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Abstract

Bacteria face the challenging requirement to maintain their shape and avoid rupture due to the high internal turgor
pressure, but simultaneously permit the import and export of nutrients, chemical signals, and virulence factors. The bacterial
cell wall, a mesh-like structure composed of cross-linked strands of peptidoglycan, fulfills both needs by being semi-rigid,
yet sufficiently porous to allow diffusion through it. How the mechanical properties of the cell wall are determined by the
molecular features and the spatial arrangement of the relatively thin strands in the larger cellular-scale structure is not
known. To examine this issue, we have developed and simulated atomic-scale models of Escherichia coli cell walls in a
disordered circumferential arrangement. The cell-wall models are found to possess an anisotropic elasticity, as known
experimentally, arising from the orthogonal orientation of the glycan strands and of the peptide cross-links. Other features
such as thickness, pore size, and disorder are also found to generally agree with experiments, further supporting the
disordered circumferential model of peptidoglycan. The validated constructs illustrate how mesoscopic structure and
behavior emerge naturally from the underlying atomic-scale properties and, furthermore, demonstrate the ability of all-
atom simulations to reproduce a range of macroscopic observables for extended polymer meshes.
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Introduction

The cell wall rests outside the cytoplasmic membrane and

provides bacteria with shape, rigidity, and protection from lysis

due to the significant turgor pressure emanating from within [1].

It is primarily composed of a porous, mesh-like network of

polymerized peptidoglycan, a repeating disaccharide/oligopeptide

molecule. Because it is covalently connected, the cell wall is also

the largest macromolecule in nature [2]. The chemical composi-

tion of peptidoglycan is largely conserved: relatively long glycan

strands are cross-linked by short oligopeptides (see Fig. 1) [3]. In

Gram-negative bacteria the cell wall presents as a relatively thin

network (2–7 nm) between the inner and outer membranes, while

in Gram-positive bacteria, it is much thicker, between 20 and

35 nm [1,4].

Multiple theoretical models for the architecture of peptidogly-

can at the mesoscopic scale have been conceived [1]. The models

fall into two primary classes, a horizontal layer in which the

glycan strands run parallel to the cell surface in a circumferential

direction [5–7] and a scaffold in which the strands are oriented

perpendicular to the surface [8,9]. While some experiments

have been interpreted as support for the scaffold model, e.g., the

NMR structure of a peptidoglycan subunit [10], more recent

electron cryo-tomography (ECT) on purified Gram-negative

sacculi revealed circumferential glycan strands [11]. Even more

complex models have been put forth, such as cables of coiled

peptidoglycan encircling Gram-positive bacteria based on atomic

force microscopy (AFM) measurements [12], although ECT on

these bacteria failed to find distinct cable-like structures [4].

Using biochemical experiments and atomic-scale simulations, it

was demonstrated that only layers composed of circumferential

glycan strands could fully account for the ECT observations on

Gram-positive bacteria, namely a distinct curling and thickening

behavior of the sacculus, i.e., the part of the cell wall remaining

after cell lysis, upon shearing [4].

One limitation of many of the previously developed models

is that they are typically constructed with an idealized geometric

arrangement, which is then deformed according to a set of

mathematical rules. Not surprisingly, this procedure tends to

generate cell walls with an unnatural degree of order [3]; indeed,

regular patterns of quadrilateral or hexagonal shapes are often

depicted [7,8]. Furthermore, while apparent disagreement with a

chosen set of experimental data has been used to indict some

models over others [9], an alternative explanation is that the

specific rules used to construct the model as well as the presumed

experimental constraints were too strict [13].

In an attempt to circumvent some of the limitations of previous

models, we have constructed and simulated patches of Gram-

negative cell wall in their full atomic detail. By modeling the cell

wall as a intricate composite of its individual components, we
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restrict the number of assumptions necessary for its construction. A

single-layered model was chosen based on ECT of Gram-negative

sacculi and on recent simulations of Gram-positive cell-wall

patches [4]. Each patch of peptidoglycan was built from the level

of individual residues on up, quantifying the behavior at each

level, and connecting it with experimental measurements of

various structural and mechanical properties. These comparisons

are used both to validate the constructions and to illustrate the

robustness of the cell wall to variations in average glycan strand

length within the range of those observed in vivo. The widespread

agreement with experimentally measured properties favors the

disordered circumferential model of peptidoglycan in Gram-

negative bacteria over other models.

Results

Modeling and validation of the physical properties of
peptidoglycan components
While the glycan strand composition is uniform across all

bacteria, composed of alternating b-1,4-linked GlcNAc and

MurNAc saccharides, the peptide stem, connected to the lactyl

moiety of the MurNAc residue, is quite diverse [3,6]. In E. coli the

full, five-residue sequence is L-Ala (1) D-isoGlu (2) m-A2pm (3) D-

Ala (4) D-Ala (5), where m-A2pm is meso-diaminopimelic acid, a

lysine derivative [3]. Also of note is that the D-isoglutamate is

connected through a c-carboxy linkage to the A2pm residue

(see Fig. 1A). While alanine is already present in the CHARMM

force field, the remaining four constituents were originally absent.

Therefore, we developed new CHARMM-compatible topologies

and parameters for these constituents, as well as for the con-

nections between them (see Methods along with topology and

parameter files provided in the Supporting Information). The

novel force fields have already been successfully utilized for

simulation of Gram-positive peptidoglycan [4].

After parameterization, a single glycan strand 320 residues long

was constructed without peptides. A useful property to quantita-

tively characterize the flexibility of a polymer is the persistence

length jp. It is defined as

Scos(h(s))T~e{s=jp ð1Þ

where s is the position along the strand, h is the angle between

the tangent vectors at positions l and lzs, and the average is taken

over all starting positions l [14]. Effectively, jp is a measure of the

stiffness of the strand. Two 5-ns simulations of the 320-mer strand

were carried out, and jp was determined by the initial decay of the

correlation in Fig. 2 [15,16]. The two simulations provided values

of jp~10:8nm and 13.6 nm; extending the latter simulation

to 10 ns changed this value only marginally (jp~14:8nm). This

persistence length is of the same order of magnitude as that found

for other simple polysaccharides from experiments and/or

modeling, which can span a large range, e.g., 4.5–13.5 nm for

pectin [17] and 14.5 nm for cellulose [18]. Although not measured

here, the persistence length of peptide cross-links is at least an

order of magnitude less, being no more than 3–4 Å, making them

significantly more stretchable than the relatively rigid glycan

strands.

The peptides project outward from the glycan strand, presum-

ably in a helical fashion (see Fig. 2B) [1]. The periodicity of these

peptides is intimately connected to the orientation and degree with

which neighboring glycan strands can form cross-links with one

another. An angle of 900 between successive peptide side chains

was assumed in the classical layered model, thus placing every

other one in the plane of the cell wall [5,6]. An NMR structure of

a peptidoglycan fragment, however, displayed an angle of 1200,

in line with that in the scaffold model [10]. To determine the

equilibrium angle for an isolated peptidoglycan strand, two 60-

residue-long strands were constructed and simulated for 10 ns, one

with an initial peptide-peptide angle of 900 and one with an angle

of 1200. For the strand initially at 1200, the average angle relaxed

to 101+270 by the end of the 10-ns simulation, while the one

initially at 900 was 91+390 (see Fig. 2B). Based on these results, we

conclude the native periodicity of the peptides is approximately

four per turn. However, the significant variability in the angle

in simulations, even within a single strand, indicates that this

periodicity is not strictly maintained and could be easily modified

by external forces.

Mesoscale organization of the cell wall
In order to construct the full peptidoglycan network, individual

glycan strands need to be covalently linked through their peptides.

Although this linkage takes a variety of forms depending on

species, in E. coli the most common link is a peptide bond made

between the E amino group of the A2pm residue (position 3) and

the carbonyl group of the penultimate D-Ala (position 4), shown in

Fig. 1B [6]. In the course of transpeptidation, the terminal D-Ala

(position 5) is also cleaved, both processes being carried out by

penicillin-binding proteins [19]. The degree of cross-linking varies

between species and even growth states within a single species [1];

for E. coli it is typically around 50% on average, i.e., about half of

the peptides are linked and half are free [20]. Although alterations

to the cross-linking fraction likely affects the mechanical and

structural properties of the peptidoglycan network, this variable is

not explored in the current study.

Two-dimensional periodic patches of peptidoglycan were

constructed following a specific set of procedures designed to

minimize user bias (see Methods); an example of a resulting system

is shown in Fig. 3A. Despite being initially constructed as an

organized, patterned network, the final organization of the

peptidoglycan resembles the ‘‘disordered circumferential layered’’

model observed in cryo-tomography images of purified sacculi

[11]. However, because no tension was applied, the possibility

remains that the peptidoglycan becomes more ordered under

native cellular conditions, which is explored below [1].

Author Summary

The structure of the bacterial cell wall has been a point of
controversy and contention since it was first discovered.
Although the basic chemical composition of peptidogly-
can, the key constituent of the cell wall, is now well
established, its long-range organization is not. This dearth
of information at the mesoscopic scale is a result of the
inability of experimental imaging techniques to simulta-
neously visualize both the atomic-level detail of the
peptidoglycan network and its macroscopic arrangement
around the bacterium. Now, using molecular dynamics
(MD) simulations, we have carefully constructed and
validated models of sections of the Escherichia coli cell
wall in full atomic detail. By comparing various properties
of these models, including elasticity, pore size, and
thickness with experiments, we can discriminate between
them, resolving which best represents the native wall
structure. In doing so, our study provides approaches for
connecting measurements made in atomic-scale MD
simulations with large-scale and even macroscopic prop-
erties.

Cell Wall Structure from Molecular Dynamics
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Much like the fraction of peptides cross-linked, in the bacterial

cell wall the average glycan strand length takes on a large range of

values, as low as six disaccharides in the stationary growth phase

of Helicobacter pylori [21] and more than 50 in Proteus morganii

[22]. Even in E. coli, a range of values spanning from 9 to 60

disaccharides has been measured by different experimental

techniques for different stages of growth [1]. To examine the

dependence of mesoscale properties of peptidoglycan on the

average length of the glycan strand, multiple models with a

specific average, but non-uniform, number of disaccharides were

constructed, including 8+3.2, 17+5.8, and 26+2.4 disaccha-

rides, denoted avg8, avg17, and avg26, respectively (see Fig. 3).

Additionally, as an extreme case for comparison, two patches of

cell wall with unbroken, periodic (and therefore effectively infinite)

glycan strands with unit-cell lengths of 15 and 30 disaccharides,

denoted Inf1 and Inf2, were modeled. Because of the small

number of strands used (12 for avg17 and avg26, for example) it’s

not possible to reproduce distributions, although the limited range

of lengths in avg17 (8–26 disaccharides) does agree with where the

majority of the strand lengths in CG models falls [23].

Elastic properties of the peptidoglycan network
A defining property of the peptidoglycan layer is its tensile

elasticity, i.e., its response to applied strain coming from the turgor

Figure 1. Peptidoglycan constituents. (A) Chemical composition of the monomeric unit of peptidoglycan, consisting of a disaccharide with a
connected five-residue peptide. (B) Transpeptidation reaction between two neighboring peptidoglycan strands. The reacting groups contributed by
each peptide are boxed in red and green, respectively, before and after being linked.
doi:10.1371/journal.pcbi.1003475.g001

Cell Wall Structure from Molecular Dynamics
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pressure inside the bacterial cell, also referred to as Young’s

modulus. Elasticity also serves as a key metric for comparing

the constructed models to experimental measurements. Because

peptidoglycan is orthotropic, the elasticities along its two symmetry

axes are not identical [24]. Based on the theory of mechanical

deformation of a two-dimensional sheet (see SI for a full derivation

starting from the material’s constitutive relations), the Young’s

moduli in each orthogonal direction, Eg for the glycan strands and

Ep for the peptide cross-links, are given by

Eg~
sg(1{npgngp)

EgznpgEp
ð2Þ

Ep~
sp(1{npgngp)

EpzngpEg
ð3Þ

where Eg and Ep are the applied strains in each direction,

defined as DL=L0, and sg and sp are the resulting stresses,

measured in units of force/area. The dimensionless Poisson’s

ratios, npg and ngp, relate the spontaneous strain arising in one

direction given an applied strain in the other. In order to calculate

the elasticity from simulation, varying strains were applied in the

plane of the peptidoglycan by altering its dimensions, with one

dimension stretched and the other held fixed at its equilibrium

Figure 2. Properties of single glycan strands. (A) Calculation of the persistence length of the (GlcNAc{MurNAc)n polysaccharide. Blue
spheres along the strand on the left indicate the oxygen atoms involved in the glycosidic bonds between residues. (B) Average angle between
neighboring peptides. On the left are images looking down on a portion of the strand (green) with the initial residues of the peptides shown, colored
to indicate depth (red, then white, then blue). The plot on the right shows the average peptide-peptide angle as a function of time for one started at
900 (black) and one started at 1200 (red). Light restraints (0:50kcal=molÅ2) in the strand direction were placed on the glycosidic oxygen of every other
GlcNAc residue to keep the strand elongated without preventing rotation. Also see Movie S1.
doi:10.1371/journal.pcbi.1003475.g002

Figure 3. Peptidoglycan patches simulated. In all parts, glycan strands are in blue and peptides in green. The dotted red line denotes the unit
cell boundaries, with the transparent peptidoglycan being periodic copies. The black scale bars below are all equivalent at 10 nm in length. (A)
Initially constructed state for avg17 (other patches appeared similarly at this state). (B–D) Final relaxed states for (B) avg8, (C) avg17, and (D) avg26.
Inf1 and Inf2 are shown in Fig. S6 in Supporting Information. Relaxation of avg17 is shown in Movie S2.
doi:10.1371/journal.pcbi.1003475.g003

Cell Wall Structure from Molecular Dynamics
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value, calculated from a minimum 20-ns constant-pressure

simulation (see Methods). Because only one of Eg or Ep is allowed

to be non-zero in each simulation, Eqs. 2 and 3 can be simplified to

Eg~
sg

Eg

(1{npgngp) ð4Þ

Ep~
sp

Ep

(1{npgngp): ð5Þ

While the stresses, sg and sp, are formally the derivatives of the

free energy with respect to strain in the corresponding dimension,

by virtue of the reversible work theorem they can be directly related

to the thermodynamic pressure in that dimension, i.e., a mean force

(see Text S1) [25,26].

Determination of each model’s elasticity was based on six or

more 2-ns-minimum simulations in which the peptidoglycan

was stretched in the direction parallel to the glycan strands

between 1.25% and 17.5% (Eg~0:0125{0:175) relative to the

relaxed state and six more simulations between 5% and 45%

(Ep~0:05{0:45) parallel to the peptide cross-links. Each simula-

tion was repeated to ensure consistency of the results, giving at

least 24 simulations per cell-wall patch (see Fig. S3 in SI). The

resulting elasticities and Poisson’s ratios are presented in Table 1,

along with measurements and calculations from other studies

[24,27–30].

All simulated models reproduce the expected anisotropy of the

elastic moduli in the two orthogonal directions [27]. The glycan

strands are found to be much stiffer, with values of Eg ranging

from approximately 11 MPa to 66 MPa, compared to 4–18 MPa

for Ep (both ranges for finite average strand lengths only). These

values are similar to the ranges found in AFM measurements on

E. coli, i.e., E =35–60 MPa perpendicular to the cell axis and

15–30 MPa parallel [27], as well as other theoretically derived

elasticities [24,29] (see Fig. 4). The glycan elasticity Eg increases

with average strand length, and for infinite strand lengths, it grows

to as much as 200 MPa (see Inf1 and Inf2 in Table 1). Ep, on the

other hand, has no apparent correlation with average strand

length.

The relationship between the Poisson’s ratios, specifically that

ngpwnpg for all models, indicates that strain in the direction of the

glycan strands induces a significant deformation in the peptide

direction, but that the reverse is not true. Given that it is known

that the glycan strands are aligned with the circumference of the

cell and the peptide links with the long axis, the result is that stress

applied to the cell wall will be primarily absorbed in the axial

Table 1. Poisson’s ratios (ngp,pg) and Young’s moduli Eg and
Ep for simulated peptidoglycan patches compared with
reported values from other studies.

Model ngp npg Eg (MPa) Ep (MPa) Eg/Ep

avg08 0.670 0.175 11.4 4.0 2.84

avg17 0.324 0.087 66.3 17.5 3.79

avg26 0.363 0.062 62.5 6.1 10.25

Inf1 0.216 0.020 125.7 11.3 11.05

Inf2 0.302 0.018 212.6 11.6 18.39

AFM [27] 0.48 0.16 45 (35–60) 25 (15–30) 1.17–4.0

exp. [29] 0 0 49620 2368.0 2.13

exp. [30] 0.4 0.4 - 50–150 -

theory [28] - - - 30 -

theory [24] 0.35–0.67 0.03–0.23 10–32 3–5 2.0–10.7

doi:10.1371/journal.pcbi.1003475.t001

Figure 4. Young’s modulus vs. average glycan strand length for the simulated patches. The elasticity in the glycan-strand direction is
labeled Eg and that in the peptide direction is Ep. The red and blue bars represent the range of values measured in AFM experiments for the
circumferential and axial cellular directions, respectively [27].
doi:10.1371/journal.pcbi.1003475.g004
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direction, leading to a lengthening of the cell, but not an increase

in radius, just as observed experimentally [4,31]. As average

strand length increases, both Poisson’s ratios decrease, effectively

decoupling the two components of the peptidoglycan layer. One

result of this decoupling is that the ratio of the two elasticities,

Eg=Ep, increases monotonically with average strand length.

Quantifying macroscopic properties of the cell wall
Besides elasticity, other distinguishing physical characteristics of

the cell wall as a whole include its thickness, the size of pores

within it, the ordering of its strands, and the area per disaccharide.

Using the five model patches developed, all of these characteristics

were determined under different applied strains and compared to

experimental measurements (see Table 2).

Based on different techniques, the thickness of the E. coli

peptidoglycan layer has been assigned a range of values, including

2.5 nm (small-angle neutron scattering [32]), 6.0 nm (AFM [27]),

and 6.4 nm (cryo-electron microscopy [33]). More recent ECT

experiments estimated the thickness to be 4 nm at most [20] and

AFM experiments measured ,2 nm [34]. In contrast, cell walls

from Pseudomonas aeruginosa appear even thinner, ranging from

2.4 nm (cryo-EM [33]) to 3.0 nm (AFM [27]), while that from

Caulobacter crescentus is up to 7-nm thick [11].

The thickness in the simulated constructs was determined in two

different ways. First, the mass density as a function of z, the coor-

dinate orthogonal to the plane of the cell wall, was measured. This

density was calculated for all the heavy atoms in the peptidoglycan,

averaged over each trajectory. Values for the thickness were taken

as the width of the density profile at 10% of its peak (see Fig. 5E).

For the relaxed cell walls, the thickness ranged from 3.4–3.9 nm, in

agreement with the most recent ECT measurements [11]. Under

strain, this thickness decreased by up to 20%.

As a complementary measure of thickness, pressure profiles as a

function of z were measured for the patch in each simulation. The

Table 2. Various properties of the simulated peptidoglycan patches under different applied strains.

Model Applied strain thick (dens.) thick (stress) angle (6) Pore rad. unit area (nm2)

avg8 Eg,p = 0 3.87 2.72 27.8+28.3 2.54 2.96

avg8 Eg =0.10 3.39 2.06 23.8+32.5 2.95 3.26

avg8 Ep = 0.30 3.28 1.74 23.8+29.5 3.10 3.85

avg17 Eg,p = 0 3.42 2.27 22.9+23.9 2.05 3.07

avg17 Eg =0.075 3.17 2.19 23.0+21.9 2.34 3.30

avg17 Ep = 0.30 3.01 1.85 22.2+26.0 3.28 3.99

avg26 Eg,p = 0 3.53 2.50 20.6+22.7 2.09 2.82

avg26 Eg =0.075 3.25 2.27 20.4+19.6 2.29 3.03

avg26 Ep = 0.30 3.07 2.34 0.4+22.8 3.43 3.67

Inf1 Eg,p = 0 3.39 2.64 21.5+20.9 2.05 2.82

Inf1 Eg =0.075 2.87 2.61 20.9+12.4 1.89 3.03

Inf1 Ep = 0.30 2.63 1.74 21.3+21.7 2.92 3.63

Inf2 Eg,p = 0 3.55 2.86 20.3+21.6 1.92 2.55

Inf2 Eg =0.075 3.13 2.50 0.0+12.6 1.87 2.74

Inf2 Ep = 0.30 3.31 2.26 20.1+21.9 2.44 3.32

All thicknesses and radii are presented in units of nm. The most recent experiments have assigned a thickness of 2–4 nm at most [11,34]. Pore sizes measured
experimentally range from 2–3 nm in radius [5,35] and even up to 5 nm in AFM experiments [34]. The experimental unit surface area is estimated to be 2:5nm2 [37].
doi:10.1371/journal.pcbi.1003475.t002

Figure 5. Peptidoglycan under strain. Shown in all panels is the avg17 cell-wall patch. The black bars in A–D are all 10 nm in length. (A,B) Top
view with (A) Eg~0:075 and (B) Ep~0:30. (C) Axial view (glycan strands oriented in the plane of the page). (D) Circumferential view (glycan strains
pointing into the page). (E) Normalized mass density for Eg~Ep~0 (black), Eg~0:075 (red), and Ep~0:30 (green). Thickness was taken as the width at
10% of the maximum for each curve separately. A movie of stretching for Ep = 0.20 is also provided (Movie S3).
doi:10.1371/journal.pcbi.1003475.g005
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thickness was then taken to be the stress-bearing part of the

wall, i.e., that fraction of the simulation system with a significantly

increased pressure compared to bulk water (see Fig. S1 in SI). This

thickness was as much as 1–1.5 nm less than that derived from the

mass density. Such a result is unsurprising, as the free peptide

chains, which project outward from the cell wall, will contribute to

the mass density but do not bear any stress (see SI for a detailed

discussion of the pressure profile calculations).

The maximum pore size in the cell wall in different states has

been measured indirectly by determining the largest objects that

can pass through it. For example, fluorescently labeled dextran

molecules were used to estimate the pore radius in the E. coli wall

as 2.06 nm in the relaxed state [5]. In another study, proteins up

to 100 kDa in size were released from osmotically shocked

cells, giving an estimated pore radius of 3.1 nm for stretched

peptidoglycan [35]. For the cell walls with finite glycan strand

lengths studied here, i.e., avg8, avg17, and avg26, the maximum

pore radius averaged over time was 2.05 to 2.44 nm in the relaxed

state (see Fig. S4). This radius almost uniformly increased under

strain, with the maximum observed being 3.43 nm, in agreement

with the large pore size observed in the osmotic-shock experiments

[35]. These pore sizes fall in the same range as those observed in

CG simulations [23], although neither captures the very large

pores (10-nm diameter) observed in recent AFM experiments [34],

most likely explained by cell wall-spanning macromolecular

machinery [36].

ECT images of frozen E. coli sacculi have revealed a lack of

significant ordering of the glycan strands in the relaxed state [11],

although some question remains as to whether this disorder

persists when the cell wall is under tension as in a living cell [1].

For the simulated cell walls, the ordering was quantified by

measuring the angle between segments of each strand and the

circumferential axis (see Fig. S7). The temporally and spatially

averaged angle was typically close to 00 as expected, although

persistently off-axis. The standard deviation in the angle was found

to be significant at around 20–300 (see Table 2). For avg8, avg17,

and avg26, the difference in this deviation was minimal under

strain when compared to the relaxed state, suggesting that the wall

does not become more ordered under tension. In contrast, for

constructs Inf1 and Inf2, tension in the direction of the strands

notably decreases their off-axis fluctuations. The sensitivity of these

fluctuations to tension is due to the strands’ inability to redirect the

applied stress into the peptide cross-links, reflected also in their

reduced Poisson’s ratios (see Table 1).

The average surface area per disaccharide has been estimated at

2:5nm2 based on the number of A2pm molecules in a given

bacterium [37]. We note that this area can depend on a variety of

factors, however, including ion concentration, pH, and the

presence of denaturants [2,4], although in the current study, only

neutralizing Kz ions are used (see Methods). For the different

patches examined here, the unit area for the relaxed cell wall

ranges from 2.6 to 3:1nm2, and rises to 3–4 nm2 under strain (see

Table 2). While at first, the discrepancy between experiment and

modeling appears large, it should be noted that the cell wall may

not be uniformly single layered, with up to three layers in some

regions predicted [32]. Peptidoglycan in these additional layers

would serve to lower the effective unit area for a single-layered cell

wall. Considering a range of possible cell walls from completely

single-layered to completely double-layered gives a range of

possible unit areas of 2.5–5.0 nm2. If one assumes that the initial

strand spacing used during modeling is linearly related to the

resulting unit area, this implies that the average strand spacing can

be no less than 2 nm (unit area of 2–2.67 nm2) and no more than

4 nm (unit area of 4–5.33 nm2).

Discussion

The native architecture and organization of the bacterial cell

wall are largely inaccessible to direct imaging techniques, though

at the very edge of the resolution of ECT, glycan strands could be

discerned in a Gram-negative sacculus. These strands were,

nonetheless, fragmented, and the cross-links were indiscernible

[11]. Furthermore, the imaged samples are no longer part of living

cells. For these reasons, modeling fills a critical gap between

biochemical data on the cell wall’s constituents and biophysical

data on its macroscopic properties. In this paper, patches of an

E. coli cell wall were made using a circumferential layered

model, supported by ECT imaging of both Gram-negative and

Gram-positive sacculi [4,11], plausibility arguments based on the

thickness and glycan strand length [1], and the average peptide-

peptide angle measured above (see Fig. 2B). The patches were

constructed using only a few initial parameters, including the

initial strand spacing (roughly 3 nm), degree of cross-linking

(50%), and average glycan strand length (between 8 and 26

disaccharides).

In the simulated cell-wall patches, peptidoglycan was found to

be relatively inelastic in the direction of the glycan strands, while

very elastic in the direction of the peptide cross-links. The

calculated Young’s moduli for the two directions, Eg and Ep,

respectively, were found to be in good agreement with multiple

AFM measurements [27,29], with the best agreement being found

for the constructs avg17 and avg26 (see Table 1). The average

glycan strand lengths for these two constructs also match those

measured experimentally for E. coli cells in the stationary (17.8)

and exponential growth (25.8) phases [20]. Ep determined for

live bacteria grown in aragose gel (5–15 MPa) was notably higher

than our calculations, although other factors such as the outer

membrane stiffness or incomplete gel polymerization may have

inflated the number [30].

Further evidence of the relative stretchability of the peptide

cross-links compared to the glycan strands comes from the

decrease in Poisson’s ratios as average glycan strand length

increases. At short lengths, there is a significant coupling between

the peptide cross-links and the glycan strands, allowing the former

to absorb stress from the latter. At longer lengths, however, strain

applied to the glycan strands is primarily absorbed by the strands

alone, which, due to their inability to stretch much beyond their

initial lengths, induces a large stress in the cell wall in their

direction. This resistance to expansion, thus, does not depend

on the peptide cross-links but is intrinsic to the glycan strands.

Indeed, an intriguing suggestion is that longer glycan strands can

compensate for a decrease in cross-linking percentage to maintain

cell integrity [38]. While the fraction of peptides in cross-links was

fixed near 50% for all models here, Eg is directly related to the

glycan strand length, whereas Ep is independent. Although it

remains to be shown, we hypothesize that, conversely, Ep will be

more sensitive than Eg to the degree of cross-linking.

Beyond elasticity several other quantifiable properties were

measured from the simulations, including the cell-wall thickness,

maximum pore radius, and unit area per disaccharide. Excellent

agreement with experimentally determined thicknesses [11] and

pore sizes [5,35] was found. The unit area measured in simulations

(2.6–4 nm2) implies a cell wall that is more sparse than that esti-

mated from experiment (2.5 nm2). However, those experimental

estimates are based on quantifying the total number of A2pm

molecules per cell, irrespective of their place in the cell wall [37].

Neutron-scattering experiments have led to the suggestion that the
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Gram-negative cell wall is primarily a single layer, but includes

regions of up to three layers over 25% of the surface [32].

The excess peptidoglycan in these additional, but limited and

incomplete, layers would raise the experimental unit area for a

single layer to 3.75 nm2, in significantly better agreement with

that from the models examined here, also supporting the choice of

initial strand spacing of 3 nm.

The average angle of the glycan strands with respect to

the circumferential axis was found to be near 00, although the

standard deviation was typically 20–300, even under tension (see

Table 2). The lack of alignment amongst the strands argues in

favor of a disordered circumferential model, as previously

indicated by ECT [11]. A chiral patterning of peptidoglycan has

been suggested based on recent experiments, and was attributed

to a helical movement of MreB, a proposed cytoskeletal protein

[39,40]. Recent total internal reflection fluorescence and ECT

experiments have indicated, however, that MreB moves circum-

ferentially around the cell and does not form long filaments [41–

44]. The glycan-strand angle measured here was often negative

(range of 27:80 to 0:40), which hints at a slight intrinsic chirality in

stressed peptidoglycan networks, irrespective of their assembly.

Whether this could explain the experimental results remains

unclear.

The widespread agreement between simulation and experiment

for all of the aforementioned properties, including elasticity,

thickness, pore size, and unit area, serves to validate the connec-

tion made between the modeled atomic-scale properties of

peptidoglycan and the macro-scale properties probed experimen-

tally. The present molecular models support a cell wall composed

predominantly of a single layer of peptidoglycan with glycan

strands running circumferentially around the cell in a disordered

fashion. Furthermore, assuming our model is correct, we predict

that the disorder, which is primarily due to the random orientation

of the peptide cross-links relative to the strands, persists under

native cellular conditions. While we do not consider possible

growth mechanisms here in detail, the insertion of new peptido-

glycan strands has been predicted to be a function of such

disorder, as well as mechanical tension and MreB [45,46]. To

examine tension-dependent insertion, we also created a peptido-

glycan patch in which one strand was deleted, tension applied, and

then the strand was added back to the gap that formed. Because

some cross-links between the re-added strand and the rest of the

patch formed in alternate locations, a slight decrease in the degree

of connectivity resulted and one larger pore was observed (radius

of 3.6 nm vs. 2.9 nm; see Text S1 and Fig. S5 for more details).

Because this pore may serve as a site for addition of the next

peptidoglycan strand, it cannot be assumed that larger pores are

an inevitable product of tension-dependent insertion. However,

over repeated growth cycles, the insertion mechanism used is likely

to become increasingly relevant to the large-scale structure that

develops.

While a number of other simulations of bacterial cell walls have

been carried out in recent years [23,39,47], they are all highly

coarse grained (CG), a necessary approach for modeling complete

sacculi. Coarse graining the system requires, however, that one

make a number of assumptions about the properties of individual

‘‘beads’’ in the CG model, including what underlying atoms

they represent, how they are connected and interact with each

other, and how they are affected by the surrounding environment,

e.g., solvent. Where possible such assumptions are rooted in

experimental data, although the reliability of those data and their

conversion to model parameters is not always straightforward. On

the other hand, models built starting from the atomic scale, in

which the parameters are not specialized for each application, can

utilize the same experimental data for validation, as done here.

The atomic-scale model is limited in size compared to the CG

models, however, and therefore cannot fully reproduce distribu-

tions in strand length [23] nor capture structural features beyond

the modeled scale, e.g., pore sizes up to 10-nm in diameter [34];

additionally, a visual comparison of the previous CG models with

the atomic-scale models here suggests that the latter models are

still too ordered, likely a remnant of the initial construction [23].

Thus, future iterations will be used to probe more realistic growth

models, the dependence of cellular-scale properties on the cross-

linking fraction and strand spacing, and also the interactions of

the network with various growth and remodeling enzymes and

embedded proteins.

Methods

Parametrization of novel residues and linkages
Force-field parameters for GlcNAc were developed by linking

glucose and acetamide, with those charges and parameters near the

interface determined. Similarly, MurNAc parameters were devel-

oped by linking GlcNAc with lactic acid. Charges of interfacial

atoms, namely C2 on the sugar ring and the the NH group on the

acetamide side chain in both residues along with C3 on the ring,

the Ca in the lactic acid side chain, and the bridging O3 oxygen in

MurNAc, were modified. These charges were determined from ab

initio quantum chemical calculations using a pre-release version of

the Force Field Toolkit (ffTK) plugin for VMD, following the

CHARMM parametrization procedures [48,49]. Bond, angle,

and dihedral parameters involving the interfacial atoms were

similarly determined. Because D-isoglutamate and A2pm are

nearly identical to their standard amino-acid counterparts,

glutamate and lysine, their parameters were developed solely by

analogy. The complete topology and parameter set used for

subsequent simulations is provided in Text S2 and S3.

System construction
Because simulating the actual transpeptidase reactions is

prohibited by both current knowledge of the order of events and

available computational resources, a procedure was developed to

build the peptidoglycan network with a statistical view of the

general organization. In the first step, a set of E. coli peptidoglycan

strands with the number of disaccharides chosen according to

a random Gaussian distribution of specified mean are placed

parallel to one another separated by a given distance (typically 2–

3 nm, with a +0.5 nm random deviation). Each system is fully

solvated in explicit water and sufficient Kz ions were added to the

solution to neutralize the high negative charge in the peptidogly-

can. The final atom count ranged from 100,000 to 545,000 atoms.

Initially, the glycan strands are held fixed for a 2-ns simulation

while the peptides are left free to move. Next, the trajectory is

analyzed to find when each available A2pm E-nitrogen first comes

near an available D-Ala carbonyl oxygen, and for what fraction of

time they are within this distance. Finally, the list of possible links

is ordered according to the first contact using a more stringent

distance criterion along with a minimum time within range. Links

are then added, in order, such that when a given A2pm or D-Ala

residue is linked, its entire peptide is removed from further

consideration. The time and distance criteria are chosen to target

roughly 50% cross-linking overall, as typically observed for E. coli

[1,20].

The cross-linked peptidoglycan network is first relaxed using

energy minimization, and then allowed to equilibrate during

MD simulations with no applied restraints. It should be noted that

the network is periodic, with glycan strands as well as peptides

Cell Wall Structure from Molecular Dynamics

PLOS Computational Biology | www.ploscompbiol.org 8 February 2014 | Volume 10 | Issue 2 | e1003475



covalently linked across the simulation system’s periodic bound-

aries, thus mimicking a much larger patch of cell wall (see Fig. 3).

The resulting network is simulated for at least 20 ns under

constant pressure conditions, which allows its dimensions to

fluctuate. The relaxed in-plane dimensions of each patch were

taken as the average over the last 10 ns. These dimensions are:

9.3+0.2|18.1+0.5 nm2 (avg8), 18.7+0.2|33.4+0.25 nm2

(avg17), 17.2+0.4|51.2+0.4 nm2 (avg26), 18.6+0.3|13.6+

0.1 nm2 (Inf1), and 16.8+0.3|27.4+0.2 nm2 (Inf2).

Molecular dynamics simulations
All simulations were run with the molecular dynamics package

NAMD 2.9 [50] and the CHARMM force field [51–53]. A

constant temperature of 310 K was held using Langevin dynamics;

a pressure of 1 atm in the direction normal to peptidoglycan layer

was maintained with a Langevin piston [54]. A 2-fs time step was

utilized, with short-range non-bonded interactions (12-Å cutoff)

evaluated every time step and long-range electrostatics every two

time steps using the particle-mesh Ewald method [55]. All figures

were made using VMD [56].

Supporting Information

Figure S1 Pressure profile along the glycan axis for simulation of

avg17 patch with g~0:10. The grey line is the original profile

computed in 1-Å slabs, with the black curve representing a 5-Å

running average. The red line is the stress-bearing thickness of the

peptidoglycan at 10% of the peak stress.

(PNG)

Figure S2 Pressure profiles along the z axis (normal to the

peptidoglycan layer) for avg17 with Eg~0.025, 0.05, 0.075, 0.1,

0.125, 0.15, and 0.175.

(PNG)

Figure S3 Stress as a function of strain for all simulated systems.

In each plot, the black circles are data from simulations in which

Ep~0 and Eg was varied, while the red squares are from

simulations in which Eg~0 and Ep was varied. The corresponding

lines are linear fits to the data.

(PNG)

Figure S4 Patch of cell wall with maximum-radius spheres

inscribed. Unlike in other figures, here the glycan strands are in

grey and the peptides in tan. Sphere color is assigned based on

size, with blue representing those with radius less than 1 nm, green

less than 1.25 nm, yellow less than 1.5 nm, orange less than

1.75 nm, and red greater than 1.75 nm.

(PNG)

Figure S5 Strain-dependent insertion. In both panels, the avg17

patch is under strain Ep~0:2. Glycan strands are in blue and

peptide cross-links in green. The strand selected for deletion and

later replacement is shown in red and orange. (A) Original patch.

(B) Patch after strand deletion, equilibration, and subsequent

strand replacement.

(PNG)

Figure S6 Peptidoglycan patches simulated with effectively

infinite strand lengths, colored as in Fig. 3 in the main text. The

black scale bars below are all equivalent at 10 nm in length. Final

relaxed states for (A) inf15 and (B) inf30 are shown.

(PNG)

Figure S7 Quantifying glycan-strand angle as a measure of

disorder. Shown are the NAG and NAM saccharide rings against

a transparent outline of the full cell wall viewed from the outside.

Individual angles made with the dashed line were measured for

all vectors connecting the centers of rings spaced at least four

saccharides apart, although only a subset of vectors are shown

here. These vectors were then averaged over all separations within

a given strand, over all strands within the simulated cell-wall

patch, and over all frames in the simulation trajectory. The black,

red, green, and purple vectors give positive angles, while the blue

vector gives a negative angle. The dashed line represents the cell’s

circumferential axis with which the glycan strands were initially

aligned during construction.

(PNG)

Movie S1 Simulation of a 320-mer glycan strand for 5 ns.

(MPG)

Movie S2 Relaxation of the avg17 patch after cross-linking of

the peptides.

(MPG)

Movie S3 Response of the avg17 patch after a strain of 0.2 is

applied in the peptide direction.

(MPG)

Text S1 Formal derivation of the stress-strain relationships used

in the study, expanded methods for measurements, and a

discussion of simulations of strain-dependent strand insertion.

(PDF)

Text S2 CHARMM-force field formatted topology file for the

residues unique to this study.

(TXT)

Text S3 CHARMM-force field formatted parameter file for the

residues unique to this study.

(TXT)
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