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ABSTRACT 
 
 

Fibroblast growth factor 23 (FGF23) is a major endocrine regulator of phosphate and 

1,25 (OH)2 vitamin D3 metabolism and is mainly produced by osteocytes. Its 

production is up-regulated by a variety of factors including 1,25 (OH)2 vitamin D3, 

high dietary phosphate intake, and parathyroid hormone (PTH). Recently, iron 

deficiency and hypoxia have been suggested as additional regulators of FGF23 and 

a role of erythropoietin (EPO) was shown. However, the regulation of FGF23 by EPO 

and the impact on phosphate and 1,25(OH)2 vitamin D3 are not completely 

understood. Here, we demonstrate that acute administration of recombinant human 

EPO (rhEPO) to healthy humans increases the C-terminal fragment of FGF23 (C-

terminal FGF23) but not intact FGF23 (iFGF23). In mice, rhEPO stimulates acutely 

(24 hrs) C-terminal FGF23 but iFGF23 only after 4 days without effects on PTH and 

plasma phosphate. 1,25 (OH)2 D3 levels and αklotho expression in kidney decrease 

after 4 days. rhEPO induced FGF23 mRNA in bone marrow but not in bone, with 

increased staining of FGF23 in CD71+ erythroid precursors in bone marrow. Chronic 

elevation of EPO in transgenic mice increases iFGF23. Finally, acute injections of 

recombinant FGF23 reduced renal EPO mRNA expression. Our data demonstrate 

stimulation of FGF23 levels in mice which impacts mostly on 1,25 (OH)2 vitamin D3 

levels and metabolism. In humans, EPO is mostly associated with the C-terminal 

fragment of FGF23, in mice EPO has a time-dependent effect on both FGF23 forms. 

EPO and FGF23 may form a feedback loop controlling and linking erythropoiesis and 

mineral metabolism. 

 

Key Words: Mineral metabolism, Erythropoietin, FGF23, Vitamin D3, kidney, bone 
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INTRODUCTION 
 
Fibroblast growth factor 23 (FGF23) is an osteocyte-derived hormone that increases 

renal phosphate excretion by decreasing the expression of the renal phosphate 

cotransporters NaPiIIa and NaPIIc expressed in the renal proximal tubule [17]. 

FGF23 also reduces the levels of circulating active 1,25 (OH)2 vitamin D3 through 

stimulating its degradation by cytochrome P450 (CYP) 24A1 and decreasing its 

synthesis by CYP27B1 [17]. These classic functions of FGF23 require αklotho as an 

obligatory co-ligand/co-receptor mostly at the FGF1c receptor [3,17]. αKlotho is 

predominantly expressed in the kidney and its abundance appears to be stimulated 

by an FGF23-dependent mechanism [20,30]. Additional effects of FGF23 are 

emerging which only partly depend on αklotho such as a role of FGF23 in inducing 

left ventricular hypertrophy [17]. Also, a role of FGF23 in inhibiting early steps of 

erythropoiesis has been reported [7].   

 

FGF23 levels are regulated by a variety of stimuli and factors that can induce 

circulating levels of intact biologically active FGF23 and may also act on the levels of 

the C-terminal fragment (C-term.) of FGF23 [17]. C-term. FGF23 originates from 

cleaving intact FGF23 (iFGF23) and is thought to mainly represent an inactive 

degradation product [17]. However, C-terminal FGF23 may still bind to the FGF1c 

receptor without activating it but protecting the receptor from activation by full-length 

iFGF23 [14]. Thus, the ratio between intact and C-term. FGF23 may modulate the 

biological activity of the system. Stimuli that increase FGF23 are parathyroid 

hormone, 1,25 (OH)2 vitamin D3, aldosterone, phosphate loading and also include 

iron deficiency and inflammatory stimuli [18,11,6,35,36]. Iron deficiency and anemia 

have been recently associated with FGF23 levels, particularly in patients with chronic 
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kidney disease [25,33]. Very recently, erythropoietin (EPO) has been identified as a 

potential link between anemia, iron status and FGF23, and as a stimulus for FGF23 

production [5,12,26]. EPO has been suggested to cause at least in part the rapid 

surge in FGF23 in patients and animal models with acute kidney injury (AKI) [31] and 

blockade of FGF23 signalling has been recently suggested for treatment of renal 

anemia of CKD [1]. We thus examined the association between EPO and FGF23 in 

healthy young volunteers and in mice, and report that EPO increases C-term. FGF23 

but not iFGF23 in healthy human volunteers. In mice, EPO elevates first C-term. 

FGF23 and then iFGF23. iFGF23 in turn reduces renal EPO mRNA expression, 

suggesting that EPO and FGF23 form a feedback loop. 
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MATERIALS AND METHODS 

 

Experimental animals 

C57BL/6 male mice (8-12 weeks, 25-30 g) were obtained from Janvier, France. For 

some experiments, transgenic mice overexpressing human EPO (EPO-Tg6 mice) 

were used [28]. All animal experiments were performed in accordance with Swiss 

and international laws of animal protection and welfare and all protocols were 

approved by the appropriate local veterinary authority (Kantonales Veterinäramt 

Zürich). 

 

Treatment with recombinant human erythropoietin, recombinant FGF23, PHD 

inhibitor, or diets with different phosphate content  

C57BL/6mice were injected intraperitoneally either once or daily for 4 consecutive 

days with saline or 2000 IU/kg recombinant human erythropoietin (rhEPO) Epoetin 

alfa, Eprex, Janssen) [13] or a single injection of recombinant human iFGF23 

(rhFGF23, 10 μg per mice) (AdipoGen; AG-40A-0128). Blood plasma and kidneys 

were collected at 30 min. and 24 hours. Roxadustat (FG-4592, Sigma Aldrich, Buchs, 

Switzerland) was injected intraperitoneally with a dose of 50 mg/kg/day for 4 days 

[34], the control groups received a similar volume of vehicle (5% DMSO-50% 

polyethylenglycol in water) solution. Animals receiving rhEPO or vehicle were 

sacrificed 24 hrs or 4 days after the initial injection. Animals receiving roxadustat or 

vehicle were sacrificed 4 days after the initial injection. In one series of experiments 

mice received diets with low (0.1 % Pi) or high (1.2 % Pi) phosphate content. All other 

dietary components (i.e. calcium, vitamin D3, iron) were kept constant. All diets were 

from Kliba Nafag AG (Kaiseraugst, Switzerland). Heparinized blood was collected 
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from the heart and rapidly centrifuged at 4°C to collect plasma. Tibias, liver and 

kidneys were collected, rapidly frozen in liquid nitrogen and stored at -80°C until 

analysis.  

 

Human study 

The present study was part of the ‘EPOPERF-Project’, a randomized double-blinded, 

placebo-controlled, crossover clinical trial (https://clinicaltrials.gov, identifier code: 

NCT01889056) to test whether a single high dose of erythropoietin (rhEPO) can 

modulate cognition and exercise performance in healthy humans (primary study 

outcome). Briefly, venous blood samples (from an arm vein) were collected from 32 

healthy subjects (13 females, mean age: 24.9 years, age range: 21.0 - 31.0 years, 19 

males, mean age: 24.4 years, age range: 21.1 - 32.0 years) in citrate coated tubes 

(BD Vacutainer 2.7ml, Plymouth, UK) 24 hours post treatment with a single high dose 

of rhEPO (short infusion of 60.000 I.U. per person of Recormon, recombinant 

human erythropoietin beta, Roche, Switzerland diluted into 250 ml of 0.9 % saline 

solution) and Placebo (short infusion of 250 ml of 0.9 % saline solution) in a 

crossover fashion (washout period between the two different treatments ≥ 4 weeks). 

All blood samples of the present study were collected at baseline prior to any further 

study interventions. After the collection the blood samples were centrifuged at 1000 x 

g for 10 minutes, the cell free supernatant (blood plasma) was transferred into new 

1.5 ml aliquot tubes and kept at -80 °C for further analysis. Of note, the plasma 

samples of 4 subjects were not available for this time point and were therefore not 

measured (n= 28). The main inclusion criteria of the trial were: males and females 

(age range: 18 to 35 years), healthy and normal weighted (body mass index, BMI ≥ 

18.5 kg/m2 ≤ 24.9 kg/m2), non-smokers (≥ 1 year), maximal oxygen uptake, VO2max 
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males ≤ 60 ml/kg/min, females ≤ 55 ml/kg/min) and the main exclusion criteria were: 

abnormal serum ferritin levels (range, males: 30-400 µg/L, females: 13 - 150 µg/L), 

genetic predisposition for frequent haemostatic disorders (factor V Leiden mutation 

R506Q, prothrombin mutation G20210A), history of deep venous thrombosis,  

haematocrit level ≥ 55%, high-altitude exposure (≥ 2500m asl) for ≥ 5 consecutive 

days within the last 6 months prior to the study, and in females: pregnancy, breast 

feeding.  

 

Bone marrow cell preparation  

Bone marrow cells were obtained by rinsing each tibia of WT mice with 1 ml of PBS 

using a 26-gauge needle. Cells were fixed on glass slides by cytospin centrifugation 

and stained as described previously for similar preparations [10]. 

 

Biochemical analyses 

Plasma biochemical parameters were analyzed using a UniCel® SYNCHRON® DxC 

800 Synchron Clinical System (Beckman Coulter), a service provided by the Zürich 

Integrative Rodent Physiology (ZIRP) facility. Plasma hematocrit was measured in 

capillaries whose walls were coated with heparin. After filling the capillary, capillaries 

were centrifuged in a special centrifuge (Haematokrit 210, Hettich Zentrifugen; Huber 

& co. AG, Reinach, Switzerland) at 8000 rpm for 5 minutes.  

 

FGF23, PTH and vitamin D measurements 
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Plasma levels of mouse/rat iFGF23 (Immutopics; 60-6800), mouse/rat C-term. 

FGF23  (Immutopics; 60-6300), human iFGF23 (Immutopics; 60-6600), human C-

term FGF23 (Immutopics; 60-6100) and mouse PTH 1-84 (Immutopics; 60-2305) 

were measured by ELISA. Plasma 1,25-(OH)2-Vitamin D3 was determined by a 

radioimmunoassay (Immunodiagnostic System, Frankfurt am Main, Germany). 

 

Quantitative real-time reverse transcription PCR 

Mice kidney, liver, tibia and bone marrow cells were homogenized in QIAzol lysis 

reagent (Qiagen) and followed by chloroform (Sigma-Aldrich) extraction. RNA from 

QIAzol-chloroform extractions was isolated using the Qiagen RNeasy Mini kit 

(Qiagen, Hombrechtikon, Switzerland) following the protocol provided by the supplier. 

After RNA quantification using a Nanodrop ND-1000 spectrophotometer (Thermo 

Scientific), reverse transcription was carried out using the Taqman Reverse 

Transcription Kit (Applied Biosystems, Zug, Switzerland) according to the 

manufacturer’s protocol. To quantify mRNA levels, specific sets of primers and 

probes for mouse FGF23, hepcidin, Cyp24a1, Cyp27b1, VDR, Galnt3, Phex, and 

Runx2 (supplementary table 1) were designed using Primer Express (Applied 

Biosystems) and purchased from Microsynth, (Switzerland). The specificity of all 

primers was tested using adult mouse kidney, liver and bone cDNA by conventional 

PCR. Each pair of primer resulted only in a single band of the expected size (data not 

shown). The probes were labelled with the reporter dye FAM at the 5ʹ end and the 

quencher dye TAMRA at the 3ʹ end. The complementary DNA (cDNA) was amplified 

using mouse primers listed in supplementary table 1 in RT-PCR reactions using the 

KAPA PROBE FAST qPCR Kit Master Mix (KAPA BIOSYSTEMS, Boston USA) 

containing primers (5 μM) and probe (25 μM) to amplify cDNA in a 7500 Fast Real 
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Time PCR System (Applied Biosystems, Zug, Switzerland). For quantification of renal 

EPO mRNA expression, real-time PCR was performed using KAPA SYBER FAST 

qPCR Master Mix (KAPA BIOSYSTEMS, Boston USA). EPO primer sequences were 

described before [19] and are listed in supplementary table 1. Each reaction was 

done in triplicates and the average taken. Samples without enzyme in the RT 

reaction were used as negative controls to exclude contamination with genomic DNA. 

The cycle number at a given threshold (Ct) was measured. The expression of 

FGF23, hepcidin, Cyp27b1, Cyp24a1, VDR, Galnt3, Phex and Runx2 transcripts 

were normalized to the reference gene HPRT, when giving comparable results, and 

calculated by the formula R = 2^ (CtHPRT - Ctgene of interest). 

 

Immunohistochemistry 

Freshly isolated bone marrow cells of tibia of C57BL/J mice either injected with saline 

or EPO (2000 IU/kg/daily) for 4 days were fixed with 4% 

paraformaldehyde/phosphate-buffered saline, pH 7.4 [PBS] at room temperature for 

10 min and washed with PBS, pH 7.4. Permeabilization of cells was performed with 

0.05% saponin in PBS pH 7.4, for 5 min at room temperature. To prevent nonspecific 

binding, slides were incubated in blocking buffer (containing 10 % normal donkey 

serum and 7.5% bovine serum albumin, in PBS) at room temperature for 1 hour [10]. 

Indirect immunofluorescence staining was performed by using polyclonal goat anti 

mouse FGF23 antibody (1:20, Immutopics; 40-6810), monoclonal rat anti mouse 

CD71 (8D3) (1:50, Novus Biologicals; NB100-64979), monoclonal rat anti mouse 

CD68 (FA-11) (1:50, Bio-Rad; MCA1957GA), monoclonal PE/DazzleTM 594 anti-

mouse CD11c (N418) (1:50, Biolegend; 117348) and monoclonal rat anti mouse 

CD115 (c-fms) (1:50, Invitrogen; AFS98). After overnight incubation with primary 
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antibodies at 4°C, slides were washed with PBS and further incubated with Alexa 

fluor-488-conjugated donkey anti-goat (1:500; Life Technologies) or Alexa fluor-647-

conjugated donkey anti-rat (1:500, Life Technologies) antibodies in the dark at room 

temperature for 1 hour. Nuclei were stained with 2ʹ,6-diamidino-2-phenylindole 

dihydrochloride (DAPI) (1 mg/ml; 1:500, Sigma, D9542). Thereafter, slides were 

washed three times with PBS and covered by mounting medium (DAKO, USA) and 

coverslips. Pictures were taken with a Lecia DM5500B epifluorescence microscope 

and processed (overlays) using Adobe Photoshop (Adobe Photoshop, San Jose, 

CA). The Images in the figures are representatives of data obtained from four saline 

and rhEPO injected mice. 

 

Protein extractions and Western blotting 

As previously described [9], mouse kidneys were homogenized in ice-cold membrane 

extraction buffer (200 mM mannitol, 80 mM HEPES, 41 mM KOH, pH 7.5) 

supplemented with protease inhibitor cocktail (Complete; Roche Diagnostics, Basel, 

Switzerland). The homogenate was centrifuged at 2,000 rpm for 20 min at 4°C. The 

resulting supernatant was further centrifuged at 41,000 rpm for 1 hour at 4°C and the 

pellet resuspended in the membrane extraction buffer. Total protein content was 

measured using the Bio-Rad Dc protein Assay (Bio-Rad, Hercules, CA, USA). Fifty 

μg of membrane protein were solubilised in Laemmli buffer and separated on SDS-

PAGE and transferred to polyvinylidene difluoride (PVDF) membranes (Immoblion-P, 

Millipore, Schaffhausen, Switzerland). After blocking nonspecific binding with 5% milk 

powder in Tris-buffered saline (TBS) containing 0.1% Tween-20 for 1 hour at room 

temperature, the blots were incubated overnight at 4°C with primary antibodies 

against NaPi-IIa (1:2,000) [8], αklotho (1:1,000; KO603; TransGenic Inc.) and β-actin 
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(1:5,000; A5316; Sigma-Aldrich). After washing, blots were incubated with the 

appropriate secondary antibodies coupled to alkaline phosphatase (Promega AG, 

Dübendorf, Switzerland) for 1 hour at room temperature. Finally, after three washes 

with TBS-Tween 0.1%, membranes were exposed to alkaline phosphatase CDP-Star 

substrate (Roche) for 5 minutes, and protein signals were detected on an LAS-4000 

Luminescent Image Analyzer. Images were quantified with the Advanced Image Data 

Analyzer (AIDA; Raytest). The expression levels of NaPi-IIa and αklotho were 

normalized to the intensity of β-actin. 

Statistics 

Statistical significances were calculated using the Student’s t-test or one-way ANOVA 

(Bonferroni) as indicated. P < 0.05 was considered significant. Results are presented 

as means ± SEM. 
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RESULTS 
 
Erythropoietin stimulates FGF23 in humans 

We measured intact FGF23 (iFGF23) and the C-terminal fragment of FGF23 (C-term. 

FGF23) in healthy young volunteers injected either with placebo or a single high dose 

of rhEPO. Subjects were treated in a cross-over design serving as their own controls. 

Twenty-four hours after rhEPO injection, iFGF23 was unchanged but C-term. FGF23 

was significantly elevated (Figure 1a, b).  

 
In mice, rhEPO stimulates both the C-terminal fragment of FGF23 and intact 

FGF23 

To examine the mechanisms underlying the association of EPO and FGF23 in 

humans, we examined the effects of rhEPO administration to mice. Male C57BL/6 

mice were injected once per day intraperitoneally with rhEPO or its vehicle saline and 

mice examined 24 hours and 4 days later. Compared to controls, 4 days of rhEPO 

significantly increased both iFGF23 and C-term. FGF23, whereas a single injection of 

rhEPO increased only C-term. FGF23 (Figure 2a). To verify the biological activity of 

rhEPO, hematocrit, total plasma iron and liver hepcidin mRNA levels were assessed. 

rhEPO suppressed 24 hours after the first rhEPO injection hepcidin without 

detectable changes in hematocrit and iron whereas 4 days of rhEPO significantly 

increased hematocrit and lowered iron and hepcidin as expected (Figure 2b, c).  

 

rhEPO induced FGF23 is biologically active 

To investigate whether the rhEPO stimulated iFGF23 is biologically active, we 

examined the effects of FGF23 on its downstream targets, namely inorganic 

phosphate (Pi), parathyroid hormone (PTH), αklotho and 1,25 (OH)2 vitamin D3 

metabolism. Neither plasma Pi (Figure 3a) nor PTH levels (Figure 3b) changed at 
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any time point after rhEPO delivery. However, the renal protein abundance of the 

FGF23 co-receptor αklotho was diminished after 4 days (Figure 3c). The protein 

abundance of the major renal phosphate cotransporter NaPiIIa was reduced after 4 

days of EPO injections (Figure 3d). The rhEPO induced increase in iFGF23 

suppressed 1,25 (OH)2 vitamin D3 as evident after 4 days (Figure 4a). In agreement 

with decreased systemic 1,25 (OH)2 vitamin D3 levels, the renal mRNA levels of 1α-

hydroxylase, Cyp27b1, and the vitamin D receptor, VDR were decreased upon 4 

days of rhEPO delivery, whereas expression of the 24-hydroxylase, Cyp24a1, which 

inactivates 1,25 (OH)2 D3 did not show any significant changes at mRNA level 

(Figure 4b). 

 

rhEPO affects bone and bone marrow cell FGF23 expression 

To further characterize sources of elevated FGF23, we examined the mRNA 

abundance of FGF23 in bone (tibia) and isolated bone marrow. rhEPO induced 

FGF23 mRNA in bone marrow cells 24 hours and 4 days after injection whereas in 

bone no effect was detectable after 24 hours and a suppression of FGF23 mRNA 

was detected after 4 days (Figure 5a).  

To specify which bone marrow cell population expresses FGF23, we performed 

immunostaining against FGF23 using specific cell markers. Erythroid progenitors and 

mature erythroblasts were identified by staining for CD71 (transferrin receptor). As 

shown in (Figure 5b) CD71 positive cells showed intense FGF23 staining in rhEPO 

treated mice but only faint staining was detected in saline treated mice. Cells positive 

for CD11c, a marker for dendritic cells, showed also some FGF23 staining in both 

saline and EPO injected animals (Figure 5d). Using a macrophage lineage marker, 
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CD68, we did not detect any cells staining for CD68 and FGF23 (Figure 5c). In 

contrast, the myeloid lineage marker CD115 co-localized with FGF23 in saline and 

rhEPO treated mice (Figure 5e). Thus, immunostaining suggests that myeloid, 

dendritic and erythroid cells may be sources of FGF23. 

 

We also assessed the bone and bone marrow mRNA expression of two known 

cellular modulators of FGF23 production, the N-acetylgalactosaminyltransferase 3 

(Galnt3) involved in stabilizing FGF23 and Phex, a modulator of FGF23 degradation 

[22,2] at 24 hours and 4 days after rhEPO administration. In bone, Galnt3 and Phex 

mRNA expression levels were unaltered after 24 hours and showed a non-significant 

trend to decrease after 4 days (Figure 6a). In bone marrow, Phex mRNA was not 

detectable and Galnt3 mRNA abundance did not change. The bone cell marker 

Runx2 decreased in bone marrow cells upon rhEPO injection (Figure 6b). 

 

The PHD inhibitor, roxadustat mimics the effect of rhEPO on FGF23 in mice 

To determine if stimulation of endogenous EPO production could also increase 

FGF23 levels, mice were treated for 4 days with the prolyl-4-hydroxylase domain 

(PHD) inhibitor, roxadustat with a dose and for a duration shown previously to 

stimulate EPO levels [34]. Roxadustat significantly increased the hematocrit and 

decreased mildly iron suggesting that it had been biologically active (Figure 7a). 

Furthermore, we showed that similar to exogenous rhEPO delivery, roxadustat 

elevated systemic intact FGF23 (Figure 7b).  

 

To test whether chronically elevated levels of rhEPO impact on FGF23 levels, we 

used the well-characterized mouse EPO-Tg6 model overexpressing hEPO [32] and 

found elevated intact FGF23 levels (Figure 8).  
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FGF23 suppresses renal EPO expression 

EPO and FG23 may form a feedback loop with FGF23 reducing circulating EPO 

levels and inhibiting erythropoiesis [7]. In order to test whether an acute elevation of 

FGF23 would suppress renal EPO production, we injected mice with recombinant 

human intact FGF23 and assessed renal EPO mRNA abundance 30 min and 24 

hours after injection. Indeed, FGF23 application reduced renal EPO mRNA levels by 

about 50% within 30 min and this effect persisted for about  24 hours (Figure 9A). 

Injection of rhFGF23 resulted in very high rhFGF23 levels 30 min after injection and 

even 24 h after injection a significant amount of rhFGF23 was still detectable in blood 

of injected animals (Figure 9B). To test whether also elevations of endogenous 

FGF23 within the physiological range could affect renal EPO mRNA, mice were 

placed for 3 or 5 days on diets with low and high phosphate content. As expected, 

under these conditions, endogenous FGF23 levels were higher in the mice receiving 

the high phosphate diet and reached values comparable to those measured after 24 

h in the rhFGF23 injected mice (Figure 9D).  Importantly, renal EPO mRNA was 

significantly lower in the high phopshate group after 3 days but not after 5 days 

(Figure 9C).  
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DISCUSSION 

 

In the present study we examined the stimulatory effect of EPO on FGF23, a major 

endocrine regulator of phosphate and 1,25 (OH)2 vitamin D3 metabolism. Our results 

demonstrate that 1) injection of a single high dose rhEPO in healthy human subjects 

increased the C-term. FGF23 fragment but not iFGF23, 2) injection of rhEPO in mice 

stimulated C-term. and iFGF23 but with different time-dependency 3) rhEPO induced 

iFGF23 is biologically active, 4) rhEPO induced FGF23 mRNA in bone marrow cells 

and FGF23 staining in CD71+ erythroid progenitor cells, 5) the effect of rhEPO was 

mimicked by a PHD inhibitor, 6) chronically elevated EPO in EPO-Tg6 mice was 

associated with higher iFGF23 levels, and 7) acute application of recombinant human 

FGF23 as well as raising endogenous FGF23 levels with a high phosphate diet 

reduces renal EPO expression in mice. 

 

In human patients with chronic kidney disease (CKD) positive associations have 

been shown between low iron status and high C-term. FGF23 as well as between 

high C-term. FGF23 and anemia [25]. In mice with FGF23 mutations, iron modulates 

FGF23 levels [4] and acute blood loss in normal mice increases C-term. FGF23 [26]. 

Whether the effect of iron on FGF23 is mediated by or dependent on EPO and 

whether FGF23 causes anemia (and vice versa) has not been tested in humans. 

However, a recent study in 4 patients with anemia of non-CKD origin showed that a 

single dose of EPO increased both C-term. FGF23 and iFGF23 [5]. In critically ill 

patients the number of blood transfusions positively associated with C-term. FGF23 

levels [26]. In patients with acute kidney injury (AKI), circulating levels of EPO 

increase and correlate with higher levels of C-term. and iFGF23 [31]. Additionally, 

another recent study demonstrated that blocking FGF23 signalling in a mouse CKD 
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model could ameliorate renal anemia by releasing the blockade of renal EPO 

expression and by increasing iron availability through reduction of hepatic 

inflammation [1]. In our study, in 28 healthy volunteers injected with a single dose of 

rhEPO only C-term. FGF23 was elevated after 24 hours. However, it cannot be 

excluded that iFGF23 changed at an earlier or later point and that our measurements 

missed this time point.  

 

We used animal experiments in C57BL/J mice to further examine the underlying 

mechanisms and to elucidate directly causative relationships between EPO and 

FGF23. Injection of rhEPO into mice at doses previously shown to induce 

hematopoiesis [13] stimulated C-term. FGF23 after 24 hours and both C-term. and 

iFGF23 after 4 days. This effect of rhEPO on iFGF23 was mimicked by the PHD 

inhibitor roxadustat. This was confirmed by a higher hematocrit in our mice treated 

with roxadustat. Our results are in partial agreement with other observations. Flamme 

et al. showed that acute application of rhEPO induces both C-term. and iFGF23 

within 4-6 hours even though it appeared that iFGF23 was rising slower and 

experiments were carried out in rats and not in mice [12]. The same authors found 

also that another PHD inhibitor (molidustat) increased C-term. and iFGF23 but with 

higher sensitivity towards C-term. FGF23 [12]. Likely, the effect of PHD inhibitors on 

FGF23 is mediated by stimulating EPO production and release and does not involve 

direct effects of the drugs on FGF23 synthesis (or via elevated HIF on FGF23 

transcription) as exposure of erythroid cells to a PHD inhibitor did not affect FGF23 

mRNA levels and the stimulatory effect of a PHD inhibitor on FGF23 levels was 

abolished when mice were treated with EPO-neutralizing antibodies [12]. The effect 

of EPO on FGF23 is sustainable when EPO levels remain high, as evident from the 

elevated iFGF23 levels in the EPO-Tg6 mice that feature severalfold chronically 
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elevated EPO levels [28]. Toro and colleagues showed that the effect of EPO on 

FGF23 is mediated by the homodimeric EPO-receptor in vitro and in vivo [31]. 

 

iFGF23 lowers plasma phosphate by downregulating renal sodium-phosphate co-

transporters NaPiIIa and NaPiIIc to promote renal phosphate excretion [17]. 

Moreover, iFGF23 suppresses the levels of active 1,25 (OH)2 vitamin D3 by reducing 

the expression of the activating enzyme Cpy27b1 and/or increasing the expression of 

the inactivating enzyme Cyp24a1 [17]. FGF23 modulates also the renal expression of 

its co-receptor αklotho and may acutely stimulate (3 – 24 hours) its abundance [30] 

whereas the long-term effects are not well known. In order to analyze whether the 

increase in iFGF23 was biologically relevant we tested the modulation of these 

FGF23 targets and found that NaPiIIa, 1,25 (OH)2 vitamin D3, Cyp27b1, and αklotho 

were all lower in 4 days rhEPO treated mice, suggesting that the increased iFGF23 

was sufficient to elicit a response on its downstream targets. The absence of lower 

plasma phosphate may be due to the short treatment duration and may require 

longer time to develop. Of note, rhEPO treatment had no effect on PTH levels, at 

least within the period of 4 days studied. However, the effects of chronically elevated 

EPO levels on FGF23 and mineral metabolism are currently unknown. Interestingly, 

EPO-Tg6 mice, as well as mice lacking the EPO regulator PHD, have been reported 

to suffer from a severe form of low bone mineralisation and osteopenia [16,27]. The 

defect may be in part due to direct stimulatory effects of EPO on osteoclast precursor 

cells [16] but it is tempting to speculate that a combination of higher FGF23 and lower 

1,25 (OH)2 vitamin D3 with subsequent low systemic phosphate availability may 

contribute to the bone phenotype. Whether EPO substitution in patients may cause 

similar symptoms is unknown. 
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Bone cells, mostly osteocytes, are the major source of circulating FGF23 and are the 

targets of factors regulating FGF23 levels [17]. EPO receptors have been described 

in bone cells but the major target of EPO are cells of the erythroid lineage present in 

bone marrow [29]. Thus, we examined mRNA expression of FGF23 separately in 

bone and bone marrow. Acute rhEPO (24 hours) had no effect on bone FGF23 

mRNA but induced it in bone marrow as described before [26]. After 4 days the 

induction of FGF23 mRNA in bone marrow persisted whereas FGF23 mRNA in bone 

was reduced. The downregulation of FGF23 mRNA in bone may be reactive to 

elevated systemic FGF23 levels. We used immunohistochemistry on bone marrow 

cells isolated from mice treated for 4 days with saline or rhEPO. Our results suggest 

that at baseline FGF23 is expressed in few cells positive for the myeloid lineage 

marker CD115 and the dendritic cell marker CD11c, consistent with other reports that 

these cells can express FGF23 [23]. Importantly, CD71 positive cells from the 

erythroid lineage had no or only faint FGF23 staining in unstimulated animals but 

showed much stronger staining in rhEPO treated mice. This finding is in agreement 

with other reports describing the presence of FGF23 mRNA in Ter119+ erythroid cells 

[7,21,31] and FGF23 mRNA stimulation by EPO in the murine BAF3 erythroid cell 

line [12]. However, Clinkenbeard et al. reported that rhEPO induced FGF23 mRNA in 

both bone and bone marrow and pharmacological ablation of bone marrow reduced 

C-term. FGF23 induction but only by about 40% [5]. Thus, EPO stimulates FGF23 

production by bone marrow cells, most likely erythroid precursors. Whether bone 

derived FGF23 contributes to the elevation of FGF23 levels remains to be clarified. 

We had tried to further test whether changes in expression of FGF23 modulating 

factors in bone or bone marrow contributes to changes in circulating iFGF23 and C-

term. FGF23, but results on the expression of Galnt3 and Phex remained 

inconclusive and the role of FGF23 modifying factors has to be further addressed. 
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Increased EPO levels and stimulated erythropoiesis in mice lacking FGF23 have 

been reported [7]. Conversely, application of FGF23 to normal mice reduced 

circulating EPO levels and decreased erythropoiesis. We demonstrated here that 

FGF23 also reduced renal EPO mRNA expression within minutes after application. 

Likewise, raising endogenous FGF23 levels with a diet containing high phosphate, 

was also associated with lower renal EPO mRNA levels. However, this effect seemed 

to disappear after 5 days of high phosphate diet. The effect of FGF23 on EPO and 

erythropoiesis was mostly independent from the effects of FGF23 on 1,25-(OH)2 

vitamin D3 and the ability of 1,25-(OH)2 vitamin D3 to stimulate erythropoiesis and 

suppress hepcidin, a major regulator of iron availability [7]. FGF23 may (directly or 

indirectly) affect EPO mRNA stability or transcription [15,24]. Further studies on renal 

cells expressing EPO may provide insights into the exact mechanism how FGF23 

regulates EPO mRNA abundance. Thus, EPO and FGF23 may be linked in a 

feedback loop where EPO stimulates FGF23 which in turn suppresses EPO. In 

addition, FGF23 appears to have direct and indirect effects on erythropoiesis. A 

model illustrated in figure 10 may summarize some of the regulatory loops involved in 

the regulation of erythropoiesis by EPO, FGF23 and 1,25-(OH)2 vitamin D3. EPO 

stimulates erythropoiesis and FGF23 reduces erythropoiesis in at least three ways, 

by blocking EPO, by reducing 1,25-(OH)2 vitamin D3 stimulating erythropoiesis and by 

direct negative effects on erythropoiesis. In CKD, FGF23 may also be involved in 

increasing proinflammatory cytokines which in turn reduce iron availability [1]. The 

model may also further shed light on mechanism by which inflammation can reduce 

erythropoiesis: inflammation reduces iron availability and stimulates FGF23 both 

reducing erythropoiesis. Consistently, EPO increases levels of C-term. FGF23 and 

iFGF23 and the rise in C-term. FGF23 may precede iFGF23 and may have a higher 
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sensitivity. At least one report suggested that C-term. FGF23 could occupy FGF 

receptors and render them less responsive to iFGF23 [14]. It could be speculated 

that the earlier EPO-induced increase in C-term. FGF23 might allow for a transient 

stronger stimulation of erythropoiesis before iFGF23 rises. Clearly, the biology 

underlying the link of mineral metabolism and erythropoiesis requires further 

clarification.   
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FIGURE LEGENDS 
 
 

Figure 1 

Acute treatment of healthy human subjects with high dose rhEPO increased C-

term. FGF23 but not iFGF23.  

Healthy human subjects were injected with placebo or high dose rhEPO in a cross-

over experiment and intact FGF23 (iFGF23) and C-terminal FGF23 (C-term. FGF23) 

measured. n = 28, significance was determined using the paired Student’s t-test with 

*p < 0.05. 

 

Figure 2 

rhEPO injection increased circulating levels of intact FGF23 and C-term. 

fragment of FGF23 in mice 

Mice were injected for 24 hours or 4 days either with saline or rhEPO. (a) C-terminal 

(C-term.) and intact FGF23 levels in plasma, (b) markers of EPO activity, plasma 

hematocrit and total iron levels, (c) Liver hepcidin mRNA expression. n = 5 for each 

group of mice. Significance was determined with the unpaired Student’s t-test with *p 

< 0.05, **p<0.01.  

 

Figure 3 

rhEPO injection did not change plasma levels of Pi and PTH, but rather 

decreased the expression of renal sodium-phosphate co-transporter NaPi-IIa 

and αklotho 

Mice were injected for 24 hours or 4 days either with saline or rhEPO. (a) Plasma 

concentrations of Pi, (b) plasma parathyroid hormone (PTH). Immunblotting for (c) 

αklotho and (d) the renal sodium-phosphate co-transporter NaPi-IIa in kidney. 
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Immunoblot membranes were stripped and re-probed for β-actin. Scatter blots show 

ratios of αklotho or NaPiII-a over β-actin. n = 5 for each group of mice, significance 

was determined by unpaired Student’s t-test with **p<0.01. 

 

Figure 4 

rhEPO injection decreased plasma levels of 1,25 (OH)2 vitamin D3 and 

expression of renal vitamin D regulating transcripts.  

Mice were injected for 24 hours or 4 days either with saline or rhEPO. (a) Plasma 

levels of 1,25 (OH)2 D3, (b) Renal mRNA expression of the vitamin D3-metabolizing 

enzymes Cyp27b1 and Cyp24a1 and the vitamin D receptor VDR. n = 5 for each 

group of mice, significance was determined by unpaired Student’s t-test with *p < 

0.05.  

 

Figure 5 

rhEPO induced FGF23 expression in bone marrow myeloid and erythroid cells. 

Mice were injected for 24 hours or 4 days either with saline or rhEPO and bone and 

bone marrow isolated. (a) FGF23 mRNA levels in bone and bone marrow cells 

normalized to HPRT. Data are means ± SEM; n = 5, significance determined by 

unpaired Student’s t-test with *p < 0.05 and ***p < 0.001. (b-e) Representative 

immunofluorescence images of fixed bone marrow cells populations from mice 

treated for 4 days either with saline or rhEPO: (b) erythroid lineage marker CD71 

(red), FGF23 (green) and DNA dye DAPI (blue), (c) Macrophage marker CD68 (red) 

and FGF23 (green) and DNA dye DAPI (blue), (d) dendritic cell marker CD11c (red), 

FGF23 (green) and DNA dye DAPI (blue), (e) monocyte marker CD115 (red), FGF23 

(green) and DNA dye DAPI (blue). Original magnification 400-630x. 
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Figure 6 

rhEPO altered expression of factors involved in FGF23 metabolism in bone and 

bone marrow cells. 

Mice were injected for 24 hours or 4 days either with saline or rhEPO, and bone and 

bone marrow isolated. (a) mRNA expression of Phex and Galnt3 in bone, (b) mRNA 

abundance of Galnt3 and Runx2 in bone marrow cells. n = 5 for each group, 

significance determined by unpaired Student’s t-test with **p < 0.01.  

 

Figure 7 

The PHD inhibitor roxadustat (FG-4592) mimicked the effect of rhEPO on 

FGF23. 

Mice were treated for 4 days with roxadustat (50 mg/kg/daily) or vehicle. (a) Plasma 

hematocrit and total iron levels, (b) plasma intact FGF23. n = 5 for each group, 

significance was determined by unpaired Students t-test with *p < 0.05. 

 

Figure 8 

Transgenic mice over-expressing human EPO (EPO-Tg-6) had elevated iFGF23. 

iFGF23 was measured in mice overexpressing human EPO, n = 9 WT/ 6 EPO-Tg6 

mice. Significance was determined by the unpaired Student’s t-test with *p < 0.05. 

 

Figure 9 

rhFGF23 suppressed renal EPO mRNA expression in mouse kidney. 

(A, B) Mice were injected with rhFGF23 or vehicle (saline) and EPO mRNA 

abundance assessed in kidneys 30 min or 24 hours after injection. Data were 

normalized to vehicle treated animals. rhFGF23 was measured using an ELISA only 
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recognizing human but not mouse FGF23. (C, D) Mice were fed with low and high 

phosphate diets for 3 or 5 days and EPO mRNA and endogenous FGF23 levels 

determined. EPO mRNA data were normalized to animals for 3 days on low 

phosphate diet. n = 4-5/group, significance determined by ANOVA test followed by 

Tukey post-test with *p < 0.05, **p < 0.01 and ***p < 0.001. 

 

Figure 10  

Model linking EPO and FGF23 
 
Our data demonstrate a stimulatory effect of EPO on FGF23 production, as a feed-

back loop in mice which impacts mostly on 1,25 (OH)2 D3 levels and metabolism. In 

humans, the effect of EPO is mostly associated with the C-terminal fragment of 

FGF23 (C-term. FGF23). Elevated C-term. FGF23 may enhance the effects of EPO 

on erythropoiesis (by reducing the inhibitory effect of intact FGF23 (iFGF23)) 

whereas the later increase in iFGF23 would directly and indirectly reduce 

erythropoiesis. For more details see discussion. 
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c CD68 - FGF23 - DAPI
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