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In the standard interpretation of spin-density functional theory, a self-consistent Kohn-Sham calcula-
tion within the local spin density (LSD) or generalized gradient approximation (GGA) leads to a predic-
tion of the total energy E, total electron density n(r)=n(r)+n (r), and spin magnetization density
m(r)=n4(r)—n(r). This interpretation encounters a serious “‘symmetry dilemma” for H,, Cr,, and
many other molecules. Without changing LSD or GGA calculational methods and results, we escape
this dilemma through an alternative interpretation in which the third physical prediction is not m (r) but
the on-top electron pair density P(r,r), a quantity more directly related to the total energy in the ab-
sence of an external magnetic field. This alternative interpretation is also relevant to antiferromagnetic
solids. We argue that the nonlocal exchange-correlation energy functional, which must be approximat-
ed, is most nearly local in the alternative spin-density functional theory presented here, less so in the
standard theory, and far less so in total-density functional theory. Thus, in LSD or GGA, predictions of
spin magnetization densities and moments are not so robust as predictions of total density and energy.
The alternative theory helps to explain the surprising accuracy of LSD and GGA energies, and suggests
that the correct solution of the Kohn-Sham equations in LSD or GGA is the fully self-consistent
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broken-symmetry single determinant of lowest total energy.

PACS number(s): 31.15.Ew, 31.10.+z, 71.45.Gm

I. INTRODUCTION AND SUMMARY
OF CONCLUSIONS

Kohn-Sham spin-density functional theory [1-5] is the
most widely used many-electron theory of atoms, mole-
cules, solids, and surfaces. Long applied in condensed-
matter physics with the help of the local spin-density
(LSD) approximation [1,2], it has recently been adopted
in quantum chemistry with the appearance of the more
accurate generalized gradient approximation [6-—10]
(GGA).

For a given external potential v (r) and electron num-
ber N, a self-consistent solution of the Kohn-Sham one-
electron equations yields a pair of electron spin densities
n4(r) and n(r), and a total energy E. If the exact
exchange-correlation energy functional (as defined by
Kohn and Sham [1-5]) were used in the calculation,
these quantities would be the exact physical ground-state
spin densities and energy. In practice, the exchange-
correlation energy is approximated in LSD or GGA, so
that the calculated quantities are not exact. Because
LSD and GGA are approximations to this formally exact
theory, it is wusually believed that the calculated
n4(r),n (r), and E are best interpreted as approxima-
tions to the corresponding physical quantities, i.e., that
ny(r)+n (r) predicts the total density n(r), and that
ny(r)—n (r) predicts the spin magnetization density
m(r).

This standard interpretation encounters a serious sym-
metry dilemma [11,13,14] exemplified by the binding-
energy curve of the molecule H,, which is known to have
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a singlet ground state [15] with n(r)=n (r)=n(r)/2
[16] for all internuclear separations d. In an exact
ground-state description of stretched H, (d — o), there
are two spin-unpolarized hydrogen atoms. At any in-
stant, each has one electron, with negligible number fluc-
tuation and thus vanishing probability for two electrons
to come together, as in the familiar spin-polarized hydro-
gen atom. Suppression of number fluctuations is
achieved by the singlet Heitler-London wave function,
which is free of the “ionic” configurations (H™ - - - H™)
found in the Hartree-Fock determinant of unbroken
singlet symmetry.

At the equilibrium bond length of H,, the LSD or
GGA equations have a single self-consistent ground-state
solution with n, =n  =n /2. But, at a larger internuclear
separation, this solution bifurcates and a second solution
of “broken symmetry”’ and lower energy appears. In the
limit of infinite separation, this second solution describes
one hydrogen atom with an electron of spin up on the
left, and another with an electron of spin down on the
right. The molecular dissociation energies calculated for
these two solutions pose a dilemma: The LSD [11,17] or
GGA [17] energy is nearly exact for the broken-
symmetry solution with qualitatively incorrect spin densi-
ties, and seriously in error [11,18] if the correct physical
spin symmetry (singlet) is imposed on the spin densities,
as shown in Table I. (This symmetry breaking also
occurs in Hartree-Fock theory.)

The spin-symmetry dilemma is present for other mole-
cules that dissociate to open-shell atoms. In some cases
(e.g., [19,20] Cr,), the broken-symmetry solution is
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TABLE I. Atomization energy of H, in electron volts, calcu-
lated within spin-unpolarized and spin-polarized versions of the
local spin density (LSD) and generalized gradient approxima-
tion (GGA) of Ref. [9]. The self-consistent spin-polarized calcu-
lations are from Ref. [17]; the spin-unpolarized results were ob-
tained with the help of the atomic spin-polarization energies
calculated in Ref. [18]. The zero-point energy (0.26 eV) has
been included in the theoretical values.

Spin-unpolarized Spin-polarized Expt.
LSD GGA LSD GGA
6.61 6.88 4.65 4.52 4.49

present and has the lower energy even at the equilibrium
bond length. This dilemma has occasioned concern and
doubt about spin-density functional theory. Without
changing our calculations, we can escape this dilemma
through a revolution in our viewpoint. If the approxima-
tions cannot be altered the better to fit the formal theory,
then the formal theory must be altered the better to fit
the approximations.

We begin by noting that although LSD and GGA start
from an exact theory, this fact alone does not justify these
approximations, which are formally valid only in the lim-
it where n,(r) and n,(r) vary slowly over space. The
success of LSD or GGA in real systems with large densi-
ty gradients, a tribute to the physical insight of Kohn and
Sham, is explained by arguments [3—11] based upon the
coupling-constant integral [12] for the approximated
exchange-correlation energy, Eq. (A6) of Appendix A.
But, within the standard interpretation of spin-density
functional - theory, these arguments have a weak link:
While Eq. (A6) depends directly (although not complete-
ly) upon the local density n(r), it has no such direct
dependence upon the local spin magnetization density
m(r).

In this work, we construct a nearly exact alternative
theory, to which LSD and GGA are also approximations,
that yields an alternative and preferable physical inter-
pretation in the absence of a strong external magnetic
field. In this theory, n,(r) and n |(r) are not the physical
spin densities, but are only intermediate objects (like the
Kohn-Sham orbitals or Fermi surface [21]), used to con-
struct two physical predictions: the total electron density
n(r) from

A(r)=n,(r)+n (1), (1)

and the on-top electron pair density P(r,r) from its LSD
or GGA approximation

P(r,r)=P"(n,(r),n (r);u =0), )

where P""f(n,n ;u =0) is the on-top pair density for an
electron gas with uniform spin densities n, and n . (Our
comments about the formal properties of GGA apply
only to the nonempirical functional constructed [7,9,10]
by real-space cutoff of the spurious long-range part of the
second-order gradient expansion for the exchange-
correlation hole.)

While 7 (r)d3r is the probability that an electron will
be found in volume element d>r at r, P(r,r') d3r d3r' is
the probability that an electron will be found in d>r at r,
and another in d 37’ at

r'=r+u.

Thus neither n(r) nor P(r,r') may be negative, and
[d*mn=N, (3)
Ja*rPr,r)=n(r)N—1]. @)

Since (for fixed ny+n,) P*(n,,n ;u=0) is an even
function of n;—n;, this alternative interpretation en-
counters no LSD or GGA spin-symmetry dilemma. In
the separated-atom limit for H,, it correctly makes
P(r,r)=0 for r in the vicinity of either atom, since (by
the Pauli exclusion principle) P*if(n 1+>n;u =0) vanishes
when either n; or n vanishes. More generally, we know
from numerical studies [22-25] of the uniform electron
gas that

P(n . n ;u =0) < PYf(7 /2,7 /2;u =0) . &)

Thus any LSD or GGA calculation can be interpreted
in either of two ways: in the usual way, or as an approxi-
mation to the alternative nearly exact theory described in
this paper. In both interpretations, calculations predict
the ground-state energy E and electron density n(r). In
the standard interpretation, the spin magnetization densi-
ty m(r)=n;(r)—n (r) is also predicted; in the alterna-
tive interpretation presented here, the on-top pair density
P(r,r) is predicted instead, via Eq. (2). Even in the alter-
native interpretation, n;(r)—n (r) is the spin magnetiza-
tion density of the Kohn-Sham noninteracting system,
which in many cases may be close to that of the real in-
teracting system, in the same way that the Kohn-Sham
Fermi surface [21] is close to the measured one for many
crystalline metals.

These two interpretations are equivalent in an electron
gas of uniform or slowly varying [26] n,(r) and n (r),
where LSD and GGA are strictly valid. If the Kohn-
Sham noninteracting wave function is a single Slater
determinant, as it normally is in self-consistent LSD or
GGA, then the two interpretations are also equivalent in
the high-density or noninteracting limits, where single-
determinant exchange dominates over correlation and
(27]

P(r,1)—2n(r)n (1) . ©)

[By the “high-density limit”, we mean the uniform scal-
ing n,(r)—y3n,(yr),y — ».] The standard interpreta-
tion implies the new one in a fully spin-polarized or low-
density electronic system, where P(r,r)—0, both exactly
and in LSD or GGA.

The alternative interpretation may often be preferable,
because of the close relationship between P(r,r) and the
electron-electron potential energy

1 3 3. ’ ’__
S &r [&PrPae)/ir -] . (7)
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Thus, accurate total energies are expected to accompany
accurate on-top pair densities, as discussed at greater
length in Appendix A. Indeed, the new interpretation
helps to explain why LSD and GGA yield accurate total
energies, and why in practice spin-density functional cal-
culations of the energy are more accurate than total-
density ones even in the absence of an external magnetic
field, where formally n(r) by itself suffices [1-5]. Of
course, when there is a strong external magnetic field
coupled to the physical spin magnetization density m(r),
the alternative interpretation [which makes no prediction
for m (r)] is inappropriate.

The alternative interpretation seems preferable, not
only for molecules like Cr, and stretched H,, but also for
many antiferromagnetic solids (where the common eigen-
states of A and S? have S =0). In all these cases, the
physical (time-averaged) m(r) vanishes [16], and the rap-
id variation of n4(r)—n (r) from one atom to the next,
as found in a LSD or GGA calculation, accounts for the
correct P(r,r) arising from strong correlations between
electron spins. Only by “freezing” these correlations into
n4(r) and n (r) can their effect upon P(r,r) be properly
described within LSD or GGA.

The importance of the on-top pair density P(r,r) has
been stressed by Colle and Salvetti [28], Moscardé and
San-Fabian [29], and Becke, Savin, and Stoll [30]. For

J

example, in Ref. [30] the inputs n(r) and m(r) to the
LSD or GGA exchange-correlation energy were replaced
by n(r) and P,_y(r,r), the noninteracting Kohn-Sham
on-top pair density. While Refs. [28—-30] proposed alter-
native methods of calculation employing P(r,r) from a
few-determinant wave function, we retain both the exist-
ing LSD or GGA functionals and the calculations al-
ready performed with them, changing only the physical
interpretation of the results.

Aside from its role in Eq. (7), P(r,r) is physically less
interesting than m(r). There is, however, a hyperfine
term of the relativistic Hamiltonian [31] whose expecta-
tion value is proportional to f d3rP(1,r1).

Before presenting the alternative spin-density function-
al theory in Sec. III, we pause to discuss the relationship
between the pair density and the exchange-correlation
hole in Sec. II, and to show numerically that the interpre-
tation of Egs. (1) and (2) is plausible. Sections IV and V
present some concluding remarks, as well as other com-
ments on broken symmetry.

II. ON-TOP EXCHANGE-CORRELATION HOLE:
A NUMERICAL STUDY

For any N-electron wave function W, we define [16] the
electron pair density

P(r,r')=N(N—1) 3 fd3r3 < dPry|V(r,0,,T,0,,13,05, .. .)|2
(71"'UN

=n(r) (n(r')+n,(r,r)] .

Here n, (r,1’) is the density at r’ of the physical (A=1,
not coupling-constant averaged) exchange-correlation
hole surrounding an electron at . Thus
[n(r')+n,(r,r')]d3r" is the conditional probability to
find an electron in d3r’ at r’, given that there is one at r,
and n,, satisfies

—n(r')<n,(rr), 9
Jarn, (rr)=—1. (10
If ¥ is a single Slater determinant with spin densities

n4+(r) and n | (r), the exchange-correlation hole reduces to
the exchange hole with the properties

n (r,r')<0, (11)
n,(r,r)=—[n3(r)+n3(r)]/n(r) . (12)
For a uniform electron gas, Eq. (8) becomes
PUf(ny,n;u)=n[n+n2(ny,n;u)] . (13)
The reader with little feeling for the dependence of
nWif(y)=n[g"f(4)—1] upon u, n, m, and the coupling-
constant A of Appendix A should consult Fig. 1 and Figs.
3-8 of Ref. [22]. The on-top hole density in the uniform
gas, n%"f(nT,nl;u =0), is known [22,32], not exactly but

to good accuracy; see Egs. (29) and (30) and Table I of
Ref. [22].

(8)

[

As shown in Appendix A, the exchange-correlation en-
ergy really depends only upon {n,.(u)), the hole aver-
aged over the density of the system, over the direction of
u, and over a coupling constant A. Figure 1 displays
(n4(u)) for the hydrogen atom, evaluated exactly
[y (r,r+u)=—n(r+u)] and in the LSD approximation
(nnif(y)). The LSD description of the averaged on-top
hole {n,.(« =0)), and thus of {n,.(u)) for all u, is real-
istic only when the hydrogen atom is treated as a fully
spin-polarized system. This remains true even in situa-
tions (e.g., stretched H,) where the atom is really spin un-
polarized.

As a numerical test of the alternative interpretation of
Egs. (1) and (2), we must compare the exact on-top
exchange-correlation hole density #n, (r,r) with its LSD
or GGA approximation

nISP(r,r)=n(n,(r),n,(r);u =0) . (14)
One of the few many-electron systems in which n,(r,r)
is known exactly is the Hooke’s atom [33-35], two elec-
trons bound to a harmonic-oscillator external potential
with spring constant k. In Figs. 2 and 3, we make this
comparison at the first two values of k for which exact
analytic ground-state wave functions are known; the
range of densities n for these solutions is typical of
valence electrons. We find satisfactory agreement be-

tween n,,(r,r) and nSP(r,r), indicating that the inter-
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FIG. 1. The exchange-correlation hole for the hydrogen
atom as a function of distance u=|r'—r| from the electron.
The hole has been averaged as in Eq. (A9) over the system [i.e.,
over n(r)], over the direction of u, and over the coupling con-
stant, A. The exact density has been used to compare the exact
hole against two versions of the LSD approximation: U (spin-
unpolarized) and P (polarized). Note that “LSD-P” is more
negative than “exact” for u <0.9a,, and less negative for
u>0.9a,. The exchange-correlation energy (in hartree) is
—0.2541 (LSD-U), —0.2902 (LSD-P), —0.3135 (GGA of Ref.
[9]), and —0.3125 (exact).

pretation of Egs. (1) and (2) is plausible.

For the helium atom and the negative hydrogen ion,
accurate but nonexact variational wave functions are
known [36,37]. Tables II and III show that, once again,
the alternative interpretation of Egs. (1) and (2) is plausi-
ble. [Equation (2) is least accurate near the nucleus,
where V?n diverges.] This conclusion is also consistent
with results for the on-top hole density in the H, mole-
cule [38] at equilibrium, and in crystalline silicon [39].

The standard and alternative interpretations of spin-
density functional theory would be strictly equivalent if
the ‘“short-wave-length hypothesis” were true. Some
time ago, Langreth and Perdew [40] suggested this hy-

r/a,

FIG. 2. On-top (u =0) exchange [A=0, n,(r,r)=—n(r)/2]
and exchange-correlation hole (A=1) density as a function
of electron position r throughout the Hooke’s atom
with  #w=e?/(2a,), in which r(r)>1.39a,, where
rJr)=[4mwn(r)/3]7'3. LSD [Eq. (14)] input is from the
uniform-gas expression of Ref. [32], as confirmed in Ref. [22].
The exact wave function (Ref. [34]) and density have been used.
The exchange-correlation energy (in hartree) is —0.5272 (LSD),
—0.5459 (GGA of Ref. [9]), and —0.5536 (exact), from Ref.
[35].
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FIG. 3. On-top (u =0) exchange [A=0, n,(r,r)=—n(r)/2]
and exchange-correlation hole (A=1) density as a function
of electron position r throughout the Hooke’s atom
with  #iw=e?/(10ay), in which r(r)>3.54a,, where
r(r)=[4mn(r)/3]7'3. LSD [Eq. (14)] input is from the
uniform-gas expression of Ref. [32], as confirmed in Ref. [22].
The exact wave function (Ref. [34]) and density have been used.

pothesis [41], which amounts [42] to the assertion that
LSD is exact for n, (r,r), or more precisely that the phys-
ical spin densities at position r determine n, (r,r). This
assertion is clearly correct at the exchange-only level of
Eq. (12) for a single determinant that yields the physical
spin densities, and Harris [43] has argued that this fact
helps to explain the accuracy of the LSD approximation
for the exchange energy. (Refs. [40] and [43] deal only
with the spin-unpolarized case n;=n;=n/2, but the

TABLE II. On-top (1 =0) exchange-correlation (A=1) hole
density n,.(r,r) for an electron at distance r from the nucleus,
from the accurate Baker-Hill-Morgan wave function (Ref. [36]),
compared with LSD values (Ref. [32]) using the Baker-Hill-
Morgan density. Closely similar values for the helium n,.(r,r)
have been found by Slamet and Sahni (Ref. [37]) from the Ki-
noshita wave function. Note that n (r,r)/n(r)=—0.500. The
radial probability density 477*n(r) maximizes at  /a, =0.57 for
He, and 1.18 for H ™. The numbers of electrons enclosed within
this maximum are 0.6 for He and 0.5 for H™.

LSD
Atom r/ag ri(r)/a, eI, 1) nxe (1.1)
n(r) n(r)
He 0.0 0.404 —0.715 —0.615
0.2 0.525 —0.709 —0.644
04 0.674 —0.712 —0.675
0.6 0.856 —0.727 —0.710
0.8 1.076 —0.753 —0.746
1.0 1.343 —0.784 —0.783
1.5 2.275 —0.864 —0.871
2.0 3.767 —0.923 —0.940
3.0 9.966 —0.978 —0.996
H™ 0.0 0.899 —0.907 —0.717
0.4 1.169 —0.900 —0.759
1.0 1.685 —0.889 —0.821
1.5 2.229 —0.890 —0.859
2.0 2.870 —0.904 —0.906
2.5 3.603 —0.925 —0.935
3.0 4.422 —0.948 —0.956
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TABLE III. System-averaged on-top (# =0) hole density
N"fd3r n(r)n,(r,r) divided by Z? for two-electron ions of
nuclear charge Z (in electrons/bohr’), from the Baker-Hill-
Morgan wave function (Ref. [36]). The small LSD errors arise
mainly from the region of r near the nucleus. The high-density
(Z—> ) limit is also shown. X: exchange only (A=0, exact
and LSD), XC: exchange and correlation at full coupling con-
stant A=1.

z X XC (exact) XC (LSD)
1 —0.0132 —0.0237 —0.0214
2 —0.0239 —0.0345 —0.0325
3 —0.0285 —0.0373 —0.0358
4 —0.0311 —0.0384 —0.0371
[~ —0.0398 —0.0398 —0.0398

general spin-polarized exchange-only case was discussed
by Ziegler, Rauk, and Baerends [27].) The numerical re-
sults in Figs. 2 and 3 and Tables II and III do not really
disprove this hypothesis, since the exact n, (r,r) is not
known, either for the uniform electron gas [22-25,32] or
for the two-electron ions [36,37]. Recently, Burke, Per-
dew, and Langreth [42] disproved the short-wave-length
hypothesis by comparing the exact high-density limits of
the on-top correlation hole density for the Hooke’s atom
(k— ) and for the uniform electron gas (n— ). We
observe here that a more dramatic failure of this hy-
pothesis occurs in the molecule H, at infinite internuclear
separation: For r near either atom, n,.(r,r)= —n(r) but
nf(n(r)/2,n(r)/2;u =0)> —n(r). The absolute and
relative differences between the two sides of this inequali-
ty are greatest where the density n(r) is highest [since
nif(n /2,n/2; u=0)—>nn/2,n/2;u =0)=—n/2 as
n— oo while n%%(n /2,n /2;u =0)— —n as n —0].

III. ALTERNATIVE SPIN-DENSITY
FUNCTIONAL THEORY

Following the general prescription of Jansen [44], it is
possible to set up a formal density-functional theory that
yields the exact energy E, density n(r), and on-top pair
density P(r,r). However, since P(r,r) is the expectation
value of a two-body operator, this theory admits no
noninteracting Kohn-Sham system. Instead, we shall set
up a formal variational theory with the same structure
and the same LSD and GGA approximations as the stan-
dard spin-density functional theory, but with the alterna-
tive physical interpretation of Egs. (1) and (2). This vari-
ational theory yields an energy that is greater than or
equal to the exact ground-state energy, and will typically
be very close to it.

We consider a system with Hamiltonian

A=T+V _ +V, , (15)

where

4535
N1

P=3 ——v2, (16)
= 2

p=lyy 1 17

“ o2 ;j;éih'i_rjl an

N
V=3 v(r;) . (18)

Now consider a class of trial functions n4(r),n | (r) which
have certain properties expected of spin densities:
(1) n,(r)=0, @ [d*|Vnl?(r)|’<», (3) N,
= [d’n,(r)=integer, and (4) N;+N =N. The “spin
densities” found by conventional Kohn-Sham calcula-
tions in LSD or GGA have all these properties. Condi-
tions (1)~(4) ensure that there are Slater determinants of
finite kinetic energy which yield these spin densities.

With the exception of n; and n |, quantities in this al-
ternative theory are distinguished by a tilda from the cor-
responding quantities in the standard theory. Following
the general idea of Levy’s constrained search [45], we
define the functional

Flnyn 1= min (U|T+ P W) . (19
W—>ﬂ=nT+nl,

1~’=P““if(n1,nl;u =0)

This means that, given trial functions n,(r) and n (r)
from the class defined in the preceding paragraph, we
form 7i(r) and P(r,r) from Egs. (1) and (2), then search
over all normalized and antisymmetric N-electron wave
functions V¥ yielding density 7 (r) and on-top pair density
P(r,r) until we find the minimum expectation value.
Now define

E=min{Flny,n 1+ [d>o@[ny(D+n (0]}, 0

npny

where the minimum is taken over all trial functions n;(r)
and n | (r) subject to the constraints

Jd*m, (=N, . 1)
Clearly, from the Rayleigh-Ritz variational principle,
EZE, (22)

where E=miny(W|A|¥) is the electronic part of the
ground-state energy.

For a given external potential v(r) and electron num-
ber N, the energy E, the minimizing density 7 (r) and the
on-top pair density P(r,r) are expected to be nearly ex-
act, in view of the many limits (discussed in Sec. I) in
which they are exact, the numerical results of Sec. II, and
the power of variational methods. Moreover, while the
Coulomb interaction 1/u diverges as u —0, the effect on
the energy of the u —0 wave-function restriction is re-
duced by the geometric factor 4712 From Egs. (2), (5),
(8), and (13), a necessary (but not sufficient) condition for
the exactness of this alternative theory is the inequality

Ny (r,0) <n i (n(r)/2,n(r)/2;u =0) , (23)

which seems to be violated (but very weakly) in Figs. 2
and 3 and Table II. When inequality (23) holds for all r,
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Egs. (5) and (13) permit us to find non-negative functions
n4(r) and n (r) which make the left-hand sides of Egs.
(1) and (2) exact, but there is no reason to expect that
those functions each separately integrate to an integer.
(As shown in Ref. [30], the inequality (23) is clearly
violated in the high-density limit if the Kohn-Sham
noninteracting wave function is that sum of two Slater
determinants representing the singlet state of two elec-
trons in orthonormal orbitals.)

To derive Kohn-Sham self-consistent equations, we
define the noninteracting kinetic energy by

T,lny,n,]= min (o|T|®), 24)
LR

where the search is over all Slater determinants & yield-
ing the spin densities n,(r), and n (r), and we define the
exchange-correlation energy E,_ by the equation

Flny,n ]=T,[ny,n J+U[R]+E [n,n,], 25

where

——fdrfd3'”(r”(”. (26)

Qg

At fixed 7i(r), an increase in |ny(r)—n (r)| tends to
make E . (Appendix A) more negative and T, more posi-
tive. Now the Euler equations for the minimization of
Eq. (20) are

+0%d[ns,n, 0)=0H, , 27

on (r)

where the chemical potential fi, is the Lagrange multi-
plier for the constraint (21), and

3,n(r) S'Exc
(n)+ [dr o

| &n,(r)

vogl[nqy,n r)= (28)

is a spin-dependent effective potential. Equation (27) is
also the Euler equation for a system of noninteracting
electrons with spin densities n;(r),n (r) moving in the
external potential Ugz([n4,n  ];r), so we can find n(r)

and n (r) from the self-consistent solution of the equa-
tions

{ 1VZ_*_Ueﬂ‘([nT’nJ,] r)}d}aa’ aa¢aa r) > (29)

r>—2|¢aa IZG(ﬁa—eaa)- (30)

With the integer N = ]~V + +N, fixed, N, is varied over the
integers to minimize E.

When n4(r) and n (r) vary slowly over space, the local
spin-density approximation [1,2]

EYP(ny,n 1= [ n(teyln,(),n,(r) (31)
or the generalized gradient approximation [6—11]

ESA(ny,n 1= [d’rf(ny,n,,Vn,,Vn ) (32)
are valid. In Eq. (31), €.(n,n;) is the exchange-

correlation energy per particle for an electron gas of uni-
form spin densities n; and n .
Standard arguments [6—11] for the accuracy of LSD

and GGA in real systems are based upon the coupling-
constant integral [12] for E, , whose analog in the alter-
native theory, Eq. (A6), is derived in Appendix A. From
this expression, it is clear that the nonlocal exchange-
correlation energy functional which must be approximat-
ed is most nearly local in this alternative spin-density
functional theory, less so in the standard theory, and far
less so in total-density functional theory. (Appendix B
discusses two different routes from a spin-density to a
total-density functional.)

By restricting the search in Eq. (24), we ensure that the
Kohn-Sham noninteracting wave function is always a sin-
gle Slater determinant of the occupied orbitals ¥,,(r)
This in turn ensures [27] via Eqgs. (6) or (12) that LSD or
GGA will yield the correct P(r,r) at the A=0 or
exchange-only level of the theory. Of course, if the
Kohn-Sham potential 7 %(r) has a symmetry, it may have
several degenerate Slater determinants as noninteracting
ground states, and linear combinations of these will also
be noninteracting ground states. As discussed in Sec. V,
this situation is not expected to arise for self-consistent
Kohn-Sham solutions, at least in LSD or GGA. [Howev-
er, it is not guaranteed that the self-consistent Kohn-
Sham occupation numbers will always obey the ground-
state Fermi statistics of Eq. (30).] As discussed further in
Appendix A, it appears that in LSD or GGA we should
always seek the fully self-consistent single determinant of
lowest total energy, no matter what symmetries it may
break. (However, an extension [30] of LSD or GGA, ap-
plied to a multideterminant Kohn-Sham wave function,
has given promising results for multiplet splittings.)

It must never be forgotten that the Kohn-Sham nonin-
teracting and exchange-only (A=0) levels of spin-density
functional theory are convenient mathematical fictions.
Thus, the standard and alternative formal theories can
differ at this level, even when both are exact. Stretched
H, (d — o) provides an example, which is discussed fur-
ther in Appendix A.

IV. CONCLUDING REMARKS
ON THE ALTERNATIVE THEORY

Unlike the standard spin-density functional theory, the
alternative theory presented in Sec. IIT does not always
yield the exact ground-state total energy and electron
density. Nevertheless, this alternative theory is exact at
its single-determinant exchange-only level, exact for the
uniform electron gas, and exact in the fully spin-polarized
and low-density limits, and would probably be much
more accurate than its LSD or GGA approximations in
applications to real electronic systems. For the reasons
discussed near the end of Sec. I and in Appendix A, LSD
and GGA are likely to be better approximations to this
alternative theory than to the standard one, in the ab-
sence of a strong external magnetic field. Moreover, the
physical interpretation of this alternative theory does not
lead to a symmetry dilemma within LSD or GGA, be-
cause the alternative theory makes no prediction for
m(r).

Although fictitious spin-dependent scalar potentials
have been invoked in the noninteracting inhomogeneous
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and interacting uniform (or slowly varying) reference sys-
tems, no physical magnetic fields are allowed in the alter-
native theory. The standard theory, which attempts to
represent the effects of such fields, is somewhat incon-
sistent in its neglect of electron currents [46] which also
couple to those fields.

The practical message emerging from this investigation
is clear: In the absence of an external magnetic field,
LSD and GGA calculations always predict the total ener-
gy E, electron density n(r), and on-top pair density
P(r,r) for a many-electron ground state, via Eqgs. (1) and
(2). They also predict the spin magnetization density
m(r) via ny(r)—n (1), but the reliability of this predic-
tion is more questionable than that of P(r,r). The pre-
dicted m(r) is quite incorrect for molecules (when the in-
ternuclear separation is large enough), and for certain an-
tiferromagnetic solids [47]. Solid chromium, for exam-
ple, has a spin-density wave ground-state often modeled
as an antiferromagnetic lattice [48]. Based on the alterna-
tive interpretation presented here, it is clear that LSD or
GGA should not be expected to make a reliable predic-
tion of the spin moment of each atom for these systems.

The spiral spin-density wave in solid Cr also illustrates
that the orientation of m(r) need not be confined to a sin-
gle fixed axis. When it is not, the standard spin-density
functional theory becomes more complicated, with n4(r)
and n | (r) replaced by a nondiagonal spin-density matrix
[2] n,,(r). However, since P(r,r) has no vector charac-
ter, no complication arises in the alternative theory.

Neither the standard nor the alternative ground-state
spin-density functional is required to predict excitation
energies in general, or multiplet splittings in particular.
The standard functional (i.e., the exact E[n;,n,] as
defined by Kohn and Sham [1-5]) should, however, yield
the same total energy for the spin densities of different
degenerate ground states; in the standard interpretation,
LSD should (but notoriously does not [49]) yield the same
energy for the M, =0 as for the M, ==1 triplet states of
the carbon atom with S =1. This is not expected of the
alternative functional [as defined in Egs. (19) and (20)],
where n4(r) and n | (r) are meaningful only when and in-
sofar as they produce an absolute minimum of the ener-
gy

In the standard interpretation, the minimizing n(r)
and n | (r) may be used to determine the total spin S, of
the ground state; LSD and GGA sometimes make the
wrong prediction. For example [10], for the molecule C,
at equilibrium, the predicted S, equals one although the
true S;,; equals zero. The LSD or GGA energy of the
triplet is a little lower even than that of the broken-
symmetry singlet (in which the spin moments are concen-
trated not on the individual atoms but on opposite sides
of the bond axis [10]). In the alternative interpretation,
where no spin determination may be made, no such prob-
lem arises.

Besides C,, there may be many other systems in which
the standard interpretation of LSD or GGA leads to an
incorrect prediction of the total spin S,,,. For example,
O, really has S,;, =1 at equilibrium, and also presumably
in the limit of large internuclear separation. But a LSD
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or GGA calculation in this limit will force each O atom
into a state with S=1 and M,==1, leading to
M, =22 and S, =2, or to M ,,,=0 and S,,, =0.

5, tot

V. OTHER COMMENTS ON BROKEN SYMMETRY

Although we have escaped from the most disturbing
symmetry dilemmas of spin-density functional theory, a
few other symmetry issues remain to be discussed.

(1) Within the standard spin-density functional theory
or the alternative of Sec. III, there is no obvious reason
why the Kohn-Sham effective potential v (r) should al-
ways have the same symmetry as the external potential
v(r), or why the Kohn-Sham noninteracting wave func-
tion should always have the same symmetry as the true
ground-state wave function. In fact, since n(r) and its
components n;(r),n (r) may have a lower symmetry
than v(r), so may the effective potential constructed from
n4(r) and n (r) [14]. For example, the Kohn-Sham LSD
Slater determinant need not be an eigenfunction of the
square of the total spin S?andin many open-shell atomic
and molecular systems it is not [50,51] (although it often
comes closer [38] than does the unrestricted Hartree-
Fock wave function). Pople, Gill, and Handy [52] have
discussed the benefits of allowing this “‘spin contamina-
tion” of Kohn-Sham calculations.

(2) Methods [27-30,53] have been developed to deal
with the case where the Kohn-Sham noninteracting wave
function is a linear combination of degenerate Slater
determinants, so that Eqgs. (6) and (12) are lost. But de-
generacy is usually a consequence of symmetry, and the
allowable symmetry-breaking described under point (1)
should ensure that the self-consistent LSD or GGA
Kohn-Sham noninteracting wave function is a single
determinant. For example, the self-consistent LSD or
GGA effective potential for an open-shell atom may be
nonspherical [54].

(3) Symmetry-breaking may be avoided in certain for-
mal density functional theories. An example is the
theory of Gorling [14], in which the symmetries of the
external potential and true ground-state wave function
are propagated to the Kohn-Sham effective potential and
noninteracting wave function, at the high price of a sym-
metry dependence of the needed density functional.
Another example is the zero-temperature limit of
Mermin’s theory [55], in which ensembles replace wave
functions and the ground-state density has the symmetry
of the external potential. In the absence of an external
magnetic field, the Gorling and Mermin theories are ex-
amples of total- (not spin-) density functional theories.

In LSD, the energy of an atom is nearly the same
whether the atomic density is spherically averaged or not,
but GGA is somewhat more sensitive [56] to the angular
shape of the density, as Table IV shows. Within the stan-
dard interpretation, both LSD and GGA are sensitive to
the spin-magnetization density m(r); averaging this quan-
tity over all directions in space leads [44] to a total-
density functional theory in which LSD and GGA are
considerably less accurate, as is evident from Table 1.

(4) The exact ground-state total density n(r) itself may
have certain symmetries (dictated by those of the wave
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TABLE IV. Atomization energy of O, in electron volts, cal-
culated from spherically averaged and nonspherical atomic den-
sities within LSD and within the GGA of Refs. [7] and [8]. The
nonspherical atomic density is constructed from cubic-
harmonic orbitals (s,p,,p,,p,) which belong to a spherically
averaged Kohn-Sham potential; relaxing this shape constraint
would reduce the total energy of the separated atoms, and thus
might further improve the GGA atomization energy (from Ref.
[56]).

Spherical atoms Nonspherical atoms Expt.
LSD GGA LSD GGA
7.5 6.6 7.5 5.9 5.2

function) [57] which LSD or GGA fail to reproduce. In
view of the results of Table IV, this sort of symmetry
breaking may not have much effect on the total energy.
Of greater concern is the absence of a derivative discon-
tinuity [58] of E,_ in continuum approximations such as
LSD or GGA, leading to improper dissociation of
heteronuclear molecules to fractionally charged frag-
ments [58,59]. Despite these concerns, the evidence for
the usefulness of Kohn-Sham LSD and especially GGA
calculations in solid-state physics [10,60-62] and quan-
tum chemistry [10,63—-66] is now overwhelming.

Note added in proof. There is another physical applica-
tion for the integral of the on-top pair density over all
space, besides the one given at the end of Sec. I. This in-
tegral also determines the large-wave-vector limit of
system-averaged electron-electron structure factor, as
shown by Kimball [72].
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APPENDIX A: COUPLING-CONSTANT INTEGRATION
FORE,,

Here we shall derive an analog of the standard
coupling-constant integration [12] for E,_ defined by Eq.
(25). To do so, we consider the Hamiltonian

B,=T+1P +3 [d*m,(xwi(r), (A1)

in which the electron-electron interaction involves a cou-
pling constant A, and the spin-dependent external poten-
tials v (r) are adjusted to hold n,(r) and n |(r) fixed for
all A, according to the generalizations of Eqgs. (1) and (2),

Aa(r)=ny(r)+n (1) (A2)
is the A-independent total density, and
P, (r,r)=P¥(n,(r),n (r);u =0) (A3)

is the on-top pair density for coupling constant A. When
A=1, we have the real system of interest. When A=0, we
have the Kohn-Sham noninteracting system with on-top
pair density given by Eq. (6).

For each A, we define

E, = min (V|H,|¥),
VYon=n,+tn,
}N’=P'5‘L“if(n1,nl;u=0)
=(¥,|H,|¥,) . (A4)
From the variational principle, we expect that

dE, /dr=(V,|3H, /dA|¥, ), with an error that is very
small because our alternative formal theory is nearly ex-
act for the energy. Thus

E\—Eo= [ dM(W|P.|¥;)
+3 [drm (D) =09 [ny,n, 0],

(A5)
or
A(r)a A (1)

, (A6)
lr' —r]

~ 1

E.= [ dk—;—fd3rfd3r'
where A (r,r') is the variationally determined
exchange-correlation hole for coupling strength A, which
reduces to 7, (r,r') at A=1 and to 7 (r,1r'), the exact ex-
change hole of the alternative theory, at A=0.

The LSD approximation of Eq. (31) can also be written

in the form of Eq. (A6),

EffD=foldk%fd3rfd3r’

A(r)n SEA (n o (1),m ) (2); |0 — 1)

| —r|

, (A7)
where n}fg‘if’}‘(nT,n 13u) is the hole density for coupling
strength A at interelectronic separation u in a uniform
electron gas. The exact, LSD, and GGA exchange-
correlation energies all have the real-space analysis

Em=—]2‘1f0°°du dmu (A (W) Ju (A8)
where {#,.(u)) is the appropriate hole averaged over the
system, over the coupling constant, and over the direc-
tion of u=r'—r:
di 1,1 _
(A (u))= fﬁfo d}»—ﬁfd3r (o)t (r,r+u) .

(A9)
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The variationally determined exchange-correlation
hole for coupling strength A, 7 ﬁc(r,r’), has all of the gen-
eral properties described in Sec. II. Most of these [Egs.
(10)-(12) and Eq. (9) for r'=r] are respected by the LSD
and GGA approximations to this hole, and the resulting
constraints on the integrals for the energy help to justify
LSD and GGA for real electronic systems. Moreover,
the LSD and GGA holes satisfy [42] the exact cusp con-
dition for r' ~r at each A.

By adopting as our solution to the Kohn-Sham equa-
tions (29) and (30) the fully self-consistent broken-
symmetry single determinant of lowest total energy, we
ensure that the LSD or GGA on-top exchange hole
7 2=%r,r)=r,(r,r) is appropriate [via Eq. (12)] for the
A=0 or exchange-only level. The need for a single-
determinant Kohn-Sham wave function in LSD was
stressed by Ziegler, Rauk, and Baerends [27] within the
standard interpretation of spin-density functional theory.

Note that the exchange-correlation hole 7, (r,r+u) is
deeper and more short-ranged (in u) than the exchange
hole 7, (r,r+u). As a result, the nonlocalities of ex-
change and correlation tend to cancel [10], and this fact
also works in favor of LSD and GGA.

Finally, we discuss the problem of stretched H, from
the viewpoint of Eq. (A6). Let the bond length d tend to
infinity before any other limits are taken. Then
P(r,r)=0 for all r, and the alternative formal theory of
Sec. IIT is exact. In the alternative formal theory, the
variationally determined wave function ¥, will tend con-
tinuously as A—0 to a single Slater determinant of bro-
ken singlet symmetry. But, in the standard formal theory
[1-5], ¥, for all A is the Heitler-London wave function
[71] for A=1, a linear combination of two degenerate
pure-singlet Slater determinants, one with two electrons
of opposite spin in the bonding orbital and the other with
two electrons of opposite spin in the antibonding orbital.
[With any A > 0O, the interaction A /r will suppress the ion-
ic configurations (H™ ---H™) present in a single Slater
determinant of unbroken singlet symmetry.] This failure
to connect ¥,_, adiabatically to a single Slater deter-
minant as A—0 is what causes the large error of the
spin-unpolarized LSD atomization energy in Table I.
[For finite d, the Kohn-Sham wave function ¥, — is a sin-
gle Slater determinant with two electrons in the bonding
orbital. As d increases, ¥, resembles W, _; over a wider
range of the interval 0 <A <1, so that the contribution to
the integral (A6) from the A=0 limit becomes negligible
as d — .]
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APPENDIX B: TWO ROUTES FROM SPIN-DENSITY
TO TOTAL-DENSITY FUNCTIONALS

In the absence of an external magnetic field, the total
density n(r) plays the same formal role [1-5] as n4(r)
and n (r). Here we shall draw the connection between
total-density and spin-density functionals in both the
standard and alternative theories, following the argument
of Jansen [44].

First we define

F[n]= min F[n.,n]
ne,n, —n
=T,[n]+U[n]+E,[n], (B1)
T,(n]= min T,[nn,], (B2)
ny,n,—n

where the spin-density functionals are minimized in a
search over all trial functions n;(r) and n | (r) which sum
to n(r) and have the properties listed at the beginning of
Sec. III. Then

E=min F[n]+fd3rv(r)n(r‘) . (B3)

Equations (B1) and (B2) do not imply that

E[n]=E,[n/2,n/2], (B4)

unless the minimizing # +(r) and n | (r) from Egs. (B1) and
(B2) each happen to equal n(r)/2. Thus, if we start with
a local (LSD) approximation for E [n4,n ], Egs. (Bl)
and (B2) can provide a highly nonlocal approximation for
E,[n].

LSD and GGA are derived for slowly varying n4(r)
and n | (r), where the minimizations in Egs. (B1) and (B2)
are expected to yield ny=n =n/2. [For a slowly vary-
ing but very low #n, the minimization in (B1) may lead to
ny=n and n =0, but usually with negligible energetic
consequences.] Thus, Eq. (B4) provides the prescription
for constructing an LSD or GGA functional for E  [n]
from one for E, [n¢,n ]

We have presented two routes from spin-density to
total-density functionals. Within LSD or GGA, the
former [Egs. (B1) and (B2)] is more accurate while the
latter [Eq. (B4)] is simpler.
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