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Learning models have typically focused on the convergence of beliefs toward an
equilibrium. However in stochastic environments, there may be rare but recurrent
episodes where shocks cause beliefs to escape from the equilibrium. We characterize
these escape dynamics by drawing on the theory of large deviations, developing
new results which make this theory directly applicable in a class of linear-quadratic
learning models. The likelihood, frequency, and most likely direction of escapes
are all characterized by a simple deterministic control problem. We illustrate our
results in a simple example, which shows how escapes can arise in a model with a
unique equilibrium.

1. INTRODUCTION

There is by now a substantial literature on adaptive learning in economics, with
important work both in macroeconomics (see Evans and Honkapojha, 2001) and game
theory (see Fudenberg and Levine, 1998). The central question in this literature has
been whether learning leads to equilibrium behavior. As agents who use simple learn-
ing rules observe more and more data, their beliefs may settle down and converge to an
equilibrium. Large movements away from this equilibrium then become increasingly
unlikely, but due to ongoing stochastic shocks they may occasionally occur. In this
paper we develop and apply methods to characterize these rare departures. Following
Sargent (1999), we call these large deviations escape dynamics.

In particular, we focus on situations in which agents are uncertain of their economic
environment. These agents base their actions on subjective models, which we take to
be linear regressions that they update as they observe data. Agents allow for structural
change in their environment, which leads them to discount past data. We also consider
the possibility that agents’ subjective models may be misspecified, and thus following
Sargent (1999) our equilibrium concept is a self-confirming equilibrium (SCE).1 In an
SCE, agents’ beliefs are correct about outcomes that occur with positive probability,
but may be incorrect about events which happen with probability zero.

*I thank Andrew Postlewaite (the editor) and two anonymous referees for comments that greatly improved
the paper. I also thank Fernando Alvarez, Jim Bullard, Marco Cagetti, Jeff Campbell, Xiaohong Chen, In-
Koo Cho, Amir Dembo, John Duffy, Dana Heller, Ken Kasa, Juha Seppälä, Ted Temzelides, Harald Uhlig,
and especially Lars Peter Hansen and Thomas Sargent for helpful comments, discussions, and suggestions.
This paper is based on my Ph.D. dissertation at the University of Chicago. I am grateful for the support
that I received during that time through a fellowship in Applied Economics from the Social Science Research
Council, with funds provided by the John D. and Catherine T. MacArthur Foundation. This revised version
is based upon work supported by the National Science Foundation under Grant No. 0317848.

1See Fudenberg and Levine (1998) for further discussion and background on this equilibrium concept.
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Since agents discount past data, their beliefs do not converge as they obtain more
observations. Thus we study an alternate limit in which the discount rate on past
data, known as the gain, gets small. With small gains, agents average more evenly
over past data and a law of large numbers applies. We show that agents’ beliefs
converge to a differential equation, which we call the mean dynamics. On average, the
mean dynamics pull agents toward a self-confirming equilibrium. This result parallels
much of the adaptive learning literature, beginning with Marcet and Sargent (1989).
Our specific result applies stochastic approximation theory due to Kushner and Yin
(1997), and is analogous to results in Evans and Honkapohja (2001).

Occasionally however, an accumulation of stochastic shocks may induce agents to
change their beliefs, and so they may escape the self-confirming equilibrium. In the
limit, the probability of escaping from the SCE goes to zero, and thus escapes become
increasingly unlikely for smaller gain settings. But for any positive gain, escapes may
occasionally recur, and when they do, they have a very particular form. To analyze
the escape dynamics, we draw on the theory of large deviations. We show that when
agents’ beliefs escape, with high probability they closely follow a deterministic path we
call the most probable escape path. We show how to find this path, and we characterize
the likelihood and frequency of escapes.

Our main contribution is the derivation of a simple deterministic control problem
whose solution characterizes the escape dynamics in a class of linear-quadratic models.
Our results build on the general analysis of Dupuis and Kushner (1989). They develop
a theory of large deviations for stochastic approximation models, and characterize
escapes via a variational problem.2 While their results are quite general, they are
difficult to apply in practice. We provide new results which simplify the general theory
in our particular linear-quadratic setting. Drawing on a result from Worms (1999), we
reformulate the general variational problem as a simple cost minimization problem.

In the minimization problem, we clearly separate the two sources of dynamics which
govern agents’ beliefs. The mean dynamics govern the expected behavior of beliefs
and drive the convergence results. Escape dynamics are driven by unlikely shock
realizations, and we show that they can be interpreted as a perturbation of the mean
dynamics. Our key results derive a cost function which provides a measure of the
likelihood of the perturbations. The most probable escape path can be found by
choosing a minimum cost sequence of perturbations which push agents’ beliefs away
from the SCE. We then apply standard control theory methods to characterize the
solution of the cost minimization problem.

While the mean dynamics and convergence to an equilibrium have been well-studied
in the literature, there has been much less focus on escape dynamics. The insight that
stochastic shocks may push agents away from an equilibrium has been most exten-
sively analyzed in evolutionary game theory.3 This literature has focused on games
with multiple equilibria, and used large deviation methods to determine the stochas-

2Dupuis and Kushner (1989) in turn build on Freidlin and Wentzell (1998), who developed large deviations
for continuous time diffusion processes.

3Important papers in this literature include Foster and Young (1990), Kandori, Mailath, and Rob (1993)
and Young (1993). See Section 4.4 below for more discussion. There are also some technical differences, as



ESCAPE DYNAMICS IN LEARNING MODELS 3

tic transition rates between equilibria. Although our results can be used to analyze
multiplicities as well, in this paper we focus on models with a unique equilibrium.

While our methods can be applied to a variety of models, not all of them will have
prominent escape dynamics. In many models large deviations from an equilibrium
would be quite infrequent, and our results would characterize rare tail events. However,
Sargent (1999) demonstrated that escape dynamics may be an important force in
some models with a unique equilibrium. He also introduced large deviation theory for
settings like ours, and provided much of the motivation for this paper. Since the early
drafts of this paper have circulated, the results developed here have been applied in a
variety of settings. Our results were first applied by Cho, Williams, and Sargent (2002)
to analyze Sargent’s (1999) model. Further related papers which build on or apply
our results include Sargent and Williams (2005), Bullard and Cho (2005), McGough
(2006), Ellison and Yates (2007), Cho and Kasa (2008), and Williams (2009). See
Section 4.4 for more discussion.

To illustrate our methods, we develop a simple example which shares many features
of the more elaborate economic models considered in the literature. We study a model
of a monopolist learning a demand curve, subject to both cost and demand shocks. We
show that the model has a unique self-confirming equilibrium, and the firm’s beliefs
converge to it in the small gain limit. However when the cost and demand shocks are
correlated, there are recurrent episodes in which the firm’s beliefs escape from the SCE,
and the firm rapidly raises its price. After such an escape, the beliefs are gradually
drawn back to the SCE and the price falls back to the SCE level. These escapes
lead to recurrent large price fluctuations, which we do not observe when the cost and
demand shocks are independent. We apply our results to explain this difference, and
to characterize both the frequency of escapes and the behavior of the firm’s beliefs
during an escape. We then describe how the escapes are due to locally self-reinforcing
dynamics which kick in once stochastic shocks push beliefs away from the SCE.

The rest of the paper is organized as follows. In Section 2 we introduce our baseline
model, a single-agent linear quadratic model, and discuss our equilibrium concept and
learning formulation. In Section 3 we provide an overview of our results. We first
briefly describe the convergence of beliefs, and then turn to the analysis of escape
dynamics, concluding with our main result which characterizes them. Section 4 then
describes and analyzes an example. The final sections of the paper provide more formal
detail for the results in Section 3. In Section 5, we formally establish the convergence
of beliefs, and Section 6 provides the large deviation results which characterize the
escape dynamics. The appendix collects proofs and statements of technical results.

2. THE MODEL

In this section we describe the class of models we study in the paper. We focus on
linear models in which agents form decisions based on estimated models which they
update over time. For simplicity, we focus on a single agent setting. Our results can

the game theory literature has generally focussed on models with finite state spaces, unlike the continuous
state space we study here.
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also be applied to dynamic games, as in Williams (2009), but strategic interaction
raises some additional issues which are not essential here.

2.1. The Basic Setup

At each date n = 0, 1, 2, . . . there is a state vector yn ∈ Rny , and an agent controls
a vector of actions an ∈ Rna . There are stochastic shocks to both the state evolution
and the agent’s actions, which follow the linear state space model:

yn+1 = Ayn + Ban + ΣyWn+1 (1)

an = un + ΣaWn+1. (2)

Here un is the part of the actions an which is controllable by the agent, (A,B, Σy, Σa)
are coefficient matrices and Wn+1 ∈ Rnw is an i.i.d. shock vector with distribution F .
We mostly focus on the case where F is Gaussian, but some of our results are stronger
for bounded shocks. Note that we allow for correlation between the shocks to the state
in (1) and the actions in (2).

The agent knows that his choices affect the state with some noise as in (2), but
he does not know the state evolution (1). Instead he chooses actions based on a
subjective model which he updates over time. We allow for the possibility that the
agent’s model is misspecified, in that it may omit some relevant variables. Thus instead
of conditioning on the full vector yn he may only consider a sub-vector sn = Ksyn,
where Ks selects the appropriate elements. We collect these states and the agent’s
actions into the agent’s state xn = [s′n, a

′
n]′ ∈ Rnx . The subjective model is:

yn+1 = γ′xn + ηn+1. (3)

Here γ ∈ Rnx×ny is a matrix of beliefs or regression coefficients, and ηn+1 is a vector
of regression errors. The errors are believed to be orthogonal to the regressors xn:

Ẽ [xn(yn+1 − γ′xn)′] = 0. (4)

Here Ẽ represents the agent’s subjective expectation, which may not agree with the
objective expectation, particularly if the agent’s model is misspecified.4

At every date, the agent chooses his actions to maximize his utility given his cur-
rent beliefs. This is an example of what Kreps (1998) and Sargent (1999) call an
“anticipated utility” model: each period the agent makes decisions treating his beliefs
γ as constant, and then updates the beliefs upon observing outcomes. We suppose
the agent has quadratic preferences over his state vector xn, with the positive definite
weighting matrix Ω(γ) which may depend on the beliefs, and discount factor β ∈ (0, 1).
Thus the agent’s problem is:

max
{un}

−1

2
Ẽ

∞∑
n=0

βnx′nΩ(γ)xn, (5)

4In practice, the state vector yn may include variables, such as lagged variables or a constant term, whose
evolution would be trivial to learn. Thus the agent need not learn all parts of (1), and thus some elements of
ηn+1 may be identically zero.



ESCAPE DYNAMICS IN LEARNING MODELS 5

subject to (2) and (3). The solution is a linear decision rule:

un = h(γ)sn, (6)

where we emphasize the dependence on the beliefs γ. Substituting (6) into (1) and
using (2), we obtain the belief-dependent linear law of motion:

yn+1 = [A + Bh(γ)Ks]yn + (Σy + BΣa)Wn+1. (7)

2.2. Self-Confirming Equilibrium

Following Fudenberg and Levine (1998) and Sargent (1999), we now define a self-
confirming equilibrium as a matrix of beliefs which are consistent with the agent’s
observations. First, we introduce a bit of notation to summarize the variables entering
the orthogonality condition (4). Let ξn+1 = [y′n,W

′
n+1]

′ and note from (7) that we can
write its evolution as:

ξn+1 =

[
A + Bh(γ)Ks Σy + BΣa

0 0

]
ξn +

[
0
I

]
Wn+1 ≡ Θ(γ)ξn + ΛWn+1. (8)

Then define g as the function whose expectation is zero in (4):

g(γ, ξn+1) = xn(yn+1 − γ′xn)′ (9)

Here we recall that xn is a linear function of ξn+1 under (6), as is yn+1 from (7). Thus
g is a quadratic function of ξn+1, a particular structure we will exploit in our analysis.

The key orthogonality condition (4) can then be written as Ẽg(γ, ξn+1) = 0. In
a self-confirming equilibrium this orthogonality condition holds under the objective
probability measure induced by (7) as well. That is, the agent’s beliefs are confirmed by
his observations. In order for the objective expectation to make sense, we assume that
given γ, yn has a stationary distribution denoted π. We later constrain the evolution
of beliefs to insure that π exists. Thus define ḡ as the unconditional expectation of g:

ḡ(γ) = E[g(γ, ξn+1)] =

∫ ∫
g(γ, y,W )dπ(y)dF (W ). (10)

Definition 2.1. A self-confirming equilibrium (SCE) is a matrix γ̄ ∈ Rnx×ny

such that ḡ(γ̄) = 0.

2.3. Adaptation

As we noted above, the agent treats the parameters of his model as constant when
making decisions, but then updates them with observations. We specify that the agent
learns via the following constant gain recursive least squares algorithm:

γn+1 = γn + εR−1
n g(γn, ξn+1) (11)

Rn+1 = Rn + εφ (xnx′n −Rn) . (12)
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Here the scalar ε > 0 is the gain, giving the weight on new information relative to
the past. The new information is summarized by g, whose expectation ḡ is zero in
a SCE. Thus the algorithm adjusts beliefs in a direction that makes ḡ tend toward
zero. The new term Rn is an estimate of the second moments of the regressors. More
volatile regressors convey less information, and so are given less weight. We introduce
the factor φ in (12) to also include the class of generalized stochastic gradient learning
rules, as studied by Evans, Honkapohja, and Williams (2008). These rules set φ = 0
and thus use a constant weighting matrix Rn = R.

If the gain decreased over time as ε = 1
n+1

, then (11)-(12) would be a recursive
representation of the standard OLS estimator, as is widely used in the learning lit-
erature. A constant gain discounts past observations, implying that the agent pays
more attention to more recent data. Such algorithms are known to work well in non-
stationary environments, and to provide good predictors even when the underlying
model is misspecified.5 Both motivations are appropriate here, as the agent’s model
is potentially misspecified and the environment effectively changes as he learns over
time.

As noted above, the analysis in this paper presumes that yn in (7) is stationary.
If the agent were to know the true model (1), then it would be sufficient to make
the typical stabilizability assumption that there exists a control rule which stabilizes
the system. However since the agent’s model (3) differs from the truth, and since his
beliefs evolve over time, we need to constrain the learning rule so that it does not
induce instability in the state evolution. As we cannot guarantee stability in general,
we need to confine the estimate sequence to a feasible set. The following assumption
restricts beliefs γ to guarantee the existence of a unique, stable invariant distribution
π for yn.

Assumption 2.1. Let G ⊂ Rnx×ny be the set of γ such that the eigenvalues of
A + Bh(γ)Ks have modulus strictly less than one. For each n, we assume γn ∈ G.

One way to insure this stability in practice is to impose a projection facility on
(11), as in Marcet and Sargent (1989) which restricts the updating rule so that the
estimates stay in the set. We will not explicitly deal with such a facility here, as we
assume that the SCE γ̄ is in interior of G and we analyze escapes to points that remain
in the interior of G.6

3. OVERVIEW OF THE ANALYSIS

This section provides a brief overview of our results. We first show that on average,
the agent will be drawn toward a self-confirming equilibrium. Then we characterize
events in which beliefs escape from the SCE, which is the main focus of the paper.

5Sargent and Williams (2005) discuss the performance of the constant gain algorithm for drifting coeffi-
cients. Evans, Honkapohja, and Williams (2009) show that constant gain rules are robust to misspecification.

6When yn contains a constant term, then only ny − 1 eigenvalues of the state matrix in (7) need be less
then one.
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3.1. Convergence of Beliefs

All of our results consider small gain limits. In any sample from the model the gain
is constant, thus we look across different samples indexed by the gain. We emphasize
this by writing γε

n. As ε → 0 the agent averages more evenly over past data, and the
changes in beliefs become smoother. To see this, define the random variable vε

n+1:

vε
n+1 = (Rε

n)−1 [g (γε
n, ξn+1)− ḡ (γε

n)] .

Then we can re-write (11) as:

γε
n+1 − γε

n

ε
= (Rε

n)−1ḡ (γε
n) + vε

n+1. (13)

Note that (13) is similar to a finite-difference approximation of a time derivative,
on a time scale where ε is the increment between observations. Letting ε → 0, this
approximation becomes arbitrarily good. Along this same limit, a law of large numbers
insures that vε

n converges to zero. Thus in the limit we obtain the differential equations:

γ̇ = R−1ḡ(γ) (14)

Ṙ = φ[M̄(γ)−R] (15)

Equation (15) carries out a similar limit for (12), where we use the notation M̄(γ) =
E(xnx′n). We call these ODEs the mean dynamics, as they govern the expected evo-
lution of the agent’s beliefs. Theorem 5.1 below makes this formal. Note that an
equilibrium point γ̄ of (14) is a self-confirming equilibrium, and let M(γ̄) = R̄. Thus
if the SCE is stable under the ODE, we see that as ε → 0 the agent’s beliefs (11)-(12)
converge to (γ̄, R̄).

Most of the learning literature has focused on convergence toward an equilibrium,
and so has characterized the mean dynamics. Our contribution here is to study rare
deviations from an equilibrium, and so we characterize the escape dynamics.

3.2. Escape Dynamics

The convergence results show that escapes from the SCE are unlikely. We now show
that if they do happen, they are very likely to happen in a particular most probable
way and with a predictable frequency. First we define the key objects of interest. To
simplify the presentation, we initialize all paths at the SCE.7 In the following we use
the same time scale as (13) where ε is the time increment between n and n + 1.

Definition 3.1. Fix an ε > 0, a time horizon n̄ < ∞ (which may depend on ε),
and a compact set G ⊂ G with non-empty interior and γ̄ ∈ G. Let γε(t), t ∈ [0, n̄ε] be
the piecewise linear interpolation of {γε

n}.
1. An escape path from G is a sequence {γε

n, Rε
n}n̄

n=0 solving (11)-(12) such that
γε

0 = γ̄ and γε
m /∈ G for some m ≤ n̄. Let Γε(G, n̄) be the set of escape paths.

7These results can be easily extended to allow for initialization in a neighborhood of the SCE.
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2. For any sequence {γε
n, Rε

n}n̄
n=0 solving (11)-(12) with γ0 = γ̄, define the (first)

escape time from G as:

τ ε({γε
n}) = ε inf {m : γε

m /∈ G} ∈ R ∪ {∞}.

3. A regular escape path from G is an escape path for which ∃µ2 > µ1 > 0 with
{γ : ‖γ − γ̄‖ < µ2} ∈ G such that there is no t′′ > t′ where ‖γε(t′) − γ̄‖ > µ2 and
‖γε(t′′)− γ̄‖ ≤ µ1. Let Γ̄ε(G, n̄) be the set of regular escape paths.

For small gains, any path {γε
n} spends most of its time near the SCE γ̄, and if noise

pushes it away, it tends to be drawn back. While eventually all paths leave the set G,
an escape path exits before the terminal date n̄. A regular escape path is one which
upon escaping from a µ2 neighborhood of the SCE does not return to a smaller µ1

neighborhood of it. Once a regular escape path starts to escape, it does not turn back.
Our results characterize bounds on the probability of escape, the mean escape time,

and the most probable escape path.8 In particular, we show below that almost all escape
paths exit the set G at the end of the most probable escape path, and almost all regular
escape paths are close to the most probable path while they are still in the set G.

We characterize escapes as arising due to a perturbation v of the mean dynamics:

γ̇ = R−1ḡ(γ) + v. (16)

Since we focus on the beliefs γ, along these escape paths we let R follow the mean
dynamics (15) conditional on γ. Note the similarity of (16) to (13): for the mean
dynamics the perturbation vanishes, but it resurfaces to govern the escape dynamics.
That is, the perturbation vε

n in (13) has a zero mean and so it typically becomes
negligible and the beliefs track the mean dynamics. But to characterize the unlikely
sequence of shocks leading to an escape, we analyze the perturbations v in (16) which
cause the beliefs to escape. Alternative escape paths are associated with alternative
perturbations, and we evaluate the likelihood of alternative escape paths by a cost
function which penalizes less likely perturbations.

The “cost” of a particular perturbation depends on its size relative to the volatility
of beliefs, as bigger perturbations will more naturally occur with more volatility. If yn

(and hence ξn) were i.i.d., then for a given (γ,R) the variance of the belief increment
in (13) would measure belief volatility:

V ar(vn+1) = R−1E
[
g (γ, ξn+1) g (γ, ξn+1)

′ − ḡ (γ) ḡ (γ)′
]
R−1. (17)

However since yn is temporally dependent, we need a more general measure. Es-
capes may occur either due to a few large shocks or a succession of small shocks, and
the dependence of yn is crucial in evaluating the likelihood of such alternative pertur-
bations. As discussed in Meyn and Tweedie (1993, Ch. 17), one way to capture this

8Our definition of a regular escape path follows Freidlin and Wentzell (1998) and Dupuis and Kushner
(1987). Our notion of the most probable escape path follows Maier and Stein (1997). Cho, Williams, and
Sargent (2002) call this a dominant escape path.
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dependence is to first find the solution f of the Poisson equation:

f(γ, ξ)− E[f(γ, ξn+1)|ξn = ξ] = g(γ, ξ)− ḡ(γ). (18)

Then for fixed γ the left side of (18) is a martingale, which simplifies the characteri-
zation of the long run belief variance. In particular, for fixed (R, γ) we have:

1√
T

T−1∑
n=0

R−1[g(γ, ξn)− ḡ(γ)] =
1√
T

T−1∑
n=0

R−1 (f(γ, ξn)− E[f(γ, ξn+1)|ξn])

Using martingale convergence results, Meyn and Tweedie (1993) show that as T →∞
these sums converge to a normal random vector with covariance matrix:

Q(γ, R) = R−1E
(
f(γ, ξ)f(γ, ξ)′ − E [f(γ, ξn+1)|ξn = ξ] E [f(γ, ξn+1)|ξn = ξ]′

)
R−1.

(19)
This same matrix Q is our measure of the belief volatility. When ξn is i.i.d., then
f = g and Q is equal to V ar(vn) as in (17). But in general, we need to solve the
Poisson equation (18). While this is not always an easy task, Lemma 6.1 in Section
6.2 below shows how to explicitly solve (18) for our model.

We analyze escapes on a fixed continuous time horizon T̄ < ∞, and set n̄ = T̄ /ε.
Thus n̄ → ∞ as ε → 0. Also Q may be singular, so let Q† be its pseudoinverse. To
characterize the escape dynamics, we choose the perturbations v in (16) which push
beliefs to the boundary ∂G in the most cost effective way:

S̄ = inf
v(·),T

1

2

∫ T

0

ny∑
i=1

vi(s)
′Q(γ(s), R(s))†vi(s)ds (20)

where vi is a column of v and the minimization is subject to (16), (15), and:

γ(0) = γ̄, R(0) = R̄, γ(T ) ∈ ∂G for some 0 < T ≤ T̄ . (21)

Thus the instantaneous cost of a perturbation is quadratic, with weighting matrix Q.
If v ≡ 0 then the beliefs follow the mean dynamics. The cost is zero, but the beliefs
do not escape. To find the most probable escape path, we find a least cost path of
perturbations that pushes beliefs from γ̄ out to the boundary G.

The characterization of the escape dynamics by the control problem (20) is the
main result in this paper. We build on the results of Dupuis and Kushner (1989), who
characterize escape dynamics in models like ours as a general variational problem. But
their results are difficult to directly apply. In this paper, we derive the explicit form
of the control problem in (20) for our class of models, which makes the theory directly
applicable. We discuss the details of our characterization in Section 6 below.

The following theorem shows how (20) characterizes escapes. We fix a set G and
horizon T̄ as above, and recall that τ ε is an escape time, with the escape taking place
at γε(τ ε). We say that the minimized cost S̄ is continuous in G if we obtain the same



10 NOAH WILLIAMS

value when we change the terminal condition in (21) to an interior point arbitrarily
close to the boundary of G.9 The additional necessary conditions A.1 and A.3 are in
Appendix A.1 and A.2.2, respectively.

Theorem 3.1. Suppose that Assumptions 2.1, A.1, and A.3 hold, let γε(·) be the
piecewise linear interpolation of {γε

n}, and let γ(·) : [0, T̄ ] → Rnx×ny solve (20).

1. Suppose that the shocks Wn are i.i.d. and unbounded (but have exponential tails).
Then we have:

lim sup
ε→0

ε log P
(
γε(t) /∈ G for some 0 < t ≤ T̄ |γε(0) ∈ G

) ≤ −S̄.

2. Suppose that the shocks Wn are i.i.d. and bounded, and S̄ is continuous in G.
Then we have:

lim
ε→0

ε log P
(
γε(t) /∈ G for some 0 < t ≤ T̄ |γε(0) ∈ G

)
= −S̄.

3. Under the assumptions of part 2, for all δ > 0:

lim
ε→0

P
[
exp

(
(S̄ + δ)/ε

)
> τ ε > exp

(
(S̄ − δ)/ε

)]
= 1,

and: lim
ε→0

ε log E(τ ε) = S̄.

4. Under the assumptions of part 2, for any γε(τ ε) and δ > 0:

lim
ε→0

P (‖γε(τ ε)− γ(T )‖ < δ| {γε
n} ∈ Γε(G, n̄)) = 1.

Moreover: lim
ε→0

P
(‖γε(t)− γ(t)‖ < δ, t < τ ε({γε

n})| {γε
n} ∈ Γ̄ε(G, n̄)

)
= 1.

Proof. See Appendix A.2.2.

Part (1) shows that the probability of observing an escape on a bounded time
interval is exponentially decreasing in the gain ε, with the rate given by the minimized
cost function S̄. The next three parts establish stronger results for bounded shocks.10

Part (2) shows that in this case the asymptotic inequality in part (1) becomes an
equality. Part (3) shows that for small ε the escape times from the SCE become close
to exp(S̄/ε).11 The log mean escape time also converges to this value. Finally, part
(4) shows that the minimizing path from (20) is the most probable escape path. This
means that with probability approaching one, all escapes occur near the end of this
path, and all regular escape paths remain near it.

9More precisely, let S̄δ be the value obtained in (20) when we change (21) to require that ‖γ(T )− γ∗‖ < δ
for some γ∗ ∈ ∂G. Then S̄ is continuous in G if limδ→0 S̄δ = S̄.

10Although we focus mainly on Gaussian shocks, our results are sharpest in the bounded case. An appli-
cation of these results in Cho, Williams, and Sargent (2002) obtained nearly identical results with bounded
and unbounded shocks. Thus many results may carry over for some unbounded cases.

11But notice that δ is fixed, and thus as ε → 0 the interval around exp(S̄/ε) expands.
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4. AN EXAMPLE

We now present a simple example which shows how escape dynamics may be a
dominant feature of a model. The example here shares many features with other
applications with prominent escape dynamics, as we discuss in Section 4.4 below. The
model has a unique self-confirming equilibrium which is stable under learning. In one
parameterization of the model, simulations from the model show small fluctuations
around the SCE, with escapes being the rare large movements away from it. However
under a different parameterization, simulations show recurrent escapes from the SCE
which always lead in the same direction. We apply our methods to characterize the
escapes and to explain these differences.

4.1. The Model

We study a model of a monopolist learning its demand curve. The firm faces
an unknown linear demand for its products, which is subject to a shock. The firm
produces at a constant cost per unit in each period, with the realized cost in a period
depending on a shock. In one parameterization we consider the shocks to costs and
demand are uncorrelated, while in the other they are correlated. For simplicity, the
model is mostly static, with dynamics only coming through learning.

In particular, we specialize the general model of Section 2.1 as follows. The state
vector consists of output dn and a constant: yn = [dn, 1]′, and the shock vector Wn =
[W1n,W2n]′ is a 2 dimensional standard normal random vector. For simplicity we set
the expected marginal cost to zero, so we can think of the firm choosing its markup
un over marginal cost, with the cost shock determining the realized price an:

an = un + σaW2,n+1.

Output is given by the static linear demand curve:

dn+1 = b0 + b1an + σyW1,n+1 + ρσaW2,n+1.

Note the dating convention: dn+1 is the current period’s output, which depends on the
current price an. When ρ 6= 0, the shocks to costs and demand are correlated. Thus
output and prices are determined by (1) and (2) with the following specification:

A =

[
0 b0

0 1

]
, B =

[
b1

0

]
, Σy =

[
σy ρσa

0 0

]
, Σa = [0, σa].

The firm does not know its demand curve, but instead sets its price based on its
subjective model (3), which here takes the form:

dn+1 = γ0 + γ1an + ηn+1 (22)

thus sn = [0, 1]yn = 1 and xn = [1, an]′. We abstract from the second equation of
the state evolution (1), as it is simply an identity with nothing to learn. Note that
when ρ 6= 0, the belief equation (22) is a misspecified regression for (1), as an and dn+1
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are driven by correlated shocks. The firm maximizes expected profits based on (22),
which can be written as in (5):

Ẽn[andn+1] = Ẽn[γ0an + γ1a
2
n + ηn+1an] = Ẽnx

′
n

[
0 γ0/2

γ0/2 γ1

]
xn,

where we use (4), and the last equation implicitly defines the weighting matrix Ω(γ).
Since there are no dynamics in the model, the optimization problem (5) is static. Thus
the policy function (6) determines the optimal markup:

un = h(γ) ≡ − γ0

2γ1

.

4.2. Learning

For simplicity, we study here a simple generalized stochastic gradient algorithm
which sets φ = 0 in (12) and Rn ≡ R̄ in (11). As discussed above, Evans, Honkapohja,
and Williams (2009) study such rules and relate them to the recursive least squares
rule. The key function g = [g1, g2]

′ from (9) is given explicitly here by:

g1(γ, ξ) = b0 − γ0 − (b1 − γ1)
γ0

2γ1

+ (b1 + ρ− γ1)σaW2 + σyW1

g2(γ, ξ) = g1(γ, ξ)

(
− γ0

2γ1

)
+

(
b0 − γ0 − (b1 − γ1)

γ0

2γ1

)
σaW2 + (b1 + ρ− γ1)σ

2
aW

2
2 + σaσyW1W2.

Since ξ = [1,W ′]′ is i.i.d., we simply take expectations to get ḡ = [ḡ1, ḡ2]
′ as in (10):

ḡ1(γ) = b0 − γ0 − (b1 − γ1)
γ0

2γ1

ḡ2(γ) = ḡ1(γ)

(
− γ0

2γ1

)
+ (b1 + ρ− γ1)σ

2
a

Since the model is static, Assumption 2.1 which insures stability is satisfied.12 It is
straightforward to show that there is a unique self-confirming equilibrium, given by:

γ̄ = [γ̄0, γ̄1]
′ =

[
2b0(b1 + ρ)

2b1 + ρ
, b1 + ρ

]′
.

Note that when ρ 6= 0 the SCE beliefs are biased estimates of the true intercept and
slope (b0, b1). By our discussion above, we find that as ε → 0 the beliefs converge to
the SCE γ̄.13 Thus we expect that for small ε, beliefs will remain near the SCE γ̄, and
the price will exhibit small fluctuations around the expected price h(γ̄).

12Some of our results are simplified if prices are guaranteed to be positive. In practice we require the firm’s
estimated demand curve to slope downward, that is γ0 ≥ 0 and γ1 < K < 0 for some small K. Such a
constraint was never binding in our calculations or simulations.

13This analysis is made formal in Theorem 5.1 below. Appendix A.3 provides formal detail and verifies all
necessary assumptions for the example.
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FIGURE 1. Simulated price series an for two parameterizations of the model: ρ = 0 (top panel) and
ρ = −1 (bottom panel). The red dashed lines show the SCE expected prices when ρ = 0 (an = 5) and when
ρ = −1 (an = 3 1
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FIGURE 2. Simulated slope coefficient series γ1n for two parameterizations of the model: ρ = 0 (top
panel) and ρ = −1 (bottom panel). The red dashed lines show the SCE slopes when ρ = 0 (γ̄1 = b1 = −1)
and when ρ = −1 (γ̄1 = b1 + ρ = −2).
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However we find that the model exhibits some striking behavior, as shown in Figures
1 and 2, which plot some simulated outcomes from the model for different settings of ρ.
Figure 1 plots simulated time paths of prices an for ρ = 0 and ρ = −1, while Figure 2
plots the estimated slope coefficients γ1n from the same simulations.14 Each figure also
plots two different gain settings when ρ = −1. When ρ = 0, and thus the regression
model (22) is correctly specified, the price and belief series behave as expected. The
price is near h(γ̄) and the slope is near γ̄1 throughout, with movements away from these
levels following no regular pattern. But when ρ = −1, we observe recurrent episodes
in which the firm raises its price sharply, corresponding to the episodes in which the
slope coefficient increases from its SCE level of b1 + ρ = −2 to a value near the true
slope of b1 = −1. The higher price and lower slope are sustained for a relatively short
time, as they gradually are drawn back to the SCE levels. As our results suggest,
for smaller gain settings the escapes become less frequent and the model spends an
increasing fraction of time near the SCE. But escapes do recur, and the escape paths
have a very regular pattern, leading to increases in the slope and the price. We now
show that this is precisely what our results predict.

4.3. Escape Dynamics

To analyze the escapes, we first calculate the cost function matrix Q from (19).
Since the model is static and the shocks are i.i.d., the Poisson equation (18) is trivial
and f = g. Thus Q is the covariance matrix in (17), which can be written here as:

Q(γ) = R̄−1

[
Q11(γ) Q12(γ)
Q12(γ) Q22(γ)

]
R̄−1,

where: Qij(γ) = E [gi(γ, ξ)gj(γ, ξ)− ḡi(γ)ḡj(γ)]. Using the properties of normal ran-
dom variables we have explicitly:

Q11(γ) = (b1 + ρ− γ1)
2σ2

a + σ2
y

Q12(γ) = (b1 + ρ− γ1) (ḡ1(γ) + h(γ)(b1 + ρ− γ1)) σ2
a + h(γ)σ2

y

Q22(γ) = (ḡ1(γ) + h(γ)(b1 + ρ− γ1))
2σ2

a + h(γ)2σ2
y + 2(b1 + ρ− γ1)

2σ4
a + σ2

aσ
2
y

We now solve the control problem (20) to characterize the escapes. Rather than
fixing a single set G, we consider sets of the form:

G(r) =

{
γ : ‖γ − γ̄‖ < |r|, r

|r|γ1 >
r

|r| γ̄1

}
.

That is with r > 0, G(r) is the half-ball of radius r around γ̄ with γ1 > γ̄1, while G(−r)
is the other half-ball with γ1 < γ̄1. The minimized cost S̄ for different radii is shown in
Figure 3 when ρ = 0 and when ρ = −1. When ρ = 0 we see that S̄ is quite symmetric,
increasing rapidly once we move away from zero in either direction. Thus escapes of
substantial size become quite rare for small gains, and the escapes that do occur are

14The other parameters in the model are set as follows: b0 = 10, b1 = −1, σa = σy = 0.2.
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FIGURE 3. Rate function S̄ for different escape radii r under two parameterizations of the model:
ρ = −1 (black solid line) and ρ = 0 (red dashed line).
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FIGURE 4. Escape distributions for the slope coefficient (γε
1(τε)) for different gains (ε), different radii

(r), and two settings of ρ. Each panel considers a different (ρ, r) combination and plots the distribution for
ε = 0.1 (blue bars) and ε = 0.01 (red bars). The black dotted lines show the terminal point of the most
probable escape (γ1(T )).

equally likely to result in increases or decreases of the slope coefficient. However when
ρ = −1 the minimized cost function is asymmetric. It increases rapidly in the negative
direction, but it has a long, nearly flat section associated with increases in the slope
coefficient (r > 0). Thus even though escapes are rare, once beliefs do escape they are
likely to move quite a distance (nearly three Euclidean units) in the positive direction.
This reflects what we observed in Figure 2, where with ρ = 0 the movements away
from the SCE followed no definite pattern, while with ρ = −1 there were recurrent
escapes with increases in the slope coefficient of roughly the same magnitude.

A more comprehensive look at escapes is given in Figure 4, which plots escape
distributions for different r and ρ settings. In particular, each panel of the figure fixes
(r, ρ) and shows a histogram of the slope coefficient at the time of escape (γε

1(τ
ε)) from

5000 simulated escapes for each of two different gain settings, ε = 0.1 and ε = 0.01.15

15In each simulation for this and the following figures, we initialize beliefs at the SCE, and stop once the
beliefs exit the set G(r) or the time reaches n̄ = 500/ε.
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FIGURE 5. Escape distributions and escape times. The left panels plot the escape distribution of the
coefficient (γε

0(τε), γε
1(τε)) for different gains (ε), fixing r = 3.2 and ρ = −1. Each panel plots the median

(blue dot-lines) and 90% band (black dashed lines) of the simulated distribution along with the predicted
escape point (red solid lines). The right panel plots the log escape times, showing the log mean time (blue
dot-lines) and 90% band (black dashed lines) of the simulated distribution, along with the predicted log times
(red solid line).

Also shown in each figure is the predicted escape point γ1(T ) from the most probable
escape path associated with that particular (r, ρ) setting. The top two panels consider
relatively small escapes, with r = ±0.5. There we see that the escape distributions are
relatively symmetric, with escapes in both the positive and negative directions. The
middle of the distribution thins out as the gain decreases, with the escapes becoming
more concentrated near the predicted points. When ρ = 0 the escapes are quite
symmetric, but for ρ = −1 positive movements are somewhat more likely, becoming
more so for smaller gain. The asymmetries that we observed in Figure 3 become even
more pronounced when we consider larger escape sets of r = ±1.5 and r = ±3 in the
bottom panels of Figure 4. Here we only consider ρ = −1, as in the simulations we
never observed escapes of this magnitude for ρ = 0. The panels clearly show that for
small gain the escape distributions become highly concentrated around the predicted
escape point in the positive direction. Thus Figure 4 illustrates that the asymmetries
in the rate functions are borne out in the simulations, and the escape distributions
concentrate near the predictions, just as Theorem 3.1 suggests.

We now investigate the predictions of Theorem 3.1 in more detail. Figure 5 plots
the escape distributions and escape times when ρ = −1 and r = 3.2 for varying gains,
with 5000 simulations for each gain setting. Part (4) of the theorem says that as
ε → 0 the distribution of escape points should concentrate at the end point of the
most probable path. This is documented in the left panels of Figure 5, where we
plot the predicted escape point for both the intercept coefficient γ0 (top panel) and
slope coefficient γ1 (bottom panel), along with the median and bands covering 90%
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FIGURE 6. Simulated and predicted escape paths with r = 3, ρ = −1 and ε = 0.05 for the intercept
coefficient γ0 (top panel) and slope coefficient γ1 (bottom panel). Each panel plots the median (blue solid
lines) and 90% band (black dashed lines) of the simulated distribution along with the predicted escape path
(red dashed lines).

of the simulated distribution. Here we clearly see that as ε → 0 the distribution
tightens substantially around the prediction, and the median converges up toward the
predicted level. In addition, part (3) of Theorem 3.1 predicts that for small gain the
mean escape times increase exponentially in 1/ε at rate S̄. The right panel of Figure
5 plots the log mean escape times from the simulations along with our prediction, and
bands covering 90% of the simulated distribution. Note that we only predict the slope
of the line shown, which gives the exponential rate of increase.16 For relatively large
gains, the escapes occur more rapidly than our results suggest, but for small gains our
results provide a good match to what we observed in the simulations.

Finally, part (4) of Theorem 3.1 states that in the limit all regular escapes remain
close to the most probable path. This is illustrated in Figure 6, which shows a summary
of 5000 simulated escape paths with r = 3, ρ = −1, and ε = 0.005. The top panel
plots the time paths of the intercept coefficient γ0 along an escape, while the bottom
panel plots the slope. In each case, we plot most probable path resulting from our
calculation (20), along with the paths corresponding to the 5%, 50% (median), and
95% quantiles of the simulated escape time distribution. The plots use a logarithmic
discrete time scale, so that the most probable path is scaled as log(t/ε). The figure
shows that all the escape paths are characterized by a long period near the SCE,
followed by a rapid increase in the slope and decrease in the intercept. Moreover, our
predicted most probable escape path is quite close to the median from the simulations.
Thus our results accurately predict the entire time path of beliefs during an escape.

16The theorem states that log Eτε ≈ S0 + S̄/ε for some constant S0. In the figure the constant was chosen
to give a good fit.
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4.4. Interpretation and Relation to the Literature

The model exhibits strikingly different behavior depending on the value of ρ. When
ρ = 0 escapes are symmetric, leading equally to increases or decreases in the slope
coefficient, and escapes become very rare with small gain. However when ρ = −1
escapes are asymmetric, leading to regular increases in the slope coefficient from γ1 =
b + ρ to γ1 = b, and these escapes recur with small gain (albeit less often). As we
noted above, when ρ 6= 0 the estimate of the slope coefficient in the SCE is biased,
due to the correlation between prices and output. This misspecification plays a key
role in generating the prominent escape dynamics we observe. Even though the shocks
W1 and W2 are independent processes, there will occasionally be a string of correlated
realizations. With ρ < 0, during such an episode there will be a smaller response of
output to the changes in the price. The firm interprets these outcomes as a decrease
in the elasticity of its demand curve, and responds by raising its markup un = h(γ),
and hence the mean price. As the firm increases its markup, it gets more influential
observations and hence obtains a better estimate of the true slope of its demand
curve, which indeed is more inelastic than the SCE suggests. This process is thus
self-reinforcing and leads to an escape, but it takes an unlikely sequence of shock
realizations in order for it to start. The escapes end when the firm obtains the correct
slope estimate, and it does not increase its markup any further. Eventually, there
are sufficient independent realizations of the shocks Wn, which allow the firm to once
again pick up on the correlation between prices and demand, drawing the firm back to
the SCE. As this process repeats over time, it generates the episodes of rapidly rising
and gradually falling prices we observed in the simulations.

Setting ρ = 0 eliminates the misspecification and hence the mechanism leading to
the escapes. A correlated string of shock realizations will still cause the firm to lower
its estimated demand elasticity, and hence raise its markup. Again this leads to a
better estimate of the true slope, but this now agrees with the SCE, which is in fact
more elastic than the atypical string of shocks suggested. This counteracts the initial
effects of the shocks, and leads the firm back to the SCE. Thus the model with ρ = 0
lacks the self-reinforcing dynamics which drive the escapes.

Locally self-reinforcing dynamics have been a crucial feature of models with promi-
nent escape dynamics. Most directly, models with multiple equilibria have locally
reinforcing dynamics around each equilibrium. These models tend to experience es-
capes when shocks push beliefs from one equilibrium to another. Notable examples
include evolutionary games, such Kandori, Mailath, and Rob (1993) and Young (1993)
and much subsequent literature, and macroeconomic models with multiple stable equi-
libria, such as Kasa (2004). Williams (2002) uses the methods of this paper to study
multiple equilibria in a model of learning in games. Similarly, some models feature one
stable equilibrium and an explosive region, such as Marcet and Nicolini (2003) and
Sargent, Wiliams, and Zha (2008). Here shocks occasionally force beliefs to enter the
explosive region, which generates a self-reinforcing acceleration of beliefs. More closely
related to this paper are the learning models with a with a unique (self-confirming)
equilibrium, where prominent escape dynamics have gone along with misspecifications.
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A notable example is Sargent (1999), which was analyzed by Cho, Williams, and Sar-
gent (2002) using the results of this paper. In that model a government sets monetary
policy using a misspecified model which does not account for the role of inflation ex-
pectations. Related models include Bullard and Cho (2005), McGough (2006), Ellison
and Yates (2007), Sargent, Williams, and Zha (2006), and Cho and Kasa (2008), sev-
eral of which use the methods developed here. Similarly, Williams (2009) considers a
duopoly version of the example here, in which firms do not account for the actions of
their competitors, and escapes lead to episodes resembling price wars. In all of these
cases, the escape dynamics are driven by occasional sequences of shocks which trigger
actions that allow agents to temporarily overcome the misspecification of their models.

5. CONVERGENCE ANALYSIS

In the rest of the paper we provide more formal detail to support the results in
Section 3. In this section we formalize Section 3.1, providing conditions which insure
that agents’ beliefs converge to a self-confirming equilibrium. The results in this
section follow from Kushner and Yin (1997), and are analogous to results in Evans
and Honkapohja (2001), with related results in much of the learning literature.

To proceed with the analysis, we define a time scale to convert the discrete time
belief evolution into a continuous time process. We let the ε be the continuous time
interval and interpolate between the discrete iterations in the learning rule (11)-(12):

γε(t) = θε
n, t ∈ [nε, (n + 1) ε)

Rε(t) = Rε
n, t ∈ [nε, (n + 1) ε)

This defines the continuous time processes as piecewise constant functions of t ∈
[0, +∞), which are right-continuous with a left-limit (RCLL). The results in this sec-
tion establish the weak convergence of these processes on the Skorohod space D[0, +∞)
of RCLL functions. Note that as ε → 0 the time interval between observations shrinks,
and the process becomes smoother. That is, the constant segments become shorter
and there are more observations in any given (continuous) time interval. The next
theorem shows that as ε → 0 the interpolated processes converge to the solution of
the ODEs we derived informally in (14)-(15).

In Appendix A.1 we provide a proof of the following theorem, and list its necessary
conditions as Assumptions A.1. They consist of regularity conditions on the algorithm
and the error distribution, and we show there that many of the conditions are satisfied
in our baseline model. The remaining conditions require that ḡ(γ) and M̄(γ) be
continuous and that the system of ODEs (14)-(15) have an asymptotically stable point
(γ̄, R̄). As we’ve seen, verifying these conditions is straightforward in practice.
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Theorem 5.1. Under Assumptions A.1, as ε → 0, (γε(·), Rε(·)) converge weakly
to (γ(·), R(·)), where:

γ(t) = γ(0) +

∫ t

0

R(s)−1ḡ(γ(s))ds,

R(t) = R(0) +

∫ t

0

φ[M̄(γ(s))− γ(s)]ds.

As the ODEs have a stable point at the SCE, the theorem shows that as ε → 0
over time (t →∞) agents’ beliefs converge weakly to the SCE. Interestingly, the same
limiting ODE characterizes the limit of beliefs with decreasing gain algorithms, such
as the usual recursive least squares algorithm studied by Marcet and Sargent (1989)
which sets ε = 1

n+1
in (11)-(12). But with decreasing gain the beliefs typically converge

with probability one as n →∞, while we obtain weak convergence with constant gain.
The weaker notion of convergence here means that for any given gain ε, occasional
departures from the SCE may persist over time.

6. LARGE DEVIATIONS AND ESCAPE DYNAMICS

In this section, we use techniques from large deviation theory to analyze the escape
dynamics. The convergence results above show that any event in which beliefs get
far from the SCE must have a probability converging to zero with ε. However, for a
fixed ε > 0 we may observe such rare escapes, and large deviation theory allows us to
characterize them. In this section we provide the details behind our key Theorem 3.1
above, which characterizes the escape dynamics by a deterministic control problem.

6.1. Large Deviations

The theory of large deviations deals with calculating bounds on the asymptotic
probabilities of rare events. These events have probabilities that converge to zero
exponentially fast, and large deviation results identify the exponential rate of con-
vergence. As such, large deviations can be viewed as refinements of classical laws of
large numbers and central limit theorems. We now formally define some terminology.
Let a sequence {XT} be defined on a probability space (Ω,F , P ) and take values in a
complete separable metric space X . A rate function SX : X → [0,∞] has the property
that for any M < ∞ the level set {x ∈ X : SX(x) ≤ M} is compact. We now formally
define a large deviation.

Definition 6.1. A sequence {XT} satisfies a large deviation principle on X with
rate function SX if the following two conditions hold.

1. For each closed subset F of X , XT satisfies the large deviation upper bound:

lim sup
T→∞

1

T
log P {XT ∈ F} ≤ − inf

x∈F
SX(x).
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2. For each open subset G of X , XT satisfies the large deviation lower bound:

lim inf
T→∞

1

T
log P {XT ∈ G} ≥ − inf

x∈G
SX(x).

If the sequence converges to a limit not contained in F and G, the probability the
sequence enters these sets converges to zero. If the sequence satisfies a large deviation
principle, this convergence is exponential with the leading exponent determined by
the rate function.

The goal of our analysis is to develop a large deviation principle for our learning
model, and use it to identify the direction and frequency of escapes. The difficulty
in analyzing the evolution of beliefs comes from the interactions between the state
ξn in (8) and the beliefs γn in (11). However we can decouple the analysis because
the processes effectively operate on different scales. The state is a “fast” process with
a variance independent of the gain ε, while the beliefs are a “slow” process whose
variance decreases with ε. Thus in the next two sections we split the analysis into two
steps reflecting the different scales.

6.2. Analyzing The State Evolution

As a first step, we analyze the fast state process, treating the slow belief process as
fixed because its fluctuations are proportionately negligible. We later use the results
from this stage to determine the large deviation properties of the slow belief process.
In the convergence analysis in Section 5 we averaged over the variation in ξn, and
showed the beliefs are typically driven by the mean dynamics Eg(γ, ξ) = ḡ(γ). To
analyze the contribution of fluctuations in ξn to the escape dynamics, we now analyze
events where g differs from its expectation. In particular, we apply a large deviation
principle due to Worms (1999) for the sample means of g, and we explicitly calculate
the rate function.

For fixed beliefs (R, γ), we now define a sequence of centered sample means for g.
Let gi(γ, ξ) and ḡi(γ), i = 1, . . . , ny denote the columns of g and ḡ, respectively. Then
define:

XiT =
1

T

T∑
n=1

R−1gi(γ, ξn)−R−1ḡi(γ), (23)

and let XT = [X1T , . . . , XnyT ]. Thus for a sample of size T , XT is the deviation of
the belief updating term R−1g from its expectation. An important first step in our
analysis is to characterize the large deviation properties of XT .

A key component of our results is the Poisson equation (18) above, whose solution
is f(γ, ξ). As we discussed in Section 3.2, the solution of the Poisson equation is
fundamental in studying additive functions of a Markov process. For example, Meyn
and Tweedie (1993) provide a functional central limit theorem for processes like XT

by using the Poisson equation to convert them into martingales. Thus the appearance
of the Poisson equation here is rather natural. The following theorem, whose proof
is in Appendix A.2.1, applies a result from Worms (1999) to characterize the large
deviation properties of XT .
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Theorem 6.1. Assume that Assumption 2.1 holds. Let f(γ, ξ) be the solution of
the Poisson equation (18), and define Q(γ,R) as in (19) above. Then the sequence
{XT} in (23) satisfies a large deviation principle with rate function:

SX(x) = sup
α1,...,αny

ny∑
i=1

[
〈x, αi〉 − 1

2
α′iQ(γ, R)αi

]
. (24)

While it is not always easy to solve the Poisson equation, it admits an explicit solu-
tion in our model. In turn, this allows us to explicitly calculate the rate function SX .
To ease the presentation, we assume here that the state ξn does not contain a constant
term and the distribution F of the shocks Wn is the standard normal distribution Φ.
In this case, under Assumption 2.1 we see from (8) that the limit distribution π is
Gaussian with mean zero and variance Σ(γ) which solves the Lyapunov equation:

Σ(γ) = Θ(γ)Σ(γ)Θ(γ)′ + ΛΛ′. (25)

By definition, g in (9) is quadratic in ξ, so we can write each element of it as:

gji(γ, ξ) = ξ′Vji(γ)ξ, i = 1, . . . , ny, j = 1, . . . , nx

for some matrices Vji. We now show that the Poisson equation (18) reduces to a system
of matrix Lyapunov equations, and that Q is a fourth moment matrix of a Gaussian
process. These simplifications allow us to apply our results in practice, as there are
efficient numerical methods for Lyapunov equations. In Appendix A.2.3, we provide
a proof and show how to alter the calculations when the state contains a constant.

Lemma 6.1. Suppose that Assumption 2.1 holds and F = Φ, the standard nor-
mal distribution. Then the solution of the Poisson equation (18) is a matrix-valued
quadratic function with elements fji(γ, ξ) = ξ′Lji(γ)ξ. The matrices Lji solve the
Lyapunov equations:

Vji(γ) = Lji(γ)−Θ(γ)′Lji(γ)Θ(γ). (26)

Then Q from (19) can be written Q(γ,R) = R−1Q̄(γ)R−1, where the elements of Q̄
are for j, k = 1, . . . , nx (suppressing dependence on γ):

Q̄jk =

ny∑
i=1

[2 tr(VjiΣVkiΣ) + tr(VjiΣ) tr(VkiΣ)− tr(LjiΛΛ′) tr(Θ′LkiΘΣ)

− tr(LkiΛΛ′) tr(Θ′LjiΘΣ)− tr(LkiΛΛ′) tr(LjiΛΛ′)] .

Although the calculating Q may appear rather involved, it is straightforward to
implement. Moreover, when the model is static, as in the example in Section 4, then
the Poisson equation is trivial and matters simplify further.
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6.3. Analyzing the Beliefs

We now turn to the second step of the analysis, analyzing the large deviation
properties of beliefs. As we mentioned in Section 3.2 above, our Theorem 3.1 builds on
results in the literature. In particular, Freidlin and Wentzell (1998) characterized the
most probable escape path for continuous time diffusions as a solution of a variational
problem. Their results have been extended to discrete time stochastic approximation
models such as ours by Dupuis and Kushner (1989). We first present their results,
which are very general. Then we show how the results in the previous section lead to
the simplified expressions given in Theorem 3.1 above.

We now define the key objects of the theory. Conditional on an arbitrary ξ0, define:

Hi(γ, αi; R) = lim
T→∞

1

T
log Eξ0 exp

〈
αi,

T∑
n=1

R−1gi(γ, ξn)

〉
, i = 1, . . . , ny (27)

When ξn is i.i.d., Hi reduces to the log moment generating function of R−1gi. But
in the more general case when ξn is persistent, Hi averages over the time dependence
in the state and thus is a type of long-run log moment generating function. We then
define the Legendre transform of the Hi functions as:

L(γ, β; R) = sup
α1,...,αny

ny∑
i=1

[〈αi, βi〉 −Hi(γ, αi; R)] . (28)

The action functional is then defined over absolutely continuous trajectories γ(·) by:

S(T, γ(·)) =

∫ T

0

L(γ(s), γ̇(s); R(s))ds (29)

where R(·) solves (15). (We let S = +∞ for trajectories that are not absolutely
continuous.) Finally then, we define the variational problem:

S̄ = inf
γ(·),T

S(T, γ(·)) (30)

subject to (15) and the boundary conditions (21). The following theorem is the basis
for our Theorem 3.1, and it compiles and applies results from Dupuis and Kushner
(1989), Kushner and Yin (1997), and Dembo and Zeitouni (1998). A proof is given
in Appendix A.2.2. A similar theorem was also stated in Cho, Williams, and Sargent
(2002), who applied our Theorem 3.1.

Theorem 6.2. Under the conditions of Theorem 3.1, its conclusions hold with S̄
defined by (30), where γ(·) attains the minimum.

While Theorem 6.2 offers a characterization of the large deviation properties of
beliefs and the most probable escape path, it is difficult to derive useful insights from
the minimization problem (30) itself. Additionally, because of the complicated nature
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of H and S, analysis of the escape dynamics appears to be a daunting task. The next
result, whose proof is in Appendix A.2.1, is a key contribution of this paper. It uses
the results of the previous section to provide a simple expression for the H function
in our model.

Lemma 6.2. Under the assumptions of Theorem 3.1, the Hi function defined in
(27) is given by:

Hi(γ, αi; R) =
〈
αi, R

−1ḡi(γ)
〉

+
1

2
α′iQ(γ, R)αi. (31)

This implies that Hi in (27) essentially consists of a mean part (the first term)
and a deviation from the mean (the second term) due to the stochastic shocks and
the exponentiation. The mean part is relatively straightforward, reflecting the mean
dynamics R−1ḡ. The expression for the deviation from the mean comes from Theorem
6.1, by noticing that connection between the terms in (27) and XT from (23). Large
deviation results apply here because the product inside the expectation in (27) becomes
dominated by the extreme terms. The result (31) resembles the standard formula for
the mean of a log-normal random variable, where Q plays the role of a covariance
matrix. This is consistent with our discussion above, where we noted that Q acts as
a generalized covariance matrix for the agent’s beliefs.

The Legendre transform of the Hi functions (31) is then simply:

L(γ, γ̇; R) =
1

2

ny∑
i=1

(
γ̇i −R−1ḡi(γ)

)′
Q(γ,R)†

(
γ̇i −R−1ḡi(γ)

)
,

where we note that Q may be singular and thus Q† is its pseudoinverse. If we then
define:

v = γ̇ −R−1ḡ(γ),

we justify the evolution equation (16) and can rewrite L as a quadratic form in v.
Using these simplifications, the abstract variational problem (30) becomes the simpler
control problem (20), and our Theorem 3.1 follows.

6.4. Characterizing the Escape Dynamics

In this section, we characterize the solution of the minimum cost control problem
(20). The deterministic control problem (20) can be solved either by applying a max-
imum principle or dynamic programming. The maximum principle allows for explicit
expressions, but dynamic programming sometimes leads to more direct solutions. In
Appendix A.2.4, we provide a result from Fleming and Soner (1993) which justifies the
use of a maximum principle here. Thus the Hamiltonian for (20) with states (γ,R),



ESCAPE DYNAMICS IN LEARNING MODELS 25

co-states (α, λ), and control v is:

H(γ,R, α, λ) = inf
v

ny∑
i=1

{
1

2
v′iQ(γ, R)†vi + αi ·

(
R−1ḡi(γ) + vi

)}
+ λ · (M̄(γ)−R

)

=

ny∑
i=1

[〈
αi, R

−1ḡi(γ)
〉− 1

2
α′iQ(γ, R)αi

]
+ λ · (M̄(γ)−R

)
.

Therefore, by taking derivatives of the Hamiltonian, we see that the most probable
escape path solves the differential equations:

γ̇ = R−1ḡ(γ)−Q(γ, R)α (32)

Ṙ = M̄(γ)−R

α̇ = −α ·R−1∂ḡ(γ)

∂γ
+

1

2
α′

∂Q(γ, R)

∂γ
α− λ · M̄γ(γ)

λ̇ = −HR + λ · I,

subject to the boundary conditions (21), whereHR is the derivative of the Hamiltonian
with respect to the R matrix.

Alternatively, we can characterize the solution of (20) by dynamic programming

methods.17 We define a value function Ŝ(x, y) analogous to S̄ in (20), but with the

terminal condition in (21) changed to γ(T ) = x,R(T ) = y. Then Ŝ satisfies the
following Hamilton-Jacobi partial differential equation:

H(x, y,−Ŝx(x, y),−Ŝy(x, y)) = 0. (33)

Then S̄ = infx,y Ŝ(x, y) subject to x ∈ ∂G.
In some special cases, the PDE (33) is explicitly solvable. But in general we must

rely on numerical solutions, and the ODEs (32) are typically easier to implement
numerically. Our results in Section 4 relied on the numerical solution of this system
of differential equations. Given an initial condition for the co-states (α(0), λ(0)), it is
easy to integrate the ODEs until γ hits the boundary of the set G. This determines
T, γ(·) and allows us to evaluate the action functional S as in (29). We then solve the
minimization problem (30) by minimizing over (α(0), λ(0)).

7. CONCLUSION

In this paper we have analyzed two sources of dynamics that govern adaptive learn-
ing models: mean dynamics which pull an agent’s beliefs toward a limit point, and
escape dynamics which push them away. We have provided a precise characterization
of these dynamics, and we have illustrated how they can arise in an example. We
have shown that as the gain decreases to zero (across sequences), the beliefs converge

17See Dembo and Zeitouni (1998), Exercise 5.7.36.
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in a weak sense to a self-confirming equilibrium. However ongoing stochastic shocks
may occasionally lead beliefs to escape from the self-confirming equilibrium. We de-
veloped new theoretical methods to characterize the escape dynamics, and showed
how to apply them in a simple economic model. There we saw how a misspecificaton
may generate locally self-reinforcing dynamics, which lead to recurrent large deviations
from the self-confirming equilibrium.

The methods that we have developed have potentially broad applications. The
results in this paper have already been applied to analyze recurrent inflations and
stabilizations (by Cho, Williams, and Sargent (2002) among others), deflationary liq-
uidity traps (by Bullard and Cho (2005)), currency crises (by Cho and Kasa (2008)),
and fluctuations in prices resembling price wars (by Williams (2009)). Further, our
analysis is not limited to learning models. The same methods can be applied to fil-
tering and recursive estimation problems, which could have interesting implications
for the performance of estimators. However, absent in standard estimation problems
is the feedback between estimates and observations which drove much of our results.
Learning models thus provide a natural framework in which escape dynamics can play
an important role.

APPENDIX A

A.1. CONVERGENCE RESULTS

For these results, we stack (γ, R) into a vector θ and write (11)-(12) compactly as:

θn+1 = θn + εb(θn, ξn+1).

Then we define b̄(θ) = Eb(θ, ξn) and vn+1 = b(θn, ξn+1)− b̄(θn). The following are the
necessary assumptions for Theorem 5.1 above. We include an ε superscript on θε

n and
vε

n to emphasize their dependence on the gain.

Assumptions A.1.

1. The random sequence {θε
n; ε, n} is tight.1

2. For each compact set A,
{
b(θε

n, ξn+1)1{θε
n∈A}; ε, n

}
is uniformly integrable.2

3. The ODE
.

θ= b̄(θ) has a point θ̄ which is asymptotically stable.3

4. The function b̄(θ) is continuous.

1 A random sequence {Xn} is tight if

lim
K→∞

sup
n

P (|Xn| ≥ K) = 0.

2 A random sequence {Xn} is uniformly integrable if

lim
K→∞

sup
n

E
(|Xn| 1{|Xn|≥K}

)
= 0.

3 A point x̄ is asymptotically stable for an ODE if any solution x(t) → x̄ as t → ∞, and for each δ > 0
there exists an ε > 0 such that if |x(0)− x̄| ≤ ε, then |x(t)− x̄| ≤ δ for all t.
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5. For each δ > 0, there is a compact set Aδ such that infn,ε P (υε
n ∈ Aδ) ≥ 1− δ.

Proof (Theorem 5.1). The result follows directly from Theorem 8.5.1 in Kush-
ner and Yin (1997). The theorem requires their additional assumptions (A8.1.9),
(A8.5.2), (A8.5.3) and (A8.5.5) which hold trivially here, since Eb(θε

n, ξn+1) = b̄(θε
n)

is independent of ξn+1. This implies that the limit in (A8.1.9) is identically zero and
that the βε

n terms in (A8.5.2) and (A8.5.5) are also identically zero. Further, their
conditions (A8.5.1) and (A8.5.3) are then equivalent and given by part 2 above. The

theorem is also stated under a weaker condition which is implied by part 3 above.
Note that parts 1, 2, and 5 of Assumptions A.1 hold in our model with i.i.d.

Gaussian shocks Wn. (The conditions are even easier to verify with bounded shocks.)
The tightness in part 1 follows because for each θ, b(θ, ξn+1) is a quadratic function of
standard normal random variables. Therefore P (|b(θ, ξn+1)| ≥ K) = f(K) for some
function f that goes to zero as K goes to infinity. Since the one-step transitions satisfy
this property, any finite number of steps does as well. Further, since the property holds
for all θ, we have that P (|θε

n| ≥ K) → 0 as K →∞, and so the sequence is tight. For
part 2, note that |b(θn, ξn+1)|2 consists of normally distributed random variables up to
the fourth order, and so has finite expectation, which implies the uniform integrability.
Finally part 5 holds because vn consists of normally distributed random variables up
to the second order, and thus can be bounded to arbitrary accuracy on an appropriate
compact set. The remaining conditions 3 and 4 must be verified in particular settings.

A.2. LARGE DEVIATIONS

A.2.1. Analyzing the State Evolution

Here we collect the proofs of our results in Section 6.2.

Proof (Theorem 6.1). We first state the assumptions underlying the result of
Worms (1999) that we use in Theorem 6.1, then we show that in our model Assumption
2.1 suffices for them to hold. The assumptions are stated in terms of a functional
autoregressive model that generalizes (8):

ξn+1 = f(ξn) + σ(ξn)Wn+1,

where ξ ∈ Rns , f : Rns → Rns , σ : Rns → Rns×nw , and ns = ny + nw.

Assumptions A.2.

1. For some norm |·| on Rns and Rns×nw , f and σ satisfy the following relation for
β > 2 and for any x, y ∈ Rns :

|f(x)− f(y)|+ E(|W |β)
1
β |σ(x)− σ(y)| ≤ α |x− y| ,

where 0 < α < 1.
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2. For some a ≥ 0, b > 0 with 1 ≤ a + b ≤ β/2, with ‖ · ‖ denoting the Euclidean
norm, and for any γ ∈ G the function g(γ, ·) satisfies:

‖g(γ, x)− g(γ, y)‖ ≤ C ‖x− y‖a
(
‖x‖a + ‖y‖b + 1

)
.

Note that in the linear-quadratic model given by (8), f(ξ) = Θξ and σ(ξ) = Λ.
Therefore under our Assumption 2.1, part 1 of Assumptions A.2 holds for any β
such that E(|W |β) < ∞, with the norm |·| being a standard matrix norm. Fur-
ther, since g(γ, ξ) is quadratic in ξ, part 2 of Assumptions A.2 holds with (for ex-
ample) a = b = 1. Then Theorem 6.1 follows from Theorem 2 of Worms (1999).

Proof (Lemma 6.2). This result relies on an important duality between exponential
limits and large deviations due to Varadhan. The following is Theorem 4.3.1 from
Dembo and Zeitouni (1998), adapted to the general setting of Section 6.1.

Theorem A.1. Assume that the sequence {XT} satisfies a large deviation principle
on X with the convex rate function SX . Also suppose that for some λ > 1 we have:

lim sup
T→∞

1

T
log E exp (λT 〈α, XT 〉) < ∞.

Then we have that:

lim
T→∞

1

T
log E exp (T 〈α,XT 〉) = sup

x∈X
{〈α, x〉 − SX(x)} .

We now use this result to prove Lemma 6.2. In Theorem 6.1 we establish the rate
function for the {XT} process (23), which is a partial sum of a functional autoregressive
process. The rate function (24) depends on the matrix-valued function Q(γ, R), and
can be written as:

SX(x) =
1

2
x′Q(γ, R)†x.

Theorem A.1 applies, as the rate function is clearly convex, and the moment condition
holds (since g is quadratic function of normally distributed random variables). Thus
via the convex duality of SX and Q we get (31).

A.2.2. Analyzing the Beliefs

This section collects assumptions and proofs for the results in Section 6.3. First we
state the additional assumptions necessary for the large deviation principle.

Assumptions A.3.

1a. The sequence {|R−1
n g(γn, ξn+1)|} is almost surely bounded by some constant K <

∞.
1b. There exist a σ−algebra Fn ⊃ σ(γi, i ≤ n) and constants κ > 1, B < ∞ such

that for all n and s ≥ 0:

P
(∣∣R−1

n g(γn, ξn+1)
∣∣ ≥ s||Fn

) ≤ B exp(−sκ) a.s.
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For Assumptions A.3, we require either part 1a or 1b to hold.

Proof (Theorem 3.1). The results follow directly from Theorem 6.2, with the simpli-

fications made by Theorem 6.1 and Lemma 6.2 in Section 6.2.

Proof (Theorem 6.2). (1): The result follows from Dupuis and Kushner (1989),
Theorem 3.2, which requires that paper’s assumptions 2.1-2.3 and 3.1. Their as-
sumption 2.2 is a stability condition satisfied by part 3 of Assumptions A.1. Their
assumption 2.3 is not necessary in the constant gain case, as we restrict our analysis
to a finite time interval. Assumption 3.1 is satisfied by our definition of S above. All
that remains is 2.1. Under the exponential tail condition given in 1b of Assumptions
A.3, Dupuis and Kushner (1989) Theorem 7.1 (with special attention to the remarks
following it) and their Example 7.1 show that 2.1 holds.

(2): The result is an application of Kushner and Yin (1997) Theorem 6.10.1, whose
assumptions follow directly under the boundedness condition of 1a of Assumptions
A.3. The identification of the H function follows from Dupuis and Kushner (1989),
Theorems 4.1 and 5.3.

(3): Kushner and Yin (1997) establish an upper bound on mean escape times in
Theorem 6.10.6. After establishing part 2 of Theorem 6.2, the results here follow
directly from Dembo and Zeitouni (1998), Theorem 5.7.11.

(4): The first part also follows from Theorem 5.7.11 in Dembo and Zeitouni (1998),
which is analogous to Theorem 2.1 in Freidlin and Wentzell (1998). The second part
follows from Theorem 2.3 in Freidlin and Wentzell (1998). Our phrasing of the result
follows Dupuis and Kushner (1987).

A.2.3. Solving the Poisson Equation

This section proves our result on the solution of the Poisson equation in Section
6.2, then discusses the necessary modifications when the state ξ includes a constant
term.

Proof (Lemma 6.1). For simplicity, we suppress dependence on γ. Since g is
quadratic and ξ is Gaussian, we guess that f is also quadratic with elements fji:

fji(ξ) = ξ′Ljiξ, (A.1)

for some matrices Lji. Taking conditional expectations gives:

fji(ξ)− E[fji(ξn+1)|ξn = ξ] = ξ′Ljiξ − ξ′Θ′LjiΘξ − tr(LjiΛΛ′).

Additionally, we know that the elements of g satisfy:

gji(ξ)− ḡji = ξ′Vjiξ − tr(VjiΣ).

Thus for f in (A.1) to solve (18), the Lji matrices must satisfy the Lyapunov equations
given in (26). This verifies our guess of the form of f and also insures that:

tr(LjiΛΛ′) = tr(VjiΣ),
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so that the constant terms in the Poisson equation match.
With the Poisson solution f , we can then calculate the matrix-valued Q function as

in (19). We factor this function as: Q(γ,R) = R−1Q̄(γ)R−1. Then using the solution
for f above, we have that the (j, k) element of the Q̄ matrix is of the form:

Q̄jk =

ny∑
i=1

E [(ξ′Ljiξ) (ξ′Lkiξ)− (ξ′Θ′LjiΘξ + tr(LijΛΛ′)) (ξ′Θ′LkiΘξ + tr(LkiΛΛ′))]

(A.2)
where the expectation is with respect to the stationary distribution π. Note that (A.2)
is the expectation of a quartic function of normal random variables. Evaluating the ex-

pectation gives the expression in the text.

We now extend Lemma 6.1 to the case where the state ξn contains a constant. It
is useful here to isolate the constant, so we define ξn = [ξ̃′n, 1]′ and use (8) to write:

ξ̃n+1 = Θ0 + Θξ̃n + ΛWn+1 (A.3)

where the matrices (Θ0, Θ, Λ) are drawn from the matrices (Θ, Λ). Thus ξ̃n is Gaussian

with mean µ̃ and covariance Σ̃ given by:

µ̃ = (I −Θ)−1 Θ0

Σ̃ = ΘΣ̃Θ′ + Λ Λ′.

The distribution of the full vector ξn is thus partially degenerate. The invariant mea-
sure π is Gaussian, with mean µ and covariance Σ given by:

µ =

[
µ̃
1

]
, Σ =

[
Σ̃ 0
0 0

]
.

The function g is still quadratic in ξ, and thus we can write its elements as:

gji(ξ) = ξ′Ṽjiξ

for some matrices Ṽji, as above. However for some calculations it is now useful to re-
normalize g by making it a function of a mean zero process. So we define a process that
centers the variable components of ξ but retains the constant term: zn = [ξ̃′n − µ̃′, 1]′.
This process is also Gaussian with the linear evolution:

zn+1 =

[
Θ 0
0 1

]
zn + ΛWn+1 = Θ̃zn + ΛWn+1,

where Θ is as in (A.3) and Λ is from (8). Then we rewrite g as a function of the new
z process:

gji(z) = z′Vjiz + kji,
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where we partition Ṽji conformably to z and define:

Vji =

[
Ṽji,11 Ṽji,12 + Ṽji,11µ

Ṽji,21 + µ′Ṽji,11 0

]
,

kji = Ṽji,22 + µ′Ṽji,11µ + µ′Ṽji,12 + Ṽji,21µ.

With these modifications, the same calculations as in Lemma 6.1 imply that the solu-
tion f to the Poisson equation (18) takes the form:

fji(z) = z′Ljiz + f̂ji,

where the matrices Lji satisfy the Lyapunov equations parallel to (26):

Vji = Lji − Θ̃′LjiΘ̃.

The constants f̂ji are undetermined, but this is inessential as they drop out of the
matrix Q.

We can then evaluate Q as in (A.2) above with z replacing ξ, and thus we gain a
few additional terms due to the means. For example, the first product term in (A.2)
is now (the second term is similar):

E [(z′Ljiz) (z′Lkiz)] = 2 tr(LjiΣLkiΣ) + tr(LjiΣ) tr(LkiΣ) + e′sL
′
jiΣLkies

+e′sLkiΣLjies + e′sLjiΣLkies + e′sLjiΣL′kies,

where es is a ns vector of all zeros except for a one in the final position (to select the
constant).

A.2.4. Characterizing the Escape Dynamics

The following lemma from Fleming and Soner (1993) justifies the use of a maximum
principle in solving the control problem (20).

Lemma A.1. Under our standing assumptions, L(γ, β) in (28) is strictly convex
in β and obeys a superlinear growth condition:

L(γ, β)

|β| → ∞ as |β| → ∞.

Therefore the solution of the problem (20) can be determined by the differential equa-
tions (32).

Proof. Fleming and Soner (1993) establish that if H is strictly convex in α, then L
is strictly convex in β, and also that if H is superlinear in α, then L is superlinear in β.
We have shown in (31) that H is a quadratic function of α and so is strictly convex and
superlinear. The conclusion follows from results in Section I.6 and I.8 of Fleming and

Soner (1993).
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A.3. VERIFYING THE ASSUMPTIONS IN THE EXAMPLE

In this section, we formally verify the necessary conditions of our theorems above
for our example. Since the model is static and there is no time dependence in the
beliefs, Assumption 2.1 is immediately satisfied as long as there is a finite solution
to the firm’s problem. Thus we require that the firm’s perceived demand curve slope
downward, and to simplify our results below we assume that the slope is bounded
away (negatively) from zero. Similarly for prices to be positive, we require that the
firm’s intercept be positive. Thus we take the feasible set to be:

G = {γ : γ0 ≥ 0, γ1 ≤ δ < 0} .

Notice that the self-confirming equilibrium we identify in the text is strictly within
this set (as long as b1 < δ < 0 and b0 > 0), and the escape sets G we analyze are
within this set as well.

Then we need to verify Assumptions A.1 and A.3. Following our discussion after the
proof of Theorem 5.1 above, we know that parts 1, 2, and 5 of Assumptions A.1 hold.
Further, part 1b of Assumptions A.3 is immediate since we assume that the shocks
are Gaussian. Since we consider an algorithm with Rn fixed, part 4 of Assumptions
A.1 simply requires the continuity of ḡ(γ). From the expressions in Section 4.2 we see
clearly that ḡ(γ) is continuous on G, so part 4 of Assumptions A.1 holds.

The only remaining condition is part 3 of Assumptions A.1, the asymptotic stabil-
ity of the ODE. Note again that for the algorithm here we can consider just the ODE
for γ. We have identified the self-confirming equilibrium γ̄ above, which is the unique
equilibrium point of the ODE. Further, one can show that the eigenvalues of the Jaco-
bian matrix of ḡ evaluated at γ̄ all have strictly negative real parts, so that it is locally
asymptotically stable. Global stability is more difficult to establish explicitly. How-
ever numerical analysis of the ODE suggests that (at least for the parameterizations
we consider) the ODE is in fact asymptotically stable on G.
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