
Escape Analysis in the Context
of Dynamic Compilation and Deoptimization∗

Thomas Kotzmann
Institute for System Software

Johannes Kepler University Linz
Linz, Austria

kotzmann@ssw.jku.at

Hanspeter Mössenböck
Institute for System Software

Johannes Kepler University Linz
Linz, Austria

moessenboeck@ssw.uni-linz.ac.at

ABSTRACT
In object-oriented programming languages, an object is said
to escape the method or thread in which it was created if it
can also be accessed by other methods or threads. Knowing
which objects do not escape allows a compiler to perform
aggressive optimizations.

This paper presents a new intraprocedural and interproce-
dural algorithm for escape analysis in the context of dynamic
compilation where the compiler has to cope with dynamic
class loading and deoptimization. It was implemented for
Sun Microsystems’ Java HotSpotTM client compiler and op-
erates on an intermediate representation in SSA form. We
introduce equi-escape sets for the efficient propagation of
escape information between related objects. The analysis
is used for scalar replacement of fields and synchronization
removal, as well as for stack allocation of objects and fixed-
sized arrays. The results of the interprocedural analysis sup-
port the compiler in inlining decisions and allow actual pa-
rameters to be allocated on the caller stack.

Under certain circumstances, the Java HotSpotTM VM
is forced to stop executing a method’s machine code and
transfer control to the interpreter. This is called deoptimiza-
tion. Since the interpreter does not know about the scalar
replacement and synchronization removal performed by the
compiler, the deoptimization framework was extended to re-
allocate and relock objects on demand.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Incremen-
tal compilers, Optimization; D.4.1 [Operating Systems]:
Process Management—Synchronization; D.4.2 [Operating
Systems]: Storage Management—Allocation / deallocation
strategies

General Terms
Algorithms, Languages, Performance

∗This work was supported by Sun Microsystems, Inc.

c© ACM, 2005. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in the Proceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments, pp. 111–120.
VEE’05, June 11–12, 2005, Chicago, Illinois, USA.
http://doi.acm.org/10.1145/1064979.1064996

Keywords
Java, just-in-time compilation, optimization, escape analy-
sis, scalar replacement, stack allocation, synchronization re-
moval, deoptimization

1. INTRODUCTION
In Java, each object is allocated on the heap and deallo-

cated by the garbage collector, which is invoked once in a
while to examine the heap and release the memory of objects
as soon as they are not referenced any longer. Allocation,
access and synchronization of objects involve considerable
costs:

• An object allocation does not only involve memory
reservation. The fields of the object must also be ini-
tialized, because the garbage collector presumes that
unassigned references are null. Additionally, the Java
language specification defines default values for fields.
Therefore, the memory occupied by the newly created
object is typically cleared out in a loop even if values
are explicitly assigned to the fields by the constructor
afterwards.

• Reading or writing a field of an object requires one
or two memory accesses depending on whether the ad-
dress of the object is already in a register or not. In the
context of a generational garbage collector, the modifi-
cation of a field that holds a pointer is more expensive.
It is associated with a write barrier, because pointers
from older to younger generations must be recorded in
a remembered set so that younger generations can be
collected without inspecting every object in the older
ones [12].

• Java programs typically coordinate multiple threads
by synchronizing on a shared object. Much research
has been done to reduce the cost of synchronization
in JVM implementations, but complete elimination of
useless synchronization is still a desirable goal.

Scalar replacement. The costs described above can be re-
duced by various compiler optimizations. An object that is
neither assigned to a non-local variable nor passed as a pa-
rameter does not escape the method in which it is allocated.
The compiler can eliminate the allocation and replace the
object’s fields by scalars (see Figure 1). This optimization
eliminates memory allocation, initialization, field access and
write barriers.

111

float float

new

return

foo(d) {

Circle c = Circle(d / 2);

c.area();

}

original method after inlining after scalar replacement

float float

new

return

foo(d) {

Circle c = Circle();

c.r = d / 2;

c.r * c.r * PI;

}

float float

float

return

foo(d) {

r = d / 2;

r * r * PI;

}

Figure 1: Example for scalar replacement of fields

Stack allocation. An object that is accessed only by the
creating method and its callees does not escape the current
thread. Although it must not be eliminated because the
callees require a reference to the object, it can be allocated
on the stack. Its memory is released implicitly when the
stack frame is removed at the end of the method. This
means that garbage collection runs faster and less frequently
because the young generation of the heap does not fill up
that fast. Moreover, synchronization on thread-local objects
can be removed.

In this paper we present a new algorithm for escape analy-
sis and related optimizations. The analysis was implemented
for the client compiler of the Java HotSpotTM Virtual Ma-
chine [22] in the context of a research collaboration between
Sun Microsystems and the Institute for System Software at
the Johannes Kepler University Linz. The paper contributes
the following:

• It presents an intraprocedural and interprocedural es-
cape analysis for a dynamic compiler. The results are
used for scalar replacement, stack allocation and syn-
chronization removal.

• It introduces equi-escape sets for the representation of
dependencies between objects and the efficient propa-
gation of escape states.

• It describes how the HotSpotTM deoptimization frame-
work was extended to deal with eliminated object al-
locations and removed synchronization.

Sun’s client compiler is a simple and fast compiler dedi-
cated to client programs, applets and graphical user inter-
faces [9]. Its objective is to achieve high compilation speed
at a potential cost of peak performance. The front end op-
erates on a SSA-based [5] high-level intermediate represen-
tation (HIR) and performs only few high-impact optimiza-
tions, such as constant folding, method inlining and com-
mon subexpression elimination. The back end converts the
HIR into a low-level intermediate representation, which is
the basis for linear scan register allocation [24] and code
generation.

2. INTRAPROCEDURAL ANALYSIS
The HIR is built by parsing the bytecodes and performing

an abstract interpretation [9]. At first, the boundaries of all
basic blocks are determined by examining the destinations of
jumps and the successors of conditional jump instructions.
Then the basic blocks are filled with HIR instructions. Each
HIR instruction that loads or computes a value represents
both the operation and the result so that operands appear
as pointers to prior instructions. Escape analysis and scalar
replacement are performed in parallel with the construction
of the HIR.

2.1 Escape States and Fields Array
Before the compiler can optimize the allocation and syn-

chronization of objects, it has to know whether an object
allocated in a method can be accessed from outside the
method. This knowledge is derived from the HIR via es-
cape analysis. If an object can be accessed by other meth-
ods or threads, it is said to escape the current method or
the current thread, respectively. In the context of our work,
possible escape levels are:

• NoEscape: The object is accessible only from within
the method of creation. In most cases, the compiler
can eliminate the object and replace its fields by scalar
variables (see Section 2.2). Objects with this escape
level are called method-local.

• MethodEscape: The object escapes the current method
but not the current thread, e.g. because it is passed
to a callee which does not let the argument escape.
It is possible to allocate the object on the stack and
eliminate any synchronization on it. Objects with this
escape level are called thread-local.

• GlobalEscape: The object escapes globally, typically
because it is assigned to a static variable or to a field
of a heap object. The object must be allocated on the
heap, because it can be referenced by other threads
and methods.

In contrast to the bytecodes of a method, the SSA-based
HIR does not contain any instructions for loading or stor-
ing local variables. They are eliminated during the abstract
interpretation of the bytecodes. For this purpose, the com-
piler maintains a state object which contains a locals array
to keep track of the values most recently assigned to a local
variable [16]. If an instruction creates a value for the local
variable with the number n, a pointer to this instruction is
stored in the locals array at position n. If an instruction
uses a local variable as an operand, it is provided with the
corresponding value from the locals array, i.e. a pointer to
the instruction where the value was created.

Bytecodes refer to local variables via indices, and the max-
imum number of variables for a certain method is specified in
the class file. As far as fields are concerned, we do not know
in advance which or how many fields are accessed within a
method. Therefore, the state object is extended by a grow-
able fields array which stores the current values of all fields.
Figure 2 shows the contents of the locals array and the fields
array for a simple sequence of bytecodes.

At the end of the HIR construction, when we know which
objects escape and which do not, we substitute the fields of
non-escaping objects by the values stored in the fields array.
Provided that a0 does not escape in the example, scalar
replacement can eliminate the allocation and substitute any
use of a0.f by i1 and any use of a0.g by i3.

112

0: new T
7: astore_0
8: aload_0
9: iconst_3

10: putfield f
13: aload_0
14: iconst_0
15: putfield g

Bytecodes

a0: new T

i1: 3
i2: a0.f = i1

i3: 0
i4: a0.g = i3

i1

i1 i3

a0.f

a0.f a0.g

a0

locals fieldsHIR

Figure 2: HIR and state object for a sequence of bytecodes

2.2 Analysis of Basic Blocks
In HIR code, an object is represented by its allocation in-

struction. It contains a field for the escape state, which is
initialized with NoEscape and updated along with the con-
struction of the HIR.

If an object is assigned to a non-local variable, not only
itself becomes accessible by other threads, but also its fields.
Therefore, each object keeps track of other objects that are
referenced by its fields. If the object escapes, this list is
traversed and the escape states of the referenced objects are
adjusted.

When the compiler parses an instruction that might cause
an object to escape, it adjusts the escape state of the instruc-
tion representing the object. The escape state can only in-
crease towards GlobalEscape, but never decrease over time.
The following paragraphs describe how certain instructions
affect the escape state of objects and which actions are nec-
essary for scalar replacement of fields:

• p = new T(): Initially, p starts as NoEscape. If, how-
ever, the class T defines a finalizer, p is marked as
GlobalEscape because the finalizer accesses the object
before it is garbage collected. If the class T was not
loaded yet, p is also marked as GlobalEscape because
no information about the class is available.

• a = new T[n]: The escape state of a newly allocated
array a is NoEscape only if the specified length n is a
constant. Arrays of variable length are not replaced by
scalars, because the compiler is not able to guarantee
that the array is accessed only with valid indices and
that no exception occurs at run time. They cannot be
allocated on the stack either, because the maximum
size of the stack frame must be known at compile time.
These arrays are marked as GlobalEscape.

• T.sf = p: As soon as an object p is stored into a sta-
tic field sf, it can be accessed by other threads and
must therefore be marked as GlobalEscape. We can-
not state anything about the lifetime of p or the scope
it will be referenced from.

• q.f = p: When an object p is assigned to an instance
field of q, it inherits the escape state of q provided that
this state is higher than its own. If other methods or
threads are able to obtain a reference to q, they can
also access p. Additionally, p is inserted into the list
of objects referenced by q so that its escape state gets
updated in case q escapes later on. The fields array
is extended by an entry for q.f and p is stored in the
corresponding slot.

• x = p.f: This generates an HIR instruction which
loads the field p.f. The compiler obtains the current
value v of p.f from the fields array and remembers it
for this HIR instruction. If p has the state NoEscape

at the end of the HIR construction, p.f is replaced
by v.

• p == q: If two objects p and q are compared, they
must both exist at least on the stack, so their escape
state is raised to MethodEscape. This is also true for
an object compared with null.

• (T) p: A type cast requires the object p to be allo-
cated even if scalar replacement is able to provide a
value for any subsequent field access, because the cast
might fail and then an exception has to be thrown.
Therefore, p is marked as MethodEscape. Only if the
compiler can prove statically that the object is always
of the requested type, the cast is eliminated and the
escape state remains unchanged.

• p.foo(q): A purely intraprocedural analysis is not
able to predict what happens to the arguments of a
method invocation. In the worst case, the callee as-
signs them to static fields or passes them on to other
methods. Therefore, we mark all actual arguments as
GlobalEscape. The object receiving the call is treated
in just the same way as any other parameter. This
rather conservative approach is refined in an interpro-
cedural analysis (see Section 3).

• return p, throw p: Return values and exception ob-
jects are generally marked as GlobalEscape and never
allocated on the stack because they can be accessed
by the caller when the frame of the callee has already
been released. Interprocedural analysis opens up an
optimization if a formal parameter is returned which
does not escape otherwise. In this case, the actual pa-
rameter may be allocated on the stack unless it escapes
in the caller.

To check the correctness of scalar replacement and to de-
tect errors in future modifications, our compiler contains
verification code. If verification is enabled via a special VM
flag, the compiler keeps track of field values but refrains
from scalar replacement. Whenever a field is loaded from
memory, a run-time assertion is inserted into the machine
code which compares the field value with the scalar that the
field could have been substituted with. If one of the asser-
tions fails, the JVM displays an error message and halts the
program.

113

0: iload_0
1: ifle 20

4: new T
11: astore_1
12: aload_1
13: iconst_3
14: putfield f
17: goto 33

20: new T
27: astore_1
28: aload_1
29: iconst_5
30: putfield f

33: ...

Bytecodes B0

i0

locals

1: if i0 > 0 then B1 else B2

i0 a2

locals

i3

a2.f

B1

a2: new T
i3: 3
i4: a2.f = i3
5: goto B3

i0 a6

locals

i7

a6.f

B2

a6: new T
i7: 5
i8: a6.f = i7
9: goto B3

i0

locals

i11a10

a10.f

B3

a10: [a2, a6]

i11: [i3, i7]

�

�

Figure 3: Phi functions for local variables and fields

2.3 Analysis of Control Flow
The SSA form [5] requires that every value has a single

point of definition even if different values are assigned to a
variable in alternative control flow paths. If multiple values
of a variable flow together in a control flow graph, a phi
function has to be inserted which merges the incoming values
into a new value. In the context of scalar replacement, phi
functions must be created both for local variables and field
variables (see Figure 3).

The escape states for the operands of a phi function de-
pend on each other. Assume four objects a0 to a3 and the
three phi functions

Φ0 = [a0, a1],
Φ1 = [a1, a2], and
Φ2 = [Φ1, a3].

Figure 4 shows the corresponding data flow. If some of
the objects escaped, it would not make sense to treat the
others as non-escaping and thus to replace their fields by
scalar variables, because the objects could not be accessed
in a uniform way anymore.

�1�0

�2

a2a1a0 a3

Figure 4: Phi functions and their operands

Instead of determining and propagating the maximum es-
cape state, the operands of a phi function and the phi func-
tion itself are inserted into an equi-escape set (EES). All
elements in the set share the same escape state, namely the
maximum of the elements’ original states.

An EES is implemented as an instruction tree based on the
union-find algorithm [20]. For this purpose, every instruc-
tion has a parent field that points to another instruction in
the same set. Each connected component corresponds to a
different set. A special role is assigned to the root of the
instruction tree. It acts as a representative for the set and

specifies the escape state of the set’s elements. Accordingly,
only the escape state of the root needs to be updated if one
of the elements escapes.

Figure 5 visualizes the process of EES creation for the
phi functions in the above example. Initially, the objects
are not connected to each other. The EES of the first phi
function and its operands forms a three-node tree. Assume
that the phi function itself is the root of the tree. This choice
is arbitrary; any operand could have been put at the root.
The second phi function has an operand a1 that is already
contained in another set, so a1’s representative Φ0 is linked
to Φ1. After the third phi function has been processed, all
objects and phi functions turn out to be elements of one
large set.

�0

a0 a1

�1

�0 a2

a0 a1

�2

�1 a3

�0 a2

a0 a1

Figure 5: Stepwise creation of an EES

To detect whether two objects belong to the same set,
their representatives are compared for identity. Starting
from one of the objects at a time, the instruction tree is
walked up until its root is reached. In order to speed up the
repeated lookup, we make another pass through the tree
immediately after the root has been found and set the par-
ent field of each node encountered along the way to directly
point to the root. Thus the trees get flattened over time.
This is called path compression [20].

The escape state of an object loaded from a field usually
does not affect the objects stored in other fields. For arrays,
however, it is often not possible to prove the equality of two
index calculations at compile time and thus to determine
exactly which element is loaded. In this case, we conserv-
atively consider all array elements to escape as soon as the
object that represents the result of the array load escapes.

114

3. INTERPROCEDURAL ANALYSIS
The gain of an intraprocedural analysis is limited because

objects are rarely used as pure data structures. Instead, they
usually act as parameters or receivers of at least one method
call. Inlining thus plays a major role in the improvement of
escape analysis. Unfortunately, inordinate inlining rapidly
fills the code buffer and slows down the compiler.

So interprocedural techniques are vital to tap the full po-
tential of escape analysis. They determine which objects es-
cape neither from the method that allocates them nor from
any of its callees. The underlying idea is based on the fact
that the compilation of a method produces escape informa-
tion not only for local variables, but also for the method’s
formal parameters. In an interprocedural analysis, the com-
piler does not discard this information but stores it in the
method descriptor, so that the escape state of actual para-
meters can be inferred from it when the method is called
later on.

Apart from that, interprocedural analysis supports the
compiler in making better inlining decisions. Not every
method that can be bound statically is also inlined because
the increase in compile time would outweigh the gain in run
time. Some of the restrictions, such as the maximum code
size, are based on heuristics and may be weakened if we
knew that inlining would prevent objects from escaping.

In the course of HIR construction, formal parameters are
treated in the same way as objects allocated within the
method. They start as non-escaping objects and may be
inserted into an EES or stored into fields of other objects.
After completion of the HIR, their escape states are encoded
by two bit vectors indicating which parameters do not es-
cape and which can be allocated on the stack.

In Figure 6, the first argument a0 escapes globally because
it is assigned to the static field sf, while a1 is compared to
null and thus marked as stack-allocatable. The last argu-
ment a2 is not used at all and remains non-escaping. The
escape states are encoded by the bit vectors 001 and 011 de-
noting the set of method-local and thread-local parameters,
respectively.

static boolean

return null

foo(Obj a0, Obj a1, Obj a2) {

sf = a0;

(a1 !=);

}

Figure 6: Parameters with different escape states

At each call site, the compiler retrieves the interprocedural
escape information from the callee’s method descriptor. If
the code size of the callee exceeds the maximum inline size
within a certain limit, the escape information is used to
decide if inlining is desirable nevertheless. It turned out to
be a good heuristic to inline methods up to twice as large as
the normal threshold if there is at least one parameter that
does neither escape the caller nor the callee. After inlining,
the allocation of such a parameter can be eliminated.

Even if a method cannot be inlined, the information about
its parameters is helpful. If one of the formal parameters
does not escape globally, the corresponding actual parame-
ter can be treated as thread-local unless it escapes in the
caller. Although it must not be replaced by scalars, it may
be allocated on the caller’s stack and synchronization on it
can be removed.

The Java HotSpotTM VM interprets a method several
times before it is compiled. For this period of time, no inter-
procedural escape information is available. If we reach a call
site of a method that was not compiled yet, we perform a
fast and conservative analysis on the bytecodes to get escape
information for the arguments. Otherwise the arguments of
recursive method calls would be treated as escaping globally
by default.

The analysis on the bytecodes traces escape information
only for arguments and not for objects allocated within the
method. It considers each basic block separately and checks
if it lets one of the arguments escape. This is more con-
servative but faster to compute, because no phi functions
are required and control flow can be ignored. The analysis
stops as soon as all arguments are seen to escape. When the
method is compiled later, the provisional escape informa-
tion is replaced with a more precise one. Since the compiler
is less conservative than the bytecode analyzer, the escape
state of an argument can only change from global escaping
to stack-allocatable.

4. THREAD-LOCAL OBJECTS
Objects that do not escape the allocating method nor its

callees can be allocated on the stack. The total size of a
stack frame must be known at compile time. Therefore,
each allocation site of a stack object allocates the object at
a unique location in the frame. If an object is created within
a loop, it is allocated on the stack only if the same stack slot
can be reused in every iteration. Since stack objects do not
need explicit memory reservation, machine code is generated
only for the initialization of the object fields as required by
the Java language specification [8].

Apart from a cheap allocation, stack objects also facilitate
an efficient field access. The location of stack objects within
the current stack frame is already available at compile time.
Since the fields can be accessed relative to the frame’s base
pointer, the address of the object needs not be loaded.

The assignment to a field that references an object nor-
mally requires a write barrier [12]. However, no write bar-
riers are emitted for assignments to fields of stack-allocated
objects. They are not necessary because pointers in stack
objects are root pointers and must be inspected at every
collection cycle anyway.

Even if a formal argument does not escape a method, the
method may be called either with a stack-allocated or a
heap-allocated actual argument. For assignments to fields
of such formal arguments a slightly modified write barrier
is emitted, which performs a bounds check before the card
marking array is accessed. Figure 7 shows the generated
code for the Intel IA-32 architecture [13].

The card index is calculated via a right-shift of the ob-
ject address in the EAX register. Then the index of the first

shr

sub

cmp

jae

mov

eax, 9

eax,

eax,

label

byte ptr [eax+], 0

label: ...

firstIndex

arraySize

arrayBase

Figure 7: Write barrier with bounds check

115

card (firstIndex) is subtracted. The unsigned check of the
result against the array size (arraySize) detects both a nega-
tive index, which looks like a large unsigned positive number,
and an index greater than the size. If the EAX register refers
to a heap object, the corresponding card is marked as dirty.
If the register refers to a stack object, the bounds check fails
and card marking is omitted.

If a block synchronizes on a thread-local object, synchro-
nization can be removed because the object will never be
locked by any other thread. Before Java 5.0, the Java mem-
ory model restricted synchronization removal. Each thread
has a working memory, in which it may keep copies of the
variables that are shared between all threads. According to
the old Java memory model [8], locking and unlocking ac-
tions caused a thread to flush its working memory, which
guaranteed that the shared values were reloaded from main
memory afterwards. Therefore, the old Java memory model
did not allow useless synchronization to be completely re-
moved, but the new one for Java 5.0 does [15].

When the back end parses an HIR instruction that syn-
chronizes on a thread-local object, it does not emit any ma-
chine code for the synchronization. If a method is declared
synchronized, locking code must be preserved for the case
that the method is called on a shared receiver. Therefore,
the compiler tries to inline the method by embedding the
body in a synchronized block. If the receiver for this call site
turns out to be thread-local, synchronization is removed.

5. RUN-TIME SUPPORT
A method can only be inlined if the compiler is able to sta-

tically identify this method despite polymorphism and dy-
namic method binding. Apart from static and final callees,
this is possible if class hierarchy analysis [6] finds out that
only one suitable method exists. If, however, a class is
loaded later that provides another suitable method, it is
possible that the wrong implementation was inlined.

Assume that the class B was not loaded yet when machine
code for the method foo from Figure 8 is generated. The
just-in-time compiler optimistically assumes that there is
only one implementation for the method bar and inlines
A.bar into foo.

If create returns a B object, the class B is loaded and
the inlining decision turns out to be wrong. In this case,
the machine code for foo is invalidated and execution of the
method is continued in the interpreter.

The interpreter expects all local variables such as x and p

to be stored in the stack frame, whereas the machine code
might keep some of them in registers. Therefore, a new stack
frame must be allocated for the interpreter and filled with
the variables’ current values. This process is called deopti-
mization [11]. It makes use of debugging information which
is generated by the compiler and specifies the locations of
all variables’ values for every point in the program where
deoptimization can occur.

Debugging information is created by the register alloca-
tor, because the locations of local variables are not known
before register allocation, and afterwards they are no longer
available. For each local variable a scope value is created
that describes the location of the variable. The list of such
scope values makes up the debugging information. When
the machine code of a compiled method is installed into the
VM, the debugging information is stored together with the
native method in a compressed form.

class

void

class extends

void

A {

bar() { ... }

}

B A {

bar() { ... }

}

int

int

new

return

foo() {

x = 3;

Point p = Point();

p.x = x;

p.y = 3 * x + 1;

A q = create();

q.bar();

p.x * p.y;

}

Figure 8: Example for optimistic inlining

For scalar replacement and synchronization removal, the
deoptimization framework must be able to reallocate and
relock objects because the interpreter does not know about
these optimizations. Therefore, the debugging information
of the original Java HotSpotTM client compiler was extended
by information about the fields of eliminated objects and
about which objects must be locked.

An eliminated object is represented by a special kind of
scope value. It specifies the class of the object and contains
a list of scope values itself to describe the locations of the
fields. In the example above, the debugging information for
the point immediately before the method bar is called states
that

• the local variable x has the value 3,

• the local variable p refers to a Point object eliminated
by scalar replacement, whose field x is the constant 3
and whose field y is stored in the ECX register,

• the local variable q refers to an object whose address
is stored in the EBX register.

The debugging information is used to create a state from
which the interpreter can continue. At first, the deopti-
mization framework reallocates all eliminated objects on the
heap. In this example, it creates an instance of the class
Point and initializes its field x with 3 and its field y with
the value of the ECX register.

References to reallocated objects are stored in an array
and treated as root pointers if garbage collection is needed
in the middle of reallocation. After reallocation, the garbage
collector must not run until deoptimization has finished, be-
cause the array is no longer available and newly created ob-
jects would immediately be freed again.

Afterwards, all thread-local objects for which synchro-
nization was eliminated are relocked. Because the repre-
sentations of locked objects differ between interpreted and
compiled code, we lock the objects as though the compiled
code performed the locking and rely on the existing deop-
timization code to convert the locks into the interpreter’s
representation. Debugging information also considers the
level of synchronization, which allows the deoptimization
framework to restore recursive locking.

116

slowest

with EAwithout EA ratio

slowest slowestfastest fastest fastest

_227_mtrt
_202_jess
_201_compress
_209_db
_222_mpegaudio
_228_jack
_213_javac

1.391
1.907
5.969

11.859
3.047
3.359
5.516

1.219
1.875
5.969

11.719
3.046
3.312
5.453

1.141
1.017
1.000
1.012
1.000
1.014
1.012

1.094
1.625
5.938

11.625
2.765
3.093
4.312

0.859
1.594
5.922

11.485
2.765
2.953
4.219

1.274
1.019
1.003
1.012
1.000
1.047
1.022

Table 1: Elapsed times of SPECjvm98 benchmarks on Intel (in seconds)

slowest

with EAwithout EA ratio

slowest slowestfastest fastest fastest

_227_mtrt
_202_jess
_201_compress
_209_db
_222_mpegaudio
_228_jack
_213_javac

2.719
4.925

11.359
20.323
8.158
6.685

11.602

2.186
4.961

11.472
19.893
8.162
6.727

11.788

1.244
0.993
0.990
1.022
1.000
0.994
0.984

2.200
4.450

11.252
19.434
7.673
6.006
9.340

1.560
4.424

11.356
18.945
7.673
5.993
9.373

1.410
1.006
0.991
1.026
1.000
1.002
0.996

Table 2: Elapsed times of SPECjvm98 benchmarks on SPARC (in seconds)

Finally, a stack frame for the interpreter is set up as shown
in Figure 9. When execution continues, the interpreter ex-
amines the dynamic type of q to find out that B.bar must
be called instead of A.bar. Later, the deoptimized method
may be compiled again, but this time the method bar will
not be inlined because both classes A and B are loaded.

ECX

stack frame heap registers

x

x

y

p

q

EBX

class B

class Point

3

10

10

3

Figure 9: State created by deoptimization

Apart from extending the deoptimization framework to
reallocate and relock objects, garbage collection had to be
adapted to deal with stack objects. A stack object must not
be moved in memory, but the heap objects referenced by
its fields need to be visited and kept alive. Therefore, we
modified the garbage collector so that it does not visit stack
objects but treats pointer fields within stack objects as root
pointers.

6. EVALUATION
This section evaluates our escape analysis algorithm on

the SPECjvm98 benchmark suite [21]. For this purpose, we
extended the Java HotSpotTM client VM of the JDK 5.0 by
our optimizations. The benchmarks were executed on an
Intel Pentium 4 processor with 3.2 GHz and 1 GB of main
memory, running Microsoft Windows XP Professional. The
results are not approved SPECjvm98 metrics, but adhere to
the run rules for research use.

Table 1 shows the elapsed times of the benchmarks on
Intel with and without escape analysis. Three runs were re-
quired per benchmark to reach stability. Compilation speed
decreases from 236,654 to 208,559 bytes/s. However, even
the slowest runs, which invoke the compiler frequently, bene-
fit from escape analysis. The fastest runs are achieved when
most methods have already been compiled and thus indicate
the quality of the machine code.

The 227 mtrt benchmark implements a multi-threaded
ray-tracing algorithm. It mainly benefits from scalar re-
placement because it uses a lot of short-lived data structures,
such as points and vectors, whose allocation can be elimi-
nated. About 3.8 of 5.3 million allocations are eliminated
per run. Without escape analysis, the fastest run requires
1.094 seconds. With escape analysis and scalar replacement
enabled, the time is reduced to 0.859 seconds which results
in a speedup of 27.4%. When the benchmark is compiled
with the Java HotSpotTM server compiler, a more highly-
optimizing compiler which does not currently implement es-
cape analysis, the fastest run takes 0.985 seconds.

The 228 jack benchmark generates a Java parser from
a specification file and primarily benefits from lock elision
on StringBuffer objects. In Java 5.0, strings can be con-
catenated with the unsynchronized StringBuilder. The
synchronized StringBuffer is still available for compati-
bility reasons, but forwards almost all method calls to the
StringBuilder. When the methods of StringBuffer are
inlined, synchronization can be eliminated. Although 1.2
million object locks are removed per run, the speedup of
4.7% is smaller than the one achieved for 227 mtrt, be-
cause the StringBuffer object often cannot be eliminated
by scalar replacement and synchronization is cheaper than
object allocation.

As regards 201 compress and 222 mpegaudio, fast mem-
ory allocation is not as crucial as for the two benchmarks
described above. They allocate only 406 objects and 361
arrays per run and thus do not provide any optimization
opportunities for escape analysis.

117

object allocations eliminated
object allocations on stack
object allocations on heap

array allocations eliminated
array allocations on stack
array allocations on heap

50
214

1,849

3
4

485

17,679,091
2,683,179

41,073,677

3,202,110
2,037,655

23,597,429

locks eliminated
locks performed
locks at method entry

712
432
44

6,776,157
47,320,036

175,081,272

static numbers dynamic numbers

Table 3: Escape analysis statistics for the SPECjvm98 benchmarks

FFT (1024)
SOR (100x100)
Monte Carlo
Sparse matmult (N=1000, nz = 5000)
LU

280.0218 1.048293.5171

without EA ratiowith EA

267.0301
446.8820
22.9668

283.3377
379.8924

1.000
1.000
3.938
1.000
1.000

267.0301
446.8820
90.4432

283.3377
379.8924

Composite Score

Table 4: Scores of SciMark in Mflops

Table 2 presents the results of SPECjvm98 for SPARC.
They were measured under Sun OS 5.9 on a Sun Blade 2500
workstation with 2 processors at 1,280 MHz and 2 GB of
main memory. 227 mtrt achieves a higher speedup than
on Intel, because more fields of eliminated objects can be
kept in registers. Other benchmarks benefit less from es-
cape analysis, because the current implementation of bounds
checks in write barriers on SPARC is more expensive than
on Intel.

Table 3 shows how many allocations and synchronizations
are eliminated in SPECjvm98. Static numbers refer to sites
in the machine code, whereas dynamic numbers indicate how
often these sites are executed. Locks at the entry of syn-
chronized methods cannot be eliminated because the meth-
ods are not necessarily invoked on thread-local receivers.
Scalar replacement eliminates the allocation of 432 MB on
the heap. The total size of generated machine code decreases
from 1.19 MB to 1.10 MB (7.6%).

SciMark is another Java benchmark suite for scientific and
numerical computations [18]. It mainly measures speed of
floating-point operations and therefore does not contain a
lot of allocation sites. The Monte Carlo benchmark, how-
ever, creates a random number generator object and repeat-
edly invokes the synchronized method nextDouble on it. Es-
cape analysis inspects the bytecodes of this method in order
to estimate the escape states for its parameters. Based on
the interprocedural escape information, the compiler inlines
nextDouble, removes synchronization and eliminates the al-
location of the random number generator. At run time,
about 134 million locks are eliminated. As a result, the
score of this benchmark is nearly four times higher with es-
cape analysis than without (see Table 4).

7. RELATED WORK
Jong-Deok Choi et al. from the IBM T. J. Watson Re-

search Center created a framework for escape analysis based
on a program abstraction called connection graph which cap-
tures the relationship between object references and heap-

allocated objects [4]. Escape analysis is mapped to a reach-
ability problem over the connection graph. It is used in the
context of a static Java compiler for stack allocation of ob-
jects and elimination of unnecessary synchronization. In an
interprocedural analysis, summary information obtained for
a callee is used to update the connection graph of the caller.
Therefore, all callees must have been completely analyzed
before the caller is processed.

Bruno Blanchet extended the Java-to-C compiler TurboJ
by escape analysis [1]. The algorithm transforms Java code
into SSA form, builds equations and solves them with an
iterative fixpoint solver. Escaping parts of values are rep-
resented via integers, which is less costly than graphs and
leads to a fast and precise analysis. The results are used for
stack allocation and synchronization removal, but not for
scalar replacement of fields. Regarding dynamic class load-
ing, the implementation either determines which classes in
the class path will actually be loaded or relies on information
provided by the user.

Erik Ruf from Microsoft Research implemented an opti-
mization that removes unnecessary synchronization opera-
tions in Java [19]. His optimization even eliminates syn-
chronization on objects that are reachable from static fields
but accessed only from a single thread. It relies on an
equivalence-based representation similar to our equi-escape
sets, in which potentially aliased values are forced to share
common representative nodes. The optimization is applied
to statically compiled programs and was implemented in the
Marmot native compilation system for Java which does not
support dynamic class loading.

David Gay and Bjarne Steensgaard [7] implemented an-
other escape analysis algorithm for Marmot. The analysis
computes two properties for each local variable. The first
one specifies if the variable holds a reference that escapes due
to an assignment or a throw statement, and the second one
if the reference escapes by being returned from the method.
Each statement of a program may impose constraints on
these properties that must be solved. No attempts are made
to track references through assignments to fields, i.e. any ref-

118

erence assigned to a field is assumed to possibly escape from
the method in which the assignment occurs. The results of
the analysis are used for stack allocation and object elimi-
nation.

Jeff Bogda and Ambuj Singh present an incremental shape
analysis based on Ruf’s approach [3]. It operates on an in-
complete call graph and modifies the results as the call graph
grows. The authors evaluate three strategies of when to
start the interprocedural analysis, and whether to make op-
timistic or pessimistic assumptions for optimization. Andy
C. King also builds on Ruf’s analysis and adapts it to deal
with dynamic class loading [14]. Any class loaded after a
partial analysis of a snapshot of the program is analyzed
and incorporated into the system.

Frédéric Vivien and Martin Rinard observed that almost
all of the objects are allocated at a small number of alloca-
tion sites [23]. For this reason, they present an algorithm
which incrementally analyzes only those parts of a program
that may deliver useful results. Their algorithm performs
an incremental analysis of the neighborhood of the program
surrounding selected object allocation sites. It first skips the
analysis of all potentially invoked methods, but maintains
enough information to reconstruct the results of analyzing
the methods when they turn out to be useful. Such an in-
cremental analysis works well for stack allocation, but for
synchronization removal, a whole-program analysis promises
more optimization opportunities.

V. Krishna Nandivada and David Detlefs from Sun Labo-
ratories developed several techniques based on escape analy-
sis that allow the elimination of unnecessary write barri-
ers supporting the snapshot-at-the-beginning (SATB) style
of concurrent garbage collection [17]. Two static analyses
identify stores to heap locations guaranteed to contain null
before the write. The first one does so for fields of ob-
jects, and the second one for elements of object reference
arrays. Such initializing stores do not require SATB barri-
ers. The optimization was implemented in a version of the
Java HotSpotTM client compiler without an intermediate
representation in SSA form.

8. CONCLUSIONS
We presented a new algorithm for escape analysis that was

implemented in a production system. It is especially tailored
to the needs of a dynamic compiler which lacks a view of the
complete program. The results are used for scalar replace-
ment of fields, to allocate objects and fixed-sized arrays on
the stack, and to remove synchronization on thread-local ob-
jects. Escape states are efficiently propagated among related
objects via equi-escape sets. The deoptimization framework
was extended to reallocate and relock objects just before
execution continues in the interpreter.

We have implemented a combination of an intraprocedural
and an interprocedural analysis. The results of the inter-
procedural analysis are used to identify objects that can be
allocated on the caller stack as well as to estimate where
inlining benefits scalar replacement of fields. A light-weight
analysis on the bytecodes produces interprocedural escape
information for formal arguments of methods that have not
been compiled yet.

Future work will focus on a more aggressive escape analy-
sis. A deeper analysis of the call tree will for example
increase the number of eliminated and stack-allocated ob-
jects. Performance could also be improved by generating

unsynchronized versions of some methods which are called
whenever the receiver does not escape. Based on the re-
sults and experience gained from our implementation, Sun
Microsystems plans to add escape analysis also to the Java
HotSpotTM server compiler.

9. ACKNOWLEDGMENTS
We want to thank Kenneth Russell, Thomas Rodriguez

and David Cox from the Java HotSpotTM compiler group at
Sun Microsystems for the close collaboration and the con-
tinuous support of our project.

10. REFERENCES
[1] B. Blanchet. Escape analysis for JavaTM: Theory and

practice. ACM Transactions on Programming
Languages and Systems, 25(6):713–775, Nov. 2003.

[2] J. Bogda and U. Hölzle. Removing unnecessary
synchronization in Java. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications,
pages 35–46, Denver, Nov. 1999.

[3] J. Bogda and A. Singh. Can a shape analysis work at
run-time? In Proceedings of the Java Virtual Machine
Research and Technology Symposium, Monterey, 2001.

[4] J.-D. Choi et al. Stack allocation and synchronization
optimizations for Java using escape analysis. ACM
Transactions on Programming Languages and
Systems, 25(6):876–910, Nov. 2003.

[5] R. Cytron et al. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems, 13(4):451–490, Oct. 1991.

[6] J. Dean, D. Grove, and C. Chambers. Optimization of
object-oriented programs using static class hierarchy
analysis. Lecture Notes in Computer Science,
952:77–101, 1995.

[7] D. Gay and B. Steensgaard. Fast escape analysis and
stack allocation for object-based programs. In
Proceedings of the International Conference on
Compiler Construction, pages 82–93, Berlin, 2000.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
JavaTM Language Specification. Addison-Wesley,
second edition, June 2000.

[9] R. Griesemer and S. Mitrovic. A compiler for the Java
HotSpotTM Virtual Machine. In L. Böszörményi,
J. Gutknecht, and G. Pomberger, editors, The School
of Niklaus Wirth: The Art of Simplicity, pages
133–152. dpunkt.verlag, Heidelberg, 2000.

[10] M. Hirzel, A. Diwan, and M. Hind. Pointer analysis in
the presence of dynamic class loading. In Proceedings
of the European Conference on Object-Oriented
Programming, pages 96–122, Oslo, June 2004.

[11] U. Hölzle et al. Debugging optimized code with
dynamic deoptimization. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 32–43, San
Francisco, June 1992.

[12] A. L. Hosking and R. L. Hudson. Remembered sets
can also play cards. In Proceedings of the ACM
OOPSLA Workshop on Garbage Collection and
Memory Management, Washington, D.C., Oct. 1993.

119

[13] Intel Corporation. IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A & 2B: Instruction Set
Reference, 2004. Order Numbers 253666 and 253667.

[14] A. C. King. Removing GC synchronisation (extended
version). Technical Report 11-03, Computing
Laboratory, University of Kent, Apr. 2003.

[15] J. Manson, W. Pugh, and S. V. Adve. The Java
memory model. In Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 378–391, 2005.

[16] H. Mössenböck. Adding static single assignment form
and a graph coloring register allocator to the Java
HotspotTM client compiler. Technical Report 15,
Johannes Kepler University Linz, Nov. 2000.

[17] V. K. Nandivada and D. Detlefs. Compile-time
concurrent marking write barrier removal. In
Proceedings of the International Symposium on Code
Generation and Optimization, San Jose, 2005.

[18] R. Pozo and B. Miller. Java SciMark 2.0.
http://math.nist.gov/scimark2/.

[19] E. Ruf. Effective synchronization removal for Java. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 208–218, Vancouver, 2000.

[20] R. Sedgewick. Algorithms, pages 441–449.
Addison-Wesley, second edition, 1988.

[21] Standard Performance Evaluation Corporation. The
SPEC JVM98 Benchmarks.
http://www.spec.org/jvm98/.

[22] Sun Microsystems, Inc. The Java HotSpot Virtual
Machine, v1.4.1, Sept. 2002.
http://java.sun.com/products/hotspot/.

[23] F. Vivien and M. Rinard. Incrementalized pointer and
escape analysis. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 35–46, Snowbird, June 2001.

[24] C. Wimmer and H. Mössenböck. Optimized interval
splitting in a linear scan register allocator. In
Proceedings of the Conference on Virtual Execution
Environments, June 2005.

120

