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Abstract

Let f and g be commuting meromorphic functions with finitely many poles. By studying
the behaviour of Fatou components under this commuting relation, we prove that f and g
have the same Julia set whenever f and g have no simply connected fast escaping wandering
domains. By combining this with a recent result of Tsantaris’, we obtain the strongest
statement (to date) regarding the Julia sets of commuting meromorphic functions. In order
to highlight the difference to the entire case, we show that transcendental meromorphic
functions with finitely many poles have orbits that alternate between approaching a pole
and escaping to infinity at strikingly fast rates.

1 Introduction
For any meromorphic function f : X → Ĉ, where X ∈ {C, Ĉ}, we define its Fatou set as

F (f) = {z ∈ X : {fn}n∈N is a normal family and fn(z) is defined for all n ∈ N} .

The complement of the Fatou set is known as the Julia set, denoted J(f), and it exhibits
fascinating topological, geometrical and dynamical properties. Ever since Fatou and Julia first
proved that any rational function of degree ≥ 2 has a non-empty Julia set in the 1920s, much
effort has been made to understand the behaviour of these sets.

Apart from being an interesting subject in its own right, this subject of holomorphic
dynamics can be used to prove statements in general complex analysis. For example, in 1990,
Eremenko gave a dynamical proof of a theorem by Ritt, classifying pairs of commuting rational
functions [8, 24]. Unlike Ritt’s elaborate proof, Eremenko’s reasoning pivoted about a simple
fact: if two rational functions commute, they have the same Julia set.

Although this fact was proved by both Fatou and Julia in 1923, the corresponding problem
for transcendental functions – which could serve as a first step in classifying commuting analytic
functions in a more general setting – is still open. After Baker proved this fact for commuting
entire functions without escaping Fatou components in [1], much progress has been made for
entire functions by considering the fast escaping set introduced by Bergweiler and Hinkkanen
in [6]. This is the set

A(f) =
{
z ∈ C : there exists l ∈ N such that |fn+l(z)| ≥M(R, fn) for all n ∈ N

}
,

where M(r, f) denotes the maximum modulus M(r, f) = max{|f(z)| : |z| = r} and R is chosen
so that M(r, f) > r for all r ≥ R. Bergweiler and Hinkkanen showed that, for commuting entire
functions f and g, g−1 (A(f)) ⊂ A(f) [6, Theorem 5] and used this to show that commuting
implies J(f) = J(g) whenever A(f) ⊂ J(f) and A(g) ⊂ J(g). More recently, Benini, Rippon
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and Stallard [4] showed that, for entire functions f and g, commuting implies having the same
Julia set except possibly when f and g have simply connected fast escaping wandering domains.
The overall strategy used in each of the papers [1], [6] and [4] is to show that if f and g commute
and the components of F (f) and F (g) are only of certain types, then g (F (f)) ⊂ F (f). It then
follows that F (f) ⊂ F (g), by Montel’s theorem, and similarly F (g) ⊂ F (f).

Here, we concern ourselves with transcendental meromorphic functions. Following Osborne
and Sixsmith [17], we say that f and g commute – or are permutable – if, for every z ∈ C, either
f (g(z)) = g (f(z)) or neither f (g(z)) nor g (f(z)) are defined. An immediate consequence of
these requirements is that if f and g commute then their poles are the same. Indeed, let w
be a pole of f . Then, g (f(w)) is undefined, which implies that f (g(w)) is undefined as well.
However, as a meromorphic function f : C→ Ĉ, the only value for which f is undefined is ∞,
so g(w) =∞ and w is a pole of g.

A recent paper by Tsantaris includes the result [25, Theorem 1.6] that J(f) = J(g)
whenever f and g commute, for all non-entire meromorphic functions f and g apart from those
in the class P of meromorphic functions with a single pole which is also an omitted value.
Interestingly, his proof used a completely different strategy, bypassing the behaviour of Fatou
components entirely.

In this paper, we adopt a strategy resembling the ones used for transcendental entire
functions to tackle commuting meromorphic functions with finitely many poles, including those
in class P, thus bringing transcendental meromorphic functions “up to speed” on the problem
of commuting functions. More specifically, we will look at the way in which non-escaping and
escaping orbits are affected by the commuting relation and so obtain new information about
how the components of F (f) and F (g) are affected by this relation. First, we generalise Baker’s
methods to prove the following result about non-escaping orbits.

Theorem 1.1. Let f and g be commuting meromorphic functions. Assume that, on a compo-
nent U of F (f), the sequence (fn)n≥1 admits a subsequence (fnk)k≥1 that converges locally
uniformly to a finite limit function. Then, g(U) ⊂ F (f).

Next, we turn to Bergweiler and Hinkkanen’s approach. Although their definition of the
fast escaping set does not make sense when f has poles, we can use an alternative definition of
A(f) formulated by Rippon and Stallard [20]; see Section 2. With this in mind, we prove the
following.

Theorem 1.2. Let f and g be commuting meromorphic functions with finitely many poles.
Let z ∈ C be a point that is escaping but not fast escaping under f . Then, g(z) /∈ A(f).

As noted above, Bergweiler and Hinkkanen showed that for commuting transcendental entire
functions f and g we have g (A(f)c) ⊂ A(f)c, which is a stronger statement than Theorem
1.2. Later in the introduction we discuss why our proof of Theorem 1.2 requires the extra
hypothesis that the point z is escaping.

In keeping with our aim of studying the behaviour of Fatou components under the commuting
relation, we also prove a meromorphic version of Benini, Rippon and Stallard’s result [4,
Proposition 3.3]. Recall that a Baker wandering domain is a multiply connected wandering
domain U ⊂ F (f) such that every fn(U) is bounded, dist (0, fn(U))→ +∞ as n→ +∞ and
fn(U) surrounds the origin for every sufficiently large n.

Theorem 1.3. Let f and g be commuting transcendental meromorphic functions with finitely
many poles, and let U ⊂ F (f) be a Baker wandering domain. Then, g(U) is a Baker wandering
domain of f.

It was proved by Baker [2] that functions in class P do not have Baker wandering domains,
so the equality of the Julia sets in the context of Theorem 1.3 is already established by Tsantaris’
result. Rather, Theorem 1.3 is about the fact that Baker wandering domains of f are – in a
sense – “preserved” by g.

After these results on the behaviour of escaping points, we address the problem of equality
of the Julia sets for general meromorphic functions. First, Theorems 1.1 and 1.2 combine to
give the following.
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Theorem 1.4. Let f and g be transcendental meromorphic functions with finitely many poles,
and suppose that A(f) ⊂ J(f) and A(g) ⊂ J(g). Then, if f and g commute, J(f) = J(g).

We prove the above four theorems in Section 2. Next, combining Theorem 1.4 with Tsantaris’
result yields our strongest statement on the equality of Julia sets.

Theorem 1.5. Let f and g be commuting non-entire transcendental meromorphic functions.
Then, J(f) = J(g) except possibly when f and g are in class P and have simply connected fast
escaping wandering domains.

To see how Theorem 1.5 follows from Tsantaris’ result and Theorem 1.4, we observe that if
f and g are in class P and have no simply connected fast escaping wandering domains, then
they have no fast escaping Fatou components. Indeed, any fast escaping Fatou component
must be a wandering domain [20, Theorem 2] and, as shown by Baker [2], functions in class P
have no multiply connected wandering domains.

It is an interesting open question whether functions in class P can have simply connected
fast escaping wandering domains.

Now, we return to the point made earlier that Theorem 1.2 is not as strong as the
corresponding result Bergweiler and Hinkkanen have for entire functions, since Theorem 1.2
requires z to be escaping. Nor is Theorem 1.1 as strong as it could be for entire functions.
Indeed, although Baker does not remark on this, his method implies that if f and g are
commuting transcendental entire functions then g maps non-escaping f -orbits to non-escaping
f -orbits. This property, however, does not follow immediately in the meromorphic case. The
reason for this is that f can have non-escaping orbits with a subsequence converging to a
pole. Since f and g share poles upon commuting, this means that g could potentially map this
non-escaping orbit to an escaping one. In order to give a precise description of this phenomenon,
we introduce the following new concept.

Definition. Let f be a transcendental meromorphic function with finitely many poles. A
point z ∈ C is said to have a ping-pong orbit if there exist a pole p ∈ C of f , subsequences
(fmk)k≥1 and (fnk)k≥1 and M ≥ 1 such that

(i) fmk(z)→ p and fnk(z)→∞ as k → +∞;

(ii) for all k ∈ N, |mk − nk| ≤M and |nk −mk+1| ≤M .

We denote the set of points with ping-pong orbits by BUP (f), and study it in Section 3.

We point out that BUP (f) is a subset of the so-called bungee set BU(f); defined by Osborne
and Sixsmith [18], this is the set of points whose orbit is neither escaping nor bounded. Clearly,
the orbit of any point in BU(f) has a subsequence escaping to infinity, and another with a
finite limit. In the case of a ping-pong orbit, we ask that this limit be a pole; indeed, condition
(ii) of the definition implies that a pole must be involved somehow.

Up until this point, our discussion about BUP (f) has been purely hypothetical; there is, a
priori, no reason to assume that such points actually exist. In Subsection 3.1, we construct
meromorphic functions with a single pole and ping-pong wandering domains. This shows that
we are justified in focusing on escaping points in Theorem 1.2.

Finally, we show that the presence of ping-pong orbits is not an oddity of the examples
constructed here. The bungee set, for instance, is ubiquitous: Osborne and Sixsmith showed in
[18] that BU(f) is always dense in the Julia set of transcendental entire functions. This result
was extended to quasiregular functions by Nicks and Sixsmith [16], and then to quasimeromor-
phic ones by Warren [26]. Our final theorem, to be proved in Section 3, shows the same for
BUP (f), and adds something special about its rate of escape.

Theorem 1.6. Let f be a non-entire transcendental meromorphic function with a finite number
of poles. Then, there exists a dense set of points in J(f) with ping-pong orbits. Furthermore, if
f is not in class P, the escaping subsequence of their orbits can escape arbitrarily fast.

Acknowledgements. I am deeply grateful to my supervisors, Phil Rippon and Gwyneth
Stallard, for their contributions to this work.
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2 Fatou and Julia sets of commuting meromorphic func-
tions

In this section, we prove Theorems 1.1 to 1.4.

2.1 The non-escaping case
In this subsection, we prove Theorem 1.1, in which we consider a non-escaping Fatou component
of f . To do this, we use the following version of the blowing-up property of the Julia set, which
is a standard result for entire and rational functions – see, for instance, [15, Proposition 2.4.5].
Although it seems to be well-known for transcendental meromorphic functions as well, we were
not able to find a proof for this version in the literature and include one here for completeness.
First, we recall that the exceptional set E(f) = {z ∈ Ĉ : O−(z) is finite} has at most two
points, by Picard’s theorem.

Proposition 2.1. Let f be a transcendental meromorphic function and let K ⊂ C \E(f) be a
compact set. For any z ∈ J(f) and any neighbourhood V of z, there exists N ∈ N such that,
for all n ≥ N ,

fn(V ) ⊃ K.

Proof. We divide the proof in two cases based on whether

O−(∞) = {w ∈ C : there exists n ∈ N such that fn(w) =∞}

is finite or infinite. Without loss of generality, we assume that f is non-entire.
In the finite case, it follows from Picard’s theorem that f is in class P. Without loss of

generality, we assume that its pole is at the origin. Now, if z = 0, any neighbourhood V of z is
mapped by f onto a neighbourhood of ∞. By Picard’s theorem, fn(V ), n ≥ 2, contains all of
Ĉ apart from the exceptional points of f , and so in particular fn(V ) ⊃ K for any compact set
K ⊂ C \ E(f). If z 6= 0, but V contains 0, the same argument applies; if, on the other hand,
V does not contain the origin, then fn(V ) does not contain a pole of f for any n ∈ N. This
means that the usual argument for the blowing-up property for entire functions applies; we
refer to [15, Proposition 2.4.5].

However, if O−(∞) is infinite, then it follows from Montel’s theorem that J(f) = O−(∞);
see, for instance, [5, p. 4]. In particular, any neighbourhood V of a point z ∈ J(f) contains a
point w such that, for some N0 ∈ N, fN0(w) =∞. This means that V contains a small disc
D 3 w such that fN0(D) is a neighbourhood of infinity and, again by Picard’s theorem, fn(D)
omits at most two points on the Riemann sphere for n ≥ N0 + 1; namely, the exceptional values
of f . In particular, fn(D) contains any compact set K ⊂ C \ E(f) for n ≥ N0 + 1.

We will also need the following property of meromorphic functions.

Lemma 2.1. Let g : C → Ĉ be a transcendental meromorphic function and K a compact
subset of C. Then, g|K is Lipschitz continuous with respect to the Euclidean and spherical
metrics (on C and Ĉ, respectively).

Proof. As a meromorphic function, g has at most finitely many poles w1, w2, . . . , wm in K.
Also, we note that we can, if necessary, slightly enlarge K so that ∂K does not contain any
poles of g. Around each pole, we have a neighbourhood Vj of wj and a positive integer mj , the
order of wj as a pole of g, such that

g(z) =
hj(z)

(z − wj)mj
for every z ∈ Vj , (1)

where hj is holomorphic in a neighbourhood of Vj with hj(wj) 6= 0 and Vj ⊂ K. Now, we write
K as

K = V1 ∪ V2 ∪ · · · ∪ Vm ∪

K \ m⋃
j=1

Vj

 .
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Since K \
⋃m
j=1 Vj is a compact set without poles of g, the “Euclidean-to-spherical” derivative

g](z) =
|g′(z)|

1 + |g(z)|2

is well-defined and continuous, and thus bounded above on this set. Now, on each Vj , we use
(1) to obtain

g](z) =
|z − wj |mj−1 · |(z − wj)h′j(z)−mjhj(z)|

|z − wj |2mj + |hj(z)|2
,

which, since hj(wj) 6= 0, is also well-defined and continuous – and thus bounded above. It
follows that g] is bounded above on K, whence g|K is Lipschitz continuous as promised.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Take z ∈ U and a neighbourhood V of z with V ⊂ U . Since (fnk)k≥1
converges locally uniformly to a finite limit in V , it follows that all fnk(V ) are contained in a
single compact set K ⊂ C. By Lemma 2.1, g|K is Lipschitz continuous with some Lipschitz
constant M > 0 for the Euclidean and spherical metrics. Now, take ε > 0. If necessary, we
pass to a smaller neighbourhood V ′ ⊂ V such that

diam (fnk(V ′)) < ε/M for every k ≥ 1,

where the diameter is taken with respect to the spherical metric – notice that V ′ is guaranteed
to exist by the Arzelà-Ascoli theorem. Then, by using the commuting hypothesis and the fact
that g is Lipschitz continuous on K, we obtain that, for every k ≥ 1,

diam (fnk (g(V ′))) = diam (g (fnk(V ′))) ≤Mdiam (fnk(V ′)) < ε.

This implies that fnk (g(V ′)) will never contain any compact set K ′ ⊂ C with diameter greater
than ε. Thus, by Proposition 2.1, g(z) cannot lie in J(f).

An immediate consequence of Theorem 1.1 is that, whenever it can be assured that neither
f nor g have escaping points in the Fatou set, then commuting implies having the same Julia
set. This is the case if, for instance, f and g have finitely many singular values; see [12, p.
652] and [19, p. 3252]. However, this also follows immediately from Theorem 1.5, and so we
refrain from dwelling on it.

2.2 The escaping case
Much of this subsection is devoted to proving Theorem 1.2. We begin by explaining Rippon
and Stallard’s definition [20] of the fast escaping set for meromorphic functions with finitely
many poles.

Let f be a transcendental meromorphic function with at most finitely many poles. First,
for any Jordan curve γ ⊂ C, we define its outer set to be the closure of its unbounded
complementary component. A sequence of Jordan curves γn with associated outer sets En,
n ∈ N, is called an outer sequence for f if it satisfies the following properties.

(i) There exists r > 0 such that all poles of f are contained in {z ∈ C : |z| < r} and all the
curves γn surround {z ∈ C : |z| = r};

(ii) dist(0, γn)→ +∞ as n→ +∞;

(iii) For all n ≥ 1, γn+1 ⊂ f(γn);

(iv) For all n ≥ 1, any component of f−1(En+1) lies either in En or in {z ∈ C : |z| < r}.
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Rippon and Stallard showed that every transcendental meromorphic function with at most
finitely many poles admits an outer sequence, and used this fact to define the fast escaping set
as

A(f) =
{
z ∈ C : there exists l ∈ N such that fn+l(z) ∈ En for all n ∈ N

}
,

where En is an outer sequence for f . Originally, this set was denoted B(f), but the definition
above is equivalent to Bergweiler and Hinkkanen’s if f is entire (see [23]). Hence, we denote it
by A(f) without fear of ambiguity. We also have the following properties of A(f), proved in
[20].

Lemma 2.2. For any transcendental meromorphic function f with finitely many poles, the
following hold.

(i) A(f) is independent of the choice of outer sequence.

(ii) A(f) is non-empty and intersects the Julia set.

(iii) If U is a Fatou component that intersects A(f), then U ⊂ A(f). Furthermore, U is a
wandering domain.

(iv) J(f) = ∂A(f), and if f does not have wandering domains, then J(f) = A(f).

Next, we set up some preliminary results. The first one is a version by Domínguez [7] of a
theorem of Bohr’s, and the second is a consequence of the open mapping theorem.

Lemma 2.3. Let f be analytic on {z ∈ C : |z| > R} for some R > 0 and such that
M(r, f) → +∞ as r → +∞. Then, for any large enough ρ > R, f ({z ∈ C : R < |z| < ρ})
contains a circle of radius r′ > cM(ρ/2, f), where c > 0 is an absolute constant.

Lemma 2.4. Let h : C→ Ĉ be a meromorphic function. Then, for any bounded open set D
such that D contains no poles of h, we have ∂h(D) ⊂ h(∂D).

With these at hand, we can prove the following lemma – which will be a central tool in our
proof of Theorem 1.2.

First, it is important to remark that, whenever we talk about the outer boundary (or
outer boundary component) of a bounded set D, we mean the boundary of its unbounded
complementary component.

Lemma 2.5. Let f and g be commuting transcendental meromorphic functions with finitely
many poles. Then, f has an outer sequence (Fn)n∈N with Jordan curves γn such that the outer
boundaries of g(γn) are Jordan curves Γn whose outer sets form an outer sequence (En)n∈N
for f .

Proof. We start by choosing r0 > 0 such that ∆ = {z ∈ C : |z| ≤ r0} contains all poles of
both f and g (with none on the boundary), M(r0, f) > r0 and M(r0, g) > r0. Next, take
R1 > r0 large enough that Lemma 2.3 applies, cM(R1/2, g) > max{M(r0, f),M(r0, g)} and
cM(r/2, f) > r for all r ≥ R1, where c is the constant given by Lemma 2.3. We define an
increasing sequence of radii by

Rn+1 = cM(Rn/2, f) > Rn,

whence it follows that Rn → +∞ as n→ +∞. Notice that since f and g are holomorphic in
C \∆,

M(r0, f) < cM(Rn/2, g) and M(r0, g) < cM(Rn/2, g) for all n ∈ N, (2)

by the maximum modulus principle applied to the annuli A(r0, Rn+1/2) ⊃ A(r0, Rn/2). Pick
a Jordan curve γ1 surrounding {z ∈ C : |z| = R1}, and inductively define γn+1 as the outer
boundary component of f (int(γn) \∆); here and throughout, int(γ) denotes the bounded
complementary component of the Jordan curve γ. Notice that f maps domains onto domains
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by the open mapping theorem, and hence γn+1 is a Jordan curve. Furthermore, by applying
Lemma 2.3 to the topological annuli int(γn) \∆, n ∈ N, we see that

γn surrounds the circle {z ∈ C : |z| = Rn} for every n ∈ N. (3)

Finally, we set Fn as the outer set for γn for all n ∈ N, and see immediately that Fn defines
an outer sequence for f . Indeed, properties (i) and (ii) follow from (3) and our choice of the
sequence Rn; property (iii) follows from Lemma 2.4 and the definition of γn+1, and property
(iv) is a consequence of the fact that f (int(γn) \∆) ⊂ int(γn+1).

Now, define Γn as the outer boundary component of g (int(γn) \∆) for all n ∈ N. As was
the case with γn+1 and γn, Γn is a Jordan curve and is contained in g(γn). Then, by (2), (3)
and Lemma 2.3, g (int(γn) \∆) contains {z ∈ C : |z| = cM(Rn/2, g)}, so, by Lemma 2.4, Γn is
a Jordan curve surrounding this circle. We want to show that the outer sets En associated to
Γn form an outer sequence for f .

Properties (i) and (ii) are immediate consequences of the fact that Γn surrounds {z ∈ C :
|z| = cM(Rn/2, g)}, since Rn → +∞ and cM(Rn/2, g) > M(r0, g) > r0. Proving that En
satisfies property (iii), that is, that Γn+1 ⊂ f(Γn), is a considerably more delicate task. First,
since (γn)n∈N is itself an outer sequence, we have

Γn+1 ⊂ g(γn+1) ⊂ g (f(γn)) = f (g(γn)) ,

where the last equality uses the fact that f and g commute. However, since Γn ⊂ g(γn) and
not the opposite, we are not done. In particular, we must take care of any points on γn that
are mapped into ∆ by g, since those can be influenced by the poles of f . In order to control
this, we shall make small modifications to the annuli used to define γn+1 and Γn, and then
convince ourselves that these modifications were not important.

For any n ≥ 1, denote by An the topological annulus int(γn)\∆, and by Ωn the set obtained
by removing g−1(∆) and f−1(∆) from An (that is the grey-shaded region in Figure 1). Then,
since g(Ωn) omits ∆ by the definition of Ωn, and thus omits the poles of f , we see that f ◦ g is
analytic in Ωn. By the commuting hypothesis, g ◦ f is also analytic and equals f ◦ g throughout
Ωn.

Notice that the outer boundary of Ωn consists of pieces of γn, ∂g−1(∆) and ∂f−1(∆); in
Figure 1, these are black, red and green pieces, respectively. We shall show that the outer
boundary of f (g(Ωn)) = g (f(Ωn)) consists solely of images of black pieces.

First, the outer boundary of f(Ωn) contains, by Lemma 2.4, only parts of γn+1 and
f
(
∂g−1(∆)

)
, since any pieces of f

(
∂f−1(∆)

)
are mapped into ∂∆ by definition. Mapping this

forward under g, we see that all green pieces are “trapped” inside a circle of radius M(r0, g) <
cM(Rn+1/2, g) by (2). By an analogous argument considering the images of red pieces under
g ◦ f , we see that these are trapped inside a circle of radius M(r0, f) < cM(Rn+1/2, g).

It follows that any boundary point of f (g(Ωn)) outside a circle of radius cM(Rn+1/2, g)
is contained in f (g(γn)); in particular, f (g(Ωn)) = g (f(Ωn)) contains the circle of radius
cM(Rn+1/2, g) and its outer boundary is Γn+1. Finally, since we know (by the commuting
hypothesis and (2)) that f

(
g
(
∂f−1(∆)

))
is surrounded by {z ∈ C : |z| = cM(Rn+1/2, g)},

the outer boundary of f (g(Ωn)) equals that of f (int(Γn) \∆), which is contained in f(Γn) by
Lemma 2.4, and thus Γn+1 ⊂ f(Γn).

Finally, property (iv) follows from (iii). Indeed, consider the set D = int(Γn) \∆. We know,
by continuity and openness of f , that the outer boundary of f(D) is a Jordan curve, which – by
(iii) – must be equal to Γn+1. Consequently, no point in D is mapped to En+1 = C \ int(Γn+1)
by f . We conclude that (En)n∈N is an outer sequence for f .

We use our hard-won outer sequence to complete the proof of Theorem 1.2 as follows.

Proof of Theorem 1.2. Since the fast escaping set is not affected by our choice of outer sequence,
we pick (Fn)n∈N and (En)n∈N to be the outer sequences given by Lemma 2.5. We assume now
that z is an escaping point of f and g(z) ∈ A(f), and show that this leads to a contradiction.
By the definition of A(f), there exists l ∈ N such that fn+l (g(z)) ∈ En for all n ∈ N, and by
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f

f

g
g

γn

g−1(∆)

f−1(∆)

∆

Ωn

Γn Γn+1

γn+1

f ◦ g(∂∆)

Figure 1: The relevant sets and curves in the proof of Lemma 2.5.

the commuting hypothesis this is equivalent to g
(
fn+l(z)

)
∈ En, which in turn is the same as

fn+l(z) ∈ g−1(En) for all n ∈ N.
We claim that our choice of outer sequences implies that, for every n ∈ N, a component

g−1(En) is either a neighbourhood of a pole of g or is contained in Fn. Indeed, if Γn and γn
are the Jordan curves associated with En and Fn respectively, then by Lemma 2.5 we have
that g (int(γn) \∆) ⊂ int(Γn). As En = C \ int(Γn) and Fn = C \ int(γn) by definition, our
claim follows. Since our original point z is escaping and all poles of g are contained in the
bounded set ∆, it follows that fn+l(z) ∈ g−1(En) means, in fact, that fn+l(z) ∈ Fn, which in
turn implies z ∈ A(f); we have obtained our contradiction.

Remark 1. A small modification of the proof of Lemma 2.5 yields a similar result to Theorem
1.2 in the case where f and g are transcendental meromorphic functions with finitely many poles
such that h◦f = g◦h for some entire function h. In this case, we deduce that h−1 (A(g)) ⊂ A(f),
thus generalising [6, Theorem 5]. To prove this, we define γn to be an outer sequence for
f and Γn ⊂ h(γn) to be an outer sequence for g; the only necessary modification is to take
Ωn = An \ h−1(∆). A particularly interesting application of this is the case where g is in class
P, f is entire and h = exp, so that it yields that exp−1 (A(g)) ⊂ A(f).

Finally, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. We are going to prove that g (F (f)) ⊂ F (f), which implies (as indicated
in the introduction) that F (f) ⊂ F (g) and hence, by symmetry, that F (f) = F (g).
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Suppose, then, there exists some z in a component U ⊂ F (f) such that g(z) ∈ J(f). If U
is not an escaping component, then Theorem 1.1 applies and we get a contradiction. If it is
escaping, it cannot be fast escaping since A(f) ⊂ J(f); we will apply Theorem 1.2 and obtain
a contradiction.

To this end, take a neighbourhood V ⊂ U of z. By the open mapping theorem, g(V ) is a
neighbourhood of g(z) ∈ J(f), and so by Lemma 2.2(iv) there exists some w′ ∈ g(V ) such that
w′ ∈ A(f). But w′ is the image under g of some z′ ∈ V ⊂ U , and since U is not fast escaping
this contradicts Theorem 1.2; we are done.

We end this section with a proof of Theorem 1.3, after recalling a result by Rippon and
Stallard [21].

Lemma 2.6. Suppose f is a transcendental meromorphic function with finitely many poles and
U is a multiply connected wandering domain of f . Then, U is a Baker wandering domain if
and only if infinitely many of the components Un ⊃ fn(U), n = 0, 1, . . ., are multiply connected.

Proof of Theorem 1.3. We can assume without loss of generality that f has at least one pole.
Since f has a Baker wandering domain, we know that f /∈ P by [2], so J(f) = J(g) by [25,
Theorem 1.6]. Therefore, U is a bounded component of F (g), whence V = g(U) is a Fatou
component of g (and thus of f) by a result of Herring [11, Theorem 2]. Suppose now that
V is not a Baker wandering domain. Then, by Lemma 2.6, there must be N ∈ N such that
fn(V ) is simply connected for all n ≥ N . Now, Zheng [27] proved that, for all sufficiently large
n, fn(U) contains an annulus A(rn, sn) := {z ∈ C : rn < |z| < sn} such that rn → ∞ and
(2π)−1 log(sn/rn)→ +∞ as n→ +∞. To complete the argument, we reproduce the relevant
parts of the proof of Proposition 3.3 in [4].

Since fn (g(U)) = fn(V ), it follows by the commuting hypothesis that g (fn(U)) = fn(V ) as
well. Now, for sufficiently large n, we can take r ∈ (rn, sn) such that γ = g ({z ∈ C : |z| = r})
winds at least once around the origin (by Picard’s theorem combined with the argument
principle), contains points of modulus M(r, g) > r, and lies in fn(V ) (because {z ∈ C : |z| =
r} ⊂ A(rn, sn) ⊂ fn(U)). Since we assumed fn(V ) to be simply connected, it must meet
A(rn, sn) ⊂ fn(U), and hence Un; this is a contradiction, as Un is a Baker wandering domain
and thus multiply connected.

3 Existence of ping-pong orbits
In this section, we show the existence of ping-pong orbits. First, in Subsection 3.1, we construct
examples of ping-pong wandering domains.

3.1 Constructing wandering domains with a ping-pong orbit
We shall modify a method used by Martí-Pete in the proof of [14, Theorem 1.1]. We choose f
to be of the form f(z) = g(z) + 1/z with g entire, and focus on obtaining g through appropriate
approximations. We will construct two families of discs, Am and Bm, m ∈ N, which will give
rise (respectively) to the escaping part of a ping-pong orbit for a wandering domain U and
pre-images of an attracting domain V .

Let R > 0, and km be a sequence of positive real numbers such that, for all m ∈ N, km > 5/2
and km+1 > km + 3R. Let

Am = B(km, R) and Bm = B

(
km+1 + km

2
,
R

4

)
for all m ∈ N,

B+ = B(2, 1/4) and B− = B(−5, 1); here and throughout, B(z, r) denotes the open disc of
centre z and radius r > 0. Notice that, for all m ∈ N, the sets 1/Am and 1/Bm are also discs;
they are contained in D and converge to 0 as m→ +∞. Now, define

F := D ∪B− ∪B+ ∪
⋃
m∈N

(Am ∪Bm).
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Since F is a countable union of hand-picked disjoint compact sets, it satisfies the hypotheses
of Nersesyan’s theorem (see [9, Chapter IV]): Ĉ \ F is connected and locally connected at
infinity, and all components of the interior of F are bounded. It follows that there exists an
entire function g satisfying the following inequalities.

|g(z) + 1/z − 1/km+1| < εm, z ∈ Am
|g(z) + 1/z − 2| < 1/5, z ∈ B+ ∪

(⋃
m∈NBm

)
|g(z)| < R/4, z ∈ D
|g(z) + 1/z − (z + 5)| < 1/2, z ∈ B−

, (4)

where εm > 0 are small enough so that B(1/km+1, εm) ⊂ 1/Am+1 and 1/B(1/km+1, εm) ⊂
B(km+1, R/4) for all m ∈ N.

Defining f(z) = g(z) + 1/z, we see immediately that f is meromorphic with a single pole
at the origin. From the last inequality, f approximates the translation z 7→ z + 5 in the disc
B−; by Rouché’s theorem, it follows that f has a zero in B−, and thus f is not in class P.
Furthermore, the first three inequalities imply that, for all m ∈ N,

f(Am) ⊂ 1/Am+1,

f2(Am) ⊂ Am+1,

f(B+) ⊂ B+,

f(Bm) ⊂ B+

(5)

By Montel’s theorem, B+ is contained in an invariant domain V of F (f), and each Bm belongs
to a pre-image of V . Likewise, each Am is contained in a Fatou component U2m with Um+1

containing f(Am) ⊂ 1/Am+1, and upon proving that the Um are disjoint we can conclude that
Um is in fact a ping-pong orbit of wandering domains. To be precise, we can only prove that
all but finitely many of them are distinct, but that is enough for our conclusion to hold.

To this end, we claim that if Um = Un for some m 6= n, then Um is multiply connected.
Indeed, since F and the inequalities (4) are all symmetric with respect to R, it follows from a
symmetric version of Nersesyan’s theorem – see [10, Section 2] – that g, and thus f , can be
taken to be symmetric w.r.t. R, and so any component of F (f) is also symmetric with respect
to the real line. Since Um must contain both km and kn but avoid any Bl between them, it
follows that Um must be multiply connected. If this happens infinitely often, then U1 ⊃ A1 is a
Baker wandering domain by Lemma 2.6, which means that Un escapes to infinity as n→ +∞.
However, we know that Un returns to the unit disc every second iterate, contradicting the fact
that it is a Baker wandering domain. This concludes our construction.

In our construction, we took great care to guarantee that f was not in class P; with a few
modifications, however, the same method can be used to obtain an example in this class.

First, one modifies the sets Am and Bm: instead of two families of circles, we require Am to
be a family of symmetric (w.r.t. R) annuli sectors instead. Notice that this means that logAm
is a rectangle (which can be chosen to be a square) centred at a point am. Next, we need f to
be of the form f(z) = exp (g(z)) /z; in order to write the inequalities concerning g, we consider
log f(z) = g(z)− log z. They take the form:

|g(z)− log z − am| < K1, z ∈ Am
|g(z)− log z − log 2| < K2, z ∈ B+ ∪

(⋃
m∈NBm

)
|g(z)| < K3, z ∈ D

,

and the positive constants K1, K2 and K3 are chosen so that the inclusions (5) hold as before.
From here, the same arguments as above can be used to show that f(z) = exp (g(z)) /z has a
ping-pong wandering domain.

3.2 Functions in class P
We now prove Theorem 1.6 in the case when f ∈ P. In this case, we appeal to a result of
Martí-Pete [13] on the escaping sets of transcendental self-maps of C∗, by which we mean a
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holomorphic map f : C∗ → C∗ such that both 0 and ∞ are essential singularities. In order to
state it, we shall need some definitions.

We call any sequence (en)n∈N ∈ {0,∞}N an essential itinerary. Given a holomorphic function
f : C∗ → C∗ and any r > 0, its maximum and minimum moduli are denoted, respectively, by

M(r, f) = max
|z|=r

|f(z)| and m(r, f) = min
|z|=r

|f(z)|.

Definition. Let f be a transcendental self-map of C∗ and e = (en)n∈N an essential itinerary.
Let R > 0 and define R1 = R if e1 =∞ or R1 = 1/R if e1 = 0. For n > 1, set

Rn =

{
M(Rn−1, f) if en =∞
m(Rn−1, f) if en = 0

,

and assume that R was chosen large enough that the sequence Rn accumulates at {0,∞}. For
l ∈ Z, we define A−le (R, f) to be the set of z ∈ C such that

|fn+l(z)| ≥ Rn if en =∞ and |fn+l(z)| ≤ Rn if en = 0

for all n ∈ N satisfying n+ l ∈ N. Finally, the fast escaping set with respect to the essential
itinerary e is

Ae(f) =
⋃
l∈Z

⋃
k∈N

A−l
σk(e)

(R, f),

where σ denotes the Bernoulli shift map.

As suggested by the notation, Ae(f) is independent of our choice of R as long as it satisfies
certain conditions specified in [13], and which shall not be our concern. We are now ready to
state the needed result.

Lemma 3.1. Let f be a transcendental self-map of C∗. Then, for any essential itinerary
e ∈ {0,∞}N, Ae(f) ∩ J(f) 6= ∅ and J(f) = ∂Ae(F ).

We are ready to prove Theorem 1.6 for functions in class P; we start with a function f in
this class, and assume (conjugating f by a translation if necessary) that its only pole is at
the origin. Then, f2 is a transcendental self-map of C∗, and we apply Lemma 3.1 with the
essential itinerary e = (en)n∈N chosen as en = 0 if n is even and en =∞ if n is odd. Then, if
z0 ∈ Ae(f) and l is as required in the definition of Ae(f), it follows that there exists z in the
orbit of z0 such that

(f2)2n+l(z)→ 0 and (f2)2n+1+l(z)→∞ as n→ +∞.

It is clear, then, that z has a ping-pong f -orbit for the subsequences mk = 2(2k + l) and
nk = 2(2k+1+l). The density of such points in J(f) follows from the fact that J(f2) = ∂Ae(f

2),
by Lemma 3.1.

3.3 Functions not in class P
Finally, we prove Theorem 1.6 when f /∈ P . For this case, we shall rely on the following version
of the Ahlfors Five Islands Theorem [5, Lemma 5].

Lemma 3.2. Let f be a transcendental meromorphic function with finitely many poles, and
D1, D2 and D3 be three simply connected domains in C with disjoint closures. Then, there
exists j ∈ {1, 2, 3} and, for any R > 0, a simply connected domain G ⊂ {z ∈ C : |z| > R} such
that f maps G conformally onto Dj.

We shall also need the following lemma – see Rippon and Stallard [22, Lemma 1] for this
particular statement and proof.
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Lemma 3.3. Let En, n ∈ N, be a sequence of compact subsets of C and f : C → Ĉ be a
continuous function such that

f(En) ⊃ En+1 for all n ∈ N.

Then, there exists z ∈ C such that fn(z) ∈ En for all n ∈ N. If, in addition, f is meromorphic
and En ∩ J(f) 6= ∅ for n ∈ N, then z can be chosen to lie in J(f).

We are ready to start the proof of Theorem 1.6; let f be a transcendental meromorphic
function with finitely many poles and not in class P, and pick p ∈ C a pole of f which is not
an omitted value. Using Lemma 3.2, we shall construct an appropriate sequence of compact
subsets En and then apply Lemma 3.3 to obtain a ping-pong orbit around p; we refer to Figure
2 for a representation of the process.

R1 R2 R3

.
D3

D2

D1

.

V 2
1

.
V 1
1

G2

G3

Figure 2: A schematic of the sets involved in the construction of a ping-pong orbit. In red, we
highlight the domains Gn obtained through Ahlfors’s Five Islands Theorem. The blue arrows
denote mapping under f .

First, pick any positive, monotone sequence Rn → +∞; we say any sequence, but we reserve
the right to ask that R1 be large enough to satisfy certain constraints to be specified further
ahead. Then, take a simply connected neighbourhood D1 of p such that f : D1 → {z ∈ C :
|z| > R1} is a covering map, possibly branched at p (in order to guarantee that D1 can satisfy
such conditions, we have already asked that R1 be large). Since p is not omitted, we can choose
bounded, simply connected pre-images V 1

1 and V 2
2 of D1 so that f : V i1 → D1 are also possibly

branched covering maps1. As preparation to use Lemma 3.2, we require that R1 is large enough
that D1, V 1

1 and V 2
1 have disjoint closures.

Next, we pick D2 ⊂ D1 so that f : D2 → {z ∈ C : |z| > R2} is a covering map, and
pre-images V i2 ⊂ V i1 of D2, i = 1, 2, following the same “recipe” as before. Now, we use Lemma
3.2 to find a simply connected G2 ⊂ {z ∈ C : |z| > R1} such that f maps G2 conformally onto
one of D2, V 1

2 or V 2
2 .

After coming back to D2, the next step is to choose D3 ⊂ D2 so that f : D3 → {z ∈ C :
|z| > R3} is a covering map, and pre-images V i3 ⊂ V i2 as before. Again by Lemma 3.2, we find
a domain G3 ⊂ {z ∈ C : |z| > R2} such that f maps G3 conformally onto one of D3, V 1

3 or V 2
3 .

1For convenience, all covering maps henceforth are taken to be possibly branched.
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Proceeding inductively, we produce sequences of domains Dn, Gn such that, for all n,

(i) Dn are progressively smaller neighbourhoods of p;

(ii) Gn+1 ⊂ {z ∈ C : |z| > Rn};

(iii) f(Dn) ⊃ Gn+1;

(iv) either f maps Gn conformally onto Dn, or f maps Gn conformally onto a covering space
of Dn (i.e., V in for some i ∈ {1, 2}).

Therefore, we can construct a sequence of compact sets En satisfying the hypotheses of
Lemma 3.3 by alternating between Dn and Gn, going through V in between Gn and Dn as
necessary. By Lemma 3.3, there exists z0 ∈ C such that fn(z0) ∈ En for all n ∈ N, and so by
our choice of En the point z0 has a ping-pong orbit. Furthermore, since p ∈ J(f), each Dn

intersects the Julia set, and by the complete invariance of J(f) this means that every Gn and
V in do too. Thus, by Lemma 3.3, z0 can be chosen to be in the Julia set.

Finally, to prove that points with ping-pong orbits are dense in J(f), notice that if z is
a point with a ping-pong orbit then any fn(z) also has a ping-pong orbit, and so does any
point in f−n(z). Therefore, the set BUP (f) of points with a ping-pong orbit is completely
f -invariant, and thus BUP (f) ∩ J(f) is a closed, completely invariant set with more than
three points – since it contains z0 and its entire grand orbit. By the minimality of the Julia
set (which follows from Montel’s theorem; see [3, p. 67] for the case of rational functions),
J(f) ⊂ BUP (f) ∩ J(f) so BUP (f) is dense in J(f).
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