
JMLR: Workshop and Conference Proceedings vol 40:1–46, 2015

Escaping From Saddle Points –

Online Stochastic Gradient for Tensor Decomposition

Rong Ge RONGGE@MICROSOFT.COM

Microsoft Research New England

Furong Huang FURONGH@UCI.EDU

University of California Irvine

Chi Jin CHIJIN@CS.BERKELEY.EDU

University of California Berkeley

Yang Yuan YANGYUAN@CS.CORNELL.EDU

Cornell University

Abstract

We analyze stochastic gradient descent for optimizing non-convex functions. In many cases for non-convex

functions the goal is to find a reasonable local minimum, and the main concern is that gradient updates are

trapped in saddle points. In this paper we identify strict saddle property for non-convex problem that allows

for efficient optimization. Using this property we show that from an arbitrary starting point, stochastic

gradient descent converges to a local minimum in a polynomial number of iterations. To the best of our

knowledge this is the first work that gives global convergence guarantees for stochastic gradient descent on

non-convex functions with exponentially many local minima and saddle points.

Our analysis can be applied to orthogonal tensor decomposition, which is widely used in learning a rich

class of latent variable models. We propose a new optimization formulation for the tensor decomposition

problem that has strict saddle property. As a result we get the first online algorithm for orthogonal tensor

decomposition with global convergence guarantee.

Keywords: stochastic gradient, non-convex optimization, saddle points, tensor decomposition

1. Introduction

Stochastic gradient descent is one of the basic algorithms in optimization. It is often used to solve the

following stochastic optimization problem

w = arg min
w∈Rd

f(w), where f(w) = Ex∼D[φ(w, x)] (1)

Here x is a data point that comes from some unknown distribution D, and φ is a loss function that is defined

for a pair (x,w) of sample and parameters. We hope to minimize the expected loss E[φ(w, x)].
When the function f(w) is convex, convergence of stochastic gradient descent is well-understood

(Shalev-Shwartz et al., 2009; Rakhlin et al., 2012). However, stochastic gradient descent is not only limited

to convex functions. Especially, in the context of neural networks, stochastic gradient descent is known as

the “backpropagation” algorithm (Rumelhart et al., 1988), and has been the main algorithm that underlies

the success of deep learning (Bengio, 2009). However, the guarantees in the convex setting does not transfer

to the non-convex settings.

Optimizing a non-convex function is NP-hard in general. The difficulty comes from two aspects. First,

the function may have many local minima, and it might be hard to find the best one (global minimum) among

c© 2015 R. Ge, F. Huang, C. Jin & Y. Yuan.

them. Second, even finding a local minimum might be hard as there can be many saddle points which have

0-gradient but are not local minima1. In the most general case, there is no known algorithm that guarantees

to find a local minimum in polynomial number of steps. The discrete analog (finding local minimum in

domains like {0, 1}n) has been studied in complexity theory and is PLS-complete (Johnson et al., 1988).

In many cases, especially in those related to deep neural networks (Dauphin et al., 2014)

(Choromanska et al., 2014), the main bottleneck in optimization is not due to local minima, but the existence

of many saddle points. Gradient based algorithms are in particular susceptible to saddle point problems as

they only rely on the gradient information. The saddle point problem is alleviated for second-order methods

that also rely on the Hessian information (Dauphin et al., 2014).

However, using Hessian information usually increases the memory requirement and computation time

per iteration. As a result many applications still use stochastic gradient and empirically get reasonable

results. In this paper we investigate why stochastic gradient methods can be effective even in presence of

saddle point, in particular we answer the following question:

Question: Given a non-convex function f with many saddle points, what properties of f will guarantee

stochastic gradient descent to converge to a local minimum efficiently?

We identify a property of non-convex functions which we call strict saddle. Intuitively, it guarantees

local progress if we have access to the Hessian information. Surprisingly we show with only first order (gra-

dient) information, stochastic gradient can escape from the saddle points efficiently. We give a framework

for analyzing stochastic gradient in both unconstrained and equality-constrained case using this property.

We apply our framework to orthogonal tensor decomposition, which is a core problem in learning many

latent variable models (see discussion in Section 2.2). The tensor decomposition problem is inherently

susceptible to the saddle point issues, as the problem asks to find d different components and any permutation

of the true components yields a valid solution. Such symmetry creates exponentially many local minima and

saddle points in the optimization problem. Using our new analysis of stochastic gradient, we give the first

online algorithm for orthogonal tensor decomposition with global convergence guarantee. This is a key step

towards making tensor decomposition algorithms more scalable.

1.1. Summary of Results

Strict saddle functions Given a function f(w) that is twice differentiable, we call w a stationary point if

∇f(w) = 0. A stationary point can either be a local minimum, a local maximum or a saddle point. We

identify an interesting class of non-convex functions which we call strict saddle. For these functions the

Hessian of every saddle point has a negative eigenvalue. In particular, this means that local second-order

algorithms which are similar to the ones in (Dauphin et al., 2014) can always make some progress.

It may seem counter-intuitive why stochastic gradient can work in these cases: in particular if we run

the basic gradient descent starting from a stationary point then it will not move. However, we show that

the saddle points are not stable and that the randomness in stochastic gradient helps the algorithm to escape

from the saddle points.

Theorem 1 (informal) Suppose f(w) is strict saddle (see Definition 5), Noisy Gradient Descent (Algo-

rithm 1) outputs a point that is close to a local minimum in polynomial number of steps.

Online tensor decomposition Requiring all saddle points to have a negative eigenvalue may seem strong,

but it already allows non-trivial applications to natural non-convex optimization problems. As an example,

1. See Section 3 for definition of saddle points.

2

we consider the orthogonal tensor decomposition problem. This problem is the key step in spectral learning

for many latent variable models (see more discussions in Section 2.2).

We design a new objective function for tensor decomposition that is strict saddle.

Theorem 2 Given random variables X such that T = E[g(X)] ∈ R
d4 is an orthogonal 4-th order tensor

(see Section 2.2), there is an objective function f(w) = E[φ(w,X)] w ∈ R
d×d such that every local

minimum of f(w) corresponds to a valid decomposition of T . Further, function f is strict saddle.

Combining this new objective with our framework for optimizing strict saddlefunctions, we get the first

online algorithm for orthogonal tensor decomposition with global convergence guarantee.

1.2. Related Works

Relaxed notions of convexity In optimization theory and economics, there are extensive works on un-

derstanding functions that behave similarly to convex functions (and in particular can be optimized ef-

ficiently). Such notions involve pseudo-convexity (Mangasarian, 1965), quasi-convexity (Kiwiel, 2001),

invexity(Hanson, 1999) and their variants. More recently there are also works that consider classes that

admit more efficient optimization procedures like RSC (restricted strong convexity) (Agarwal et al., 2010).

Although these classes involve functions that are non-convex, the function (or at least the function restricted

to the region of analysis) still has a unique stationary point that is the desired local/global minimum. There-

fore these works cannot be used to prove global convergence for problems like tensor decomposition, where

by symmetry of the problem there are exponentially many local minima and saddle points.

Second-order algorithms The most popular second-order method is the Newton’s method. Although

Newton’s method converges fast near a local minimum, its global convergence properties are less understood

in the more general case. For non-convex functions, (Frieze et al., 1996) gave a concrete example where

second-order method converges to the desired local minimum in polynomial number of steps (interestingly

the function of interest is trying to find one component in a 4-th order orthogonal tensor, which is a simpler

case of our application). As Newton’s method often converges also to saddle points, to avoid this behavior,

different trusted-region algorithms are applied (Dauphin et al., 2014).

Stochastic gradient and symmetry The tensor decomposition problem we consider in this paper has the

following symmetry: the solution is a set of d vectors v1, ..., vd. If (v1, v2, ..., vd) is a solution, then for any

permutation π and any sign flips κ ∈ {±1}d, (.., κivπ(i), ...) is also a valid solution. In general, symmetry

is known to generate saddle points, and variants of gradient descent often perform reasonably in these cases

(see (Saad and Solla, 1995), (Rattray et al., 1998), (Inoue et al., 2003)). The settings in these work are

different from ours, and none of them give bounds on number of steps required for convergence.

There are many other problems that have the same symmetric structure as the tensor decomposition

problem, including the sparse coding problem (Olshausen and Field, 1997) and many deep learning appli-

cations (Bengio, 2009). In these problems the goal is to learn multiple “features” where the solution is

invariant under permutation. Note that there are many recent papers on iterative/gradient based algorithms

for problems related to matrix factorization (Jain et al., 2013; Saxe et al., 2013). These problems often have

very different symmetry, as if Y = AX then for any invertible matrix R we know Y = (AR)(R−1X).
In this case all the equivalent solutions are in a connected low dimensional manifold and there need not be

saddle points between them.

2. Preliminaries

Notation Throughout the paper we use [d] to denote set {1, 2, ..., d}. We use ‖ · ‖ to denote the ℓ2 norm

of vectors and spectral norm of matrices. For a matrix we use λmin to denote its smallest eigenvalue. For a

function f : Rd → R, ∇f and ∇2f denote its gradient vector and Hessian matrix.

3

2.1. Stochastic Gradient Descent

The stochastic gradient aims to solve the stochastic optimization problem (1), which we restate here:

w = arg min
w∈Rd

f(w), where f(w) = Ex∼D[φ(w, x)].

Recall φ(w, x) denotes the loss function evaluated for sample x at point w. The algorithm follows a stochas-

tic gradient

wt+1 = wt − η∇wtφ(wt, xt), (2)

where xt is a random sample drawn from distribution D and η is the learning rate.

In the more general setting, stochastic gradient descent can be viewed as optimizing an arbitrary function

f(w) given a stochastic gradient oracle.

Definition 3 For a function f(w) : Rd → R, a function SG(w) that maps a variable to a random vector in

R
d is a stochastic gradient oracle if E[SG(w)] = ∇f(w) and ‖SG(w)−∇f(w)‖ ≤ Q.

In this case the update step of the algorithm becomes wt+1 = wt − ηSG(wt).

Smoothness and Strong Convexity Traditional analysis for stochastic gradient often assumes the function

is smooth and strongly convex. A function is β-smooth if for any two points w1, w2,

‖∇f(w1)−∇f(w2)‖ ≤ β‖w1 − w2‖. (3)

When f is twice differentiable this is equivalent to assuming that the spectral norm of the Hessian matrix is

bounded by β. We say a function is α-strongly convex if the Hessian at any point has smallest eigenvalue at

least α (λmin(∇2f(w)) ≥ α).

Using these two properties, previous work (Rakhlin et al., 2012) shows that stochastic gradient converges

at a rate of 1/t. In this paper we consider non-convex functions, which can still be β-smooth but cannot be

strongly convex.

Smoothness of Hessians We also require the Hessian of the function f to be smooth. We say a function

f(w) has ρ-Lipschitz Hessian if for any two points w1, w2 we have

‖∇2f(w1)−∇2f(w2)‖ ≤ ρ‖w1 − w2‖. (4)

This is a third order condition that is true if the third order derivative exists and is bounded.

2.2. Tensors decomposition

A p-th order tensor is a p-dimensional array. In this paper we will mostly consider 4-th order tensors. If

T ∈ R
d4 is a 4-th order tensor, we use Ti1,i2,i3,i4(i1, ..., i4 ∈ [d]) to denote its (i1, i2, i3, i4)-th entry.

Tensors can be constructed from tensor products. We use (u ⊗ v) to denote a 2nd order tensor where

(u⊗ v)i,j = uivj . This generalizes to higher order and we use u⊗4 to denote the 4-th order tensor

[u⊗4]i1,i2,i3,i4 = ui1ui2ui3ui4 .

We say a 4-th order tensor T ∈ R
d4 has an orthogonal decomposition if it can be written as

T =
d∑

i=1

a⊗4
i , (5)

4

where ai’s are orthonormal vectors that satisfy ‖ai‖ = 1 and aTi aj = 0 for i 6= j. We call the vectors

ai’s the components of this decomposition. Such a decomposition is unique up to permutation of ai’s and

sign-flips.

A tensor also defines a multilinear form (just as a matrix defines a bilinear form), for a p-th order tensor

T ∈ R
dp and matrices Mi ∈ R

d×ni , i ∈ [p], we define

[T (M1,M2, ...,Mp)]i1,i2,...,ip =
∑

j1,j2,...,jp∈[d]

Tj1,j2,...,jp
∏

t∈[p]

Mt[jt, it].

That is, the result of the multilinear form T (M1,M2, ...,Mp) is another tensor in R
n1×n2×···×np . We will

most often use vectors or identity matrices in the multilinear form. In particular, for a 4-th order tensor

T ∈ R
d4 we know T (I, u, u, u) is a vector and T (I, I, u, u) is a matrix. In particular, if T has the orthogonal

decomposition in (5), we know T (I, u, u, u) =
∑d

i=1(u
Tai)

3ai and T (I, I, u, u) =
∑d

i=1(u
Tai)

2aia
T
i .

Given a tensor T with an orthogonal decomposition, the orthogonal tensor decomposition problem asks

to find the individual components a1, ..., ad. This is a central problem in learning many latent variable mod-

els, including Hidden Markov Model, multi-view models, topic models, mixture of Gaussians and Indepen-

dent Component Analysis (ICA). See the discussion and citations in Anandkumar et al. (2014). Orthogonal

tensor decomposition problem can be solved by many algorithms even when the input is a noisy estimation

T̃ ≈ T (Harshman, 1970; Kolda, 2001; Anandkumar et al., 2014). In practice this approach has been suc-

cessfully applied to ICA (Comon, 2002), topic models (Zou et al., 2013) and community detection (Huang

et al., 2013).

3. Stochastic gradient descent for strict saddle function

In this section we discuss the properties of saddle points, and show if all the saddle points are well-behaved

then stochastic gradient descent finds a local minimum for a non-convex function in polynomial time.

3.1. Strict saddle property

For a twice differentiable function f(w), we call a point stationary point if its gradient is equal to 0. Sta-

tionary points could be local minima, local maxima or saddle points. By local optimality conditions (Wright

and Nocedal, 1999), in many cases we can tell what type a point w is by looking at its Hessian: if ∇2f(w)
is positive definite then w is a local minimum; if∇2f(w) is negative definite then w is a local maximum; if

∇2f(w) has both positive and negative eigenvalues then w is a saddle point. These criteria do not cover all

the cases as there could be degenerate scenarios: ∇2f(w) can be positive semidefinite with an eigenvalue

equal to 0, in which case the point could be a local minimum or a saddle point.

If a function does not have these degenerate cases, then we say the function is strict saddle:

Definition 4 A twice differentiable function f(w) is strict saddle, if all its local minima have ∇2f(w) ≻ 0
and all its other stationary points satisfy λmin(∇2f(w)) < 0.

Intuitively, if we are not at a stationary point, then we can always follow the gradient and reduce the

value of the function. If we are at a saddle point, we need to consider a second order Taylor expansion:

f(w +∆w) ≈ w + (∆w)T∇2f(w)(∆w) +O(‖∆w‖3).

Since the strict saddle property guarantees ∇2f(w) to have a negative eigenvalue, there is always a point

that is near w and has strictly smaller function value. It is possible to make local improvements as long as

5

we have access to second order information. However it is not clear whether the more efficient stochastic

gradient updates can work in this setting.

To make sure the local improvements are significant, we use a robust version of the strict saddle property:

Definition 5 A twice differentiable function f(w) is (α, γ, ǫ, δ)-strict saddle, if for any point w at least one

of the following is true

1. ‖∇f(w)‖ ≥ ǫ.

2. λmin(∇2f(w)) ≤ −γ.

3. There is a local minimum w⋆ such that ‖w − w⋆‖ ≤ δ, and the function f(w′) restricted to 2δ
neighborhood of w⋆ (‖w′ − w⋆‖ ≤ 2δ) is α-strongly convex.

Intuitively, this condition says for any point whose gradient is small, it is either close to a robust local

minimum, or is a saddle point (or local maximum) with a significant negative eigenvalue.

Algorithm 1 Noisy Stochastic Gradient

Require: Stochastic gradient oracle SG(w), initial point w0, desired accuracy κ.

Ensure: wt that is close to some local minimum w⋆.

1: Choose η = min{Õ(κ2/ log(1/κ)), ηmax}
2: for t = 0 to Õ(1/η2) do

3: Sample noise n uniformly from unit sphere.

4: wt+1 ← wt − η(SG(w) + n)

We purpose a simple variant of stochastic gradient algorithm, where the only difference to the traditional

algorithm is we add an extra noise term to the updates. The main benefit of this additional noise is that we

can guarantee there is noise in every direction, which allows the algorithm to effectively explore the local

neighborhood around saddle points. If the noise from stochastic gradient oracle already has nonnegligible

variance in every direction, our analysis also applies without adding additional noise. We show noise can

help the algorithm escape from saddle points and optimize strict saddle functions.

Theorem 6 (Main Theorem) Suppose a function f(w) : Rd → R that is (α, γ, ǫ, δ)-strict saddle, and has

a stochastic gradient oracle with radius at mostQ. Further, suppose the function is bounded by |f(w)| ≤ B,

is β-smooth and has ρ-Lipschitz Hessian. Then there exists a threshold ηmax = Θ̃(1), so that for any ζ > 0,

and for any η ≤ ηmax/max{1, log(1/ζ)}, with probability at least 1−ζ in t = Õ(η−2 log(1/ζ)) iterations,

Algorithm 1 (Noisy Gradient Descent) outputs a point wt that is Õ(
√
η log(1/ηζ))-close to some local

minimum w⋆.

Here (and throughout the rest of the paper) Õ(·) (Ω̃, Θ̃) hides the factor that is polynomially dependent

on all other parameters (including Q, 1/α, 1/γ, 1/ǫ, 1/δ, B, β, ρ, and d), but independent of η and ζ.

So it focuses on the dependency on η and ζ. Our proof technique can give explicit dependencies on these

parameters however we hide these dependencies for simplicity of presentation. 2

2. Currently, our number of iteration is a large polynomial in the dimension d. We have not tried to optimize the degree of this

polynomial. Empirically the dependency on d is much better, whether the dependency on d can be improved to poly log d is

left as an open problem.

6

Remark 7 (Decreasing learning rate) Often analysis of stochastic gradient descent uses decreasing learn-

ing rates and the algorithm converges to a local (or global) minimum. Since the function is strongly convex

in the small region close to local minimum, we can use Theorem 6 to first find a point that is close to a

local minimum, and then apply standard analysis of SGD in the strongly convex case (where we decrease

the learning rate by 1/t and get 1/
√
t convergence in ‖w − w⋆‖).

In the next part we sketch the proof of the main theorem. Details are deferred to Appendix A.

3.2. Proof sketch

In order to prove Theorem 6, we analyze the three cases in Definition 5. When the gradient is large, we

show the function value decreases in one step (see Lemma 8); when the point is close to a local minimum,

we show with high probability it cannot escape in the next polynomial number of iterations (see Lemma 9).

Lemma 8 (Gradient) Under the assumptions of Theorem 6, for any point with ‖∇f(wt)‖ ≥ C√η (where

C = Θ̃(1)) and C
√
η ≤ ǫ, after one iteration we have E[f(wt+1)] ≤ f(wt)− Ω̃(η2).

The proof of this lemma is a simple application of the smoothness property.

Lemma 9 (Local minimum) Under the assumptions of Theorem 6, for any point wt that is Õ(
√
η) < δ

close to local minimum w⋆, in Õ(η−2 log(1/ζ)) number of steps all future wt+i’s are Õ(
√
η log(1/ηζ))-

close with probability at least 1− ζ/2.

The proof of this lemma is similar to the standard analysis (Rakhlin et al., 2012) of stochastic gradient

descent in the smooth and strongly convex setting, except we only have local strong convexity. The proof

appears in Appendix A.

The hardest case is when the point is “close” to a saddle point: it has gradient smaller than ǫ and

smallest eigenvalue of the Hessian bounded by −γ. In this case we show the noise in our algorithm helps

the algorithm to escape:

Lemma 10 (Saddle point) Under the assumptions of Theorem 6, for any point wt where ‖∇f(wt)‖ ≤
C
√
η (for the same C as in Lemma 8), and λmin(∇2f(wt)) ≤ −γ, there is a number of steps T that

depends on wt such that E[f(wt+T)] ≤ f(wt) − Ω̃(η). The number of steps T has a fixed upper bound

Tmax that is independent of wt where T ≤ Tmax = Õ(1/η).

Intuitively, at point wt there is a good direction that is hiding in the Hessian. The hope of the algorithm

is that the additional (or inherent) noise in the update step makes a small step towards the correct direction,

and then the gradient information will reinforce this small perturbation and the future updates will “slide”

down the correct direction.

To make this more formal, we consider a coupled sequence of updates w̃ such that the function to

minimize is just the local second order approximation

f̃(w) = f(wt) +∇f(wt)
T (w − wt) +

1

2
(w − wt)

T∇2f(wt)(w − wt).

The dynamics of stochastic gradient descent for this quadratic function is easy to analyze as w̃t+i can

be calculated analytically. Indeed, we show the expectation of f̃(w̃) will decrease. More concretely we

show the point w̃t+i will move substantially in the negative curvature directions and remain close to wt in

7

positive curvature directions. We then use the smoothness of the function to show that as long as the points

did not go very far from wt, the two update sequences w̃ and w will remain close to each other, and thus

f̃(w̃t+i) ≈ f(wt+i). Finally we prove the future wt+i’s (in the next T steps) will remain close to wt with

high probability by Martingale bounds. The detailed proof appears in Appendix A.

With these three lemmas it is easy to prove the main theorem. Intuitively, as long as there is a small

probability of being Õ(
√
η)-close to a local minimum, we can always apply Lemma 8 or Lemma 10 to

make the expected function value decrease by Ω̃(η) in at most Õ(1/η) iterations, this cannot go on for more

than Õ(1/η2) iterations because in that case the expected function value will decrease by more than 2B,

but max f(x) − min f(x) ≤ 2B by our assumption. Therefore in Õ(1/η2) steps with at least constant

probability wt will become Õ(
√
η)-close to a local minimum. By Lemma 9 we know once it is close it will

almost always stay close, so after q epochs of Õ(1/η2) iterations each, the probability of success will be

1− exp(−Ω(q)). Taking q = O(log(1/ζ)) gives the result. More details appear in Appendix A.

3.3. Constrained Problems

In many cases, the problem we are facing are constrained optimization problems. In this part we briefly

describe how to adapt the analysis to problems with equality constraints (which suffices for the tensor ap-

plication). Dealing with general inequality constraint is left as future work.

For a constrained optimization problem:

min
w∈Rd

f(w) (6)

s.t. ci(w) = 0, i ∈ [m]

in general we need to consider the set of points in a low dimensional manifold that is defined by the con-

straints. In particular, in the algorithm after every step we need to project back to this manifold (see Algo-

rithm 2 where ΠW is the projection to this manifold).

Algorithm 2 Projected Noisy Stochastic Gradient

Require: Stochastic gradient oracle SG(w), initial point w0, desired accuracy κ.

Ensure: wt that is close to some local minimum w⋆.

1: Choose η = min{Õ(κ2/ log(1/κ)), ηmax}
2: for t = 0 to Õ(1/η2) do

3: Sample noise n uniformly from unit sphere.

4: vt+1 ← wt − η(SG(w) + n)
5: wt+1 = ΠW(vt+1)

For constrained optimization it is common to consider the Lagrangian:

L(w, λ) = f(w)−
m∑

i=1

λici(w). (7)

Under common regularity conditions, it is possible to compute the value of the Lagrangian multipliers:

λ∗(w) = argmin
λ
‖∇wL(w, λ)‖.

We can also define the tangent space, which contains all directions that are orthogonal to all the gradients

of the constraints: T (w) = {v : ∇ci(w)T v = 0; i = 1, · · · ,m}. In this case the corresponding gradient

8

and Hessian we consider are the first-order and second-order partial derivative of Lagrangian L at point

(w, λ∗(w)):

χ(w) = ∇wL(w, λ)|(w,λ∗(w)) = ∇f(w)−
m∑

i=1

λ∗i (w)∇ci(w) (8)

M(w) = ∇2
wwL(w, λ)|(w,λ∗(w)) = ∇2f(w)−

m∑

i=1

λ∗i (w)∇2ci(w) (9)

We replace the gradient and Hessian with χ(w) and M(w), and when computing eigenvectors of M(w)
we focus on its projection on the tangent space. In this way, we can get a similar definition for strict

saddle (see Appendix B), and the following theorem.

Theorem 11 (informal) Under regularity conditions and smoothness conditions, if a constrained optimiza-

tion problem satisfies strict saddle property, then for a small enough η, in Õ(η−2 log 1/ζ) iterations Pro-

jected Noisy Gradient Descent (Algorithm 2) outputs a point w that is Õ(
√
η log(1/ηζ)) close to a local

minimum with probability at least 1− ζ.

Detailed discussions and formal version of this theorem are deferred to Appendix B.

4. Online Tensor Decomposition

In this section we describe how to apply our stochastic gradient descent analysis to tensor decomposition

problems. We first give a new formulation of tensor decomposition as an optimization problem, and show

that it satisfies the strict saddle property. Then we explain how to compute stochastic gradient in a simple

example of Independent Component Analysis (ICA) (Hyvärinen et al., 2004).

4.1. Optimization problem for tensor decomposition

Given a tensor T ∈ R
d4 that has an orthogonal decomposition

T =

d∑

i=1

a⊗4
i , (10)

where the components ai’s are orthonormal vectors (‖ai‖ = 1, aTi aj = 0 for i 6= j), the goal of orthogonal

tensor decomposition is to find the components ai’s. This problem has inherent symmetry: for any permu-

tation π and any set of κi ∈ {±1}, i ∈ [d], we know ui = κiaπ(i) is also a valid solution. This symmetry

property makes the natural optimization problems non-convex.

In this section we will give a new formulation of orthogonal tensor decomposition as an optimization

problem, and show that this new problem satisfies the strict saddle property. Previously, Frieze et al. (1996)

solves the problem of finding one component, with the following objective function

max
‖u‖2=1

T (u, u, u, u). (11)

In Appendix C.1, as a warm-up example we show this function is indeed strict saddle, and we can apply

Theorem 11 to prove global convergence of stochastic gradient descent algorithm.

It is possible to find all components of a tensor by iteratively finding one component, and do careful

deflation, as described in Anandkumar et al. (2014) or Arora et al. (2012). However, in practice the most

9

popular approaches like Alternating Least Squares (Comon et al., 2009) or FastICA (Hyvarinen, 1999) try

to use a single optimization problem to find all the components. Empirically these algorithms are often more

robust to noise and model misspecification.

The most straight-forward formulation of the problem aims to minimize the reconstruction error

min
∀i,‖ui‖2=1

‖T −
d∑

i=1

u⊗4
i ‖2F . (12)

Here ‖ · ‖F is the Frobenius norm of the tensor which is equal to the ℓ2 norm when we view the tensor as a

d4 dimensional vector. However, it is not clear whether this function satisfies the strict saddle property, and

empirically stochastic gradient descent is unstable for this objective.

We propose a new objective that aims to minimize the correlation between different components:

min
∀i,‖ui‖2=1

∑

i 6=j

T (ui, ui, uj , uj), (13)

To understand this objective intuitively, we first expand vectors uk in the orthogonal basis formed by {ai}’s.

That is, we can write uk =
∑d

i=1 zk(i)ai, where zk(i) are scalars that correspond to the coordinates in the

{ai} basis. In this way we can rewrite T (uk, uk, ul, ul) =
∑d

i=1(zk(i))
2(zl(i))

2. From this form it is clear

that the T (uk, uk, ul, ul) is always nonnegative, and is equal to 0 only when the support of zk and zl do

not intersect. For the objective function, we know in order for it to be equal to 0 the z’s must have disjoint

support. Therefore, we claim that {uk}, ∀k ∈ [d] is equivalent to {ai}, ∀i ∈ [d] up to permutation and sign

flips when the global minimum (which is 0) is achieved.

We further show that this optimization program satisfies the strict saddle property and all its local minima

in fact achieves global minimum value. The proof is deferred to Appendix C.2.

Theorem 12 The optimization problem (13) is (α, γ, ǫ, δ)-strict saddle, for α = 1 and γ, ǫ, δ = 1/poly(d).
Moreover, all its local minima have the form ui = κiaπ(i) for some κi = ±1 and permutation π(i).

Note that we can also generalize this to handle 4th order tensors with different positive weights on the

components, or other order tensors, see Appendix C.3.

4.2. Implementing stochastic gradient oracle

To design an online algorithm based on objective function (13), we need to give an implementation for the

stochastic gradient oracle.

In applications, the tensor T is oftentimes the expectation of multilinear operations of samples g(x) over

x where x is generated from some distributionD. In other words, for any x ∼ D, the tensor is T = E[g(x)].
Using the linearity of the multilinear map, we know E[g(x)](ui, ui, uj , uj) = E[g(x)(ui, ui, uj , uj)]. There-

fore we can define the loss function φ(u, x) =
∑

i 6=j g(x)(ui, ui, uj , uj), and the stochastic gradient oracle

SG(u) = ∇uφ(u, x).
For concreteness, we look at a simple ICA example. In the simple setting we consider an unknown

signal x that is uniform3 in {±1}d, and an unknown orthonormal linear transformation4 A (AAT = I). The

sample we observe is y := Ax ∈ R
d. Using standard techniques (see Cardoso (1989)), we know the 4-th

order cumulant of the observed sample is a tensor that has orthogonal decomposition. Here for simplicity

we don’t define 4-th order cumulant, instead we give the result directly.

3. In general ICA the entries of x are independent, non-Gaussian variables.

4. In general (under-complete) ICA this could be an arbitrary linear transformation, however usually after the “whitening” step

(see Cardoso (1989)) the linear transformation becomes orthonormal.

10

Define tensor Z ∈ R
d4 as follows:

Z(i, i, i, i) = 3, ∀i ∈ [d]
Z(i, i, j, j) = Z(i, j, i, j) = Z(i, j, j, i) = 1, ∀i 6= j ∈ [d]

where all other entries of Z are equal to 0. The tensor T can be written as a function of the auxiliary tensor

Z and multilinear form of the sample y.

Lemma 13 The expectation E[12(Z − y⊗4)] =
∑d

i=1 a
⊗4
i = T , where ai’s are columns of the unknown

orthonormal matrix A.

This lemma is easy to verify, and is closely related to cumulants (Cardoso, 1989). Recall that φ(u, y)
denotes the loss (objective) function evaluated at sample y for point u. Let φ(u, y) =

∑
i 6=j

1
2(Z −

y⊗4)(ui, ui, uj , uj). By Lemma 13, we know that E[φ(u, y)] is equal to the objective function as in Equa-

tion (13). Therefore we rewrite objective (13) as the following stochastic optimization problem

min
∀i,‖ui‖2=1

E[φ(u, y)], where φ(u, y) =
∑

i 6=j

1

2
(Z − y⊗4)(ui, ui, uj , uj)

The stochastic gradient oracle is then

∇ui
φ(u, y) =

∑

j 6=i

(
〈uj , uj〉ui + 2 〈ui, uj〉uj − 〈uj , y〉2 〈ui, y〉 y

)
. (14)

Notice that computing this stochastic gradient does not require constructing the 4-th order tensor T − y⊗4.

In particular, this stochastic gradient can be computed very efficiently:

Remark The stochastic gradient (14) can be computed for all ui’s inO(d3) time for one sample orO(d3+
d2k) for average of k samples.

Proof The proof is straight forward as the first two terms on the right hand side take O(d3) and is shared

by all samples. The third term can be efficiently computed once the inner-products between all the y’s and

all the ui’s are computed (which takes O(kd2) time).

5. Experiments

We run simulations for Projected Noisy Gradient Descent (Algorithm 2) applied to orthogonal tensor de-

composition. The results show that the algorithm converges from random initial points efficiently (as pre-

dicted by the theorems), and our new formulation (13) performs better than reconstruction error (12) based

formulation.

Settings We set dimension d = 10, the input tensor T is a random tensor in R
104 that has orthogonal

decomposition (5). The step size is chosen carefully for respective objective functions. The performance is

measured by normalized reconstruction error E =
(
‖T −∑d

i=1 u
⊗4
i ‖2F

)
/‖T‖2F .

Samples and stochastic gradients We use two ways to generate samples and compute stochastic gradi-

ents. In the first case we generate sample x by setting it equivalent to d
1

4ai with probability 1/d. It is easy

to see that E[x⊗4] = T . This is a very simple way of generating samples, and we use it as a sanity check for

the objective functions.

In the second case we consider the ICA example introduced in Section 4.2, and use Equation (14) to

compute a stochastic gradient. In this case the stochastic gradient has a large variance, so we use mini-batch

of size 100 to reduce the variance.

11

Comparison of objective functions We use the simple way of generating samples for our new objective

function (13) and reconstruction error objective (12). The result is shown in Figure 1. Our new objective

function is empirically more stable (always converges within 10000 iterations); the reconstruction error do

not always converge within the same number of iterations and often exhibits long periods with small im-

provement (which is likely to be caused by saddle points that do not have a significant negative eigenvalue).

Simple ICA example As shown in Figure 2, our new algorithm also works in the ICA setting. When the

learning rate is constant the error stays at a fixed small value. When we decrease the learning rate the error

converges to 0.

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iter

re
co

ns
tr

uc
tio

n
er

ro
r

(a) New Objective (13)

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iter

re
co

ns
tr

uc
tio

n
er

ro
r

(b) Reconstruction Error Objective

(12)

Figure 1: Comparison of different objective functions

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iter

re
co

ns
tr

uc
tio

n
er

ro
r

(a) Constant Learning Rate η

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

iter

re
co

ns
tr

uc
tio

n
er

ro
r

(b) Learning Rate η/t (in log scale)

Figure 2: ICA setting performance with mini-batch of size 100

6. Conclusion

In this paper we identify the strict saddle property and show stochastic gradient descent converges to a local

minimum under this assumption. This leads to new online algorithm for orthogonal tensor decomposition.

We hope this is a first step towards understanding stochastic gradient for more classes of non-convex func-

tions. We believe strict saddle property can be extended to handle more functions, especially those functions

that have similar symmetry properties.

12

References

Alekh Agarwal, Sahand Negahban, and Martin J Wainwright. Fast global convergence rates of gradient

methods for high-dimensional statistical recovery. In Advances in Neural Information Processing Sys-

tems, pages 37–45, 2010.

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. Tensor decom-

positions for learning latent variable models. Journal of Machine Learning Research, 15:2773–2832,

2014.

Sanjeev Arora, Rong Ge, Ankur Moitra, and Sushant Sachdeva. Provable ICA with unknown gaussian noise,

with implications for gaussian mixtures and autoencoders. In Advances in Neural Information Processing

Systems, pages 2375–2383, 2012.

Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical Journal,

Second Series, 19(3):357–367, 1967.

Yoshua Bengio. Learning deep architectures for AI. Foundations and trends R© in Machine Learning, 2(1):

1–127, 2009.

J-F Cardoso. Source separation using higher order moments. In Acoustics, Speech, and Signal Processing,

pages 2109–2112. IEEE, 1989.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The loss

surface of multilayer networks. arXiv:1412.0233, 2014.

P. Comon. Tensor decompositions. Mathematics in Signal Processing V, pages 1–24, 2002.

Pierre Comon, Xavier Luciani, and André LF De Almeida. Tensor decompositions, alternating least squares

and other tales. Journal of Chemometrics, 23(7-8):393–405, 2009.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio.

Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In

Advances in Neural Information Processing Systems, pages 2933–2941, 2014.

Alan Frieze, Mark Jerrum, and Ravi Kannan. Learning linear transformations. In 2013 IEEE 54th Annual

Symposium on Foundations of Computer Science, pages 359–359, 1996.

Morgan A Hanson. Invexity and the kuhn–tucker theorem. Journal of mathematical analysis and applica-

tions, 236(2):594–604, 1999.

Richard A Harshman. Foundations of the PARAFAC procedure: Models and conditions for an “explanatory”

multi-modal factor analysis. UCLA Working Papers in Phonetics, 16(1):84, 1970.

Furong Huang, UN Niranjan, Mohammad Umar Hakeem, and Animashree Anandkumar. Fast detection of

overlapping communities via online tensor methods. arXiv:1309.0787, 2013.

Aapo Hyvarinen. Fast ICA for noisy data using gaussian moments. In Circuits and Systems, volume 5,

pages 57–61, 1999.

Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent component analysis, volume 46. John Wiley

& Sons, 2004.

13

Masato Inoue, Hyeyoung Park, and Masato Okada. On-line learning theory of soft committee machines with

correlated hidden units–steepest gradient descent and natural gradient descent–. Journal of the Physical

Society of Japan, 72(4):805–810, 2003.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alternating min-

imization. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages

665–674, 2013.

David S Johnson, Christos H Papadimitriou, and Mihalis Yannakakis. How easy is local search? Journal of

computer and system sciences, 37(1):79–100, 1988.

Krzysztof C Kiwiel. Convergence and efficiency of subgradient methods for quasiconvex minimization.

Mathematical programming, 90(1):1–25, 2001.

Tamara G Kolda. Orthogonal tensor decompositions. SIAM Journal on Matrix Analysis and Applications,

23(1):243–255, 2001.

Olvi L Mangasarian. Pseudo-convex functions. Journal of the Society for Industrial & Applied Mathematics,

Series A: Control, 3(2):281–290, 1965.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy employed

by V1? Vision research, 37(23):3311–3325, 1997.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for strongly

convex stochastic optimization. In ICML, pages 449–456, 2012.

Magnus Rattray, David Saad, and Shun-ichi Amari. Natural gradient descent for on-line learning. Physical

review letters, 81(24):5461, 1998.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-

propagating errors. Cognitive modeling, 5, 1988.

David Saad and Sara A Solla. On-line learning in soft committee machines. Physical Review E, 52(4):4225,

1995.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of

learning in deep linear neural networks. arXiv:1312.6120, 2013.

Shai Shalev-Shwartz, Ohad Shamir, Karthik Sridharan, and Nathan Srebro. Stochastic convex optimization.

In Proceedings of The 22nd Conference on Learning Theory, 2009.

Stephen J Wright and Jorge Nocedal. Numerical optimization, volume 2. Springer New York, 1999.

J. Y. Zou, D. Hsu, D. C. Parkes, and R. P. Adams. Contrastive learning using spectral methods. In Advances

in Neural Information Processing Systems, pages 2238–2246, 2013.

14

Appendix A. Detailed Analysis for Section 3 in Unconstrained Case

In this section we give detailed analysis for noisy gradient descent, under the assumption that the uncon-

strained problem satisfies (α, γ, ǫ, δ)-strict saddle property.

The algorithm we investigate in Algorithm 1, we can combine the randomness in the stochastic gradient

oracle and the artificial noise, and rewrite the update equation in form:

wt = wt−1 − η(∇f(wt−1) + ξt−1) (15)

where η is step size, ξ = SG(wt−1) − ∇f(wt−1) + n (recall n is a random vector on unit sphere) is the

combination of two source of noise.

By assumption, we know ξ’s are independent and they satisfying Eξ = 0, ‖ξ‖ ≤ Q + 1. Due to the

explicitly added noise in Algorithm 1, we further have EξξT ≻ 1
d
I . For simplicity, we assume EξξT = σ2I ,

for some constant σ = Θ̃(1), then the algorithm we are running is exactly the same as Stochastic Gradient

Descent (SGD). Our proof can be very easily extended to the case when 1
d
I � E[ξξT] � (Q+ 1

d
)I because

both the upper and lower bounds are Θ̃(1).
We first restate the main theorem in the context of stochastic gradient descent.

Theorem 14 (Main Theorem) Suppose a function f(w) : Rd → R that is (α, γ, ǫ, δ)-strict saddle, and

has a stochastic gradient oracle where the noise satisfy EξξT = σ2I . Further, suppose the function is

bounded by |f(w)| ≤ B, is β-smooth and has ρ-Lipschitz Hessian. Then there exists a threshold ηmax =
Θ̃(1), so that for any ζ > 0, and for any η ≤ ηmax/max{1, log(1/ζ)}, with probability at least 1 − ζ
in t = Õ(η−2 log(1/ζ)) iterations, SGD outputs a point wt that is Õ(

√
η log(1/ηζ))-close to some local

minimum w⋆.

Recall that Õ(·) (Ω̃, Θ̃) hides the factor that has polynomial dependence on all other parameters, but is

independent of η and ζ. So it focuses on the dependency on η and ζ. Throughout the proof, we interchange-

ably use bothH(w) and ∇2f(w) to represent the Hessian matrix of f(w).
As we discussed in the proof sketch in Section 3, we analyze the behavior of the algorithm in three

different cases. The first case is when the gradient is large.

Lemma 15 Under the assumptions of Theorem 14, for any point with ‖∇f(w0)‖ ≥
√
2ησ2βd where√

2ησ2βd < ǫ, after one iteration we have:

Ef(w1)− f(w0) ≤ −Ω̃(η2) (16)

Proof Our assumption can guarantee ηmax <
1
β

, then by update equation Eq.(15), we have:

Ef(w1)− f(w0) ≤ ∇f(w0)
T
E(w1 − w0) +

β

2
E‖w1 − w0‖2

= ∇f(w0)
T
E (−η(∇f(w0) + ξ0)) +

β

2
E ‖−η(∇f(w0) + ξ0)‖2

= −(η − βη2

2
)‖∇f(w0)‖2 +

η2σ2βd

2

≤ −η
2
‖∇f(w0)‖2 +

η2σ2βd

2
≤ −η

2σ2βd

2
(17)

which finishes the proof.

15

Lemma 16 Under the assumptions of Theorem 14, for any initial point w0 that is Õ(
√
η) < δ close to a

local minimum w⋆, with probability at least 1− ζ/2, we have following holds simultaneously:

∀t ≤ Õ(
1

η2
log

1

ζ
), ‖wt − w⋆‖ ≤ Õ(

√
η log

1

ηζ
) < δ (18)

where w⋆ is the locally optimal point.

Proof We shall construct a supermartingale and use Azuma’s inequality (Azuma, 1967) to prove this result.

Let filtration Ft = σ{ξ0, · · · ξt−1}, and note σ{∆0, · · · ,∆t} ⊂ Ft, where σ{·} denotes the sigma field.

Let event Et = {∀τ ≤ t, ‖wτ − w⋆‖ ≤ µ
√
η log 1

ηζ
< δ}, where µ is independent of (η, ζ), and will be

specified later. To ensure the correctness of proof, Õ notation in this proof will never hide any dependence

on µ. Clearly there’s always a small enough choice of ηmax = Θ̃(1) to make µ
√
η log 1

ηζ
< δ holds as long

as η ≤ ηmax/max{1, log(1/ζ)}. Also note Et ⊂ Et−1, that is 1Et
≤ 1Et−1

.

By Definition 5 of (α, γ, ǫ, δ)-strict saddle, we know f is locallyα-strongly convex in the 2δ-neighborhood

of w⋆. Since ∇f(w⋆) = 0, we have

∇f(wt)
T (wt − w⋆)1Et

≥ α‖wt − w⋆‖21Et
(19)

Furthermore, with ηmax <
α
β2 , using β-smoothness, we have:

E[‖wt − w⋆‖21Et−1
|Ft−1] =E[‖wt−1 − η(∇f(wt−1) + ξt−1)− w⋆‖2|Ft−1]1Et−1

=
[
‖wt−1 − w⋆‖2 − 2η∇f(wt−1)

T (wt−1 − w⋆) + η2‖∇f(wt−1)‖2 + η2dσ2
]
1Et−1

≤[(1− 2ηα+ η2β2)‖wt−1 − w⋆‖2 + η2dσ2]1Et−1

≤[(1− ηα)‖wt−1 − w⋆‖2 + η2dσ2]1Et−1
(20)

Therefore, we have:

[
E[‖wt − w⋆‖2|Ft−1]−

ηdσ2

α

]
1Et−1

≤ (1− ηα)
[
‖wt−1 − w⋆‖2 − ηdσ2

α

]
1Et−1

(21)

Then, let Gt = max{(1− ηα)−t(‖wt − w⋆‖2 − ηdσ2

α
), 0}, we have:

E[Gt1Et−1
|Ft−1] ≤ Gt−11Et−1

≤ Gt−11Et−2
(22)

which means Gt1Et−1
is a supermartingale.

Therefore, with probability 1, we have:

|Gt1Et−1
− E[Gt1Et−1

|Ft−1]|
≤(1− ηα)−t[‖wt−1 − η∇f(wt−1)− w⋆‖ · η‖ξt−1‖+ η2‖ξt−1‖2 + η2dσ2]1Et−1

≤(1− ηα)−t · Õ(µη1.5 log
1

2
1

ηζ
) = dt (23)

Let

ct =

√√√√
t∑

τ=1

d2τ = Õ(µη1.5 log
1

2
1

ηζ
)

√√√√
t∑

τ=1

(1− ηα)−2τ (24)

16

By Azuma’s inequality, with probability less than Õ(η3ζ), we have:

Gt1Et−1
> Õ(1)ct log

1

2 (
1

ηζ
) +G0 (25)

We know Gt > Õ(1)ct log
1

2 (1
ηζ
) +G0 is equivalent to:

‖wt − w⋆‖2 > Õ(η) + Õ(1)(1− ηα)tct log
1

2 (
1

ηζ
) (26)

We know:

(1− ηα)tct log
1

2 (
1

ηζ
) = µ · Õ(η1.5 log

1

ηζ
)

√√√√
t∑

τ=1

(1− ηα)2(t−τ)

=µ · Õ(η1.5 log
1

ηζ
)

√√√√
t−1∑

τ=0

(1− ηα)2τ ≤ µ · Õ(η1.5 log
1

ηζ
)

√
1

1− (1− ηα)2 = µ · Õ(η log
1

ηζ
) (27)

This means Azuma’s inequality implies, there exist some C̃ = Õ(1) so that:

P

(
Et−1 ∩

{
‖wt − w⋆‖2 > µ · C̃η log 1

ηζ
)

})
≤ Õ(η3ζ) (28)

By choosing µ > C̃, this is equivalent to:

P

(
Et−1 ∩

{
‖wt − w⋆‖2 > µ2η log

1

ηζ

})
≤ Õ(η3ζ) (29)

Then we have:

P (Et) = P

(
Et−1 ∩

{
‖wt − w⋆‖ > µ

√
η log

1

ηζ

})
+ P (Et−1) ≤ Õ(η3ζ) + P (Et−1) (30)

By initialization conditions, we know P (E0) = 0, and thus P (Et) ≤ tÕ(η3ζ). Take t = Õ(1
η2

log 1
ζ
), we

have P (Et) ≤ Õ(ηζ log 1
ζ
). When ηmax = Õ(1) is chosen small enough, and η ≤ ηmax/ log(1/ζ), this

finishes the proof.

Lemma 17 Under the assumptions of Theorem 14, for any initial pointw0 where ‖∇f(w0)‖ ≤
√

2ησ2βd <
ǫ, and λmin(H(w0)) ≤ −γ, then there is a number of steps T that depends on w0 such that:

Ef(wT)− f(w0) ≤ −Ω̃(η) (31)

The number of steps T has a fixed upper bound Tmax that is independent of w0 where T ≤ Tmax =
O((log d)/γη).

Remark 18 In general, if we relax the assumption EξξT = σ2I to σ2minI � EξξT � σ2maxI , the up-

per bound Tmax of number of steps required in Lemma 17 would be increased to Tmax = O(1
γη
(log d +

log σmax

σmin
))

17

As we described in the proof sketch, the main idea is to consider a coupled update sequence that correspond

to the local second-order approximation of f(x) around w0. We characterize this sequence of update in the

next lemma.

Lemma 19 Under the assumptions of Theorem 14. Let f̃ defined as local second-order approximation of

f(x) around w0:

f̃(w)
.
= f(w0) +∇f(w0)

T (w − w0) +
1

2
(w − w0)

TH(w0)(w − w0) (32)

{w̃t} be the corresponding sequence generated by running SGD on function f̃ , with w̃0 = w0. For simplicity,

denoteH = H(w0) = ∇2f(w0), then we have analytically:

∇f̃(w̃t) = (1− ηH)t∇f(w0)− ηH
t−1∑

τ=0

(1− ηH)t−τ−1ξτ (33)

w̃t − w0 = −η
t−1∑

τ=0

(1− ηH)τ∇f(w0)− η
t−1∑

τ=0

(1− ηH)t−τ−1ξτ (34)

Furthermore, for any initial point w0 where ‖∇f(w0)‖ ≤ Õ(η) < ǫ, and λmin(H(w0)) = −γ0. Then,

there exist a T ∈ N satisfying:

d

ηγ0
≤

T−1∑

τ=0

(1 + ηγ0)
2τ <

3d

ηγ0
(35)

with probability at least 1− Õ(η3), we have following holds simultaneously for all t ≤ T :

‖w̃t − w0‖ ≤ Õ(η
1

2 log
1

η
); ‖∇f̃(w̃t)‖ ≤ Õ(η

1

2 log
1

η
) (36)

Proof DenoteH = H(w0), since f̃ is quadratic, clearly we have:

∇f̃(w̃t) = ∇f̃(w̃t−1) +H(w̃t − w̃t−1) (37)

Substitute the update equation of SGD in Eq.(37), we have:

∇f̃(w̃t) = ∇f̃(w̃t−1)− ηH(∇f̃(w̃t−1) + ξt−1)

= (1− ηH)∇f̃(w̃t−1)− ηHξt−1

= (1− ηH)2∇f̃(w̃t−2)− ηHξt−1 − ηH(1− ηH)ξt−2 = · · ·

= (1− ηH)t∇f(w0)− ηH
t−1∑

τ=0

(1− ηH)t−τ−1ξτ (38)

Therefore, we have:

w̃t − w0 = −η
t−1∑

τ=0

(∇f̃(w̃τ) + ξτ)

= −η
t−1∑

τ=0

(
(1− ηH)τ∇f(w0)− ηH

τ−1∑

τ ′=0

(1− ηH)τ−τ ′−1ξτ ′ + ξτ

)

= −η
t−1∑

τ=0

(1− ηH)τ∇f(w0)− η
t−1∑

τ=0

(1− ηH)t−τ−1ξτ (39)

18

Next, we prove the existence of T in Eq.(35). Since
∑t

τ=0(1 + ηγ0)
2τ is monotonically increasing w.r.t

t, and diverge to infinity as t→∞. We know there is always some T ∈ N gives d
ηγ0
≤∑T−1

τ=0 (1 + ηγ0)
2τ .

Let T be the smallest integer satisfying above equation. By assumption, we know γ ≤ γ0 ≤ L, and

t+1∑

τ=0

(1 + ηγ0)
2τ = 1 + (1 + ηγ0)

2
t∑

τ=0

(1 + ηγ0)
2τ (40)

we can choose ηmax < min{(
√
2− 1)/L, 2d/γ} so that

d

ηγ0
≤

T−1∑

τ=0

(1 + ηγ0)
2τ ≤ 1 +

2d

ηγ0
≤ 3d

ηγ0
(41)

Finally, by Eq.(35), we know T = O(log d/γ0η), and (1 + ηγ0)
T ≤ Õ(1). Also because Eξ = 0 and

‖ξ‖ ≤ Q = Õ(1) with probability 1, then by Hoeffding inequality, we have for each dimension i and time

t ≤ T :

P

(
|η

t−1∑

τ=0

(1− ηH)t−τ−1ξτ,i| > Õ(η
1

2 log
1

η
)

)
≤ e−Ω̃(log2 1

η
) ≤ Õ(η4) (42)

then by summing over dimension d and taking union bound over all t ≤ T , we directly have:

P

(
∀t ≤ T, ‖η

t−1∑

τ=0

(1− ηH)t−τ−1ξτ‖ > Õ(η
1

2 log
1

η
)

)
≤ Õ(η3). (43)

Combine this fact with Eq.(38) and Eq.(39), we finish the proof.

Next we need to prove that the two sequences of updates are always close.

Lemma 20 Under the assumptions of Theorem 14. and let {wt} be the corresponding sequence generated

by running SGD on function f . Also let f̃ and {w̃t} be defined as in Lemma 19. Then, for any initial point

w0 where ‖∇f(w0)‖ ≤ Õ(η) < ǫ, and λmin(∇2f(w0)) = −γ0. Given the choice of T as in Eq.(35), with

probability at least 1− Õ(η2), we have following holds simultaneously for all t ≤ T :

‖wt − w̃t‖ ≤ Õ(η log2
1

η
); ‖∇f(wt)−∇f̃(w̃t)‖ ≤ Õ(η log2

1

η
) (44)

Proof

First, we have update function of gradient by:

∇f(wt) =∇f(wt−1) +

∫ 1

0
H(wt−1 + t(wt − wt−1))dt · (wt − wt−1)

=∇f(wt−1) +H(wt−1)(wt − wt−1) + θt−1 (45)

where the remainder:

θt−1 ≡
∫ 1

0
[H(wt−1 + t(wt − wt−1))−H(wt−1)] dt · (wt − wt−1) (46)

19

DenoteH = H(w0), andH′
t−1 = H(wt−1)−H(w0). By Hessian smoothness, we immediately have:

‖H′
t−1‖ = ‖H(wt−1)−H(w0)‖ ≤ ρ‖wt−1 − w0‖ ≤ ρ(‖wt − w̃t‖+ ‖w̃t − w0‖) (47)

‖θt−1‖ ≤
ρ

2
‖wt − wt−1‖2 (48)

Substitute the update equation of SGD (Eq.(15)) into Eq.(45), we have:

∇f(wt) = ∇f(wt−1)− η(H+H′
t−1)(∇f(wt−1) + ξt−1) + θt−1

= (1− ηH)∇f(wt−1)− ηHξt−1 − ηH′
t−1(∇f(wt−1) + ξt−1) + θt−1 (49)

Let ∆t = ∇f(wt)−∇f̃(w̃t) denote the difference in gradient, then from Eq.(38), Eq.(49), and Eq.(15),

we have:

∆t = (1− ηH)∆t−1 − ηH′
t−1[∆t−1 +∇f̃(w̃t−1) + ξt−1] + θt−1 (50)

wt − w̃t = −η
t−1∑

τ=0

∆τ (51)

Let filtration Ft = σ{ξ0, · · · ξt−1}, and note σ{∆0, · · · ,∆t} ⊂ Ft, where σ{·} denotes the sigma

field. Also, let event Kt = {∀τ ≤ t, ‖∇f̃(w̃τ)‖ ≤ Õ(η
1

2 log 1
η
), ‖w̃τ − w0‖ ≤ Õ(η

1

2 log 1
η
)}, and

Et = {∀τ ≤ t, ‖∆τ‖ ≤ µη log2 1
η
}, where µ is independent of (η, ζ), and will be specified later. Again, Õ

notation in this proof will never hide any dependence on µ. Clearly, we have Kt ⊂ Kt−1 (Et ⊂ Et−1), thus

1Kt
≤ 1Kt−1

(1Et
≤ 1Et−1

), where 1K is the indicator function of event K.

We first need to carefully bounded all terms in Eq.(50), conditioned on event Kt−1 ∩ Et−1, by Eq.(47),

Eq.(48)), and Eq.(51), with probability 1, for all t ≤ T ≤ O(log d/γ0η), we have:

‖(1− ηH)∆t−1‖ ≤ Õ(µη log2
1

η
) ‖ηH′

t−1(∆t−1 +∇f̃(w̃t−1))‖ ≤ Õ(η2 log2
1

η
)

‖ηH′
t−1ξt−1‖ ≤ Õ(η1.5 log

1

η
) ‖θt−1‖ ≤ Õ(η2) (52)

Since event Kt−1 ⊂ Ft−1,Et−1 ⊂ Ft−1 thus independent of ξt−1, we also have:

E[((1− ηH)∆t−1)
T ηH′

t−1ξt−11Kt−1∩Et−1
| Ft−1]

=1Kt−1∩Et−1
((1− ηH)∆t−1)

T ηH′
t−1E[ξt−1 | Ft−1] = 0 (53)

Therefore, from Eq.(50) and Eq.(52):

E[‖∆t‖221Kt−1∩Et−1
| Ft−1]

≤
[
(1 + ηγ0)

2‖∆t−1‖2 + (1 + ηγ0)‖∆t−1‖Õ(η2 log2
1

η
) + Õ(η3 log2

1

η
)

]
1Kt−1∩Et−1

≤
[
(1 + ηγ0)

2‖∆t−1‖2 + Õ(µη3 log4
1

η
)

]
1Kt−1∩Et−1

(54)

Define

Gt = (1 + ηγ0)
−2t[‖∆t‖2 + αη2 log4

1

η
] (55)

20

Then, when ηmax is small enough, we have:

E[Gt1Kt−1∩Et−1
| Ft−1] = (1 + ηγ0)

−2t

[
E[‖∆t‖221Kt−1∩Et−1

| Ft−1] + αη2 log3
1

η

]
1Kt−1∩Et−1

≤(1 + ηγ0)
−2t

[
(1 + ηγ0)

2‖∆t−1‖2 + Õ(µη3 log4
1

η
) + αη2 log4

1

η

]
1Kt−1∩Et−1

≤(1 + ηγ0)
−2t

[
(1 + ηγ0)

2‖∆t−1‖2 + (1 + ηγ0)
2αη2 log4

1

η

]
1Kt−1∩Et−1

=Gt−11Kt−1∩Et−1
≤ Gt−11Kt−2∩Et−2

(56)

Therefore, we have E[Gt1Kt−1∩Et−1
| Ft−1] ≤ Gt−11Kt−2∩Et−2

which meansGt1Kt−1∩Et−1
is a supermartin-

gale.

On the other hand, we have:

∆t = (1− ηH)∆t−1 − ηH′
t−1(∆t−1 +∇f̃(w̃t−1))− ηH′

t−1ξt−1 + θt−1 (57)

Once conditional on filtration Ft−1, the first two terms are deterministic, and only the third and fourth term

are random. Therefore, we know, with probability 1:

| ‖∆t‖22 − E[‖∆t‖22|Ft−1] |1Kt−1∩Et−1
≤ Õ(µη2.5 log3

1

η
) (58)

Where the main contribution comes from the product of the first term and third term. Then, with probability

1, we have:

|Gt1Kt−1∩Et−1
− E[Gt1Kt−1∩Et−1

| Ft−1]|

=(1 + 2ηγ0)
−2t · | ‖∆t‖22 − E[‖∆t‖22|Ft−1] | · 1Kt−1∩Et−1

≤ Õ(µη2.5 log3
1

η
) = ct−1 (59)

By Azuma-Hoeffding inequality, with probability less than Õ(η3), for t ≤ T ≤ O(log d/γ0η):

Gt1Kt−1∩Et−1
−G0 · 1 > Õ(1)

√√√√
t−1∑

τ=0

c2τ log(
1

η
) = Õ(µη2 log4

1

η
) (60)

This means there exist some C̃ = Õ(1) so that:

P

(
Gt1Kt−1∩Et−1

≥ C̃µη2 log4 1

η

)
≤ Õ(η3) (61)

By choosing µ > C̃, this is equivalent to:

P

(
Kt−1 ∩ Et−1 ∩

{
‖∆t‖2 ≥ µ2η2 log4

1

η

})
≤ Õ(η3) (62)

Therefore, combined with Lemma 19, we have:

P

(
Et−1 ∩

{
‖∆t‖ ≥ µη log2

1

η

})

=P

(
Kt−1 ∩ Et−1 ∩

{
‖∆t‖ ≥ µη log2

1

η

})
+ P

(
Kt−1 ∩ Et−1 ∩

{
‖∆t‖ ≥ µη log2

1

η

})

≤Õ(η3) + P (Kt−1) ≤ Õ(η3) (63)

21

Finally, we know:

P (Et) = P

(
Et−1 ∩

{
‖∆t‖ ≥ µη log2

1

η

})
+ P (Et−1) ≤ Õ(η3) + P (Et−1) (64)

Because P (E0) = 0, and T ≤ Õ(1
η
), we have P (ET) ≤ Õ(η2). Due to Eq.(51), we have ‖wt − w̃t‖ ≤

η
∑t−1

τ=0 ‖∆τ‖, then by the definition of ET , we finish the proof.

Using the two lemmas above we are ready to prove Lemma 17

Proof [Proof of Lemma 17] Let f̃ and {w̃t} be defined as in Lemma 19. and also let λmin(H(w0)) = −γ0.

SinceH(w) is ρ-Lipschitz, for any w,w0, we have:

f(w) ≤ f(w0) +∇f(w0)
T (w − w0) +

1

2
(w − w0)

TH(w0)(w − w0) +
ρ

6
‖w − w0‖3 (65)

Denote δ̃ = w̃T − w0 and δ = wT − w̃T , we have:

f(wT)− f(w0) ≤
[
∇f(w0)

T (wT − w0) +
1

2
(wT − w0)

TH(w0)(wT − w0) +
ρ

6
‖wT − w0‖3

]

=

[
∇f(w0)

T (δ̃ + δ) +
1

2
(δ̃ + δ)TH(δ̃ + δ) +

ρ

6
‖δ̃ + δ‖3

]

=

[
∇f(w0)

T δ̃ +
1

2
δ̃THδ̃

]
+

[
∇f(w0)

T δ + δ̃THδ + 1

2
δTHδ + ρ

6
‖δ̃ + δ‖3

]
(66)

Where H = H(w0). Denote Λ̃ = ∇f(w0)
T δ̃ + 1

2 δ̃
THδ̃ be the first term, and Λ = ∇f(w0)

T δ + δ̃THδ +
1
2δ

THδ + ρ
6‖δ̃ + δ‖3 be the second term. We have f(wT)− f(w0) ≤ Λ̃ + Λ.

Let Et = {∀τ ≤ t, ‖w̃τ − w0‖ ≤ Õ(η
1

2 log 1
η
), ‖wt − w̃t‖ ≤ Õ(η log2 1

η
)}, by the result of Lemma 19

and Lemma 20, we know P (ET) ≥ 1− Õ(η2). Then, clearly, we have:

Ef(wT)− f(w0) =E[f(wT)− f(w0)]1ET
+ E[f(wT)− f(w0)]1ET

≤EΛ̃1ET
+ EΛ1ET

+ E[f(wT)− f(w0)]1ET

=EΛ̃ + EΛ1ET
+ E[f(wT)− f(w0)]1ET

− EΛ̃1
ET

(67)

We will carefully caculate EΛ̃ term first, and then bound remaining term as “perturbation” to first term.

Let λ1, · · · , λd be the eigenvalues ofH. By the result of lemma 19 and simple linear algebra, we have:

EΛ̃ = −η
2

d∑

i=1

2T−1∑

τ=0

(1− ηλi)τ |∇if(w0)|2 +
1

2

d∑

i=1

λi

T−1∑

τ=0

(1− ηλi)2τη2σ2

≤ 1

2

d∑

i=1

λi

T−1∑

τ=0

(1− ηλi)2τη2σ2

≤ η2σ2

2

[
d− 1

η
− γ0

T−1∑

τ=0

(1 + ηγ0)
2τ

]
≤ −ησ

2

2
(68)

22

The last inequality is directly implied by the choice of T as in Eq.(35). Also, by Eq.(35), we also immedi-

ately have that T = O(log d/γ0η) ≤ O(log d/γη). Therefore, by choose Tmax = O(log d/γη) with large

enough constant, we have T ≤ Tmax = O(log d/γη).
For bounding the second term, by definition of Et, we have:

EΛ1ET
= E

[
∇f(w0)

T δ + δ̃THδ + 1

2
δTHδ + ρ

6
‖δ̃ + δ‖3

]
1ET
≤ Õ(η1.5 log3

1

η
) (69)

On the other hand, since noise is bounded as ‖ξ‖ ≤ Õ(1), from the results of Lemma 19, it’s easy to

show ‖w̃−w0‖ = ‖δ̃‖ ≤ Õ(1) is also bounded with probability 1. Recall the assumption that function f is

also bounded, then we have:

E[f(wT)− f(w0)]1ET
− EΛ̃1

ET

=E[f(wT)− f(w0)]1ET
− E

[
∇f(w0)

T δ̃ +
1

2
δ̃THδ̃

]
1
ET
≤ Õ(1)P (ET) ≤ Õ(η2) (70)

Finally, substitute Eq.(68), Eq.(69) and Eq.(70) into Eq.(67), we finish the proof.

Finally, we combine three cases to prove the main theorem.

Proof [Proof of Theorem 14] Let’s set L1 = {w | ‖∇f(w)‖ ≥
√

2ησ2βd}, L2 = {w | ‖∇f(w)‖ ≤√
2ησ2βd and λmin(H(w)) ≤ −γ}, and L3 = Lc1 ∪ Lc2. By choosing small enough ηmax, we could make√
2ησ2βd < min{ǫ, αδ}. Under this choice, we know from Definition 5 of (α, γ, ǫ, δ)-strict saddlethat L3

is the locally α-strongly convex region which is Õ(
√
η)-close to some local minimum.

We shall first prove that within Õ(1
η2

log 1
ζ
) steps with probability at least 1 − ζ/2 one of wt is in L3.

Then by Lemma 16 we know with probability at most ζ/2 there exists a wt that is in L3 but the last point is

not. By union bound we will get the main result.

To prove within Õ(1
η2

log 1
ζ
) steps with probability at least 1 − ζ/2 one of wt is in L3, we first show

starting from any point, in Õ(1
η2
) steps with probability at least 1/2 one of wt is in L3. Then we can repeat

this log 1/ζ times to get the high probability result.

Define stochastic process {τi} s.t. τ0 = 0, and

τi+1 =

{
τi + 1 if wτi ∈ L1 ∪ L3
τi + T (wτi) if wτi ∈ L2

(71)

Where T (wτi) is defined by Eq.(35) with γ0 = λmin(H(wτi))and we know T ≤ Tmax = Õ(1
η
).

By Lemma 15 and Lemma 17, we know:

E[f(wτi+1
)− f(wτi)|wτi ∈ L1,Fτi−1] = E[f(wτi+1

)− f(wτi)|wτi ∈ L1] ≤ −Õ(η2) (72)

E[f(wτi+1
)− f(wτi)|wτi ∈ L2,Fτi−1] = E[f(wτi+1

)− f(wτi)|wτi ∈ L2] ≤ −Õ(η) (73)

Therefore, combine above equation, we have:

E[f(wτi+1
)− f(wτi)|wτi 6∈ L3,Fτi−1] = E[f(wτi+1

)− f(wτi)|wτi 6∈ L3] ≤ −(τi+1 − τi)Õ(η2) (74)

Define event Ei = {∃j ≤ i, wτj ∈ L3}, clearly Ei ⊂ Ei+1, thus P (Ei) ≤ P (Ei+1). Finally, consider

f(wτi+1
)1Ei

, we have:

Ef(wτi+1
)1Ei
− Ef(wτi)1Ei−1

≤ B · P (Ei − Ei−1) + E[f(wτi+1
)− f(wτi)|Ei] · P (Ei)

≤ B · P (Ei − Ei−1)− (τi+1 − τi)Õ(η2)P (Ei) (75)

23

Therefore, by summing up over i, we have:

Ef(wτi)1Ei
− f(w0) ≤ BP (Ei)− τiÕ(η2)P (Ei) ≤ B − τiÕ(η2)P (Ei) (76)

Since |f(wτi)1Ei
| < B is bounded, as τi grows to as large as 6B

η2
, we must have P (Ei) <

1
2 . That is, after

Õ(1
η2
) steps, with at least probability 1/2, {wt} have at least enter L3 once. Since this argument holds for

any starting point, we can repeat this log 1/ζ times and we know after Õ(1
η2

log 1/ζ) steps, with probability

at least 1− ζ/2, {wt} have at least enter L3 once.

Combining with Lemma 16, and by union bound we know after Õ(1
η2

log 1/ζ) steps, with probability at

least 1− ζ, wt will be in the Õ(
√
η log 1

ηζ
) neigborhood of some local minimum.

Appendix B. Detailed Analysis for Section 3 in Constrained Case

So far, we have been discussed all about unconstrained problem. In this section we extend our result to

equality constraint problems under some mild conditions.

Consider the equality constrained optimization problem:

min
w

f(w) (77)

s.t. ci(w) = 0, i = 1, · · · ,m

Define the feasible set as the set of points that satisfy all the constraints W = {w | ci(w) = 0; i =
1, · · · ,m}.

In this case, the algorithm we are running is Projected Noisy Gradient Descent. Let function ΠW(v) to be

the projection to the feasible set where the projection is defined as the global solution of minw∈W ‖v−w‖2.

With same argument as in the unconstrained case, we could slightly simplify and convert it to standard

projected stochastic gradient descent (PSGD) with update equation:

vt = wt−1 − η∇f(wt−1) + ξt−1 (78)

wt = ΠW(vt) (79)

As in unconstrained case, we are interested in noise ξ is i.i.d satisfying Eξ = 0, EξξT = σ2I and ‖ξ‖ ≤ Q
almost surely. Our proof can be easily extended to Algorithm 2 with 1

d
I � EξξT � (Q+ 1

d
)I . In this section

we first introduce basic tools for handling constrained optimization problems (most these materials can be

found in Wright and Nocedal (1999)), then we prove some technical lemmas that are useful for dealing with

the projection step in PSGD, finally we point out how to modify the previous analysis.

B.1. Preliminaries

Often for constrained optimization problems we want the constraints to satisfy some regularity conditions.

LICQ (linear independent constraint quantification) is a common assumption in this context.

Definition 21 (LICQ) In equality-constraint problem Eq.(77), given a point w, we say that the linear inde-

pendence constraint qualification (LICQ) holds if the set of constraint gradients {∇ci(x), i = 1, · · · ,m} is

linearly independent.

24

In constrained optimization, we can locally transform it to an unconstrained problem by introducing

Lagrangian multipliers. The Langrangian L can be written as

L(w, λ) = f(w)−
m∑

i=1

λici(w) (80)

Then, if LICQ holds for all w ∈ W , we can properly define function λ∗(·) to be:

λ∗(w) = argmin
λ
‖∇f(w)−

m∑

i=1

λi∇ci(w)‖ = argmin
λ
‖∇wL(w, λ)‖ (81)

where λ∗(·) can be calculated analytically: let matrix C(w) = (∇c1(w), · · · ,∇cm(w)), then we have:

λ∗(w) = C(w)†∇f(w) = (C(w)TC(w))−1C(w)T∇f(w) (82)

where (·)† is Moore-Penrose pseudo-inverse.

In our setting we need a stronger regularity condition which we call robust LICQ (RLICQ).

Definition 22 (αc-RLICQ) In equality-constraint problem Eq.(77), given a pointw, we say that αc-robust

linear independence constraint qualification (αc-RLICQ) holds if the minimum singular value of matrix

C(w) = (∇c1(w), · · · ,∇cm(w)) is greater or equal to αc, that is σmin(C(w)) ≥ αc.

Remark 23 Given a point w ∈ W , αc-RLICQ implies LICQ. While LICQ holds for all w ∈ W is a

necessary condition for λ∗(w) to be well-defined; it’s easy to check that αc-RLICQ holds for all w ∈ W
is a necessary condition for λ∗(w) to be bounded. Later, we will also see αc-RLICQ combined with the

smoothness of {ci(w)}mi=1 guarantee the curvature of constraint manifold to be bounded everywhere.

Note that we require this condition in order to provide a quantitative bound, without this assumption

there can be cases that are exponentially close to a function that does not satisfy LICQ.

We can also write down the first-order and second-order partial derivative of Lagrangian L at point

(w, λ∗(w)):

χ(w) = ∇wL(w, λ)|(w,λ∗(w)) = ∇f(w)−
m∑

i=1

λ∗i (w)∇ci(w) (83)

M(w) = ∇2
wwL(w, λ)|(w,λ∗(w)) = ∇2f(w)−

m∑

i=1

λ∗i (w)∇2ci(w) (84)

Definition 24 (Tangent Space and Normal Space) Given a feasible point w ∈ W , define its correspond-

ing Tangent Space to be T (w) = {v | ∇ci(w)T v = 0; i = 1, · · · ,m}, and Normal Space to be T c(w) =
span{∇c1(w) · · · ,∇cm(w)}

If w ∈ Rd, and we have m constraint satisfying αc-RLICQ , the tangent space would be a linear subspace

with dimension d−m; and the normal space would be a linear subspace with dimension m. We also know

immediately that χ(w) defined in Eq.(83) has another interpretation: it’s the component of gradient∇f(w)
in tangent space.

Also, it’s easy to see the normal space T c(w) is the orthogonal complement of T . We can also define

the projection matrix of any vector onto tangent space (or normal space) to be PT (w) (or PT c(w)). Then,

clearly, both PT (w) and PT c(w) are orthoprojector, thus symmetric. Also by Pythagorean theorem, we have:

‖v‖2 = ‖PT (w)v‖2 + ‖PT c(w)v‖2, ∀v ∈ R
d (85)

25

Taylor Expansion Let w,w0 ∈ W , and fix λ∗ = λ∗(w0) independent of w, assume ∇2
wwL(w, λ∗) is

ρL-Lipschitz, that is ‖∇2
wwL(w1, λ

∗)−∇2
wwL(w2, λ

∗)‖ ≤ ρL‖w1 − w2‖ By Taylor expansion, we have:

L(w, λ∗) ≤L(w0, λ
∗) +∇wL(w0, λ

∗)T (w − w0)

+
1

2
(w − w0)

T∇2
wwL(w0, λ

∗)(w − w0) +
ρL
6
‖w − w0‖3 (86)

Since w,w0 are feasible, we know: L(w, λ∗) = f(w) and L(w0, λ
∗) = f(w0), this gives:

f(w) ≤ f(w0) + χ(w0)
T (w − w0) +

1

2
(w − w0)

TM(w0)(w − w0) +
ρL
6
‖w − w0‖3 (87)

Derivative of χ(w) By taking derative of χ(w) again, we know the change of this tangent gradient can be

characterized by:

∇χ(w) = H−
m∑

i=1

λ∗i (w)∇2ci(w)−
m∑

i=1

∇ci(w)∇λ∗i (w)T (88)

Denote

N(w) = −
m∑

i=1

∇ci(w)∇λ∗i (w)T (89)

We immediately know that∇χ(w) = M(w) +N(w).

Remark 25 The additional term N(w) is not necessary to be even symmetric in general. This is due to the

fact that χ(w) may not be the gradient of any scalar function. However, N(w) has an important property

that is: for any vector v ∈ R
d, N(w)v ∈ T c(w).

Finally, for completeness, we state here the first/second-order necessary (or sufficient) conditions for

optimality. Please refer to Wright and Nocedal (1999) for the proof of those theorems.

Theorem 26 (First-Order Necessary Conditions) In equality constraint problem Eq.(77), suppose that

w† is a local solution, and that the functions f and ci are continuously differentiable, and that the LICQ

holds at w†. Then there is a Lagrange multiplier vector λ†, such that:

∇wL(w†, λ†) = 0 (90)

ci(w
†) = 0, for i = 1, · · · ,m (91)

These conditions are also usually referred as Karush-Kuhn-Tucker (KKT) conditions.

Theorem 27 (Second-Order Necessary Conditions) In equality constraint problem Eq.(77), suppose that

w† is a local solution, and that the LICQ holds at w†. Let λ† Lagrange multiplier vector for which the KKT

conditions are satisfied. Then:

vT∇2
xxL(w†, λ†)v ≥ 0 for all v ∈ T (w†) (92)

Theorem 28 (Second-Order Sufficient Conditions) In equality constraint problem Eq.(77), suppose that

for some feasible point w† ∈ R
d, and there’s Lagrange multiplier vector λ† for which the KKT conditions

are satisfied. Suppose also that:

vT∇2
xxL(w†, λ†)v > 0 for all v ∈ T (w†), v 6= 0 (93)

Then w† is a strict local solution.

26

Remark 29 By definition Eq.(82), we know immediately λ∗(w†) is one of valid Lagrange multipliers λ† for

which the KKT conditions are satisfied. This means χ(w†) = ∇wL(w†, λ†) and M(w†) = L(w†, λ†).

Therefore, Theorem 26, 27, 28 gives strong implication that χ(w) and M(w) are the right thing to look

at, which are in some sense equivalent to∇f(w) and ∇2f(w) in unconstrained case.

B.2. Geometrical Lemmas Regarding Constraint Manifold

Since in equality constraint problem, at each step of PSGD, we are effectively considering the local manifold

around feasible point wt−1. In this section, we provide some technical lemmas relating to the geometry of

constraint manifold in preparsion for the proof of main theorem in equality constraint case.

We first show if two points are close, then the projection in the normal space is much smaller than the

projection in the tangent space.

Lemma 30 Suppose the constraints {ci}mi=1 are βi-smooth, and αc-RLICQ holds for all w ∈ W . Then,

let
∑m

i=1
β2
i

α2
c
= 1

R2 , for any w,w0 ∈ W , let T0 = T (w0), then

‖PT c
0
(w − w0)‖ ≤

1

2R
‖w − w0‖2 (94)

Furthermore, if ‖w − w0‖ < R holds, we additionally have:

‖PT c
0
(w − w0)‖ ≤

‖PT0(w − w0)‖2
R

(95)

Proof First, since for any vector v̂ ∈ T0, we have ‖C(w0)
T v̂‖ = 0, then by simple linear algebra, it’s easy

to show:

‖C(w0)
T (w − w0)‖2 =‖C(w0)

TPT c
0
(w − w0)‖2 ≥ σ2min‖PT c

0
(w − w0)‖2

≥α2
c‖PT c

0
(w − w0)‖2 (96)

On the other hand, by βi-smooth, we have:

|ci(w)− ci(w0)−∇ci(w0)
T (w − w0)| ≤

βi
2
‖w − w0‖2 (97)

Since w,w0 are feasible points, we have ci(w) = ci(w0) = 0, which gives:

‖C(w0)
T (w − w0)‖2 =

m∑

i=1

(∇ci(w0)
T (w − w0))

2 ≤
m∑

i=1

β2i
4
‖w − w0‖4 (98)

Combining Eq.(96) and Eq.(98), and the definition of R, we have:

‖PT c
0
(w − w0)‖2 ≤

1

4R2
‖w − w0‖4 =

1

4R2
(‖PT c

0
(w − w0)‖2 + ‖PT0(w − w0)‖2)2 (99)

Solving this second-order inequality gives two solution

‖PT c
0
(w − w0)‖ ≤

‖PT0(w − w0)‖2
R

or ‖PT c
0
(w − w0)‖ ≥ R (100)

27

By assumption, we know ‖w − w0‖ < R (so the second case cannot be true), which finishes the proof.

Here, we see the

√
∑m

i=1
β2
i

α2
c
= 1

R
serves as a upper bound of the curvatures on the constraint mani-

fold, and equivalently, R serves as a lower bound of the radius of curvature. αc-RLICQ and smoothness

guarantee that the curvature is bounded.

Next we show the normal/tangent space of nearby points are close.

Lemma 31 Suppose the constraints {ci}mi=1 are βi-smooth, and αc-RLICQ holds for all w ∈ W . Let
∑m

i=1
β2
i

α2
c
= 1

R2 , for any w,w0 ∈ W , let T0 = T (w0). Then for all v̂ ∈ T (w) so that ‖v̂‖ = 1, we have

‖PT c
0
· v̂‖ ≤ ‖w − w0‖

R
(101)

Proof With similar calculation as Eq.(96), we immediately have:

‖PT c
0
· v̂‖2 ≤ ‖C(w0)

T v̂‖2
σ2min(C(w))

≤ ‖C(w0)
T v̂‖2

α2
c

(102)

Since v̂ ∈ T (w) , we have C(w)T v̂ = 0, combined with the fact that v̂ is a unit vector, we have:

‖C(w0)
T v̂‖2 =‖[C(w0)− C(w)]T v̂‖2 =

m∑

i=1

([∇ci(w0)−∇ci(w)]T v̂)2

≤
m∑

i=1

‖∇ci(w0)−∇ci(w)‖2‖v̂‖2 ≤
m∑

i=1

β2i ‖w0 − w‖2 (103)

Combining Eq.(102) and Eq.(103), and the definition of R, we concludes the proof.

Lemma 32 Suppose the constraints {ci}mi=1 are βi-smooth, and αc-RLICQ holds for all w ∈ W . Let
∑m

i=1
β2
i

α2
c
= 1

R2 , for any w,w0 ∈ W , let T0 = T (w0). Then for all v̂ ∈ T c(w) so that ‖v̂‖ = 1, we have

‖PT0 · v̂‖ ≤
‖w − w0‖

R
(104)

Proof By definition of projection, clearly, we have PT0 · v̂ + PT c
0
· v̂ = v̂. Since v̂ ∈ T c(w), without loss

of generality, assume v̂ =
∑m

i=1 λi∇ci(w). Define d̃ =
∑m

i=1 λi∇ci(w0), clearly d̃ ∈ T c
0 . Since projection

gives the closest point in subspace, we have:

‖PT0 · v̂‖ =‖PT c
0
· v̂ − v̂‖ ≤ ‖d̃− v̂‖

≤
m∑

i=1

λi‖∇ci(w0)−∇ci(w)‖ ≤
m∑

i=1

λiβi‖w0 − w‖ (105)

On the other hand, let λ = (λ1, · · · , λm)T , we know C(w)λ = v̂, thus:

λ = C(w)†v̂ = (C(w)TC(w))−1C(w)T v̂ (106)

28

Therefore, by αc-RLICQ and the fact v̂ is unit vector, we know: ‖λ‖ ≤ 1
αc

. Combined with Eq.(105), we

finished the proof.

Using the previous lemmas, we can then prove that: starting from any point w0 on constraint manifold,

the result of adding any small vector v and then projected back to feasible set, is not very different from the

result of adding PT (w0)v.

Lemma 33 Suppose the constraints {ci}mi=1 are βi-smooth, and αc-RLICQ holds for all w ∈ W . Let
∑m

i=1
β2
i

α2
c
= 1

R2 , for any w0 ∈ W , let T0 = T (w0). Then let w1 = w0 + ηv̂, and w2 = w0 + ηPT0 · v̂, where

v̂ ∈ S
d−1 is a unit vector. Then, we have:

‖ΠW(w1)− w2‖ ≤
4η2

R
(107)

Where projection ΠW(w) is defined as the closet point to w on feasible setW .

Proof First, note that ‖w1 − w0‖ = η, and by definition of projection, there must exist a project ΠW(w)
inside the ball Bη(w1) = {w | ‖w − w1‖ ≤ η}.

Denote u1 = ΠW(w1), and clearly u1 ∈ W . we can formulate u1 as the solution to following con-

strained optimization problems:

min
u

‖w1 − u‖2 (108)

s.t. ci(u) = 0, i = 1, · · · ,m

Since function f(u) = ‖w1−u‖2 and ci(u) are continuously differentiable by assumption, and the condition

αc-RLICQ holds for all w ∈ W implies that LICQ holds for u1. Therefore, by Karush-Kuhn-Tucker

necessary conditions, we immediately know (w1 − u1) ∈ T c(u1).
Since u1 ∈ Bη(w1), we know ‖w0 − u1‖ ≤ 2η, by Lemma 32, we immediately have:

‖PT0(w1 − u1)‖ =
‖PT0(w1 − u1)‖
‖w1 − u1‖

‖w1 − u1‖ ≤
1

R
‖w0 − u1‖ · ‖w1 − u1‖ ≤

2

R
η2 (109)

Let v1 = w0 + PT0(u1 − w0), we have:

‖v1 − w2‖ =‖(v1 − w0)− (w2 − w0)‖ = ‖PT0(u1 − w0)− PT0(w1 − w0)‖

=‖PT0(w1 − u1)‖ ≤
2

R
η2 (110)

On the other hand by Lemma 30, we have:

‖u1 − v1‖ = ‖PT c
0
(u1 − w0)‖ ≤

1

2R
‖u1 − w0‖2 ≤

2

R
η2 (111)

Combining Eq.(110) and Eq.(111), we finished the proof.

29

B.3. Main Theorem

Now we are ready to prove the main theorems. First we revise the definition of strict saddle in the constrained

case.

Definition 34 A twice differentiable function f(w) with constraints ci(w) is (α, γ, ǫ, δ)-strict saddle, if for

any point w one of the following is true

1. ‖χ(w)‖ ≥ ǫ.

2. v̂TM(w)v̂ ≤ −γ for some v̂ ∈ T (w), ‖v̂‖ = 1

3. There is a local minimum w⋆ such that ‖w − w⋆‖ ≤ δ, and for all w′ in the 2δ neighborhood of w⋆,

we have v̂TM(w′)v̂ ≥ α for all v̂ ∈ T (w′), ‖v̂‖ = 1

Next, we prove a equivalent formulation for PSGD.

Lemma 35 Suppose the constraints {ci}mi=1 are βi-smooth, and αc-RLICQ holds for all w ∈ W . Further-

more, if function f is L-Lipschitz, and the noise ξ is bounded, then running PSGD as in Eq.(78) is equivalent

to running:

wt = wt−1 − η · (χ(wt−1) + PT (wt−1)ξt−1) + ιt−1 (112)

where ι is the correction for projection, and ‖ι‖ ≤ Õ(η2).

Proof Lemma 35 is a direct corollary of Lemma 33.

The intuition behind this lemma is that: when {ci}mi=1 are smooth and αc-RLICQ holds for all w ∈ W ,

then the constraint manifold has bounded curvature every where. Then, if we only care about first order

behavior, it’s well-approximated by the local dynamic in tangent plane, up to some second-order correction.

Therefore, by Eq.(112), we see locally it’s not much different from the unconstrainted case Eq.(15) up to

some negeligable correction. In the following analysis, we will always use formula Eq.(112) as the update

equation for PSGD.

Since most of following proof bears a lot similarity as in unconstrained case, we only pointed out the

essential steps in our following proof.

Theorem 36 (Main Theorem for Equality-Constrained Case) Suppose a function f(w) : Rd → R with

constraints ci(w) : R
d → R is (α, γ, ǫ, δ)-strict saddle, and has a stochastic gradient oracle with radius at

most Q, also satisfying Eξ = 0 and EξξT = σ2I . Further, suppose the function function f is B-bounded,

L-Lipschitz, β-smooth, and has ρ-Lipschitz Hessian, and the constraints {ci}mi=1 is Li-Lipschitz, βi-smooth,

and has ρi-Lipschitz Hessian. Then there exists a threshold ηmax = Θ̃(1), so that for any ζ > 0, and for

any η ≤ ηmax/max{1, log(1/ζ)}, with probability at least 1− ζ in t = Õ(η−2 log(1/ζ)) iterations, PSGD

outputs a point wt that is Õ(
√
η log(1/ηζ))-close to some local minimum w⋆.

First, we proof the assumptions in main theorem implies the smoothness conditions for M(w), N(w)
and ∇2

wwL(w, λ∗(w′)).

Lemma 37 Under the assumptions of Theorem 36, there exists βM , βN , ρM , ρN , ρL polynomial related to

B,L, β, ρ, 1
αc

and {Li, βi, ρi}mi=1 so that:

30

1. ‖M(w)‖ ≤ βM and ‖N(w)‖ ≤ βN for all w ∈ W .

2. M(w) is ρM -Lipschitz, and N(w) is ρN -Lipschitz, and ∇2
wwL(w, λ∗(w′)) is ρL-Lipschitz for all

w′ ∈ W .

Proof By definition of M(w), N(w) and ∇2
wwL(w, λ∗(w′)), the above conditions will holds if there exists

Bλ, Lλ, βλ bounded by Õ(1), so that λ∗(w) is Bλ-bounded, Lλ-Lipschitz, and βλ-smooth.

By definition Eq.(82), we have:

λ∗(w) = C(w)†∇f(w) = (C(w)TC(w))−1C(w)T∇f(w) (113)

Because f is B-bounded, L-Lipschitz, β-smooth, and its Hessian is ρ-Lipschitz, thus, eventually, we only

need to prove that there existsBc, Lc, βc bounded by Õ(1), so that the pseudo-inverseC(w)† isBc-bounded,

Lc-Lipschitz, and βc-smooth.

Since αc-RLICQ holds for all feasible points, we immediately have: ‖C(w)†‖ ≤ 1
αc

, thus bounded. For

simplicity, in the following context we use C† to represent C†(w) without ambiguity. By some calculation

of linear algebra, we have the derivative of pseudo-inverse:

∂C(w)†

∂wi
= −C†∂C(w)

∂wi
C† + C†[C†]T

∂C(w)T

∂wi
(I − CC†) (114)

Again, αc-RLICQ holds implies that derivative of pseudo-inverse is well-defined for every feasible point.

Let tensor E(w), Ẽ(w) to be the derivative of C(w), C†(w), which is defined as:

[E(w)]ijk =
∂[C(w)]ik
∂wj

[Ẽ(w)]ijk =
∂[C(w)†]ik

∂wj
(115)

Define the transpose of a 3rd order tensor ET
i,j,k = Ek,j,i, then we have

Ẽ(w) = −[E(w)](C†, I, C†) + [E(w)T](C†[C†]T , I, (I − CC†)) (116)

where by calculation [E(w)](I, I, ei) = ∇2ci(w).
Finally, since C(w)† and ∇2ci(w) are bounded by Õ(1), by Eq.(116), we know Ẽ(w) is bounded, that

is C(w)† is Lipschitz. Again, since both C(w)† and∇2ci(w) are bounded, Lipschitz, by Eq.(116), we know

Ẽ(w) is also Õ(1)-Lipschitz. This finishes the proof.

From now on, we can use the same proof strategy as unconstraint case. Below we list the corresponding

lemmas and the essential steps that require modifications.

Lemma 38 Under the assumptions of Theorem 36, with notations in Lemma 37, for any point with ‖χ(w0)‖ ≥√
2ησ2βM (d−m) where

√
2ησ2βM (d−m) < ǫ, after one iteration we have:

Ef(w1)− f(w0) ≤ −Ω̃(η2) (117)

31

Proof Choose ηmax <
1

βM
, and also small enough, then by update equation Eq.(112), we have:

Ef(w1)− f(w0) ≤ χ(w0)
T
E(w1 − w0) +

βM
2

E‖w1 − w0‖2

≤ −(η − βMη
2

2
)‖χ(w0)‖2 +

η2σ2βM (d−m)

2
+ Õ(η2)‖χ(w0)‖+ Õ(η3)

≤ −(η − Õ(η1.5)− βMη
2

2
)‖χ(w0)‖2 +

η2σ2βM (d−m)

2
+ Õ(η3)

≤ −η
2σ2βMd

4
(118)

Which finishes the proof.

Theorem 39 Under the assumptions of Theorem 36, with notations in Lemma 37, for any initial point w0

that is Õ(
√
η) < δ close to a local minimum w⋆, with probability at least 1− ζ/2, we have following holds

simultaneously:

∀t ≤ Õ(
1

η2
log

1

ζ
), ‖wt − w⋆‖ ≤ Õ(

√
η log

1

ηζ
) < δ (119)

where w⋆ is the locally optimal point.

Proof By calculus, we know

χ(wt) =χ(w
⋆) +

∫ 1

0
(M+N)(w⋆ + t(wt − w⋆))dt · (wt − w⋆) (120)

Let filtration Ft = σ{ξ0, · · · ξt−1}, and note σ{∆0, · · · ,∆t} ⊂ Ft, where σ{·} denotes the sigma field.

Let event Et = {∀τ ≤ t, ‖wτ − w⋆‖ ≤ µ
√
η log 1

ηζ
< δ}, where µ is independent of (η, ζ), and will be

specified later.

By Definition 34 of (α, γ, ǫ, δ)-strict saddle, we know M(w) is locally α-strongly convex restricted to

its tangent space T (w). in the 2δ-neighborhood of w⋆. If ηmax is chosen small enough, by Remark 25 and

Lemma 30, we have in addition:

χ(wt)
T (wt − w⋆)1Et

= (wt − w⋆)T
∫ 1

0
(M+N)(w⋆ + t(wt − w⋆))dt · (wt − w⋆)1Et

≥ [α‖wt − w⋆‖2 − Õ(‖wt − w⋆‖3)]1Et
≥ 0.5α‖wt − w⋆‖21Et

(121)

Then, everything else follows almost the same as the proof of Lemma 16.

Lemma 40 Under the assumptions of Theorem 36, with notations in Lemma 37, for any initial point w0

where ‖χ(w0)‖ ≤ Õ(η) < ǫ, and v̂TM(w0)v̂ ≤ −γ for some v̂ ∈ T (w), ‖v̂‖ = 1, then there is a number

of steps T that depends on w0 such that:

Ef(wT)− f(w0) ≤ −Ω̃(η) (122)

The number of steps T has a fixed upper bound Tmax that is independent of w0 where T ≤ Tmax =
O((log(d−m))/γη).

32

Similar to the unconstrained case, we show this by a coupling sequence. Here the sequence we construct

will only walk on the tangent space, by Lemmas in previous subsection, we know this is not very far from

the actual sequence. We first define and characterize the coupled sequence in the following lemma:

Lemma 41 Under the assumptions of Theorem 36, with notations in Lemma 37. Let f̃ defined as local

second-order approximation of f(x) around w0 in tangent space T0 = T (w0):

f̃(w)
.
= f(w0) + χ(w0)

T (w − w0) +
1

2
(w − w0)

T [P T
T0M(w0)PT0](w − w0) (123)

{w̃t} be the corresponding sequence generated by running SGD on function f̃ , with w̃0 = w0, and noise

projected to T0, (i.e. w̃t = w̃t−1 − η(χ̃(w̃t−1) + PT0ξt−1). For simplicity, denote χ̃(w) = ∇f̃(w), and

M̃ = P T
T0
M(w0)PT0 , then we have analytically:

χ̃(w̃t) = (1− ηM̃)tχ̃(w̃0)− ηM̃
t−1∑

τ=0

(1− ηM̃)t−τ−1PT0ξτ (124)

w̃t − w0 = −η
t−1∑

τ=0

(1− ηM̃)τ χ̃(w̃0)− η
t−1∑

τ=0

(1− ηM̃)t−τ−1PT0ξτ (125)

Furthermore, for any initial point w0 where ‖χ(w0)‖ ≤ Õ(η) < ǫ, and minv̂∈T (w),‖v̂‖=1 v̂
TM(w0)v̂ =

−γ0. There exist a T ∈ N satisfying:

d−m
ηγ0

≤
T−1∑

τ=0

(1 + ηγ0)
2τ <

3(d−m)

ηγ0
(126)

with probability at least 1− Õ(η3), we have following holds simultaneously for all t ≤ T :

‖w̃t − w0‖ ≤ Õ(η
1

2 log
1

η
); ‖χ̃(w̃t)‖ ≤ Õ(η

1

2 log
1

η
) (127)

Proof Clearly we have:

χ̃(w̃t) = χ̃(w̃t−1) + M̃(w̃t − w̃t−1) (128)

and

w̃t = w̃t−1 − η(χ̃(w̃t−1) + PT0ξt−1) (129)

This lemma is then proved by a direct application of Lemma 19.

Then we show the sequence constructed is very close to the actual sequence.

Lemma 42 Under the assumptions of Theorem 36, with notations in Lemma 37. Let {wt} be the corre-

sponding sequence generated by running PSGD on function f . Also let f̃ and {w̃t} be defined as in Lemma

41. Then, for any initial point w0 where ‖χ(w0)‖2 ≤ Õ(η) < ǫ, and minv̂∈T (w),‖v̂‖=1 v̂
TM(w0)v̂ = −γ0.

Given the choice of T as in Eq.(126), with probability at least 1− Õ(η2), we have following holds simulta-

neously for all t ≤ T :

‖wt − w̃t‖ ≤ Õ(η log2
1

η
); (130)

33

Proof First, we have update function of tangent gradient by:

χ(wt) =χ(wt−1) +

∫ 1

0
∇χ(wt−1 + t(wt − wt−1))dt · (wt − wt−1)

=χ(wt−1) +M(wt−1)(wt − wt−1) +N(wt−1)(wt − wt−1) + θt−1 (131)

where the remainder:

θt−1 ≡
∫ 1

0
[∇χ(wt−1 + t(wt − wt−1))−∇χ(wt−1)] dt · (wt − wt−1) (132)

Project it to tangent space T0 = T (w0). Denote M̃ = P T
T0
M(w0)PT0 , and M̃′

t−1 = P T
T0
[M(wt1) −

M(w0)]PT0 . Then, we have:

PT0 · χ(wt) =PT0 · χ(wt−1) + PT0(M(wt−1) +N(wt−1))(wt − wt−1) + PT0θt−1

=PT0 · χ(wt−1) + PT0M(wt−1)PT0(wt − wt−1)

+ PT0M(wt−1)PT c
0
(wt − wt−1) + PT0N(wt−1)(wt − wt−1) + PT0θt−1

=PT0 · χ(wt−1) + M̃(wt − wt−1) + φt−1 (133)

Where

φt−1 = [M̃′
t−1 + PT0M(wt−1)PT c

0
+ PT0N(wt−1)](wt − wt−1) + PT0θt−1 (134)

By Hessian smoothness, we immediately have:

‖M̃′
t−1‖ = ‖M(wt1)−M(w0)‖ ≤ ρM‖wt−1 − w0‖ ≤ ρM (‖wt − w̃t‖+ ‖w̃t − w0‖) (135)

‖θt−1‖ ≤
ρM + ρN

2
‖wt − wt−1‖2 (136)

Substitute the update equation of PSGD (Eq.(112)) into Eq.(133), we have:

PT0 · χ(wt) = PT0 · χ(wt−1)− ηM̃(PT0 · χ(wt−1) + PT0 · PT (wt−1)ξt−1) + M̃ · ιt−1 + φt−1

= (1− ηM̃)PT0 · χ(wt−1)− ηM̃PT0ξt−1 + ηM̃PT0 · PT c(wt−1)ξt−1 + M̃ · ιt−1 + φt−1 (137)

Let ∆t = PT0 · χ(wt)− χ̃(w̃t) denote the difference of tangent gradient in T (w0), then from Eq.(128),

Eq.(129), and Eq.(137) we have:

∆t = (1− ηH)∆t−1 + ηM̃PT0 · PT c(wt−1)ξt−1 + M̃ · ιt−1 + φt−1 (138)

PT0 · (wt − w0)− (w̃t − w0) = −η
t−1∑

τ=0

∆τ + η
t−1∑

τ=0

PT0 · PT c(wτ)ξτ +
t−1∑

τ=0

ιτ (139)

By Lemma 30, we know if
∑m

i=1
β2
i

α2
c
= 1

R2 , then we have:

‖PT c
0
(wt − w0)‖ ≤

‖wt − w0‖2
2R

(140)

Let filtration Ft = σ{ξ0, · · · ξt−1}, and note σ{∆0, · · · ,∆t} ⊂ Ft, where σ{·} denotes the sigma

field. Also, let event Kt = {∀τ ≤ t, ‖χ̃(w̃τ)‖ ≤ Õ(η
1

2 log 1
η
), ‖w̃τ − w0‖ ≤ Õ(η

1

2 log 1
η
)}, and denote

34

Γt = η
∑t−1

τ=0 PT0 · PT c(wτ)ξτ , let Et = {∀τ ≤ t, ‖∆τ‖ ≤ µ1η log
2 1
η
, ‖Γτ‖ ≤ µ2η log

2 1
η
, ‖wτ −

w̃τ‖ ≤ µ3η log2 1
η
} where (µ1, µ2, µ3) are is independent of (η, ζ), and will be determined later. To prevent

ambiguity in the proof, Õ notation will not hide any dependence on µ. Clearly event Kt−1 ⊂ Ft−1,Et−1 ⊂
Ft−1 thus independent of ξt−1.

Then, conditioned on event Kt−1 ∩Et−1, by triangle inequality, we have ‖wτ −w0‖ ≤ Õ(η
1

2 log 1
η
), for

all τ ≤ t − 1 ≤ T − 1. We then need to carefully bound the following bound each term in Eq.(138). We

know wt−wt−1 = −η · (χ(wt−1)+PT (wt−1)ξt−1)+ ιt−1, and then by Lemma 32 and Lemma 31, we have:

‖ηM̃PT0 · PT c(wt−1)ξt−1‖ ≤ Õ(η1.5 log
1

η
)

‖M̃ · ιt−1‖ ≤ Õ(η2)

‖[M̃′
t−1 + PT0M(wt−1)PT c

0
+ PT0N(wt−1)](−η · χ(wt−1))‖ ≤ Õ(η2 log2

1

η
)

‖[M̃′
t−1 + PT0M(wt−1)PT c

0
+ PT0N(wt−1)](−ηPT (wt−1)ξt−1)‖ ≤ Õ(η1.5 log

1

η
)

‖[M̃′
t−1 + PT0M(wt−1)PT c

0
+ PT0N(wt−1)]ιt−1‖ ≤ Õ(η2)

‖PT0θt−1‖ ≤ Õ(η2) (141)

Therefore, abstractly, conditioned on event Kt−1∩Et−1, we could write down the recursive equation as:

∆t = (1− ηH)∆t−1 +A+B (142)

where ‖A‖ ≤ Õ(η1.5 log 1
η
) and ‖B‖ ≤ Õ(η2 log2 1

η
), and in addition, by independence, easy to check we

also have E[(1− ηH)∆t−1A|Ft−1] = 0. This is exactly the same case as in the proof of Lemma 20. By the

same argument of martingale and Azuma-Hoeffding, and by choosing µ1 large enough, we can prove

P

(
Et−1 ∩

{
‖∆t‖ ≥ µ1η log2

1

η

})
≤ Õ(η3) (143)

On the other hand, for Γt = η
∑t−1

τ=0 PT0 · PT c(wτ)ξτ , we have:

E[Γt1Kt−1∩Et−1
|Ft−1] =

[
Γt−1 + ηE[PT0 · PT c(wt−1)ξt−1|Ft−1]

]
1Kt−1∩Et−1

= Γt−11Kt−1∩Et−1
≤ Γt−11Kt−2∩Et−2

(144)

Therefore, we have E[Γt1Kt−1∩Et−1
| Ft−1] ≤ Γt−11Kt−2∩Et−2

which means Γt1Kt−1∩Et−1
is a super-

martingale.

We also know by Lemma 32, with probability 1:

|Γt1Kt−1∩Et−1
− E[Γt1Kt−1∩Et−1

| Ft−1]| = |ηPT0 · PT c(wt−1)ξt−1| · 1Kt−1∩Et−1

≤Õ(η)‖wt−1 − w0‖1Kt−1∩Et−1
≤ Õ(η1.5 log

1

η
) = ct−1 (145)

By Azuma-Hoeffding inequality, with probability less than Õ(η3), for t ≤ T ≤ O(log(d−m)/γ0η):

Γt1Kt−1∩Et−1
− Γ0 · 1 > Õ(1)

√√√√
t−1∑

τ=0

c2τ log(
1

η
) = Õ(η log2

1

η
) (146)

35

This means there exists some C̃2 = Õ(1) so that:

P

(
Kt−1 ∩ Et−1 ∩

{
‖Γt‖ ≥ C̃2η log

2 1

η

})
≤ Õ(η3) (147)

by choosing µ2 > C̃2, we have:

P

(
Kt−1 ∩ Et−1 ∩

{
‖Γt‖ ≥ µ2η log2

1

η

})
≤ Õ(η3) (148)

Therefore, combined with Lemma 41, we have:

P

(
Et−1 ∩

{
‖Γt‖ ≥ µ2η log2

1

η

})
≤ Õ(η3) + P (Kt−1) ≤ Õ(η3) (149)

Finally, conditioned on event Kt−1 ∩ Et−1, if we have ‖Γt‖ ≤ µ2η log2 1
η

, then by Eq.(139):

‖PT0 · (wt − w0)− (w̃t − w0)‖ ≤ Õ
(
(µ1 + µ2)η log

2 1

η

)
(150)

Since ‖wt−1 − w0‖ ≤ Õ(η
1

2 log 1
η
), and ‖wt − wt−1‖ ≤ Õ(η), by Eq.(140):

‖PT c
0
(wt − w0)‖ ≤

‖wt − w0‖2
2R

≤ Õ(η log2
1

η
) (151)

Thus:

‖wt − w̃t‖2 =‖PT0 · (wt − w̃t)‖2 + ‖PT c
0
· (wt − w̃t)‖2

=‖PT0 · (wt − w0)− (w̃t − w0)‖2 + ‖PT c
0
(wt − w0)‖2 ≤ Õ((µ1 + µ2)

2η2 log4
1

η
) (152)

That is there exist some C̃3 = Õ(1) so that ‖wt − w̃t‖ ≤ C̃3(µ1 + µ2)η log
2 1
η

Therefore, conditioned on

event Kt−1∩Et−1, we have proved that if choose µ3 > C̃3(µ1+µ2), then event {‖wt−w̃t‖ ≥ µ3η log2 1
η
} ⊂

{‖Γt‖ ≥ µ2η log2 1
η
}. Then, combined this fact with Eq.(143), Eq.(149), we have proved:

P
(
Et−1 ∩ Et

)
≤ Õ(η3) (153)

Because P (E0) = 0, and T ≤ Õ(1
η
), we have P (ET) ≤ Õ(η2), which concludes the proof.

These two lemmas allow us to prove the result when the initial point is very close to a saddle point.

Proof [Proof of Lemma 40] Combine Talyor expansion Eq.87 with Lemma 41, Lemma 42, we prove this

Lemma by the same argument as in the proof of Lemma 17.

Finally the main theorem follows.

Proof [Proof of Theorem 36] By Lemma 38, Lemma 40, and Lemma 39, with the same argument as in the

proof Theorem 14, we easily concludes this proof.

36

Appendix C. Detailed Proofs for Section 4

In this section we show two optimization problems (11) and (13) satisfy the (α, γ, ǫ, δ)-strict saddle propery.

C.1. Warm up: maximum eigenvalue formulation

Recall that we are trying to solve the optimization (11), which we restate here.

max T (u, u, u, u), (154)

‖u‖2 = 1.

Here the tensor T has orthogonal decomposition T =
∑d

i=1 a
⊗4
i . We first do a change of coordinates to

work in the coordinate system specified by (ai)’s (this does not change the dynamics of the algorithm). In

particular, let u =
∑d

i=1 xiai (where x ∈ R
d), then we can see T (u, u, u, u) =

∑d
i=1 x

4
i . Therefore let

f(x) = −‖x‖44, the optimization problem is equivalent to

min f(x) (155)

s.t. ‖x‖22 = 1

This is a constrained optimization, so we apply the framework developed in Section 3.3.

Let c(x) = ‖x‖22 − 1. We first compute the Lagrangian

L(x, λ) = f(x)− λc(x) = −‖x‖44 − λ(‖x‖22 − 1). (156)

Since there is only one constraint, and the gradient when ‖x‖ = 1 always have norm 2, we know the set

of constraints satisfy 2-RLICQ. In particular, we can compute the correct value of Lagrangian multiplier λ,

λ∗(x) = argmin
λ
‖∇xL(x, λ)‖ = argmin

λ

d∑

i=1

(2x3i + λxi)
2 = −2‖x‖44 (157)

Therefore, the gradient in the tangent space is equal to

χ(x) = ∇xL(x, λ)|(x,λ∗(x)) = ∇f(x)− λ∗(x)∇c(x)
= −4(x31, · · · , x3d)T − 2λ∗(x)(x1, · · · , xd)T

= 4
(
(x21 − ‖x‖44)x1, · · · , (x2d − ‖x‖44)xd

)
(158)

The second-order partial derivative of Lagrangian is equal to

M(x) = ∇2
xxL(x, λ)|(x,λ∗(x)) = ∇2f(x)− λ∗(x)∇2c(x)

= −12diag(x21, · · · , x2d)− 2λ∗(x)Id

= −12diag(x21, · · · , x2d) + 4‖x‖44Id (159)

Since the variable x has bounded norm, and the function is a polynomial, it’s clear that the function itself

is bounded and all its derivatives are bounded. Moreover, all the derivatives of the constraint are bounded.

We summarize this in the following lemma.

Lemma 43 The objective function (11) is bounded by 1, its p-th order derivative is bounded by O(
√
d) for

p = 1, 2, 3. The constraint’s p-th order derivative is bounded by 2, for p = 1, 2, 3.

37

Therefore the function satisfy all the smoothness condition we need. Finally we show the gradient and

Hessian of Lagrangian satisfy the (α, γ, ǫ, δ)-strict saddle property. Note that we did not try to optimize the

dependency with respect to d.

Theorem 44 The only local minima of optimization problem (11) are ±ai (i ∈ [d]). Further it satisfy

(α, γ, ǫ, δ)-strict saddle for γ = 7/d, α = 3 and ǫ, δ = 1/poly(d).

In order to prove this theorem, we consider the transformed version Eq.155. We first need following two

lemma for points around saddle point and local minimum respectively. We choose

ǫ0 = (10d)−4, ǫ = 4ǫ20, δ = 2dǫ0, S(x) = {i | |xi| > ǫ0} (160)

Where by intuition, S(x) is the set of coordinates whose value is relative large.

Lemma 45 Under the choice of parameters in Eq.(160), suppose ‖χ(x)‖ ≤ ǫ, and |S(x)| ≥ 2. Then,

there exists v̂ ∈ T (x) and ‖v̂‖ = 1, so that v̂TM(x)v̂ ≤ −7/d.

Proof Suppose |S(x)| = p, and 2 ≤ p ≤ d. Since ‖χ(x)‖ ≤ ǫ = 4ǫ20, by Eq.(158), we have for each

i ∈ [d], |[χ(x)]i| = 4|(x2i − ‖x‖44)xi| ≤ 4ǫ20. Therefore, we have:

∀i ∈ S(x), |x2i − ‖x‖44| ≤ ǫ0 (161)

and thus:

|‖x‖44 −
1

p
| = |‖x‖44 −

1

p

∑

i

x2i |

≤|‖x‖44 −
1

p

∑

i∈S(x)

x2i |+ |
1

p

∑

i∈[d]−S(x)

x2i | ≤ ǫ0 +
d− p
p

ǫ20 ≤ 2ǫ0 (162)

Combined with Eq.161, this means:

∀i ∈ S(x), |x2i −
1

p
| ≤ 3ǫ0 (163)

Because of symmetry, WLOG we assume S(x) = {1, · · · , p}. Since |S(x)| ≥ 2, we can pick v̂ =
(a, b, 0, · · · , 0). Here a > 0, b < 0, and a2 + b2 = 1. We pick a such that ax1 + bx2 = 0. The solution is

the intersection of a radius 1 circle and a line which passes (0, 0), which always exists. For this v̂, we know

‖v̂‖ = 1, and v̂Tx = 0 thus v̂ ∈ T (x). We have:

v̂TM(x)v̂ = −(12x21 + 4‖x‖44)a2 − (12x22 + 4‖x‖44)b2

=− 8x21a
2 − 8x22b

2 − 4(x21 − ‖x‖44))a2 − 4(x22 − ‖x‖44))b2

≤− 8

p
+ 24ǫ0 + 4ǫ0 ≤ −7/d (164)

Which finishes the proof.

38

Lemma 46 Under the choice of parameters in Eq.(160), suppose ‖χ(x)‖ ≤ ǫ, and |S(x)| = 1. Then,

there is a local minimum x⋆ such that ‖x − x⋆‖ ≤ δ, and for all x′ in the 2δ neighborhood of x⋆, we have

v̂TM(x′)v̂ ≥ 3 for all v̂ ∈ T (x′), ‖v̂‖ = 1

Proof WLOG, we assume S(x) = {1}. Then, we immediately have for all i > 1, |xi| ≤ ǫ0, and thus:

1 ≥ x21 = 1−
∑

i>1

x2i ≥ 1− dǫ20 (165)

Therefore x1 ≥
√
1− dǫ20 or x1 ≤ −

√
1− dǫ20. Which means x1 is either close to 1 or close to −1. By

symmetry, we know WLOG, we can assume the case x1 ≥
√
1− dǫ20. Let e1 = (1, 0, · · · , 0), then we

know:

‖x− e1‖2 ≤ (x1 − 1)2 +
∑

i>1

x2i ≤ 2dǫ20 ≤ δ2 (166)

Next, we show e1 is a local minimum. According to Eq.159, we know M(e1) is a diagonal matrix with 4
on the diagonals except for the first diagonal entry (which is equal to−8), since T (e1) = span{e2, · · · , ed},
we have:

vTM(e1)v ≥ 4‖v‖2 > 0 for all v ∈ T (e1), v 6= 0 (167)

Which by Theorem 28 means e1 is a local minimum.

Finally, denote T1 = T (e1) be the tangent space of constraint manifold at e1. We know for all x′ in the

2δ neighborhood of e1, and for all v̂ ∈ T (x′), ‖v̂‖ = 1:

v̂TM(x′)v̂ ≥v̂TM(e1)v̂ − |v̂TM(e1)v̂ − v̂TM(x′)v̂|
=4‖PT1 v̂‖2 − 8‖PT c

1
v̂‖2 − ‖M(e1)−M(x′)‖‖v̂‖2

=4− 12‖PT c
1
v̂‖2 − ‖M(e1)−M(x′)‖ (168)

By lemma 31, we know ‖PT c
1
v̂‖2 ≤ ‖x′ − e1‖2 ≤ 4δ2. By Eq.(159), we have:

‖M(e1)−M(x′)‖ ≤ ‖M(e1)−M(x′)‖ ≤
∑

(i,j)

|[M(e1)]ij − [M(x′)]ij |

≤
∑

i

∣∣−12[e1]2i + 4‖e1‖44 − 12x2i + 4‖x‖44
∣∣ ≤ 64dδ (169)

In conclusion, we have v̂TM(x′)v̂ ≥ 4− 48δ2 − 64dδ ≥ 3 which finishs the proof.

Finally, we are ready to prove Theorem 44.

Proof [Proof of Theorem 44]

According to Lemma 45 and Lemma 46, we immediately know the optimization problem satisfies

(α, γ, ǫ, δ)-strict saddle.

The only thing remains to show is that the only local minima of optimization problem (11) are ±ai (i ∈
[d]). Which is equivalent to show that the only local minima of the transformed problem is ±ei (i ∈ [d]),
where ei = (0, · · · , 0, 1, 0, · · · , 0), where 1 is on i-th coordinate.

By investigating the proof of Lemma 45 and Lemma 46, we know these two lemmas actually hold for

any small enough choice of ǫ0 satisfying ǫ0 ≤ (10d)−4, by pushing ǫ0 → 0, we know for any point satisfy-

ing |χ(x)| ≤ ǫ→ 0, if it is close to some local minimum, it must satisfy 1 = |S(x)| → supp(x). Therefore,

39

we know the only possible local minima are ±ei (i ∈ [d]). In Lemma 46, we proved e1 is local minimum,

by symmetry, we finishes the proof.

C.2. New formulation

In this section we consider our new formulation (13). We first restate the optimization problem here:

min
∑

i 6=j

T (u(i), u(i), u(j), u(j)), (170)

∀i ‖u(i)‖2 = 1.

Note that we changed the notation for the variables from ui to u(i), because in later proofs we will often

refer to the particular coordinates of these vectors.

Similar to the previous section, we perform a change of basis. The effect is equivalent to making ai’s
equal to basis vectors ei (and hence the tensor is equal to T =

∑d
i=1 e

⊗4
i . After the transformation the

equations become

min
∑

(i,j):i 6=j

h(u(i), u(j)) (171)

s.t. ‖u(i)‖2 = 1 ∀i ∈ [d]

Here h(u(i), u(j)) =
∑d

k=1(u
(i)
k u

(j)
k)2, (i, j) ∈ [d]2. We divided the objective function by 2 to simplify the

calculation.

Let U ∈ R
d2 be the concatenation of {u(i)} such that Uij = u

(i)
j . Let ci(U) = ‖u(i)‖2 − 1 and

f(U) = 1
2

∑
(i,j):i 6=j h(u

(i), u(j)). We can then compute the Lagrangian

L(U, λ) = f(U)−
d∑

i=1

λici(U) =
1

2

∑

(i,j):i 6=j

h(u(i), u(j))−
d∑

i=1

λi(‖u(i)‖2 − 1) (172)

The gradients of ci(U)’s are equal to (0, · · · , 0, 2u(i), 0, · · · , 0)T , all of these vectors are orthogonal to

each other (because they have disjoint supports) and have norm 2. Therefore the set of constraints satisfy

2-RLICQ. We can then compute the Lagrangian multipiers λ∗ as follows

λ∗(U) = argmin
λ
‖∇UL(U, λ)‖ = argmin

λ
4
∑

i

∑

k

(
∑

j:j 6=i

U2
jkUik − λiUik)

2 (173)

which gives:

λ∗i (U) = argmin
λ

∑

k

(
∑

j:j 6=i

U2
jkUik − λiUik)

2 =
∑

j:j 6=i

h(u(j), u(i)) (174)

Therefore, gradient in the tangent space is equal to

χ(U) = ∇UL(U, λ)|(U,λ∗(U)) = ∇f(U)−
n∑

i=1

λ∗i (U)∇ci(U). (175)

40

The gradient is a d2 dimensional vector (which can be viewed as a d×d matrix corresponding to entries

of U), and we express this in a coordinate-by-coordinate way. For simplicity of later proof, denote:

ψik(U) =
∑

j:j 6=i

[U2
jk − h(u(j), u(i))] =

∑

j:j 6=i

[U2
jk −

d∑

l=1

U2
ilU

2
jl] (176)

Then we have:

[χ(U)]ik = 2(
∑

j:j 6=i

U2
jk − λ∗i (U))Uik

= 2Uik

∑

j:j 6=i

(U2
jk − h(u(j), u(i)))

= 2Uikψik(U) (177)

Similarly we can compute the second-order partial derivative of Lagrangian as

M(U) = ∇2f(U)−
d∑

i=1

λ∗i∇2ci(U). (178)

The Hessian is a d2 × d2 matrix, we index it by 4 indices in [d]. The entries are summarized below:

[M(U)]ik,i′k′ =
∂

∂Ui′k′
[∇UL(U, λ)]ik

∣∣∣∣
(U,λ∗(U))

=
∂

∂Ui′k′
[2(
∑

j:j 6=i

U2
jk − λ)Uik]

∣∣∣∣∣∣
(U,λ∗(U))

=

2(
∑

j:j 6=i U
2
jk − λ∗i (U)) if k = k′, i = i′

4Ui′kUik if k = k′, i 6= i′

0 if k 6= k′

=

2ψik(U) if k = k′, i = i′

4Ui′kUik if k = k′, i 6= i′

0 if k 6= k′
(179)

Similar to the previous case, it is easy to bound the function value and derivatives of the function and

the constraints.

Lemma 47 The objective function (13) and p-th order derivative are all bounded by poly(d) for p = 1, 2, 3.

Each constraint’s p-th order derivative is bounded by 2, for p = 1, 2, 3.

Therefore the function satisfy all the smoothness condition we need. Finally we show the gradient and

Hessian of Lagrangian satisfy the (α, γ, ǫ, δ)-strict saddle property. Again we did not try to optimize the

dependency with respect to d.

Theorem 48 Optimization problem (13) has exactly 2d ·d! local minimum that corresponds to permutation

and sign flips of ai’s. Further, it satisfy (α, γ, ǫ, δ)-strict saddle for α = 1 and γ, ǫ, δ = 1/poly(d).

41

Again, in order to prove this theorem, we follow the same strategy: we consider the transformed version

Eq.171. and first prove the following lemmas for points around saddle point and local minimum respectively.

We choose

ǫ0 = (10d)−6, ǫ = 2ǫ60, δ = 2dǫ0, γ = ǫ40/4, S(u) = {k | |uk| > ǫ0} (180)

Where by intuition, S(u) is the set of coordinates whose value is relative large.

Lemma 49 Under the choice of parameters in Eq.(180), suppose ‖χ(U)‖ ≤ ǫ, and there exists (i, j) ∈ [d]2

so that S(u(i)) ∩S(u(j)) 6= ∅. Then, there exists v̂ ∈ T (U) and ‖v̂‖ = 1, so that v̂TM(U)v̂ ≤ −γ.

Proof Again, since ‖χ(x)‖ ≤ ǫ = 2ǫ60, by Eq.(177), we have for each i ∈ [d], |[χ(x)]ik| = 2|Uikψik(U)| ≤
2ǫ60. Therefore, have:

∀k ∈ S(u(i)), |ψik(U)| ≤ ǫ50 (181)

Then, we prove this lemma by dividing it into three cases. Note in order to prove that there exists

v̂ ∈ T (U) and ‖v̂‖ = 1, so that v̂TM(U)v̂ ≤ −γ; it suffices to find a vector v ∈ T (U) and ‖v‖ ≤ 1, so

that vTM(U)v ≤ −γ.

Case 1 : |S(u(i))| ≥ 2, |S(u(j))| ≥ 2, and |S(u(i)) ∩S(u(j))| ≥ 2.

WLOG, assume {1, 2} ∈ S(u(i)) ∩ S(u(j)), choose v to be vi1 = Ui2

4 , vi2 = −Ui1

4 , vj1 =
Uj2

4 and

vj2 = −Uj1

4 . All other entries of v are zero. Clearly v ∈ T (U), and ‖v‖ ≤ 1. On the other hand, we know

M(U) restricted to these 4 coordinates (i1, i2, j1, j2) is

2ψi1(U) 0 4Ui1Uj1 0
0 2ψi2(U) 0 4Ui2Uj2

4Ui1Uj1 0 2ψj1(U) 0
0 4Ui2Uj2 0 2ψj2(U)

 (182)

By Eq.(181), we know all diagonal entries are ≤ 2ǫ50.

If Ui1Uj1Ui2Uj2 is negative, we have the quadratic form:

vTM(U)v =Ui1Uj1Ui2Uj2 +
1

8
[U2

i2ψi1(U) + U2
i1ψi2(U) + U2

j2ψj1(U) + U2
j1ψj2(U)]

≤− ǫ40 + ǫ50 ≤ −
1

4
ǫ40 = −γ (183)

If Ui1Uj1Ui2Uj2 is positive we just swap the sign of the first two coordinates vi1 = −Ui2

2 , vi2 =
Ui1

2 and the

above argument would still holds.

Case 2 : |S(u(i))| ≥ 2, |S(u(j))| ≥ 2, and |S(u(i)) ∩S(u(j))| = 1.

WLOG, assume {1, 2} ∈ S(u(i)) and {1, 3} ∈ S(u(j)), choose v to be vi1 = Ui2

4 , vi2 = −Ui1

4 ,

vj1 =
Uj3

4 and vj3 = −Uj1

4 . All other entries of v are zero. Clearly v ∈ T (U) and ‖v‖ ≤ 1. On the other

hand, we know M(U) restricted to these 4 coordinates (i1, i2, j1, j3) is

2ψi1(U) 0 4Ui1Uj1 0
0 2ψi2(U) 0 0

4Ui1Uj1 0 2ψj1(U) 0
0 0 0 2ψj3(U)

 (184)

42

By Eq.(181), we know all diagonal entries are ≤ 2ǫ50. If Ui1Uj1Ui2Uj3 is negative, we have the quadratic

form:

vTM(U)v =
1

2
Ui1Uj1Ui2Uj3 +

1

8
[U2

i2ψi1(U) + U2
i1ψi2(U) + U2

j3ψj1(U) + U2
j1ψj3(U)]

≤− 1

2
ǫ40 + ǫ50 ≤ −

1

4
ǫ40 = −γ (185)

If Ui1Uj1Ui2Uj3 is positive we just swap the sign of the first two coordinates vi1 = −Ui2

2 , vi2 =
Ui1

2 and the

above argument would still holds.

Case 3 : Either |S(u(i))| = 1 or |S(u(j))| = 1.

WLOG, suppose |S(u(i))| = 1, and {1} = S(u(i)), we know:

|(u(i)1)2 − 1| ≤ (d− 1)ǫ20 (186)

On the other hand, since S(u(i)) ∩S(u(j)) 6= ∅, we have S(u(i)) ∩S(u(j)) = {1}, and thus:

|ψj1(U)| = |
∑

i′:i′ 6=j

U2
i′1 −

∑

i′:i′ 6=j

h(u(i
′), u(j))| ≤ ǫ50 (187)

Therefore, we have:
∑

i′:i′ 6=j

h(u(i
′), u(j)) ≥

∑

i′:i′ 6=j

U2
i′1 − ǫ50 ≥ U2

i1 − ǫ50 ≥ 1− dǫ20 (188)

and

d∑

k=1

ψjk(U) =
∑

i′:i′ 6=j

d∑

k=1

U2
i′k − d

∑

i′:i′ 6=j

h(u(i
′), u(j))

≤d− 1− d(1− dǫ20) = −1 + d2ǫ20 (189)

Thus, we know, there must exist some k′ ∈ [d], so that ψjk′(U) ≤ − 1
d
+ dǫ20. This means we have “large”

negative entry on the diagonal of M. Since |ψj1(U)| ≤ ǫ50, we know k′ 6= 1. WLOG, suppose k′ = 2, we

have |ψj2(U)| > ǫ50, thus |Uj2| ≤ ǫ0.

Choose v to be vj1 =
Uj2

2 , vj2 = −Uj1

2 . All other entries of v are zero. Clearly v ∈ T (U) and ‖v‖ ≤ 1.

On the other hand, we know M(U) restricted to these 2 coordinates (j1, j2) is

(
2ψj1(U) 0

0 2ψj2(U)

)
(190)

We know |Uj1| > ǫ0, |Uj2| ≤ ǫ0, |ψj1(U)| ≤ ǫ50, and ψj2(U) ≤ −1
d
+ dǫ20. Thus:

vTM(U)v =
1

2
ψj1(U)U2

j2 +
1

2
ψj2(U)U2

j1

≤ǫ70 − (
1

d
− dǫ20)ǫ20 ≤ −

1

2d
ǫ20 ≤ −γ (191)

Since by our choice of v, we have ‖v‖ ≤ 1, we can choose v̂ = v/‖v‖, and immediately have v̂ ∈ T (U)
and ‖v̂‖ = 1, and v̂TM(U)v̂ ≤ −γ.

43

Lemma 50 Under the choice of parameters in Eq.(180), suppose ‖χ(U)‖ ≤ ǫ, and for any (i, j) ∈ [d]2 we

have S(u(i)) ∩S(u(j)) = ∅. Then, there is a local minimum U⋆ such that ‖U − U⋆‖ ≤ δ, and for all U ′ in

the 2δ neighborhood of U⋆, we have v̂TM(U ′)v̂ ≥ 1 for all v̂ ∈ T (U ′), ‖v̂‖ = 1

Proof WLOG, we assume S(u(i)) = {i} for i = 1, · · · , d. Then, we immediately have:

|u(i)j | ≤ ǫ0, |(u(i)i)2 − 1| ≤ (d− 1)ǫ20, ∀(i, j) ∈ [d]2, j 6= i (192)

Then u
(i)
i ≥

√
1− dǫ20 or u

(i)
i ≤ −

√
1− dǫ20. Which means u

(i)
i is either close to 1 or close to −1. By

symmetry, we know WLOG, we can assume the case u
(i)
i ≥

√
1− dǫ20 for all i ∈ [d].

Let V ∈ R
d2 be the concatenation of {e1, e2, · · · , ed}, then we have:

‖U − V ‖2 =
d∑

i=1

‖u(i) − ei‖2 ≤ 2d2ǫ20 ≤ δ2 (193)

Next, we show V is a local minimum. According to Eq.179, we know M(V) is a diagonal matrix with

d2 entries:

[M(V)]ik,ik = 2ψik(V) = 2
∑

j:j 6=i

[V 2
jk −

d∑

l=1

V 2
ilV

2
jl] =

{
2 if i 6= k

0 if i = k
(194)

We know the unit vector in the direction that corresponds to [M(V)]ii,ii is not in the tangent space T (V)
for all i ∈ [d]. Therefore, for any v ∈ T (V), we have

vTM(e1)v ≥ 2‖v‖2 > 0 for all v ∈ T (V), v 6= 0 (195)

Which by Theorem 28 means V is a local minimum.

Finally, denote TV = T (V) be the tangent space of constraint manifold at V . We know for all U ′ in the

2δ neighborhood of V , and for all v̂ ∈ T (x′), ‖v̂‖ = 1:

v̂TM(U ′)v̂ ≥v̂TM(V)v̂ − |v̂TM(V)v̂ − v̂TM(U ′)v̂|
=2‖PTV v̂‖2 − ‖M(V)−M(U ′)‖‖v̂‖2

=2− 2‖PT c
V
v̂‖2 − ‖M(V)−M(U ′)‖ (196)

By lemma 31, we know ‖PT c
V
v̂‖2 ≤ ‖U ′ − V ‖2 ≤ 4δ2. By Eq.(179), we have:

‖M(V)−M(U ′)‖ ≤ ‖M(V)−M(U ′)‖ ≤
∑

(i,j,k)

|[M(V)]ik,jk − [M(U ′)]ik,jk| ≤ 100d3δ (197)

In conclusion, we have v̂TM(U ′)v̂ ≥ 2− 8δ2 − 100d3δ ≥ 1 which finishs the proof.

Finally, we are ready to prove Theorem 48.

Proof [Proof of Theorem 48]

Similarly, (α, γ, ǫ, δ)-strict saddleimmediately follows from Lemma 49 and Lemma 50.

The only thing remains to show is that Optimization problem (13) has exactly 2d ·d! local minimum that

corresponds to permutation and sign flips of ai’s. This can be easily proved by the same argument as in the

proof of Theorem 44.

44

C.3. Extending to tensors of different order

In this section we show how to generalize our algorithm to tensors of different orders. As a 8-th order tensor

(and more generally, 4p-th order tensor for p ∈ N+) can always be considered to be a 4-th order tensor

with components a⊗i ai (a⊗p
i in general), so it is trivial to generalize our algorithm to 8-th order or any 4p-th

order.

For tensors of other orders, we need to apply some transformation. As a concrete example, we show

how to transform an orthogonal 3rd order tensor into an orthogonal 4-th order tensor.

We first need to define a few notations. For third order tensorsA,B ∈ R
d3 , we define (A⊗B)i1,i2,...,i6 =

Ai1,i2,i3Bi4,i5,i6(i1, ..., i6 ∈ [d]). We also define the partial trace operation that maps a 6-th order tensor

T ∈ R
d6 to a 4-th order tensor in R

d4 :

ptrace(T)i1,i2,i3,i4 =

d∑

i=1

T (i, i1, i2, i, i3, i4).

Basically, the operation views the tensor as a d3 × d3 matrix with d2 × d2 d × d matrix blocks, then takes

the trace of each matrix block. Now given a random variable X ∈ R
d3 whose expectation is an orthogonal

third order tensor, we can use these operations to construct an orthogonal 4-th order tensor:

Lemma 51 Suppose the expectation of random variable X ∈ R
d3 is an orthogonal 3rd order tensor:

E[X] =

d∑

i=1

a⊗3
i ,

where ai’s are orthonormal vectors. Let X ′ be an independent sample of X , then we know

E[ptrace(X ⊗X ′)] =
d∑

i=1

a⊗3
i .

In other words, we can construct random samples whose expectation is equal to a 4-th order orthogonal

tensor.

Proof Since ptrace and ⊗ are all linear operations, by linearity of expectation we know

E[ptrace(X ⊗X ′)] = ptrace(E[X]⊗ E[X ′]) = ptrace((
d∑

i=1

a⊗3
i)⊗ (

d∑

i=1

a⊗3
i)).

We can then expand out the product:

(
d∑

i=1

a⊗3
i)⊗ (

d∑

i=1

a⊗3
i) =

d∑

i=1

a⊗6
i +

∑

i 6=j

a⊗3
i ⊗ a⊗3

j .

For the diagonal terms, we know ptrace(a⊗i 6) = ‖ai‖2a⊗i 4 = a⊗i 4. For the i 6= j terms, we know

ptrace(a⊗3
i ⊗ a⊗3

j) = 〈ai, aj〉a⊗i 2⊗ a⊗j 2 = 0 (since ai, aj are orthogonal). Therefore we must have

ptrace((
d∑

i=1

a⊗3
i)⊗ (

d∑

i=1

a⊗3
i)) =

d∑

i=1

ptrace(a⊗6
i) +

∑

i 6=j

ptrace(a⊗3
i ⊗ a⊗3

j) =
d∑

i=1

a⊗4
i .

45

This gives the result.

Using similar operations we can easily convert all odd-order tensors into order 4p(p ∈ N
+). For tensors

of order 4p + 2(p ∈ N
+), we can simply apply the partial trace and get a tensor of order 4p with desirable

properties. Therefore our results applies for all orders of tensors.

46

	Introduction
	Summary of Results
	Related Works

	Preliminaries
	Stochastic Gradient Descent
	Tensors decomposition

	Stochastic gradient descent for strict saddle function
	Strict saddle property
	Proof sketch
	Constrained Problems

	Online Tensor Decomposition
	Optimization problem for tensor decomposition
	Implementing stochastic gradient oracle

	Experiments
	Conclusion
	Detailed Analysis for Section 3 in Unconstrained Case
	Detailed Analysis for Section 3 in Constrained Case
	Preliminaries
	Geometrical Lemmas Regarding Constraint Manifold
	Main Theorem

	Detailed Proofs for Section 4
	Warm up: maximum eigenvalue formulation
	New formulation
	Extending to tensors of different order

