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Cytotoxic lymphocytes are critical in our immune defence against cancer and infection.
Cytotoxic T lymphocytes and Natural Killer cells can directly lyse malignant or infected cells
in at least two ways: granule-mediated cytotoxicity, involving perforin and granzyme B, or
death receptor-mediated cytotoxicity, involving the death receptor ligands, tumour
necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). In
either case, a multi-step pathway is triggered to facilitate lysis, relying on active pro-
death processes and signalling within the target cell. Because of this reliance on an active
response from the target cell, each mechanism of cell-mediated killing can be manipulated
by malignant and infected cells to evade cytolytic death. Here, we review the mechanisms
of cell-mediated cytotoxicity and examine how cells may evade these cytolytic processes.
This includes resistance to perforin through degradation or reduced pore formation,
resistance to granzyme B through inhibition or autophagy, and resistance to death
receptors through inhibition of downstream signalling or changes in protein expression.
We also consider the importance of tumour necrosis factor (TNF)-induced cytotoxicity and
resistance mechanisms against this pathway. Altogether, it is clear that target cells are not
passive bystanders to cell-mediated cytotoxicity and resistance mechanisms can
significantly constrain immune cell-mediated killing. Understanding these processes of
immune evasion may lead to novel ideas for medical intervention.

Keywords: cell-mediated cytotoxicity, cytolytic T cells, natural killer cells, lymphocytes, cancer, resistance, viral
infection, immune synapse
INTRODUCTION

Cytotoxic lymphocytes, including cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, are
able to directly lyse malignant or infected cells using multiple mechanisms. Granule-mediated
cytotoxicity involves the release of lytic granules containing perforin and granzymes, while death
receptor-mediated cytotoxicity utilises tumour necrosis factor-related apoptosis-inducing ligand
(TRAIL) or Fas ligand (FasL) that bind death receptors on the surface of the target cell (1–3). In
addition to these classic cytotoxic pathways, there is increasing evidence that the tumour necrosis
factor (TNF) pathway also significantly contributes to lymphocyte cytotoxicity (4). Activation of
these pathways can lead to cell death in several forms, including necrosis, apoptosis, necroptosis,
and pyroptosis (5).
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Lymphocyte cytotoxicity is triggered upon contact with a
cancerous or infected target cell if sufficient activating signals are
received. For CTLs, this requires initial priming by antigen
presenting cells followed by T cell receptor recognition of
specific target cell antigens, whereas activating receptors on
NK cells recognise a range of germline-encoded ligands
without prior activation (6, 7). The area of cell-cell contact
between a lymphocyte and a target cell is termed an immune
synapse, on account of it being a highly organised interface
involving cytoskeletal and membrane rearrangement (8–12).
Integration of multiple activating and inhibitory pathways
within the lymphocyte determines the outcome of this
interaction with a target cell (13, 14). Malignant or infected
cells may, therefore, evade immune recognition through the
downregulation of activating signals or the upregulation of
inhibitory signals. These immune evasion mechanisms – for
example reducing antigen recognition, triggering immune
checkpoints, secreting immunosuppressive cytokines, as well as
excluding immune cells from the microenvironment – have been
extensively reviewed elsewhere (15–18). And of course, many
immunotherapies have been developed to target these types of
immune escape mechanisms, such as checkpoint inhibitors,
adoptive cell therapy, and cancer vaccines, all of which aim to
enhance immune cell activation (6, 19).

However, evasion of lymphocyte cytotoxicity may also occur
downstream of immune cell activation. Even if a cytolytic
response is triggered by the lymphocyte, target cells are not
passive bystanders to lymphocyte cytotoxicity. This is because
mechanisms of cell death generally rely on active pro-death
signalling within the target cell (5). Indeed, evasion of cell
death and apoptosis is considered a critical hallmark of cancer
(20). Therefore, resistance to lymphocyte attack may arise
through resistance to the mediators of cytotoxicity, including
perforin, granzymes, and death receptor ligands. Here we review
the molecular details behind cell-mediated killing and then
examine our current understanding of how target cells may
resist these cytotoxic processes as immune evasion strategies.
MECHANISMS OF LYMPHOCYTE
CYTOTOXICITY

Granule-Mediated Cytotoxicity
Following activation, effector cells polarise their microtubule
organising centre (MTOC) and lytic granules towards the
immune synapse, then release the contents of these granules
across the synaptic cleft (21–23). Granule-mediated cytotoxicity
is dependent upon the release of perforin and granzymes from
granules contained within cytotoxic lymphocytes (Figure 1).
Perforin is a pore-forming protein that forms ring-shaped
lesions capable of mediating ion flux as well as the uptake of
larger molecules, such as granzymes (24). Granzymes are a
family of serine proteases that cleave a variety of target
proteins within cells in order to induce apoptosis. Five
granzymes have been identified in humans, A, B, H, K, and M,
Frontiers in Immunology | www.frontiersin.org 2
but granzyme A and B have been characterised most extensively
(25, 26).

Granule-mediated cytotoxicity can result in cell death through
two mechanisms (Figure 1). The first is necrotic cell death
induced by rapid osmotic flux through perforin pores and
membrane rupture, which can be observed upon exposure to
high concentrations of perforin (27, 28). The second is apoptotic
cell death induced by perforin-mediated uptake of granzyme B
into the target cell. Two primary models have been proposed to
account for the entry of granzyme B into target cells: direct
diffusion through perforin pores in the cell membrane, or
perforin-induced endosomal uptake of granzymes. Perforin
pores observed by electron microscopy have been measured to
be physically large enough to permit the diffusion of granzymes
into the target cell cytoplasm (29). Furthermore, intracellular
granzyme B activity can be observed within minutes of adding
exogenous granzyme B and perforin to target cells (30), which is
faster than has been observed for endosomal uptake of granzyme B
(31). Conversely, perforin has been shown to trigger a calcium-
dependent membrane repair response that triggers the endocytosis
of granzyme B, and granzyme B-positive endosomes can be
observed within target cells following interaction with NK cells
(31–33). It is possible that these two pathways work in parallel or
in different cellular contexts to facilitate the uptake of granzyme B
into target cells. Recent evidence demonstrated that perforin and
granzyme can also be secreted from CTLs and NK cells in
complexes, termed supramolecular attack particles (SMAPs),
bound by the adhesive glycoprotein thrombospondin-1 (34, 35).
Further understanding of SMAP biology may shed light on
whether or not the two models of granzyme B delivery work
synergistically or independently.

Once within a target cell, granzymes can trigger cell death
through several pathways, and the specific pathways that are
activated are dependent on the identity of the granzyme.
Granzyme B is the most potent member of the granzyme
family and can induce apoptosis within minutes of delivery
(30). This occurs through either direct cleavage of caspases by
granzyme B or via activation of the mitochondrial pathway of
apoptosis. Direct cleavage of caspases, such as caspase 3, one of
the executioner caspases, is the primary mechanism by which
mouse granzyme B induces apoptosis (25). Caspase 3 cleaves
several targets including inhibitor of caspase-activated DNase
(ICAD) and gelsolin, which leads to DNA damage and
cytoskeletal disruption, respectively (36). Both human and
mouse granzyme B can also trigger the mitochondrial
apoptotic pathway, which is characterised by mitochondrial
outer membrane permeabilization (MOMP) (37–39).

MOMP is regulated by the Bcl-2 family, which is made up of
three classes: pro-apoptotic BH3 proteins (e.g. Bid, Bim), pro-
apoptotic effector proteins (e.g. Bax, Bak), and anti-apoptotic
proteins (e.g. Bcl-2) (40). Granzyme B triggers MOMP by
cleaving Bid into its active, truncated form (tBid) (37). After
cleavage, tBid recruits the pore-forming effector proteins, Bax
and Bak, to the mitochondrial membrane where they form pores
that mediate MOMP and the release of additional apoptotic
mediators, such as cytochrome c (40). This process can be
March 2022 | Volume 13 | Article 867098
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opposed by the action of anti-apoptotic Bcl-2 proteins, which
bind and inhibit pro-apoptotic Bcl-2 members (40). Importantly,
granzyme B can also induce degradation of these anti-apoptotic
Bcl-2 proteins, such as Mcl-1, leading to the release of the pro-
apoptotic BH3 protein, Bim, which activates Bax/Bak and
triggers apoptosis (38, 41). A granzyme B-mediated
mitochondrial apoptotic pathway, independent of Bax/Bak, has
also been identified, and occurs through cleavage of
mitochondrial proteins involved in the electron transport chain
and production of reactive oxygen species (42–44).

Granzyme B can also cleave several additional targets that
contribute to cell death. For example, granzyme B can directly
Frontiers in Immunology | www.frontiersin.org 3
cleave the caspase 3 substrate, ICAD, leading to DNA damage
(45) or cleave a-tubulin, causing cytoskeletal disruption during
apoptosis (46, 47). Recently, granzyme B was also found to cleave
and activate the pore-forming protein gasdermin E, leading to an
alternate form of cell death, pyroptosis, through the formation of
gasdermin pores in the cell membrane (48, 49). Pyroptosis is a
more inflammatory form of cell death compared to apoptosis
and relies on the formation of pores in the cell membrane by
members of the gasdermin family (5, 50). Cleavage of gasdermin
E by granzyme B is a potent mechanism by which cytotoxic
lymphocytes can kill cancer cells and control tumour
growth (48).
FIGURE 1 | Mechanisms of lymphocyte cytotoxicity. Following activation, cytotoxic effector cells can kill through granule-mediated cytotoxicity, death receptor-
mediated cytotoxicity, or TNF-mediated cytotoxicity. (A) During granule-mediated cytotoxicity, perforin and granzymes are released from lytic granules into the
synaptic cleft. Perforin forms pores in the target cell membrane. At high concentrations of perforin, osmotic flux through pores leads to cell swelling and necrotic cell
death. Perforin can facilitate the uptake of granzyme B through direct diffusion or endocytosis. Granzyme B directly cleaves caspase 3 to induce apoptosis or
triggers the mitochondrial apoptotic pathway via Bid cleavage into tBid. tBid recruits Bax/Bak leading to mitochondrial outer membrane permeabilization (MOMP) and
apoptosis. Granzyme B may also degrade Mcl-1 releasing Bim to activate MOMP. Granzyme B can also cleave ICAD contributing to DNA damage, a-tubulin leading
to cytoskeletal degradation, or gasdermin E, which forms pores in the cell membrane to induce pyroptosis. (B) Ligation of death receptors (Fas/DR4/DR5) by FasL or
TRAIL triggers assembly of the death-inducing signalling complex (DISC) composed of FADD and pro-caspase 8/10. Caspase 8/10 induces apoptosis via direct
caspase 3 cleavage or the mitochondrial apoptotic pathway via Bid cleavage. (C) Ligation of TNFR1 by TNF triggers the assembly of complex I (TRADD, RIPK1,
TRAF2, cIAP1/2). LUBAC ubiquitinates complex I components leading to pro-survival signalling via NF-kB and MAPK pathways. In the absence of ubiquitination,
RIPK1 dissociates and forms complex II with FADD and pro-caspase 8/10. Cleavage of pro-caspase 8/10 triggers apoptosis by the same pathways as FasL/TRAIL.
In the presence of insufficient pro-caspase 8, RIPK1 can also recruit RIPK3, which activates MLKL to trigger necroptosis.
March 2022 | Volume 13 | Article 867098
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Compared to granzyme B, granzyme A is a far less efficient
inducer of cell death and triggers apoptosis at a slower rate (51).
Granzyme A-induced apoptosis is caspase-independent and,
although its targets are not fully defined, is mediated by
cleavage of a variety of nuclear, mitochondrial, and cytosolic
proteins (52, 53). Recently, granzyme A was also shown to trigger
pyroptosis of cancer cells through cleavage of the pore-forming
protein, gasdermin B (54, 55). In murine tumours, gasdermin B
expression synergised with checkpoint blockade to promote
tumour clearance by cytotoxic lymphocytes (54). Likewise, in
the context of infection by Shigella flexneri, granzyme A secreted
by NK cells was found to cleave gasdermin B within the infected
cell (55). Cleaved gasdermin B demonstrated microbiocidal
activity by forming pores within the bacterial membrane in
order to protect the host cell. Less is known about the function
and role of the other granzymes (K, H, and M) expressed by
human lymphocytes.

Death Receptor-Mediated Cytotoxicity
Cytotoxic lymphocytes may also kill target cells through the
expression of ligands for death receptors. Two prototypical
ligands have been identified that mediate apoptosis: FasL,
which binds the Fas receptor, and TRAIL, which binds death
receptors 4 and 5 (DR4/5) (56). Although FasL and TRAIL bind
different receptors, both ligands trigger similar pro-apoptotic
signalling (Figure 1). Both FasL and TRAIL are transmembrane
proteins that belong to the TNF superfamily and can be
expressed on cytotoxic immune cells upon cytokine
stimulation or interaction with a target cell (1, 57). Upon
binding of FasL or TRAIL to their respective receptors,
assembly of the death-inducing signalling complex (DISC) is
triggered. The DISC consists of the death receptor, Fas-
associated death domain protein (FADD), and pro-caspase 8
or 10 (56). The DISC mediates cleavage of pro-caspase 8/10 to
release the active caspase, which can then activate the
executioner caspases 3, 6, and 7. Caspase 8 can further amplify
apoptotic signalling by cleaving Bid to activate the mitochondrial
pathway of apoptosis, similar to granzyme B (56).

TNF-Mediated Cytotoxicity
TNF is a cytokine capable of inducing both pro-survival and pro-
death signalling depending on the precise cellular context.
Although the receptors for TNF, TNF-R1 and TNF-R2, belong
to the same family as the receptors for FasL and TRAIL, the
downstream signalling pathways are distinct (4). Of the two
receptors for TNF, only TNF-R1 is able to trigger cell death
through its cytoplasmic death domain, which recruits a key
adaptor protein, TNF receptor-associated death domain
(TRADD) (4). Conversely, both TNF-R1 and TNF-R2 contain
a TNFR-associated factor (TRAF) binding site that recruits
TRAF1/2, which is involved in triggering pro-survival
signalling via the NF-kB and MAPK pathways.

The pro-survival and pro-death signalling pathways
controlled by TNF-R1 ligation are mediated by the assembly of
two signalling complexes, complex I and II, respectively (4, 58).
Complex I, which mediates pro-survival signalling, is composed
of several proteins, including receptor interacting serine/
Frontiers in Immunology | www.frontiersin.org 4
threonine protein kinase 1 (RIPK1), TRAF2/5, cellular
inhibitor of apoptosis 1/2 (cIAP1/2), and linear Ub chain
assembly complex (LUBAC). LUBAC-mediated ubiquitination
of complex I components leads to the recruitment of additional
kinase complexes involved in NF-kB and MAPK survival
signalling (4). Survival signalling through complex I is
generally the default pathway triggered by TNF-R1 ligation.
However, in certain cell states, TNF-R1 signalling can switch
instead to pro-death signalling mediated by complex II, which is
composed of RIPK1, FADD, and pro-caspase 8 (4, 58, 59).
Assembly of complex II occurs when RIPK1 is not
ubiquitinated, such as in the absence of the complex I-
associated proteins cIAP1/2 and LUBAC (59, 60). Non-
ubiquitinated RIPK1 dissociates from TRADD and recruits
FADD and pro-caspase 8 leading to similar pro-death
signalling as TRAIL/FasL (4). When caspase 8 activation is not
sufficient, complex II can also lead to necroptotic cell death. This
occurs through autophosphorylation of RIPK1, leading to the
recruitment and autophosphorylation of RIPK3 followed by
activation of mixed lineage kinase domain-like (MLKL), which
induces necroptosis (4). Altogether, much remains to be
understood about the signalling that regulates the varying
effects of TNF and how this can change in different cell states.
MECHANISMS OF RESISTANCE
TO CYTOTOXICITY

Overall, there is a reliance on active processes and signalling
pathways within the target cell to execute CTL and NK cell
killing. This implies that each distinct mechanism of cell-
mediated killing can be open to an evasion strategy by the
target cell. Indeed, malignant and infected cells develop a
variety of mechanisms to evade cytolytic death.

The existence of these resistance mechanisms is readily
observed when tracking interactions between cytotoxic
lymphocytes and target cells in vitro. Even when CTLs are
activated during an interaction with a target cell – as indicated
by a rapid increase in calcium concentration within the effector
cell – the target cell does not always die (61, 62). In some cases,
CTLs may produce a sublethal hit, which is characterised by a
transient calcium flux, indicative of perforin pore formation, but
no cell death (62). Alternatively, in some effector-target
interactions, no calcium flux could be observed in the target
cell despite apparent activation of the effector cell, indicating that
perforin did not form pores in the target cell membrane. A
similar study demonstrated that cancer cells often recover even
after a cytotoxic hit that triggers a large calcium flux, structural
perturbations, and DNA damage (61). The target cancer cells
were observed to rapidly restore calcium homeostasis, recover
nuclear integrity after structural damage, and even repair DNA
to stop apoptosis at its later stages (61). Clearly, not every
interaction between a cytotoxic lymphocyte and its target
results in death. While some of this survival could be
attributed to stochastic variability, specific methods by which
target cells can evade cytotoxicity can have a profound impact on
March 2022 | Volume 13 | Article 867098
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the ability of cytotoxic lymphocytes to eliminate cancer cells and
infected cells in vitro.

Resisting Perforin Pore-Formation
The formation of perforin pores in target cell membranes is the
first step of granule-mediated cytotoxicity and is required for the
induction of both necrosis caused by osmotic flux and apoptosis
caused by granzyme B uptake. Therefore, resistance to this initial
step of granule-mediated cytotoxicity has the potential to
significantly reduce lymphocyte cytotoxicity. Perforin
resistance was initially identified as a characteristic of cytotoxic
lymphocytes, including CTLs and NK cells, which are less easily
killed by purified perforin compared to various non-cytotoxic
cell lines (63–65). This resistance is thought to be integral to the
survival of lymphocytes when releasing their cytotoxic cargo.
Resistance to perforin has also been observed in malignant cells
(66–68). In studies of patient-derived leukaemia and lymphoma
samples, considerable variability was observed in the ability of
perforin to bind and lyse cancer cells from different patients (66,
67). Importantly, the susceptibility of cancer cells to perforin-
induced lysis closely correlated with the amount of perforin
bound (66), indicating that cancer cells may evade perforin by
reducing binding. More recently, our own research has found
that in vitro irradiation of cancer cells transiently reduces
susceptibility to lysis by NK cells and CAR T cells by inducing
resistance to perforin, possibly by preventing pore formation
(68). Our current understanding of the mechanisms that mediate
perforin resistance in malignant or infected cells is
predominantly derived from protective mechanisms employed
by cytotoxic lymphocytes. These mechanisms of perforin
resistance include altered lipid order, phosphatidylserine
exposure, modulation of cell stiffness, and cathepsin B-
mediated degradation (Figure 2), each of which we will now
explore in detail.

Lipid Order
The lipid order of a membrane is a characteristic determined by
several properties: lipid packing, the rotational freedom of lipids,
and the thickness of the bilayer (69). Therefore, changes to
membrane composition can alter lipid order, such as
increasing lipid order upon incorporation of cholesterol (70).
From the time of its discovery, perforin has been known to
preferentially bind to synthetic liposomes or planar lipid bilayers
composed of low-order, fluid-phase lipids, such as 1,2-dioleoyl-
sn-glycero-3-phosphocholine (DOPC), compared to high-order,
gel-phase lipids, such as dipalmitoylphosphatidylcholine
(DPPC) (71–74). This specificity for lipid order appears to play
a critical role in protecting cytotoxic lymphocytes against self-
harm by perforin since CTLs have particularly tightly packed and
ordered membranes (72, 73). Lipid order has also been observed
to particularly increase at the site of the immune synapse
compared to more distal areas of the lymphocyte membrane
(75–77). Replacing cholesterol in CTL membranes with a
disorder-prone cholesterol variant increases perforin binding
and sensitises cells to pore-induced lysis, consistent with
tight lipid packing being protective against perforin pore
formation (73).
Frontiers in Immunology | www.frontiersin.org 5
Alterations in lipid packing may directly affect the
susceptibility of cancer cells to perforin-mediated attack.
Lymphocyte-resistant breast cancer cells, for example, have
been found to increase lipid order at the site of the immune
synapse and, similar to observations with CTLs, replacing
cholesterol with a disorder-prone variant sensitises cancer cells
to perforin-induced lysis (73, 75). More broadly, lipid
composition is often highly altered during malignancy and
infection. For example, multidrug resistant cancer cells
frequently exhibit increased membrane lipid order due to
increased cholesterol levels (78, 79). Therefore, it is possible
that lipid order-mediated resistance to perforin is a common
feature of cancer. However, most observations have been made
in vitro and further work is necessary to understand whether
alterations in the lipid order of cancer cell membranes can have a
significant impact on tumour control by lymphocytes in vivo.

Phosphatidylserine Externalisation
Apart from altering lipid order, membrane composition
can affect perforin activity through other mechanisms.
Phosphatidylserine is a negatively charged phospholipid that
generally localises to the intracellular leaflet of the cell membrane
but can be externalised to the outer leaflet in certain cell states
(80). In particular, externalisation of phosphatidylserine on the
outer leaflet is often used as a marker of cell death, but it also has
a variety of non-apoptotic roles for intercellular signalling (81).
Importantly, phosphatidylserine can be externalised on
lymphocyte membranes at the immune synapse, where it is
suggested to act as a protective mechanism against perforin
pore formation (73, 74, 82). Atomic force microscopy has
shown that perforin is able to bind to phosphatidylserine-
containing planar lipid bilayers, but it forms protein aggregates
rather than membrane-spanning pores (73, 74). In addition,
perforin shows little or no lytic activity against synthetic
liposomes composed of high levels of phosphatidylserine (68).
Other negatively charged membrane lipids, such as 1,2-
dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DOPG) or
cholesterol sulfate, had a similar effect in preventing perforin
pore formation, suggesting that the negative charge of
phosphatidylserine is critical for its inhibitory effect against
perforin (74).

In addition to protecting cytotoxic lymphocytes,
phosphatidylserine may also be utilised by infected or malignant
cells to evade attack mediated by perforin. Phosphatidylserine
exposure is a common feature of cancer cells and can be further
enhanced in certain circumstances, such as following anti-cancer
treatment (68, 83). Externalisation of phosphatidylserine following
the treatment of cancer cells with radiotherapy or cell cycle
inhibitors was found to closely correlate with resistance to
perforin and lymphocyte cytotoxicity, despite normal recognition
and activation by NK cells and CAR T cells (68). Treatment of
cancer cells with radiotherapy or cell cycle inhibitors did not affect
perforin binding or membrane repair responses, suggesting that the
mechanism of resistance was impaired pore formation, similar to
the observed effects of phosphatidylserine in synthetic lipid
membranes (68, 73, 74). Increased surface phosphatidylserine on
malaria-infected erythrocytes also correlated with reduced
March 2022 | Volume 13 | Article 867098
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susceptibility to perforin and reduced lysis by gd T cells (84). The
extent to which phosphatidylserine externalisation affects the
elimination of target cells in vivo is unclear, and hard to establish.
Whether this process could be targeted therapeutically is an
open question.

Cell Stiffness
Physical properties of cells may also influence susceptibility to
perforin, including cell tension or stiffness. Cell stiffness is
commonly altered during malignancy, with cancer cells being
relatively soft and deformable compared to healthy cells (85).
Accordingly, soft CD133+ tumour-repopulating cells were found
to be resistant to perforin and take up less granzyme B following
interaction with T cells (86). These cells also evaded T cell
cytotoxicity in vivo but killing could be enhanced if cells were
treated with jasplakinolide, which promotes actin polymerisation
Frontiers in Immunology | www.frontiersin.org 6
and increases cancer cell stiffness. Cell stiffness can also be
artificially altered by culturing cells on stiff or soft hydrogels,
which directly changes the stiffness of cells to mirror the
underlying substrate. Reducing stiffness in this way by
culturing on a soft substrate has been shown to reduce
susceptibility to perforin and lymphocyte cytotoxicity (87). It is
not entirely clear why cell stiffness affects perforin lytic ability in
this way, but insertion and pore formation by hydrophobic
molecules, such as perforin, is known to be more energetically
favourable on stiff membranes (87, 88).

Interestingly, cytotoxic lymphocytes have been found to
utilise a mechanism which may counteract the reduced activity
of perforin on soft cells. By using F-actin-rich protrusions, CTLs
can exert lateral force on the target cell to increase membrane
tension and enhance perforin pore formation (87, 89). Lytic
granule secretion from CTLs was observed at the base of these
FIGURE 2 | Resistance to granule-mediated cytotoxicity. Activation of a cytotoxic effector cell at an immune synapse with a target cell leads to the polarisation and
secretion of lytic granules containing perforin and granzyme B. Under normal circumstances, in the absence of any resistance mechanisms, the secreted perforin will
form pores in the target cell membrane and allow entry of granzyme B. This process will initiate cell death through both direct cell lysis and the activation of apoptotic
pathways. Target cells can employ multiple mechanisms to evade cytotoxicity. (A) Increased plasma membrane lipid order to reduce perforin binding. (B) Externalisation of
phosphatidylserine to induce perforin aggregation rather than pore formation. (C) Reduced cell stiffness to prevent efficient perforin pore formation. (D) Expression of Serpin B9
to directly inhibit Granzyme B activity. (E) Autophagy of Granzyme B to prevent activation of apoptotic pathways. (F) Secretion of Cathepsin B to degrade perforin.
(G) Reduced gasdermin B and E expression or IpaH7.8-mediated ubiquitination and degradation of gasdermin B can reduce pyroptosis or lysis of shigella, respectively.
March 2022 | Volume 13 | Article 867098
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protrusions so that it was spatially localised to the areas of force
exertion on the target cell membrane (89). It is interesting to note
that the stiffness of a target cell can also modulate NK cell and
CTL activation itself, with activation significantly reduced
against target cells exhibiting a soft phenotype or grown on a
soft substrate (90, 91). Thus, alterations in cell stiffness at the
whole-cell level, such as during malignancy, or at the nanoscale,
at the immune synapse, may potently manipulate the sensitivity
of cancerous or infected cells to perforin.

Cathepsin B
The pore-forming activity of perforin may also be reduced
through direct degradation. Cysteine cathepsins are lysosomal
peptidases with multiple roles in regulating immune
responses (92). It was initially shown that cathepsin B, which
becomes expressed on the surface of lymphocytes following
degranulation, can degrade perforin in order to protect against
self-harm (93). Inhibition of this surface-bound cathepsin B
using the inhibitor CA074 led to enhanced CTL death after
degranulation. Seemingly in contrast to this, it was later shown
that CTLs from cathepsin B-null mice were not more susceptible
to death following interaction with a target cell compared to cells
from wild type mice (94). To reconcile these observations, it is
possible that there is redundancy in the system, and perhaps
compensatory mechanisms are augmented in cathepsin B-null
mice, such as increased lipid order or phosphatidylserine
exposure, as discussed previously.

More recent evidence has also linked cathepsin B with cancer
cell resistance against lymphocyte cytotoxicity. Khazen et al. (95)
showed that melanoma cells that were resistant to CTL
cytotoxicity bound less perforin and took up less granzyme B
despite inducing similar levels of CTL degranulation. This
resistance was mediated by increased exocytosis of lysosomes
or late endosomes at the immune synapse, which facilitated the
secretion of cathepsin B leading to perforin degradation.
Interestingly, cathepsin B is known to be overexpressed in
multiple cancers, where it is associated with poor survival and
metastasis (96).

Altogether, resistance to perforin through physical or
degradative inhibition is an emerging aspect of immune
resistance. Many of the mechanisms employed by cytotoxic
lymphocytes to protect against self-harm appear to also be
exploited by malignant or infected cells to inhibit perforin
activity and enhance survival. However, the contribution of
perforin resistance to immune escape has not yet been
extensively explored in vivo. The ability to modify cancer cells
pharmacologically to increase perforin susceptibility may be a
way to increase the efficacy of lymphocyte cytotoxicity.

Resisting Granzyme-Mediated Apoptosis
In addition to perforin, granzymes are a critical component of
granule-mediated cytotoxicity. Following perforin pore
formation, granzymes enter the target cell and cleave a variety
of targets to potently induce cell death. As a result, reduced
granzyme activity within target cells may critically constrain
killing by lymphocytes. Granzyme activity may be reduced in two
ways: through reduced granzyme uptake as a result of perforin
Frontiers in Immunology | www.frontiersin.org 7
inhibition, as described previously, or through direct inhibition
of granzyme function. The effect of reduced granzyme uptake on
cytotoxicity was clearly demonstrated by the finding that cancer
cells, which were resistant to NK cell cytotoxicity, can undergo
extensive cytoskeletal remodelling, which reduces granzyme
uptake (97, 98). Although the underlying link between
cytoskeletal remodelling and reduced granzyme uptake was not
identified in these studies, cytoskeletal inhibitors were found to
restore granzyme levels and cytotoxicity following interaction
with NK cells. Granzyme-induced cell death may also be reduced
by direct inhibition of granzyme activity. Of all the proteins in
the granzyme family, the mechanisms that reduce granzyme
B-mediated cell death have been characterised the most.
Inhibitory mechanisms that act directly on granzyme B
pathways to prevent cell death include inhibition by serpin B9,
degradation through autophagy, and disruption of gasdermin-
mediated pyroptosis (Figure 2).

Serpin B9
Serpin B9 (also known as serine proteinase inhibitor B9 or
proteinase inhibitor 9) is the only endogenous granzyme B
inhibitor that has been identified. It was initially discovered in
cytotoxic lymphocytes where it protects against apoptosis by
binding to and inhibiting granzyme B (99, 100). When unbound
to substrate, serpin B9 exists in a semi-stable form, but it is
cleaved upon binding to granzyme B causing a conformational
change into its most stable form and leaving a non-functional
covalently-bound serpin B9-granzyme B complex (101). Apart
from in immune cells and at certain immune-privileged sites,
such as reproductive organs and the eye, normal human tissue
does not express serpin B9 (102). However, serpin B9 expression
has been observed in multiple primary cancers, including
lymphoma, melanoma, colon carcinoma, breast cancer, and
lung cancer, in which it generally correlates with poor
prognosis (102–107).

Overexpression of serpin B9 in various cancer cell lines results
in resistance to killing by cytotoxic lymphocytes and, critically, is
associated with resistance to immune checkpoint blockade in
murine melanoma as well as against radiotherapy-induced type I
interferon signalling (104, 108–112). Interestingly, the resistance
of serpin B9-expressing cancer cells to cytotoxic lymphocytes is
less evident at high ratios of lymphocytes to cancer cells (111).
Furthermore, it has been shown through live imaging that
multiple NK cell attacks successfully kill serpin B9-expressing
target cells, while single hits are sufficient to kill targets which
don’t express serpin B9 (113). This is consistent with serpin B9-
mediated inhibition of cytotoxicity being overcome through
increased granzyme B delivery via multiple lytic hits.

Although serpin B9 has primarily been described as an
inhibitor of lymphocyte-derived granzyme B, it has also been
shown to have a broader role in mediating tumour immune
escape. For example, overexpression of serpin B9 can inhibit
TRAIL-, FasL-, and TNF-mediated apoptosis through directly
inhibiting caspase 8 and 10 (108, 114). Furthermore, serpin B9
can promote tumour survival through inhibition of cancer cell-
intrinsic granzyme B, which can become expressed in various
malignancies (107). Therefore, pharmacological inhibition of
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serpin B9 may aid the destruction of target cancer cells through
multiple pathways. Recently, inhibition of serpin B9 has been
shown to slow the development of melanoma and increase the
lifespan of mice with breast, kidney and lung tumours (107).

Autophagy
Cancer cells may also evade cytotoxicity through autophagic
pathways. Autophagy is a physiological process by which
damaged or surplus proteins and organelles are degraded and
recycled (115). It has a particularly important role in preventing
cell death during cellular stress, such as nutrient starvation or
hypoxia. Increased autophagy is also a common feature of
tumorigenesis to protect against the harsh environment often
present within tumours. This also enables cancer cells to
maintain their highly proliferative and metabolically active
states even when the microenvironment is not conducive to
it (115).

Autophagy may also contribute to tumour growth by
promoting immune evasion. Hypoxia-induced autophagy, for
example, has been shown to correlate with resistance to CTL and
NK cell cytotoxicity (116, 117). Similarly, induction of autophagy
as a result of genetic inactivation of the von Hippel-Lindau
(VHL) gene reduces killing by NK cells (118). Genome-wide
CRISPR screens searching for genes that mediate resistance to
CTL cytotoxicity have also identified a range of autophagy-
related genes associated with cytotoxicity resistance (119, 120).
Degradation of granzyme B may be one mechanism by which
autophagy inhibits cytotoxicity. Breast cancer cells with
autophagy processes stimulated by hypoxia were found to be
resistant to NK cell-mediated lysis, with granzyme B localising
within their autophagosomes (117). When hypoxia-related genes
were inhibited, granzyme B activity within target cells was
increased (117, 118). However, a later study demonstrated that
a major effect of autophagy in cancer cells is to inhibit TNFa and
TRAIL-induced apoptosis by reducing FADD-dependent
caspase-8 activation (120). Thus, it is possible that autophagy
can act in multiple ways to inhibit lymphocyte cytotoxicity.

Gasdermins
An emerging aspect of resistance to lymphocyte cytotoxicity is
evasion of gasdermin-induced pyroptosis. Both granzyme A and
B-mediated cleavage of gasdermin B and E, respectively, have
been shown to contribute to tumour control by cytotoxic
lymphocytes (48, 54). Furthermore, granzyme A-mediated
cleavage of gasdermin B also contributes to defence against
bacterial infection by NK cells (55). Several mechanisms have
been identified which may cause resistance to these gasdermin-
mediated cytotoxic pathways. Firstly, reduced expression of both
gasdermin B and E have been identified in many cancers (48, 54).
In the case of gasdermin E, reduced expression can occur
through epigenetic silencing via hypermethylation of the
promoter region (121, 122). Low expression of both gasdermin
B and E is associated with poor survival in various cancers,
including breast cancer, bladder cancer, and melanoma (48, 54).
Reducing granzyme-induced pyroptosis through silencing of
gasdermin E expression in cancer cells has been shown to
contribute significantly to the escape of murine tumours from
Frontiers in Immunology | www.frontiersin.org 8
cytotoxic lymphocytes and accelerate tumour growth (48).
Similarly, resistance to gasdermin-mediated pyroptosis can
occur through the expression of mutated gasdermin. One study
found that 20 out of 22 gasdermin E mutations identified within
cancer samples were associated with reduced pyroptosis in
response to granzyme B (48).

In the context of bacterial infection, pyroptosis has been
shown to be inhibited through degradation of gasdermin B
(55). Degradation was mediated by a bacterial ubiquitin ligase
IpaH7.8 secreted by the gram-negative bacterium, Shigella
flexneri. IpaH7.8 was shown to ubiquitinate N-terminal
gasdermin B after its cleavage by granzyme A, leading to its
degradation. Expression of IpaH7.8 significantly constrained the
bactericidal activity of NK cells (55).

In summary, target cells may evade granzyme B-mediated
apoptosis through inhibition by serpin B9 or degradation by
autophagy. In addition, resistance to gasdermin-mediated
pyroptosis is emerging as another mechanism by which cells
may evade granzyme-mediated cytotoxicity in the context of
malignancy and infection. Importantly, all of these mechanisms
can have effects beyond granzymes and can affect other pathways
of lymphocyte cytotoxicity as well as cell survival in other
contexts. Therefore, targeting these pathways may directly
impact cancer and could enhance other modes of treatment,
such as immune therapies.

Inhibiting Death Receptor-Mediated Killing
Death receptor-mediated cytotoxicity is another critical
mechanism by which cytotoxic lymphocytes may eliminate
target cells. Several mechanisms have been described by which
cells can evade death receptor-mediated cytotoxicity. Signalling
can be directly inhibited by the activity of FADD-like IL-1b
converting enzyme (FLICE)-inhibitory proteins (FLIPs),
expression of decoy receptors, or downregulation of death
receptors (Figure 3).

FLICE Inhibitory Proteins (FLIPs)
One of the best characterised families of death receptor inhibitors
are the FLIPs. This family of proteins includes both viral (v-
FLIP) and cellular (c-FLIP) proteins, which share high sequence
homology (123). Several FLIP splice variants are expressed in
humans, but the primary forms include the short variant, c-
FLIPS, and the long variant, c-FLIPL (123). The long variant
contains an additional c-terminal domain that resembles the
catalytic domains of caspase 8 and 10 but without functional
caspase activity (123, 124).

Both cellular and viral FLIPs inhibit caspase 8 activity by
forming heterodimers with pro-caspase 8 (123, 125). This
sequesters pro-caspase 8, preventing it from forming the
necessary homodimers required for processing into active
caspase 8. Inhibition of pro-caspase 8 processing by FLIPs
prevents apoptosis induced by TRAIL and FasL, but not by
granzyme B (124, 126, 127). Immune cells have been observed to
exert a selective pressure on cancer cells during in vivo
tumorigenesis, allowing cells that highly express FLIP to escape
(128). Indeed, high tumour expression of c-FLIP, particularly of
the long variant, has been found to correlate with poor prognosis
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in a range of cancers, including acute myeloid leukaemia,
colorectal cancer, and non-small cell lung cancer (129–131).

In addition to cellular FLIPs, viral FLIPs also appear to have a
role in the promotion of tumorigenesis in humans. v-FLIPs that
are expressed during viral infection act to protect host cells from
death receptor-induced apoptosis resulting in immune escape
from T cells (132, 133). This viral immune escape mechanism
can contribute to the process by which certain viruses are
particularly oncogenic. For example, Kaposi’s sarcoma-
associated herpesvirus (KSHV)-FLIP is associated with
Kaposi’s sarcoma and certain lymphomas (132).

To complicate the picture, although c-FLIPL has primarily
been described as an inhibitor of apoptosis, it can also have pro-
apoptotic effects. Heterodimers formed of c-FLIPL and pro-
caspase 8 have been found to retain their catalytic activity and
can process other pro-caspase 8 homodimers (125, 134–137).
There is evidence that whether or not c-FLIPL promotes
Frontiers in Immunology | www.frontiersin.org 9
apoptosis is highly dependent on the level of expression of
both the FLIP protein and pro-caspase 8 (125, 136, 137). In
the presence of very high levels of c-FLIPL, and therefore high
levels of heterodimers, inhibition of apoptosis occurs since the
amount of pro-caspase 8 homodimers that are available to be
processed is decreased. Conversely, at lower concentrations, c-
FLIPL preferentially acts as a promoter of apoptosis.

Overall, FLIPs may play a significant role in the aetiology of
some cancers. As a result, FLIP inhibitors or drugs that reduce
FLIP expression are currently under development for the
treatment of cancer, but balancing the pro- and anti-apoptotic
effects may be challenging (138, 139). Other anti-cancer
treatments, such as doxorubicin, synthetic triterpenoids, and
peroxisome proliferator-activated receptor-g (PPARg) ligands,
can also decrease FLIP expression as a side effect, therefore
increasing sensitivity to death receptor-mediated cytotoxicity
(140–142).
FIGURE 3 | Inhibiting death receptor-mediated killing. Death receptor-mediated killing is a critical method of lymphocyte cytotoxicity. However, target cells have
developed multiple mechanisms to inhibit the effectiveness of these processes. (A) Expression of decoy receptors, including membrane bound decoy receptors 1
and 2 that lack functional death domains, thereby preventing signalling while sequestering TRAIL. Decoy receptor 2 also inhibits death receptor 5, preventing death
receptor 4 recruitment and DISC formation. Decoy receptor 3 is soluble and binds to FasL preventing it acting upon target cell Fas. (B) Autophagy inhibits FADD-
dependent caspase-8 activation. (C) Decreased expression of death receptors, such as Fas, DR4 and DR5 inhibits apoptotic pathways. (D) Increased expression of
cFLIP sequesters pro-caspase 8 into heterodimers to prevent its cleavage to caspase 8 and the subsequent activation of apoptotic pathways.
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Decoy Receptors
The majority of receptors that bind TNF superfamily proteins
are capable of transducing signals. However, several receptors
have been identified that, despite binding the same ligands, lack
cytoplasmic death domains for signalling and cannot recruit
critical adaptors, such as FADD (143). These are, in effect, decoy
receptors which compete with functional death receptors for
ligand binding. Physiologically, decoy receptors have been
implicated in modulating inflammatory responses but have
also been hijacked as a survival mechanism in cancer (144).
One such protein is decoy receptor 3 (DcR3), a soluble receptor
which binds FasL and is overexpressed in a large proportion of
primary lung, colon, oesophageal, stomach, and rectal tumours
(145, 146). Decoy receptors 1 and 2 (DcR1 and DcR2) are
membrane-bound receptors which bind TRAIL and also lack a
functional death domain (147, 148). In addition to competing
with functional TRAIL receptors, DcR2 is also able to interact
with TRAIL-receptor variant, DR5, preventing the recruitment
of the DR4 variant to the DISC and inhibiting caspase activation
(149, 150).

Expression of DcR1 or DcR2 has been found to correlate with
tumour progression and poor prognosis in breast cancer,
prostate cancer, and leukaemia (151–153). However, it is
unclear whether targeting decoy receptors in tumours could
have off-target effects, since they can also be expressed in
several normal t issues, including the spleen, lung,
gastrointestinal tract, endometrium, and activated T cells (145,
154, 155). Furthermore, although there is evidence from over-
expression systems that decoy receptors may constrain death
receptor-mediated killing, the extent to which they are harnessed
by cancer cells to evade lymphocyte cytotoxicity in vivo is
not known.

Death Receptor Expression and Mutation
Death receptor signalling can also be lost in cancer cells through
reduced surface expression or through inactivating mutations in
death receptors. Reduced expression of the death receptors Fas or
DR4/5 is a common feature of cancers (156–158). Loss of these
receptors is associated with poor prognosis, particularly upon
loss of more than one receptor or when receptor downregulation
occurs in tumours with low levels of infiltrating CTL (156, 158).
Interestingly, there is a weaker correlation between Fas
expression and survival in colorectal tumours with high
numbers of infiltrating CTL (158). This may suggest that
granule-dependent cytotoxicity rather than death receptor-
mediated killing is the predominant pathway of cancer cell
elimination when large numbers of CTL are present (158).
Loss of death receptor expression can occur through several
routes, including promoter methylation (159–161), histone
modifications (157, 162), promoter region mutations (163), or
reduced trafficking to the cell membrane (164). Notably,
oncogenic Ras mutations can strongly downregulate Fas
expression through the control of several genes associated with
the promoter region of Fas, as well as through hypermethylation
(159, 160). Conversely, death receptors are often up-regulated as
a side-effect of cancer treatment, and this may contribute to the
overall efficacy of the treatment. For example, receptors for FasL
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and TRAIL can be significantly up-regulated following
radiotherapy and chemotherapy, leading to enhanced killing by
cytotoxic lymphocytes (165–171).

A less frequently occurring feature of cancers that may
contribute to immune escape is mutations of the death
receptors themselves. Mutations affecting function, which
generally localise in the cytoplasmic domains, are infrequently
observed in cancers, such as gastric cancer, non-small cell lung
cancer, metastatic breast cancer, non-Hodgkin’s lymphoma, and
head and neck cancer (172–175). Induced expression of these
mutated receptors in vitro can reduce pro-apoptotic signalling.

Overall, death receptor signalling can be inhibited at multiple
stages including reduced expression or mutation of death
receptors, competition for ligand binding by decoy receptors,
or inhibition of downstream signalling by FLIPs. However, there
are several therapeutic strategies that may enhance death
receptor signalling including pharmacological inhibition and
downregulation of FLIPs or increasing death receptor
expression, all of which have the potential to restore the
efficacy of immune cytotoxicity.

Inhibiting TNF-Mediated Cytotoxicity
TNF is known to have both pro-survival and pro-death effects
on cancer cells depending on its precise cellular context.
Recently, genome-wide CRISPR screens have identified TNF
signalling as a major target of resistance to lymphocyte
cytotoxicity (120, 176–179). These studies identified several
genes encoding proteins related to TNF signalling that either
sensitise cells to lymphocyte cytotoxicity – including TNF-R1,
caspase 8, TRADD, and RIPK1 – or promote evasion of cytotoxicity
– including TRAF2, cIAP1, and FADD-like apoptosis regulator
(CFLAR), as well as multiple genes involved in the NF-kB pathway
(120, 176–179). In particular, knockout of TRAF2 was shown to
redirect TNF signalling from pro-survival signalling, via complex I
proteins and the NF-kB pathway, to pro-death signalling, via
complex II proteins (177). Likewise, knockout or pharmacological
inhibition of HOIL-1-interacting protein (HOIP), the catalytic
subunit of LUBAC involved in ubiquitination, also enhanced
sensitivity to TNF by reducing the ubiquitination of pro-survival
complex I proteins, which is required for TNF-mediated survival
signalling (180, 181). Conversely, antibody blockade of TNF
significantly reduced killing by both wild-type and perforin-
deficient T cells demonstrating that TNF signalling is a major
pathway of lymphocyte cytotoxicity (120, 176).

Resistance to TNF-mediated cell death has also been
suggested as one way in which autophagy can induce
resistance to lymphocyte cytotoxicity. Knockout of key
autophagy-related genes sensitizes cancer cells to TNF-induced
death and TNF-mediated T cell cytotoxicity (119, 120).
Autophagy can target TNF-induced cell death by modulating
FADD/caspase-8 activity (120). Several other studies have also
noted the ability of autophagy to interfere with active caspase-8
leading to reduced susceptibility of cells to TRAIL and TNF
during hepatic injury or in colon carcinoma (182, 183).

It remains to be seen whether TNF signalling can be
harnessed to successfully treat cancer patients in the clinic
because its effects are highly context-dependent. This was
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demonstrated by Young et al., who found that knockout of TNF-
R1 could either protect tumours against immune checkpoint
blockade or sensitise tumours to it depending on whether
autophagy was impaired or intact, respectively (120). TNF has
also been shown to have cancer-promoting effects in some cancer
models, leading to several clinical trials of TNF antagonists
demonstrating efficacy in some patients (184–186). One
possible approach to targeting TNF signalling is through the
use of SMAC (second mitochondria-derived activator of
caspases) mimetics. These are drugs that mimic the activity of
SMAC, a protein that is an endogenous inhibitor of cIAP
function (187). Through the inhibition of cIAP, SMAC
mimetics have been found to sensitise cancer cells to TNF-
induced cell death both in vitro and in vivo (120, 188–190).
Alternatively, directly inhibiting certain complex I components,
such as HOIP, may redirect signalling towards apoptosis (180).
Therefore, there is potential for sensitising cancer cells to TNF-
induced cell death, but greater understanding of how its
functions vary is needed.

Inhibiting Apoptotic Pathways
In addition to the inhibitory mechanisms against specific
components of lymphocyte cytotoxicity, cancer cells may
exhibit more general resistance to apoptosis through
alterations in apoptotic pathways. Prevention of apoptosis may
occur through either down-regulation of pro-apoptotic
mediators, such as caspases or pro-apoptotic Bcl-2 family
members, or up-regulation of apoptosis inhibitors, such
as Inhibitor of Apoptosis Proteins (IAPs) or anti-apoptotic
Bcl-2 family members. These can affect both caspase-
dependent and mitochondrial pathways of apoptosis, which are
involved in both granule-mediated and death receptor-mediated
cell death.

Caspase Inhibition – Mutations and Inhibitor of
Apoptosis Proteins
Caspases are critical components of both granule-mediated and
death receptor-mediated cytotoxicity. Death receptor-induced
apoptosis relies on the activation of caspase 8/10 within the DISC
to activate the executioner caspases, caspase 3, 6, and 7.
Conversely, granzyme B can directly cleave and activate
executioner caspases as well as activating them through the
mitochondrial pathway of apoptosis. As a result, reducing
caspase activity is a common pathway by which cancers avoid
apoptosis, with reduced expression or mutations reported for
both initiator (caspase 2, 8, and 10) and executioner caspases
(caspase 3, 6, and 7) in a range of cancers (191). For example,
caspase 8 is commonly mutated, particularly in cancers of
neuroendocrine or lymphoid origin (192). Loss of caspase 8
expression contributes to resistance against TRAIL-induced
apoptosis (193, 194). In addition to alterations in expression,
caspase activity can be modulated by the enhanced expression of
IAPs, such as cIAP1, survivin, and X-linked inhibitor of
apoptosis protein (XIAP). IAPs can bind directly to caspases
preventing their activity and leading to inhibition of granzyme B
and death receptor-mediated apoptosis (195–197).
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Bcl-2 Family
The mitochondrial pathway of apoptosis, characterised by
mitochondrial outer membrane permeabilization (MOMP), is a
critical pathway by which both granzyme B and death receptors
can mediate apoptosis. This pathway is regulated by the Bcl-2
family of proteins, which include pro-apoptotic BH3 proteins
(e.g. Bid), pro-apoptotic effector proteins (e.g. Bax and Bak), and
anti-apoptotic proteins (e.g. Bcl-2 and Bcl-XL) (40). Disruption
of this pathway through either downregulation of pro-apoptotic
proteins or upregulation of anti-apoptotic proteins can prevent
apoptosis induced by either death receptors or granzymes.

A critical mediator of MOMP is Bid, which can be cleaved by
either caspase 8 following death receptor ligation or by granzyme
B. Bid is responsible for recruiting additional mediators of
MOMP, such as Bax and Bak (40). As a result, loss of Bid
expression in cancer cells leads to reduced sensitivity to
granzyme B-induced apoptosis (198, 199). Likewise, loss of Bak
expression, which is directly involved in permeabilization of the
mitochondrial membrane, protects against apoptosis triggered
by granzyme B (199). Reduced expression of pro-apoptotic Bcl-2
family members, such as Bid, is observed in various cancers and
is associated with poor prognosis in prostate cancer and colon
cancer, for example (200, 201).

Alternatively, inhibition of MOMP can occur through
overexpression of the anti-apoptotic Bcl-2 family proteins,
which inhibit the activity of apoptotic proteins, such as Bax
and Bak. Overexpression of anti-apoptotic proteins, such as Bcl-
2 or Bcl-XL, reduces apoptosis induced by both granule-
mediated cytotoxicity and death receptor-mediated
cytotoxicity, whereas pharmacological inhibition of Bcl-2
sensitises cells to cytotoxicity (196, 197, 202–206).
Overexpression of Bcl-2 is a common feature of multiple
cancers (207).

Overall, cancer cells frequently develop mutations or altered
expression of the critical caspases and Bcl-2 family members
involved in regulating and mediating apoptosis induced by
immune attack. As a result, targeting these pathways, for
example by inhibition of Bcl-2, could be a particularly effective
way of enhancing the efficacy of immunotherapy in
patients (208).
CONCLUSION

Effective cytotoxicity by immune cells against cancerous or
infected cells is a critical mechanism of controlling these
disease states. A multitude of treatments, such as checkpoint
inhibitors, have been developed to boost the immune system’s
response to these diseased cells. However, these treatments are
not always effective, and malignant and infected cells can still
exploit mechanisms that enable them to evade the strengthened
immune system. Here, we have outlined many ways in which
diseased cells can evade the cytotoxic attacks of NK cells and
CTLs. Many processes that enhance target cell resistance to
cytotoxicity are the same processes that cytotoxic cells
themselves use to prevent self-harm by their own deadly cargo.
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Other pathways that inhibit cytotoxic killing, such as autophagy,
pro-survival TNF signalling, and downregulation of apoptotic
pathways, also convey other benefits normally, but can be
exploited by cancerous cells or infectious agents.

It is likely that many of these mechanisms of resistance have
evolved together with the cytotoxic pathways employed by
lymphocytes . Th is may expla in why lymphocytes
simultaneously utilise several cytotoxic pathways that are often
redundant. For example, the broad range of granzyme B targets –
including apoptotic caspases, regulators of mitochondrial
apoptosis, and gasdermins – reduces the likelihood that a
target cell could become resistant to granzyme B-mediated cell
death. This was found to be the case in the context of
haematological cancer, in which NK cells and CTLs were able
to kill cancer cells despite a variety of anti-apoptotic mutations
that conferred multi-drug resistance (209, 210). These studies
demonstrate that lymphocytes can overcome some resistance
mechanisms by inducing death through multiple pathways.

Conceptually, it can be difficult to distinguish processes that
have been autonomously selected to aid the survival of diseased
cells that also happen to be beneficial in avoiding immune attack,
from processes that have been adopted by these cells to
specifically resist cell-mediated cytotoxicity. Further research to
investigate this could include studying the evolutionary
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development of cancers, and comparisons with mice deficient
in specific compartments of their immune system. Either way,
there is great potential here to therapeutically target the processes
discussed throughout this review. Targeting the ways in which
diseased cells avoid death could be used alone or in combination
with other therapies, including immunotherapies. Importantly, a
greater understanding of these mechanisms and processes in vivo
is sorely needed to indicate the most potent interventions.
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