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Abstract. The rationale for using multi-model ensembles in climate change projections and impacts research
is often based on the expectation that different models constitute independent estimates; therefore, a range of
models allows a better characterisation of the uncertainties in the representation of the climate system than a
single model. However, it is known that research groups share literature, ideas for representations of processes,
parameterisations, evaluation data sets and even sections of model code. Thus, nominally different models might
have similar biases because of similarities in the way they represent a subset of processes, or even be near-
duplicates of others, weakening the assumption that they constitute independent estimates. If there are near-
replicates of some models, then treating all models equally is likely to bias the inferences made using these
ensembles. The challenge is to establish the degree to which this might be true for any given application. While
this issue is recognised by many in the community, quantifying and accounting for model dependence in anything
other than an ad-hoc way is challenging. Here we present a synthesis of the range of disparate attempts to define,
quantify and address model dependence in multi-model climate ensembles in a common conceptual framework,
and provide guidance on how users can test the efficacy of approaches that move beyond the equally weighted
ensemble. In the upcoming Coupled Model Intercomparison Project phase 6 (CMIP6), several new models that
are closely related to existing models are anticipated, as well as large ensembles from some models. We argue
that quantitatively accounting for dependence in addition to model performance, and thoroughly testing the
effectiveness of the approach used will be key to a sound interpretation of the CMIP ensembles in future scientific
studies.
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1 Characterising uncertainty in ensemble

projections

Future climate projections are uncertain for a wide range
of reasons, including the following: there is limited knowl-
edge of the future of human behaviour (including greenhouse
gases and other emissions associated with them); we have an
incomplete understanding of how the climate system works;
we have a limited ability to codify what is understood into
models; there are constraints on our ability to resolve known
processes in models due to computational limitations; there
are limitations to the measurements of the state of the cli-
mate in the past required for accurate model initialisation;
and there are inherent limits of predictability associated with
the climate system itself given its chaotic nature. While the
first of these issues is addressed by considering projections
conditional on specific emission scenarios, the other areas
of uncertainty are addressed by the use of multiple working
hypotheses (Chamberlin, 1890), in the form of multi-model
ensembles of climate projections.

By using an ensemble of climate projections from a range
of climate models, as opposed to a single model or single
simulation, researchers hope to achieve two related goals.
First, they want simulation agreement across models in
the ensemble to imply robustness, for any particular phe-
nomenon of interest or, more generally, to gain an under-
standing of the structural uncertainty in any prediction. Sec-
ond, and more ambitiously, they would like the distribution
of the behaviour of any particular phenomenon across the en-
semble to be a reasonable approximation of the probability of
its occurrence, conditional upon the assumptions described
above.

While we described six sources of uncertainty affecting
this likelihood in the first paragraph, understanding the rela-
tionship between models and the real world is aided by sort-
ing them into three categories. The first is the unpredictable
nature of human behaviour throughout the 21st century, and
is typically dealt with using discrete social, political and eco-
nomic scenarios. The other two categories of uncertainty are
conditional on the assumption of a particular emissions sce-
nario. The first of these is “epistemic uncertainty”, which re-
lates to our knowledge and understanding of the climate sys-
tem, and so encompasses uncertainties that are thought to be
reducible with more information or knowledge. If for a mo-
ment we assume that the climate system is fundamentally de-
terministically predictable, and that observational records are
spatially complete and long enough to characterise any inter-
nal variability, an ideal model ensemble distribution would
then accurately represent our uncertainty in creating and us-
ing climate models. That is, it would represent uncertainty
in our understanding of how the climate system works, our
ability to codify what is understood in models, and our ability
to resolve known processes in models due to computational
limitations – as noted above. The existence of epistemic un-
certainty in climate modelling is inevitable, as they are low

dimensional modelling systems that can never be a perfect
representation of the climate system (Box, 1979; Oreskes et
al., 1994).

Alternatively, if we assume that we did have a perfect un-
derstanding of how the climate system worked and could
codify this effectively in models, climate system stochastic-
ity and chaotic behaviour would also mean that for any given
(incomplete) observational record and model resolution, an
ensemble of solutions would exist, representing the inherent
limit of predictability in the climate system – “aleatory un-
certainty”. The distinction between epistemic and aleatory
uncertainty is relevant because the nature of model depen-
dence, and hence how we might attempt to address it, is dif-
ferent in each case.

The use of multi-model ensembles, including those from
the widely used Coupled Model Intercomparison Project
(CMIP), is common in climate science despite the fact that
such ensembles are not explicitly constructed to represent an
independent set of estimates of either epistemic or aleatory
uncertainty. In fact the ensembles are not systematically de-
signed in any way, but instead represent all contributions
from institutions with the resources and interest to partici-
pate; therefore, they are optimistically called “ensembles of
opportunity” (Tebaldi and Knutti, 2007). The purpose of this
paper is to give an overview of approaches that have been
proposed to untangle this ad-hoc ensemble sampling, and to
discuss assumptions behind the different methods as well as
the advantages and disadvantages of each approach. In the
end, the goal is to efficiently extract the information rele-
vant to a given projection or impacts question, beyond naive
use of CMIP ensembles in their entirety. While we discuss
dependence in the context of global climate model (GCM)
sampling here, there are clearly many more links in the chain
to impacts prediction, such as regional climate model down-
scaling, and these issues apply equally to other steps in the
chain (see Clark et al., 2016 for more on this). Nevertheless,
identifying the appropriate approaches for some applications
might not only help increase understanding and certainty for
projections and impacts research, but it might also help direct
limited resources to model development that does not essen-
tially duplicate the information that other models provide.

In the next section we discuss the nature of sampling
in multi-model climate ensembles. In Sect. 3, we examine
which aspects of models we might want to be independent,
as opposed to agreeing with observational data sets, and the
relevance of canonical statistical definitions of independence.
Section 4 details attempts to define model independence in
terms of model genealogy, whereas Sect. 5 discusses defi-
nitions based on inter-model distances inferred from model
outputs. We discuss the relationship between model inde-
pendence and performance in more detail in Sect. 6, be-
fore considering the role of model independence in estimat-
ing aleatory uncertainty in Sect. 7, and how this helps dis-
tinguish and contextualise different ensemble interpretation
paradigms that are evident in the literature. In Sects. 8 and
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9, we examine the critical question of how best to test the
efficacy of any post-processing approach to address model
dependence or performance differences, including weighting
or model sub-selection. We then make recommendations and
conclusions in Sects. 10 and 11.

2 Ensemble sampling to address uncertainties

Despite the fact that state-of-the-art ensembles such as CMIP
are not constructed to provide independent estimates, they do
sample both epistemic and aleatory uncertainty by integrat-
ing an arbitrary number of emissions scenarios, global cli-
mate models, physics perturbations and initial-condition re-
alisations. This leaves practitioners to interpret the ensemble
distribution very much on a case-by-case basis, and decom-
posing these uncertainties is not necessarily straightforward
(see Hawkins and Sutton, 2009, 2011; Leduc et al., 2016a).
For instance, if only a subset of the CMIP5 ensemble is con-
sidered, the way simulations are selected along the three axes
(scenario, model and realisation) will modulate the relative
role of each source of uncertainty. This effect is implicit
even when considering all available simulations because the
broader ensembles such as CMIP are generally constructed
based on an the ability of the international modelling cen-
tres to contribute, rather than a systematic sampling strategy
(Tebaldi and Knutti, 2007).

In all of these cases, the motivation for using an ensem-
ble rather than a single simulation is to obtain multiple in-
dependent estimates of the quantity under consideration. The
weather forecasting community has developed metrics that
give useful information about ensemble spread interpreted
as aleatory uncertainty (e.g. rank frequency histograms or
rank probability skill scores); these remain necessary but
not sufficient conditions for assessing the independence of
aleatory uncertainty estimates (see Hamill, 2001; Weigel et
al., 2007). In particular, the effect of epistemic uncertainty
on these metrics is difficult to interpret. Generally speaking,
there is no established and universally accepted methodology
to define whether or not ensemble members are independent.
The implications of a lack of independence are clear: agree-
ment within an ensemble might not imply robustness, and
similarly, the distribution of ensemble members is unlikely
to provide useful information about the probability of out-
comes. Indeed, recent work by Herger et al. (2018a) showed
that sub-selection of ensemble members by performance cri-
teria alone, without consideration of dependence, can result
in poorer ensemble mean performance than random ensem-
ble member selection. Despite this heuristic understanding
of the perils of model dependence, a practical definition of
model independence is not straightforward, and is problem
dependent. In reviewing the literature here, we do not aim to
provide a single canonical definition of model dependence,
but instead contextualise the range of definitions and applica-
tions that have been used to date in a single conceptual frame-

work, and reinforce the need for thorough out-of-sample test-
ing to establish the efficacy of any approach for a given ap-
plication.

3 What is meant by model independence?

Although the statistical definition of independence of two
events A and B is strictly defined as P (A|B) = P (A) (as
dealt with in some depth by Annan and Hargreaves, 2017), it
is not immediately clear that there is an objective or unique
approach to applying this definition to climate projection en-
semble members. Indeed there is an obvious way in which
models should be dependent – they should all provide a good
approximation to the real climate system. Noting that each
model is a myriad of discrete process representations makes
it clear how complicated any categorical statement about
model independence within an ensemble needs to be. For
those process representations where models exhibit high fi-
delity (i.e. where there is sufficient observational constraint
to ascertain this), models should be expected to agree in
their representation. That is, where we have clear observa-
tional evidence, we do not expect a model to exhibit epis-
temic departures from the true physical system. It is only in
the cases where there is insufficient observational constraint
to diagnose such an epistemic departure, or those where no
model can avoid one, that models should provide indepen-
dent process representations (e.g. parameterisation of known
processes because of scale considerations or empirical ap-
proximations for complex or incomplete process representa-
tions).

Therefore, it might seem that the limited case of ascer-
taining whether two models are independent with respect to
a specific process representation that is weakly constrained
by observational data would be relatively easy to verify.
If the two models take different approaches to the under-
constrained process, we might argue that they are indepen-
dent with respect to it. However, this is clearly unsatisfac-
tory. First, we have no context for how different treatments of
this process might legitimately be, or the ability to quantify
this difference. Next, looking for evidence of the indepen-
dence of these process representations via the impact they
have on simulated climate is also fraught, as we are reliant
on the effect they have within a particular modelling system.
Two radically different representations of a process might not
elicit different responses in a modelling system if the mod-
elling system is insensitive to the process in question. Alter-
natively, one representation may result in artificially strong
model performance (and so misleadingly imply fidelity) if it
effectively compensates for other biases within the modelling
system. This is an example of epistemological holism well
documented by Lenhard and Winsberg (2010). This prob-
lem is further compounded by the reality of models being
very large collections of process representations, where only
a subset of these might be independent. In this context, a cat-
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egorical statement about overall model independence seems
far too simplistic. It also means that an assessment of depen-
dence will have different outcomes depending on the phe-
nomena and question being investigated, as different parts of
a model may affect the problem under consideration.

4 Independence as distinct development paths

Understanding the evolutionary history of models might also
seem like a way to characterise model independence (e.g.
Fig. 5 in Edwards, 2011). This a priori view of independence
is that models that share common ancestry might be deemed
partially dependent – similar to the idea of evolutionary
cladistics. The analogy is not perfect, as modelling groups
have borrowed discrete components from each other over
time, but nevertheless the lineage of any particular model
snapshot at a point in time might theoretically be traced. To
date, with the exception of Boé (2018) who utilises version
number as a proxy for differences between model compo-
nents, we are not aware of any studies that have comprehen-
sively tried to infer independence from the history of model
development, most likely because of the paucity of informa-
tion on each model’s history, including the lack of freely
available source code. Boé (2018) accounted for the num-
ber of shared components by GCMs and quantified how the
replication of whole model components, either atmosphere,
ocean, land or sea ice, influenced the closeness of the results
of different GCMs and could show a clear relationship, where
even a single identical component had a measurable effect.
This was shown to be true for global as well as regional re-
sults, although no component appeared to be more important
than the others.

While defining model independence a priori is desirable, it
quickly becomes difficult and time consuming for large en-
sembles such as CMIP, particularly given the lack of trans-
parency regarding precisely what constitutes a given model,
the difficulty deciding whether or not components are iden-
tical and the role of tuning (see Schmidt et al., 2017).
Boé (2018) used version numbers, considering components
to be different when the major revision number was differ-
ent, but not if the minor revision number was different (for
example CLM4 and CLM4.5 would be deemed dependent).
However, it is unlikely that the approach to version num-
bering is consistent across modelling centres, meaning that
two components might be very different even if they share
a major version number, or vice versa. Furthermore, how
we might account for the effect of shared model histories
within an ensemble if we had all this information available
does not seem obvious, beyond the categorical inclusion or
exclusion of simulations. As discussed above, an ideal def-
inition of model dependence would only include variability
in process representations that are not tightly observationally
constrained, so that several models using the Navier–Stokes

equations might not represent dependent treatment of pro-
cess, for example.

5 Independence as inter-model distance

Alternatively, dependence could be defined a posteriori in
terms of the statistical properties of model output (perhaps
more analogous with Linnaean taxonomy). This is the ap-
proach taken by Masson and Knutti (2011) and Knutti et
al. (2013), who used hierarchical clustering of the spatio-
temporal variability of surface temperature and precipita-
tion in climate model control simulations to develop a “cli-
mate model genealogy”. Perhaps unsurprisingly, they found
a strong correlation between the nature of model output and
shared model components. While the family tree of models
in the above-mentioned work shows that there is dependence
between models, it does not suggest how to account for its
effect.

Several studies have defined model independence using a
metric that defines scalar distances between different model
simulations. Abramowitz and Gupta (2008) proposed con-
structing a projected model distance space by defining pair-
wise model distances as the overlap of probability density
functions (PDFs) of modelled variables between model pairs.
Model behaviour was clustered using self-organising maps
(Kohonen, 1989), and the overlap of the model output PDF
pairs for each cluster was determined. PDF overlap at each
cluster was then weighted by the occurrence of cluster con-
ditions to determine model–model distances. Sanderson et
al. (2015a) proposed constructing a projected model distance
space by defining pairwise model distances using the rows of
an orthogonal matrix of model loadings in the singular value
decomposition of seasonal climatological anomaly values of
a range of climate variables. Knutti et al. (2017) and Lorenz
et al. (2018) used pairwise root mean square distances be-
tween model simulations in one or more variables to assess
dependence.

All of these approaches allow the definition of distance
between different model simulations and observational data
sets of commensurate variables to be defined. None verified
that the space created met formal metric space criteria in
the mathematical sense: each might violate the triangle in-
equality (d(a, c) ≤ d(a, b) + d(b, c)), where d(a, b) defines
the distance between models a and b, or the identity of in-
discernibles (d(a, b) = 0 if and only if a = b), for example,
and describing these measures as “distances” could then po-
tentially be misleading. It is unclear whether these potential
issues arise or are relevant in practice.

Inter-model distances may also be problematic as mea-
sures of independence because they are holistic. That is,
inter-model distances reflect the combined effect of all pro-
cess representations that affect the chosen metric – includ-
ing both those processes strongly supported by observational
data and those where a lack of observational data might al-
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low a departure from the true system behaviour (where we
might only want to define independence in terms of the lat-
ter, as noted above). Further, by examining model output that
is the result of the interaction of all of these process repre-
sentations (that is, just the impact variable values in model
output), they ignore the possibility that their combined effect
might lead to equifinality, i.e. different models may arrive at
very similar impact variable values through different mech-
anisms and feedbacks. This situation is an example of the
identity of indiscernibles being violated, and so might lead
to models being inappropriately deemed dependent, although
this is less likely as the dimensionality of a metric increases.
This can to some extent also be tested in cases where models
are known to share important components.

Conversely, a strength of the inter-model distance tech-
niques is that an observational estimate can effectively be
considered as just another model. Specifically, they allow
us to measure distances between different observational es-
timates and compare them to inter-model distances, and per-
haps visualise this in a low dimensional projected space (as
shown in Fig. 1).

There is also a growing amount of work in the statisti-
cal literature that has not been applied to large model en-
sembles such as CMIP, but to conceptually related problems,
which could more comprehensively define model–model and
model–observation similarities (e.g. Chandler, 2013; Smith
et al., 2009). These approaches view model outputs and
observations as realisations of spatial, temporal or spatio-
temporal random processes; hence, they can make use of the
powerful framework of stochastic process theory. Combined
with a Bayesian implementation, these approaches could in
principle address many of the shortcomings of relatively sim-
plistic techniques, such as those in the paragraphs above, like
the need to use a single metric or to apply a single weight for
each model or simulation. They could also allow for more
comprehensive and transparent uncertainty quantification as
part of the formulation of dependence. However, there are
practical questions related to computation and details of the
application, which are yet to be addressed.

6 Independence and performance

Figure 1 also highlights why an assessment of model inde-
pendence can be at least partly conditional on model perfor-
mance information. Suppose, for example, that a “radius of
similarity” was used to identify dependent models in one of
the inter-model distance spaces defined in the section above,
as illustrated in Fig. 1 by the red shaded regions around mod-
els (this idea is raised in both Abramowitz, 2010 and Sander-
son et al., 2015a, b). In Fig. 1a, models 1 and 4, by virtue of
being relatively close together might be deemed dependent,
and so somehow down-weighted relative to models 2 and 3.

In Fig. 1b the model positions are identical but observa-
tional data sets now lie between models 1 and 4, making the
picture less clear. Models 1 and 4 both appear to perform very
well (as model–observation distances are relatively small),
and as they are spread around observational estimates, might
be considered to be independent. In this sense, inter-model
distances alone in the absence of observational data are an in-
complete proxy for model independence. Both Abramowitz
and Gupta (2008) and Sanderson et al. (2015a, b) address
this issue by proposing model independence weights that
scale cumulative model–model distances for an individual
simulation by its proximity to observations. However, nei-
ther study explicitly addressed how multiple observational
estimates might be incorporated, although there is also no
theoretical barrier to this. Note that there is no implicit as-
sumption here that observational estimates are close together,
just that categorical statements about model dependence are
less clear if they are not.

An alternative approach that combines model distance and
performance information is to define model dependence in
terms of model error covariance or error correlation (e.g. Jun
et al., 2008a, b; Collins et al., 2010; Bishop and Abramowitz,
2013). This has the advantage that “error” only reflects devi-
ations from an observational product (rather than similarity
in model outputs per se), and while it still suffers from the in-
tegrative holism noted in the section above (that is, that error
covariances are sensitive only to the integrated effect of all
process representations), differences in the structure of error
between models are likely to reflect differences in the sec-
tions of model representation that are not tightly constrained
by observations. Incorporating different observational esti-
mates in this case, unfortunately, is more complicated.

A little thought about the values of error correlation that
we might expect between independent models reveals how
problem-dependent accounting for model dependence can
be. If, for example, we examine gridded climatological (time
average) values of a variable of interest, then under the
(flawed) assumption that an observational estimate is per-
fect, and the period in question is stable and long enough
to define a climatology, departures from observed climatol-
ogy might reflect a model’s inability to appropriately simu-
late the system and so represent epistemic uncertainty. In this
case, we might suggest that independent simulations should
have pairwise zero error correlation, as is the case for inde-
pendent random variables, since we might a priori believe
climatology to be deterministically predictable (that is, that a
perfect model should be able to match observations). Just as
the mean of n uncorrelated random variables with variance 1
has variance 1/n, we should expect that the ensemble mean
of independent models defined in this way would (a) perform
better than any individual simulation, and (b) asymptotically
converge to zero error as the size of the ensemble of inde-
pendent models (with zero error correlation) increases. This
is illustrated in Fig. 2a, which shows 30 yellow lines, each of
which is comprised of 50 draws from the normal distribution
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Figure 1. A two-dimensional projection of an inter-model distance space, showing different models and observational estimates, with a
radius around models that could be used to determine model dependence. The radius around observations might be related to the uncertainty
associated with a given observational estimate. Panels (a) and (b) illustrate how the relative position of observational data sets in this space
could complicate this definition of model dependence.

N (0, 0.125). Each of these lines is a conceptual representa-
tion of error from a different model, where zero error would
be shown as the horizontal black line (imagine, for exam-
ple, that the horizontal axis represented different points in
space). The red line shows the mean of these 30 model er-
ror representations, and clearly has significantly reduced er-
ror variance. This understanding of independence within an
ensemble has been dubbed the “truth-plus-error” paradigm
(see Annan and Hargreaves, 2010, 2011; Knutti et al., 2010b;
Bishop and Abramowitz, 2013; Haughton et al., 2014, 2015),
and has often been assumed rather than explicitly stated (e.g.
Jun et al., 2008a, b).

7 Independence and aleatory uncertainty

But the truth-plus-error framework is not always appropri-
ate. Knutti et al. (2010b) noted that the ensemble mean of
the CMIP3 ensemble did not appear to asymptotically con-
verge to observations as ensemble size increased. Gleckler et
al. (2008) also show that the variability of the ensemble mean
is much less than individual models or observations – and
so does not represent a potentially real climate. If we wish
to consider ensemble simulations where unpredictability or
aleatory uncertainty is an inherent part of the prediction, we
no can longer expect that the system might be entirely deter-
ministically predictable. This includes, for example, any time
series prediction where internal climate variability between
models and observations is out of phase (e.g. CMIP global
temperature historical simulations or projections from 1850
initialisation), or climatology (mean state) prediction where
the time period is too short to be invariant to initial state un-
certainty. In these cases we accept that some component of
the observational data is inherently unpredictable, even for

a perfect model without any epistemic uncertainty. Ensem-
ble spread in this case might ideally give an indication of the
amount of variability we might expect from the chaotic na-
ture of the climate system given uncertain initial conditions,
and could be investigated using initial-condition ensembles
of climate change projections (Kay et al., 2015; Deser et al.,
2016) as well as in the context of numerical weather pre-
diction ensembles (e.g. Hamill et al., 2000; Gneiting and
Raftery, 2005).

A simple illustration of the role of aleatory uncertainty is
shown in Fig. 3, taken from the Technical Summary of WG1
in the Intergovernmental Panel on Climate Change (IPCC)
Fourth Assessment Report. Internal variability within each
climate model simulation (yellow lines) and observations
(the black line) is out of phase, so that the variance of the
multi-model mean (the red line) is significantly less than in-
dividual models or the observations. While ensemble spread
here represents a combination of both epistemic and aleatory
uncertainty, it should be clear that the lack of predictability
caused by internal variability removes the expectation that
the model ensemble should be centred on the observations.

A synthetic example illustrates this point. If we assume
that observations of global mean temperature anomalies in
Fig. 3 are well approximated by the sum of a linear trend and
random samples from N (0, 0.125) – the black line in Fig. 2b
– then an ensemble of independent models that adhered to
the truth-plus-error paradigm might look like the yellow lines
in Fig. 2b. Each of these are the same “models” shown in
Fig. 2a, but this time they are presented as a time series and
shown as random deviations about the “observations” (rather
than the zero line; “models” are shown instead of the model
error). It is perhaps no surprise in this situation that the mean
of this 30 member ensemble (the red line) very closely ap-
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Figure 2. (a) The “truth-plus-error” paradigm illustrated using random samples from N (0, 0.125) (yellow lines) as a proxy for error in
models in an ensemble, with “observations” in black and the multi-model mean in red. (b) The same “models” shown as deviations from
“observations” approximated by a noisy linear trend. In contrast, panel (c) illustrates model error and observation time series as draws from
the same distribution, both shown as noise about a linear trend, and (d) displays the effect of applying common forcing perturbations to both
models and observations. The same draws from N (0, 0.125) are used in (a)–(d).

proximates the “observations”. This is clearly very different
to the role of the ensemble mean we see in Fig. 3 (red curve).

An alternative to the truth-plus-error paradigm is to con-
sider observations and models as being draws from the same
distribution (e.g. Annan and Hargreaves, 2010, 2011; Bishop
and Abramowitz, 2013; Abramowitz and Bishop, 2015). Fig-
ure 2c shows the same “observations” as Fig. 2b, but this
time represents models in the same way as observations –
the deviations from the linear trend (instead of deviations
from the observations, as in 2b). In this case we can see that
the ensemble mean (again in red) has much lower variabil-
ity than observations, as seems evident for the first half of
the 20th century in Fig. 3. By introducing external forcing
common to the representations of models and observations
in Fig. 2 – three step deviations that gradually return to the
linear trend, intended to approximate volcanic forcing at the
locations shown by grey lines in Fig. 2d – we can produce an

entirely synthetic ensemble that very closely approximates
what is shown in Fig. 3.

There are of course many reasons why what is shown in
Fig. 2d is not an appropriate representation of models or ob-
servations. Collections of simulations such as CMIP are in
reality a mix of epistemic and aleatory uncertainty, not just
the aleatory uncertainty shown in Fig. 2. The nature of the
perturbation that results from external forcing (such as the
faux volcanoes in Fig. 2d), as well as the nature of internal
variability itself, are also likely functionally dependent upon
forcing history, and models exhibit different trends. Never-
theless, this simplistic statistical representation of ensemble
spread closely approximates the nature of the CMIP ensem-
ble.

Bishop and Abramowitz (2013) argued that independent
climate simulations should have the statistical properties of
the “models” in Fig. 2d. Specifically, as error-free observa-
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Figure 3. Figure TS.23 taken from the Technical Summary of WG1
in the IPCC Fourth Assessment Report, showing the multi-model
mean’s decreased variability (red) relative to individual models (yel-
low) and observations (black), as well as the effect of volcanic forc-
ing on ensemble behaviour.

tions and perfect models (i.e. without epistemic uncertainty)
would both be draws from the same distribution (they named
samples from this climate PDF “replicate Earths”), they
should both approximate the same level of variability about
the mean of this distribution (which represents the forced sig-
nal), given enough time. They attempted to partially account
for epistemic uncertainty in the CMIP ensemble by offering
a transformation of models so that the transformed ensem-
ble strictly adhered to two key statistical properties of this
distribution defined entirely by aleatory uncertainty. These
were, given a long enough time period, that (a) the best esti-
mate to any particular replicate Earth is the equally weighted
mean of a collection of other replicate Earths (that is, CPDF
mean), and (b) the time average of the instantaneous variance
of this distribution (the CPDF) across replicate Earths should
approximate the variance of any individual replicate Earth
about the CPDF mean over time. By treating observations as
the only true replicate Earth, they transformed the CMIP en-
semble to be replicate-Earth-like, with respect to these two
properties.

Annan and Hargreaves (2010) also proposed that obser-
vations and models are best considered as draws from the
same distribution. The meaning of ensemble spread in the
“statistically indistinguishable” paradigm they propose, how-
ever, is not immediately clear, and is not explicitly stated in
Annan and Hargreaves (2010). They do not discuss internal
variability, but in a later blog post suggested spread repre-
sented “collective uncertainties about how best to represent
the climate system”, which seems to imply epistemic uncer-
tainty. Both Annan and Hargreaves (2010) and Bishop and
Abramowitz (2013) suggested that pair-wise error correla-

tion between independent model simulations should be 0.5,
as the observations are common to both.

Thus, categorical separation of epistemic and aleatory un-
certainty is challenging, as it requires an accurate quantifica-
tion of internal variability. While we have some tools that can
help us estimate internal variability, ultimately we have mea-
surements of just one realisation of a chaotic Earth system,
and internal variability is affected by the state of the Earth
system and forcing conditions (Brown et al., 2017). There
is also evidence that the internal variability in some mod-
elling systems (i.e. initial conditions ensembles – see Collins
et al., 2001; Deser et al., 2012) may not be a good repre-
sentation of internal variability in the climate system (e.g.
Haughton et al., 2014, 2015). Each of the techniques that
give an indication that ensemble spread is similar to internal
variability, such as rank histograms (Hamill, 2001), spread-
skill scores in forecasts, the Brier skill score (Brier, 1950;
Murphy, 1973) and reliability diagrams (Wilks, 1995), also
have the potential for misinterpretation (e.g. regional biases
in an ensemble appearing as under-dispersiveness). In addi-
tion, timescales of internal variability are difficult to ascertain
from our sparse and short observational record, but there is
some evidence that it may operate on very long timescales
(e.g. James and James, 1989; Ault et al., 2013; PAGES 2k
Consortium, 2013). Therefore, while we have techniques for
assessing and accounting for model dependence of epistemic
uncertainty that try to nullify aleatory uncertainty by averag-
ing over time, the potential for unquantified aleatory uncer-
tainty to compromise this strategy remains real.

8 Robust strategies for addressing model

dependence

Given that a priori measures of independence have yet to
prove robust and that aleatory uncertainty could confound
the ability to interpret model–observation distance as purely
epistemic uncertainty, how might proposals to account for in-
dependence be interpreted? Recent experience suggests cau-
tion: accounting for dependence or performance differences
within an ensemble can be very sensitive to the choice of
variable, constraining observational data set, metric, time pe-
riod and the region chosen. Herger et al. (2018a), for ex-
ample, detail an approach that optimally selected subsets
of an existing ensemble for properties of interest, such as
the root mean square (RMS) distance of the sub-ensemble
mean from observations of a variable’s climatology. The re-
sulting subsets are sensitive to nearly every aspect of the
problem, including the following: which variables are con-
sidered; whether the weighting is inferred from climatologi-
cal fields, time and space variability, or trends; and whether
subsets are chosen before or after bias correcting model pro-
jections. Furthermore, for a given variable notably different
sub-ensembles are obtained when using different constrain-
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ing observational estimates; this is even found for relatively
well-characterised quantities such as surface air temperature.

These types of results are familiar to researchers who
utilise automated calibration techniques, and reinforce that
post-processing to account for dependence or performance
differences within an ensemble, whether by weighting or
sub-selecting ensemble members, is essentially a calibration
exercise. It also reinforces that thorough out-of-sample test-
ing is needed before one might be confident that weighting or
ensemble sub-selection will improve climate projections or
an impacts assessment. It is clear that most post-processing
approaches improve ensembles as intended utilising the data
used to derive them (that is, they work well in-sample, typi-
cally using historical data). But how can we have confidence
that this is relevant for the projection period?

In the context of climate projections we have at least two
mechanisms to assess whether the observational data and ex-
perimental set-up used to derive the weights or ensemble
subset provide adequate constraint for the intended applica-
tion. The first is a traditional calibration–validation frame-
work, where available historical data is partitioned into two
(or more) sets, with the first used to calibrate weights or a
sub-ensemble, and the second used to test their applicabil-
ity out-of-sample (e.g. Bishop and Abramowitz, 2013). For
most regional to global climate applications, this will often
be limited to 60 or fewer years of high quality observational
data – depending on the region and variable – and if the in-
tended application period is far enough into the future, the
nature of climate forcing in the calibration and validation pe-
riods might not be sufficiently representative for the appli-
cation. For some quantities, palaeoclimate records also offer
the potential for calibration–validation testing but their ap-
plication to weighting and/or sub-selection has been limited
(see Schmidt et al., 2014).

The second approach is model-as-truth, or perfect model
experiments (e.g. Abramowitz and Bishop, 2015; Boeì and
Terray, 2015; Sanderson et al., 2017; Knutti et al., 2017;
Herger et al., 2018a, b). This involves removing one of the
ensemble members and treating it as if it were observa-
tions. The remaining ensemble is then calibrated (that is,
weighted or sub-selected) towards this “truth” member, using
data from the historical period only. The calibrated ensemble
can then be tested out-of-sample in the 21st century as the
“truth” member’s projections are known. The process is re-
peated with each ensemble member playing the “truth” role,
and in each case, the ability of the sub-selection or weighting
to offer improvement over the original default ensemble is as-
sessed. A weighted ensemble can be compared to the equally
weighted original ensemble mean; in the case of ensemble
sub-selection, comparison can be with the entire original en-
semble, or a random ensemble of the same size as the sub-
set. Results are synthesised across all model-as-truth cases
to gain an understanding of the efficacy of the particular ap-
proach being tested.

Perfect model tests are most informative when the sim-
ilarity of ensemble members is approximately equal to the
similarity between observations and ensemble members, in
metrics that are relevant to the calibration process and appli-
cation. For example, if a model-as-truth experiment were per-
formed using all CMIP ensemble members, including mul-
tiple initial conditions members from the same model, the
ensemble calibration process could fit the “truth” simulation
much more closely than models are likely to be able to fit
observational data. That is, weighting or sub-selection would
favour any simulations from the same model as the truth en-
semble member, so that the experiment’s success might be
misleading. This suggests eliminating obvious duplicates be-
fore the perfect model tests (see e.g. Fig. 5 in Sanderson
et al., 2017). It is also worth emphasising that the motiva-
tion for this process is not to test the weights or ensemble
subset as far out-of-sample as possible, but rather to ensure
that the calibration process is appropriate for its intended
application. Note that biases shared among models, espe-
cially those which affect projections, will increase agree-
ment among models relative to observations, so that model-
as-truth experiments should be treated as a necessary but not
sufficient condition for out-of-sample skill.

Thorough out-of-sample testing is important for a number
of different reasons. The first, and perhaps most obvious, is
to ensure against overfitting due to sample size. We need to
make certain that the weighting or sub-selection approach we
use has been given enough data to appropriately characterise
the relationship between the models we are using, especially
if there are many of them, and the constraining observational
data. A naive rule of thumb for any simple regression prob-
lem is roughly 10 times the number of data points as there
are predictors (models in this case). While covariance be-
tween data points can complicate this rule, it should give an
indication of whether any poor performance in out-of-sample
testing is simply due to a paucity of observational data.

A second reason is “temporal transitivity”, making sure
that the time period and timescale used to calibrate the
weights or ensemble subset provides adequate constraint on
the intended application period and timescale. For example,
Herger et al. (2018a) found that selecting an ensemble sub-
set to minimise climatological surface air temperature bias
in the historical period (1956–2013) provided good out-of-
sample performance in 21st century (2013–2100) model-as-
truth experiments. When this was repeated using linear sur-
face air temperature trend instead, good in-sample improve-
ments were not replicated out-of-sample. That is, the biases
in climatology had high temporal transitivity, or predictabil-
ity out-of-sample, while the biases in trend did not. This ex-
ample illustrates why temporal transitivity is particularly im-
portant in the case of future projections. It is possible to have
two models that have similar behaviour in current climate, for
example because the models have both been developed with
the same observational data sets for comparison, yet have
very different climate sensitivities. As well as temporal pe-
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riod transitivity, one might also consider transitivity between
one timescale and another (e.g. the relevance of calibration
using monthly data for daily extremes).

The third aspect of out-of-sample testing to consider is
“metric transitivity”. That is, ensuring that the metric used to
weight or sub-select the ensemble constrains the quantity of
interest that the ensemble will ultimately be used for. There
are many examples of published work where metric transi-
tivity was simply assumed. Abramowitz and Bishop (2015)
assumed that historical RMS distance in gridded time and
space fields of surface air temperature and precipitation in-
formed global mean temperatures and end-of-21st-century
projections. Sanderson et al. (2015) assumed that optimising
for dependence in a multivariate seasonal climatology pro-
vided a constraint on climate sensitivity. There is of course
no a priori reason why these assumptions should be valid, and
indeed they could be tested with appropriate model-as-truth
analysis.

Given observational constraints, spatial transitivity may
also be relevant to out-of-sample testing, depending on the
particular application. This could apply both to calibrating
using one region and testing at another, and calibrating at
one spatial scale and applying at another. For example, Hobe-
ichi et al. (2018) tested the ability of the weighting approach
outlined in Bishop and Abramowitz (2013) to offer perfor-
mance improvements in locations not used to derive weights,
as well as the ability of site-scale measurements to improve
global 0.5◦ gridded evapotranspiration estimates. One might
also evaluate CMIP simulations at coarse spatial scales as a
way of deciding which subset of simulations to regionally
downscale, making the assumption that low resolution per-
formance will translate to downscaled performance.

The need for out-of-sample testing to ensure that overfit-
ting and transitivity are not issues for a given application ap-
plies equally to the use of bias correction techniques (e.g.
Macadam et al., 2010; Ehret et al., 2012; Maraun, 2016),
emergent constraints (Nijsse and Dijkstra, 2018) and indeed
to the entire chain of models used in downstream climate ap-
plications (e.g. Clark et al., 2016; Gutiérrez et al., 2018), al-
though there are very few examples of this being done.

9 Towards generalised ensemble calibration

The sensitivity of weighting and sub-ensemble selection to
metric, variable, observational estimate, location, time and
spatial scale, and calibration time period underscores that
model dependence is not a general property of an ensemble,
but is application-specific. Dependence is also not a property
of a model simulation per se, as performance is, but is rather
a property of the simulation with respect to the rest of the
ensemble. Nevertheless, in instances where a very specific
variable and cost function are known to be the only prop-
erties of interest, it is quite likely that, with an appropriate

out-of-sample testing regime, a solution to improve projec-
tion reliability can be found using existing techniques.

However, if we decided that application-specific calibra-
tion was not generally satisfactory, and that we wanted to try
to calibrate a given CMIP ensemble for model dependence
without knowing the intended application, how would we do
this in a way that would be defensible? Given the increas-
ing number and range in quality of CMIP contributions, it
might be useful to suggest a strategy for general ensemble
pre-processing for a range of applications.

We propose that using one model from each modelling in-
stitution that submitted to CMIP is the best general-purpose
selection strategy. This strategy has proved a reasonable ap-
proximation to more detailed quantitative approaches that
account for model dependence in the CMIP5 ensemble
(Abramowitz and Bishop, 2015; Leduc et al., 2016b). This
“institutional democracy” approach requires two important
caveats, namely care in excluding models that are near-
copies of one another submitted by different institutions and
equal care in including models from the same institution with
significantly different approaches or assumptions. Given due
diligence, institutional democracy is a simple but reason-
ably effective approach to accounting for model dependence
which, we argue, provides a better basis on which to calcu-
late a naive multi-model average for generic purposes such
as projection best estimates in IPCC reports.

Institutional democracy as an a priori approach is not
bound by any particular statistical metric, variable or obser-
vational estimate. However, as institutions increasingly copy
or co-develop whole models or components, there is no guar-
antee that such an approach will remain effective in the fu-
ture.

The approach is similar in spirit to one proposed by
Boé (2018) to account for the number of shared compo-
nents by GCMs. Boé’s approach quickly becomes difficult
and time consuming for large ensembles such as CMIP, given
the lack of transparency regarding precisely what constitutes
different models and the role of tuning. Using this informa-
tion to account for dependence would also likely be difficult,
as categorical inclusion or exclusion of simulations seems
the only option. Also we note that shared history as it per-
tains to dependence should only include process representa-
tions that are not tightly observationally constrained (so that
Navier–Stokes equations might not represent dependent pro-
cess treatment, for example), as discussed above – model
convergence might well imply accuracy, rather than depen-
dence. We note that these issues apply equally to version
democracy (as per Boé, 2018) and institutional democracy.

A more comprehensive a posteriori approach to gener-
alised calibration might be to simultaneously optimise for all
of the variables, metrics and observational estimates believed
to be informative. The simplest way to do this is to com-
bine all the relevant cost functions into a single cost func-
tion for optimisation, resulting in a single optimal ensemble,
or set of weights for model runs in the ensemble. This solu-
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tion, while tractable, has at least two potential disadvantages.
First, it makes assumptions about the relative importance of
each term in the final cost function that are hard to justify.
Different variables and metrics have different units, so these
need to be standardised in some way. Given that the shapes
of the distributions of different variables can be very differ-
ent, the approach to standardisation will impact the nature of
the final weights or ensemble sub-selection.

Second, this approach risks underestimating uncertainty. If
calibration against one key cost function (for example, sur-
face air temperature climatology) gives a very different en-
semble subset or weights to calibration against another (say
precipitation extremes), the discrepancy between these op-
timised outcomes is important information about how cer-
tain our optimal estimates are. If, for example, there was a
universally independent subset within the larger ensemble,
it would be the same subset for both variable optimisations.
The discrepancy between them is an indication of the degree
to which our model ensemble is not commensurable with the
observations of the climate system we are trying to simulate.
As noted above, one way to try to minimise overconfidence
(underestimated uncertainties) is to use model-as-truth tests
to test for variable and metric transitivity, although this can-
not avoid the issue of shared model assumptions.

These difficulties may be avoided if we take a more ex-
pansive view of what optimisation means. A broader ap-
proach could use multiple criteria separately (e.g. Gupta et
al., 1999; Langenbrunner and Neelin, 2017) in the context
of ensemble sub-selection. One might, for example, exam-
ine the spread of results from both the surface air tempera-
ture climatology optimal ensemble and the precipitation ex-
tremes optimal ensemble when considering use of either vari-
able. More generally, we propose that the optimal ensem-
bles obtained from optimising against each relevant data set–
variable–metric combination of interest are all effectively of
equal value. A generalised ensemble calibration would utilise
all of these ensembles for projection – that is, it would use an
ensemble of ensembles – and ideally employ a Pareto set of
ensembles. This would give a far better description of the
uncertainty involved with projection, as uncertainty due to
models’ inability to simultaneously simulate a range of as-
pects of the climate system can now be expressed as uncer-
tainty in a single variable and metric. This remains a proposal
for thorough exploration at a later date.

10 Recommendations and next steps

As we have discussed, it is unlikely that model dependence
can be defined in a universal and unambiguous way. In the
absence of easy and agreed-upon alternatives, many studies
still use the traditional “model democracy” approach; indeed,
it seems unlikely that a “one size fits all” approach or list of
good and independent models would be meaningful. How-
ever, we argue that users do have a suite of out-of-sample

testing tools available that allow the efficacy of any weight-
ing or sub-sampling approach to be tested for a particular
application. These should be applied to understand the valid-
ity of both the technique itself and the intended application in
terms of metric, temporal and spatial transitivity, as discussed
above. If out-of-sample results are robust, they give an indi-
cation of the degree to which dependence affects the prob-
lem at hand, by way of contrast with the equally weighted
status quo. As many of the studies discussed above have
shown, accounting for dependence can give markedly differ-
ent projections. This is particularly important for the upcom-
ing CMIP6, where the model dependence issue is expected
to increase. Even the somewhat naive approaches of institu-
tional democracy (Leduc et al., 2016b) or component democ-
racy (Boeì, 2018) are likely to be less biased approaches to
ensemble sampling. Nonetheless, we discourage the use of
weighting or sub-sampling without out-of-sample testing, as
the risks may well outweigh the potential benefits (Weigel et
al., 2010; Herger et al., 2018b).

For most applications, questions of how best to select
physically relevant variables, domains and appropriate met-
rics remain open. This should ideally be done by consid-
ering the relevant physical processes for the phenomena in
question. For the cases where a specific variable and scale
is clear, a comparison of existing approaches, a discussion
of the circumstances in which they should be used and the
construction of an appropriate out-of-sample testing regime
would help guide users’ choices. If a more holistic ensem-
ble calibration is needed, further exploration of the idea of
multi-objective optimisation is required, which results in the
novel concept of an ensemble of model subsets or weighted
averages.

There has also recently been a push for more transparency
regarding models’ development history. This is relevant for
the a priori approaches, which are based on similarity of
model codes. In terms of those approaches, there is also a
need to explore the impact of tuning on dependence (Schmidt
et al., 2017; Hourdin et al., 2017). It has been shown that
parameter perturbations based on otherwise identical code
bases (such as in the climateprediction.net exercise; Mau-
ritsen et al., 2012) can lead to notably different projections.
Better documentation from the modelling institutions regard-
ing the standard metrics used to judge a model’s performance
during development and the preferred observational products
used for tuning is needed. This information can help deter-
mine the effective number of independent models in an en-
semble in relation to the actual number of models for a given
application.

We stress again that the simulations made for CMIP do
not represent a designed ensemble. In particular the simula-
tions do not span the full uncertainty range for GCM projec-
tions or systematically sample the set of all possible model
configurations. This is something to keep in mind for any
subset-selection or weighting approach. Moreover, it is cur-
rently unclear how to deal with the situation when models

www.earth-syst-dynam.net/10/91/2019/ Earth Syst. Dynam., 10, 91–105, 2019



102 G. Abramowitz et al.: ESD Reviews: Model dependence in multi-model climate ensembles

start to converge on the true climate state, which might occur
as models resolve more and more processes. In such a situ-
ation, despite considering the models to be interdependent,
we do not want to eliminate them. This might get even more
complex when dealing with observational uncertainty.

Model-as-truth analyses are essential to test the skill of
any weighting or sub-setting approach out-of-sample. How-
ever, they are necessary but not sufficient tests and have the
potential for overconfidence given that many climate models
are based on similar assumptions and are thus not truly in-
dependent. While some steps can be taken to ameliorate this
issue, due to the central role of such analyses, the limits of
these tests should be explored in future studies and guidelines
provided regarding how to best set them up.

11 Conclusions

With model component and process representation replica-
tion across nominally different models in CMIP5, and the
anticipation of more to come in CMIP6, the need for an ef-
fective strategy to account for the dependence of modelled
climate projection estimates is clear. Perhaps the biggest ob-
stacle to doing this is that the manifestation of model depen-
dence is problem-specific, meaning that any attempt to ad-
dress it requires an approach tailored to individual projection
impact analyses. We presented a holistic framework for un-
derstanding the diverse and apparently disparate collection of
existing approaches to addressing model dependence, noting
that each addresses slightly different aspects of the problem.

Critically, we reinforce that the efficacy of any attempt
to weight or sub-select ensemble members for model de-
pendence or performance differences, or indeed bias correc-
tion, must be tested out-of-sample in a way that emulates
the intended application. Calibration–validation with differ-
ent time periods within the observational record, as well
as model-as-truth experiments were discussed as two ap-
proaches to doing this.

Universal calibration of an ensemble for model depen-
dence that is not specific to a particular application remains
elusive. In that context, preselecting simulations based on
an a priori knowledge of models, using institutional democ-
racy (one model per institute, with the additional removal of
any supplementary simulations that are sourced from known
model replicates at different modelling institutes and/or the
addition of clearly distinct variants from within a single in-
stitution, see Leduc et al., 2016b), or component democracy
(as detailed in Boé, 2018) is more defensible than naive use
of all available models in many applications.

The final step of relating dependence in model output to
similarities in model structure can only be achieved once we
have a transparent system for documenting and understand-
ing the differences in the treatment of processes, and tuning,
between different climate models. While there are some ad-
hoc examples of attempts to do this (e.g. Fig. 5 in Edwards,

2011; Masson and Knutti, 2011), a formal requirement to
document the nature of model structure, parameter evolution
and freely available source code would be a welcome step
that would spawn new areas of enquiry in this field (Ince et
al., 2012). This would ultimately result in a more effective in-
vestment in model components that provide independent pro-
jection information and bring the community a step closer to
producing well calibrated ensembles for climate projection.
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