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Abstract

Background: Vascular plants respond to pathogens by activating a diverse array of defense mechanisms.

Studies with these plants have provided a wealth of information on pathogen recognition, signal

transduction and the activation of defense responses. However, very little is known about the infection

and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The

purpose of this study was to determine: i) whether two representative broad host range pathogens, Erwinia

carotovora ssp. carotovora (E.c. carotovora) and Botrytis cinerea (B. cinerea), could infect Physcomitrella, and ii)

whether B. cinerea, elicitors of a harpin (HrpN) producing E.c. carotovora strain (SCC1) or a HrpN-negative

strain (SCC3193), could cause disease symptoms and induce defense responses in Physcomitrella.

Results: B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and

cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c.

carotovoraSCC1 (CF(SCC1)), resulted in disease development with severe maceration of Physcomitrella tissues,

while CF(SCC3193) produced only mild maceration. Although increased cell death was observed with either

the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained

protonemal cells treated with CF(SCC1) or inoculated with B. cinerea. Most cells showing cytoplasmic

shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high

proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-

related genes: PR-1, PAL, CHS and LOX.

Conclusion: B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as

evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage

is the most common morphological change observed in plant PCD, and that harpins and B. cinerea induce

this type of cell death in vascular plants, our results suggest that E.c. carotovora CFSCC1 containing HrpN

and B. cinerea could also induce this type of cell death in Physcomitrella. Our studies thus establish

Physcomitrella as an experimental host for investigation of plant-pathogen interactions and B. cinerea and

elicitors of E.c. carotovora as promising tools for understanding the mechanisms involved in defense

responses and in pathogen-mediated cell death in this simple land plant.
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Background
Plants are continuously subjected to pathogen attack and
respond by activating a range of defense mechanisms.
Recognition of the pathogen or elicitors derived either
from the pathogen or released from the plant cell wall is
accompanied with the production of molecular signals
including salicylic acid [1], jasmonic acid [2] and ethylene
[3] that lead to the induction of defense gene expression.
This in turn results in the accumulation of functionally
diverse pathogenesis-related (PR) proteins and metabo-
lites (e.g., phenylpropanoids) [4,5]. Recognition of the
pathogen or elicitors is usually accompanied by the rapid
death of the infected cells, known as the hypersensitive
response (HR), which limits the access of the pathogen to
water and nutrients thereby restricting its growth [6,7].
HR can be triggered either by non-specific elicitors recog-
nized by plant receptors, or by specific elicitors (encoded
by pathogen avirulence (avr) genes) recognized by corre-
sponding encoded products of plant resistance (R) genes
[8,9]. Several studies have suggested that plant cell death
resulting from the HR is a type of programmed cell death
(PCD). Plant cells undergoing PCD share a number of
characteristic morphological and biochemical features in
common with animal cell apoptosis [7,10,11]. Moreover,
cell death with apoptotic features has also been observed
in plants susceptible to virulent pathogens [12,13].

Although bryophytes are non-vascular plants and are con-
sidered to be primitive among the embryophyta, mosses
have been shown to respond to a variety of environmental
stimuli and to several common plant growth factors much
like vascular plants. Thus, in spite of having diverged from
vascular plants approximately 700 million years ago [14],
mosses are well-suited for the study of fundamental proc-
esses in plant biology. Furthermore, mosses have a simple
developmental program and a life cycle with a predomi-
nant haploid phase which greatly facilitates genetic analy-
sis [15].

Physcomitrella patens, a relatively small moss, has recently
become a model plant to study plant gene function in that
it exhibits high-frequency homologous recombination
comparable with that of Saccharomyces cerevisiae, enabling
the construction of gene knock-outs [16,17]. The assem-
bled Physcomitrella genome has recently been released and
full-length cDNAs in addition to 80,000 ESTs are available
in the databases [18-20]. These advantages together with
the presence of a great number of Physcomitrella ESTs with
high sequence identity to defense-related genes of vascu-
lar plants, many of them with unknown functions, makes
this plant a very useful model to study plant-pathogen
interactions. The susceptibility of distinct tissues to path-
ogens can also be studied, since Physcomitrella can be
maintained as a haploid gametophyte with distinct devel-
opmental stages. These consist of the protonema which is

a filamentous network of cells, and the radially symmetric
gametophore which is a leafy shoot composed of a non-
vascular stem with leaves as well as rhizoids [21]. Disease
development can be visualized microscopically in that the
leaves and protonemal filaments are formed of a monol-
ayer of cells.

There have been very few reports on either pathogen infec-
tion or the activation of defense responses in mosses. In
silico analysis of the Physcomitrella genome, however, indi-
cates the presence of several encoded proteins with high
similarity to R gene products found in flowering plants
[22]. Regarding natural infection, the fungus Scleroconidi-
oma sphagnicola (S. sphagnicola) can infect and cause dis-
ease symptoms in the moss Sphagnum fuscum (S. fuscum)
[23] and viruses were detected in Antarctic mosses [24]. S.
sphagnicola hyphae can grow inside the cell wall of S. fus-
cum, digesting wall components, penetrating into cells of
leaves and causing chlorosis of the tissue. In more
advanced stages of disease development, necrosis of
infected leaf and stem cells, as well as host death can be
observed [23].

In this study we aimed to identify plant pathogens capable
of infecting and triggering a defense response in Phys-
comitrella, with the goal of establishing a model system to
conduct molecular, cellular and genetic studies on Phys-
comitrella-pathogen interactions. We used two pathogens
with a broad host range, the bacterium Erwinia carotovora
ssp carotovora (E.c. carotovora) and the fungus Botrytis cine-
rea (B. cinerea). E.c. carotovora is a soft-rot Erwinia which
causes disease on many vascular plants [25,26]. The main
virulence factors of E.c. carotovora are the plant cell wall-
degrading enzymes including cellulases, proteases and
pectinases [26]. These enzymes cause maceration of the
infected tissues and the released cell wall fragments can
act as elicitors of the plant defense response [27-31]. Pre-
vious studies have shown that cell-free culture filtrate (CF)
containing plant cell wall-degrading enzymes from E.c.
carotovoraSCC3193 produces similar symptoms and defense
gene expression as those caused by E.c. carotovoraSCC3193

infection and enhanced disease resistance in CF-treated
plants [28,30-32]. Some E.c. carotovora strains produce
harpins, which are small, acidic, glycine-rich, heat-stable
proteins, that elicit HR and induction of plant defense
responses [33,34]. In the present study we have used two
strains of E.c. carotovora; i) E.c. carotovoraSCC1 which is a
harpin (HrpN) producing strain [35], and ii) E.c.
carotovoraSCC3193 which is a HrpN-negative strain [36]. B.
cinerea is a necrotrophic fungal pathogen that attacks over
200 different plant species [37], by producing multiple
proteins and metabolites that kill the host cells [38]. The
main virulence factors of B. cinerea vary depending on the
isolate, and include toxins and cell wall degrading
enzymes such as endopolygalacturonases and xylanases
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[39-41]. In this study, we demonstrate that E.c. carotovora-
derived elicitors and B. cinerea cause disease symptoms
and induce a defense response in the moss Physcomitrella.

Results
E.c. carotovora and B. cinerea infect Physcomitrella 

patens

In order to determine whether E.c. carotovora infects Phys-
comitrella tissues, a gfp-labelled E.c. carotovoraSCC3193 strain
was inoculated onto Physcomitrella leaves as described in
methods. Two days after inoculation tissue examined by
confocal microscopy indicated that the labelled cells of
E.c. carotovora had occupied the apoplast between leaf
cells, as well as the cellular space of some plant cells in this
same tissue (Figure 1A).

When B. cinerea inoculated leaf tissue was examined, out-
lines of fungal hyphae were apparent inside the cell cavity
displacing the cytoplasmic contents (Figure 1B). Infection
of Physcomitrella tissues by B. cinerea was examined in
more detail by staining fungal hyphae with trypan blue.
Two days post infection (dpi) hyphae appeared to be
within the limits of the cell walls in Physcomitrella leaves
(Figure 1C). Our observation that B. cinerea hyphae
appeared within plant cells is likely in that Physcomitrella
leaves are composed of a contiguous monolayer of adja-
cent cells.

E.c. carotovora, CFs and B. cinerea cause disease 

symptoms in Physcomitrella

Development of disease symptoms by E.c. carotovora was
initiated by inoculating the harpin HrpN-producing E.c.
carotovoraSCC1 strain and the HrpN-negative E.c.
carotovoraSCC3193 strain onto Physcomitrella leaves. Inocula-
tion with both strains caused visible symptoms around
the wounded tissue within 2 days when observed with a

magnifying glass, while mock inoculated tissues did not
(Figure 2).

Physcomitrella infection by E.c. carotovora and subsequent
development of symptoms required that we first wound
the plant mechanically (Figures 1 and 2). Growth or colo-
nization of E.c. carotovora in planta as determined by enu-
meration of bacteria in a given tissue could not be done
due to the difficulty of consistently wounding the tissue
sufficiently without causing excessive damage and dessi-
cation. Instead of continuing our studies with E.c. caro-
tovora bacterial inoculation, cell-free culture filtrate (CF)
was used to elicit a defense response since: i) in vascular
plants CF incites the same disease symptoms and induces
defense gene expression in the same way as does inocula-
tion with E.c. carotovora [30-32], ii) CF is sprayed onto the
colonies allowing for direct and homogeneous contact,
and iii) it overcomes the technical difficulty of introduc-
ing a sufficient number of small wounds on the moss tis-
sue to allow inoculation by E.c. carotovora for a
comprehensive evaluation of the plant defense response.

Disease symptom development was observed upon treat-
ing Physcomitrella colonies with: (i) CF of E.c.
carotovoraSCC1 (CF(SCC1)), (ii) CF of E.c. carotovoraSCC3193

(CF(SCC3193)), or (iii) B. cinerea spores. Disease symptoms
such as tissue maceration developed in colonies two days
after treatment with either CF(SCC1), CF(SCC3193) or after
inoculation with B. cinerea spores, as shown in Figure 3.
In control experiments, moss colonies treated with either
Luria-Bertani (LB) (Figure 3A), potato dextrose broth
(PBD) growth media (not shown) or with spores of a non-
pathogen, Aspergillus nidulans (not shown), did not
develop disease symptoms. Protonemal filaments treated
with either CF(SCC1) or CF(SCC3193) developed maceration

Symptom development in response to E.c. carotovora inocula-tionFigure 2
Symptom development in response to E.c. carotovora 
inoculation. Leaves of Physcomitrella gametophores were 
wounded and inoculated with 0.9% NaCl (A, D), E.c. 
carotovoraSCC3193 (B, E) or E.c. carotovoraSCC1 (C, F). Pictures 
of representative colonies were taken at 2 dpi.

E.c. carotovora and B. cinerea inoculation of Physcomitrella leavesFigure 1
E.c. carotovora and B. cinerea inoculation of Phys-
comitrella leaves. A. Leaves of Physcomitrella gametophores 
inoculated with E.c. carotovoraSCC3193 carrying a GFP-express-
ing plasmid at 2 dpi. B. B. cinerea inoculated leaves at 2 dpi. C. 
Trypan blue stained B. cinerea hyphae in inoculated leaves at 
2 dpi. Arrow indicates hyphae growing in Physcomitrella.
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symptoms, with CF(SCC3193) causing less tissue damage
than CF(SCC1) (Figures 3C and 3F). Additionally, CF(SCC1) -
treated colonies acquired a brownish aspect as seen in the
protonemal filaments shown in Figures 3C and 3E. CF-
treated gametophores, also known as leafy shoots, did not
show maceration symptoms, although brownish stems
were observed in CF(SCC1)-treated colonies (Figure 3D).

Physcomitrella showed a clear susceptibility to B. cinerea,
involving a characteristic proliferation of mycelium and
the appearance of necrotic protonemal tissue in addition
to the browning of stems (Figures 3H, 3J and 3I). Inocu-
lated tissues were soft, macerated and were easily sepa-
rated from the rest of the moss colony. Four dpi B. cinerea-
infected moss tissues were completely macerated (data
not shown). Protonemal filaments were more susceptible
than leaves to CF treatments and B. cinerea inoculation.
Taken together, these results show that CF(SCC1),
CF(SCC3193) and B. cinerea are capable of causing disease
symptoms in Physcomitrella.

CF(SCC1) and B. cinerea trigger cytoplasmic shrinkage, 

accumulation of autofluorescent compounds and 

chloroplast browning

Pathogen infection or elicitor treatment can induce plant
cell death with characteristic changes in cells, including
cytoplasmic shrinkage, alteration of chloroplast organiza-

tion and accumulation of autofluorescent compounds
[13,42-44]. In the present study, we examined cellular
changes occurring in Physcomitrella tissue showing macro-
scopic disease symptoms after exposure to B. cinerea
spores or CF of the E.c. carotovora strains. CF(SCC1)-treated
(Figures 4C and 4D) and B. cinerea-inoculated (Figure 4E)
protonemal cells showed cytoplasmic shrinkage after 2
days. In contrast, no cytoplasmic shrinkage was evident in
cells treated with LB (control for CF treatments, Figure
4A), CF(SCC3193) (Figure 4B) or PDB (control for B. cinerea
inoculation, data not shown). Other morphological
changes were also observed in Physcomitrella CF(SCC1)-
treated and B. cinerea-inoculated cells. After 2 days, both
treatments caused browning of the chloroplasts in a high
proportion of cells (Figures 4D and 4E). Chloroplast
browning was evident only in cells showing cytoplasmic
shrinkage (Figures 4D and 4E). Additionally, CF(SCC1)-
treated (Figures 4F and 4G) and B. cinerea-inoculated cells
(data not shown) with brownish chloroplasts showed
lack of red autofluorescence of chlorophyll. CF(SCC1)-
treated protonemal cells having cytoplasmic shrinkage
and brown chloroplasts were more abundant after 4 days.
Within this treated protonemal tissue, cells with fewer
brown chloroplasts were also observed suggesting that
they were being brokendown (Figure 4H). In contrast,
CF(SCC3193)- or LB-treated protonemal filaments did not

Symptom development in response to CF treatment and B. cinerea inoculationFigure 3
Symptom development in response to CF treatment and B. cinerea inoculation. Moss colonies and gametophores 
treated with LB (A, B), CF(SCC1) (C, D), CF(SCC3193) (F, G) or with B. cinerea spores (H, I). A closer view of colonies treated with 
CF(SCC1) (E), or inoculated with B. cinerea spores (J) is shown. Pictures of representative colonies were taken 2 days after treat-
ment.
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show such changes and green chloroplasts were evident at
least 6 days after treatment (data not shown).

After an apparent initial contact of B. cinerea hyphae with
individual cells within the leaf, plant cells were observed
to respond by accumulating autofluorescent compounds
(Figure 5A). Cells in B. cinerea-inoculated leaves develop-
ing light blue to yellow autofluorescence (AF) were also
observed. This AF appeared confined to the cytoplasm
now separated from the cell wall (Figure 5C). No AF, how-
ever, was observed in CF(SCC1)- or CF(SCC3193)-treated
leaves (data not shown). AF was clearly evident in pro-
tonemal filaments of B. cinerea-inoculated and CF(SCC1)-
treated colonies (Figures 5E and 5G). In contrast, no AF
was seen in PDB-treated leaves (Figure 5B) or PDB- or LB-
treated protonemal filaments (Figures 5D and 5F), and
only a few CF(SCC3193)-treated cells accumulated autofluo-
rescent compounds (data not shown). Also, accumulation
of autofluorescent compounds was generally observed

once cytoplasmic shrinkage occurred (Figures 5H and 5I).
In summary, our results show that CF(SCC1) and B. cinerea
induce cellular changes in Physcomitrella protonemal cells,
including cytoplasmic shrinkage, browning of chloro-
plasts and accumulation of autofluorescent compounds,
suggesting a cell death process.

E.c. carotovora elicitors and B. cinerea trigger cell death 

in Physcomitrella

To assess whether CF and B. cinerea caused cell death of
Physcomitrella tissues, we stained moss colonies with
Evans blue, a dye that is excluded by membranes of living
cells but diffuses into dead cells [45]. Figure 6 shows pic-
tures of representative tissues. Two days after treatments,
an increase in stained cells was observed with either
CF(SCC3193), CF(SCC1) or B. cinerea spores, compared with
control treatments. Although, while in CF(SCC3193)-treated
tissue a low proportion of stained protonemal cells was
observed (Figure 6B), CF(SCC1)-treated or B. cinerea-inocu-
lated tissues showed a high proportion of stained pro-
tonemal cells (Figures 6C and 6E). In control treatments,
almost no stained cells were visible (Figures 6A, 6D).

Accumulation of autofluorescent compounds in Physcomitrella after CF treatment and B. cinerea inoculationFigure 5
Accumulation of autofluorescent compounds in Phys-
comitrella after CF treatment and B. cinerea inocula-
tion. Examination of UV-stimulated autofluorescence of B. 
cinerea-inoculated leaf (A, C), PDB-treated leaf (B), PDB- (D), 
B. cinerea spores- (E), LB- (F) and CF(SCC1)-treated protone-
mal filaments (G). A closer view of a CF(SCC1)-treated pro-
tonemal cell with cytoplasmic shrinkage and UV-stimulated 
autofluorescence is shown (H, I). Observations were made 2 
days after treatments.

Analysis of protonemal filament changes in response to treat-ments with CF and B. cinerea sporesFigure 4
Analysis of protonemal filament changes in response 
to treatments with CF and B. cinerea spores. Protone-
mal filaments examined under transmitted light after 2 days 
of treatment with LB (A), CF(SCC3193) (B), CF(SCC1) (C, D), and 
B. cinerea spores (E). Cytoplasmic shrinkage observed with 
CF(SCC1) and B. cinerea spores are indicated with arrows. 
CF(SCC1)-treated protonemal cells showing browning of chlo-
roplasts and loss of red chlorophyll autofluorescence after 
UV-excitation are indicated with arrows (F, G). A cell with 
collapsed cytoplasm and fewer chloroplasts is shown 4 days 
after treatment (indicated with an arrow) (H).
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Cytoplasmic shrinkage was evident in most Evans blue
stained protonemal cells treated with CF(SCC1) or B. cinerea
spores (Figures 6G and 6H). Whenever cytoplasmic
shrinkage occurred, cells were stained with Evans blue,
indicating that these cells were dying or dead. In contrast,
most CF(SCC3193)-treated protonemal cells did not show
cytoplasmic shrinkage and the dye was distributed homo-
geneously in the cells (Figure 6F). Three days after treat-
ment, stained CF(SCC3193)-treated protonemal cells did not
exhibit cytoplasmic shrinkage suggesting that this
response does not develop at a later stage (data not
shown). In gametophores, Evans blue stained cells could
be detected in leaves inoculated with B. cinerea (Figure 6J),
whereas stained cells were not seen after CF(SCC1) (Figure
6I), CF(SCC3193) or control treatments (not shown).

B. cinerea and E.c. carotovora elicitors mediate 

activation of defense-related genes

To analyze whether CF treatment or B. cinerea inoculation
trigger Physcomitrella defense gene expression, we charac-
terized the expression of a number of defense-related gene
homologues including; (i) PR-1, (ii) LOX, (iii) PAL, and
(iv) CHS. LOX (lipoxygenase) is a key enzyme in the syn-
thesis of defense-related compounds including JA [46],
PAL (phenylalanine ammonia-lyase) mediates the bio-
synthesis of phenylpropanoids and SA [5,47] and CHS
(chalcone synthase) is the first enzyme in the synthesis of
flavonoids [5]. The results in Figure 7 show that expres-
sion of the Physcomitrella homologues increased after CF
treatment or B. cinerea inoculation. Clearly, three types of
expression patterns were observed. The level of PR-1
expression peaked at 24 h in CF(SCC3193)-treated moss col-
onies, while in CF(SCC1)-treated and B. cinerea-inoculated
tissues expression of PR-1 peaked at 4 h. Expression of
PAL and CHS peaked at 4 h in tissues treated with either
of the CFs or with B. cinerea spores, although among the
treatments, higher expression levels were observed with
CF(SCC1). In the case of CHS, two transcripts with an iden-
tical expression pattern were detected. LOX expression
was moderately induced in CF(SCC1)- and CF(SCC3193)-
treated moss colonies at 4 and 24 h, while transcript levels
increased significantly in B. cinerea inoculated Phys-
comitrella tissues, reaching the highest expression level at
24 h. The results obtained in this study show that several
conserved defense-related gene homologues of Phys-
comitrella were induced in response to treatment with E.c.
carotovora elicitors or B. cinerea spores.

Discussion
The developmental simplicity, ease of genetic analysis and
the evolutionarily relationship between Physcomitrella and
other plants has prompted us to study the interaction
between this moss and two broad host range pathogens,
the bacterium E.c. carotovora and the fungus B. cinerea.
Our results indicate that both B. cinerea and E.c. carotovora

Analysis of cell death in PhyscomitrellaFigure 6
Analysis of cell death in Physcomitrella. Evans blue stain-
ing of protonemal tissues after treatments with LB (A), 
CF(SCC3193) (B), CF(SCC1) (C), PDB (D) and B. cinerea spores 
(E). A closer view of CF(SCC3193)- (F), CF(SCC1)- (G) and B. cin-
erea inoculated (H) protonemal cells is shown. Arrows indi-
cate cytoplasmic shrinkage. Leaves treated with CF(SCC1) (I) 
and B. cinerea spores (J) were also stained with Evans blue. 
Pictures of representative tissues were taken 2 days after 
treatment.
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can infect Physcomitrella tissues and cause disease symp-
toms. Since Physcomitrella gametophytes do not have sto-
mata, E.c. carotovora entered plant tissues through
wounds, while B. cinerea hyphae probably entered by
hydrolyzing the plant cell wall using hydrolytic enzymes
or by secreting cell wall permeable toxins that kill plant
cells. We have observed B. cinerea hyphae within plant
cells, including cells in which hyphae were apparently
inside the cell cavity displacing the cytoplasm. Hyphae of
other necrotrophic fungi, including S. sphagnicola, Tephro-
cybe palustris and Nectria mnii, are capable of penetrating
live cells of moss leaves, resulting in cell death a posteriori
[23,48]. In case of Nectria mnii, it was shown that intracel-
lular hyphae could displace the host cell contents [48].

E.c. carotovoraSCC1, but not E.c. carotovoraSCC3193, was pre-
viously shown to harbour the harpin-encoding gene hrpN
[35,36]. Harpins are bacterial effector proteins released
into the host cells, through a type III secretion system
encoded by the hypersensitive reaction and pathogenicity

(hrp) gene cluster. When present in plant tissue, harpins
cause HR and induction of defense mechanisms [49,50].
In Erwinia spp. hrp genes have been shown to contribute
to virulence and to the ability of the pathogen to grow in
the plant [35,51]. The higher maceration rate of the pro-
tonemal tissues observed with CF(SCC1) compared with
CF(SCC3193) is consistent with previous studies showing
that polygalacturonase, together with harpin HrpN from
E.c. carotovoraSCC1 greatly enhanced lesion formation in
Arabidopsis [52].

Cytoplasmic shrinkage is the most common morphologi-
cal change occurring in plant PCD and has been observed
in cells undergoing HR, as well as in tissues of plants sus-
ceptible to virulent pathogens [53-55]. Cytoplasmic
shrinkage was observed only in Evans blue stained pro-
tonemal cells treated with CF(SCC1) but not with
CF(SCC3193), probably suggesting that a different mecha-
nism leading to cell death had occurred. This finding is
consistent with the induction of HR by harpins and with
previous results showing that Pseudomonas syringae pv pha-
seolicola induced cytoplasmic shrinkage in plant cells,
while a hrpD mutant did not [43].

Breakdown of chloroplast membranes and chlorophyll
has been observed in cells undergoing PCD, including
those treated with elicitors, infected with pathogens or
those undergoing senescence [56-59]. Our results showed
that treatments with CF(SCC1) and B. cinerea spores induce
browning of chloroplasts, which is likely followed by the
breakdown of these organelles. This is consistent with pre-
vious results showing that S. sphagnicola hyphae are capa-
ble of causing degeneration of chloroplasts in the moss S.
fuscum [23]. Chloroplasts remained green in protonemal
CF(SCC3193)-treated cells, while boiled CF(SCC1), containing
the heat-stable HrpN, still induced browning of the chlo-
roplasts in cells also showing cytoplasmic shrinkage (data
not shown). These findings suggest that HrpN might trig-
ger cell death associated with cytoplasmic shrinkage and
chloroplasts browning. In addition, browning of chloro-
plasts was associated with chlorophyll breakdown in
CF(SCC1)-treated and B. cinerea-inoculated cells, since no
red chlorophyll autofluorescence was observed (although
quenching by other compounds cannot be excluded).
These results are supported by findings showing that E.c.
carotovoraSCC1 induced the expression of chlorophyllase 1
in Arabidopsis, which could be involved in the degradation
of photoactive chlorophylls to avoid higher levels of reac-
tive oxygen species (ROS) production and cellular dam-
age during pathogen infection [60]. It is also interesting to
note that whenever browning of chloroplasts was
observed in CF(SCC1)-treated or B. cinerea-inoculated cells,
cytoplasmic shrinkage was also present. Since CF(SCC1)-
treated protonemal cells with cytoplasmic shrinkage but
green chloroplasts were also observed, browning of chlo-

CF and B. cinerea-induced expression of defense-related genes in PhyscomitrellaFigure 7
CF and B. cinerea-induced expression of defense-
related genes in Physcomitrella. Expression of PR-1, PAL, 
CHS and LOX genes was characterized by RNA-gel blot 
hybridization after the following treatments: moss colonies 
sprayed with LB (control, C), CF(SCC1), CF(SCC3193) or inocu-
lated with B. cinerea spores (2 × 105 spores/ml). Plant samples 
were harvested at the indicated times (hours) after treat-
ment. 10 µg of RNA was separated on formaldehyde-agarose 
gels, transferred to nylon membranes and hybridized to 32P-
labeled DNA probes. Ethidium bromide staining of rRNA 
was used to ensure equal loading of RNA samples. Similar 
results were obtained from two independent experiments.
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roplasts could be a process occurring later in dying cells
after collapse of the cytoplasm. Browning of chloroplasts
could be indicative of oxidative processes due to excessive
accumulation of ROS in the chloroplasts at late stages of
CF(SCC1) and B. cinerea treatments, finally leading to chlo-
roplasts breakdown. To our knowledge, this is the first
report in which browning of chloroplasts was observed
after pathogen and elicitor treatment. The ability to
observe changes in the coloration of the chloroplasts was
facilitated in that the leaf tissue, like the protonemal fila-
ments, is composed of a single monolayer of cells.

Accumulation of autofluorescent compounds has been
associated with the occurrence of HR in vascular plants
[6,44]. CF(SCC1)-treated or B. cinerea-inoculated Phys-
comitrella tissues developed AF. A previous report demon-
strated localized deposition of phenolic compounds at
the sites of fungal penetration and also as a second major
response that appeared to follow cell death [44]. These
findings are consistent with our results, in showing AF
confined to the collapsed cytoplasm of dead cells in B. cin-
erea-inoculated leaves and protonemal filaments.

B. cinerea induce PCD to enable rapid colonization of vas-
cular plants, and Erwinia harpins have been shown to
elicit cell death [49,50,61,38]. Cytoplasmic shrinkage, an
indicator of plant PCD, correlated with accumulation of
autofluorescent compounds and chloroplast browning
after inoculation with B. cinerea or treatment with CF of
HrpN producing E.c. carotovoraSCC1 suggesting that either
treatment results in PCD in Physcomitrella.

Our results also showed that E.c. carotovora elicitors and B.
cinerea induced defense-related gene expression in Phys-
comitrella. Earlier induction of the PR-1-like gene expres-
sion and the higher levels of PAL and CHS mRNA
accumulation triggered by CF(SCC1) compared with
CF(SCC3193), corresponded well with the higher levels of
tissue maceration observed with CF(SCC1). CHSs are
encoded by multiple genes in vascular plants and Phys-
comitrella [5,62], and in our study two CHS transcripts
with an identical expression pattern were detected.
Recently, a new enzymatic activity was described for the
same Physcomitrella LOX gene product induced by B. cine-
rea in this study [63]. Novel oxylipins were generated by
this enzyme suggesting a possible involvement in defense
responses. In vascular plants PR-1, PAL and LOX are
induced by inoculation with E.c. carotovora or by CF treat-
ments [52,64,65] and PR-1 transcript accumulation is
increased after B. cinerea infection [66,67]. The results
obtained in this study suggest that E.c. carotovora elicitors
and B. cinerea similarly induce expression of Physcomitrella
defense gene homologues of those studied in vascular
plants, and thus validate the use of non-specific plant

pathogens or elicitors derived from them to study moss-
pathogen interactions.

Conclusion
In the present study, we demonstrate that E.c. carotovora
elicitor treatment and B. cinerea inoculation cause disease
symptoms and induce defense responses in Physcomitrella.
CF(SCC1), CF(SCC3193) and B. cinerea induced the expression
of defense-related genes, including PR-1, LOX, PAL and
CHS homologues. Compounds produced by LOX, PAL
and CHS are involved in the synthesis of JA, phenylpropa-
noids and SA and flavonoids, respectively, in vascular
plants. These compounds could play a role in the defense
response of Physcomitrella as has been shown in vascular
plants. As such our results further establish E.c. carotovora
elicitors, as well as B. cinerea as promising systems to ana-
lyze induction of defense responses in Physcomitrella.

Since cytoplasmic shrinkage is the most common mor-
phological change observed in plant PCD, and that
harpins and B. cinerea induce this type of cell death in vas-
cular plants, our results suggest that E.c. carotovora CFSCC1

containing HrpN and B. cinerea could also induce this
type of cell death in Physcomitrella. Finally, the occurrence
of distinct cellular responses leading to cell death by
CF(SCC1) and CF(SCC3193) provides a useful system to ana-
lyze pathogen-induced cell death and to characterize the
key elements involved in its regulation by targeted gene
disruption in Physcomitrella.

Methods
Plant material and growth conditions

Physcomitrella patens Gransden WT isolate [68] was grown
on cellophane overlaid BCDAT agar medium consisting of
1.6 g l -1 Hoagland's, 1 mM MgSO4, 1.8 mM KH2PO4 pH
6.5, 10 mM KNO3, 45 µM FeSO4, 1 mM CaCl2, 5 mM
ammonium tartrate and 10 g l-1 agar [69]. Protonemal cul-
tures and moss colonies were grown as described previ-
ously [70]. Plants were grown at 22°C under a
photoperiod of 16 h light and three-week-old colonies
were used for all the experiments.

Pathogen inoculation and culture filtrate treatments

Erwinia carotovora ssp carotovora strains SCC3193 [71] and
SCC1 [72] were propagated on LB medium [73] at 28°C.
Cell-free culture filtrates were prepared by growing bacte-
ria in LB broth overnight, removing bacterial cells by cen-
trifugation (10 min at 4000 g) and filter sterilizing the
supernatant (0.2 µm pore size). This filter-sterilized super-
natant (CF) was applied by spraying the moss colonies (3
ml per Petri dish containing 16 moss colonies). E.c.
carotovoraSCC3193 and E.c. carotovoraSCC1 were grown on LB,
and E.c. carotovoraSCC3193 transformed with plasmid
pUC18 containing the GFP sequence as reporter gene
under control of the lac promoter was grown on LB con-
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taining 100 µg/ml ampicillin. After 16 h bacterial cells
were centrifuged and suspended in 0.9% NaCl to a final
concentration of 5 × 108 cfu/ml. These suspensions were
used for inoculation of Physcomitrella leaves previously
wounded with a needle to create small lesions. An isolate
of B. cinerea from a lemon plant was cultivated on 39 g/L
potato dextrose agar (DIFCO) at room temperature. B.
cinerea was inoculated by spraying a 2 × 105 spores/ml sus-
pension in half-strength PDB (DIFCO). Symptom devel-
opment of CF-treated and B. cinerea-inoculated
Physcomitrella colonies was analyzed in three independent
experiments using two Petri dishes containing16 colonies
each. The experiments involving leaves inoculated with
E.c. coratovora strains SCC1, SCC3193 and SCC3193 car-
rying the GFP marker were performed at least three times.

Evans blue and trypan blue staining, autofluorescence 

detection and microscopy

For detection of cell death, moss colonies were incubated
for 2 hours with 0.05% Evans blue and washed 4 times
with deionized water to remove excess and unbound dye.
Growth and development of B. cinerea mycelium inside
leaf tissues was monitored by staining with lactophenol-
trypan blue and destaining in saturated chloral hydrate as
described previously [74]. For autofluorescent compound
detection, leaves were boiled in alcoholic lactophenol and
rinsed in ethanol and water [75]. Material was then
mounted on a slide in 50% glycerol and examined for
Evans blue or trypan blue staining or using ultraviolet epi-
fluorescence for detection of autofluorescent compounds
(Microscope Olympus BX61). The infection of Phys-
comitrella leaves by GFP-tagged E.c. carotovora was visual-
ized with a laser scanning confocal microscope FV 300
(Olympus).

RNA gel blot analysis

Total RNA was isolated from control and treated plant tis-
sue corresponding to 64 moss colonies, using standard
procedures based on phenol/chloroform extraction fol-
lowed by LiCl precipitation. Ten micrograms of total RNA
separated by denaturing agarose-formaldehyde gels was
transferred to a nylon membrane (Hybond N) following
standard procedures [76]. Membranes were prehybridized
at 65°C in 6 × SCC, 0.5% SDS, 0.125 mg milk powder and
0.5 mg ml-1 denatured salmon sperm DNA. Hybridiza-
tions were performed at 65°C overnight. The DNA frag-
ments to be used as probes were obtained by PCR using
the plasmid harbouring the corresponding cDNA as tem-
plate and the primers M13 forward and reverse. The cDNA
clones used were: [DDBJ:BJ182301 (PR-1),
DDBJ:BJ201257 (PAL), DDBJ:BJ192161 (CHS) and
DDBJ:BJ159508 (LOX)]. PCR fragments were purified
using Qiaquick columns (Qiagen), and were labelled with
[α32P]-dCTP using Rediprime II Random Prime labelling
system (Amersham Biosciences). After hybridization,

membranes were washed twice for 30 min at 65°C with 5
× SCC, 0.1% SDS and twice 30 min with 2 × SCC, 0.1%
SDS. Subsequently, membranes were exposed on autora-
diography film. The amount of RNA loaded was verified
by addition of ethidium bromide to the samples and pho-
tography under UV light after electrophoresis.
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