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Abstract. Skeletal proteins play an important role in 
determining erythrocyte membrane biophysical proper- 
ties. To study whether membrane deformability and 
stability are regulated by the same or different skeletal 
protein interactions, we measured these two properties, 
by means of ektacytometry, in biochemically perturbed 
normal membranes and in membranes from individu- 
als with known erythroeyte abnormalities. Treatment 
with 2,3-diphosphoglycerate resulted in membranes 
with decreased deformability and decreased stability, 
whereas treatment with diamide produced decreased 
deformability but increased stability. N-ethylmaleimide 
induced time-dependent changes in membrane stability. 
Over the first minute, the stability increased; but with 
continued incubation, the membranes became less 
stable than control. Meanwhile, the deformability of 
these membranes decreased with no time dependence. 
Biophysical measurements were also carried out on 

pathologic erythrocytes. Membranes from an in- 
dividual with hereditary spherocytosis and a defined 
abnormality in spectrin-protein 4.1 association showed 
decreased stability but normal deformability. In a fam- 
ily with hereditary eUiptocytosis and an abnormality in 
spectrin self-association, the membranes had decreased 
deformability and stability. Finally, membranes from 
several individuals with Malaysian ovalocytosis had de- 
creased deformability but increased stability. 

Our data from both pathologic membranes and bio- 
chemically perturbed membranes show that deform- 
ability and stability change with no fixed relationship 
to one another. These findings imply that different 
skeletal protein interactions regulate membrane de- 
formability and stability. In light of  these data, we 
propose a model of the role of skeletal protein 
interactions in deformability and stability. 

T 
HE red cell, as it continuously circulates, must be able 
to undergo extensive passive deformation and to resist 
fragmentation. These two essential qualities require a 

highly deformable yet remarkably stable membrane. The 
property of membrane deformability determines the extent 
of membrane deformation that can be induced by a defined 
level of applied force. The more deformable the membrane, 
the less applied force necessary to allow the cell to pass 
through capillaries much smaller than the cellular dimen- 
sions. Membrane stability, on the other hand, is defined as 
the maximum extent of deformation that a membrane can un- 
dergo beyond which it cannot recover completely its initial 
shape, i.e., the point at which it fails. Normal membrane sta- 
bility allows erythrocytes to circulate without fragmenting, 
while decreased stability can lead to cell fragmentation un- 
der normal circulatory stresses. 

The red cell membrane has been well characterized bio- 
chemically and is composed of a lipid bilayer, integral pro- 
teins, and a skeletal protein network of spectrin, actin, anky- 
rin, tropomyosin, and proteins 4.1 and 4.9. The membrane 
skeleton underlies the bilayer and is associated with it by pro- 

tein-pmtein and protein-lipid interactions (3, 4, 7, 18). Al- 
though much is known about the biochemical associations in 
the membrane, the manner in which these associations 
influence membrane biophysical properties is less well 
defined. The skeletal protein network is felt to play an impor- 
tant role in determining membrane deformability and stabil- 
ity (8, 10, 16, 22, 28). Evidence to support this contention 
has been derived from membrane stability studies of red cells 
from selected patients with defined quantitative or qualitative 
skeletal protein abnormalities (17, 19, 21, 29, 32, 34). 
Whether membrane deformability is also perturbed in red 
cells with these abnormalities is not yet clarified. An impor- 
tant unanswered question is whether membrane deformabil- 
ity and stability are regulated by the same or different skeletal 
protein interactions. To address this question, we have pur- 
sued two lines of investigation. First, we have biochemically 
perturbed skeletal protein interactions in normal cells and 
measured the effect of this perturbation on membrane 
deformability and stability. Second, we have measured these 
two membrane physical properties in red cells from individ- 
uals with known erythrocyte abnormalities. 
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In both biochemically perturbed normal membranes and 
pathologic membranes, we found that decreased deformabil- 
ity can be associated with either increased or decreased 
membrane stability. In addition, normal deformability can 
occur with decreased stability. These results imply that 
different skeletal protein interactions regulate the two essen- 
tial membrane properties of deformability and stability. We 
will consider these results in light of a model based on known 
skeletal protein associations and identify the key skeletal 
protein associations that regulate membrane deformability 
and stability. 

Materials and Methods 

Reagents 
Alpha chymotrypsin was purchased from Worthington Biomedical Corp., 
Freehold, NJ; trypsin from CooperBiomedical Inc., Malvern, PA; 2,3-di- 
phosphoglycerate (2,3-DPG) ~, N-ethylmaleimide (NEM), and diamide 
from Sigma Chemical Co., St. Louis, MO; dextran from Pharmacia Fine 
Chemicals, Uppsala, Sweden; Stractan from St. Regis Paper Co., Tacoma, 
WA; Affi-Gel 15 and Affi-Gel l0 from Bio-Rad Laboratories, Richmond, 
CA. 

Preparation of Polyclonal Antibodies 
Proteins 4.1 and spectrin were purified by the methods of Tyler (30) and 
Morrow (24), respectively. The purified proteins were then injected sub- 
cutaneously into rabbits in the presence of complete Freund's adjuvant. 
4 wk later, the rabbits were boosted intramuscularly and then the sera ob- 
tained at 2 wk. Monospecific IgG was prepared from the sera by passage 
over Atii-Gel 10 coupled to protein 4.1 and Affi-Gel 15 coupled to spectrin. 
The specificity of the purified IgG was evaluated by immunoblot analysis 
as described later. 

Preparation of Resealed Erythrocyte Membranes 
Resealed membranes for deformability and stability measurements were 
prepared by a procedure adopted from Johnson (13). Blood from normal 
volunteers and patients was drawn into heparinized or acid citrate dextrose 
tubes and the erythrocytes collected and washed three times in 5 mM Tris 
and 140 mM NaCI (pH 7.4). The erythrocytes were then lysed in 40 vol of 
7 mM NaC1 and 5 mM Tris (pH 7.4). The membranes were pelleted by cen- 
trifugation, resuspended in 10 vol of 5 mM Tris and 140 mM NaCI (pH 7.4), 
and incubated 30 min at 37°C for resealing. Finally, the resealed membranes 
were pelleted by centrifugation and prepared for ektacytometry as described 
below. 

Resealed membranes from normal red cells were biochemically per- 
turbed by incubating with either 0.1-5.0 mM NEM or diamide for varying 
periods of time at 37 ° or 4°C. The treated membranes were then assayed 
in the ektacytometer. 

Entrapment of Skeletal Perturbing Agents 
within Resealed Membranes 
If the membranes were to be resoled in the presence of a perturbing agent, 
then the agents listed below were included in the resealing buffer and the 
lysed membranes were equilibrated in this buffer for 10 min at 4°C and then 
resealed for 1 h at 37°C. The agents and their concentrations were 1-25 mM 
2,3-DPG, and 1-50 ng/ml trypsin. 

The reversibility of the 2,3-DPG effect was studied by relysing an aliquot 
of 2,3-DPG-treated membranes and then resealing them in 5 mM Tris, 
140 mM NaCI (pH 7.4) with and without 2,3-DPG, and examining them 
by ektacytometry. 

Membrane Deformability Measurements 
Resealed membranes, prepared as described above, were suspended in 3 ml 
of Stractan II (290 mosmol, 22 centipoise [pH 7.4]; St. Regis Paper Co.) 

1. Abbreviations used in this paper: 2,3-DPG, 2,3-diphosphoglycerate; DI, 
deformability index; H.E., hereditary elliptocytosis; NEM, N-ethylmale- 
imide. 

and examined by ektacytometry, a laser diffraction method previously de- 
scribed (20). In brief, suspended cells are exposed to an increasing shear 
stress (0-125 dynes/cm z) and the change in their laser diffraction pattern 
from circle to ellipse measured. This photometric measurement produces 
a signal designated deformability index (DI) which quantitates cell elliptic- 
ity. By an automatic image analysis system, the DI is recorded as a continu- 
ous function of applied shear stress. For resealed membranes, the shear 
stress required to obtain a defined value of DI is determined by the property 
of membrane deformability without contributions from either internal vis- 
cosity or cell geometry (12). There is a correlation between changes in 
deformability measured by this technique and those measured using the 
micropipette (6, 9). Analysis of the DI curve generated by the ektacytometer 
thus provides a measure of membrane deformability (2l). 

Membrane Stability Measurements 
Resealed membranes were pelleted by centrifugation and 100 Ixl of 40% 
membrane suspension was then mixed with 3 ml Dextran (40,000 mol wt, 
35 g/100 ml in 10 mM phosphate buffer, viscosity 95 centipoise [pH 7.4]), 
and subjected to a continuous applied shear stress of 575 dynes/cm 2 in the 
ektacytometer (21). Under this stress, the membranes progressively frag- 
ment, generating undeformable spherical fragments. This process is de- 
tected as a time-dependent decrease in DI. The time required for the DI to 
fall to 60% of its maximum value is termed T60 and is taken as a measure 
of membrane stability. 

To evaluate the protein composition of the red cell fragments generated 
by shear stress, the cell suspension sample was removed from the ek- 
tacytometer and a population enriched for the smallest fragments was ob- 
tained by gravity sedimentation. When the supernatant and the sedimented 
fractions were examined microscopically, the supernatant contained the 
small fragments and the residual, large membrane fragments were in the 
sedimented fraction. The protein contents of the supernatant sample, the 
sedimented sample, and unsheared whole membranes were then compared 
using SDS PAGE as described below. 

SDS PAGE 
Samples for electrophoresis were solubilized in 0.5 M Tris-Cl (pH 6.8), 
1.25% SDS, and 0.38 M dithiothreitol, heated to 100°C for 3 min, and ana- 
lyzed in the discontinuous system described by Laernmli (14) on slab gels 
composed of a separating gel of 10% acrylamide and a stacking gel of 3% 
acrylamide. After electrophoresis, the gels were fixed and stained for pro- 
tein with Coomassie Blue. 

Quantitation of Membrane Proteins and Lipids 
To determine the relative concentrations of the various proteins in the intact 
membranes and the shear-generated fragments, a pyridine dye elution 
method was used (1). To determine the relative concentrations of lipids, the 
lipids were extracted using the method of Rose and Oklander (25). Then 
cholesterol was measured by the method of Zlatkis et al. (35), and lipid 
phosphorus by the method of Bartlett et al. (2). 

Immunoblot 
Membrane proteins were electrophoretically transferred from polyacryl- 
amide SDS gels to nitrocellulose membranes as previously described (5). 
Unbound reactive sites were blocked by incubation in 3 % BSA in 20 mM 
Tris and 500 mM NaCI (pH 7,5) for 30 min at 40°C. The membrane was 
then incubated in specific antibody (15-50 [tg/ml) in 3% BSA, 20 mM Tris, 
and 500 mM NaCI (pH 7.5) for 2 h at room temperature, washed twice with 
20 mM Tris and 500 mM NaCI, and twice with 20 mM Tris, 500 mM NaCI, 
0.05% Nonidet P-40, and then incubated in 125I-pmtein A (2.5 × 105 
cpm/ml) in 3% BSA, 20 mM Tris and 500 mM NaCI (pH 7.5) for 1 h at 
room temperature. Finally, the nitrocellulose was washed as above, dried, 
and exposed to x-ray film. 

Results 

Analysis of Shear-induced Fragments 
To show that the stability assay used in these studies indeed 
measures shear-induced disruption of skeletal protein inter- 
actions, we first generated fragments by exposing normal, 
resealed membranes to the constant high shear stress. We 
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Figure L SDS PAGE analysis of 
membrane fragments and residual 
membranes generated during mem- 
brane stability assay. Lane 1, Coo- 
massie Blue pattern of the small 
shear-induced fragments collected 
in the supernatant fraction of 1 g 
sedimentation. Lane 2, the resid- 
ual large membrane fragments col- 
lected after shearing. Lane 3, the 
unsheared control membranes. It 
can be seen that all the major skele- 
tal protein components are present 
in the three samples. When the 
membrane proteins were quanti- 
rated, the ratios of spectrin, protein 
4.1, and actin to band 3 in the frag- 
ments, residual membranes, and 
intact membranes were within 7% 
of each other. 

then examined the skeletal protein content of  these fragments 
by SDS PAGE. Fig. 1 shows that the membrane protein com- 
position of these fragments was the same as that of both un- 
sheared resealed membranes and of residual membranes af- 
ter fragmentation. When the membrane proteins of the 
fragments, residual membranes,  and intact membranes were 
quantitated, the ratios of  spectrin, protein 4.I ,  and actin to 
band 3 were within 7% of  each other. In addition, the 
protein-to-lipid ratios were also very similar for these three 
preparations. This indicates that shear-induced fragmenta- 
tion results in the disruption of  protein-protein interactions 
generating spherical vesicles with the same protein composi- 
tion as that of  the intact membranes from which they were 
derived. 

Effect of Polyphosphates 

To evaluate the effect on membrane stability of  disruption of 
skeletal protein associations we entrapped 2 ,3-DPG within 
resealed membranes.  This polyphosphate is known to dis- 
sociate spectrin-actin and spectrin-protein 4.1 interactions 
(26, 33). The membrane stability of  membranes resealed in 
the presence of 2,3-DPG, in increasing concentrations, is 
shown in Fig. 2 b. In this figure, the DI, at constant applied 
shear stress, is plotted as a function of time. The DI is a mea- 
sure of  membrane ellipticity, and it decreases as a function 
of time as the membrane fragments into nondeformable 
spheres. The fragmentation pattern of normal membranes is 
shown in the top curve. Treatment of  membranes with in- 
creasing concentrations of  2 ,3-DPG caused a dose-depen- 
dent increase in fragmentation rate, in other words, a de- 
crease in membrane stability. The membranes treated with 
2 mM 2,3-DPG had 0.91 times the normal stability while the 
5, 10, and 15 mM treated membranes had 0.71, 0.36, and 0.17 
times the normal stability. 

To determine whether these changes in stability were re- 
versible, membranes were first resealed in 7.5 m M  2,3-DPG, 
then relysed and resealed in either 0 or 7.5 mM 2,3-DPG. 
As shown in Fig. 2 c, curve B, the cells that were resealed 
first in 2,3-DPG, lysed, and then resealed without the poly- 
phosphate, reverted back towards normal stability. In con- 
trast, the cells that were exposed to 2 ,3-DPG during both 
resealing steps or only in the second resealing step showed 
a decreased stability. 

Resealing membranes in increasing concentrations of  2,3- 
DPG also resulted in a dose-dependent decrease in mem- 
brane deformability as measured by ektacytometry. The 
change in DI with increasing concentrations of  2 ,3-DPG is 
shown in Fig. 2 a. In this figure, the DI is plotted on a linear 
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Figure 2. Effect of 2,3-DPG on membrane deformability and stability. (a) The deformability data with the OI plotted on a linear scale 
and the shear stress plotted on a log scale. Because the lines are parallel, one can see that membranes treated with 5 mM 2,3-DPG required 
1.8-fold greater shear stress than normal membranes to reach equivalent deformation at all points along the curve, indicating that the 
2,3-DPG-treated membranes had 0.55 times the normal deformability. Treatment with 7.5 and l0 mM 2,3-DPG resulted in membranes 
that had, respectively, 0.33 and 0.22 times the normal deformability. (b) The stability data with the DI plotted as a continuous function 
of time. The time required for the DI to fall to 60% of its maximum value is termed T60 and is used to compute relative membrane stabil- 
ity. The membranes treated with 2 mM 2,3-DPG had 0.91 times the normal stability and the 5, 10, and 15 mM had 0.71, 0.36, and 0.17 
times the normal stability. (c) The reversibility of the 2,3-DPG effect on membrane stability. The decreased membrane stability caused 
by 2,3-DPG (curve C) was shown to be reversible by relysing the membranes and resealing them in buffer without 2,3-DPG (curve B). 
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scale and the shear stress plotted on a log scale. The deform- 
ability of normal membranes is shown in the top curve. 
Treatment of membranes with increasing concentrations of 
2,3-DPG caused a dose-dependent decrease in the DI ob- 
tained at all values of applied shear stress. Since the lines are 
parallel, one can calculate that membranes treated with 
5 mM 2,3-DPG required 1.8-fold greater shear stress than 
normal membranes to reach equivalent deformation at all 
points along the curve, indicating that the 2,3-DPG-treated 
membranes had 0.55 times the normal deformability. Treat- 
ment with 7.5 and 10 mM polyphosphate resulted in mem- 
branes that had, respectively, 0.33 and 0.22 times the normal 
deformability. 

Effect of Proteolytic Enzymes 
To determine whether intact skeletal proteins were required 
for normal membrane stability, we entrapped increasing 
concentrations of trypsin within resealed membranes and 
measured their stability by ektacytometry. As Fig. 3 shows, 
trypsin, in concentrations from 5-50 ng/ml, caused a dose- 
dependent decrease in stability. The membranes treated with 
5 ng/ml had 0.77 times the normal stability, while those 
treated with 10 and 25 ng/ml had 0.67 and 0.42 times the nor- 
mal stability. 

To examine the effect of these low concentrations of trypsin 
on membrane proteins, we ran SDS polyacrylamide gels of 
membranes resealed in the presence of this enzyme and then 
analyzed them by Coomassie Blue stain and immunoblot. AS 
can be seen in Fig. 4, with increasing concentrations of tryp- 
sin, several new bands appeared with molecular weights less 
than that of I~-spectrin. An imrnunoblot prepared with 
anti-spectrin IgG (Fig. 5 A) confirmed that several bands 
had been generated by digestion of spectrin. The Coomassie 
Blue-stained gel also showed a dose-dependent decrease of 
a band with the electrophoretic characteristics of protein 4.1. 
AS Fig. 5 B illustrates, an immunoblot prepared with rabbit 
anti-protein 4.1 IgG confirmed a dose-dependent decrease 
in protein 4.1. The findings of membrane instability and 
quantitative decreases in two membrane skeletal proteins im- 
ply that normal membrane stability requires a normal com- 
plement of intact spectrin and protein 4.1. 

Effect of Agents Altering Sulfhydryl 
Group Associations 
To evaluate the effect on membrane properties of altering the 
state of thiol groups, we treated resealed membranes with the 
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Figure 3. Effect of trypsin on 
membrane stability. The DI, 
measured at the constant ap- 
plied shear stress of 575 
dynes/cm 2, is plotted as a 
continuous function of time. 
The membranes treated with 
5 ng/ml had 0.77 times the 
normal stability while those 
treated with 10 and 25 ng/ml 
had 0.67 and 0.42 times the 
normal stability. 

sulfhydral blocking agent NEM. One of the known effects of 
NEM is to alter the spectrin dimer-tetramer equilibrium 
(28). As Fig. 6 shows, NEM induces changes in membrane 
stability that are both concentration- and time-dependent. At 
low concentrations (0.1 mM) membrane stability increased 
over the first minute to 1.3 times normal and then decreased. 
After 60 min of incubation, the stability had decreased to 
,,080% of normal. Increasing the concentration of NEM (up 
to 5 mM) resulted in a similar increase in membrane stability 
over the first minute but a more rapid decline in stability with 
time so that after 5 min, the membrane stability of the 5 mM 
sample was decreased 10-fold. When these incubations were 
performed at 4°C, only the initial increase in stability was 
observed and the subsequent decrease which occurred at 
37°C was not seen. On the other hand, NEM-induced 
changes in membrane deformability were not time- or 
temperature-dependent. Treatment with 1-5 mM NEM for 
30 s resulted in a twofold decrease in deformability. The 
membrane deformability did not further decrease signifi- 
cantly over a 30-rain period, and the degree of change was 
the same at both 4 ° and 37°C. 

The temperature- and time-dependent alterations in mem- 

Figure 4. Effect of trypsin on membrane proteins. Membranes were 
treated with different concentrations of trypsin and then analyzed 
by SDS PAGE stained with Coomassie Blue. Lanes 1-5, membranes 
exposed to 0, 2.5, 5.0, 10, and 25 ng/ml of trypsin, respectively. 
With increasing concentrations of trypsin, there is the appearance 
of several new bands of molecular weight less than I$-spectrin. In 
addition, there is a dose-dependent decrease of a band with the elec- 
trophoretic characteristics of protein 4.1. The band indicated by the 
closed arrow corresponds to the band in Fig. 5 A. The band indi- 
cated by the open arrow corresponds to the band in Fig. 5 B. 
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1 .5  I I I I I brane stability suggest that the effect of  NEM may be a com- 
plex process. Alterations in the spectrin dimer- tetramer 
equilibrium may account for the observed decrease in stabil- 
ity, but additional changes induced by thiol blockade most 
likely are responsible for the initial increases in stability and 
for the decreases in deformability. The fact that there is no 
progression of the effects at 4°C suggests that the initial in- 
crease in stability and the decrease in deformability may be 
induced secondary to the blockade of thiol groups on cys- 
teine residues in the exoplasmic domains of  integral mem- 
brane proteins, 

Effect of  Membrane Protein Cross-Linking 

To evaluate the effect of  oxidative cross-linking of membrane 
proteins we treated resealed membranes with diamide, an 
agent known to oxidize sulfhydral groups (11). Fig. 7 shows 
the effect of  0.1 mM diamide on membrane deformability and 
stability. In this figure, the relative stability and deformabil- 
ity of  membranes is plotted as a continuous function of time 
with the stability data depicted in the top curve and the de- 
formability data in the bottom curve. The untreated, control 
membranes manifested constant deformability and stability 
over 60 min. Treatment with 0.1 mM diamide resulted in an 
increase in stability and a marked decrease in deformability 

Figure 5. Western blot analysis of membranes treated with trypsin. 
Membranes were treated with different concentrations of trypsin 
and then analyzed by immunoblot. Lanes 1-4, membranes exposed 
to 0, 2.5, 5.0, and 10 ng/ml of trypsin, respectively. A was incubated 
with rabbit anti-spectrin IgG and B with rabbit anti-protein 4.1 
IgG. It can be seen that with increasing concentrations of trypsin 
treatment, there is increasing proteolysis of spectrin (A, closed ar- 
row) and a decrease in the membrane content of intact protein 4.1 
(B, open arrow). 
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Figure 6. The effect of NEM on membrane stability. The relative 
stability of membranes at 37°C is plotted as a continuous function 
of time. The stability of the control, untreated membranes remains 
constant over 60 min and is depicted by the dashed line. NEM- 
treated membranes showed an increase in membrane stability over 
the first minute and then a decline in stability with time. This de- 
cline in stability was concentration-dependent. 

as a function of time. With increasing concentrations of  dia- 
mide up to 5 mM, both the deformability and stability 
changes were more pronounced and occurred at a faster rate. 

Treatment of membranes with malonyldialdehyde, an 
amino group cross-linking reagent, also resulted in a dose- 
dependent increase in stability and decrease in deformability. 

Membrane Deformability and Stability 
in Pathologic Red Cells 

We next performed a series of  experiments using pathologic 
red cells with previously defined abnormalities in skeletal 
protein interactions. For these studies we made membranes 
from the cells of a family with hereditary elliptocytosis 
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Figure 7. The effect of 0.1 mM diamide on membrane deformability 
and stability. The relative stability and deformability of membranes 
is plotted as a continuous function of time. The relative stability 
data are depicted in the top curve and the relative deformability data 
are depicted in the bottom curve. Both the deformability and stabil- 
ity of the control, untreated membranes remain constant over 60 
min and are shown by the dashed line. Diamide treatment resulted 
in an increase in stability and a decrease in deformability as a func- 
tion of time. 
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Figure 8. Membrane deformability and 
stability in H. E. and Malaysian ovalo- 
cytosis. Membrane deformability is de- 
picted in a. K.D. and B.D., elliptocytic 
membranes that had 0.1 times the nor- 
mal deformability. N.S. and C.N., mem- 
branes from ovalocytes that showed, 
respectively, 0.09 and 0.05 times the nor- 
mal deformability. The stability of these 
same membranes is depicted in b. Ellip- 
tocytic membranes K.D. and B.D. had 
0.26 and 0.28 times the normal stability. 
Ovalocytic membranes C.N. and N.S. 
showed 1.5 and 1.3 times the normal sta- 
bility. 

(H. E.) whose membranes had previously been shown to 
have an increased spectrin dimer-to-tetramer ratio (19). As 
Fig. 8 illustrates, unmodified H. E. membranes showed 0.1 
times the normal deformability and 0.26-0.28 times the nor- 
mal stability. Membranes from individuals with Malaysian 
ovalocytosis, as yet an uncharacterized membrane defect, 
also had markedly decreased deformability. These mem- 
branes had 0.05-0.09 times the normal deformability. But, in 
contrast to the H. E. membranes, these rigid membranes had 
1.3-1.5 times the normal stability (Fig. 8). Studies of mem- 
branes from a family with an uncommon form of hereditary 
spherocytosis and a spectrin defect resulting in decreased 
binding of spectrin to protein 4.1 (34) showed essentially 
normal deformability while membrane stability was 0.45- 
0.59 times normal (Fig. 9). Finally, studies were done on 
membranes from individuals with hemoglobin CC, a disor- 
der in which the primary defect is an abnormal hemoglobin 
and secondary skeletal changes are presumed to occur. As 
Fig. 9 illustrates, these membranes had 0.29-0.40 times the 
normal deformability and a 1.5-fold increase in stability. 

Discussion 

Our results show that in biochemically perturbed normal 
cells and in pathologic cells, the membrane properties of 
deformability and stability do not change in a predictable 
pattern in relationship to one another and therefore appear 
to be regulated by different skeletal protein interactions. Fig. 
10 shows a model to conceptualize how these properties 
might be regulated by the skeletal proteins. This model is an 
extension of ones proposed by Waugh (31) and Shen (27), and 
takes into account the known structure, associations, and 
stoichiometry of the skeletal proteins. In the nondeformed 
state (a), the spectrin molecules exist in a folded confirma- 
tion. Reversible deformation of the erythrocyte membrane 
occurs with a change in geometric shape but at a constant 
surface area (from a to b to c). During reversible deforma- 
tion, a rearrangement of the skeletal network occurs in which 
certain spectrin molecules become uncoiled and extended 
while others assume a more compressed and folded form. 
With increased shear stress, the membrane becomes increas- 
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Figure 9. Membrane deformability and 
stability in hereditary spherocytosis and 
hemoglobin CC. Membrane deformabil- 
ity is depicted in a. H.B., J.B., and A. B., 
spherocytic membranes showing essen- 
tially normal deformability. Du.T. and 
De.Z, membranes from cells with he- 
moglobin CC had, respectively, 0.40 
and 0.29 times the normal deformability. 
The stability of these membrane prepa- 
rations is shown in b. ll.B. membranes 
had 0.45 times the normal stability and 
J.B. and A.B. membranes both had 0.59 
times the normal stability. In contrast, 
De.T. and Du.Z membranes showed, 
respectively, 1.5 and 1.4 times the nor- 
mal stability. 
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ingly extended (b and c) and some of the spectrin molecules 
attain their maximal linear extension. This point is the limit 
of reversible deformability. A continued application of force 
would necessitate an increase in surface area and the break- 
ing of junction points. When the cells are exposed to a shear 
stress great enough to require an increase in surface area, the 
membrane fails. We believe that this failure occurs at the 
points of spectrin-spectrin or spectrin-actin-protein 4.1 as- 
sociation and results in fragmentation of the membrane. 

The membrane skeleton can thus be viewed as a network 
of folded spectrin molecules held together by protein-protein 
associations that occur at both ends of the spectrin hetero- 
dimer. Disruption of either the spectrin-actin-protein 4.1 
complex at one end of spectrin or of spectrin self-association 
at the other end would have a markedly detrimental effect on 
membrane stability. On the other hand, for the membrane to 
deform normally, the skeletal network must be able to un- 
dergo rearrangement and the spectrin molecules fold and un- 
fold. Hence an increase in intermolecular or intramolecular 
associations of the skeletal proteins or an increased associa- 
tion of integral membrane proteins with the skeletal network 
would have a profound effect on membrane deformability. 

To validate this model, we needed assays to measure quan- 
titatively membrane properties of red cells. Quantitative 
measurement of membrane deformability entails determin- 
ing the extent of deformation as a continuous function of 

applied stress. The ektacytometric membrane deformability 
assay directly provides this information. In contrast, mea- 
surement of membrane stability entails determining the ex- 
tent of membrane failure at defined values of shear stress. 
Such a fragmentation should involve disruption of pro- 
tein-protein associations in the skeletal network and not the 
release of protein-depleted lipid vesicles. If the membrane 
stability assay used in the present study is actually measuring 
failure of protein junctions, then one would expect to see 
skeletal proteins present in the fragments generated by the 
high shear stress. The SDS PAGE analysis did indeed show 
that the protein contents of the smallest fragments were iden- 
tical to the protein contents of the intact, resealed mem- 
branes. These findings, in addition to supporting the model, 
suggest that the stability assay has physiological relevance to 
in vivo processes in certain hereditary hemolytic anemias. 
In vivo in these anemias and in vitro in the stability assay, 
shear stress results in the formation of membrane protein-, 
containing fragments with the resultant loss of surface area 
of the original membranes thereby converting them to non- 
deformable spheres. 

The prediction from our model of reversible deformation 
and membrane failure would be that a decrease in junction 
associations would result in decreased membrane stability. 
The junction involving spectrin, actin, and protein 4.1 was 
altered in the 2,3-DPG-treated cells and in the hereditary 

b 

C 
Figure 10. Model of reversible deformation of erythrocyte membrane. Reversible deformation occurs with a change in geometric shape 
but at a constant surface area. (a) The nondeformed membrane. With increased shear stress, the membrane becomes increasingly extended 
(b and c). Further extension of the membrane beyond that shown in c would result in an increase in surface area and the breaking of junction 
points. This is the stage at which membrane fragmentation occurs. 0 ,  protein 4.1, actin, and spectrin association points; O, spec- 
trin-spectrin association points; linear coils, spectrin dimer. 
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spherocytosis cells. In both these cases, we found that mem- 
brane stability was markedly decreased. It is interesting to 
note that 2,3-DPG-induced membrane instability is a revers- 
ible process and this finding supports earlier conclusions that 
this polyphosphate disrupts skeletal protein associations 
reversibly and does not cause irreversible changes in protein 
s lructure .  

Decreased membrane stability was also noted in the NEM- 
treated normal ceils and in the H. E. cells in which decreased 
spectrin-spectrin interaction is thought to be the primary de- 
fect (19). Further support for the role of spectrin self- 
association in membrane stability was presented in a recent 
report that showed a quantitative relationship between the 
state of spectrin oligomerization and membrane stability 
(15). In these studies, increases in the spectrin dimer content 
of the membrane correlated directly with decreases in mem- 
brane stability and decreases in spectrin tetramers. 

From our model of the membrane response to shear stress, 
one might predict that the creation of additional protein-pro- 
tein associations would result in membranes with decreased 
deformability. Indeed, treatment with malonyldialdehyde and 
diamide, two agents known to cause protein-protein cross- 
linking, resulted in a less deformable membrane. These 
membranes may well be less deformable because the oxida- 
tive cross-links between spectrin molecules would limit the 
extent to which they could fold or unfold at a given shear 
stress. Another possible mechanism by which deformability 
can be decreased is by increasing the number of integral pro- 
tein links to skeletal proteins. An example of this mechanism 
is the ligand-induced association of the integral protein 
glycophorin A with the membrane skeletal proteins (6). 

Taken together, the results of these in vitro studies show 
that the skeletal proteins play a crucial role in determining 
both membrane stability and membrane deformability since 
altering the normal state of these proteins results in changes 
in both of these membrane physical properties. Further, the 
data strongly suggest that different skeletal protein interac- 
tions regulate deformability and stability. Using the model 
we have presented, it should be possible to obtain a 
mechanistic understanding of both normal and altered red 
cell membrane properties and to determine which proteins, 
or their interactions, would be most fruitful to explore 
biochemically. 
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