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Escape angles in bulkx„2… soliton interactions

Steffen Kj,r Johansen, Ole Bang, and Mads Peter Sørensen
Department of Informatics and Mathematical Modeling, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

~Received October 13, 2000; revised manuscript received 10 September 2001; published 3 January 2002!

We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at
opposite, butarbitrary transverse anglesin quadratic nonlinear~or so-calledx (2)! bulk media. We predict
quantitatively the outwards escape angle, below which the solitons turn around and collide, and above which
they continue to move-away from each other. For in-plane interaction, the theory allows prediction of the
outcome of a collisionthrough the inwards escape angle, i.e., whether the solitons fuse or cross. We find an
analytical expression determining the inwards escape angle using Gaussian approximations for the solitons.
The theory is verified numerically.
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Stable self-guided laser beams or optical bright spa
solitons are of substantial interest in basic physics@1# and for
technical applications, such as inducing fixed@2# and dy-
namically reconfigurable wave guides@3#. Several types of
spatial solitons have been demonstrated experimentally
cluding one-dimensional~1D! Kerr solitons@4# and 1D and
2D solitons in saturable@5#, photorefractive@6#, and x (2)

media @7#. Even incoherent solitons, excitable by a lig
bulb, have been demonstrated in photorefractive media@8#.
All solitons exist when diffraction is balanced by the nonli
ear self-focusing effect. In bulk Kerr media, the self-focusi
effect dominates and leads to collapse of both coherent
incoherent 2D solitons@9#, their existence requiring an effec
tively saturable nonlinearity.

An intriguing feature of solitons is their particlelike be
havior during collision. In 1D, Kerr media collisions ar
fully elastic due to integrability of the 1D nonlinear Schr¨-
dinger ~NLS! equation@10#. In contrast, saturable, photore
fractive, andx (2) media are described by nonintegrable eq
tions and soliton collisions are therefore inelastic, display
both fusion@Fig. 1~a!#, crossing@Fig. 1~b!#, repulsion, and
annihilation, additional solitons may be generated in
fission-type process@11#, and solitons may even spira
around each other@12#. All processes depend strongly on th
relative phase and have been demonstrated experimen
~see@1# and references therein!.

Complex wave-guide structures may be generated by s
ton interaction, such as directional couplers@13#, but their
efficient implementation requires a detailed understandin
the nature of soliton collisions. Snyder and Sheppard p
dicted the outcome of collisions of 1D solitons in satura
media by comparing the collision angle with the critic
angle for total internal reflection in an equivalent wave gu
@14#. Except for this paper, most theories are based on
variational approach, which require the solitons to be
apart and breaks down at collision.

Here, we focus onx (2) materials@15#, which are more
general than the simpler cubic Kerr and saturable medi
the sense that, dependent on the phase mismatch betwee
fundamental and second-harmonic~SH! waves, the nonlin-
earity may be both purely quadratic~close to phase match
ing! and effectively cubic~for a large phase mismatch!. Spa-
tial solitons in x (2) materials do not modify the refractiv
index, and consist of one~type-I! or two ~type-II! fundamen-
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tal fields resonantly coupled to a SH. Thex (2) materials are
of significant interest to photonics due to the strong and
nonlinearities they can provide through cascading@16#. Fur-
thermore, soliton-induced wave guides in photorefractiv
may have a strongx (2) nonlinearity, which may be used fo
second-harmonic generation~SHG! @17#.

Fusion and crossing@Figs. 1~a! and 1~b!# of spatialx (2)

solitons has been demonstrated numerically@18# and experi-
mentally @19#, and fission of 1D type-I solitons was demo
strated analytically and numerically in the large pha
mismatch limit approximately described by the NL
equation@20#. However, thex (2) system is more general an
complex than the saturable NLS equation and so far, va
tional theories were only able to predict critical laun
angles and relative phases separating regimes of colli
and no collision@21#. Elegant nonplanar effective particl
theories predicted the absence of spiraling type-I solito
but still required weakly overlapping solitons@22#. In this
paper, we extend the effective particle approach toarbitrary
launch anglesand present a theory that is able to correc
predict theoutcome of collisionsbetween 2D type-I solitons
in x (2) media.

FIG. 1. ~a!,~b! Planar collision between two Gaussian
P548.3 and b50. ~c!,~d! Outwards-launched exact soliton
P5122.4 andb55. The launch angles areax558° ~a!, ax562°
~b!, ax55.4° ~c!, andax55.7° ~d!.
©2002 The American Physical Society01-1
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We consider beam propagation under type-I SHG con
tions in lossless bulkx (2) materials. Neglecting walk off, the
system of normalized dynamical equations for the slow
varying envelope of the fundamental wave,E15E1(rW), and
its SH,E25E2(rW), are@23#

i ]zE11
1

2
¹'

2 E11E1* E250, ~1a!

i ]zE21
1

4
¹'

2 E22bE21E1
250. ~1b!

Here, rW5(x,y,z), z is the propagation variable, and¹'
2

5]x
21]y

2 accounts for diffraction in the transverserW'

5(x,y) plane. The normalized phase mismatch isb
5 l d(2k12k2), wherel d is the diffraction length of the fun-
damental andk1 andk2 are the wave numbers of the fund
mental and SH, respectively. The system~1! may be derived
from the Lagrangian density

L52 Im~E1]zE1* !1Im~E2]zE2* !1buE2u21u¹'E1u2

1
1

4
u¹'E2u22Re~E2* E1

2!, ~2!

and conserves the powerP5*(uE1u21uE2u2)drW' and mo-
mentum MW 5* Im$E1*¹'E11(1/2)E2* ¹'E2%drW' , where we
have defined* drW'[**2`

` dx dy.
The system~1! is known@24,25# to have aone-parameter

family of radially symmetric bright 2D solitons of the form
E1(rW)5V(r ;l)exp(ilz) andE2(rW)5W(r ;l)exp(i2lz) where
l.max(0;2b/2) is the internal soliton parameter andr
5Ax21y2. We have found this family numerically, using
standard relaxation method, and approximately, using
variational approach@25# with Gaussians profiles (V,W)
5(Vg ,Wg),

Vg5a1 exp~2r 2/b!, Wg5a2 exp~2r 2/b!. ~3!

Here, a15a2@2(lb21)#21/2, a25(3/2)(l1b21), and b
5@11(12l218lb1b2)1/2/(2l1b)#/2l. Because the sys
tem is Galilean invariant, we can apply a gauge transform
tion to find moving solitons. Thus, thegeneral three param-

eter soliton family(Ṽ,W̃) is given by

Ṽ~x2nxz,y2nyz;l,nx ,ny!5VS r ;l2
1

2
nx

22
1

2
ny

2D
3exp@2 i ~nxx1nyy!#,

~4a!

W̃~x2nxz,y2nyz;l,nx ,ny!5WS r ;l2
1

2
nx

22
1

2
ny

2D
3exp@22i ~nxx1nyy!#,

~4b!

where ~V, W! are either the exact soliton profiles (Vs ,Ws)
found numerically or (Vg ,Wg) given by ~3!. nx,y5tan(ax,y)
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are the initial transverse velocities corresponding to
launch anglesax,y with respect to thez axis.

We substitute a field composed of two weakly overla
ping solitons (Ṽ( i ),W̃( i )) into the Lagrangian density~2!. We
then follow the procedure outlined in@22# and allow the
solitons to vary adiabatically through a slow variation of t
soliton parameters withZ5ez being the slow propagation
variable. To first order ine!1 the result is a set of dynami
cal equations governing the collective coordinatesx( i ), y( i ),
and f ( i ), being the center positions along thex and y axis
and accumulated phase of solitoni 51,2, respectively. We
can express the coordinates asx( i )(z)5*0

znx
( i )(Z8)dZ8

1x0
( i ) , y( i )(z)5*0

zny
( i )(Z8)dZ81y0

( i ) , and f ( i )(z)
5*0

zl ( i )(Z8)dZ81f0
( i ) , where subscript 0 denotes initia

values.
At this point, one traditionally simplifies the system b

assuming the velocities to be small (]zx
( i );e,]zy

( i );e),
i.e., the solitons propagate almost in parallel. However,
are interested in velocities that may be considerable, so
stead, we assume symmetric interaction between in-ph
solitons with initially identical profiles,l5l ( i ) and P
5P( i ), and equal but opposite velocities,nx,y5nx,y

(1)5

2nx,y
(2) . Without loss of generality, we setx05x0

(1)52x0
(2)

>0 and y05y0
(1)52y0

(2)>0. Symmetry is conserved an
the two sets of collective coordinates degenerate to oneX
5x(1)52x(2), Y5y(1)52y(2). In cylindrical coordinates
with R5AX21Y2 we may then reduce the dynamical equ
tions to the Euler-Lagrange equation of the effective L
grangian

L~R,Ṙ!5
1

2
PṘ22Ueff~R,Ṙ!, ~5!

for the single coordinateR. The effective potential

Ueff~R,Ṙ!5
C0

2R2 P1
1

2
U~R,Ṙ! ~6!

is composed of the classical centrifugal barrier, whereC0

5(XẎ2YẊ)25(x0ny1y0nx)
2 is constant because of con

servation of angular momentum, and of the interaction in
gral

U52E V~1!@V~1!W~2! cos~2f!12W~1!V~2! cos~f!#drW' ,

~7!

wheref52nxx12nyy. We note that, strictly speaking,U is
only a quasiclassical potential since it depends on the vel
ties ~in contrast to the potential used in@22#!.

We have now established a picture of an effective part
moving in a potential,Ueff , with the kinetic energyEkin

5(1/2)PṘ2>0. For small velocities, the potential~7! has the
shape of a well, and hence, represents an attractive forc
the general case of nonplanar interactionC0Þ0, the centrifu-
gal barrier is always repulsive and goes to infinity atR50.
This does not necessarily rule out fusion since also the
locities go to infinity because of conservation ofC0 . The
1-2
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ESCAPE ANGLES IN BULKx (2) SOLITON INTERACTIONS PHYSICAL REVIEW E 65 026601
centrifugal barrier also creates a local minimum in the eff
tive potential ~still assuming small velocities!, which sug-
gests that spiraling configurations may exist. In gene
however, we cannot expect our model to yield correct phy
cal results in the vicinity ofR50 since it violates the as
sumption of weakly overlapping solitons. In fact, fusion h
been observed numerically, but stable spiraling configu
tions have not been found@22#.

Here, we shall not discuss the qualitatively different
gimes. Rather, we are interested inquantitativepredictions
of escape velocities. For solitons launched with outwa
velocities, we will always be able to theoretically predict t
escape velocity. On the other hand, a consistent theory
the determination of the inwards escape velocity only ex
for in-plane interaction, when the classical centrifugal barr
vanishes, i.e.,C050.

We first determine the outwards escape angle. For s
plicity, we focus on in-plane interaction withy05ny5C0

50, soR5uXu andṘ5nx . In this case, the effective particl
either escapes the potential,Etot5Ekin 1Epot.0, or is
trapped by it,Etot,0, and the escape velocitync is given by
the relation

nc
2P5U~x0 ,nc!. ~8!

Unfortunately, we are not able to express the interaction
tegralU(x0 ,nx) in terms of analytical functions and we ca
not use Gaussians, since the Gaussian tale asymptotic is
ferent from that of the exact soliton. It is however trivial
solve Eq.~8! numerically and in Fig. 2, we have plotted th
outwards escape angle, given byac5Arctan(nc), versus the
phase mismatch. The initial beam width and separation
kept constant to ensure a weak overlap of the soliton tail
all phase mismatches.

The simulations were performed with numerically fou
exact solitons as initial conditions. They confirm the acc
racy of the escape angle predicted by Eq.~8!. We found the
minimum of about 3° aroundb527 to be global. Note tha
the angles are expected to be small, since the initial over
and hence, the attractive force between the solitons is w
As an example of the dynamics, we show in Figs. 1~c! and
1~d! the outcome of the experiments withb55 from Fig. 2.
Only the fundamental waves are shown, the evolution of
SH waves being qualitatively the same.

FIG. 2. Outwards escape angle in degrees~solid curve! for full
width at half maximum51 and x051.5. Numerical experiments
where exact solitons fused~d! and where they escaped~s!. The
dashed line shows the initial soliton powerP.
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Now, considering solitons launched towards each oth
we first elaborate on the effective particle picture. If we a
sume the solitons to be initially far apart this corresponds
the effective particle experiencing essentially no potent
Even a small launch angle should then result in a posi
total energy and enable the effective particle to cross
bottom of the potential and escape towards infinity, cor
sponding to soliton crossing. This is of course not the corr
physical picture, since our system is not integrable, and th
in reality, the collision is not elastic. There is transfer
energy into internal soliton modes and shedding of energ
radiation.

In a different picture, we assume that the soliton profi
do not change before the point of collision. This seems r
sonable when comparing the characteristic length of s
adiabatic change with the relatively short interaction dista
occurring for considerable velocities. In this case, we m
treat the interaction as if the solitons were launched on top
each other (x050) corresponding to the effective partic
being launched in the bottom of the potential, where it ex
riences the maximum barrier. Then the relation determin
the escape velocity becomesnc

2P52U(0,nc) rather than Eq.
~8!. The interaction integral no longer depends on t
asymptotic tales but on the entire profiles, and hence,
may apply the Gaussian approximation~3!. The general tran-
scendental equation for the inwards escape angle is
given by

nc
25

2

b

lb11

2lb21
@e2~4/3!bnc

2
12e2~1/3!bnc

2
#, ~9!

which for b50 simplifies to

nc50.23AP, ~10!

in terms of the power. In the large phase mismatch casca
limit, where b@l and the nonlinearity is effectively cubic
Eq. ~9! simplifies to

nc5A3

4 S P

2p
2b D . ~11!

FIG. 3. Inwards escape angle in degrees versus soliton po
calculated analytically with Gaussians~solid! and with exact soli-
tons ~dashed! for b50 andx055. Numerical experiments wher
Gaussians crossed~s! and fused~d!.
1-3
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JOHANSEN, BANG, AND SØRENSEN PHYSICAL REVIEW E65 026601
We remark that this approach is equivalent to finding
critical angle of total internal reflection for a wave guid
@14#. However, since beam propagation in quadratic me
does not induce changes in the refractive index, the met
used in@14# is not applicable to this case.

In Fig. 3, we have summarized the results for exact ph
matching,b50, and plotted the predicted inwards esca
angle, ac5Arctan(nc), versus soliton power, both fornc
given by Eq.~10! and fornc found with exact solitons. The
curves are close and the simple square-root dependenc
the power excellently predict the escape angle. In the exp
ments, we used Gaussians as initial conditions. These w
launched with a distance of 2x0510 between them, ensurin
practically zero initial overlap. In Figs. 1~a! and 1~b!, we
show examples of experiments withb50 and a power of
P548.3. We note that for the exact soliton initial condition
we observed even better agreement than with Gauss

FIG. 4. ~a! Crossing followed by diffraction~b523 and P
545.3!. ~b! Annihilation ~b50 andP548.3!.
d
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Close to the escape angle, all the power is shed as radia
and thus Eq.~10! serves as anaccurate prediction of soliton
annihilation @Fig. 4~b!#.

We also investigated the cases of nonzero mismatc
focusing on b563. In these regimes, there is a pow
threshold for soliton excitation and the collisions are of
much more complex nature than for perfect phase match
where solitons exist at all powers. For relatively low powe
not far above the threshold the collisions mostly resulted
destruction of the solitons@Fig. 4~a!#. The explanation of this
phenomenon is that too much power is shed as radiatio
the collision, and hence, the resulting beams diffract beca
they do not carry sufficient power to form solitons. F
higher powers, the predicted escape angles were reason
close to the observations.

In conclusion, we have developed a theoretical desc
tion that should hold for systems with all types of local no
linearities. In particular, we have studied bulkx (2) media and
determined analytical expressions for the escape angles w
the centrifugal barrier vanishes. This happens in the two
plane cases of outwards- and inwards-launched solitons.
simple expression for the inwards escape angle represent
first analytical prediction of theoutcomeof a soliton colli-
sion. We have verified the analytical expressions numeric
using Gaussian approximations and observed exce
agreement.

We acknowledge support from the Danish Technical R
search Council under Talent Grant No. 26-00-0355. Much
the numerical work was carried out at Centre de Computa
i Comunicacions de Catalunya.
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