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Abstract

We consider dynamical systems on domains that are not invariant under the dynamics –
for example, a system with a hole in the phase space – and raise issues regarding the meaning
of escape rates and conditionally invariant measures. Equating observable events with sets
of positive Lebesgue measure, we are led quickly to conditionally invariant measures that
are absolutely continuous with respect to Lebesgue (a.c.c.i.m.). Comparisons with SRB
measures are inevitable, yet there are important differences. Via informal discussions and
examples, this paper seeks to clarify the ideas involved. It includes also a brief review of
known results and possible directions of further work in this developing subject.

1 Introduction

The discussion of conditionally invariant measures in the context of dynamical systems was
introduced by Pianigiani and Yorke in [PY] in which they posed the following question: Consider
a particle on a billiard table whose dynamics are chaotic. Suppose a small hole is made in
the table. What are the statistical properties of the trajectories in this system? If pn is the
probability that a trajectory remains on the table until time n, what is the decay rate of pn?
More generally, if one starts with an initial distribution µ0, and µn represents the normalized
distribution at time n (i.e. assuming the particle has not escaped by time n), does µn converge
to some µ independent of µ0?

Such a measure µ, if it is well defined, is called a conditionally invariant measure for the open
billiard system. There are many natural questions surrounding these measures. For example,
one may consider the billiard table with a small hole as a perturbation of the billiard table
with no holes, and ask if the conditionally invariant measure of the open system converges to
the Liouville measure of the closed billiard system as the size of the hole tends to zero. An
affirmative answer can be regarded as a form of stability of the closed system.

Dynamical systems with holes are examples of systems on domains U that are not invariant
under the dynamics. In the billiard example, the part of the phase space corresponding to the
particle not being in the hole is our non-invariant domain of interest. Another familiar context
in which such domains arise is when U is a neighborhood of a non-attracting invariant set.
While such invariant sets may have measure zero, it is well known that they can have nontrivial
influence on global dynamics. For example, they can increase complexity, impede transport or
slow down the rate of mixing. In much of this paper, we will not distinguish between dynamical
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systems with holes and dynamics on non-variant domains. Without specifying the geometry of
the “hole”, or equivalently the complement of U , the two studies are mathematically equivalent.

Although current understanding of open dynamical systems is far from complete, some
progress has been made. As with closed systems, the first results are for uniformly expand-
ing or hyperbolic systems, the simplest dynamical models that support complex phenomena.
These include: expanding maps on R

n which admit a finite Markov partition after the introduc-
tion of holes [PY], [CMS1], [CMS2]; Smale horseshoes [C1],[C2]; Anosov diffeomorphisms [CM1],
[CM2], [CMT1], [CMT2]; and billiards with convex scatterers satisfying a non-eclipsing condition
(which eliminates some of the technical difficulties associated with billiards) [LM], [Ri]. These
are followed by results on piecewise expanding maps of the interval (without Markov partitions)
[BK], [BC], [LiM], [D1], and certain logistic maps [HY], [D2]. Open systems have also been
studied in probabilistic settings, namely countable state Markov chains and topological Markov
chains, beginning with [V] and more recently in [FKMP] and [CMS3]. Diffusion-enhanced escape
rates are studied in [CMS4].

In this paper, we will focus on deterministic dynamical systems. Most of the works cited
above contain detailed studies of specific systems. This paper is of a very different nature: we
hope it will serve as a useful introduction to the subject. Our aim is to collect in one place basic
ideas related to escape rates and conditionally invariant measures, and put them in a general,
conceptual framework. We review the main results, methods and ideas that are known without
getting into technical details of specific models. To this we add observations and discussions
that we hope will help clarify some of the points not made explicit in previous studies. Examples
are used for illustrative purposes every step of the way.

Among the points we seek to clarify is the comparison with SRB measures. Throughout
this paper, we adopt the view that observable or physically relevant events are represented by
positive Lebesgue measure sets. We are thus interested in conditionally invariant measures that
are absolutely continuous with respect to Lebesgue (a.c.c.i.m.). Analogies with SRB measures
for closed systems are both evident and inevitable, but as we will show, the situation is also
quite different: unlike SRB measures, a.c.c.i.m. can often be constructed arbitrarily, with
overlapping supports. This necessitates our separating those a.c.c.i.m. that are natural, in the
sense that they reflect the properties of the underlying systems, from those that are not. As we
will see, the meaning of “natural” is not always clear-cut, and the presence of large numbers of
“unnatural” a.c.c.i.m. complicates the interpretation of results. At the same time, similarities
between natural a.c.c.i.m. and SRB measures in uniformly hyperbolic systems are quite striking,
and we will draw on our knowledge of SRB measures for possible insight into the properties of
natural conditionally invariant measures in general.

2 Definitions and First Examples

In this section, we recall some basic definitions which generalize the notions introduced in the
example of the billiard table.

2.1 Basic Ideas and Questions

Setting and notation

Consider a dynamical system defined by a self-map T̂ : M̂ 	 of a set M̂ . This paper is
about dynamics in non-invariant regions. More precisely, we specify a subset M ⊂ M̂ for which
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T̂ (M) ∩M 6= ∅ and T̂ (M) 6⊂M , and study the dynamics in M .
Let H := M̂ \M . We sometimes think of H as a hole in the phase space, and keep track of the

iterates of a point x ∈M as long as they do not enter H. Once T̂ kx ∈ H, we say the point has
fallen in the hole and no longer consider it. Alternatively, we may be interested in the dynamics
near an invariant set Ω ⊂ M̂ that is not an attractor, and take M to be a neighborhood of Ω.
Without specifying the geometry of H, these two problems are mathematically equivalent.

The following notation is used throughout: For x ∈ M , the smallest n > 0 such that
T̂ n(x) ∈ H is called its time of escape and is denoted by E(x). For n ≥ 0, we let Mn := {x ∈
M : E(x) > n}; that is to say, Mn is the set of points that have not escaped after n steps. In
this notation, then, M0 = M , M0 ⊃M1 ⊃M2 ⊃ · · · , and M∞ = ∩n≥0M

n.
Let T := T̂ |M denote the restriction of T̂ to M . We shall refer to T : M → M̂ as an open

system, and to T̂ : M̂ 	 as the corresponding closed system. Even though we have introduced
open systems as derived from closed systems, the definition of T̂ outside of M is, in fact,
immaterial to much of our discussion.

In this paper, we focus on a specific context, although parts of the discussion do not require
the full force of the assumptions in this paragraph. We assume M̂ is a compact Riemannian
manifold, possibly with boundary, and T̂ : M̂ 	 is a piecewise differentiable transformation. We
assume also that H is open, M is the closure of its interior, and that ∂M , the boundary of M ,
is a piecewise smooth manifold of codimension 1.

Last, but not least, we adopt in this paper the view that observable events are those having
positive Lebesgue measure, by which we refer to the measure induced by Riemannian volume
on M̂ . This measure is denoted by m throughout.

Remark on notation: To remind ourselves that we stop considering orbits once they leave
M , we would like to speak of iterating T , as opposed to T̂ . Formally, this is impossible since the
range of T is not contained in its domain. For notational simplicity, we will adopt the following
shorthand: For n = 1, 2, · · · , we write T n := (T |Mn)n, T n

∗ µ := (T |Mn)n∗ (µ|Mn), and so on.
This formally introduces a conflict regarding whether T = T 1 is defined on M or M1, but no
ambiguity will arise for as long as only image points in M are considered.

Rates of escape

We begin with the most basic concept, namely the rate of escape for a given initial distribu-
tion. Let µ be a Borel probability measure on M . We define the upper and lower escape rates
of µ to be − log λ and − log λ respectively where

log λ := lim sup
n→∞

1

n
log µ(Mn) and log λ := lim inf

n→∞

1

n
log µ(Mn).3 (1)

Here, λ = λ(µ) and λ = λ(µ). If λ = λ = λ, then we say the rate of escape of µ is well defined
and equal to − log λ. Clearly, 0 ≤ λ ≤ λ ≤ 1, so that given any initial distribution, the escape
rate lies between 0 and ∞; the larger this value, the faster mass escapes from the system.

In the generality of the discussion thus far, it is obvious that λ and λ depend on µ: for the
same map one chooses easily initial distributions µ so that µ(Mn) = 0 for some n or µ(Mn) = 1
for all n. The following simple fact is useful to keep in mind: If µ and ν are two measures such

that C−1 ≤ dµ
dν ≤ C for some constant C > 0, then λ(µ) = λ(ν) and λ(µ) = λ(ν). We are

particularly interested in Lebesgue measure as initial distribution. The upper and lower escape
rates of m are denoted by − log Λ and − log Λ.

3We allow here the notation log 0 = −∞
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Conditionally invariant probability measures

For any Borel measure µ on M , let T∗µ denote the measure on M defined by T∗µ(A) =
µ(T−1(A)) for all Borel subsets A ⊂ M . A Borel probability measure µ on M is said to be
conditionally invariant with respect to T if

T∗µ(A)

T∗µ(M)
= µ(A) (2)

for every Borel subset A of M . The conditional invariance equation (2) says that when the
measure µ loses a fraction of its mass to the hole, we renormalize by the remaining mass to
recover the original measure.

Let µ be a conditionally invariant measure, and let λ := T∗µ(M) = µ(M1). Iterating
equation (2) yields T n

∗ µ(A) = λnµ(A) for all Borel sets A ⊂ M . In particular, µ(Mn) =
T n
∗ µ(M) = λnµ(M), so − log λ is the escape rate defined above.

We call µ a trivial conditionally invariant measure if λ = 0 or 1. If λ = 0, then we must have
supp(µ) ⊆M\M1, so that effectively all the mass falls into the hole on the first iterate. We will
not be interested in such measures. If, on the other hand, λ = 1, then T (x) ∈ M for µ-a.e. x.
Such measures are essentially blind to the hole.

Observe that if µ is a nontrivial conditionally invariant measure, then for µ-a.e. x ∈M and
every n ∈ Z

+, there exists y ∈ M such that T i(y) ∈ M for all i ≤ n and T n(y) = x, i.e., the
support of µ is contained in the set of points with at least one good pre-image for all time. In
particular, if T̂ is invertible, then for µ-a.e. x ∈M , T̂−n(x) ∈M for all n ≥ 0.

With regard to the existence of nontrivial conditionally invariant measures, we see that a
necessary and sufficient condition is the presence of a semi-infinite orbit which stays out of the
hole in backwards time, but which falls in the hole at some finite future iterate. Such an orbit
is given by a sequence of points {xi}n

i=−∞ ⊂ M satisfying T (xi) = xi+1 and T̂ (xn) ∈ H. For
any 0 < λ < 1, a nontrivial conditionally invariant measure with escape rate − log λ is easily
constructed on such an orbit by putting µ{xi} = λn−i(1 − λ) for each i. Since µ{T−1xi} =
µ{xi−1} = λn−i+1(1 − λ) = λµ{xi}, conditional invariance follows.

Given the flexibility with which general conditionally invariant measures can be constructed
– and the fact that we equate observable events with positive Lebesgue measure sets – one may
wish to consider only absolutely continuous conditionally invariant measures, i.e. conditionally
invariant measures that have densities with respect to m (abbreviated a.c.c.i.m.). We will ex-
plain momentarily why this class alone is too restrictive for our purposes, but first we summarize
the questions that have been raised:

Questions raised

– Under what conditions are escape rates well defined?

– What about the important case of m as initial distribution?

– Can “reasonable” initial distributions have different escape rates?

– Do a.c.c.i.m. exist in general?

– Are they unique?

– If not, are some a.c.c.i.m. more natural than others? What does that mean?

– Must the escape rates of natural a.c.c.i.m. be compatible with that of m?

– How are natural a.c.c.i.m. constructed?

– Can they be obtained by pushing forward Lebesgue measure and renormalizing?
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Observe that in the case where T̂ is invertible, any conditionally invariant measure is, by
definition, supported on M̂ \ (∪n≥0T̂

n(H)). As we will see, this set often has zero Lebesgue
measure. When that happens, all conditionally invariant measures are singular with respect to
m. To the list of questions above, then, we must add the following:

– What is a natural replacement for a.c.c.i.m. for invertible maps?

In the rest of this note, we will answer these questions as best we can. As the reader will
see, the picture is far from complete, and our answers will sometimes lead to further questions.
This in some sense is part of the purpose of this paper.

We begin with two examples.

2.2 First examples

Example 1. Tent Map with a Hole. Let ε > 0 be a small number, and let T̂ : [0, 1] 	 be
such that

T̂ (x) =

{ 2
1−εx, 0 ≤ x ≤ 1

2 (1 − ε)
2

1−ε(1 − x), 1
2 (1 − ε) < x ≤ 1

.

Here H = (1
2(1 − ε), 1

2 (1 + ε)) is the hole. We do not specify T̂ on H since that is irrelevant. It
is an easy calculation to see that normalized Lebesgue measure on M := [0, 1]\H is an a.c.c.i.m.
for T with λ = 1 − ε.

Example 2. Triadic Baker Map. Let M̂ be the unit square [0, 1] × [0, 1] divided into three
vertical strips V1, V2 and V3 of equal width, and let T̂ be such that T̂ (Vi) = Hi where H1, H2 and
H3 are horizontal strips as shown. On each Vi, T̂ is affine and area-preserving: Vi is contracted
by a factor of 1

3 in the vertical direction and expanded by a factor of 3 in the horizontal direction.
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Figure 1. The triadic baker map.

Now introduce the hole H = V2, so that M = V1 ∪ V3. Since T̂ (V2) = H2, the support
of any conditionally invariant measure cannot meet this set. Similarly, it cannot meet T̂ 2(V2),
which is the union of horizontal strips that are the middle thirds of H1 and H3. Continuing
this line of argument, we see that any conditionally invariant measure must be supported on
M̂ \ ∪n≥0T̂

n(V2), which is equal to ([0, 1
3 ] ∪ [23 , 1]) × Γ where Γ is the middle thirds Cantor set

in the vertical direction.
In this simple example, it is in fact easy to see what one obtains by pushing forward Lebesgue

measure and renormalizing. Starting with m on M , one checks that with Λ = 2
3 , Λ−nT n

∗ m is
supported on the union of 2n+1 horizontal rectangles intersected with M , and is uniformly
distributed on it. Thus as n tends to ∞, Λ−nT n

∗ m converges to µ := normalized Lebesgue
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measure on [0, 1
3 ] ∪ [23 , 1] crossed with the (1

2 ,
1
2)-Bernoulli measure on Γ. This measure µ is, by

any standard, a natural conditionally invariant measure.
Notice that µ is singular with respect to m (even though T̂ preserves m), and that it has

smooth conditional measures on horizontal lines, which are unstable manifolds of T̂ .

Remark. Example 2 suggests a strong resemblance between a.c.c.i.m. in open systems and
SRB measures in closed systems. Here, then, is our answer to the last question in Sect. 2.1:
For invertible maps, conditionally invariant measures with absolutely continuous conditional

measures on unstable manifolds are natural replacements for a.c.c.i.m. To avoid cumbersome
language, we use a.c.c.i.m. as an abbreviation for these measures as well.

3 A Cautionary Note

The two examples above paint a simple, unambiguous picture for a.c.c.i.m. and their relation
to SRB measures, but unless more conditions are imposed on this class of measures, the actual
situation cannot be more different. In this section we demonstrate for non-invertible maps how in
quite general settings one can construct uncountably many a.c.c.i.m. with overlapping supports
for any given λ ∈ [0, 1). Similar constructions of conditionally invariant measures smooth on
unstable manifolds are easily carried out for Anosov diffeomorphisms.

3.1 Construction of many a.c.c.i.m. with overlapping supports

The setting we choose to illustrate our point is as follows: Continuing to use the notation in
Sect. 2.1, we assume that on an open subset V of M of full Lebesgue measure, T is locally
invertible and nonsingular with respect to m with Jacobian JT > 0. We assume further that
for each x ∈ V ,

∑

z∈T−1x(JT (z))−1 <∞.
The idea is to identify a disjoint sequence of sets which march progressively toward the hole

and eventually fall in. Additionally, these sets should consist of points with good pre-images.
More precisely, for each n ≥ 1, we let En := {x ∈ M : E(x) = n}, so that En = Mn−1 \Mn.
Let G := {x ∈ M : for every n ≥ 1,∃zn ∈ M such that T i(zn) ∈ M for all 0 ≤ i < n and
T n(zn) = x}.

Theorem 3.1 Let (T̂ , M̂ ,H) be as above. We assume

m(E1 ∩G) > 0.

Then given any λ, 0 ≤ λ < 1, T admits uncountably many a.c.c.i.m. with escape rate − log λ.

Proof. Let Gn := En ∩G. We observe that

(i) for n = 1, 2, . . ., the sets Gn are pairwise disjoint with m(Gn) > 0;
(ii) for each n > 1, T (Gn) = Gn−1 and T−1(Gn−1) ∩G = Gn.

That T (Gn) ⊂ Gn−1 is obvious. Consider x ∈ Gn−1. Since x ∈ G, there exists a sequence of
pre-images {zi}∞i=1 associated with x such that T (zi) = zi−1 and T i(zi) = x for all i. Note that
each zi ∈ G as well using the same sequence. In particular, z1 ∈ Gn. This proves (ii). As for
(i), the sets Gn are pairwise disjoint because the En are, and the fact that they have positive
measure follows inductively from m(G1) > 0, T (Gn) = Gn−1 and JT > 0.
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Fix λ such that 0 ≤ λ < 1, and let ψ ≥ 0 be an integrable function with
∫

G1 ψdm = 1. On
G1, define

f(x) = (1 − λ)ψ(x).

Note that
∫

G1 fdm = 1 − λ. This is the amount that falls in the hole at time 1.
Proceeding inductively, suppose f has been defined on Gn−1. For y ∈ Gn, we let T (y) = x,

and define

f(y) =
λf(x)

∑

z∈T−1x∩G

1

JT (z)

, (3)

so that f is constant on T−1x ∩G. Set f = 0 on M̂ \ ∪nG
n.

To prove conditional invariance with escape rate − log λ, it suffices, in light of (i), (ii) and
the definition of f on G1, to check that for each n > 1,

PT̂ (f |Gn) = λ f |Gn−1

where PT̂ is the usual Perron-Frobenius operator associated with T̂ . This is true by the way we
have defined f in equation (3). Finally, we check that

∫

M̂
fdm =

∞
∑

n=1

∫

Gn

fdm =

∞
∑

n=1

λn−1

∫

G1

fdm =

∞
∑

n=0

λn(1 − λ) = 1.

Since the choice of ψ is entirely arbitrary, the construction above gives uncountably many
a.c.c.i.m. as desired. 2

Remark. As the proof above shows, a.c.c.i.m. can be constructed quite arbitrarily – with
overlapping supports if one so desires – once a suitable sequence of sets in M is located. Given
arbitrary λ ≥ λ, similar constructions give absolutely continuous initial distributions with − log λ
and − log λ as their upper and lower escape rates.

We conclude that absolute continuity with respect to m alone is not a sufficient condition for

identifying a meaningful class of conditionally invariant measures.

3.2 Examples

We revisit Example 1 in Sect. 2.2, the tent map with a hole. Observe that in this example,
G = [0, 1] \ H, and for each n ≥ 1, Gn = En is the union of 2n disjoint intervals of length
(1−ε

2 )n each. The following are three examples of a.c.c.i.m. obtained from the constructions in
the proof of Theorem 3.1:

(i) λ = 1−ε and ψ = 1
m(E1)

. The construction in Theorem 3.1 gives µ = normalized Lebesgue

measure on [0, 1]\H. It is easy to check that λ = Λ where − log Λ is the escape rate of
Lebesgue measure.

(ii) Let E1 =: [a1, b1] ∪ [a2, b2]. On [a1, b1], we define ψ(x) = 1
m(E1)

(

1 + c sin 2π(x−a1)
b1−a1

)

; ψ is

defined analogously on [a2, b2]. For suitable choice of c, the construction in Theorem 3.1
yields an a.c.c.i.m. with density bounded away from zero and infinity, so it follows that
λ = Λ. The density, however, is not of bounded variation.4

4We mention the idea of bounded variation because it is well known that densities in this class are preserved
by piecewise expanding maps (without holes). The connection will become clear in Section 5.
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(iii) Choose α < 1
2 and set f = αn on En for n ≥ 1. The resulting conditionally invariant

measure has a density of bounded variation and λ = α(1 − ε) so that its escape rate is
strictly greater than − log Λ. (This construction is due to Chernov and van den Bedem;
see [BC].)

4 Rates of Escape

In light of Theorem 3.1, we assume in this section that Lebesgue measure, or measures equivalent

to it with densities bounded away from zero and infinity, are the only natural initial distributions,
and review some basic facts about escape rates. This point of view may be overly simplistic (see
the Remark at the end of Sect. 4.2), but we will adopt it for purposes of the present discussion.
We focus in this section on escape rates only; conditionally invariant measures are discussed in
Section 5.

The uniform hyperbolic picture is, as usual, a model of good behavior. A result for these
systems and its partial generalization are given in Sect. 4.1. Examples with super-exponential
and sub-exponential escape rates are discussed in Sect. 4.2.

4.1 Relation to Lyapunov Exponents and Entropy

Let X be a compact metric space, T̂ : X 	 a continuous map, and ϕ : X → R a continuous
function. Recall that the topological pressure of T̂ for the potential ϕ is defined to be

P (T̂ , ϕ) := sup

{

hν(T̂ ) +

∫

ϕdν

}

(4)

where the supremum above is taken over all T̂ -invariant Borel probability measures ν on X and
hν(T̂ ) is the metric entropy of T̂ with respect to the measure ν. A measure that realizes the
supremum in (4) is called an equilibrium state of T̂ for the potential ϕ.

Consider now a compact invariant set Ω of a diffeomorphism T̂ with the property that T̂ |Ω
is uniformly hyperbolic, and let M be a small neighborhood of Ω. We assume Ω is the maximal
invariant set in M , i.e., Ω = ∩n∈ZT̂

n(M). It is proved in [B] and [Y1] that the escape rate
− log Λ from M is well defined with

log Λ = P (T̂ |Ω, ϕ|Ω), ϕ = − log |det(DT̂ |Eu)|. (5)

Moreover, 0 < Λ ≤ 1; Λ = 1 if and only if Ω is an attractor.
In general, without any assumptions on T̂ other than C2, we continue to have

log Λ ≥ sup
{

hν(T̂ ) −
∑

χ+
i (ν)

}

. (6)

Here ν ranges over all ergodic Borel probability measures of T̂ , and χ+
i (ν) are the positive

Lyapunov exponents with respect to ν counted with multiplicity [Y1]. The idea of the proof is
as follows: Let

V (x, n, ε) := {y ∈M : d(T̂ ix, T̂ iy) < ε for 0 ≤ i < n}.

A general fact proved in [Y1] says that for ν-typical x, m(V (x, n, ε)) . e−n
P

χ+

i
(ν). The bound

in (6) then follows from the fact that Mn contains ∼ enhν disjoint V (x, n, ε).
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The reverse inequality to (6) is not valid without some additional hypotheses. The simplest
example in which the inequality fails is when M is a neighborhood of the so-called Figure-8
attractor: Since Ω is an attractor, the escape rate is zero. On the other hand, Dirac measure at
the saddle fixed point is the only invariant measure, so the right side of (6) is strictly negative.
For another example, see [BBS].

Figure 2. The figure-8 attractor.

4.2 Escape rates that are sub-exponential or super-exponential

In this subsection we consider some situations where Lebesgue measure escapes at super-
exponential rates (corresponding to Λ = 0) and at sub-exponential rates (corresponding to
Λ = 1).

Our first example illustrates how unbounded derivatives may lead to super-exponential es-
cape rates. While this example is very simple and somewhat artificial, unbounded derivatives do
occur naturally in physical systems modeling the motion of particles or objects with collisions.

Example 3. An expanding map with unbounded derivative. Consider the map T̂ :
[0, 1] 	 defined by

T̂ (x) =

{ √
2x, 0 ≤ x ≤ 1

2
2(x− 1

2), 1
2 < x ≤ 1

.

Let M = [0, 1
2 ] and note that both T̂ and T admit a finite Markov partition. From Theorem 3.1,

we know that this system has many a.c.c.i.m.s with any escape rate 0 ≤ λ < 1. We claim that
none of them is a good indicator for what happens to Lebesgue measure. A simple calculation
gives m(Mn) = 2 · 2−2n+1

, so that Lebesgue measure escapes at a super-exponential rate.

Example 4 below describes a simple situation in which Lebesgue measure escapes at a sub-
exponential rate.

Example 4. An expanding map with a neutral fixed point. Let T̂ : [0, 1] 	 be defined
as follows:

T̂ (x) =

{

x+
√

2x3/2, 0 ≤ x ≤ 1
2

2x− 1, 1
2 < x ≤ 1

.

The only restriction we put on H is that M should contain a neighborhood of the origin. We
will show that m(Mn) ≥ c

n2 for all sufficiently large n. Let ψ denote the inverse of T̂ on
[0, 1

2 ]. Define x1 = ψ(1
2 ) and in general, let xn = ψ(xn−1) = ψn(1

2) for each n > 0. We
observe that xn has the same asymptotics as the sequence { 1

k2}: Let ∆n = xn − xn+1. Then
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∆n = T (xn+1) − xn+1 =
√

2(xn+1)
3/2, whereas 1

n2 − 1
(n+1)2

∼ 1
n3 = ( 1

n2 )3/2. It follows that if

xn ∈ [ 1
(k+1)2 ,

1
k2 ], then there is a uniform bound on the number of intervals [ 1

(k+1)2 ,
1
k2 ] which

intersect [xn+1, xn] and vice versa. Since M contains a neighborhood of the origin, there exists
an n0 ≥ 0 such that [xk, xk−1] ⊂ M for all k ≥ n0. It follows that [xk+n0

, xk−1+n0
] does not

fall in the hole until at least time k, so that [xk+n0
, xk−1+n0

] ⊂ Mk−1\Mk. We conclude that
m(Mk−1) ≥ c

(k+n0)2
.

Our next example consists of a class of objects sometimes referred to as Markov towers.
These objects were introduced in [Y2] and [Y3]. They appear naturally as Markov extensions
of many nonuniformly hyperbolic systems, generalizing the idea of Markov partitions (see e.g.
[CY]). The structure of a tower allows for “tails” in return times with various asymptotics which
have been shown to carry much of the statistical information of the system. For example, return
times R with m{R > n} ∼ 1

nα correspond to polynomial rates of correlation decay.

Example 5. Markov towers: tail bounds and escape rates. We go directly to the tower
map, which we denote by T̂ : M̂ 	, ignoring the dynamical system of which this tower is intended
to be a Markov extension. Roughly speaking, M̂ has the structure

M̂ = {(x, n) ∈ ∆̂0 × N : R(x) > n}

where ∆̂0 ⊂ M̂ is a set with m(∆̂0) > 0 and R is a return time function to the set ∆̂0. The set
∆̂ℓ := ∆̂|n=ℓ is called the ℓth level of the tower. The tower map T̂ is given by

T̂ =

{

T̂ (x, n) = (x, n+ 1) if n+ 1 < R(x)

T̂ (x, n) = (TR(x), 0) if n+ 1 = R(x)
.

That is to say, the action of the tower map T̂ is to map a point up the levels of the tower until
time R at which time the point is returned to the base ∆̂0. The definition of T̂ implies that for
every ℓ ≥ 0, T̂ carries m on ∆̂ℓ ∩ T̂−1∆̂ℓ+1 to m on ∆̂ℓ+1, i.e. Lebesgue measure is preserved as
one goes up the tower. (Notice that no such assumption is made about the map that takes the
top level of the tower back to ∆̂0.) On ∆̂0 there is a countable partition Z with the following
properties: R is constant on each element ω ∈ Z, and TR(ω) maps ω bijectively onto ∆̂0. For
more detail, see [Y3].

We introduce holes into the tower as follows. For simplicity, we consider only Markov holes,
i.e. Hℓ on the ℓth level of the tower is the union of the T̂ ℓ-images of a finite number of elements
of Z. If T̂ ℓω ⊆ Hℓ, we also throw out all sets of the form T̂ kω for k > ℓ since nothing will be
mapped there once the hole is introduced. We let ∆ℓ denote the ℓth level of the tower after these
deletions and let M = ∪∆ℓ.

Consider the case where m∆ℓ ∼ ℓ−α for some α > 1. Since T−n∆n ⊂ ∆0 and T preserves
Lebesgue measure mapping up the levels of the tower, one sees that m(Mn) ≥ m(T̂−n∆n) =
m∆n ∼ n−α so that Lebesgue measure escapes at a polynomial rate.

If, on the other hand, we have a tower with exponentially decreasing tails, m∆ℓ ∼ θℓ for
some θ < 1, then for sufficiently small holes, it is shown in [D1] that an a.c.c.i.m. exists with
density bounded away from zero on M . This implies the exponential escape rate of Lebesgue
measure.

Remark on initial distributions. We have, for simplicity, assumed in the discussion above
that the only natural initial distributions µ0 are measures equivalent to m; that is likely to be
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an over-simplification. For example, it is quite natural to take µ0 to be an SRB measure of the
corresponding closed system, the rationale being that if the “leak” starts only after the system
has been running for some time, then the measure that best describes its state at the start of
the leak would be its SRB measure. Finally, in open systems that are in contact with larger
systems (“heat reservoirs”), µ0 tends to belong to certain specific classes. It is probably prudent
to retain a certain amount of flexibility without viewing all initial distributions as equal.

5 Conditionally Invariant Measures

In this section we review three types of methods for constructing or proving the existence
of a.c.c.i.m., and summarize the results obtained thus far. The first method relies on the
linear structure of conditional transfer operators; the second seeks to show that normalized
pushed-forward densities lie in certain compact sets; and the third is by introducing Markov
structures. All three follow closely standard techniques for constructing SRB measures. A new
consideration not present in discussions of SRB measures is the degree to which the measures
constructed reflect the properties of the systems in question. It may be useful to keep in mind
the cautionary note in Sect. 3.1 while reading this section.

5.1 Interpretation of results

Before embarking on a discussion of methods of construction, we first describe what we hope to
achieve. Define the normalized operator

T1µ =
T∗µ

|T∗µ|

where |T∗µ| = T∗µ(M) and µ is any Borel probability measure for which |T∗µ| 6= 0.

The ideal situation. The best scenario is one in which for some Borel measure µ,

T n
1 m → µ as n→ ∞ (7)

where convergence is at least in the weak∗ topology. If (7) holds and µ is a point of continuity5

for T1 acting on a suitable set of measures including m, then: (i) |T∗µ| = Λ, the escape rate of
Lebesgue measure; (ii) T∗µ = Λµ, and µ is the conditionally invariant measure of interest.

Remarks. We would like to think of µ defined by (7) as our natural a.c.c.i.m. but there are
two complications:

1. µ obtained from (7) may not be an a.c.c.i.m.. Indeed, there are situations for which (7) holds
but no natural a.c.ci.m. exists. (See Example 4, where T n

1 m converges to the Dirac measure at
the fixed point 0.) Whether or not the limit µ in (7) has a density, it gives a good indication of
what the distributions T n

1 m for large n look like, and that is important in practical situations.
Where µ is not an a.c.c.i.m., however, the open system (T, µ) by itself may not be especially
enlightening.

2. One may wish to strengthen (7) to require that T n
1 µ0 → µ for a reasonably large class of

µ0, such as those with densities. From Sect. 3.1, we know that this would not make sense in

5See [BB] for possible anomalies if this condition is not met.
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general. Indeed Sects. 5.2, 5.3 and 6 demonstrate quite clearly that in general, one must suitably
limit the class of allowed initial distributions µ0 – in a way that depends on the characteristics
of the system – or there can be no common limit measure µ. A model-dependent notion of
“naturalness” for a.c.c.i.m. is not satisfactory, but that, unfortunately, is the state of affairs.

The next best case. When we are unable to prove the convergence of T n
1 m, or when T n

1 m does
not converge, the next best scenario is to have some type of convergence on average. Examples
of relevant types of averages are

1

n

∑

i<n

T i
∗m

|T i
∗m| or

1

n

∑

i<n

λ−iT i
∗m or

∑

i<n λ
−iT i

∗m
∑

i<n λ
−i|T i

∗m| .

The limit measures µ so obtained are fairly natural, and it is not unreasonable to think of
their escape rates as the average escape rates of Lebesgue measure. (The conditional invariance
of µ, however, is not always transparent.) Without requiring convergence, one may consider
accumulation points of the sequences above. Needless to say, the weaker the condition satisfied,
the more tenuous the claim that the resulting objects represent the true escape dynamics of the
system.

Other possibilities. Suppose we are not able to prove (7) directly, but find by some other
means an a.c.c.i.m. µ with T∗µ = λµ and dµ

dm = f . Then provided that C−1 ≤ f ≤ C for some
constant C, we may conclude that λ = Λ (see Sect. 2.1), and if f is only bounded away from
zero or infinity, but not both, then one of the inequalities remains valid (for example, if we know
only that f ≥ C−1, then λ ≥ Λ). Bounding the density above and below can sometimes be used
to prove uniqueness in a certain class of functions (see Sect. 5.3). See also the last Remark at
the end of Section 4.

One final point: Recall that there are two kinds of a.c.c.i.m.: the first type of conditionally
invariant measure is absolutely continuous with respect to m, while the second is smooth only
on unstable manifolds. For simplicity we will focus mostly on the first kind, noting that all
additional technical difficulties in going from invariant densities to SRB measures in closed
systems appear also in the treatment of a.c.c.i.m. of the second kind.

5.2 Conditional transfer operators and eigenvalue problems

In situations where T̂ has invariant densities, (7) is often deduced from transfer operator ar-
guments. More precisely, assume T̂ is locally invertible with Jacobian JT̂ . The usual Perron-

Frobenius or transfer operator associated with T̂ is defined by

PT̂ f(x) :=
∑

y∈T̂−1x

f(y)

|JT̂ (y)|
.

Using T instead of T̂ , and letting both f and PT f be functions defined on M , we have the
conditional transfer operator

PT f(x) :=
∑

y∈T−1x

f(y)

|JT (y)| .

That is to say,
PT f = PT̂ (f̂ · 1M1)

12



where f̂ is any extension of f to M̂ . Observe that the operator PT , which we will call P from
here on, satisfies the usual iterative relation PT n = Pn

T . We define the normalized operator P1

by

P1f =
Pf

|Pf |L1(M)

and note that if f is the density corresponding to a measure µ, then P1f is the density corre-
sponding to T1µ.

Spectral properties of P
This method is a direct generalization of the corresponding analysis for PT̂ .
Suppose that with P acting on a Banach space (B, ‖ · ‖) with B ⊂ L1(M), one finds an

eigenvalue λ ∈ (0, 1] with eigenfunction f ≥ 0. Let f be such that
∫

fdm = 1. It follows

immediately that T∗µ = λµ where µ is the measure with dµ
dm = f .

If the operator P is quasi-compact and λ has multiplicity one and is the unique eigenvalue of
maximum modulus, then the linear structure of P implies the following: (i) B = H⊕{f} where
P(H) ⊂ H and {f} denotes the 1-dimensional space spanned by f , and (ii) for all g ∈ B\H, there
exists c(g) 6= 0 such that ‖λ−nPng − c(g)f‖ → 0; equivalently, ‖Pn

1 g − f‖ → 0. If furthermore
there exists g ∈ B \ H such that g is bounded away from zero and infinity, then λ = Λ where
− log Λ is the escape rate of m, and T n

1 m → µ. This is the ideal case.
For a system without holes, eigenfunctions h of PT̂ associated with eigenvalues α 6= 1 cannot

give rise to probability measures due to the identity

α

∫

M̂
h dm =

∫

M̂
PT̂h dm =

∫

M̂
h dm,

which implies that h cannot be nonnegative. By contrast, once a hole is introduced into the
system, the second equality above becomes an inequality. In general we expect to find many
positive eigenfunctions in B (see the example of Sect. 3.2). In the setting of the last paragraph,
since α < λ, we have λ−nPnh→ 0, so that all conditionally invariant densities h ∈ B other than
f lie in H and have escape rates greater than − log λ.

The quasi-compactness of the transfer operator has been proven for piecewise expanding
maps of the interval with holes in [LiM]; see Section 6.

Projective Cones

A second method uses the Hilbert or projective metric due to G. Birkhoff [Bi]. We review
the basic setup: Given a vector space V, a convex subset C ⊂ V is called a cone if: (i) C∩−C = ∅;
(ii) αC = C for all α > 0; (iii) for all f, g ∈ C, if αn ∈ R, αn → α, and g − αnf ∈ C for each n,
then g − αf ∈ C ∪ {0}. The Hilbert metric on C is defined by

d(f, g) = log
β(f, g)

α(f, g)

where α(f, g) = sup{a > 0 | g − af ∈ C} and β(f, g) = inf{b > 0 | bf − g ∈ C}. Now
let L : V → V be a linear operator, and assume L(C) ⊂ C. We define the diameter of L(C)
to be ∆ := supf,g∈C d(Lf,Lg) ≤ ∞. A result of [Bi] implies that for all f, g ∈ C, d(Lf,Lg) ≤
tanh(∆

4 )d(f, g). In particular, this means that if ∆ <∞, then L has a uniform rate of contraction
α = tanh(∆

4 ) < 1 in the Hilbert metric.
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Returning to our setting, if P = L meets the conditions above with respect to appropriate
V and C, then we may conclude the existence of a unique conditionally invariant density f ∈ C
with escape rate λ =

∫

Pf dm. Let µ be the a.c.c.i.m. with density f .
Proving that T n

1 ν → µ where ν has density in C requires an extra argument. Notice first
that the contraction above is in the Hilbert metric. Following [L], this contraction can be passed
to norms | · | on V which are adapted to C (i.e. for all g, h ∈ C, h− g ∈ C and h+ g ∈ C implies
|h| ≥ |g|) via

|g − h| ≤
(

ed(g,h) − 1
)

|g| for all g, h ∈ C with |h| = |g|.

In our setting, if for example the L1 norm is adapted, then iterating P and noting that |Pn
1 g|1 =

|Pn
1 f |1 = 1 (even though the corresponding statement is false for P), we obtain

|Pn
1 g − f |1 = |Pn

1 g − Pn
1 f |1 ≤ ed(Pn

1
g,Pn

1
f) − 1

= ed(Png,Pnf) − 1 ≤ eα
nd(f,g) − 1 .

We have used in the second line that d is a projective metric and so invariant under scalar
multiples. This implies that Pn

1 g → f in L1 for all g ∈ C at a uniform exponential rate. As
before, if 1 ∈ C or if there exists any g ∈ C which is bounded away from zero and infinity, then
λ = Λ. This again is the best case scenario.

This method was introduced for closed systems in [FS] and [L]. For open systems, it was
used for 1D piecewise expanding maps with holes in [LiM].

5.3 Relative compactness of pushed-forward densities

What one hopes to do here is to identify a compact convex subset K of a suitable Banach space
of functions with the property that (i) Pn0

1 1 ∈ K for some n0 ≥ 0 and (ii) for all f ∈ K, P1f ∈ K.
We then try to locate an a.c.c.i.m. in K.

Fixed point theorems

We consider P1 : K → K, and seek to use, for example, the Schauder Fixed Point Theorem.
A fixed point for P1 yields an a.c.c.i.m. Notice that no linearity is required of P1 (it is not
linear); however, one has to make sure that it is defined and continuous on all of K (e.g. it is
not defined for densities which are supported on finitely many pre-images of the hole).

Once a fixed point is identified, the following trick has been used to give uniqueness: Suppose
that (i) there is a slightly larger set D ⊃ K with the property that for all g ∈ D, Pn

1 g → K,
and (ii) all conditionally invariant densities in K have the same escape rate and are bounded
away from 0 and ∞ with uniform bounds. Let f0 and f1 be two such densities. Consider
fs = sf0 + (1 − s)f1, s not necessarily in [0, 1]. Notice that fs is a legitimate conditionally
invariant density as long as fs ≥ 0. A contradiction is reached if the family {fs} extends beyond
K into D.

This approach has been used to study expanding maps in R
n which admit a finite Markov

partition after the introduction of holes [PY], piecewise expanding maps of the interval with
generic small holes [BC], and Markov towers with holes [D1].

Averaging techniques

Averaging techniques for open systems are more difficult to implement because of the nor-
malization:

∫

Pgdm <
∫

gdm in general for g ≥ 0, and P1 is not linear (so for example
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P1(
1
n

∑

i≤n Pi
1(g)) 6= 1

n

∑

i≤n Pi+1
1 (g)). We outline below a version of the method proposed

in [CMM1]:
Let α = max{r ∈ R :

∑∞
i=0 r

im(M i) <∞} <∞ and assume that
∑∞

i=0 α
im(M i) = ∞.6 Let

fn =

∑n
i=0 α

iPi1
∑n

i=0 α
im(M i)

.

The hope is to find K such that (i) Pi
11 ∈ K for all i; (ii) linear combinations of Pi

11 such as fn

are also in K; and (iii) if fn → f say in L1, then f ∈ K. Let µn be the measure with density fn,
and µ a limit point of µn in the sense below. To see that µ is conditionally invariant, we write

T∗µn(A) =

∑n
i=0 α

iT i+1
∗ m(A)

∑nj

i=0 α
im(M i)

= α−1µn(A) − α−1 m(A)
∑n

i=0 α
im(M i)

+
αnT n+1

∗ m
∑n

i=0 α
im(M i)

.

As n→ ∞, the second term vanishes since the series diverges. One expects in general the third
term to vanish as well7 (notice that the series cannot diverge exponentially by our choice of α).
With both terms vanishing, it follows that µ is conditionally invariant with λ = α−1. Notice
that this method does not assume that the escape rate of Lebesgue measure exists. In general,
α−1 = Λ̄, which is associated with the slowest rate of escape.

Remark. Observe that the techniques presented in this subsection by themselves do not imply
T n

1 m → µ where µ is any of the a.c.c.i.m. constructed. Such convergence, if valid, must be
proved separately. This remark also applies to the construction of SRB measures for closed
systems, in which the following two steps are often carried out separately: (1) One constructs
first, by pushing forward Lebesgue measure on an unstable leaf and averaging as above, an
invariant measure µ with smooth conditional measures on unstable manifolds; (2) one then
deduces, using the absolute continuity of the stable foliation, that the set of points future-generic
with respect to µ has positive Lebesgue measure. Some authors refer to measures µ with the
property in (1) as “SRB measures” and those with the property in (2) as “physical measures”;
see [ER] and [Y4]. For open systems, it is not clear what the notion analogous to “physical
measure” should be: with respect to any conditionally invariant measure and possibly Lebesgue
measure, the trajectory corresponding to almost every initial condition eventually escapes.

5.4 Introducing Markov structures

The following two sets of techniques have been used on systems that are uniformly expanding
or hyperbolic, or predominantly so with mild singularities or discontinuities.

Approximation by finite state Markov chains

This method follows closely ideas developed by Sinai [S] for closed systems.
Suppose a hyperbolic map T̂ : M̂ 	 admits a finite Markov partition R = {R1, . . . , Rq}.

Consider first the case when H = Rq. We use the partition to code the system in the usual way
and define the transition matrix Π(0) by

Π
(0)
i,j =

m(Ri ∩ T−1Rj)

m(Ri)
for i, j ≤ q − 1

6If
P

∞

i=0
αim(M i) < ∞, then one can introduce corrective factors to make the series diverge. See [CMM1] for

details.
7fn can be defined differently if this is a problem; see [CMM1]
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where as usual T is the restricted map induced by H. Note that Π(0) is substochastic since
entries involving H are omitted. Assuming the usual aperiodic and irreducible conditions on
Π(0), we obtain a unique probability vector, p(0), corresponding to the eigenvalue of largest
magnitude, λ(0).

Refining the partition R by R(n) =
∨n

i=−n T̂
i(R), we obtain a sequence of matrices, Π(n),

which yield successively closer approximations to T since T is increasingly linear on elements
of R(n). Under suitable conditions, the sequence of probability vectors p(n) converges to an
a.c.c.i.m. for T with eigenvalue λ = limn→∞ λ(n). Control of the sequence {Π(n)} is typically
achieved by first proving that there exists a unique family of invariant densities on the unstable
leaves of the system which attracts all smooth conditional densities under the action of P1. This
property implies that Lebesgue measure converges to this a.c.c.i.m. and that Λ = λ.

This method was first applied to Smale horseshoes in [C1] and [C2]. Later, it was applied
to a simple class of billiards satisfying a fairly strong condition in [LM] and [Ri], and to Anosov
diffeomorphisms in [CM1] and [CM2].

The case of small non-Markov holes for Anosov diffeomorphisms is studied in [CMT1] and
[CMT2]. The authors approximate the hole H by a sequence of holes Hk made up of elements
of the refined partitions R(k). By the techniques of the previous paragraph, there is a natural
a.c.c.i.m. µk corresponding to the open system associated with Hk. The weak limit of such
measures is shown to be the natural a.c.c.i.m. for the original open system corresponding to the
hole H.

Countable Markov extensions

For closed systems that are essentially uniformly hyperbolic except for the presence of certain
recognizable structures that are obstructions to hyperbolicity, it has been demonstrated in many
examples that countable Markov extensions capture quite effectively the statistical properties of
the system (and are easier to construct than countable Markov partitions with similar control
on recurrence times). By a Markov extension of a dynamical system S : N → N , we refer to
a tower map as described in Example 5, Sect. 4.2, for which S is a quotient. See e.g. [Y2],
[CY]. Because of the simple structure of tower maps, methods such as those in Sects. 5.2 and
5.3 apply. Once the pertinent results are obtained for the tower map, one seeks to pass them
back to the original system.

In the context of open systems, Markov towers have been used to study piecewise expanding
maps of the interval [D1] and logistic maps satisfying certain conditions [D2].

6 Examples

The purpose of this section is to see some of the ideas discussed in previous sections applied to
two concrete settings.

Example 6. Piecewise expanding maps in one dimension. Let T̂ : [0, 1] 	 be a C2

piecewise expanding map satisfying |T̂ ′| ≥ γ > 1.

Markov holes (special case). We assume H is chosen so that T : M1 → M admits a finite
Markov partition, and that some power of the transition matrix of the associated Markov chain
is strictly positive.
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Schauder Fixed Point Theorem: For a Lipschitz function f , we define the regularity of f to be

|f |r = sup

{ |f ′(x)|
f(x)

: f ′(x) exists and f(x) 6= 0

}

.

Let D = {f ∈ C0(M) : f ≥ 0 and |f |r < ∞} and let KB = {f ∈ D : |f |r ≤ B,
∫

M fdm = 1}.
For B large enough, it is shown in [PY] that P1(KB) ⊂ KB , and for all g ∈ D, limn Pn

1 g → KB .
Since KB is a convex compact subset of C0(M), the Schauder Fixed Point Theorem yields an
a.c.c.i.m. with density f ∈ KB ; uniqueness of this measure in D follows from the trick described
in Sect. 5.3. The convergence of functions in D to f requires a separate argument. See [PY] for
details.

Projective cones: Let CB = {f ∈ D : |f |r ≤ B}. It is straightforward to verify that CB is
a convex cone in C0(M), P(CB) ⊂ CB, and the L1 norm is adapted. Using the transitivity
assumption, one can show that for any g ∈ CB , PNg is bounded away from zero and infinity
on M for some fixed N which does not depend on g. This in turn implies the finiteness of the
diameter of PN (CB) in the Hilbert metric. We conclude that there exists a unique f ∈ CB which
is a fixed point for PN

1 . Since f is unique, it is also a fixed point for P1 and is the limit in L1

of all g ∈ CB . Finally, 1 ∈ CB, so that the escape rate of Lebesgue measure exists and is given
by that of this a.c.c.i.m..

The general case. Let B denote the set of functions on [0, 1] of bounded variation.

Schauder Fixed Point Theorem and Lasota-Yorke inequality: In [BC], the authors prove a Lasota-
Yorke inequality for the unnormalized operator P, namely

‖Pnf‖ ≤ Cσn‖f‖ +B|f |1 (8)

where ‖ · ‖ is the bounded variation norm and | · |1 is the L1-norm. If the holes are sufficiently
small, (8) implies that an iterate N of the normalized operator P1 leaves the set Kb = {f ∈ B :
‖f‖ ≤ b, |f |1 = 1} invariant, where b is large enough that CσNb + B ≤ b, but small enough
that Kb does not include any functions supported entirely on the pre-image of the hole. The
Schauder theorem applies to P1 acting on Kb; as does the uniqueness argument in Sect. 5.3.
Under an additional genericity assumption on the placement of the holes, all functions in Kb

converge to f , so that f defines a natural a.c.c.i.m.

Quasi-compactness of P: This is also implied by (8) coupled with the estimate |Pnf |1 ≤ |f |1
and the fact that the unit ball of B is compact in L1. In [LiM], the authors derived a similar
inequality and showed that as operators from B to L1, PT and PT̂ are close for small holes.

More precisely, let Hε be a hole of size ε and let Mε = M̂\Hε with the analogous definitions for
Mn

ε . If Pε denotes the transfer operator for the open system with hole Hε and P0 = PT̂ , then
for any f ∈ B,

∫

M̂
|Pεf − P0f |dm ≤

∫

M̂
|P0(1M̂\M1

ε
f)|dm ≤

∫

M̂\M1
ε

|f |dm ≤ ‖f‖m(M̂\M1
ε ).

It is clear that the last expression tends to zero with ε. Remark 5 of [KL] then implies that
the spectra of Pε and P0 differ by no more than a constant times ε| log ε|. Thus if T̂ has a
unique invariant measure, then for sufficiently small holes, T has a unique probability density
f ∈ B corresponding to a unique eigenvalue of maximum modulus which is in fact Λ, and all
the conclusions of Sect. 5.2 apply.
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Remark. In some situations, it is possible to obtain a sharper bound on the perturbed
eigenvalue. Let λε denote the eigenvalue of maximum modulus of Pε. Then for both expanding
maps of the interval and Misiurewicz maps of the logistic family, it is shown in [D1] and [D2]
using Markov extensions that 1−λε ≤ Cε, so that the eigenvalue exhibits a Lipschitz dependence
on the size of the hole.

In the example of the tent map from Sect. 3.2, observe the relation between the 3 conditionally
invariant densities constructed there and the decomposition B = H ⊕ {f} in Sect. 5.2: The
density in (i) is f , the one in (ii) is not in B, and the family in (iii) is contained in H.

Example 7. Linear toral automorphisms. Let T̂ : T
2 	 be a hyperbolic linear toral

automorphism, and let R = {R1, R2, · · · , Rq} be a Markov partition whose elements are (real)
rectangles. Let H = Rq. In this simple example, the convergence of T n

1 m, the geometry of the
resulting a.c.c.i.m. and its escape rate are all quite transparent as we now demonstrate.

We fix k, 1 ≤ k ≤ q−1, and show first that (T n
1 m)(Rk) converges as n→ ∞. Let Q̂ = (qij) be

the matrix corresponding to the topological Markov shift defined by T̂ , i.e. qij = 1 if and only if
m(Ri∩ T̂−1Rj) > 0, = 0 otherwise; and let Q be the (q−1)×(q−1) matrix obtained by deleting
the qth row and qth column of Q̂. We say an (n + 1)-block (i0, i1, · · · , in), ij ∈ {1, 2, · · · q − 1},
is admissible if qijij+1

= 1 for j = 0, · · · , n − 1. Then

(T n
1 m)(Rk) =

∑q−1
i=1 N

n
ik · |Rs

i |α−n|Ru
k |

∑q−1
i,j=1N

n
ij · |Rs

i |α−n|Ru
j |

where Nn
ij is the number of admissible (n + 1)-blocks starting in i and ending in j, |Rs

i | is the
length of the stable segments in Ri, |Ru

i | is the length of the unstable segments in Ri, and
α > 1 is the derivative of T̂ in the unstable direction. Note that |Rs

i |α−n|Ru
j | is the area of the

subrectangle in Ri corresponding to any one of the (n+ 1)-blocks starting in i and ending in j.
Now Nn

ij = (Qn)ij , the (i, j)-entry of Qn. Assuming Q is irreducible and aperiodic, the
columns of Qn, multiplied by β−n where β is the largest eigenvalue of Q, converges exponentially
to the right eigenvector of Q. It follows that

(T n
1 m)(Rk) → |Ru

k |
∑q−1

j=1 |Ru
j |

as n → ∞.

The convergence of (T n
1 m)(A) where A is a subrectangle of Rk obtained by fixing its itinerary

in the last ℓ iterates is computed similarly. This proves that T n
1 m → µ where on each Rk, µ is

the product of Lebesgue measure on unstable segments and a measure supported on a Cantor
set in the stable direction.

It remains to estimate the escape rate − log Λ. The same reasoning as before gives

m(Mn+1)

m(Mn)
=

∑q−1
i,j=1N

n+1
ij · |Rs

i |α−(n+1)|Ru
j |

∑q−1
i,j=1N

n
ij · |Rs

i |α−n|Ru
j |

→ βα−1 =: Λ as n → ∞.

Notice that log β is the topological entropy of the Markov shift defined by Q, or equivalently,
the topological entropy of T̂ restricted to the set Ω := ∩n∈ZT̂

n(M). Here we see clearly why
log Λ = topological entropy − positive Lyapunov exponent, which in this linear case is equal to
topological pressure as asserted in (5) in Sect. 4.1.
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7 More on Relation to SRB Measures

Numerous relations to SRB measures have been encountered in previous sections. We finish by
posing a few questions or conjectures that further amplify these connections.

A. What is a natural conditionally invariant measure? (Summary of discussion)

We think of a conditionally invariant measure µ as natural if T n
1 m→ µ as n→ ∞. A weaker

requirement is that µ is a limit point of averages of these pushed-forward measures in the sense of
Section 5. Since T n

∗ m is the image under T n
∗ of Lebesgue measure restricted to Mn, one expects

T n
1 m to have a density (or a density on unstable manifolds) if T n|Mn is sufficiently expanding

(or sufficiently expanding on unstable manifolds). If these densities lie in a compact set, their
properties are passed on to µ. Thus we see that the idea is the same as in the construction of
SRB measures, except that we consider the forward images of Lebesgue measure on Mn, not on
all of M̂ .

The measures in the last paragraph are to be distinguished from those constructed by starting
with some arbitrary density on M \M1 and pulling it backwards. As shown in Sect. 3.1, this can
lead to well-defined a.c.c.i.m. with overlapping supports that are completely arbitrary and not
necessarily representative of the escape dynamics starting from Lebesgue measure. The presence
of this (mostly meaningless) class of a.c.c.i.m. is an important difference between SRB measures
and natural conditionally invariant measures; it is also the underlying cause for the difficulties
in interpreting certain existence results.

Questions: Under what conditions do natural conditionally invariant measures exist? Specifi-
cally, if T̂ is nonuniformly expanding and has an invariant density, or if it has a nonuniformly
hyperbolic attractor with an SRB measure, should one expect it to have a natural a.c.c.i.m. on
reasonable regions M of the phase space?

Known results are limited mostly to the uniformly expanding and hyperbolic systems men-
tioned previously; the only genuinely nonuniform situation studied so far is [D2].

B. Stability of SRB measures with respect to “leaks”

A relevant notion of stability for an SRB measure is that it is not unduly altered by the
presence of small leaks in the system. More precisely, for a sequence of holes {Hε, ε > 0},
we assume there exist natural conditionally invariant measures µε for the open systems on
Mε = M̂ \Hε. We say an SRB measure µ0 is stable with respect to leaks if for every sequence of
holes {Hε} with reasonable properties and tending to zero in diameter, we have µε → µ0 weakly
as ε→ 0.

Questions: Under what conditions are SRB measures stable with respect to leaks? Among
the closed systems known to have SRB measures, which ones have this property? What about
billiards, our motivating example?

Affirmative answers to this question have been given for Anosov and certain one-dimensional
maps; see [CMT1], [LiM], [D1], [HY] and [D2]. In relation to the stability property above, we
have the following general observation:

Lemma 7.1 Let T̂ be a piecewise differentiable map on a Riemannian manifold M̂ and let m
be the Riemannian volume. Let {Hε} be a sequence of holes satisfying mHε = ε and define the

usual restricted maps Tε and manifolds Mε. Assume that as n→ ∞,
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1. T̂ n
∗ m→ µ0 where µ0 is the SRB measure for T̂ and

2. T n
ε∗m/T

n
ε∗m(Mε) → µε uniformly in ε;

then µε → µ0 as ε→ 0.

Proof. For any Borel set A and n ≥ 0,

|µ0(A) − µε(A)| ≤ |µ0(A) − T̂ n
∗ m(A)| +

∣

∣

∣

∣

T̂ n
∗ m(A) − T n

ε∗m(A)

T n
ε∗m(Mε)

∣

∣

∣

∣

+

∣

∣

∣

∣

T n
ε∗m(A)

T n
ε∗m(Mε)

− µε(A)

∣

∣

∣

∣

.

For any δ > 0, choose N independent of ε such that the first and third terms above are less than
δ. For this fixed N , choose ε so small that the second term is less than δ. 2

C. Geometric property of natural conditionally invariant measures

Our next question asks if natural conditionally invariant measures have the same geometric
characterization as SRB measures. Note that the entire backward orbit of µ-a.e. x ∈ M lies in
M , so unstable manifolds can potentially be defined.

Questions: Assume T̂ is invertible, M is a reasonable region, and T n
1 m → µ. Are Lyapunov

exponents well defined µ-a.e.? If so, and if at least one of the Lyapunov exponents is positive µ-
a.e., does it follow that µ has absolutely continuous conditional measures on unstable manifolds?

The Lyapunov exponents question has not been addressed in the literature. Absolute con-
tinuity of conditional measures on unstable manifolds has been established for the uniformly
hyperbolic systems mentioned earlier [C1], [LM], [Ri], [CM1], [CM2], [CMT1].

D. Invariant measures associated with a.c.c.i.m. and their escape rates

Let µ be the natural a.c.c.i.m. and λ its escape rate. For each n, define

µn(A) = λ−nµ(A ∩Mn)

for any Borel subset A of M . Since T̂∗µn(A) = µn−1(A), µn converges as n → ∞ to a T̂ -
invariant probability measure ν supported on the invariant set Ω = ∩n∈ZT̂

nM . For uniformly
hyperbolic systems, it has been shown that ν is the equilibrium state of the potential ϕ =
− log |det(DT̂ |Eu)| on Ω [C1], [CMS1], [CMS2], [LM], [Ri], [CM1], [CMT2]. This implies in
particular that log Λ = hν +

∫

ϕdν; see Sect. 4.1.

Question: Is this true in greater generality, with ϕ equal to the sum of positive Lyapunov
exponents? For example, does it carry over to systems which admit Markov extensions?
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