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Phase | trials

Aim
» First experimentation of a new drug / clinical procedure in human
subjects

» Find a safe, yet potentially effective, dose for future Phase |l
experimentation

» Seek the highest possible dose subject to toxicity constraints,
known as the maximum tolerated dose (MTD)

Dose-escalation
» Ethical considerations require low starting dose
» Patients enrolled in a sequential fashion at different dose levels

» Bayesian adaptive designs (e.g. the CRM (O’Quigley, 1990))
used to choose the next dose



Phase | trials

Combination therapies
» Becoming increasingly common in the treatment of many
diseases (e.g. cancer, HIV)
Many designs are still quite naive
» e.g. fix dose of one agent, and dose-escalate the other (using
single-agent designs)
Unknown synergistic/antagonistic effects
Require simultaneous dose-escalation
Aims and objectives must differ from single-agent trials

> Multiple MTDs may exist
» More prior information (from single-agent trials)
» Multiple outcomes (toxicity and efficacy)
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Parametric models for dose-toxicity relationship

» Let x = (xa;, xg;) be the dose combination when drug A is used
atlevel i (i,=1,...,/)and drug B is used as level j, (j =1,...,J).

» Assume a parametric model n(x,8), for example...

Thall et al., Biometrics, 2003.

oy Xkt + agxg/? +ag(xE xg]?)ﬁs

7'E(X;91) =

14 ay x5! + opxgP2 + oz (Xa! xB2)Ps
Ai /] Ai 7 Bj

Yin and Yuan, JRSS Series C, 2009.

=1/y

7(X;62) =1 { (1- f(XAi)5>7y+ (1-9g(xg)¥) "~ 1}



Contours of toxicity

For specified model parameters, can obtain various dose-toxicity
surfaces
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Escalation and updating

v

Specify an initial dose-combination for first cohort, X1 = (x4, Xg)
Count the number of toxicities to occur
Given a parametric dose-toxicity model, z(x; 6), with priors
» Update inferences to obtain new posterior distribution

Choose next dose combination based on

1. A set of admissible dose combinations

2. A decision rule to choose between admissible doses, using the

posterior distribution

Continue recruiting patients until either

» afixed sample size is obtained
» the precision of a certain quantity reaches a pre-specified level
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Admissible dose combinations

» For a discrete set of dose levels, constraints are placed on

escalation
» Strategy Qngiag* » Strategy Qgisg: Diagonal
Non-diagonal escalation escalation
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Admissible dose combinations

» Strategy Qprev: Diagonal escalation + any previously
experimented dose combination

6
5
»
B
3" /1
s
ARra
E]
=]
2 _-»l‘\ 4
| L
1 2 3 4 5 6

Drug A (dose levels)



Decision rules

Strategy Dpa: Patient gain

» Amongst admissible doses, choose the one whose posterior
mean probability of toxicity is closest to the TTL, v

Xpi1=argmin [E[x(&;0)|Z,]—v|
EeQ

Strategy D;,,: Variance gain

» Amongst admissible doses, choose the one that will allow us to
gain most information about the parameters

» Constrained Bayesian D-optimality design

Xn.1 =arg max E [Iog det (ZI X;;0)+I(&; 6))

&eq i=1

where /(x; 6) is the Fisher information matrix associated with
treating a patient at dose combination x



Decision rules

Strategy D,4,: Variance / patient gain

The pure variance gain strategy, D;,,, could be unsafe
Need to account for patient gain

A solution: Further restrict admissible dose set
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Qe = QN{&[E[n(S;0) | Zn] - Vv <€}
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"Pure” patient gain: € — 0
"Pure” variance gain: € — oo
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Simulation study

Priors (for six-parameter model)

Scenarios
True probabilities of toxicity...

1. ..

in agreement with prior mean

2. ... higher than prior mean
G-
4. ... are flat

are asymmetric



Simulation study

Simulation set-up
» Six dose levels per drug
» TTL=0.30, with e =0.025 for D, designs
» Sample size = 40 (with 2 patients per cohort)
» Prior as in Scenario 1

» 1000 simulations performed for each scenario and
design/admissible dose combination
(Dpat, Dyar) x (Qndiag,Qdiag»Qprev)

Recommended Phase Il doses
1. Must have been experimented on during trial
2. Posterior mean p(DLT) within € of the TTL



Dose-escalation by admissible dose set
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Experimentation: Scenario 1

Percentage experimentation
0
2

4
e
s

Mo

Drug A level

15/18



Experimentation: Scenario 1

Non-Diagonal
escalation
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margins
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Experimentation: Scenario 1

More varied
lexperimentation
6- using D-optimal
5- designs
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Recommended dose combinations

Decision rule
Admissible set

Qndi.ezg

Dpat
Qdiag Qprev ‘

Qndiag

D var
Q diag

Qprev

Toxicity (%)

Scenario 1 - In agreement with prior

0-14 1.4 0.7 0.5 0.7 1.0 0.5
15-24 19.6 174 16.0 21.0 199 20.1
25-34 58.4 585 61.4 60.0 58.3 60.2
35-44 20.7 232 221 18.2 20.8 19.2

> 45 0.0 0.2 0.1 0.1 0.1 0.0

% of MTDs selected 16 18 17 22 21 23

Toxicity (%) Scenario 2 - Toxic

0-14 1.0 1.0 0.6 1.3 1.6 14
15-24 25.1 196 21.8 245 232 246
25-34 472 555 51.8 496 519 531
35-44 235 219 233 217 211 19.0

>45 3.3 2.0 25 2.8 2.2 1.9

% of MTDs selected 18 21 18 27 24 25




Summary

» Escalation strategies more complex for combination therapies

v

Non-diagonal escalation rarely behaves in a step-like manner
» May get ‘stuck’ in regions where one drug is given at a low dose
Less constrained algorithms...

> ... allow more flexible experimentation
> ... place more faith on the underlying model
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D-optimal designs allow for varied experimentation
» This allows more drug combinations to be recommended
» Trade-off between ‘patient’ and ‘variance’ gain decisions
» Other optimal designs (C-opt, Dc-opt) require investigation and
may enhance operating characteristics
Methodology could be extended to incorporate other outcomes
» Emerging PK/PD information collected at the doses
» Efficacy biomarkers / clinical response
» Decision rules could penalise non-effective doses from being
chosen
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