Escalation Strategies for Combination Therapy Phase I Trials

Michael Sweeting¹ and Adrian Mander²

¹Cardiovascular Epidemiology Unit, University of Cambridge ²MRC Biostatistics Unit, Cambridge, UK

PSI Pharmaceutical Statistics and RSS Virtual Journal Club Meeting on Combination Therapies

MRC Biostatistics Unit Hub

Outline

- Phase I trials
- Dual-agent (combination therapy) trials
- Parametric models for dose-toxicity relationship
- Escalation strategies
 - Admissible doses
 - Decision rules
- Simulation study
- Conclusions

Aim

- First experimentation of a new drug / clinical procedure in human subjects
- Find a safe, yet potentially effective, dose for future Phase II experimentation
- Seek the highest possible dose subject to toxicity constraints, known as the *maximum tolerated dose* (MTD)

Dose-escalation

- Ethical considerations require low starting dose
- Patients enrolled in a sequential fashion at different dose levels
- Bayesian adaptive designs (*e.g.* the CRM (O'Quigley, 1990)) used to choose the next dose

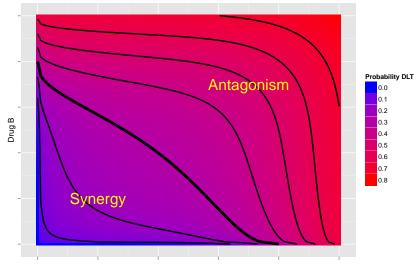
Combination therapies

- Becoming increasingly common in the treatment of many diseases (*e.g.* cancer, HIV)
- Many designs are still quite naive
 - e.g. fix dose of one agent, and dose-escalate the other (using single-agent designs)
- Unknown synergistic/antagonistic effects
- Require simultaneous dose-escalation
- Aims and objectives <u>must</u> differ from single-agent trials
 - Multiple MTDs may exist
 - More prior information (from single-agent trials)
 - Multiple outcomes (toxicity and efficacy)

Parametric models for dose-toxicity relationship

- Let x = (x_{Ai}, x_{Bj}) be the dose combination when drug A is used at level i (i, = 1,..., I) and drug B is used as level j, (j = 1,..., J).
- Assume a parametric model $\pi(\mathbf{x}, \theta)$, for example...

Thall et al., Biometrics, 2003.

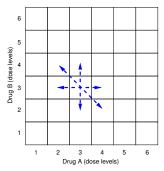

$$\pi(\mathbf{x};\theta_1) = \frac{\alpha_1 x_{Ai}^{\beta_1} + \alpha_2 x_{Bj}^{\beta_2} + \alpha_3 (x_{Ai}^{\beta_1} x_{Bj}^{\beta_2})^{\beta_3}}{1 + \alpha_1 x_{Ai}^{\beta_1} + \alpha_2 x_{Bj}^{\beta_2} + \alpha_3 (x_{Ai}^{\beta_1} x_{Bj}^{\beta_2})^{\beta_3}}$$

Yin and Yuan, JRSS Series C, 2009.

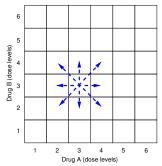
$$\pi(\mathbf{x};\theta_2) = 1 - \left\{ \left(1 - f(x_{Ai})^{\delta} \right)^{-\gamma} + \left(1 - g(x_{Bj})^{\psi} \right)^{-\gamma} - 1 \right\}^{-1/\gamma}$$

Contours of toxicity

For specified model parameters, can obtain various dose-toxicity surfaces

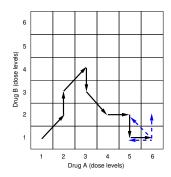

Drug A

Escalation and updating


- Specify an initial dose-combination for first cohort, $\boldsymbol{x}_1 = (x_A, x_B)$
- Count the number of toxicities to occur
- Given a parametric dose-toxicity model, $\pi(\mathbf{x}; \theta)$, with priors
 - Update inferences to obtain new posterior distribution
- Choose next dose combination based on
 - 1. A set of admissible dose combinations
 - 2. A <u>decision rule</u> to choose between admissible doses, using the posterior distribution
- Continue recruiting patients until either
 - a fixed sample size is obtained
 - the precision of a certain quantity reaches a pre-specified level

Admissible dose combinations

- For a discrete set of dose levels, <u>constraints</u> are placed on escalation
- Strategy Ω_{ndiag}: Non-diagonal escalation



Strategy Ω_{diag}: Diagonal escalation

Admissible dose combinations

 Strategy Ω_{prev}: Diagonal escalation + any previously experimented dose combination

Decision rules

Strategy D_{pat}: Patient gain

Amongst admissible doses, choose the one whose posterior mean probability of toxicity is closest to the TTL, v

$$\boldsymbol{x}_{n+1} = \operatorname*{arg\,min}_{\xi \in \Omega} |\mathrm{E}[\pi(\xi; \theta) | \boldsymbol{Z}_n] - v|$$

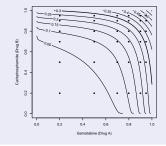
Strategy D_{var}^* : Variance gain

- Amongst admissible doses, choose the one that will allow us to gain most information about the parameters
- Constrained Bayesian D-optimality design

$$\boldsymbol{x}_{n+1} = \operatorname*{arg\,max}_{\boldsymbol{\xi} \in \Omega} \operatorname{E}\left[\operatorname{log\,det}\left(\sum_{i=1}^{n} l(\boldsymbol{x}_{i}; \theta) + l(\boldsymbol{\xi}; \theta)\right) \middle| \boldsymbol{Z}_{n}\right]$$

where $I(\mathbf{x}; \theta)$ is the Fisher information matrix associated with treating a patient at dose combination \mathbf{x}

Strategy Dvar: Variance / patient gain


- ► The pure variance gain strategy, *D*^{*}_{var}, could be unsafe
- Need to account for patient gain
- A solution: Further restrict admissible dose set

$$\Omega_{\varepsilon} = \Omega \cap \{\xi; |\mathrm{E}[\pi(\xi; \theta) \mid \boldsymbol{Z}_n] - \nu| \leq \varepsilon\}$$

- "Pure" patient gain: $\varepsilon
 ightarrow 0$
- "Pure" variance gain: $\varepsilon
 ightarrow \infty$

Simulation study

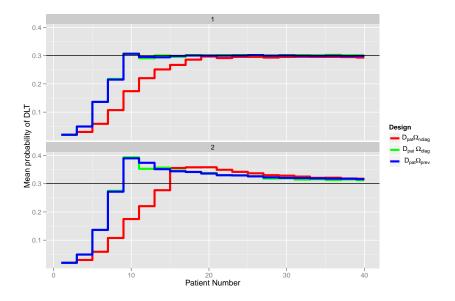
Priors (for six-parameter model)

Scenarios

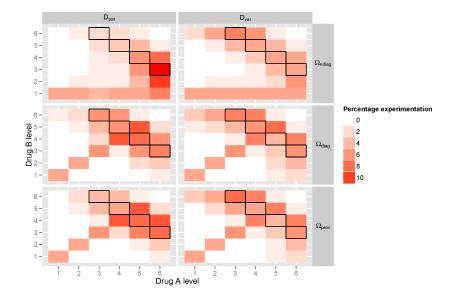
True probabilities of toxicity...

- 1. ... in agreement with prior mean
- 2. ... higher than prior mean
- 3. ... are asymmetric
- 4. ... are flat

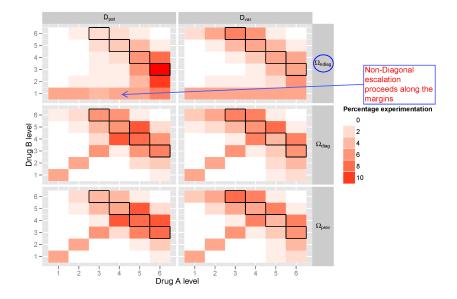
Simulation study

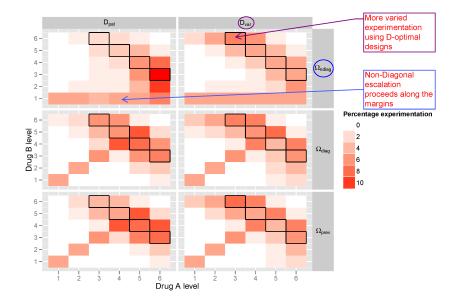

Simulation set-up

- Six dose levels per drug
- TTL = 0.30, with $\varepsilon = 0.025$ for D_{var} designs
- Sample size = 40 (with 2 patients per cohort)
- Prior as in Scenario 1
- 1000 simulations performed for each scenario and design/admissible dose combination (D_{pat}, D_{var}) × (Ω_{ndiag}, Ω_{diag}, Ω_{prev})


Recommended Phase II doses

- 1. Must have been experimented on during trial
- 2. Posterior mean p(DLT) within ε of the TTL


Dose-escalation by admissible dose set


Experimentation: Scenario 1

Experimentation: Scenario 1

Experimentation: Scenario 1

Recommended dose combinations

Decision rule		D _{pat}			D _{var}	
Admissible set	Ω_{ndiag}	Ω_{diag}	Ω_{prev}	Ω_{ndiag}	Ω_{diag}	Ω_{prev}
Toxicity (%)	Scenario 1 - In agreement with prior					
0 - 14	1.4	0.7	0.5	0.7	1.0	0.5
15 - 24	19.6	17.4	16.0	21.0	19.9	20.1
25 - 34	58.4	58.5	61.4	60.0	58.3	60.2
35 - 44	20.7	23.2	22.1	18.2	20.8	19.2
\geq 45	0.0	0.2	0.1	0.1	0.1	0.0
% of MTDs selected	16	18	17	22	21	23
Toxicity (%)	Scenario 2 - Toxic					
0 - 14	1.0	1.0	0.6	1.3	1.6	1.4
15 - 24	25.1	19.6	21.8	24.5	23.2	24.6
25 - 34	47.2	55.5	51.8	49.6	51.9	53.1
35 - 44	23.5	21.9	23.3	21.7	21.1	19.0
\geq 45	3.3	2.0	2.5	2.8	2.2	1.9
% of MTDs selected	18	21	18	27	24	25

Summary

- Escalation strategies more complex for combination therapies
- Non-diagonal escalation rarely behaves in a step-like manner
 - May get 'stuck' in regions where one drug is given at a low dose
- Less constrained algorithms...
 - ... allow more flexible experimentation
 - ... place more faith on the underlying model
- D-optimal designs allow for varied experimentation
 - This allows more drug combinations to be recommended
 - Trade-off between 'patient' and 'variance' gain decisions
 - Other optimal designs (C-opt, Dc-opt) require investigation and may enhance operating characteristics
- Methodology could be extended to incorporate other outcomes
 - Emerging PK/PD information collected at the doses
 - Efficacy biomarkers / clinical response
 - Decision rules could *penalise* non-effective doses from being chosen

Sweeting MJ, Mander AP. Escalation strategies for combination therapy Phase I trials. *Pharmaceutical Statistics* 2012;11(3):258-266.

Thall PF, et al. Dose-finding with two agents in Phase I oncology trials. *Biometrics* 2003;59(3):487-496.

Yin G, Yuan Y. Bayesian dose finding in oncology for drug combinations by copula regression. *Journal of the Royal Statistical Society: Series C (Applied Statistics)* 2009;58(2):211-224