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Escape from p53-mediated tumor surveillance
in neuroblastoma: switching off the
p14ARF-MDM2-p53 axis

T Van Maerken*,1,2, J Vandesompele1, A Rihani1, A De Paepe1 and F Speleman1

A primary failsafe program against unrestrained proliferation and oncogenesis is provided by the p53 tumor suppressor
protein, inactivation of which is considered as a hallmark of cancer. Intriguingly, mutations of the TP53 gene are rarely
encountered in neuroblastoma tumors, suggesting that alternative p53-inactivating lesions account for escape from p53 control
in this childhood malignancy. Several recent studies have shed light on the mechanisms by which neuroblastoma
cells circumvent the p53-driven antitumor barrier. We review here these mechanisms for evasion of p53-mediated growth
control and conclude that deregulation of the p14ARF-MDM2-p53 axis seems to be the principal mode of p53 inactivation
in neuroblastoma, opening new perspectives for targeted therapeutic intervention.
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The p53 tumor surveillance network constitutes the core
defense mechanism of the cell against loss of genomic
integrity and malignant transformation. Evasion of p53 activity
is, therefore, a prerequisite for tumor cells to survive and
thrive, and this is attainable either through mutation of the
TP53 gene or through defects in the molecular components
that govern or execute the various aspects of the p53
response. Elucidation of the mechanisms by which tumor
cells override the p53-orchestrated failsafe program is not
only important to gain insight into the ontogenesis of a tumor,
but may also point to preferable modes of therapeutic
intervention.

A striking feature of the childhood cancer neuroblastoma is

the low frequency (o2%) of TP53 mutations at diagnosis.1

There is considerable evidence that TP53 mutations may be

acquired during chemotherapy and malignant progression of

neuroblastoma.1–4 Accordingly, an increased frequency of

TP53 mutations is observed in multidrug-resistant neuroblas-

toma cell lines and in neuroblastoma cell lines established at

relapse, but even in this context, the majority of cell lines

remain characterized by a wild-type TP53 gene.5,6 Further-

more, many studies indicate that the p53 signal transduction

pathway is intrinsically intact in neuroblastoma,1,4,7–9 sug-

gesting that circumvention of the p53 barrier in this tumor

entity relies primarily on an inappropriately increased activity

of inhibitors of p53 signaling or, alternatively, on a loss of

positive regulators of p53 activity. This review summarizes our

current understanding of the mechanisms by which neuro-
blastoma cells escape from p53-mediated tumor surveilla-
nce and positions deregulation of the p14ARF-MDM2-p53 axis
as a central switch for p53 inactivation in neuroblastoma.

The p14ARF-MDM2-p53 Axis and Lesions at the MDM2
and CDKN2A (p16INK4a/p14ARF) Loci in Neuroblastoma

The MDM2 oncoprotein, a human homolog of the ‘mouse
double minute 2’ gene product that was originally identified in
a spontaneously transformed mouse cell line with double
minute chromosomes,10 is a critical negative regulator of p53
stability and activity. It has been well established that p53 and
MDM2 mutually control their cellular levels and form a tight
autoregulatory feedback loop (Figure 1a). Under normal
physiological conditions, p53 protein levels are very low
because of MDM2-dependent proteasomal degradation.11

Exposure of cells to harmful stimuli, such as DNA damage,
hypoxia, telomere erosion, ribonucleotide depletion, or
oncogene activation, results in a number of modifications on
the p53 protein (e.g. phosphorylation and acetylation), which
suppress the binding of p53 to MDM2 and which lead to
accumulation and increased transcriptional activity of p53.12

In addition to inducing expression of target genes involved
in cell-cycle arrest, DNA damage repair, senescence, and
apoptosis, p53 also transactivates the MDM2 gene
(Figure 1b). The resulting increase in MDM2 expression limits
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the duration and intensity of a non-lethal stress response.
There are several mechanisms by which MDM2 is capable of
counteracting p53 activity and stability (Figure 1c). First,
MDM2 binds to the transactivation domain of p53 and,
therefore, directly interferes with recruitment of the basal
transcriptional machinery and transcriptional coactivators.13–15

Second, MDM2 acts as an E3 ubiquitin ligase for p53 in a
dosage-dependent manner. Low levels of MDM2 promote p53
monoubiquitination, which may both stimulate nucleocyto-
plasmic shuttling of p53 because of unmasking of a nuclear
export signal and decrease p53 transactivation capacity
owing to unavailability of the ubiquitinated lysine residues
for acetylation. At higher levels, the activity of MDM2 results in
polyubiquitination and subsequent proteasomal degradation
of p53.11,16,17 Third, MDM2 also induces monoubiquitination
of histone proteins in the vicinity of p53-responsive promoters,
resulting in transcriptional repression.18 Fourth, MDM2 has
been reported to inhibit p53 transcriptional activity by
promoting conjugation of the ubiquitin-like protein NEDD8 to
p53.19 Fifth, MDM2 may also contribute to p53 inactivation by
recruiting several corepressor proteins, such as HDAC1,20

CTBP2,21 YY1,22 and KAP1.23

A central negative regulator of MDM2 is the tumor
suppressor protein p14ARF, which is an alternate reading
frame product of the CDKN2A locus on chromosome 9p21.
This locus encodes two structurally unrelated growth-inhibi-
tory proteins, p16INK4a and p14ARF, that govern the activities
of the pRb and p53 tumor suppressor pathways, respec-
tively.24 The p14ARF protein serves as a key sensor of
hyperproliferative signals generated by activated oncogenes
and engages both p53-dependent and p53-independent
pathways to protect cells from malignant transformation.25

The importance of p14ARF-mediated signaling of oncogene
activity in the p53 tumor surveillance network is underscored
by observations in mice models that the cancer-protective
activity of p53 is abolished in the absence of the murine

homolog p19ARF.26,27 The physical interaction between
p14ARF and MDM2 is in large part responsible for the ability
of p14ARF to stabilize and activate p53. p14ARF prevents
MDM2 from targeting p53 for degradation by inhibiting the E3
ubiquitin ligase activity of MDM228 and by blocking nuclear
export of MDM2 and p53.29,30 It has also been firmly
established that p14ARF, which is predominantly a nucleolar
protein, is capable of mobilizing MDM2 into the nucleolus,
and it has, therefore, been proposed that p14ARF releases
nucleoplasmic p53 from the inhibitory grip of MDM2 by
inducing nucleolar sequestration of MDM2.30,31 Although
MDM2 redistribution to nucleoli may contribute to p14ARF-
induced p53 activity, several reports indicate that neither
localization of p14ARF in the nucleolus nor nucleolar seques-
tration of MDM2 is essential for stabilization and activation
of p53 by p14ARF.32–35 In this regard, it has been suggested
that p14ARF is stored within the nucleolus in complexes
with nucleophosmin, regulating ribosome biogenesis, and
displaced to the nucleoplasm by stress-induced nucleolar
perturbation, in which it can efficiently counteract MDM2 and
activate the p53 pathway.34–36 In addition, p14ARF may also
enhance p53 function by MDM2-independent mechanisms,
for example by inhibiting the activity of another E3 ubiquitin
ligase involved in p53 degradation, ARF-BP1/Mule,37 and by
neutralizing the p53-antagonizing NF-kB pathway.38 The
mechanisms by which p14ARF promotes p53 stability and
activity are shown in Figure 2.

Not surprisingly, many forms of cancer develop defects
in MDM2 or p14ARF to escape from p53 control. Genetic
aberrations of the MDM2 locus as well as genetic or
epigenetic disruption of the CDKN2A (p16INK4a/p14ARF) locus
may account for inactivation of the p53 pathway in a subset of
neuroblastoma tumors, mainly at relapse. Amplification of
chromosome 12q–derived sequences encompassing the
MDM2 gene has been described almost exclusively in
neuroblastoma tumors and cell lines that simultaneously have
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Figure 1 The p53-MDM2 autoregulatory feedback loop. (a) The p53 protein induces expression of MDM2, which negatively regulates the stability and activity of p53,
providing a means to keep p53 levels and activity low in unstressed cells and to switch off p53 at the end of a stress response. (b) The p53-mediated expression of MDM2
results from binding of p53 to response elements in the MDM2 gene and subsequent transactivation of MDM2. The domain structure of p53 is shown schematically: TAD,
transactivation domain, amino acids 1–40; PRD, proline-rich domain, amino acids 61–94; DBD, DNA-binding domain, amino acids 100–300; TD, tetramerization domain,
amino acids 324–355; CTD, C-terminal regulatory domain, amino acids 360–393. (c) The p53-inhibitory activity of MDM2 relies on multiple mechanisms. Binding of MDM2 to
p53 conceals the TAD and consequently blocks the transcriptional activity of p53. MDM2 also recruits several corepressor proteins to p53, including HDAC1, CTBP2, YY1, and
KAP1. The E3 ubiquitin ligase activity of MDM2 results in ubiquitination of lysine residues in the CTD of p53, preventing acetylation of p53, favoring nuclear export, and
promoting proteasomal degradation (see text for details). Some of these lysine residues can also be neddylated by MDM2, resulting in inhibition of the transcriptional activity of
p53. Finally, MDM2 may also serve as a p53-specific transcriptional silencer by binding and monoubiquitinating histone proteins in the proximity of p53-responsive promoters.
Nd, NEDD8; Ub, ubiquitin. The color reproduction of this figure is available on the html full text version of the manuscript
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amplification of the MYCN oncogene on chromosome 2p24,
and is associated with attenuated p53 transcriptional function
and multidrug resistance.5,39–43 The CDKN2A (p16INK4a/
p14ARF) locus at 9p21 is the most frequent target of
homozygous deletion in both neuroblastoma cell lines44 and
primary tumors,45 and has been found to be silenced by
methylation in several neuroblastoma cell lines.46,47 It has
been estimated that approximately half of all neuroblastoma
cell lines established at relapse are subject to a genetic or
epigenetic lesion of the MDM2 or CDKN2A (p16INK4a/p14ARF)
locus,6 but these findings await confirmation in a study that
takes also neuroblastoma tumor samples into account.

A recent line of evidence supporting a role for MDM2 activity
in the development and malignant behavior of neuroblastoma
stems from epidemiological studies of a T4G single nucleo-
tide polymorphism in the MDM2 promoter (SNP309;
rs2279744). The presence of this polymorphism increases
the affinity of the MDM2 promoter for a transcriptional
activator, Sp1. This results in enhanced transcription of
MDM2, overexpression of the MDM2 protein, attenuation of
the p53 pathway, and may eventually lead to accelerated
tumor formation.48 Both individuals homozygous for SNP309
(G/G) and subjects heterozygous for SNP309 (T/G) have an
increased risk for the development of neuroblastoma, and
neuroblastoma patients carrying the SNP309 variant (G/G or
T/G) present with a more advanced clinical stage and have a
shorter 5-year overall survival than patients homozygous for
the wild-type allele (T/T).49 A survival study in children with
stage 4 neuroblastoma yielded similar results, with patients
homozygous for SNP309 (G/G) having a worse overall

survival and a worse survival after relapse than those
homozygous for the wild-type allele (T/T), and with hetero-
zygous SNP309 variant carriers (T/G) showing intermediate
survival rates.50 These findings suggest that an increased
activity of MDM2 because of the presence of SNP309 has an
adverse effect on the development, aggressiveness, and
outcome of neuroblastoma, and provide a direct incentive for
the development of novel therapeutic strategies aimed at
MDM2 inhibition.

Transactivation of MDM2 Expression by MYCN

Amplification of theMYCN oncogene plays a central role in the
pathophysiology and clinical behavior of high-risk neuroblas-
toma. This genetic aberration is found in approximately 22%
of all neuroblastoma tumors51 and is highly correlated
with advanced stages of disease, rapid progression, treat-
ment failure, and fatal outcome.52,53 MYCN amplification
results in overexpression of the MYCN protein, which is a
bHLH transcription factor that operates in a heterodimeric
complex with Max family proteins to promote cell growth
and proliferation.54 The oncogenic effects of MYCN over-
expression have been convincingly established in a variety of
model systems. Enhanced expression of MYCN elicits
neoplastic transformation of mammalian cells,55,56 induces
autocrine growth factor activity and increases proliferative
potential,57 accelerates cell-cycle progression,58 enhances
tumor cell motility and invasiveness,59 evokes genomic
instability through disruption of the regulation of centrosome
replication,60,61 diminishes expression of angiogenesis
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Figure 2 Schematic diagram of p53 stabilization and activation by p14ARF. The p14ARF protein is predominantly localized to the nucleolus, in which it is stabilized by
binding to nucleophosmin within maturing pre-ribosomal particles, pointing to a function in the regulation of ribosome biogenesis. Nucleophosmin promotes the processing of
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NPM, nucleophosmin; Ub, ubiquitin. The color reproduction of this figure is available on the html full text version of the manuscript
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inhibitors,62,63 and promotes immune escape in neuroblasto-
ma by inhibiting the chemoattraction of natural killer T cells.64

Direct evidence for a causative role of MYCN amplification in
the pathogenesis of neuroblastoma is derived from the
observation that transgenic mice with targeted expression of
MYCN in normal neuroblasts develop tumors with a pheno-
type very similar to human neuroblastoma.65

However, aberrant MYCN expression also potently sensi-
tizes neuroblastoma cells to drug- and stress-induced
apoptosis,66–69 and, therefore, needs to be accompanied by
a collateral impairment of the cell death program to provide a
selective advantage for the tumor. This counterbalance to the
intrinsic apoptosis-sensitizing effect of MYCN may be
delivered by an increased activity of MDM2. A ChIP cloning
approach combined with oligonucleotide pull-down and
luciferase reporter assays has identified MDM2 as a direct
transcriptional target of MYCN in neuroblastoma cells.70 In the
same study, endogenous MDM2 mRNA and MDM2 protein
levels were rapidly upregulated on induction of MYCN in
MYCN-conditional neuroblastoma cell lines, whereas tar-
geted inhibition of MYCN in MYCN-amplified neuroblastoma
cells resulted in reduced MDM2 levels with stabilization of p53
and induction of apoptosis. These data suggest that MYCN-
driven expression of MDM2 may constitutively debilitate the
p53 pathway in MYCN-amplified neuroblastoma cells, providing
both a possible mechanism for evasion of MYCN-primed
apoptosis and an explanation for the low frequency of TP53
mutations in these cells. This view is further strengthened by
evidence that the closely related MYC (c-MYC) oncoprotein
also relies on MDM2 to restrain p53-mediated apoptosis, as
Myc-induced lymphomagenesis in mice is profoundly sup-
pressed by haploinsufficiency of Mdm2 because of a drastic
increase in p53-dependent apoptosis.71

Suppression of p14ARF and p53 by TWIST1

Another excellent candidate to explain escape from MYCN-
dependent apoptotic sensitization is TWIST1. Just like
MYCN, TWIST1 is a bHLH transcription factor with a fun-
damental role in embryonic and fetal development. This
evolutionary conserved protein is involved in mesoderm
formation and diversification, myogenesis, neurogenesis,
and neural crest cell migration and differentiation.72 Loss-of-
function mutations in the TWIST1 gene have been identified
as the main cause of the Saethre–Chotzen syndrome, an
autosomal dominant disorder of craniosynostosis with
craniofacial and limb abnormalities.73,74 In addition to its
developmental function in mesodermal and neural crest cell
populations, TWIST1 also acts as an oncoprotein in several
cancer types. Neuroblastoma tumors with MYCN amplifica-
tion consistently exhibit MYCN-driven overexpression of
TWIST1, resulting in an oncogenic cooperation that protects
neuroblastoma cells from the proapoptotic effect of MYCN
and that increases tumorigenicity in vivo.75 It could be shown
that the protective effect conferred by TWIST1 was due to
suppression of the p53 response and that the dampened p53
function was at least partially attributable to impaired p14ARF

activity.75 These findings are in agreement with an earlier
study that pointed to downregulation of p19ARF expression
by Twist1 as a mechanism for compensating the

apoptosis-priming properties of Myc.76 Several other
mechanisms may also contribute to the p53-inhibitory activity
of TWIST1, including inhibition of acetyltransferases that
serve as transcriptional coactivators for p53,77 modulation of
the activity of a transactivator of the TP53 promoter,78

prevention of p53 phosphorylation,78 and direct suppression
of the DNA-binding activity of p53.79 Of note, the TWIST1 and
TWIST2 proteins have also recently been shown to prevent
oncogene-induced premature senescence with concomitant
abrogation of p16INK4a and p21WAF1/CIP1 activation, and to
induce, in cooperation with activated mitogenic oncoproteins,
epithelial-mesenchymal transition, suggesting a role as
general inhibitors of multiple oncogene-induced safeguard
programs.80

Inactivation of the p14ARF-p53 Pathway by BMI1

The Polycomb-group transcriptional repressor BMI1 has
been proposed as another roadblock to MYCN-induced
apoptosis by suppressing the p14ARF-p53 signaling path-
way.81,82 BMI1 is a component of the Polycomb repressive
complex 1, which mediates transcriptional silencing through
chromatin modifications and which is involved in embryonic
and adult stem cell maintenance and in the development of
several cancer types.83 It has been convincingly shown that
Bmi1 is indispensable for the self-renewal capacity and
postnatal maintenance of hematopoietic and neural stem
cells in mice by repressing the Cdkn2a (p16INK4a/p19ARF)
locus.84–88 Notably, Bmi1 also collaborates strongly with Myc
in murine lymphomagenesis,89–92 and the molecular basis of
this oncogenic cooperation is the ability of Bmi1 to prohibit
Myc-induced apoptosis by downregulating Cdkn2a (p16INK4a/
p19ARF) expression.93 Similar to TWIST1, the BMI1 onco-
protein inhibits oncogene-induced premature senescence
and cooperates with activated H-Ras to induce neoplastic
transformation and epithelial-mesenchymal transition.84,94

Thus, both the TWIST1 and BMI1 transcriptional regulators
may overcome several oncogene-induced failsafe barriers
and may serve as examples of corrupt exploitation of normal
developmental programs by tumor cells.
BMI1 is strongly expressed in neuroblastoma cell lines and

tumors,81,82 and has been shown to be essential for the
tumorigenicity of neuroblastoma cells.82 BMI1 negatively
regulates p53 expression in neuroblastoma cells, potently
inhibits the apoptotic activity of MYCN, and functions as an
oncogenic partner of MYCN in the transformation of normal
neural crest cells and in the malignant progression of
neuroblastoma cells.82 These findings have been attributed
to the ability of BMI1 to repress the CDKN2A (p16INK4a/
p14ARF) locus, although it cannot be excluded that CDKN2A-
independent pathways may also play a role. Interestingly, the
collaborative activity between MYCN and BMI1 may be
switched on by a single initiating event, as deregulated
E2F1 activity, which is a characteristic lesion in highly
proliferative neuroblastoma tumors,95 is capable of directly
driving the expression of both oncogenes.81,96 The role of
BMI1 in neuroblastoma pathogenesis seems not to be limited
to MYCN-amplified tumors, as BMI1 is also expressed and
required for tumorigenicity in neuroblastoma cells with a
normal copy number of MYCN.82 In line with the requirement
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of BMI1 activity in self-renewal of neural stem cells, it has
been argued that BMI1 may be of critical importance for the
maintenance of neuroblastoma stem cells by regulating
clonogenic self-renewal and multilineage differentiation,
offering an attractive target for therapeutic intervention.97

Repression of p14ARF-p53 Signaling by Loss of CHD5

Escape from p53 surveillance in neuroblastoma cells may
also be accomplished by the loss of another chromatin-
remodeling protein involved in transcriptional control of the
CDKN2A (p16INK4a/p14ARF) locus. One of the most charac-
teristic genomic lesions in neuroblastoma is deletion of the
short arm of chromosome 1, which is found in 25 to 35% of
primary neuroblastoma tumors and 80 to 90% of neuro-
blastoma cell lines.98 The actual target of this deletion has
remained elusive for a long time, but detailed analysis of the
different genes located in the smallest region of deletion at
1p36.31 has recently identified CHD5 as the strongest
candidate tumor suppressor gene.99,100 CHD5 encodes a
protein with chromatin-organizing modulator (chromo), heli-
case, and DNA-binding motifs that is preferentially expressed
in the nervous system and the adrenal gland.101 Expression of
CHD5 is very low or absent in neuroblastoma cell lines and is
inversely correlated with 1p deletion, MYCN amplification,
advanced clinical stage, unfavorable histology, and poor event-
free and overall survival in neuroblastoma tumors.99–101

Homozygous deletion and mutational inactivation of CHD5
are infrequent events,99 but it has been shown that the
remaining CHD5 allele in neuroblastoma cells with hetero-
zygous 1p deletion may be transcriptionally silenced by
promoter methylation.100 Reintroduction of CHD5 in such
neuroblastoma cells with 1p deletion and epigenetic CHD5
silencing significantly reduced clonogenicity and in vivo
tumorigenicity, validating CHD5 as a bona fide tumor
suppressor gene.100

Of note, an independent study that used chromosome
engineering to produce mouse strains with deletions or
duplications of a region corresponding to human 1p36
identified Chd5 as a potent tumor suppressor that controls
proliferation, senescence, and apoptosis through the p19ARF-
p53 pathway.102 Silencing of Chd5 by short hairpin RNA in
MEFs severely compromised p53 function and promoted
tumorigenesis, and these effects were associated with a
substantial reduction in the basal and oncogene-induced
expression levels of p16INK4a and p19ARF. Knockdown of
p19ARF, but not p16INK4a, was capable of bypassing the
proliferation defect of MEFs that harbored an engineered
duplication of the 1p36-syntenic region, indicating that Chd5,
which could be shown to be responsible for the proliferation-
suppressive properties of the 1p36-syntenic region, exerts its
antiproliferative activity by facilitating expression of p19ARF.
Altogether, the findings of this study support a model in which
the chromatin-remodeling activity of Chd5 is required for
proper transcriptional activation of the Cdkn2a (p16INK4a/
p19ARF) locus. Although a direct link between CHD5 and
the p14ARF-p53 network remains to be established in the
context of human neuroblastoma, it is tempting to speculate
that loss of CHD5 by 1p deletion and epigenetic silencing may

promote the pathogenesis of neuroblastoma by crippling the
p14ARF-p53 signaling pathway.

Deregulation of the p14ARF-MDM2-p53 Axis by
PPM1D (Wip1)

The most frequent and the prognostically most unfavorable
genomic alteration in neuroblastoma is gain or amplification of
genetic material from the long arm of chromosome 17.103,104

A gene at 17q23.2 encoding a key negative regulator of p53,
PPM1D, has been put forward as the most likely target of 17q
gain/amplification, based on its location in the minimal
common region of gain/amplification, its consistent pattern
of overexpression in neuroblastoma cell lines with 17q gain/
amplification, its growth-promoting and antiapoptotic activity
in neuroblastoma cells, and the adverse impact of its
expression level on the prognosis of primary neuro-
blastoma.105 Similarly, PPM1D has been blamed as the
culprit oncogene behind gain or amplification of 17q23 in
breast cancer,106–108 ovarian clear cell adenocarcinoma,109

and medulloblastoma.110,111

The protein encoded by PPM1D is a serine/threonine
phosphatase that is transcriptionally induced by wild-type p53
in response to DNA-damaging stimuli such as ionizing
radiation, and it has, therefore, been given the name Wip1
(wild-type p53–induced phosphatase 1).112 The p53-depen-
dent expression of Wip1 creates a negative feedback loop that
helps to turn off p53 at the end of a stress response, as Wip1
suppresses p53 activity and stability through multiple
mechanisms (Figures 3a–c). First, Wip1 dephosphorylates
and inactivates several kinases that mediate p53 stabilization
and activation after genotoxic stress, for example p38
MAPK,113 Chk1,114 Chk2,115–117 ATM,118,119 and probably
ATR.120 In addition, Wip1 dephosphorylates p53 itself at
serine 15, thereby probably promoting both p53 degradation
and inactivation.114 The most important block provided by
Wip1 on p53 function is mediated through stabilization and
enhanced p53 binding of MDM2, which result from Wip1-
induced dephosphorylation of MDM2 at serine 395 and which
argue for a role of Wip1 as a molecular gatekeeper in the p53-
MDM2 autoregulatory feedback loop.121 Finally, studies using
Ppm1d-null MEFs have shown that Wip1 is also capable of
suppressing p19ARF levels through a p38 MAPK–dependent
mechanism, which seems to involve transcriptional repres-
sion of the Cdkn2a (p16INK4a/p19ARF) locus, thus offering
an additional explanation of how Wip1 may keep p53 in
check.122

The potent inhibitory activity of Wip1 on p53 provides, in
principle, an appealing opportunity for tumor cells to escape
from p53 control. Indeed, as discussed above, copy number
gain/amplification and overexpression of PPM1D are
observed in a variety of human tumors including neuro-
blastoma, which then typically retain wild-type p53 and often
carry a poor prognosis.105,107–110 Overexpression experi-
ments have shown that Wip1 induces malignant transforma-
tion in collaboration with other oncogenes, protects against
oncogene-induced premature senescence and apopto-
sis, and accelerates tumorigenesis in vivo.106,107,123,124

Conversely, Ppm1d-null MEFs and mice are resistant to
oncogene-induced transformation and to spontaneous
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and oncogene-driven tumorigenesis, respectively.119,122,123

Although most of the oncogenic properties of Wip1 are

ascribed to its ability to suppress the p53 pathway and the

DNA damage response, concomitant inhibition of pRb tumor

suppressor activity because of transcriptional repression of

p16INK4a expression may also play a role.122 Of note in the

context of neuroblastoma is the observation that homozygous

or heterozygous deficiency of Ppm1d in mice confers

protection against Myc-induced lymphomagenesis in a p53-

and ATM-dependent manner, indicative of a strict require-

ment for Wip1 activity in the suppression of Myc-triggered

apoptosis.119 This is reminiscent of the critical role of Mdm2 in

evasion of Myc-primed apoptosis in murine lymphomagen-

esis,71 which is a concept directly transferable to human

neuroblastoma and MYCN.70 It could, therefore, be specu-

lated that increased dosage of PPM1D provides another

mechanism for escape from MYCN-stimulated apoptosis and

a molecular explanation for the strong association between

17q gain and MYCN amplification in neuroblastoma cells.105

Cytoplasmic Sequestration of p53

Aberrant cytoplasmic localization of wild-type p53 has been
proposed as another mechanism for p53 inactivation in
neuroblastoma cells. Although controversy exists on the
frequency and functional relevance of this phenomenon, it
has been extensively documented that cytoplasmic p53
sequestration does occur in at least some cases of neuroblas-
toma. Interestingly, as will be discussed below, cumulating
evidence indicates that an increased activity of MDM2 or a
dysfunction of its functional counterpart HAUSP, a principal
p53-deubiquitinating enzyme, lies at the molecular basis of
cytoplasmic p53 retention in neuroblastoma, further under-

scoring the importance of MDM2 deregulation as a means to
escape from p53 control.

An initial study found cytoplasmic p53 sequestration in
96% of undifferentiated neuroblastoma tumors, whereas this
phenotype was absent in differentiated neuroblastoma
tumors.125 However, other studies have reported a predomi-
nant nuclear localization of p53 in undifferentiated neuro-
blastoma tumors, and both cytoplasmic and nuclear p53 in
differentiating neuroblastoma.9,43,126 Conflicting results also
exist for neuroblastoma cell lines, as the subcellular localiza-
tion of p53 has been reported to be exclusively cytoplasmic
(e.g. in IMR-32 and SK-N-SH cells),127 primarily cytoplasmic
and weakly nuclear (e.g. in IMR-32 and SK-N-SH cells),126,128

equally cytoplasmic and nuclear (e.g. in SK-N-SH cells),7

predominantly nuclear (e.g. in IMR-32 cells),43 and completely
nuclear (e.g. in IMR-32 and SK-N-SH cells).129 Some of the
discrepancies may be explained by cross-reactivity of the
antibodies used to detect p53 and by different methods of
tissue fixation and cell preparation.9,43,126 Nonetheless, it is
generally accepted that some cytoplasmic p53 does exist in
neuroblastoma, although the prevalence and importance
of cytoplasmic p53 sequestration remain a subject of
debate.9,130 It has been reported that abnormal cytoplasmic
p53 localization may attenuate the DNA damage–induced G1

checkpoint function127 and the apoptotic activity131,132 of wild-
type p53 in some neuroblastoma cells. On the contrary, many
studies have shown that the DNA-binding and transactivation
capacity of p53 and the p53 signal transduction pathway are
intact in neuroblastoma cells with wild-type p53,1,4,7–9

indicating that cytoplasmic retention of wild-type p53 is either
an infrequent anomaly or a relative block on p53 that can be
overcome by appropriate p53-inducing stimuli.

Proposed mechanisms for abnormal p53 accumulation in
the cytoplasm of neuroblastoma cells include hyperactive
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nuclear export of p53, cytoplasmic tethering of p53, resistance
of p53 to proteasomal degradation, and possibly impaired
nuclear re-import of p53. A unifying theme common to these
diverse mechanisms may be the involvement of a disrupted
MDM2/HAUSP regulation of p53. It has been firmly estab-
lished that cytoplasmic p53 sequestration in neuroblastoma
cells is at least in part caused by enhanced nuclear export133

and that MDM2 plays an important role in this nuclear
exclusion of p53.131,134 Once transported to the cytoplasm,
p53 may be held in this compartment by a cytoplasmic anchor
protein, such as Parc.128 Neuroblastoma cells express high
levels of Parc, which have been shown to prevent nuclear
localization of p53 and a normal apoptotic response to the
genotoxic drug etoposide.128 A comparable cytoplasmic
anchoring function may be exerted by the large T antigen
from human polyomavirus BK,135,136 by the glucocorticoid
receptor,137 and by the MDM2-related protein MDM4 (also
known as MDMX).138 It has also been shown that p53 in
neuroblastoma cells is aberrantly ubiquitinated because of an
impaired interaction between p53 and the deubiquitinating
enzyme HAUSP, and that this hyperubiquitination contributes
to cytoplasmic p53 sequestration.130 As both Parc and
HAUSP interact with the carboxy terminus of p53, competition
between Parc and HAUSP for p53 binding has been
postulated to underly the impaired p53–HAUSP interaction
in neuroblastoma cells, although this remains to be formally
proven.130 The defective deubiquitination of p53 results in
the appearance of (multi)monoubiquitinated p53 species,
which are relatively resistant to proteasomal degradation139

and which are subject to increased nuclear export and
possibly to diminished re-import, thus yielding a phenotype
of cytoplasmic p53 sequestration.130 In keeping with the
deregulation of MDM2/HAUSP, interference with p53 hyper-
ubiquitination by targeted inhibition of the p53–MDM2 inter-
action in neuroblastoma cells has been shown to relocate
p53 from the cytoplasm to the nucleus and to restore the
transcriptional and apoptotic activities of p53.130

Conclusions

The rarity of TP53 mutations in neuroblastoma has been a
puzzling issue to many investigators given the potent
antitumor capacity of wild-type p53 protein. A substantial
number of alternative p53-inactivating lesions have been
identified in neuroblastoma during the past few years, many of
which interfere with proper functioning of the p14ARF-MDM2-
p53 axis (Figure 4). A recent mouse study underscores the
importance of direct inhibition of p53 by MDM2 and suppres-
sion of p19ARF in the pathogenesis of neuroblastoma.140

However, it should be kept in mind that cellular decisions of
growth, survival, and death result from the integration of a
complex network of intertwined signaling cascades and,
therefore, that also pathways that do not impinge directly on
the core p53 machinery may still provide a means to oppose or
neutralize p53 activity. Full characterization of the nature and
relative importance of the different blocks on the p53 pathway
in neuroblastoma cells awaits genome-wide experimental
approaches in well-controlled model systems.

It may not be that surprising, after all, that turning off the
p14ARF-MDM2-p53 axis is a preferential mode of p53

inactivation in neuroblastoma cells. It has been convincingly
shown that deregulated MYC expression is a potent trigger for
induction of the p14ARF protein, and it is very likely that the
same holds true for MYCN.25,141 In addition, aggressive
neuroblastoma tumors typically express high levels of the
E2F1 transcription factor,95 which is capable of inducing
p14ARF expression through binding to an E2F-responsive
element in the p14ARF promoter.142,143 Hence, acquisition of
defects that inactivate p14ARF or that uncouple p14ARF from its
p53-dependent effector pathway (i.e. through uncontrolled
MDM2 activity) may provide the most effective route to non-
mutational p53 inactivation in neuroblastoma cells by directly
dismantling the molecular circuitry that signals the malicious
identity of these cells to the p53 guardian.

In conclusion, it has become increasingly clear in recent
years that inappropriately increased activity of MDM2 is
the primary culprit for p53 inactivation in neuroblastoma
cells. Preclinical work from our laboratory and others has
shown that small-molecule MDM2 inhibitors are capable of
eliciting potent antitumor effects against neuroblastoma by
selectively and non-genotoxically reactivating p53.8,130,144,145

These findings may provide a new therapeutic avenue for
the treatment of children with high-risk neuroblastoma.
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