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Escalating environmental summer heat exposure—a future threat
for the European workforce
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Abstract

Heat exposure constitutes a major threat for European workers, with significant impacts on the workers’ health and productivity.
Climate projections over the next decades show a continuous and accelerated warming over Europe together with longer, more
intense and more frequent heatwaves on regional and local scales. In this work, we assess the increased risk in future occupational
heat stress levels using the wet bulb globe temperature (WBGT), an index adopted by the International Standards Organization as
regulatory index to measure the heat exposure of working people. Our results show that, in large parts of Europe, future heat
exposure will indeed exceed critical levels for physically active humans far more often than in today’s climate, and labour
productivity might be largely reduced in southern Europe. European industries should adapt to the projected changes to prevent
major consequences for the workers’ health and to preserve economic productivity.
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Introduction

Mean surface temperature as well as the frequency and
duration of heat waves have increased in the last decades
in Europe (IPCC 2013), in particular in the south-east of
the continent (Pogačar et al. 2018; Barriopedro et al.
2011; Morabito et al. 2017). Also, future heat waves are
very likely to be more frequent and longer-lasting (IPCC
2013), mainly as a direct consequence of the increase in
mean temperatures (Schär, et al. 2004; Fischer and Schär
2010). Those changes relate to increasing environmental
heat exposure throughout the twenty-first century (Willett
and Sherwood 2010; Zhao et al. 2015; Knutson and
Ploshay 2016; Coffel et al. 2018; Li et al. 2018;
Matthews 2018) which in turn might have an effect on
mortality, well-being and labour productivity (Dunne
et al. 2013; Kjellstrom et al. 2018; Mora et al. 2017;
Flouris et al. 2018; Levi et al. 2018; Moda et al. 2019).
The combination of environmental heat exposure and in-
ternal heat production generated from metabolic processes
results in heat stress (Xiang et al. 2014). Air temperature
is an important aspect, but all relevant environmental fac-
tors should be considered in order to provide improved
early warning systems and future projections of heat ex-
posure (Li et al. 2018; Matthews 2018). Under high-air-
temperature situations, the only means for the body to
remain within healthy temperature limits is through loss
of heat via sweat evaporation (Kenny and Flouris 2014).
However, high air humidity and lack of wind limit sweat
evaporation and, hence, heat dissipation that, enhanced by
intense solar radiation, leads to a rise in core body tem-
perature (Parsons 2014). This may increase the risk of
heat-caused illnesses such as heat cramps, heat syncope,
heat exhaustion and heat stroke (Koppe et al. 2004).

Excessive heat exposure greatly affects not only the more
vulnerable population groups (such as children and elderly
people) but also those performing physically demanding ac-
tivities like physical exercise (Junge et al. 2016) or work
(Kjellstrom et al. 2009a). Improper clothing (due to personal
work protection or cultural reasons) and/or absence of cooling
systems exacerbates the adverse heat conditions even further
(Kjellstrom et al. 2009b). Environmental heat is a key factor
for the workforce, and it is associated with a reduction of
physical productivity (Wyndham 1969; Kjellstrom et al.
2009b; Sahu et al. 2013; Ioannou et al. 2017). Therefore, a
better knowledge of environmental heat exposure is decisive
for protecting population health and is a key management
information for industries to plan labour activity and anticipate
changes in productivity.

There is a large number of documented indices (see, e.g.
Coccolo et al. 2016, Burgstall et al. 2019) that quantify heat
exposure by combining several meteorological drivers (most
of them based just on air temperature and humidity, and a few

include wind speed and solar radiation). In the present work,
heat exposure is represented by the wet bulb globe tempera-
ture (WBGT), since (1) it is the most widely used index to
assess heat stress on working people, (2) it can be calculated
from standard meteorological parameters including also the
effect of solar radiation and (3) it can be interpreted via inter-
national labour standards (ISO 1989, 2017). Employing the
purely meteorology-based WBGT, this work paves the way
for further studies based on other heat indices that potentially
involve physiological criteria and that are relevant for other
impact analyses (e.g. mortality, Mora et al. 2017).

Previous works on climate projections of environmental
heat accounted for shaded conditions only and were devel-
oped with a global perspective (Willett and Sherwood 2010;
Zhao et al. 2015; Knutson and Ploshay 2016; Coffel et al.
2018; Li et al. 2018; Brouillet and Joussaume 2019),
highlighting the dangerous conditions in densely populated
areas (e.g. Southeast Asia, Africa), but the detailed impact in
Europe is often overlooked. In order to assess future changes
in environmental heat exposure on a pan-European level, the
comprehensive and state-of-the-art regional climate model
(RCM) ensemble of the EURO-CORDEX initiative (Jacob
et al. 2014; Kotlarski et al. 2014) is exploited in the present
work. Model simulations are statistically adjusted to the local,
site-specific climate at more than a thousand locations in
Europe. The effect of the projected changes of environmental
heat on occupational settings is shown as an example of
application.

This work is structured as follows. The data and study
methods are described in ‘Data and methods’. ‘Results’ shows
climate change projections of heat exposure and impacts on
labour productivity in Europe. The main conclusions are sum-
marized in ‘Discussion and conclusions’.

Data and methods

Wet bulb globe temperature and derived indices

Two implementations of the WBGT are used in order to
account for shaded (WBGTshade) and sunny conditions
(WBGTsun). WBGTsun (Liljegren et al. 2008) takes into
account air temperature, dew point temperature, wind
speed and solar radiation, whereas WBGTshade is a sim-
plified version based on air temperature and dew point
temperature only (Bernard and Pourmoghani 1999), as-
suming a wind speed of 1 m/s, which is the apparent
wind created by limb and torso for actively working
people (i.e. equivalent to a slow walk), and no heat
from radiation. The reader is referred to Lemke and
Kjellstrom (2012) for a comparison of WBGT calcula-
tions and the detailed formulations. Those two versions
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of WBGT have been implemented in the R package
HeatStress,1 under license GPL-3.

In this work, we target daily maximum heat exposure, ob-
tained from the daily values of the input variables that enhance
it, i.e. daily maximum air temperature and solar radiation and
daily mean dew point temperature wind speed (see Annex A
and Fig. S1 in the Supplementary Material). Several derived
indices accounting for heat exposure risk are obtained from
the daily WBGT values and presented for the summer season
for the sake of brevity (Table 1). We acknowledge that the
chosen metric (daily mean or maximum) and temporal aggre-
gation (monthly, seasonal) have implications on the resulting
indices, as discussed in the Supplementary Material (Annex B
and Table S1).

Several organizations (ISO 2017; American Conference of
Governmental Industrial Hygienists (ACGIH) (2016)) have
defined reference and critical values of WBGT for different
classes of metabolic rate (resting, low, moderate, high and
very high), clothing, and considering whether a person is ac-
climatized or not. The application of the different WBGT
reference values allows analysing heat stress for resting con-
ditions, elderly people or vulnerable groups of the population.
In this work, for the sake of brevity, we focus on exposure
limits assuming moderate work intensity (300–350 W) for an
unacclimatized (26 °C) and acclimatized (28 °C) worker (see
NIOSH (2016) for a comparison of thresholds for different
exposure limits as adopted by several international institutions).
This way the uncertainty due to the acclimatization state of the
workers is also considered. These reference values are a con-
servative choice since they imply protecting most of the work-
force (depending on the individual conditions, one worker can
be vulnerable to suffer from heat stress under lower or higher
WBGT values); therefore, they should be understood as an
example of application. For the sake of conciseness, we will
refer to WBGT as overall environmental heat exposure and
conditions with WBGT above 26 °C as moderate heat risk

and above 28 °C as high heat risk throughout the manuscript.
There are a few approaches to estimate productivity loss at

country and individual levels. For instance, Sahu et al. (2013)
and Junge et al. (2016) quantify productivity as production
and power output, respectively, whereas Ioannou et al.
(2017) introduced a time-motion analysis to assess the effects
of workplace heat on productivity and labour effort.
Regardless of the method used, a graduate loss of productivity
(UNDP 2016) and economic impact (Orlov et al. 2019) with
increasing thermal exposure is evident. Exposure-response
relationships are usually established between hourly heat ex-
posure and productivity (e.g. WBGTabove 31 °C under mod-
erate work implies 25% reduction of labour productivity in
one hour for specific epidemiological studies, Kjellstrom

et al. 2018). We approximated hourly values with daily mean
and maximum WBGT values following the 4 + 4 + 4 method

(Kjellstrom et al. 2018), which is a good approximation com-
pared to more complex and computationally intense tempera-
ture models (Bilbao et al. 2002). This method assumes the
daily maximum WGBT value during the 4 central hours of
the day (12–16 h), the daily mean WBGT during 4 h in the
early morning (8–10 h) and the early evening (18–20 h), and
the remaining 4 h in between are approximated with the aver-
age of daily mean and maximum values (10–12 h and 16–
18 h). Daily mean values of WBGT are derived from daily
mean values of all the input parameters. Combining the hourly
WBGT with the exposure-response curve from ISO (1989),
we obtain the percentage of hours lost due to heat exposure,
assuming that the workers are potentially active 8 h/day (from
9 to 17 h).

Observational data

Due to the lack of dense observational datasets for all meteo-
rological parameters needed in the WBGT calculation, daily
station data from different data sources are used. First, we
consider the European Climate Assessment & Dataset
(ECA&D, Klein Tank et al. (2002)), which is the basis for
the E-OBS gridded product (Haylock et al. 2008) and contains
series of daily observations at meteorological stations
throughout Europe and North Africa. Daily series for maxi-
mum andmean temperature, relative humidity and wind speed
were downloaded in June 2016 from www.ecad.eu.

Second, due to the low station density for non-standard
parameters (e.g. humidity, wind), we combine the available
ECA&D stations with the Global Surface Summary of the
Day (GSOD, Smith et al. 2011) dataset which is based on data
exchanged under the framework of the World Meteorological
Organization (WMO) World Weather Watch Program. Daily
series of daily mean and maximum temperature and daily
mean dew point temperature and wind speed were
downloaded from ftp://ftp.ncdc.noaa.gov/pub/data/gsod/ in
July 2016.

For both products, only the stations with less than 20% of
missing data in the period 1981–2010 for the three variables
were considered (Fig. S2) after an additional filter for outliers.
The two datasets were combined into a single one, and for the
station locations where ECA&D and GSOD are available,
priority was given to ECA&D. We additionally made use of
the station set from the SwissMetNet2 (SMN) dataset over
Switzerland, which is provided and maintained by
MeteoSwiss. Summarizing, the finally merged dataset consid-
ered in this work consists of 1370 European stations, coming

1 https://github.com/anacv/HeatStress. https://doi.org/10.5281/zenodo.
3264929

2 http://www.meteoswiss.admin.ch/content/dam/meteoswiss/en/Mess-
Prognosesysteme/Bodenstationen/Automatisches-Messnetz/doc/
SwissMetNet_The_MeteoSwiss_Reference_Monitoring_Network.pdf
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from 351 ECA&D stations (Fig. S2, green), 976 GSOD sta-
tions (blue) and 43 SMN stations (red).

In order to cover all European stations for which the
rest of the variables was available, we consider satellite-
derived daily downward surface solar radiation data
(SARAH from the CMSAF surface radiation dataset,
Pfeifroth et al. 2017) that are based on measurements
in the visible range from the Meteosat First and Second
Generation Satellites (Posselt et al. 2012; Posselt et al.
2014). They operated from 1983 to 2015, with best
quality from 1994 on (Posselt et al. 2014). The satellite
data are provided on a grid of 0.05° horizontal resolu-
tion (approximately 5 km). Daily mean and maximum
radiation were calculated from hourly mean values re-
trieved for the analysis period (1983–2010) in February
2017. In order to combine these gridded data with the
station data, the closest grid box from the satellite data
to each of the 1370 stations was considered.

Model data

Regional climate model (RCM) simulations from the
Coordinated Regional Downscaling Experiment (CORDEX,
Giorgi et al. (2009); Jones et al. (2011); Jacob et al. (2014);
Kotlarski et al. (2014)) initiative are considered to derive cli-
mate change projections of heat exposure. These simulations
represent state-of-the-art RCM scenarios (Gutowski Jr. et al.
2016; Giorgi 2019; Jacob et al. 2020) and are accessible via
the Earth System Grid Federation (ESGF, https://esgf.llnl.
gov/).

In this work, we use 84 simulations (GCM-RCM chains) in
total performed by 11 RCMs driven by 10 different global
climate models (GCMs), at two horizontal resolutions (0.11°
and 0.44°, approx. 12 and 50 km) and assuming three
Representative Concentration Pathways (RCP2.6, RCP4.5
and RCP8.5). Historical runs for the period 1981–2005 and
future projections until 2099 were considered here. Since we
use the reference period 1981–2010, the years 2006–2010
from the projection runs were merged with the historical runs.
Most of the simulations were extracted from the ESGF in

May 2017, and additional EURO-CORDEX-compliant simu-
lations from ETH Zurich were also included in the analysis
(Sørland et al. 2018). The reader is referred to Table S2 for a
summary of the simulations used.

Bias correction

Despite their continuous improvement, RCMs are prone to
systematic biases and their resolution is still too coarse for
use in many sectoral climate change impact applications
(Christensen et al. 2008). A common approach to account
for systematic biases and to further downscale RCM results
is to use distribution-based statistical transfer relations that
adjust/correct systematic model biases and that might also
include a downscaling component (see, e.g. Déqué (2007);
Piani et al. (2010)). Among the available bias correction
methods, we use empirical quantile mapping (QM) that con-
sists of matching the simulated and observed distributions by
establishing a quantile-dependent correction function, be-
tween the observed and simulated quantiles (Panofsky and
Brier 1968). QM is nowadays a well-established method and
was used to produce localized climate information from na-
tional climate change scenarios, e.g. in Switzerland (CH2018
2018) and Austria (Formayer et al. 2015). The implicit as-
sumption of QM is that a climate model can sufficiently pro-
ject ranked categories of the variable of interest, i.e. quantiles,
but not its actual values (Déqué 2007). Here we use the im-
plementation from Rajczak et al. (2016), where the 99 empir-
ical percentiles of daily data are corrected and linear interpo-
lation is used for the values between two percentiles. Constant
extrapolation is applied for values outside the calibration
range, i.e. the correction function of the last (first) percentile
is applied to all the values above (below) it. The calibration is
carried out independently for each day of the year with a
moving window of 91 days, considering the full period
1981–2010, for the closest grid box from the RCMs to each
of the 1370 stations. The correction functions are then applied
to the historical period (1981–2010) and the future period
(2070–2099) or transiently for 1981–2099 (Fig. 1).

Table 1 Summary of the Wet Bulb Globe Temperature (WBGT)
derived indices considered throughout the manuscript. Calculations are
based on daily maximum values of WBGT. All the indices are calculated
for heat exposure in shaded (WBGTshade) and sunny conditions

(WBGTsun). Some indices represent intensity (I), whereas others
characterize frequency (F) of heat exposure (column “Type”).
WBGTx3d is merely introduced as a smoothed version of WBGTx1d
for the time series plots in Fig. 1

Abbreviation Definition Type Unit

WBGTmean Summer (JJA) mean WBGT I °C

WBGTx1d Summer single-day maximum WBGT I °C

WBGTx3d Summer maximum of moving 3-day average WBGT I °C

WBGTg26 Number of summer days with WBGT > 26 °C F Days

WBGTg28 Number of summer days with WBGT > 28 °C F Days
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Each of the input parameters of the WBGT (daily max-
imum temperature and solar radiation and daily mean dew
point and wind speed) is corrected independently prior to
the index calculation. Wilcke et al. (2013) showed that
univariate bias correction is able to retain the temporal
structure and the inter-variable relationships of the uncor-
rected data. Different to multivariate bias correction
methods (Vrac and Friederichs 2015; Cannon 2016), uni-
variate techniques are less complex and easier to interpret
and the parameter estimates of the transfer functions are
consequently more robust. The correction of the individ-
ual variables prior to the calculation of a multivariate in-
dex or impact model is still the common and preferred
approach to downscale climate indices (Teutschbein and
Seibert 2012; Casanueva et al. 2018), even though it as-
sumes statistical independence of the variables.

The EURO-CORDEX RCMs do not provide daily maxi-
mum solar radiation, and its approximation from the available
variables in the model is not straightforward. To circumvent
this problem, we bias-correct daily mean solar radiation from
the RCMs against daily maximum observed solar radiation.
By doing this, the distribution of the mean solar radiation of
the models is mapped onto the distribution of the maximum
observed counterpart. Thus, the correction function is not a
pure bias correction, but also translates daily mean solar radi-
ation into daily maximum solar radiation. The suitability of
this approach was tested with the SMN data (Fig. S3).
Although results show an underestimation of the daily vari-
ability in the quantile mapped maximum solar radiation with
respect to the observed counterpart, the effect on theWBGT is
small, probably because solar radiation does not play a major
role in the heat exposure index (compared to temperature and

Fig. 1 Transient climate change projections of heat exposure at selected
European stations. Summer maximum of moving 3-day average WBGT
(WBGTx3d, left column: shade, right column: sun) for five stations as
derived from observations (black) and climate change projections (three
color shadings representing three RCPs; historical runs expand from 1981

to 2005). For each RCP, the shading indicates the 80% of the model range
(10th to 90th percentile). The two orange shadings in the background
represent relevant WBGT thresholds (see ‘Wet bulb globe temperature
and derived indices’)
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humidity, Fig. S4), and WBGTsun can be fairly well
reproduced.

Evaluation of the bias correction

One of the potential limitations of QM is that the inter-variable
dependencies may be modified (Ehret et al. 2012; Vrac and
Friederichs 2015) since it is a univariate bias correction meth-
od and does not explicitly correct for RCM biases in the phys-
ical, temporal or spatial relationships among variables.
Therefore, it is crucial to verify if the WBGT calculated with
the bias-corrected input variables agrees with the observed
counterpart.

Figure S5 shows the Q-Q plots of the observed vs. simu-
lated WBGT (only summer days) for shaded and sunny con-
ditions, for the raw (black) and bias-corrected data (blue) for
five representative stations in Europe. They are representa-
tive in the sense that they cover different climates and a
north-to-south gradient along the continent. Moreover, they
are important European cities, with many inhabitants, which
might be suffering from an increase of environmental heat
exposure in the future. It is shown that after the independent
correction of the input variables, the heat indices agree very
well with the observations (i.e. the blue dots lie approximate-
ly on the diagonal). Thus, the inter-variable relationships are
obviously retained after the correction of the individual pa-
rameters (Wilcke et al. 2013). Note that results may be less
accurate in a cross-validation framework, although our ap-
proach can be considered independent since the evaluated
aspect (here: multivariate consistency) is not directly tackled
by QM.

Results

Future increase in summer maximum heat exposure

Previous works have shown that hot temperatures (on single
days) increase faster with global warming than average tem-
peratures (Schär et al. 2004; Fischer and Schär 2009; Cattiaux
et al. 2015); thus, we first focus on the most extreme case of
summer maximum WBGT. Our results show that, overall,
environmental heat exposure is projected to increase in the
course of the twenty-first century in Europe. For an illustrative
set of European cities (Fig. 1), summer maximum WBGT
(WBGTx3d, i.e. maximum of moving 3-day average
WBGT; see Table 1) observed during the past 30 years ranged
from 22 °C in Oslo to 30 °C in Seville for shaded conditions.
Due to the effect of solar radiation, WBGT in the sun is sys-
tematically higher than WBGT in the shade, with differences
of around 2–3 °C or even more for the Mediterranean stations.
Until 2050, heat exposure is projected to increase similarly for
all RCPs considered, while after 2050, the changes according

to the three RCPs show distinct behaviour, especially for the
more southerly locations. At the five illustrative stations and
especially for RCP8.5, heat exposure might reach far beyond
the observed range with summer maximum WBGT up to
26 °C in Oslo and 34 °C in Seville in the shade. As for the
observational period, projected WGBT values in the sun are
systematically higher by 2–3 °C. Model uncertainty together
with interannual variability (shaded range) is larger at the
northern stations (4–5 °C) and smaller for the southern loca-
tions (2–3 °C). The uncertainty range increases in the course
of the century for all of the stations and all RCPs. At Northern
and Central European stations, the selected thresholds for
moderate and high heat risk (orange-shaded areas in Fig. 1)
are occasionally reached in the present but those conditions
will occur much more often in the future.

Single-day summer maximum WBGT (WBGTx1d) in-
creases by 1–4 °C by the end of the twenty-first century
with respect to the historical reference period depending
on the specific station and on the emission scenario (Fig.
S6). Changes of WBGTx1d are more uniform across the
continent than air temperature changes which are higher
in Southern Europe than in the north (Jacob et al. 2014;
Kröner et al. 2017). This might be due to the projected
decrease in relative humidity in the Mediterranean region
(Ruosteenoja and Räisänen 2013), which counterbalances
the strong temperature increase and hence results in a
smaller WBGT change (note the effect of increasing
temperature and decreasing dew point temperature on
WBGT in Fig. S4), in agreement with Brouillet and
Joussaume (2019). In general, future environmental heat
exposure is enhanced in those regions where it is already
a problem in today’s climate, resulting in a clear north–
south heat exposure gradient (Fig. 2). For instance, in
Southern Europe, WBGTx1d in the shade reaches 27–
29 °C in present-day climate and might amount to 28–
29 °C, 28–30 °C and 30–32 °C for the three RCPs, re-
spectively. Accordingly, WBGTx1d in the sun is projected
to rise from 30– 32 °C to 31–33 °C, 32–34 °C and 34–
36 °C, respectively. In Central Europe, where nowadays
WBGTx1d ranges between 24 and 26 °C (in the shade)
and 27 and 29 °C (in the sun), it may reach up to 30 °C
and 32 °C under the strongest emission scenario (RCP8.5)
in many locations.

The climate change signal for summer mean WBGT
(WBGTmean) is very similar to that for the summer maxi-
mum (WBGTx1d, see Fig. S7), unlike the amplification found
in temperature extremes compared to mean temperature
changes (Fischer and Schär 2010). A possible reason for this
could be the role of humidity (dew point temperature) which
contributes to WBGT and, thereby, modulates the pure tem-
perature signal. Dew point temperature shows very similar
changes of summer mean and maximum values (Fig. S7,
blue points).
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High heat exposure to become more frequent
in the future

The described increase of summer mean and maximum
WGBT is associated with more frequent situations with high
heat risk (Fig. 3). In the shade, the number of summer days
with high heat risk (WBGTg28) currently reaches up to
20 days on average in a few locations in Spain, Italy, Greece
and Cyprus (Fig. 3, left), whereas in the sun, the area with
such conditions spans over Southern Europe and reaches 30–
50 days in someMediterranean locations. Frequencies of high
heat risk for both shaded and sunny conditions are projected to
increase by 5–15, 15–30 and 30–50 days per year in the
Mediterranean region by the end of the century with respect
to today’s climate for the three RCPs, respectively (Fig. S8).
Hence, on average, there will be 5–15, 10–40 and 20–70 days
with high heat risk per summer season for shaded and 20–50,
30–60 and 50–80 for sunny conditions for the three RCPs in
the Mediterranean area (Fig. 3, middle and right).

In some Southern European locations, workers might suf-
fer high heat risk at the end of this century for almost the entire
summer in sunny conditions (values close to 100%) and more
than half of the summer days under shade conditions
(Table 2). The comparison between the frequencies of
WBGT above 26 °C and 28 °C (see ‘Wet bulb globe temper-
ature and derived indices’) partly samples the uncertainty due
the acclimatization state of the worker for the specific case
under moderate work intensity (NIOSH 2016; ISO 2017).
Although the frequency of heat risk is lower for acclimatized
workers (Table 2, right columns: WBGTg28), future changes
with respect to present-day climate might be up to 2 times
larger than for unacclimatized workers (WBGTg26) in
Mediterranean locations for WBGT in the sun. In these loca-
tions, the frequency of high heat risk is substantial even for the
low-emission scenario.While high risk in shaded conditions is
confined to the Mediterranean area, it extends northwards for
WBGT in the sun, affecting the entire continent except
Scandinavia and the British Isles by 2100 (cf. Fig. S8). High

Fig. 2 Observed and projected summer maximum heat exposure.
Observed (left) and multi-model projected (middle) summer maximum
heat exposure (WBGTx1d) in the shade. Projections show the ensemble
median (over 39 model chains) for the strongest emission scenario for
2070–2099. The highest values are plotted on top of lower ones to

highlight the most affected locations. Boxplots (right) summarize the
results for the three RCPs (2.6, 4.5 and 8.5) and two WBGT
implementations (shade and sun) for stations lying in four latitudinal belts
(see maps). The two orange shadings in the background represent critical
WBGT thresholds (see ‘Wet bulb globe temperature and derived indices’)

Fig. 3 Observed and projected number of days with high heat risk. As Fig. 2, but for the frequency of days with high heat risk (WBGTg28). The two
maps refer to shaded conditions
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heat risk (WBGTg28) in the sun is projected to occur during
up to 10% of summer days in many locations in Central
Europe for the low- and medium-emission scenarios and even
on 20–30% of summer days for RCP8.5 (Fig. 3 and Table 2).
Thus, many workers in Europe need to adapt to a future with
more frequent heat situations, even when performing moder-
ate work.

Model uncertainty in the climate change signal

Uncertainties in climate projections often represent a chal-
lenge for climate change communication and its interpreta-
tion by stakeholders. Climate indices, such as heat indices,
offer the possibility to describe the climate in a more ap-
proachable way. The joint assessment of uncertainties using
multivariate indices can potentially increase or compensate
model uncertainties depending on the case (Fischer and
Knutti 2013). The uncertainty in the climate change signal
of WBGT would be modulated by the model uncertainty of
all input variables (air and dew point temperature, wind
speed and radiation) and the relationships among them
(Fischer and Knutti 2013). Here, the ratio between the
multi-model mean change (signal) and standard deviation
of the multi-model changes (uncertainty) is used as an indi-
cator to compare the model agreement relative to the
pro jec ted change for summer maximum WBGT
(WGBTx1d) in the shade and the input variables (Fig. 4).
This ratio is large for most of the stations in the
Mediterranean region and Central and Southeast Europe, es-
pecially for RCP8.5 for which larger signals are projected
(Fig. 4i). That means that the uncertainty is small compared
to the signal. Signal-to-noise ratios are larger for WGBT and
dew point temperature than for maximum temperature over
many regions, implying that the incorporation of dew point
temperature increases the robustness (Fig. 4). This result is
consistent with previous findings (Fischer and Knutti 2013)
and highlights the potential source of predictability provided
by relative humidity, which has been found in climate change
assessments (Scoccimarro et al. 2017) and seasonal forecasts
(Bedia et al. 2018). The north–south pattern in the signal-to-
noise ratios of WBGT in the shade (Fig. 4g–i) may explain
the differences in the model uncertainty by the end of the
twenty-first century in Fig. 1, since in Northern Europe there
is larger uncertainty for air temperature projections than in
the south.

More robust results for WBGT than air temperature also
hold for RCP2.6 although with smaller signal-to-noise ratios,
due to the smaller signals, and large uncertainties in Northern
Europe where two simulations project a much larger temper-
ature increase than the RCP2.6 ensemble mean.

Other sources of uncertainty beyond model uncertainty are
discussed in the Supplementary Material (Annex C).T

ab
le
2

O
bs
er
ve
d
an
d
pr
oj
ec
te
d
fr
eq
ue
nc
y
(%

of
su
m
m
er
da
ys
)w

ith
m
od
er
at
e
(W

B
G
T
g2
6)

an
d
hi
gh

(W
B
G
T
g2
8)

he
at
ri
sk

in
th
e
su
n
an
d
in
th
e
sh
ad
e,
fo
r
fi
ve

ex
em

pl
ar
y
st
at
io
ns

an
d
th
e
th
re
e
R
C
P
s
in

th
e
pe
ri
od

20
70
–
20
99
.
A
va
lu
e
of

10
0%

w
ou
ld

m
ea
n
th
at
th
e
en
tir
e
su
m
m
er

is
at
ri
sk
.
P
ro
je
ct
io
ns

re
pr
es
en
t
th
e
m
ul
ti-
m
od
el
m
ed
ia
n
an
d
th
e
80
%

of
th
e
m
ul
ti-
m
od
el
ra
ng
e
(1
0t
h
to

90
th

pe
rc
en
til
e,
in

br
ac
ke
ts
)

W
B
G
T
g2
6

W
B
G
T
g2
8

O
B
S
.

R
C
P
2.
6

R
C
P
4.
5

R
C
P
8.
5

O
B
S
.

R
C
P
2.
6

R
C
P
4.
5

R
C
P
8.
5

S
ha
de

O
sl
o

0%
0.
14

(0
.0
4,
0.
33
)%

0.
36

(0
.0
8,
0.
92
)%

1.
52

(0
.5
4,
4.
22
)%

0%
0
(0
,0
.0
3)
%

0
(0
,0
.1
1)
%

0.
11

(0
,0
.6
5)
%

B
er
lin

0.
87
%

2.
83

(1
.8
2,
4.
93
)%

3.
75

(1
.7
6,
6.
11
)%

8.
77

(5
.1
2,
14
.7
2)
%

0.
04
%

0.
36

(0
.1
8,
1.
04
)%

0.
65

(0
.1
1,
1.
57
)%

2.
64

(0
.8
9,
5.
07
)%

L
ug
an
o

0.
80
%

2.
46

(1
.0
4,
3.
41
)%

6.
25

(2
.2
,9
.5
6)
%

23
.9
5
(1
2.
09
,3
6.
14
)%

0%
0.
04

(0
,0
.1
4)
%

0.
25

(0
,0
.7
9)
%

4.
13

(1
.1
2,
9.
12
)%

R
om

e
30
.1
3%

44
.7
8
(4
0.
63
,5
0.
79
)%

58
.4
2
(5
0.
58
,6
7.
09
)%

76
.4
5
(7
1.
83
,8
5.
92
)%

6.
48
%

12
.9
3
(7
.7
4,
17
.5
9)
%

25
.9
4
(1
6.
26
,3
3.
95
)%

52
.2
8
(3
9.
97
,6
6.
18
)%

S
ev
ill
e

56
.0
5%

68
.0
8
(6
3.
01
,7
3.
94
)%

77
.1
9
(7
2.
85
,8
4.
07
)%

89
.2
(8
6.
19
,9
1.
2)
%

23
.1
2%

38
.7

(3
2.
77
,4
6.
51
)%

52
.3
2
(4
6.
2,
62
.6
2)
%

74
.6
7
(6
5.
01
,7
6.
67
)%

S
un

O
sl
o

1.
51
%

4.
53

(3
.2
8,
5.
65
)%

5.
96

(3
.9
1,
10
.0
5)
%

12
.5
7
(7
.9
6,
22
.6
7)
%

0.
08
%

0.
69

(0
.4
3,
0.
93
)%

1.
18

(0
.5
1,
2.
3)
%

3.
3
(1
.5
7,
8.
56
)%

B
er
lin

9.
16
%

14
.2
(1
1.
72
,1
7.
36
)%

18
.2
2
(1
1.
99
,2
0.
62
)%

28
.2
2
(2
0.
72
,3
8.
92
)%

2.
10
%

4.
71

(3
.1
7,
7.
23
)%

6.
23

(3
.5
4,
8.
91
)%

12
.1
4
(7
.5
5,
19
.6
4)
%

L
ug
an
o

30
.1
2%

42
.3
9
(3
9.
65
,4
7.
19
)%

52
.7
7
(4
7.
59
,6
0.
03
)%

72
.1
(6
4.
4,
80
.4
)%

6.
25
%

13
.9
1
(8
.8
3,
16
.3
9)
%

21
.9
(1
3.
8,
26
.7
)%

44
.3
1
(3
4.
02
,5
5.
78
)%

R
om

e
73
.8
1%

84
.7
1
(8
0.
04
,8
5.
64
)%

88
.9
3
(8
6.
71
,9
1.
77
)%

95
.1
8
(9
3.
62
,9
6.
8)
%

47
.0
4%

59
.6

(5
8.
18
,6
4.
66
)%

70
.2
2
(6
7.
06
,7
7.
93
)%

83
.9
5
(8
1.
04
,9
0.
86
)%

S
ev
ill
e

85
.9
9%

90
.4
7
(8
8.
97
,9
1.
7)
%

93
.5
7
(9
1.
75
,9
5.
28
)%

97
.1
7
(9
6.
22
,9
8.
25
)%

67
.5
8%

76
.5
9
(7
2.
14
,8
0.
74
)%

82
.6
3
(7
9.
95
,8
8.
65
)%

91
.9
2
(8
9.
96
,9
3.
77
)%

40    Page 8 of 14 Reg Environ Change (2020) 20: 40



Productivity losses due to heat exposure applying ISO
recommendations

The workers’ natural response to protect themselves against
the risk of heat-related illnesses is to slow downwork intensity
and/or limit working hours, thus minimizing body heat pro-
duction and reducing heat exposure, respectively (Ioannou
et al. 2017). As a consequence of these strategies, labour pro-
ductivity and economic output are reduced (Kjellstrom et al.
2009a; Kjellstrom, et al., 2009b). Staying below certain

exposure limits (e.g. ambient temperature below 35 °C
(Kjellstrom et al. 2009b) and core body temperature below
38 °C (Kjellstrom et al. 2009a)) reduces the risk of heat-
related illness, but does not preclude the possibility of other
adverse effects such as a loss of productivity. For that purpose,
specific epidemiological studies (Wyndham 1969; Sahu et al.
2013) have been used to estimate relationships between expo-
sure (heat level) and response (productivity) (Kjellstrom et al.
2018). For moderate work intensity (300–350 W), when
WBGT is above 31 °C, the hourly work capacity is reduced

Fig. 4 Multi-model ensemble signal vs. spread (i.e. signal-to-noise ratio).
Ratio of the multi-model ensemble mean change and multi-model spread
(represented by the standard deviation) of summer maximum values of

daily maximum temperature (Tx, a–c), dew point temperature (Td, d–f)
and heat exposure (WBGT in the shade, g–i), for the three RCPs during
the period 2070–2099
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b y 25% fo r an a v e r a g e wo r k e r a c c o r d i n g t o
these epidemiological studies (Kjellstrom et al. 2018).
International standards (ISO 1989) would be more restrictive
than that (70% of losses for WBGT above 31 °C, Kjellstrom
et al. 2018), because they are based on heat levels that protect
most of the workforce.

We quantify the productivity losses (reduction in available
work time) that would occur if the international standard rec-
ommendations are enforced (ISO 1989, see ‘Wet bulb globe
temperature and derived indices’). If working people do not
reduce their work as much, the losses would be less but at the
expense of other effects on workers’ well-being (Flouris et al.
2018). These ISO recommendations apply to acclimatized
workers; thus, they might be more appropriate for Southern
European cities. In present-day climate, there are only few
locations in the Mediterranean area where up to 20% of sum-
mer working hours are lost under sunny conditions (Fig. 5,
left). By the end of the twenty-first century, under RCP8.5,
Southern Europe will experience a widespread loss of work-
ing hours by at least 15%, reaching more than 50% in some
locations in Spain, Italy, Greece and Cyprus (Fig. 5, middle).
The different estimates of productivity losses vary non-
linearly with the three emission scenarios, and substantial dif-
ferences are projected between RCP4.5 and RCP8.5 for spe-
cific hot spots such as Rome and Seville (Fig. 5, right).

Discussion and conclusions

Changes in environmental heat exposure due to climate change
are highly relevant to stakeholders and policy makers in order to
respond to possible impacts on the main European industries. At
the end of the twenty-first century, many European workers will

very likely be affected by heat stress, not only due to the increase
of heat exposure but also because such situations will become
more frequent in large areas of the continent. This will affect not
only the south of the continent but—especially for workers active
in the sun—also regions in Central and Northern Europe, where
heat exposure has a smaller effect in present-day climate. Even if
stronger global mitigation actions are implemented (RCP2.6),
high heat risk is found for large parts of Southern Europe during
the twenty-first century, underlining the need for reconsidering
international working regulations for European industries to re-
duce heat exposure. A direct consequence of environmental heat
is the loss in labour productivity especially for sunny conditions,
which can result in a reduction of 15–60% of the working hours
in the Mediterranean area under the strongest emission scenario
by the end of the twenty-first century. Model uncertainty may be
large, but the current study shows a strong agreement among
climate models in terms of an increased heat risk. Furthermore,
climate change projections of summer maximum heat exposure
are more robust than those for maximum air temperature, mainly
due to the higher model agreement in dew point temperature.We
focus on the effects of summer heat exposure on labour produc-
tivity, but a broader picture would consider non-linear effects
(Burke, et al., 2015), e.g. future warming might increase outside
labour productivity during the winter months in northern Europe,
thus compensating the loss in summer due to high temperatures.

In light of the results presented here, mitigation and adap-
tation measures should be taken to prevent productivity losses
in the course of the twenty-first century. Some protective strat-
egies to alleviate heat exposure might be heat wave monitor-
ing and warning, a reduction of sources of heat in workplaces,
a reduction of physical work intensity, personal protection
through movable personal microclimate cooling and sophisti-
cated technical developments in clothing based on cooling

Fig. 5 Productivity loss due to environmental heat exposure. Observed
(left) and projected (middle) percentage of summer working hours lost
due to heat exposure under sunny conditions. Projections show the multi-
model ensemble median (over 39 model chains) for the strongest emis-
sion scenario RCP8.5 and the period 2070–2099. Boxplots (right) sum-
marize the projected percentage of working hours lost by the end of the
century for the two WBGT implementations (shade and sun) and three

selected European stations. Each boxplot represents the multi-model
uncertainty range for each RCP and location. To obtain the percentage
of summer working hours lost due to heat exposure, we approximate
hourly values of WBGT by combining daily mean and maximum values
of WBGT (Kjellstrom, et al., 2018) and apply the exposure-response
relationship from ISO (1989) (see ‘Wet bulb globe temperature and de-
rived indices’)
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with ventilation and phase change materials that absorb or
release latent heat when they change phases (Gao et al.
2018). Since reducing heat exposure by the workers (i.e. limit
working hours, increase pauses) derives in productivity losses,
there might be, however, a tradeoff between reducing heat
exposure and preventing productivity losses that needs to be
assessed case by case. In order to cope with this situation,
specific solutions need to be applied for each case, including
feasible, sustainable and effective solutions (Morris et al.
2020).

The analysed RCM simulations do not include a dedicated
module for urban climates, and the implemented land use is
static. Moreover, meteorological stations as those used here
for the bias correction are usually located outside the cities,
such as at airports or in rural environments. Thus, the urban-
ization effect is underestimated and not fully accounted for in
our analysis. Further research is needed to assess the urban
heat island effect and to quantify future heat exposure in urban
areas on a European scale. The urban heat island effect is, for
instance, associated with warmer nights in urban compared to
rural areas (Oleson et al. 2011; Parlow et al. 2014). In a warm-
er climate, a higher frequency of high-heat-stress nights and
tropical nights in urban compared to rural sites is projected
(Fischer et al. 2012; Burgstall 2019 and references therein).
This is highly relevant since people in cities might not recover
from the daytime heat and might subsequently not be able to
handle any extreme heat the following day (Perkins, 2015).
So, the results presented in this study should be regarded as a
lower bound of future heat risk in urban areas.

Many opportunities arise based on this work. The climate
change projections of environmental heat exposure could be
combined with demographic data and economic models in
order to quantify economic losses due to heat (as foreseen in
the HEAT-SHIELD project; see www.heat-shield.eu). At
shorter time scales, a heat-warning system has been developed
in order to allow stakeholders timely and precise prevention
strategies and better planning of the work activities up to four
weeks in advance (see http://heatshield.zonalab.it).
Accordingly, the development and dissemination of heat–
health planning and warning systems is now among the prior-
ities of the World Meteorological Organization (WMO) and
the World Health Organization (WHO). All these examples
are certainly a good test bed for developing effective climate
services in the context of extreme heat.
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