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Abstract An emergency requiring evacuation is a chaotic

event, filled with uncertainties both for the people affected

and rescuers. The evacuees are often left to themselves

for navigation to the escape area. The chaotic situation

increases when predefined escape routes are blocked by a

hazard, and there is a need to re-think which escape route is

safest. This paper addresses automatically finding the safest

escape routes in emergency situations in large buildings or

ships with imperfect knowledge of the hazards. The pro-

posed solution, based on Ant Colony Optimisation, suggests

a near optimal escape plan for every affected person —

considering dynamic spread of fires, movability impair-

ments caused by the hazards and faulty unreliable data.

Special focus in this paper is on empirical tests for the pro-

posed algorithms. This paper brings together the Ant Colony

approach with a realistic fire dynamics simulator, and shows

that the proposed solution is not only able to outperform

comparable alternatives in static and dynamic environments,

but also in environments with realistic spreading of fire and

smoke causing fatalities. The aim of the solutions is usage

by both individuals, such as from a personal smartphone of
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one of the evacuees, or for emergency personnel trying to

assist large groups from remote locations.
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1 Introduction

Evacuation planning is challenging due to the typically

chaotic and un-organised situation occurring in a crisis

situation. Unfortunately, decision makers often have an

incomplete picture of hazards and potential escape routes.

The situation is further complicated by the fact that people

affected are often left alone without any contact with rescue

personnel, or let alone a reliable overview of the ongoing

crisis situation. In addition, the chaotic and dynamic nature

of crisis situations quickly changes which path is the best

escape route as hazards, such as fires, rapidly develop.

There is no doubt that decision making in crisis situa-

tions needs to be timely to minimize the consequences of

hazards at hand. However, it is often difficult for the peo-

ple affected to determine what are the best decisions in an

evacuation situation. In fact, in most situations the evacuees

are not aware of which path to follow for an escape. This

is because evacuees either received insufficient information

from the rescuers or are unfamiliar with the layout of the

affected compound and locations of the hazards. Similarly,

the emergency personnel often lack an overview of where

people are located and which rooms are affected by hazards.

This makes evacuation planning particularly difficult [1, 2].

This paper is part of a larger project1 working on using

smartphone technologies in emergency situations. In this

1SmartRescue: http://ciem.uia.no/project/smartrescue
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project, the smartphones are used to communicate to and

from people affected by crisis situations. This enables res-

cue personnel to get an overview of the people escaping

such as information on how they move. Further, the rescuers

can communication how to best escape to the evacuees. In

addition, the sensor information available in smartphones

will communicate presence of hazards using camera, GPS,

gyroscope, etc. This provides a threat map which is support

both the rescue personnel and as a method to automatically

determine the best escape routes [3].

The project has three main steps outlined in the sections

below:

1. Collect information.

2. Calculate escape plan.

3. Communicate the plan to the people affected.

1.1 Collect information

Initially in a crisis situation, it is essential to get an overview

of the people affected and the hazards present.

The aim is that prior to a crisis situation, for example

when people embark on a cruise ship, they will have the

option to download a mobile application for their phone.

This application will in a crisis situation utilize the available

sensors and communicate it to a central location. This way,

the system, including emergency personnel, will be aware of

life saving information such as locations of people, whether

people are moving, the brightness in each room (indicat-

ing hazards such as fire or smoke). The application aims

at automatic activation rather than being actively started by

evacuees. This allows the application to automatically start

when hazards are detected or communicated from a central

location without any activation by the people affected.

1.2 Determine plan

Calculating the escape plan is the main contributions of this

paper. Mathematical models have shown to be valuable for

escape planning in large complex building with many peo-

ple [4–8], but the approaches in the literature are mainly

assuming a static representation of hazards. In contrast, our

system will, based on available information, calculate the

best escape plan and guide each affected person away from

any potential hazard, as well as distributing the people to the

proper escape areas even when the hazards change.

1.3 Communicate plan

When an adaptive plan is available, it should be com-

municated to the affected people, which can be done in

two main ways. The primary method aimed for in the

SmartRescue project is for emergency personnel to actively

communicate the plan to the evacuees through any available

means, such as loud speakers and communication directly to

each affected person via the smartphone applications. Fail-

ing this, the smartphone applications should automatically

present the plan using simple visual and verbal steps such

as “turn around”, “go left” and safely guide people to an

escape area.

It is also worth noting that the collection, determination

and communication is decentralized without a need for a

central network such as WiFi or GPS — which may be

unavailable in emergency situations. The phones will com-

municate through so-called ad-hoc networks, which enables

communication directly between phones without any cen-

tral network available [9]. Further, decisions can be made

when only part of the network is available such as when two

groups are physically separated on board a ship without any

common network connection between them.

Unfortunately, even in situations where an optimal

escape plan exists and every person affected is aware of the

plan, the human mind works so that not everyone will fol-

low the plan [10]. Most significantly, in a crisis situation,

factors such as panic spread, people pushing, jamming up

and overlooking alternative exits prevent a crowd from fol-

lowing an optimal plan [11, 12]. Therefore, it is important

that information about both hazards and people are con-

tinuously updated to always provide the best overview for

rescue personnel and an update plan.

1.4 Outline

The rest of the paper is organized as following. Section 2

defines the problem to be solved as an optimisation problem

with hazard functions, including functions based on realistic

spread of fire and smoke. Section 3 continues with intro-

duction of the ant colony optimisation with focus on finding

safe escape routes. The approach and empirical results from

five distinct environments are presented in Section 4 Lastly,

Section 5 concludes this paper and maps out further work.

2 Problem formulation

Escape planning from a complex building or a large ship can

be regarded as a combinatorial optimisation problem. In line

with common practice [6], we treat the building layout as a

bidirectional planar graph G(V, E). Each possible location

i is connected with a vertex vi ∈ V , and each potential flow

from vertex vi to vj is represented by an edge ei,j ∈ E.

In addition we define a function h(vi, t) representing the

hazard for vi at time t , so that the function h(vi, t) returns

probability values representing the likelihood of hazards.

The escape area is a vertex ve ∈ V (sink), and the people

are located in any vertex vs ∈ V (any vertex is a source).
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Further, all routes from vs to ve in the search space are

defined as S.

The aim of the application is to find a route s∗ ∈ S

so that f (s∗, t) ≤ f (s, t)∀s ∈ S, where f (s, t) = 1 −

�vi∈s(1 − h(vi, t)). I.e. minimizing the probability that a

person encounters a hazard in at least one of the vertexes in

the chosen route at time t .

2.1 Hazards

The hazard functions are based upon known observations

from indications and estimations. If a hazard h(vi, t) = 1, it

means that there is a known hazard and vertex vi is unsafe

at time t , and all evacuees should be routed away from the

corresponding room. Similarly, h(vi, t) = 0 means that vi is

a known safe vertex. All other hazards are estimated based

on known observations.

This paper presents three distinct variants of the hazard

function. For clarity, these are noted as h1(vi, t), h2(vi, t)

and h3(vi, t). The algorithms do not have knowledge of how

the functions behave, let alone which variant of the hazard

is used on the model. This is because hazard propagations

are complicated and require significant calculation to be

correct. Hence, all algorithms assume an unknown stochas-

tic function, h(vi , t), which returns hazard probabilities. In

other words, from the view of the algorithm all functions are

treated equally and only noted as h(vi , t).2

In its simplest form, h1(vi, t) is a function defined as

a uniform random function yielding a probability in [0, 1],

which means that t is ignored. Section 4.1 presents results

from this scenario.

The initial function is extended in two ways. Firstly,

h1(vi , t) is extended to h2(vi, t) by making it time depen-

dant. This means that the function is initially based on

random uniform variables. Consequently, it updates accord-

ing to the following rule with a global n representing time

shifts:

h2(vi, t) = 1 − h2(vi, t − 1)∀vi ∈ V if t mod n = 0

h2(vi, t) = h2(vi, t − 1)∀vi ∈ V otherwise
(1)

Thus, at a given time n the environment updates the function

in line with (1) and makes all hazards exactly opposite. This

produces a particularly difficult situation since an (near)

optimal route changes to as far away from optimal as possi-

ble, and algorithms which have learnt an optimal route will

need to completely relearn its learnt behaviour. Results from

this hazard function are available in Section 4.2.

Secondly, the function h3(vi, t) is defined to represent

realistic probabilities of fatal hazards based on exposure

2This is not to be confused with that hazard propagations are ignored.
In fact, paper shows that even without the complicated hazard propa-
gations, the learning algorithms learn and predict the hazards.

levels of thermal radiation3 and temperature emitted by

the fire[13–15]. This extension relies upon timely measure-

ments (or estimations) of temperature and radiation levels in

emergency situations. Such measurements can be collected

from fixed or mobile sensors [3].

Unfortunately, the literature only provides information

on maximum possible exposure time for fixed temperatures

and radiation level, which does not fit with the probabilistic

h3(vi , t) function. This is solved by converting the exposure

time of temperature and radiation to uniformly distributed

probabilities and combined as one overall hazard function.

It is worth noting that this is a simplification of real-

ity. People’s abilities to withstand hazards depend on many

factors including age, health, gender and time spent in the

hazard. Further, people have thresholds meaning that stay-

ing in a hazardous room a short time may not be fatal,

but staying there longer is likely to cause fatalities. The

functions in this paper are no way meant to be an overall rep-

resentation of survivability. The functions are rather meant

to show the probability of detecting fatal hazards which are

likely to cause death or incapcitations. Whether or not peo-

ple will actually die from the fatal hazards are out of scope

of this paper.

The concrete mapping is done by creating two functions,

c(vi, t), the probability of an evacuee having fatal impact

due to high temperatures in room vi at time t and r(vi, t),

the probability of an evacuee having a fatal impact because

of high radiation levels in room vi at time t . The c(vi, t) and

r(vi, t) functions are formally defined as following:

The probability of a fatal impact due to high temperatures

in room vi is based on the levels in [14], defines as:

c(vi,t)=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

300 s
if for vi140◦C > temperature at time t

1

3600 s
if for vi140◦C ≥ temperature ≥ 80◦Cat time t

0 otherwise

(2)

which in layman’s terms state that the probability of an

evacuee encountering a fatal hazard in a room with tem-

perature between 80 and 140 ◦C is for every second stayed

there 1
3600 . If a room has temperatures above 140◦C, the

probability of a fatal hazard is 1
300 for every second stayed

there.

3Note that radiation in this paper refers to thermal radiation emitted by
fire, and should not be confused with any other form of radiation such
as nuclear radiation.
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Similarly, the probability a fatal impact because of of

radiation in room vi is defined as:

r(vi,t)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

90 s
if for vi6.0kW/m2 > radiation at time t

1

180 s
if for vi6.0kW/m2 ≥radiation≥4.0kW/m2at time t

1

600 s
if for vi4.0kW/m2 ≥radiation≥1.6kW/m2at time t

0 otherwise

(3)

which in layman’s terms mean that with radiation expo-

sure between 1.6 and 4.0 kW/m2 evacuees encounter a fatal

hazard with a probability 1
600 per second, between 4.0 and

6.0 kW/m2 they encounter a fatal hazard with probability
1

180 and exposures above 6.0 kW/m2 have a probability of

impact of 1
90 .

The functions are visually shown in Fig. 1.

Finally, the hazard function, h3(vi, t) is simply the prob-

ability of either c(vi, t) or r(vi, t) occurring:

h3(vi , t) = r(vi, t) + c(vi, t) − r(vi, t) ∗ c(vi, t) (4)

In other words, the hazard for a room i is defined as

the probability of a person either encountering fatal heat

radiation or temperature.

Sections 4.3, 4.4 and 4.5 presents results from this hazard

function.

2.2 Smoke

In fire situations, smoke causes significant challenges for

the people involved both due to direct fatalities, e.g. car-

bon monoxide poisoning of the people affected, and because

soot from the smoke reduces the distance of evacuees’

vision. In fact, it is so that for a successful evacuation, there

should be a minimum of 3 meters of vision in primary com-

partments and 10 meters in predefined escape routes [13].

Hence, when exposed to a fire, people are able to exit their

rooms even with visions down towards 3 meters, but require

10 meters of vision to follow an escape plan in corridors

leading directly to an escape area.

To compensate for this in our model, we define a time

dependant function m(vi, t) which indicates whether or

not it is possible for the evacuees to move due to smoke

obscuration:

m(vi,t)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

trueif corridor vi leads directly to an escape

area and vision ≥ 10m at time t

trueif primary compartment vihas vision ≥3m

at time t

falseotherwise

(5)

This can be read as people get “stuck” in rooms where

the vision is so low that it impairs their sight and movability.

3 Ant Colony Optimisation (ACO)

Problem solving approaches inspired by nature and animals,

so called swarm intelligence, have received a lot of atten-

tion due to their simplicity and adaptability. Ant Colony

Optimisation (ACO) is one of the most popular swarm

intelligence algorithms due to its general purpose optimi-

sation technique. ACO consists of artificial ants operating

in a constructed graph. The ants release pheromones in

favorable paths which subsequent ant members follow. This

Fig. 1 Temperature and thermal
radiation levels as input to
c(vi , t) and r(vi , t)
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way, the colony of ants will walk more towards favor-

able paths and in consequence iteratively build the most

favorable solution [16].

ACO was first used to find shortest path from a source

to a sink in a bidirectional graph. It has later increased

in popularity due to its low complexity and its ability to

work in dynamic environments. The flexibility of ACO is

apparent as it has successfully been applied in a wide variety

of problems such as finding solutions for NP hard prob-

lems [17], rule based classification [18], and is shown to

be particularly useful for routing in real time industrial and

telecommunication applications [19].

Finding the shortest path in a graph G(V, E) using ACO

in its simplest form works as follows. Artificial ants move

from vertex to vertex. When an ant finds a route s from the

source vs to the sink ve, the ant releases pheromones τi,j

corresponding all edges ei,j ∈ s. The pheromones for all

ants m is defined as

τi,j ← (1 − p)τi,j +

m
∑

k=1

�τ k
i,j (6)

The function is for ant k defined as

�τ k
i,j =

{

Q/|s|if ei,j ∈ s

0otherwise
(7)

where Q is a constant.

The aim of each ant is to walk from vs to ve forming the

path s. This is achieved by the following rule. When ant k is

in vertex i it chooses to go to vertex j with the probability

pk
i,j defined as

pk
i,j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

τα
i,jη

β
i,j

∑

ei,j
τα
i,kη

β
i,k

if ei,j ∈ N(sp)

0 otherwise

(8)

where sp is the partial solution of s, and N(sp) are the pos-

sible vertexes to visit given sp. ηi,j is the inverse heuristic

estimate of the distance between node i and j , and α and β

are numbers between 0 and 1 to give the relevant importance

between pheromones and the heuristics function.

In its simplest form, the β = 1 and α = 1 so that the ants

only consider the pheromones — and the heuristic function

is ignored, giving:

pk
i,j =

⎧

⎪

⎨

⎪

⎩

τi,j
∑

ei,j
τi,k

if ei,j ∈ N(sp)

0 otherwise

(9)

In layman terms, the amount of pheromone released rep-

resent quality of the solution. This is achieved by each ant

releasing a constant amount of pheromones. Consequently,

the shorter the path found, the more pheromone per edge is

released. Further, each ant is guided by a stochastic mech-

anism biased by the released pheromones. Thus, the ants

walk randomly with a preference towards pheromones. In

this way, the ants incrementally build up promising search

space with means that a route s converges towards the

shortest route from vs to ve, s∗.

ACO has also successfully been applied for many net-

work applications [19–22]. It has been empirically shown to

have favourable results compared to other routing protocols

with respect to short path routing and reduced load balanc-

ing. Therefore it seems particularly promising for finding

the escape routes.

4 Solution

This section presents the ACO algorithms for finding escape

routes in four distinct realistic environments.

First, the algorithms interact with a static environ-

ment where the hazard functions remain unchanged, yet

unknown. This resembles classical optimisation problems

where the aim is to find a route s∗ so that f (s∗, t) ≤

f (s, t)∀s ∈ S. Hence, the environment is populated with

the h1(vi, t) function. (See Section 4.1 for results.)

Subsequently, the problem is extended to interact with

dynamic environments so that the probability of a haz-

ard in vi , h2(vi, t), is no longer fixed but changes

regularly according to some unknown stochastic func-

tions. This shows how well ACO works when environ-

ments change, such as fire spreading. (See Section 4.2

for results.)

Further, ACO handles realistically simulated environ-

ments where the hazard function, h3(vi, t) is based on

measurements of thermal radiation and air temperature. The

simulation is carried out using a Fire Dynamic Simulation

(see Section 4.3 for results).

Subsequently, the environment is extended with smoke,

represented with the function m(vi, t) so that the vision

range and in turn movability evacuees is significantly

reduced when smoke is present (See Section 4.4 for results).

Lastly, the environment is updated with imperfect knowl-

edge so that only hazard functions close to evacuees are

available. Hence, evacuees will not have any knowledge of

fires far away even if it may obstruct evacuation routes.

This simulates an ad-hoc network setup with only part

of the environment’s sensors are available to evacuees (see

Section 4.5 for results).

This section presents empirical evidence for ACO work-

ing in all the above mentioned environments. In these

experiments, all graphs are bidirectional, planar and con-

nected — in line with common practice [6]. This is done

in two ways: Without loss of generality, the first two

experiments (Sections 4.1 and 4.2) are carried out on
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randomly generated graphs of 1,000 vertexes, and 5,000

randomly distributed edges, of which 1,000 edges are used

to make sure the graph is connected. The latter experiments

(Sections 4.3–4.5) are carried out on a graph modelled after

an actual ship, and hazards are updated based on realistic

simulation results.

All experiments are an average of 1,000 runs.4

4.1 Static environments

ACO has been used for static routing in many situations

before. In these experiments ACO is used in its simplest

form, as described in Section 3, with a slight adjustment.5

The constant Q is replaced with a function of s and t:

Q(s, t) = �vi∈s(1 − h(vi , t)) (10)

I.e. Q(s, t) represent the inverse hazard probability at time

t . The consequence of this is that safe paths are given large

amounts of pheromones, and unsafe paths are given low

amount. The pheromone updates are therefore as

�τ k
i,j =

{

Q(s, t)/|s| if ei,j ∈ s

0 otherwise
(11)

Figures 2 and 3 show the behaviour of the ACO the static

environment. Figure 3 shows the behaviour were there in

addition to the normal setup the graph is manipulated so that

there exists an s so that f (s, t) = 0 — meaning that there

always exists a safe path. The optimal solution is calculated

using Djikstra’s algorithm [24] by considering h(vi, t) as

basis the cost function for edged e∗,i .

Figure 3 shows the same experiment but with adjust-

ments of hazard probabilities so that there is an s so that

f (s, t) = 0 — meaning that there always exists a safe path.

Both experiments show that ACO is able to find the near

optimal solution with very few iterations.

4.2 Dynamic environments

ACO has been used for dynamic environments in many sit-

uations [25–28]. This is achieved by letting, for each time

step, the pheromones evaporate with a defined probabil-

ity, typically between 0.01 and 0.20 [16]. The evaporation

probability is a balance between convergence accuracy and

adaptability. I.e. you choose to what extent the ants should

work towards a more optimal solution or should be able

to adapt to other potential solutions. Dressler et al. [27]

showed that ACO based routing works well in situations

with significant dynamics and continuously broken and

4Many additional experiments have been carried out. For reasons of
brevity, only those more relevant are presented in this paper. Some of
the additional experiment results are available in [23].
5Note that for the static environment the variants of h(vi , t) used is
h1(vi , t).
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Fig. 2 Experiment results in static environments of randomly gen-
erated large graph comparing ACO to random and optimal. h(vi , t)

random to 1 or 0

newly established connections, which resembles finding an

escape route when hazards change.

Figures 4 and 5 show ACO in dynamic environments

where the variant of h(vi , t) used is h2(vi, t) and the update

function (see (1)) is called every 200th.

Thus, for every 200th iteration the environment is exactly

opposite which in turn means that, if an algorithm has learnt

an optimal route, the route changes to as far away from

optimal as possible.

The results show in Fig. 4 that when the evaporation rate

is set to 0, the ACO learns a near optimal solution which

becomes outdated when h(vi , t) changes, and it is not able

to adapt to the new optimal solution. Further, every time the

hazard probabilities change the algorithm is further away

from the solution. On the other hand, Fig. 5 shows that when

the evaporation rate is set to 0.2, the algorithm is able to

quickly adapt to new environments — and is thus able to

interact well with dynamic environments.

4.3 Realistic environments

This section presents empirical results in a realistic envi-

ronment. This is achieved through a sequence of steps.

First we model a graph which the algorithms interact with

based on an actual ship. Subsequently, the variant of the

hazard function h(vi, t) is h3(vi , t) (see Section 2.1) which

is updated based on known fatalities. Finally and most

importantly, this environment uses a well established fire

simulator, a simulation for populations of the hazards [29].

I.e. the functions r(vi , t) and c(vi, t) are populated with

results from the fire simulator. This yields realistic scenar-

ios, including a realistic hazard function h3(vi , t), as a step

towards relevant empirical evidence of the usefulness of the
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random to 1 or 0 forcing that there is an s so that f (s, t) = 0

algorithms. The details of each of the steps are described in

the following sub sections.

4.3.1 Setup

Ship model The ship model is based on deck sections of the

Thompson Spirit6 with some minor adjustments.

The ship consists of 290 rooms and 4 corridors spread

over two floors, including four exists to escape areas. The

rooms vary slightly in size but are in average 15.84 m2.

In line with the actual ship, the model of the ship uses

wooden interior and “British style” carpets on all floor

surfaces. Further, the floors and walls are modelled with

combustion properties to enable a realistic fire spread of

the material. These properties include emissivity, heat, con-

ductivity in line with properties of the actual material used.

Further emphasis is put on thickness and density of the

interior to yield realistic fire spread.

The authors are aware that these parameters vary depend-

ing on the spread of the fire, open and closed areas, efforts

on putting the fire out etc. However, our aim is to provide

a realistic model in order to empirically show that the pro-

posed solution is able to cope in such situations. Whenever

there is room for interpretation, the model is always imple-

mented with the worst case scenario in mind. In practice,

this means that all rooms have carpets, all doors are left open

and no efforts on extinguishing the fire is carried out during

the simulation. If the proposed solution is able to work well

in this worst case scenario, it is expected that it will also

yield good results in better situations.

6An outline of the Thompson Spirit is available at http://www.
iglucruise.com/thomson-spirit/deck-plans?deck=83.
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Fig. 4 Experiment results in dynamic environments. Hazard probabil-
ities, h(vi , t), updates when t mod 200 = 0 — every 200th iteration.
Evaporation rate set to 0, ACO cannot adapt

Note that the outdoor and recreational areas, such as

swimming pools and bars, are deliberately left out of the

model. These are areas that have little influence on an

evacuation.

The model is placed with 3 measurement devices in each

room: temperature, smoke and heat, which is used for popu-

lation of the hazard function h3(vi, t). The heat is measured

from the room center, radiation at ground level and smoke

in the average human sight at 1.6 m. This means that the

simulation yields one measurement for temperature, smoke

and heat per room per second.

Fire To generate and simulate the actual fires, the well

established tool Fire Dynamics Simulator (FDS) developed

by the National Institute for Standards and Technology is
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Fig. 5 Experiment results in dynamic environments. Hazard probabil-
ities, h(vi , t), updates when t mod 200 = 0 — every 200th iteration.
Evaporation rate set to 0.2
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used [29]. FDS used computational fluid dynamics of a fire-

driven fluid flow to highlight the spread of heat and smoke

from fires. This is done by a set of partial differential equa-

tions that shed light on the conservation, mass, momentum

and energy within the fire and the surrounding space [30].

The tool has been used to realistically model various fire

dynamics phenomena such as transport of heat and com-

bustion products from fire, capture the heat transfer, flame

spread and fire, and for designing smoke systems, sprinkler

activation or fire reconstructions.

The fire was modelled so that it spreads from a 1 m2 fire

burner, and the fire was modelled to spread fast with growth

coefficient was defined as 0.1876 kW/s, reaching a total of

67,536 kW during time 600 s.

This setup enables assessing effects of fire hazards both

numerically and visually, which in turn enables easy inte-

gration with the proposed solution and hazard functions.

Results The simulations were carried out with fire starting

in the middle of the first floor, and kept for 600 simu-

lated seconds.7 A visual representation of the temperature

is shown in Fig. 6. Note that the fire reaches one corridor

at ∼150 s, and both corridors at close to ∼500 s.

The setup is slightly different from previous experiments.

In this case we have a fire that spreads out over a time frame

of 600 s. These seconds are simulated, and for each second

a given number of consecutive ants are released. This means

that every second is in itself a distinct scenario similar to

the complete experiments in Figs. 2 and 3. This facilitates

convergence of the algorithm so that the route s∗ represents

the “best” possible result.8 Further, in the follow empiri-

cal results three variants of ACO are used: with 10, 100

and 1,000 ants. This is done to show the convergence of

the algorithms — how many ants are needed to find near

optimal solutions. Thus, in contrast to Figs. 2 and 3 the fol-

lowing figures show snapshots of the algorithm after 10,100

and 1,000 ants for 600 different scenarios.

Keep in mind that all simulations run 1,000 times, and

the objective is still the same, finding a route s to minimize

f (s). I.e. find the safest possible escape route.

Figure 7 shows the behaviour where the evacuees start-

ing position is manipulated so that they all start from a fixed

location on board the ship, the room with id 229. The room

chosen to be particularly difficult to escape from is on the

opposite side of the ship’s escape area on the second floor —

7Two other simulations were carried out with similar setup but with
fires starting in the corner of the first floor and the middle of the second
floor. The results were similar to those shown in this paper — and are
therefore left out.
8The ants do not have any knowledge of the spread of the fire other
than what they observe through the function h(vi , t), so “best” means
most viable seen from the small windows available from the ants. In
practice, data from fixed and mobile fire sensors will populate h(vi , t).

so that the fire always occurs between the evacuees and the

escape area. Hence, the first room in the route s, the source

vs , is always “room 229”. Note that there still exists an

escape route, it is just more difficult to find.

Conversely, Fig. 8 shows the behaviour where the evac-

uees start from random locations on board the ship. Hence,

the first room in the route s is uniformly randomly selected

among all vi ∈ V . It is noteworthy the difficult situation in

Fig. 7 is remarkably similar to the over all situation in Fig. 8,

only with an over all higher value for f (s) for all algorithms.

A conclusion to be drawn from this is that even in the dif-

ficult situations ACO is able to find safe escape routes, but

requires more ants to reach convergence.

4.4 Realistic environment with smoke

This section takes into account that smoke significantly

reduces vision and movability of people affected by fire

hazards. In short, the model is updated with the function

m(vi, t) (see (5)) which represents to what extent people

are able to move considering the heavy smoke available.

The m(vi, t) is populated by the FDS tool [29] presented in

Section 4.3.

Consequently, the function f (s, t) is adjusted with the

above consideration to f ′(s, t):

f ′(s, t)=

{

1−�vi∈s(1−h(vi , t)) if m(vi, t)= true ∀vi ∈ s holds

1 otherwise

(12)

Hence, people get “stuck” in rooms with heavy smoke,

and any rooms in the escape route with people “stuck”

yields fatality for the evacuees.

Figure 9 shows the empirical results from this situa-

tion. This, execpt for considering smoke, is the exact same

experiment as shown in Fig. 8, but provides notably dif-

ferent results. Hence, f (s, t) and f ′(s, t) are very different

and the results show that the fatalities are much higher

when smoke is considered. This indicates that smoke has

a much greater impact on evacuations than fire. This is

in line with the literature which clearly states that smoke

is real killer, not heat or temperature [13]. Thus, a hypo-

thetical fire without smoke would be relatively easy to

escape from compared to an actual fire the produces

smoke.

The figure also shows that smoke significantly affects

the performance of the ACO algorithm, but can easily be

overcome by running enough ants so that it converges. Most

significantly, ACO with 1,000 ants still provide close to

optimal results.
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Fig. 6 Heat map visualization
illustrating the room temperature
as the fire spreads over time.
The color-code scale on the right
side shows the temperature

4.5 Realistic environment with ad-hoc networks

In emergency situations, information from smoke and fire

sensors, both stationary and from smartphones, is seldom

available to all. This is because networks, such as WiFi and

GPS, become unavailable in fire situations. As described

in Section 1.2 a mitigation for this is introduction of so

called ad-hoc networks, which means that temporary net-

works appear when people are within close range of each

other. The impact is that smartphones can only communi-

cate with other smartphones in close range, which in turn

means that only sensor data close by is available.
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Fig. 7 Experiment results in realistic environments from a fire starting
in the first floor. Evacuees starting from a fixed position in “room 229”

This simulation is done so that any function related to

vi is only available if it is n rooms away from the start-

ing position of the evacuees. Consequently, pheromones can

only update n rooms out. Say, if n is set to 5, it is a sim-

ulation of an ad-hoc network with a range of 5 rooms in

each direction, and the only information available is within

these 5 rooms. In essence, only the h(vi, t) functions and

amount of pheromones from these 5 rooms can be polled.

All other rooms are assumed safe even though they have

fatal fire. Note that as pheromones in a room vi aim at fore-

telling the safety of both room vi and following rooms in

any s containing vi .
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Fig. 8 Experiment results in realistic environments from a fire starting
in the first floor. Evacuees starting from random positions
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Fig. 9 Experiment results in realistic environments starting from
random locations with smoke affecting the movability of the evacuees

Figure 10 shows the results in simulated ad-hoc net-

works. Note that this is the same experiment as presented in

Fig. 8 where the complete network is available. For reasons

of clarity, Fig. 10 only shows from 350 to 600 s, and include

propagation setups 5 to 50. For comparative purposes, the

results from Fig. 8 are included where there were not

restrictions on propagations. All results are for ACO with

100 ants.

The figure clearly shows, in line with expectations, when

the number of rooms the algorithm can read sensor data

from increases, ACO is able to find a smaller value of

f (s, t). However, the difference is remarkably small. Even

with a network of only 5 rooms, it is able to find a very

good solution. Further, networks with 50 rooms yield and

f (s, t) very close to situations with sensor data from all

rooms available.
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Fig. 10 Experiment results in realistic environments starting from
random locations with ad-hoc networks where only part of the sensor
data is available

5 Conclusion

This paper presents an application using Ant Colony Opti-

misation (ACO) for finding safe escape routes in emer-

gency situations. ACO is used in five distinct environments.

Firstly, ACO operates in a stationary environment where

it quickly reaches a near optimal solution. Secondly, ACO

is run in dynamic situations where hazards rapidly change.

Further, ACO is evaluated in three realistic environments:

fire on board a ship without smoke, fire on board a ship with

smoke and fire on board a ship in an ad-hoc network sce-

nario. The realistic scenarios are achieved through set ups

from the Fire Dynamics Simulator tool.

In all tested scenarios ACO is empirically able to reach a

near optimal solution. In some setups, ACO with 1,000 ants

find the optimal route in almost all situations. This leads to

the unproven assumption that given enough ants, ACO will

always find the optimal escape route. In our further work, we

plan to formally verify that whether assumption is correct.

In real evacuation situations, most people escape together

in groups with their family and friends. Further, panic tends

to spread in emergency situations which in practice means

that many will not follow any provided escape routes. These

situations are also planned for further testing.

Additionally, we plan to examine methods for faster con-

vergence of ACO including testing the min-max variants

of ACO, and examining the possibilities of a multi layered

approach.

Most importantly, we are currently implementing a

smartphone application for safe escape planning that will

use the ACO planning.
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