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Abstract

We introduce PLATONICGAN to discover the 3D struc-

ture of an object class from an unstructured collection of

2D images, i. e., where no relation between photos is known,

except that they are showing instances of the same category.

The key idea is to train a deep neural network to generate 3D

shapes which, when rendered to images, are indistinguish-

able from ground truth images (for a discriminator) under

various camera poses. Discriminating 2D images instead of

3D shapes allows tapping into unstructured 2D photo collec-

tions instead of relying on curated (e. g., aligned, annotated,

etc.) 3D data sets.

To establish constraints between 2D image observation

and their 3D interpretation, we suggest a family of rendering

layers that are effectively differentiable. This family includes

visual hull, absorption-only (akin to x-ray), and emission-

absorption. We can successfully reconstruct 3D shapes from

unstructured 2D images and extensively evaluate PLATON-

ICGAN on a range of synthetic and real data sets achieving

consistent improvements over baseline methods. We further

show that PLATONICGAN can be combined with 3D super-

vision to improve on and in some cases even surpass the

quality of 3D-supervised methods.

1. Introduction

A key limitation to current generative models [37, 36, 12,

24, 32, 31] is the availability of suitable training data (e. g.,

3D volumes, feature point annotations, template meshes, de-

formation prior, structured image sets, etc.) for supervision.

While methods exist to learn the 3D structure of classes of

objects, they typically require 3D data as input. Regrettably,

such 3D data is difficult to acquire, in particular for the “long

tail” of exotic classes: ShapeNet might have chair, but it

does not have chanterelle.

Addressing this problem, we suggest a method to learn

3D structure from 2D images only (Fig. 1). Reasoning about

the 3D structure from 2D observations without assuming

anything about their relation is challenging as illustrated

by Plato’s Allegory of the Cave [34]: How can we hope to

understand higher dimensions from only ever seeing projec-

tions? If multiple views (maybe only two [40, 13]) of the

same object are available, multi-view analysis without 3D

supervision has been successful. Regrettably, most photo

collections do not come in this form but are now and will

remain unstructured: they show random instances under ran-

dom pose, uncalibrated lighting in unknown relations, and

multiple views of the same objects are not available.

Our first main contribution (Sec. 3) is to use adversarial

training of a 3D generator with a discriminator that oper-

ates exclusively on widely available unstructured collections

of 2D images, which we call platonic discriminator. Here,

during training, the generator produces a 3D shape that is

projected (rendered) to 2D and presented to the 2D Platonic

discriminator. Making a connection between the 3D genera-

tor and the 2D discriminator, our second key contribution, is

enabled by a family of rendering layers that can account for

occlusion and color (Sec. 4). These layers do not need any

learnable parameters and allow for backpropagation [26].

From these two key blocks we construct a system that learns

Figure 1. PLATONICGANs allow converting an unstructured

collection of 2D images of a rare class (subset shown on top) into a

generative 3D model (random samples below).
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Figure 2. Overview: We encode a 2D input image using an encoder E into a latent code z and feed it to a generator G to produce a 3D

volume. This 3D volume is inserted into a rendering layer R to produce a 2D rendered image which is presented to a discriminator D. The

rendering layer is controlled by an image formation model: visual hull (VH), absorption-only (AO) or emission-absorption (EA) and view

sampling. The discriminator D is trained to distinguish such rendered imagery from an unstructured 2D photo collection, i. e., images of the

same class of objects, but not necessarily having repeated instances, view or lighting and with no assumptions about their relation (e.g.,

annotated feature points, view specifications).

the 3D shapes of common classes such as chairs and cars, but

also exotic classes from unstructured 2D photo collections.

We demonstrate 3D reconstruction from a single 2D image

as a key application (Sec. 5). While recent works focus on

using as little explicit supervision [17, 19, 8, 29, 28, 11] as

possible, they all rely on either annotations, 3D templates,

known camera poses, specific views or multi-view images

during training. Our approach takes it a step further by

receiving no such supervision, see Tbl. 1.

Table 1. Taxonomy of different methods that learn 3D shapes with

no explicit 3D supervision. We compare Kanazawa et al. [17], Kato

et al. [19], Eslami et al. [8], Tulsiani et al. [29], Tulsiani et al. [28],

PrGan [11] with our method in terms of degree of supervision.

Supervision at training time [1
7

]

[1
9

]

[8
]

[2
9

]

[ 2
8

]

[1
1

]

O
u

rs

Annotation-free ✕ X X X X X X

3D template-Free ✕ ✕ X X X X X

Unknown camera pose X ✕ ✕ ✕ X X X

No pre-defined camera poses X X X X ✕ ✕ X

Only single view required X ✕ ✕ ✕ ✕ X X

Color X X X X ✕ ✕ X

2. Related Work

Several papers suggest (adversarial) learning using 3D

voxel representations [37, 36, 12, 24, 11, 32, 31, 35, 39,

30, 20] or point cloud input [1, 10]. The general design

of such networks is based on an encoder that generates a

latent code which is then fed into a generator to produce a

3D representation (i. e., a voxel grid). A 3D discriminator

now analyzes samples both from the generator and from the

ground truth distribution. Note that this procedure requires

3D supervision, i. e., is limited by the type and size of the

3D data set such as ShapeNet [5].

Girdhar et al. [12] work on a joint embedding of 3D

voxels and 2D images, but still require 3D voxelizations as

input. Fan et al. [9] produce points from 2D images, but

similarly with 3D data as training input. Gadelhan et al.

[11] use 2D visual hull images to train a generative 3D

model. Cho et al.’s recursive design takes multiple images

as input [6] while also being trained on 3D data. Kar et al.

[18] propose a simple “unprojection” network component

to establish a relation between 2D pixels and 3D voxels but

without resolving occlusion and again with 3D supervision.

Cashman and Fitzgibbon [4] and later Carreira et al. [3]

or Kanazawa et al. [17] use correspondence to 3D templates

across segmentation- or correspondence-labeled 2D image

data sets to reconstruct 3D shapes. These present stunning

results, for example on animals, but at the opposite end

of a spectrum of manual human supervision, in which our

approach receives no such supervision.

Closer to our approach is Rezende et al. [25] that also

learn 3D representations from single images. However, they

make use of a partially differentiable renderer [22] that is

limited to surface orientation and shading, while our for-

mulation can resolve both occlusion from the camera and

appearance. Also, their representation of the 3D volume is a

latent one, that is, it has no immediate physical interpretation

that is required in practice, e. g., for measurements, to run

simulations such as renderings or 3D printing. This choice

of having a deep representation of the 3D world is shared by

Eslami et al. [8]. Tulsiani et al. [29] reconstruct 3D shape

supervised by multiple 2D images of the same object with

known view transformations at learning time. Tulsiani et al.

[28] take it a step further and require no knowledge about the

camera pose, but still require multiple images of the same

object at training time. They have investigated modelling

image formation as sums of voxel occupancies to predict

termination depth. We use a GAN to train on photo collec-

tions which typically only show one view of each instance.

Closest to our work is Gadelha et al. [11] which operates

on an unstructured set of visual hull images but receives

three sources of supervision: view information gets explic-

itly encoded as a dimension in the latent vector; views come

from a manually-chosen 1D subspace (circle); and there are

only 8 discrete views. We take the image formation a step

further to support absorption-only and emission-absorption
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image formation, allowing to learn from real photos and do

so on unstructured collections from-the-wild where no view

supervision is available.

While early suggestions how to extend differentiable ren-

derers to polygonal meshes exist, they are limited to defor-

mation of a pre-defined template [19]. We work with voxels,

which can express arbitrary topology, e. g., we can generate

chairs with drastically different layout, which are not a mere

deformation of a base shape.

Similarly, inter-view constraints can be used to learn

depth maps [40, 13] using reprojection constraints: If the

depth label is correct, reprojecting one image into the other

view has to produce the other image. Our method does not

learn a single depth map but a full voxel grid and allows

principled handling of occlusions.

A generalization from visual hull maps to full 3D scenes

is discussed by Yan et al. [38]. Instead of a 3D loss, they

employ a simple projection along major axis allowing to use

a 2D loss. However, multiple 2D images of the same object

are required. In practice this is achieved by rendering the 3D

shape into 2D images from multiple views. This makes two

assumptions: We have multiple images in a known relation

and available reference appearance (i. e., light, materials).

Our approach relaxes those two requirements: we use a

discriminator that can work on arbitrary projections and

arbitrary natural input images, without known reference.

3. 3D Shape From 2D Photo Collections

We now introduce PLATONICGAN (Fig. 2). The render-

ing layers used here will be introduced in Sec. 4.

Common GAN Our method is a classic (generative) adver-

sarial design [14] with two main differences: The discrimi-

nator D operates in 2D while the 3D generator G produces

3D output. The two are linked by a fixed-function projection

operator, i. e., non-learnable (see Sec. 4).

Let us recall the classic adversarial learning of 3D shapes

[36], which is a min-max game

min
Θ

max
Ψ

cDis(Ψ) + cGen′(Θ) (1)

between the discriminator and the generator cost, respec-

tively cDis and cGen′ .

The discriminator cost is

cDis(Ψ) =EpData(x)[log(DΨ(x))] (2)

where DΨ is the discriminator with learned parameters Ψ
which is presented with samples x from the distribution of

real 3D shapes x ∼ pData. Here Ep denotes the expected

value of the distribution p.

The generator cost is

cGen′(Θ) = EpGen(z)[log(1−DΨ(GΘ(z))] (3)

where GΘ is the generator with parameters Θ that maps the

latent code z ∼ pGen to the data domain.

PLATONICGAN The discriminator cost is calculated iden-

tical to the common GAN with the only difference that the

input samples are rendered 2D images with generation cost

cGen(Θ) = EpGen(z)EpView(ω)[log(1−DΨ(R(ω,GΘ(z)))],
(4)

where R projects the generator result GΘ(z) from 3D to 2D

along the sampled view direction ω. See Sec. 3.1 for details.

While many parameterizations for views are possible, we

choose an orthographic camera with fixed upright orientation

that points at the origin from an Euclidean position ω ∈ S
2

on the unit sphere. EpView(ω) is the expected value across

the distributions ω ∼ pView of views.

PLATONICGAN 3D Reconstruction Two components in

addition to our Platonic concept are required to allow for 3D

reconstruction, resulting in

min
Ψ

max
Θ,Φ

cDisc(Ψ) + cGen(Θ,Φ) + λcRec(Θ,Φ), (5)

where cGen includes an encoding step and cRec encourages

the encoded generated-and-projected result to be similar to

the encoder input where λ = 100. We detail both of these

steps in the following paragraphs:

Generator The generator GΘ does not directly work on a

latent code z, but allows for an encoder EΦ with parameters

Φ that encodes a 2D input image I to a latent code z =
EΦ(I). The cost becomes,

cGen(Θ,Φ) =

EpDat(I)EpView(ω)[log(1−DΨ(R(ω,GΘ(EΦ(I))))].
(6)

Reconstruction We encourage the encoder EΦ and genera-

tor GΘ to reproduce the input in the L2 sense: by convention

the input view is ω0 = (0, 0),

cRec(Θ,Φ) = ‖y −R(ω0, GΘ(EΦ(I)))‖
2
2 (7)

where y represents the ground truth image. While this step is

not required for generation it is mandatory for reconstruction.

Furthermore, it adds stability to the optimization as it is easy

to find an initial solution that matches this 2D cost before

refining the 3D structure.

3.1. Optimization

Two key properties are essential to successfully optimize

our PLATONICGAN: First, maximizing the expected

value across the distribution of views pView and sec-

ond, back-propagation through the projection operator R.

We extend the classic GAN optimization procedure in Alg. 1.

9986



Algorithm 1 PLATONICGAN Reconstruction Update Step

1: IDat ← SAMPLEIMAGE(pDat)
2: ω ← SAMPLEVIEW(pView)
3: z ← E(IDat)
4: v ← G(z)
5: IView ← R(ω, v)
6: IFront ← R(ω0, v)
7: cDis ← logD(IDat) + log(1−D(IView))
8: cGen ← log(1−D(IView))
9: cRec ← L2(IDat − IFront)

10: Ψ← MAXMIZE(cDis)
11: Θ,Φ← MINIMIZE(cGen + λcRec)

Projection We focus on the case of a 3D generator on a

regular voxel grid vnc×n3
p and a 2D discriminator on a regu-

lar image Inc×n2
p where nc denotes the number of channels

and np = 64 corresponds to the resolution. In section 4, we

discuss three different projection operators. We use R(ω,v)
to map a 3D voxel grid v under a view direction ω ∈ S

2 to a

2D image I.

We further define R(ω,v) := ρ(T(ω)v) with rotation

matrix T(ω) according to the view direction ω and an

image formation function ρ(v) that is view-independent.

The same transformation is shared by all implementa-

tions of the rendering layer, so we will only discuss the

key differences of ρ in the following. Note that a ro-

tation and a linear resampling is back-propagatable and

typically provided in a deep learning framework, e. g., as

torch.nn.functional.grid sample in PyTorch

[23]. While we work in orthographic space, ρ could also

model a perspective transformation.

View sampling We assume uniform view sampling.

4. Rendering Layers

Rendering layers (Fig. 3) map 3D information to 2D

images so they can be presented to a discriminator. We

first assume the 3D volume to be rotated (Fig. 3, a) into

camera space from view direction ω (Fig. 3, b), such that the

pixel value p is to be computed from all voxel values vi and

only those (Fig. 3, c). The rendering layer maps a sequence

of nz voxels to a pixel value ρ(v) ∈ R
nc×n3

p → R
nc×n2

p .

Composing the full image I just amounts to executing ρ for

every pixel p resp. all voxels v = v1, . . . , vnz
at that pixel.

Note, that the rendering layer does not have any learnable

parameters. We will now discuss several variants of ρ, im-

plementing different forms of volume rendering [7]. Fig. 4

shows the image formation models we currently support.

Visual hull (VH) Visual hull [21] is the simplest variant

(Fig. 4). It converts scalar density voxels into binary opacity

images. A voxel value of 0 means empty space and a value

3D generator result Transformation c)b)a)

T

Rendering layer

Figure 3. Rendering layers (Please see text).

Figure 4. Different image formation models visual hull (VH),

absorption-only (AO) and emission-absorption (EA).

of 1 means fully occupied, i. e., vi ∈ [0, 1]. Output is a

binary value indicating if any voxel blocked the ray. It is

approximated as

ρVH(v) = 1− exp(
∑

i

−vi). (8)

Note that the sum operator can both be back-propagated and

is efficiently computable on a GPU using a parallel scan. We

can apply this to learn 3D structure from binary 2D data such

as segmented 2D images.

Absorption-only (AO) The absorption-only model is the

gradual variant of visual hull. This allows for “softer” atten-

uation of rays. It is designed as:

ρAO(v) = 1−
∏

i

(1− vi). (9)

If vi are fractional the result is similar to an x-ray, i. e.,

vi ∈ [0, 1]. This image formation allows learning from x-

rays or other transparent 2D images. Typically, these are

single-channel images, but a colored variant (e. g., x-ray at

different wavelength or RGB images of colored transparent

objects) could technically be done.

Emission-absorption (EA) Emission-absorption allows the

voxels not only to absorb light coming towards the observer

but also to emit new light at any position. This interplay

of emission and absorption can model occlusion, which we

will see is useful to make 3D sense of a 3D world. Fig. 3

uses emission-absorption with high absorption, effectively

realizing an opaque surface with visibility.

A typical choice is to have the absorption va monochro-

matic and the emission ve chromatic.

The complete emission-absorption equation is

ρEA(v) =

nz∑

i=1

(1−
i∏

j=1

(1− va,j))

︸ ︷︷ ︸

Transmission ti to voxel i

ve,i (10)
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While such equations are typically solved using ray-

marching [7], they can be rewritten to become differentiable

in practice: First, we note that the transmission ti from voxel

i is one minus a product of one minus the density of all

voxels before i. Similar to a sum such a cumulative prod-

uct can be back-propagated and computed efficiently using

parallel scans, e. g., using torch.cumprod. A numerical

alternative, that performed similar in our experiments, is to

work in the log domain and use torch.cumsum.

5. Evaluation

Our evaluation comprises of a quantitative (Sec. 5.4) and

a qualitative analysis (Sec. 5.5) that compares different pre-

vious techniques and ablations to our work (Sec. 5.2).

5.1. Data sets

Synthetic We evaluate on two synthetic data sets:

(a) ShapeNet [5] and (b) mammalian skulls [16]. For our

quantitative analysis, we use ShapeNet models as 3D ground

truth is required, but strictly only for evaluation, never in

our training. 2D images of 3D shapes are rendered for the

three image formation models VH, AO, EA. Each shape is

rendered from a random view (50 per object), with random

natural illumination. ShapeNet only provides 3D density

volumes which is not sufficient for EA analysis. To this end,

we use volumetric projective texturing to propagate the ap-

pearance information from thin 3D surface crust as defined

by ShapeNet’s textures into the 3D voxelization in order to

retrieve RGBA volumes where A corresponds to density.

We use shapes from the classes airplane, car, chair,

rifle and lamp. The same train / validation / test split as

proposed by [5] is adopted.

We also train on a synthetic x-ray data set that consists of

466,200 mammalian skull x-rays [16]. We used the monkey

skulls subset of that data set (∼30k x-rays).

Real We use two data sets of rare classes:

(a) chanterelle (60 images) and (b) tree (37

images) (not strictly rare, but difficult to 3D-model). These

images are RGBA, masked, on white background. Note,

that results on these input data has to remain qualitative, as

we lack the 3D information to compare to and do not even

have a second view of the same object to even perform an

image comparison.

5.2. Baselines and comparison

2D supervision First, we compare the publicly available

implementation of PrGAN [11] with our Platonic method.

PrGAN is trained on an explicitly created data set adher-

ing to their view restrictions (8 views along a single axis).

Compared to our method it is only trained on visual hull im-

ages, however for evaluation purposes absorption-only and

emission-absorption (in form of luminance) images are used

as input images at test time. Note that PrGAN allows for

object-space view reconstruction due to view information in

the latent space whereas our method performs reconstruction

in view-space. Due to the possible ambiguities in the input

images (multiple images can belong to the same 3D volume),

the optimal transformation into object space is found using

a grid search across all rotations.

3D supervision The first baseline with 3D supervision is

MULTI-VIEW, that has training-time access to multiple im-

ages of the same object [38] in a known spatial relation.

Note, that this is a stronger requirement than for PLATONIC-

GAN that does not require any structure in the adversarial

examples: geometry, view, light – all change, while in this

method only the view changes in a prescribed way.

The second competitor is a classic 3DGAN [36] trained

with a Wasserstein loss [2] and gradient penalty [15].

To compare PLATONICGAN against methods having ac-

cess to 3D information, we also propose a variant PLA-

TONIC3D by adding the PLATONICGAN adversarial loss

term (for all images and shapes) to the 3DGAN framework.

5.3. Evaluation Metrics

2D evaluation measures Since lifting 2D information to

3D can be ambiguous, absolute 3D measures might not be

the best suitable measures for evaluation on our task. For

instance, a shift in depth of an object under an orthographic

camera assumption will result in a higher error for metrics

in 3D, but the shift would not have any effect on a rendered

image. Thus, we render both the reconstructed and the refer-

ence volume from the same 10 random views and compare

their images using SSIM / DSSIM [33] and VGG16 [27] fea-

tures. For this re-rendering, we further employ four different

rendering methods: the original (i. e., ρ) image formation

(IF), volume rendering (VOL), iso-surface rendering with an

iso-value of .1 (ISO) and a voxel rendering (VOX), all under

random natural illumination.

3D evaluation measures We report root-mean-squared-

error (RMSE), intersection-over-union (IoU) and chamfer

distance (CD). For the chamfer distance we compute a

weighted directional distance:

dCD(T,O) =
1

N

∑

pi∈T

min
pj∈O

wj‖pi − pj‖
2
2,

where T and O correspond to output and target volumes

respectively, and wj denotes the density value of the voxel at

location pj . The weighting makes intuitive sense as our re-

sults have scalar values rather than binary values, i. e., higher

densities get penalized more, and N is the total number of

voxels in the volume. We give preference to such a weighting

opposed to finding a threshold value for binarization.
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Table 2. Performance of different methods with varying degrees of supervision (superv.) (rows) on different metrics (columns) for the class

airplane. Evaluation is performed on all three image formations (IF): visual hull (VH), absorption-only (AO) and emission-absorption

(EA). Note, DSSIM and VGG values are multiplied by 10, RMSE by 10
2 and CD by 10

3. Lower is better except for IoU.

Method IF Superv. 2D Image Re-synthesis 3D Volume FID

VH AO EA VOX ISO EA

2D 3D DSSIM VGG DSSIM VGG DSSIM VGG DSSIM VGG DSSIM VGG RMSE IoU CD

PrGAN [11]

V
H

X ✕ 1.55 6.57 1.37 4.85 1.41 4.63 1.68 5.41 1.83 6.15 7.46 0.11 3.59 207

Ours X ✕ 1.14 5.37 1.16 4.93 1.12 4.68 1.33 5.22 1.28 5.96 9.16 0.20 11.77 55

Mult.-View [38] X ✕ 0.87 4.89 0.80 4.31 0.90 4.07 1.38 4.83 1.21 5.56 5.37 0.36 9.31 155

3DGAN [36] X ✕ 0.83 5.01 0.75 4.02 0.86 3.83 1.30 4.73 1.17 5.82 4.97 0.46 14.60 111

Ours 3D X ✕ 0.81 4.82 0.77 3.98 0.83 3.83 1.18 4.59 1.09 5.50 5.20 0.44 12.33 98

PrGAN [11]

A
O

X ✕ 1.41 6.40 1.27 4.80 1.27 4.52 1.53 5.32 1.63 6.00 7.11 0.09 2.78 190

Ours X ✕ 0.94 5.35 0.93 4.46 0.91 4.26 1.11 4.96 1.09 5.75 5.70 0.27 6.98 90

Mult.-View [38] X ✕ 0.95 4.99 0.78 4.23 0.91 4.01 1.51 4.92 1.29 5.39 4.89 0.34 9.47 165

3DGAN [36] X ✕ 0.67 4.37 0.69 3.77 0.72 3.57 0.99 4.25 0.97 4.92 5.08 0.43 14.92 58

Ours 3D X ✕ 0.66 4.36 0.66 3.73 0.70 3.52 0.98 4.28 0.96 4.94 5.17 0.37 15.43 64

PrGAN [11]

E
A

X ✕ 1.31 6.22 1.15 4.77 1.16 5.37 1.36 6.71 1.47 7.07 6.80 0.08 2.36 196

Ours X ✕ 2.18 6.53 1.99 5.38 1.89 6.00 2.21 7.43 2.36 7.92 14.13 0.13 10.53 181

Mult.-View [38] X ✕ 1.62 6.21 1.53 4.58 1.63 5.48 1.95 6.97 1.94 7.41 15.05 0.12 32.07 172

3DGAN [36] X ✕ 0.89 5.28 0.78 3.93 0.98 4.79 1.29 6.76 1.30 7.09 5.24 0.46 13.66 110

Ours 3D X ✕ 0.82 4.71 0.82 3.96 0.97 4.77 1.12 6.12 1.16 6.47 7.43 0.04 18.82 73

5.4. Quantitative evaluation

Tbl. 2 summarizes our main results for the airplane

class. Concerning the image formation models, we see that

the overall values are best for AO, which is expected: VH

asks for scalar density but has only a binary image; AO pro-

vides internal structures but only needs to produce scalar

density; EA is hardest, as it needs to resolve both density

and color. Nonetheless the differences between us and com-

petitors are similar across the image formation models.

2D supervision We see that overall, our 2D supervised

method outperforms PrGAN for VH and AO. Even though

PrGAN was not trained on EA it wins for all metrics against

our 2D supervised method. However, it even outperforms the

3D supervised methods 3DGAN and MULTI-VIEW which

demonstrates the complexity of the task itself. However,

PrGAN for EA only produces density volumes unlike all

other methods that produce RGBA volumes. Comparing our

2D supervised method against the 3D supervised methods

we see that overall our method produces competitive results.

Regarding MULTI-VIEW we sometimes even perform better.

3D supervision Comparing our PLATONIC3D variant to the

3D baselines we observe our method to mostly outperform

them for 2D metrics. Not surprisingly our method performs

worse for 3D metrics as our approach only operates in 2D.

In Tbl. 3 we look into the performance across different

classes. rifle performs best: the approach learns quickly

from 2D that a gun has an outer 3D shape that is a revolute

structure. chair performs worst, likely due to its high

intra-class variation.

Table 3. Reconstruction performance of our method for different

image formation models (columns) on different classes (rows).

The error metric is SSIM (higher is better).

Class
VH AO EA

VOL ISO VOX VOL ISO VOX VOL ISO VOX

plane 0.93 0.92 0.93 0.94 0.93 0.93 0.85 0.76 0.77

rifle 0.95 0.94 0.95 0.95 0.94 0.95 0.90 0.78 0.80

chair 0.86 0.85 0.85 0.86 0.85 0.86 0.80 0.61 0.63

car .841 .846 .851 .844 .846 .850 .800 .731 .743

lamp .920 .915 .920 .926 .914 .920 .883 .790 .803

In Tbl. 4 we compare the mean VGG error of a vanilla

3D GAN trained only on 3D shapes, a Platonic approach

accessing only 2D images, and PLATONIC3D that has ac-

cess to both. We keep the number of 2D images fixed, and

increase the number of 3D shapes available; the horizontal

axis in Tbl. 4. Without making use of the 3D supervision,

the error of PLATONICGAN remains constant, independent

of the number of 3D models. Like this, we see that a PLA-

TONICGAN (red line) can beat both other approaches in

a condition where little 3D data is available (left). When
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Figure 5. Visual results for 3D reconstruction of three classes (airplane, chair, rifle) from multiple views.

Table 4. Effect of number of 3D shapes and 2D images on learning

different methods in terms of mean DSSIM error. Lower is better.

.10

.14

More 3D Shapes

D
S

S
IM

2D images 70k 70k 70k 70k

3D shapes 5 50 250 1.5k

2D-3D ratio 14k 1.4k 280 47

• 3D .135 .108 .106 .101

• Ours .125 .125 .125 .125

• Ours 3D .134 .108 .102 .099

more 3D data is available, PLATONICGAN (green line) wins

over a pure 3D GAN (blue line). We conclude that adding

2D image information to a 3D corpus helps, and when the

corpus is small enough even performs better than 3D-only

supervised methods.

5.5. Qualitative

Synthetic Fig. 5 shows typical results for the reconstruc-

tion task. We see that our reconstruction can produce

airplane, chair and rifle 3D models representative

of the input 2D image. Most importantly, these 3D models

look plausible for multiple views, not only from the input

one. The results on the chair category also show that the

model captures the relevant variation, ranging from straight

chairs over club chairs to armchairs. For gun, the results

turn out almost perfect, in agreement with the numbers re-

ported before. In summary, our quality is comparable to

GANs with 3D supervision.

2D vs. 3D vs. 2D+3D Qualitative comparison of 2D-only,

3D-only and mixed 2D-3D training can be seen in Fig. 6.

Synthetic rare We explored reconstructing skulls from x-

ray (i. e., the AO IF model) images [16] in Fig. 9. We find

the method to recover both external and internal structures.

Real rare Results for rare classes are seen in Fig. 1 and Fig.

Fig. 7. We see that our method produces plausible details

from multiple views while respecting the input image, even

in this difficult case. No metric can be applied to these data

as no 3D volume is available to compare in 3D or re-project.

6. Discussion

Why not having a multi-view discriminator? It is tempt-

ing to suggest a discriminator that does not only look at a

single image, but at multiple views at the same time to judge

if the generator result is plausible holistically. But while we

can generate “fake” images from multiple views pData, the

set of “real” natural images does not come in such a form.

As a key advantage, our method only expects unstructured

data: online repositories hold images with unknown camera,

3D geometry or illumination.

Failure cases are depicted in Fig. 8. Our method struggles

to reconstruct the correct pose as lifting 2D images to 3D

shapes is ambiguous for view-space reconstruction.

Supplemental More analysis, videos, training data and

network definitions are available at https://geometry.

cs.ucl.ac.uk/projects/2019/platonicgan/.
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Figure 6. Comparison of 3D reconstruction results using the class plane between different forms of supervision (columns) for two different

input views (rows). PLATONICGAN, in the second column, can reconstruct a plausible plane, but with errors such as a wrong number of

engines. The 3D GAN in the third column fixes this error, but at the expense of slight mode collapse where instances look similar and

slightly “fat”. Combining a 3D GAN with adversarial rendering as in the fourth row, is closest to the reference in the fifth row.

Figure 7. 3D Reconstruction of different trees using the emission-

absorption image formation model, seen from different views

(columns). The small images were used as input. We see that

PLATONICGAN has understood the 3D structure, including a dis-

tinctly colored stem, fractal geometry and structured leave textures.

Figure 8. Failure cases of a chair (top) and an airplane (bottom).

The encoder is unable to estimate the correct camera-pose due to

view-ambiguities in the input image and symmetries in the shapes.

The generator then tries to satisfy multiple different camera-poses.

7. Conclusion

In this paper, we have presented PLATONICGAN, a new

approach to learning 3D shapes from unstructured collec-

tions of 2D images. The key to our “escape plan” is to train

a 3D generator outside the cave that will fool a discriminator

seeing projections inside the cave.

We have shown a family of rendering operators that can be

GPU-efficiently back-propagated and account for occlusion

and color. These support a range of input modalities, ranging

Figure 9. PlatonicGANs trained on 2D x-rays (i. e., AO IF) of

mammalian skulls (a). The resulting 3D volumes can be rendered

from novel views using x-ray (b) and under novel views in different

appearance, here, using image-based lighting (c).

from binary masks, over opacity maps to RGB images with

transparency. Our 3D reconstruction application is build on

top of this idea to capture varied and detailed 3D shapes,

including color, from 2D images. Training is exclusively

performed on 2D images, enabling 2D photo collections to

contribute to generating 3D shapes.

Future work could include shading that is related to gra-

dients of density [7] into classic volume rendering. Fur-

thermore, any sort of differentiable rendering operator ρ

can be added. Devising such operators is a key future chal-

lenge. Other adversarial applications such as 2D supervised

completion of 3D shapes seems worth exploring. Enabling

object-space as opposed to view-space reconstruction would

help to prevent failure cases as shown in Fig. 8.

While we combine 2D observations with 3D interpre-

tations, similar relations might exist in higher dimensions,

between 3D observations and 4D (3D shapes in motion) but

also in lower dimensions, such as for 1D row scanner in

robotics or 2D slices of 3D data such as in tomography.
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