read analysis, but MG4194 was found to be differentially expressed by the MMG analysis.

Black bars represent tumour samples, white bars normal samples
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MMGs in multiple experiments may be a novel way of

discovering new relationships between genes.

We demonstrate the effectiveness of the MMG ap-

proach using a recently published mouse cancer RNA-Seq

dataset, and show that biological signal can be discovered

in data that would otherwise have been discarded. Using

MMGs, we can accurately measure gene expression at the

group level. This means that we can also accurately assess

differential expression at the group level. We analysed the

mouse lung cell data from Choi et al. [35] and show that

MMG analysis can reveal information about genes that

would be missed when one considers only the uniquely

mapped reads. Of the differentially expressed MMGs, 672

contained only genes that were not called as differentially

expressed in the first stage analysis. Once differentially

expressed groups have been identified, it may then be pos-

sible to use a more targeted approach to identify precisely

which genes within the group are responsible.

A high number of the MMGs we identified contained

at least one pseudogene (2431/4847), which indicates

that mapping to pseudogenes is a major source of multi-

mapped reads. Whilst it is tempting to dismiss pseudo-

genes and assign reads instead to their functional coun-

terpart, we cannot be absolutely sure that reads which

map to both a functional and a pseudogene come from

the functional gene.

The MMG approach complements traditional, gene

level-based expression analyses. At present, the only op-

tion available to researchers is to measure gene- or

transcript-level expression, and as we have shown, for a

subset of genes the software tools often get this wrong.

RNA-Seq simply does not have the resolution to meas-

ure those genes accurately. For many genes whose

expression we cannot accurately measure, we can accur-

ately measure the expression of a group of genes to

which they belong. Furthermore, we can derive those

groups directly from the data themselves. One argument

against group-level expression studies is that individual

genes may be differentially expressed, whilst the group

is not. Although this is true, for many genes RNA-Seq

does not offer the resolution required for gene-level

analysis. Using MMGs, we at least (accurately) recover a

significant proportion of the data.

Whilst we use MMGs, the method of assigning reads

uniquely to groups of genes is generic, and researchers

may choose an existing annotation if they wish — for ex-

ample, gene families, paralogous groups, protein fam-

ilies, or even gene ontology terms or pathways may be

used. As long as reads can be uniquely assigned to a sin-

gle entity, then expression measurements can be com-

pared reliably across samples. As a count-based

approach, this method complements the approach im-

plemented in HTSeq, and it becomes possible to rescue

many of the reads that HTSeq ignores.

Multi-mapped or ambiguous reads are a significant

problem and researchers should not assume that the

bioinformatics methods they use handle these accurately.

We show that in a recent study in mice, up to 43 % of

the reads could not be uniquely assigned to a single

gene. We have tested 12 methods and identified a subset

of 958 human genes that are problematic for existing

methods. We have identified the role many of these

genes play in human disease. Finally, we have proposed

a simple but novel way of assigning reads to groups of

genes, and show that this can be used to discover bio-

logical signal in data that may otherwise have been

discarded.

Materials and methods

Nomenclature

Throughout this manuscript we use the term read (or

reads) to refer to both reads from the same fragment in

a paired-end dataset. Therefore, when calculating FPKM

(fragments per kilobase per million), we count each read

pair only once. Whilst Sailfish reports an RPKM (reads

per kilobase per million), our calculations suggest this is

in fact an FPKM.

Simulated data

We wanted to isolate and test the process of RNA-Seq

quantification, and separate it from biases introduced by

other parts of the RNA-Seq workflow. Therefore, we

simulated 1000 perfect RNA-Seq reads from each of

19,654 protein-coding transcripts annotated in Ensembl

[41] using wgsim [42]. The reads are 100-bp paired-end,

with an insert size of 250 bp and zero errors. The tran-

scripts were chosen as follows: we selected only genes

annotated on the core chromosomes of Grch38, and fur-

ther filtered for protein-coding genes longer than 400 bp

in length. For each gene in the set, we chose the single

longest transcript. The resulting data are 19,654,000

paired-end reads.

For the targeted simulated data from 958 difficult

genes, we simulated a random number of read pairs

between 100 and 100,000 for each gene using the same

method. The resulting data are 49,431,873 paired-end

reads.

Calculating gene expression and read counts

We tested 12 different RNA-Seq quantification workflows:

alignment with STAR [5] or TopHat [4], followed by

quantification by htseq-count [6] with each of three op-

tions: union, intersection_strict and intersection_empty;

alignment with STAR [5] or TopHat [4] followed by quan-

tification with Cufflinks [2], both with and without multi-

read correction (−−multi-read-correct); and Sailfish [7],

both raw and bias-corrected results (Table 1). Upon
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inspection of the results, the bias-corrected data from

Sailfish were eliminated from further analyses.

Some methods report read counts, some methods re-

port FPKM and others report both. To translate between

FPKM and read count, we used the following formulae:

FPKM ¼ Rc= Tð Þ = Rm

Rc ¼ FPKM � Rmð Þ � T

where Rc is the read count assigned to a gene; T is the

transcript length in kilobases; and Rm is the total num-

ber of reads in millions.

Analysis of mouse lung cancer data with multi-map

groups

We propose a simple two-stage RNA-Seq analysis which

will help extract information from reads that cannot be

assigned to a single gene. In the first stage, reads that

can be assigned uniquely to a gene are processed. In the

second stage, only those reads that cannot be uniquely

assigned to a single gene are analyzed.

We downloaded all data from NCBI Sequence Read

Archive (SRA) accession PRJNA256324. In the first stage

analysis, reads were mapped to the mouse genome using

STAR. We used htseq-count from the HTSeq package to

count reads against known genes. Those reads that were

ignored by the stage one analysis were used as input to

the second stage analysis. The –o option to htseq-count

outputs a SAM file describing the fate of each read. For

each unassigned read, we compiled a list of all genes the

reads mapped to using BEDTools and a series of Perl

scripts. These lists of genes formed the basis of the

MMGs. Counts against all MMGs discovered in the data

across all samples were compiled, and these were then

filtered such that only MMGs that had at least 100 reads

in at least 13 of the datasets were kept. Large groups

(n ≥ 5) were collapsed such that any group that was

wholly included within a larger group were merged. All

scripts are available from [43].

The heatmap in Fig. 5 was created as follows. Input

data were log-transformed fragments-per-million (FPM)

values. The Pearson correlation matrix was calculated for

MMGs and samples, and converted to a distance matrix

by subtracting from 1. The heatmap was drawn using the

heatmap.2() function in R, scaling the data by row.

Differential expression

Differential expression was carried out on raw read

counts for genes and MMGs, respectively, using edgeR

[36]. Normalisation factors were calculated and applied,

and the common dispersion and tag-wise dispersion esti-

mated. We computed gene-wise exact tests to test for

differences between the means of tumour (samples

SRR1528732, SRR1528733, and SRR1528734) and normal

(samples SRR1528735, SRR1528736, and SRR1528737)

lung cells based on the negative-binomial distribution.

P values were adjusted for the false discovery rate.

Additional files

Additional file 1: Table S1. Counts and FPKM for simulated data from

all genes. FPKM and read counts calculated by 12 different methods for

19,654 human protein-coding genes. Can be downloaded from [43].

(XLSX 7248 kb)

Additional file 2: Figure S1. General characteristics of first problematic

group. Boxplots comparing the length of the shortest exon, the length of

the longest exon, the mean exon length, the total number of exons, the

transcript length, transcript percentage GC, the number of reads

overlapping from the STAR alignment and the number of reads

overlapping the TopHat alignment for a group of genes where HTSeq

and Sailfish are accurate, but Cufflinks overestimates. (JPEG 569 kb)

Additional file 3: Figure S2. General characteristics of second

problematic group. Boxplots comparing the length of the shortest exon,

the length of the longest exon, the mean exon length, the total number

of exons, the transcript length, transcript percentage GC, the number of

reads overlapping from the STAR alignment and the number of reads

overlapping the TopHat alignment for a group of genes where HTSeq

underestimates, Cufflinks overestimates and Sailfish is accurate. (JPEG 581 kb)

Additional file 4: Figure S3. General characteristics of third

problematic group. Boxplots comparing the length of the shortest exon,

the length of the longest exon, the mean exon length, the total number

of exons, the transcript length, transcript percentage GC, the number of

reads overlapping from the STAR alignment and the number of reads

overlapping the TopHat alignment for a group of genes where HTSeq

underestimates, Cufflinks and Sailfish are accurate. (JPEG 576 kb)

Additional file 5: Figure S4. General characteristics of third

problematic group. Boxplots comparing the length of the shortest exon,

the length of the longest exon, the mean exon length, the total number

of exons, the transcript length, transcript percentage GC, the number of

reads overlapping from the STAR alignment and the number of reads

overlapping the TopHat alignment for a group of genes where HTSeq

underestimates, Cufflinks and Sailfish are accurate but the use of

the –multi-read-correct parameter in Cuffinks results in

underestimation. (JPEG 575 kb)

Additional file 6: Table S2. Counts and FPKM for simulated data from

958 problematic genes. FPKM and read counts calculated by 12 different

methods for 958 problematic human protein-coding genes. Can be

downloaded from [43]. (XLSX 311 kb)

Additional file 7: Table S3. Unique counts from Choi et al. [35]. Counts

of reads from Choi et al. that map uniquely to genes using STAR and

HTSeq. Can be downloaded from [43]. (XLSX 5833 kb)

Additional file 8: Table S4. Counts of multi-map groups (MMGs) from

Choi et al. [35]. Counts of reads from Choi et al. that map uniquely to

MMGs. Can be downloaded from [43]. (XLSX 876 kb)

Additional file 9: Table S5. EdgeR results from unique counts. Differential

expression results calculated by edgeR for gene counts produced by the

stage 1 analysis. Can be downloaded from [43]. (XLSX 2159 kb)

Additional file 10: Table S6. EdgeR results from MMGs. Differential

expression results calculated by edgeR for MMG counts produced by the

stage 2 analysis. Can be downloaded from [43]. (XLSX 428 kb)

Additional file 11: Table S7. Novel differentially expressed MMGs. The

672 differentially expressed MMGs that do not contain any genes

identified as differentially expressed by the stage 1 analysis. Can be

downloaded from [43]. (XLSX 67 kb)

Abbreviations
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