

ESKISS : a program for optimal state assignment

Citation for published version (APA):
Oerlemans, C. A. M., & Theeuwen, J. F. M. (1987). ESKISS : a program for optimal state assignment. (EUT
report. E, Fac. of Electrical Engineering; Vol. 87-E-167). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/5c9252b5-092c-41c3-af5d-85e7de097e3a

ESKISS:
A Program for
Optimal State Assignment

by
CAM.Oerlemans
and
J.F.M. Theeuwen

EUT Report 87-E-167
ISBN 90-6144-167-6
ISSN 0167-9708

Jan uary 1987

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering

Eindhoven The Netherlands

ESKISS:

A program for optimal state assignment

by

C.A.M. Oerlemans

and

J.F.M. Theeuwen

EUT Report 87-E-167

ISBN 90-6144-167-6

ISSN 0167-9708

Coden: TEUEDE

Eindhoven

January 1987

COOPERATIVE DEVELOPMENT OF AN INTEGRATED, HIERARCHICAL

AND MULTIVIEW VLSI-DESIGN SYSTEM YITH DISTRIBUTED

MANAGEMENT ON WORKSTATIONS.

(Multiview VLSI-design System ICD)

code: 991

DELIVERABLE

Report on activity S.2.A: Review of the state encoding problem.
Study of relations between state encoding and logic minimisation.

Abatract:
Solving the problem of optimal state assignment solves a variety of problems
involving controllers, as they can effectively be realized using a Finite State
Machine (FSM). Assigning the right codes to the right states of the FSM is very
important, as it strongly affects the size of the implementation of the FSM.

In this report an algorithm is presented, eskiss, that searches for an optimal
encoding o~ the states with regard to the needed size of a PLA to implement the
FSM. The description of the FSM is given by means of a symboliC cover (state
transition table) and is firstly minimized by the symbolic minimizer ESPRESSO.

Eskisa generates state groups, containing states that show identical transitions
in the transition table. Based on these state groups a relation can be stated,
such that if the encodings of the states satisfy the relation. the assignment
has been optimal with regard to the size of the PLA. This relation is called
the constraint relation. Eskiss generates an encoding that satisfies this
constraint relation.

deliverable code: WF 5, task: 5.2, activity: 5.2.A.

date: 01 - 01 - 1987

partner: Eindhoven University of Technology

author: C.A.H. Oerlemans, J.F.M. Tbeeuwen.

This report was accepted as a M.Sc. Thesis of C.A.M. OerZemans
by Prof. Dr.-Ing. J.A.C. Jess, Automatic System Design Croup,
Department of EZectricaZ Engineering, Eindhoven University of
TechnoZogy. The work was performed in the period from 5 May 1986
to 18 December 1986 and was supervised by Dr.ir. J.F.M. Theeuwen.

CIP-GEGEVEN5 KONINKLIJKE BIBLIOTHEEK, OEN HAAG

Oerlemans, C.A.M.

ESKISS: a program for optimal state assignment / by C.A.M. Oerlemans and
J.F.M. Theeuwen. - Eindhoven: University of Technology. - Fig., tab.
(Eindhoven University of Technology research reports / Department of
Electrical Engineering, ISSN 0167-9708; 87-E-167)
Met lit. opg., reg.
ISBN 90-6144-167-6
5150664.3 UDC 621.382:681.3.06 NUGI 832
Trefw.: elektronische schakelingen; computer aided design.

,---

CONTENTS

1. INTRODUCTION. • . • • • • • • 1

2. THEORETICAL APPROACH.................................... 4

2.1 Hardware implementation~••••........•••.•... 4

2.2 Symbolic cover and symbolic minimization•... 5

2.3 Constrained state encoding 9

3. STATE ENCODING ALGCRITHM ••••••.••••••••••••••.•••••••••• 12

3.1. The structure of the algorithm 12

3.2 The algorithm in detail •.••••••••••••••••••••••••• 14

4. IMPLEMENTATION IN C..................................... 20

4.1 The global structure of the program •.••••••••••••• 21

4.1.1 Global types and variables 21

4.1.2 The structure of the main program 23

4.1.3 The file structure 25

4.1.4 Options 25

4.2 Discussion of the separate functions 26

4.2.1 Globally used functions 26

4.2.2 Locally used functions 37

4.3 The concept of the input 46

4.3.1 ESPRESSO: input and output 46

4.3.2 The preprocessor FORMAT 47

4.3.3 Using eskiss, options 47

5. EXAMPLES •• 49

6. CONCLUSIONS. •• 51

REFERENCES. • • • • • • • • . • • • • • • • . • • . • • • • . . • • • . • • • • • • • • • • • • • •• 54

APPENDIX 1: INPUT CONCEPT FOR ESPRESSO •.•••••••••••••••• 55

APPENDIX 2: OUTPUT CONCEPT FOR ESPRESSO ••••••..•.••••••. 57

APPENDIX 3: INPUT CONCEPT FOR FORMAT •••••••..•.•••.••••• 59

APPENDIX 4: LIST OF INTERMEDIATE RESULTS •••••••••••••••• 61

APPENDIX 5: LIST OF ERROR MESSAGES ••••••••••••••.••••••• 62

APPENDIX 6: MANUAL INPUT USING REGULAR EXPRESSIONS •••••• 63

SUPPLEMENT. • . • . . . • • • • • . •. 64

,

INTRODUCTION - 1 -

1. INTRODUCTION

Recent developments in integrated circuit technology enable designers

to invest all their creative ambition in designing systems that may

well be called "gigantic artefacts". With the current technology of

Very Large Scale Integration (VLSI) , the element that constrains the

extent of a chip design is the simple mind of the designer, rather

than the ingenious equipment of the manufacturer.

With a complexity of hundreds of thousands of components on a chip, it

is impossible for man to design such a circuit by hand or by means of

a layout editor. Firstly, because it would be too time-consuming to

design all of the components by hand and·secondly, because that amount

of components will increase the probability of a design error to

almost 100%.

It would therefore be useful to have a system that accepts as input a

functional description of the circuit to be designed, making it possi

ble to describe, without errors, exactly what the designers wishes

are, without bothering about implementation details. The output of

such a system should be a detailed layout of the chip, optimized as

far as possible and ready to be physically implemented.

A system (or program) that satisfies these conditions is called a

silicon compiler and is a subject of many recent research projects.

One such project is the development of a system for high level design,

a project of the department of electrical engineering, laboratory

automatic system design at the Eindhoven University of Technology. The

functional description of the circuit is given by means of a high

level language like Pascal or LISP and is translated (compiled !) into

a file describing the physical layout of the circuit.

The concept of the generated layout is the following: An N-stage

Finite State Machine (FSM) controls a number of logic and arithmetic

INTRODUCTION - 2 -

modules like AND/OR gates, adders, multipliers, multiplexers, I/O

registers, etc. These modules are standard designs and are collected

into a standard library. The FSM is also a standard design, except for

the implementation of the combinational component, which depends upon

the function of the FSM and upon the state assignment that was chosen.

(The interested reader is referred to [7 J for further details about

this proj ect.)

As indicated in the above paragraph, the chosen state assignment

affects the form of the combinational component of the FSM. Further

investigation of some examples shows, that the form of the combina

tional component can vary very much when different assignmemts are

tried. It is therefore very useful to search for an assignment that

can be regarded as being at least suboptimal with respect to the form

of the combinational component.

A simple calculation shows, that the number of possible assl.gnments

grows with the number of stages (states of the FSM) to astronomic fig

ures and searching for the best assignment cannot be done by simply

trying various possible solutions. The algorithm that has to bE! found,

must search for a (sub-)optima1 solution in a heuristic way, in order

to keep the processing time within reasonable boundaries.

This report gives the results of a graduation traineeship in which an

algorithm for finding a good assignment is discussed and implemented.

The system on which the implementation runs is a HP9000 syste.m with

UNIX operating system. The algorithm has been implemented in C. The

program uses an existing logic minimizer called ESPRESSO; doc.umenta

tion about ESPRESSO can be found in one of the appendices.

A theoretical approach to the problem is the goal of chapter 2, where

formal definitions and some theorems are stated, while the next

chapter discusses the concept and the details of the encoding algo

rithm. In chapter 4 the implementation in C is given and chapters 5

INTRODUCTION - 3 -

and 6 give some tests and conclusions of the implemented algorithm.

In one of the appendices a marginal aspect of the FSM is discussed.

Apart from the silicon compiler, it would be useful to be able to

enter the description of a FSM by hand and let the system search for

an optimal assignment for that FSM. It is therefore needed to define

an input language to describe a FSM in a way that suits the way of

thinking of the designer. When such a language exists, a compiler for

that language can be made with little effort. This sub-project is

still under investigation.

THEORETICAL APPROACH - 4 -

2. THEORETICAL APPROACH

This chapter tries to give the reader some definitions in order to

understand the remainder of the report. Firstly, the concept of the

hardware implementation of a finite state machine is discussed and

secondly, the principles of symbolic covers and minimization are

stated in a way that will be used throughout the report. Th.. final

topic of this chapter explains the method used to find an optimal

state assignment: constrained state encoding. Note that this is not

an algorithm, but merely a concept that forms the basis for it. The

algorithm itself is discussed in the next chapter.

This chapter is fully derived from [lJ and more information about the

topics of this chapter can be found there. Not to bore the reader with

details ahout exact proves of certain theorems, all these cases are

omitted and again, the interested reader is referred to [lJ.

2.1 Hardware implementation

Before something senseful can be said about the criteria that form the

basis for the algorithm to assign the optimal codes to the states of

the finite state machine, the hardware implementation needs discus

sion. The concept for the hardware of the FSM is shown in figure 2.1.

PRIMARY
INPUTS-->

COMBINATIONAL

COMPONENT

MEMORY

PRIMARY
--> OUTPUTS

Figure 2.1. Hardware concept for FSM.

THEORETICAL APPROACH - 5 -

In chapter 1 the term combinational component was already used. Here

the term is given more attention, as it is an important part of the

FSM. It is the combinational component that will take most of the

space on the chip, especially when large FSM's are regarded. This part

of the design should therefore get good attention in the optimization

phase and a well suited form of implementation must be found for it.

To the designer the choice of implementing the combinational component

by means of several different technologies lies open and he should

remember, that large designs cannot be made by hand, but need a com

puter. Therefore, the choice that is made in this report, based on the

assumption that a structured design method needs a structured imple

mentation technology, is the implementation of the combinational com

ponent by means of a PLA. Other implementations, such as separate

AND-, ORo, INVERT-gates, are possible, but do not have the same regu

lar structure as the PLA has. Usually, if the states are encoded such

that the PLA implementation is optimal, the other implementations also

show relatively good results, so the PLA is a good estimation for the

other implementations.

The other part of the FSM is the memory component. This part may be

implemented by several forms of memory elements: Delay-latches,

toggle-flipflops, JK-flipflops, etc. The choice of one of these ele

ments is mostly arbitrary, here the delay-latch (D-latch) will be

used.

2.2 Symbolic cover and symbolic minimization

The terms symbolic cover and symbolic minimization apply to the way

the problem of state encoding will be tackled. The description of the

FSM must be symbolic, i.e. the states, the values of the inputs and

the values of the outputs must be names instead of (binary, hexade

cimal) values as they will appear in the hardware configuration. Then,

before assigning codes to the states, symbolic minimization is applied

THEORETICAL APPROACH - 6 -

to the symbolic definition of the FSM. A symbolic minimizer is a logic

minimizer that accepts names instead of values for the values of the

variables. The symbolic minimizer used is called ESPRESSO and wi.ll be

addressed by that name in the remainder of this report.

The symbolic definition of the FSM is a symbolic cover as it covers

the definition of the FSM in a symbolic representation. The symbolic

cover is formally stated by the 5-tuple (X, Y, Z, 0, A) where:

o:XxY~Y

A: X x Y ~ Z (A: Y ~ Z)

seC of primary input symbols,

set of internal states,

set of primary output symbols,

next state function,

output function for a Healy

(Hoore) machine [6].

The symbolic cover is usually given in the form of a state transition

table. Then, the functions 0 and A are specified by giving exactly

for each possible input symbol and each possible old state, the new

state (0) and the output symbol (A). The following example (from [1])

should give a clearer insight.

Each row of the state transition table is called an implicant. For

instance, the implicant zero zero START state6 shows, that with

input "zero", state "START" is transformed into "state6" , asserting

"zero ll as output. All other implicants have a similar meaning and

thus, the symbolic description of the FSM is completely covered by

this table.

THEORETICAL APPROACH - 7 -

in out old new
Mw ________________________

zero zero START state6
zero zero state2 stateS
zero zero state3 stateS
zero zero state4 state6

zero two stateS START
zero one state6 START
zero zero state7 stateS
one zero START state4
one zero state2 state3
one zero state3 state7
one two state4 state6
one two stateS state2
one one state6 state2
one two state7 state6

Now, this symbolic cover can be minimized by the symbolic minimizer

ESPRESSO. Note, that according to appendix I, the input to ESPRESSO

does not agree with the form of the table above. For the sake of sim

plicity, the transition table will be as is shown above and when used

as input to ESPRESSO it will first be formated into the right form,

according to appendix 1.

ESPRESSO will give the following output:

label START state6 state2 stateS state3 state4 state7

10 0101000 1000000000
01 0101000 0010000000
01 0010000 0000100100
01 1000000 0000010100
01 0000100 0000001100
01 0000011 0100000010
10 1000010 0100000100
11 0100000 0000000001
10 0010101 0001000100
11 0001000 0000000010

To understand this result, the term "one-hot-encoding" must be

explained. One-hot-encoding will encode a certain variable using a

row of bits. This kind of encoding needs as many bits as there are

symbols to be encoded and each bit corresponds to one of these sym

bols. Thus, a row of bits indicates which symbols are present in that

THEORETICAL APPROACH - 8 -

implicant: 1 indicates corresponding symbol is present, 0 indicates

not present. If a row of bits contains zero entries only, no symbolic

value of the corresponding variable is indicated, meaning that nothing

can be said about the actual value. Non-zero entries only indicates

the don't care value. Note, that the label header indicates which sym

bolic statename the respective bits correspond to.

In the above example, the third implicant 01 0010000 0000100100 indi

cates, that with input "01" (-one) state "0010000" (-sta.te2) is

transformed into "0000100 11 (=-state3) I asserting "100" (-zero) 8.S out

put. This is the same implicant as the ninth in the transition table.

Likewise, the sixth implicant indicates, that with input one the

states state4 and state7 are transformed into state6, asserting two as

output. The corresponding implicants in the transition table are the

eleventh and the fourteenth. Thus, the symbolic cover is reduced to

ten implicants, instead of fourteen in the transition table.

Now, before discussing the constrained state encoding proble:m, two

more definitions are given. From the minimized symbolic CQVE:r state

subsets can be composed, having more than one element and correspond

ing to the column with old states from one of the implicants. Such

subset is called a state group. Given a state assignment and a state

group, the corresponding group face (or simply face) is the minimal

dimension subspace containing the encodings of the states assigned to

that group [1]. The constrained state encoding problem is now defined

as follows:

Given a set of state groups, find an encoding such that each

group face does not; intersect: the code assigned to any stat:e not

contained in the corresponding group.

In [1] theorems are formulated, indicating that a solution to the con

strained state encoding problem is a suboptimal solution to the state

encoding problem using a PLA. This constrained state encoding problem

THEORETICAL APPROACH - 9 -

is used to construct an algorithm to solve the state encoding problem.

The next section will show a way to determine whether a given state

encoding is a solution or not and the next chapter will use the

results of the next section to construct the algorithm.

2.3 Constrained state encoding

This section discusses a relation, that the state encodings have to

satisfy, in order to be a solution to the constrained state encoding

problem. This relation is called the constraint relation and is

derived from the set of state groups, defined in the previous section.

The discussion of the constraint relation needs a few more definitions

to state the relation in a mathematical manner. All the definitions

are equal to those given in [1], but all theorems and proves are omit

ted.

Firstly, an extension to the type Boolean is needed. Pseudo-Boolean

entries are elements from {O, I, *, ~}. where * denotes the don't care

value (either 1 or 0) and ~ the empty value (neither 1 nor 0).

Pseudo-Booleans can be subject to two different operations, conjunc

tion (A) and disjunction (V), defined as follows:

conjunction disjunction

A 0 1 * ¢ V 0 1 * ~

0 0 ~ 0 ¢ 0 0 * * 0

1 ¢ 1 1 ~ 1 * 1 * 1

* 0 1 * ~ * * * * *
~ ¢ ~ ~ ¢ ~ 0 1 * ~

The state groups of the minimized symbolic cover will be grouped

together to form the constraint ~trix A:

THEORETICAL APPROACH - 9 -

A - [a. l I a.
2

I .,. I B
·n

s

where n
1

is the number of state groups and ns the number

State j belongs to group i if Bij - 1.

of states.

A row of the constraint matrix is said to be a meet if it represents

the bit-wise conjunction of two or more state groups. A row of the

constraint matrix is said to be a prime if it is not a meet.

The state code matrix S is a matrix whose rows are state encodings:

s -
5
n .

s

The constrained state encoding problem is to determine the state code

matrix 5, given a constraint matrix A.

Another operator needed to explain the constraint relation is the

selection of b according to B, with a E (D, 1) and b E (D, 1, *, ~):

{ ~ a . b - "

if a - 1

if B 0

Selection can be extended to two dimensional arrays and is similar to

matrix multiplication, with "plus" substituted by "disjunction" and

"times" by "selection".

The face matrix is the matrix whose rows are the group faces. It can

be obtained by performing the selection of S according to the con

straint matrix A:

THEORETICAL APPROACH - 11 -

F - A . S

Let A be the matrix A with all entries complemented. Then

" . ·1
s.
1·

is a matrix whose rows are the encoding of state i if state i does not

belong to group j, else are empty values. A state encoding matrix S is

a solution of the constrained state encoding problem if it satisfies

the constraint relation for a given constraint matrix A:

A

A

A

- <1>, i ..., I, 2, ... , n
s

where ~ is the empty matrix, i.e., a matrix whose rows have at least

one 4> entry.

Now the opti~l constrained state encoding problem can be formally

stated as follows:

Find a state code matrix S with minimal number of columns that

satisfies the constraint relation for the constraint matrix A,

containing the state groups.

Based on this statement of the problem, an algorithm for state encod

ing will be discussed in the next chapter. The algorithm will be

explained and its consistency with the constrained state encoding

problem will be shown, without using complex theorems.

STATE ENCODING ALGORITHM - 12 -

3. STATE ENCODING ALGORITHM

State encoding is a complex problem that can only be (partly) solved

by means of a heuristic strategy. An algorithm using this strategy

will determine a suboptimal state encoding matrix for a given finite

state machine.

Here, an algorithm using a heuristic strategy called constrained state

encoding is presented, based on the theory from the previous chapter.

The algorithm and its theoretical basis were firstly presented in [1].

A state encoding matrix is said to be a solution of the constrained

state encoding problem, if it satisfies a certain relation, called the

constraint relation.

3.1 The structure of the algorithm

Suppose the FSM has n states and ESPRESSO has generated a constraint
s

matrix A, containing only prime rows (see chapter 2). Then, state

encoding will be performed by considering one state or state subset at

a time. An optimal encoding for this state(set) is sought for and if

found, added to the state encoding matrix. If an encoding cannot be

found, the dimension of the state code subspace is increased, by

adding one column to the state encoding matrix. Then again, an optimal

encoding is sought for.

The process of seeking for an optimal encoding is based on the assump

tion, that an optimal state encoding will satisfy the constraitlt rela

tion. Each candidate from the state code subspace of current dimension

nb is tested against this relation and from those that satisfy it, the

most suitable one is selected according to a heuristic strategy.

explained in section 3.2. Then the next state(set) is selected and

encoded, until all states have been considered.

STATE ENCODING ALGORITHM - 13 -

The structure of the algorithm is the following:

1: Select an uncoded state (or state subset);

2: Determine the candidate encodings for that state(s) ,

satisfying the constraint relation;

3: If no candidate exists, increase the state code dimension by

one and go to 2;

4: Select from the candidates of encodings the most suitable one

and add it to the state encoding matrix;

5: If all states have been encoded, stop. Else go to 1;

Only one theorem from [1] will be used to discuss the concept of the

algorithm, leaving the proof to the enthusiastic reader.

Let S satisfy the constraint relation for a given A. Then there exists

a matrix

S' _ [S
R

T]
n x n n

R E (0, 1) s P T E (0) s
u

that satisfies the constraint relation for

A' - [AI Q
l

I Q
2

I ... I Q n]

where n
p

is the number of rows of A' with non-zero entries in

xn

one of

the columns °1' Q2' ... Q •
n

In [1] the theorem is proved for R is

A
lT

, where Al is the matrix of

one of the columns Ql' Q2' ...

rows of A having a

Q .
n

non-zero entry in

In simple words the theorem says, that an encoding for the next sta

teset with corresponding columns Q
l

Q
2

... , Q
n

, can always be found
, ,

within a finite number of iterations. Adding as many columns with zero

entries only as there are states in the stateset and adding the

columns of R one at a time, will always reshape the state encoding

matrix in a way that will allow u to be a candidate for the state(s).

STATE ENCODING ALGORITHM - 14 -

3.2 The algorithm in detail

Now, the algorithm is presented in more detail, described in a meta

language looking like C, the programming language used to implement

the algorithm in the next chapter. The set ~ is the next stateset to

be encoded, r is the set of already encoded states. The input to the

algorithm is the constraint matrix A, while each iteration uses a

matrix A' , containing (in the right order) the columns of A,

corresponding to the states in r. S is the state encoding matrix (seen

as a set of state encodings) and a is the selected candidate(set).

S 0;

r 0;

A compress(A);

do {

L = state-select;

A' - [A' I a.~];

r r u ~;

C - 0;

while (C - 0) {

C = candidates(S, A');

if (C - 0) adjoin(S);

else u - code-select(C);

S [!] ;
while (r is a proper subset of the stateset);

procedure compress(A) returns the prime rows of A. Procedure state

select sorts the states according to a heuristic strategy and returns

the current state (or state subset) L to be encoded. More about the

state-select strategy can be found below. The constraint matrix A'

represents a permutation of the columns of A corresponding to the

encoded and selected states in the given order.

STATE ENCODING ALGORITHM - 15 -

Procedure candidates(S, A') returns the set of encodings that can be

assigned to ~, of the same length as those represented by S. In par

ticular: C - (c such that[Sjsatisfies the constraint relation for A').
c

Note that C may be empty.

The code-select routine returns an element of C according to a heuris

tic criterion. Let u(a) be the minimum number of codes covered by one

face from the face matrix A·S, i.e.

u(a) - (2
number of *)

min

all faces

with * is the don't care value and

a face is a row of the face matrix

Then u(a)/2
nb

represents the "utilization" of the Boolean space of

current size n b · The higher the utilization of the Boolean space, ilie

higher the probability is, that C will be empty at the next iteration

of the algorithm and that nb has to be increased. Since encodings are

selected so that the final code length is as short as possible, a is

chosen as: a - arg min u(a).

Procedure adjoin(S) is invoked when the candidateset is empty and the
n x 1

code space dimension has to be increased. Let T (O) S i.e. a

column of n zeros. Note that T is not a column of zeros with length
s

equal to the number of already encoded states. Therefore, if by coin-

cidence a column of zeros would appeaE in the state encoding matrix,

this column is not equal to T ! Let S be the subset of the columns of

S different from T and let t be the number of columns of S equal to T.

Let R - A
1T

, where Ai is the subset of prime rows of A having a non

zero entry in one of the columns B.
L

. This matrix R already appeared

in the theorem of section 3.1. Then:

adjoin(S)

if (t < I~I) return([SITj);

else

R' set of columns of R not already adjoined to S;

STATE ENCODING ALGORITHH - 16 -

r = column of R' with minimal I-count;

return([Slr]) ;

) ;

It will be apparent, that for each L there exists a typical Rand R',

different from the Rand R' of the other L's. At each invocation of

adjoin, for the same L, the size of the matrix R' may decrease, while

t may increase or decrease, depending on the current value of t and

ILl·

It should be clear now, what the meaning of the theorem of sec1:ion 3.1

is: After a finite number of iterations all the columns of l(and as

many columns of zeros as the cardinality of the selected stateset will

be added to the state encoding matrix. Then, the candidateset C will

not be empty. Most of the time C will contain elements before all the

above indicated columns are added. This and the structure of the algo

rithm make it apparent, that the algorithm will always terminate in a

finite number of iterations and will construct a state encoding matrix

satisfying the constraint relation.

As mentioned above, state-select returns the next state(set) to be

encoded. Which state(set) will be returned is determined by a heuris

tic strategy, that will be discussed below.

First another definition:

A dominating set is a maximal cardinality set of states, such

that no state dominates any other state in the set. State p dom-

inates state q if sip ~ B
iq

for i - 1, 2,

the number of state groups. Note that a dominating set is not

necessarily unique.

The procedure state-select will now select the next state(set) accord

ing to the following strategy: At the first invocation a dominating

STATE ENCODING ALGORITHM - 17 -

set will be returned. Since in general a dominating set contains but a

fraction of the states in the state set, encoding a dominating set can

he done within reasonable time. At the second and further invocations

one state is returned, being the state with the highest column 1-count

in the constraint matrix A. According to [1], this strategy assures,

that a state encoding matrix satisfying the constraint relation will

be found, with nb ~ n
s

' where nb is the number of bits per code, i.e.

the code length.

As an example the constraint matrix from section 2.2 is used as input

to the algorithm. compress returns the matrix

0 0 1 0 1 0 1

0 1 0 1 0 0 0

A-
1 0 0 0 0 1 0

0 0 0 0 0 1 1

where the columns of A correspond to the states START, state6 state2.

stateS, state3, state4, state7 respectively.

A dominating set is (state7, START, stateS) and the first time

candidates is called, C is empty, as nb - O. After two times adj oin-

ing, n -b
2 and code-select returns the codes (OO, 01, 10) . Further

calls to state-select will search for states with highest column 1-

count and therefore, state4 is selected first. The only code left with

the current code1ength is (11), but this code will make the state

encoding matrix falsify the constraint relation:

A' -

1 0 0 0

o 0 1 0

o 1 0 1

100 1

S -

o 0

o 1

1 0

1 1

F - A·S -

o 0

1 0

* 1

* *

STATE ENCODING ALGORITHM - 18 -

o 1 o if>

o 1 if> if>

if> if> if> if>

o 1 o 1

Therefore, the code space dimension has to be increased and adjoin

returns (000, 010, 100). Again, the candidateset C is empty and now

adjoin returns (001, 010, 100). The candidateset is no longer empty

and the state encoding matrix becomes

S -

001

010

1 0 0

o 0 0

As the remaining states a1 have column 1-count 1, the order of

selecting them is of no importance any more. State state3 re!sults in

code (011), state2 in code (101) and state6 in (110), as the candi

dateset is not empty for all these selected states.

It is important to note that the order of the rows of S is not equal

to the order of the names of the states given by ESPRESSO, but is

dependent on the order in which they are selected to be encoded. Per

mutating the state encoding matrix according to the order of selecting

the states results in the following solution to the constraint state

encoding problem for the given FSM:

START 010

state6 110

st;ate2 101

stateS 100

state3 011

state4 000

state7 001

For this example it is apparent that the state encoding algorithm

STATE ENCODING ALGORITHM - 19 -

assigns codes with the minimal possible codelength to the seven dif

ferent states. More tests on different FSM's are done by the authors

of [1] and reveal that the algorithm itself shows a good performance.

The next step will be to make a fast implementation of the algorithm,

to be able to do some more tests. The next chapter discusses the

implementation in the programming language C.

IHPLEHENTATION IN C - 20 -

4. IMPLEMENTATION IN C

In a total system the state encoding algorithm is usually not appreci

ated as much as it should be. If the algorithm is not used and a ran

dom assignment is made, the system will work anyway and the result

does not necessarily have to be much worse than the result using the

algorithm. So, why use it? On the other hand, if the algorithm is

used, it takes quite a lot of computing time and it slows the system

down. So, don't use it!

To annul the arguments in reasoning above, two other arguments can be

discussed. The whole system of designing integrated circuits has one

common factor: minimization. Before defining a FSM minimization is

performed on external components and after state encoding the combina

tional component of the FSM is minimized. For the sake of consistency.

don't let the state assignment be the bottle-neck, but use .m algo

rithm that minimizes the state register and the combination"l com

ponent. In a complete system, where some very intelligent algorithms

are activated, the total run-time will be much higher than the time it

will take an algorithm to encode the states in an appropriate manner.

If the result is not amazing, the relative computing time is not

either.

The implementation of the algorithm discussed in chapter :I shall

therefore have to satisfy two rules:

• It has to show good performance and

• it must be fast

Concerning the first rule, the authors of [1] prove that the algorithm

will minimize the PLA area of the combinational component, using a

(sub-)minimal codelength. They illustrate their theorem with some

examples of results of the encoding algorithm. The second rule will be

satisfied if the right implementation is made. The programming

IHPLEHENTATION IN C - 21 -

language C is chosen for it, as it can be efficiently compiled, while

it still ables the designer to write well structured and easy-to-read

programs.

Describing the implementation of the algorithm takes place in three

sections. Firstly, the global structure of the program is discussed,

showing the resemblance with the structure of the algorithm and defin

ing the global variables used. Secondly, the functions used to build

the structure of the program are discussed, omitting evident cases.

Finally, the use of the program is discussed, showing the concept of

the input and the recognized options. In discussing the implementa

tion, the reader is supposed to have knowledge about the language C. A

good manual for it can be found in [2].

4.1 The global structure of the program

The structure of the algorithm in section 3.2 already indicates, that

the state encoding program uses global variables. Variables like the

constraint matrix, the state encoding matrix and the number of states

are essentially global. Before the global structure is discussed, the

global types and variables will be declared.

4.1.1 Global types and variables

Some frequently used types are:

int STATENUMBER, BITNUMBER, CROUPNUMBER;
short int BIT, BOOLEAN, EXTENDED_BOOLEAN;
BIT ENCODING_MATRIX[max_nrstates] [max_nrbits];
BIT GROUP_MATRIX[max_nrgroups][max_nrstates];

For the type BOOLEAN the definitions TRUE 1 and FALSE o are

present. For EXTENDED_BOOLEAN TRUE - 1, FALSE - 0, STAR - 2 and PHI -

3 are defined.

IMPLEMENTATION IN C - 22 -

As C does not support the type set of, while sets are frequently used

in the algorithm, user-defined types are necessary to implement them.

Here sets are seen as linked lists of structures containing the value

of an element and a pointer to the next element (structure). For

instance, a set of states is defined as follows:

typedef struct state
(

STATENUMBER element;
struct state *next;

EL_STATESET, *STATESET;

A variable of the type STATESET, e.g. sset, can be visualized as:

Figure 4.1. Example of a set using a linked list.

The define-statement "define EMPTY NULL" makes the empty set more

visual. Adding an element (e.g. 7) to the set means inserting a new

structure in front of the list:

newptr (STATESET) malloc (sizeof(EL_STATESET));
newptr -> element - 7;

newptr -> next = sset;

sset newptr;

Deleting and membership testing are more complicated, hut will not be

used in the program. One operation will indeed be frequently used,

namely: for all elements of:

for (walk - sset; walk !- EMPTY; walk - walk -> next)
(

IMPLEMENTATION IN C - 23 -

The elements of a set can also be sets, so even the type set of set of

may be used. Note that when a variable of the type STATESET has more

than one element I a c·ertain order among them is present and will be

used in the program. This extension to the type set of follows immedi

ately from the implementation with lists.

In the same way the following global types can be defined:

The most frequently used global variables are:

STATENUMBER nrstates, nrselected_states, nrencoded_states;

1* ns' I~I. Irl *1

BITNUMBER nrbits; 1* nb *1

GROUPNUMBER nrgroups; 1* n
1

*1

GROUP_MATRIX constraint_matrix, current_constr_matrix;

1* A and A' *1
ENCODING_MATRIX state_encoding_matrix; 1* S *1
STATESET sel_stateset; 1* ~ *1
SET_OF_CODESET candidateset; 1* C *1
CODESET sel_codeset; 1* u *1

Using these variables and some functions, the program can be built in

a manner that still resembles the structure of the algorithm in sec

tion 3.2. There are more global variables than the ones named above.

They will be discussed when they appear in the discussion of one of

the functions.

4.1.2 The structure of the main program

At the group Design Automation (ES). where the implementation of the

algorithm took place, the convention exists to give all programs a

name preceded by lIes", to indicate they were developed there. As the

program was called KISS in [ll. here it will be addressed by the name

eskiss. KISS stands for Keep Internal States Simple.

IHPLEHENTATION IN C - 24 -

The main program is described below. Compare it with the structure of

the algorithm in section 3.2:

main()
(

sel_stateset - EMPTY;

nrencoded_states - 0; nrbits - 0;

find_primes_of(constraint_matrix);

while (nrencoded_states < nrstates)
(

stateselect(&sel_stateset, &nrselected_states);

updat_constraint_matrix(sel_stateset);

candidateset - EMPTY;

while (candidateset ~~ EMPTY)
(

find_candidates(sel_stateset, &candidateset);

if (candidateset -- EMPTY) adjoin(state_encoding_matrix);
else codeselect(candidateset, &sel_codeset);

append_to_state_encoding_matrix(sel_codeset) ;
1* nrencoded states nrencoded_states + nrselected states; */

The reason that the statement that updates the variable

nrencoded states is made inactive, is that it is already embedded in

the function append_to_state_encoding_matrix. It is written inside

comment delimiters to show that the program will terminate, as the

while loop control variable will increase.

Comparing the structure of the algorithm and of the main program

immediately shows the resemblance and the structure need no more

explanation. Discussion of the used functions takes place in section

4.2.

IMPLEMENTATION IN C - 25 -

4.1.3 The file structure

In C the total program may be divided over different files, making the

structure more visual and making it easier to compile the program.

Here, each function is stored in a separate file and so are the global

declarations and definitions. All global declarations are stored in

the file "global_dec1.h" and all global definitions in the file

"global_def.h", For the difference between declarations and defini

tions and for the scope of variables, see for instance [2].

At the top of a file containing the source text of a function, the

global declarations must be added by means of the statement include

"global_dec1.h". At the top of the main program both include

"global_dec1.h" and include "global_def.h" ought to be present. In

that way each function has the correct environment and can be written

as if it is the only existing function.

4.1.4 Options

Some options are built in to make the program more flexible and to add

some extensions to the algorithm. The options are passed through the

command line arguments and are recognized and processed by a special

function (see section 4.2.2). For each option there is a global vari

able of the type BOOLEAN, indicating whether the specific option was

present on the command line or not. In the right functions, in the

right place, tests are made upon these option indicators and the

corresponding actions are taken. In discussing the separate functions

this will become clearer. The different options recognized by eskiss

are:

IHPLEHENTATION IN C - 26 -

-D

-d n

-e

-r
-i NAME

Do not use a dominating set as first selected stateset.

Allow only n elements in a dominating set.

Suppress all error messages send to stderr.

Generate intermediate result and send them to stderr.

State with name NAME is the initial state and will get
code 00 ... 0.

4.2 Discussion of the separate functions

The functions used in eskiss can be divided into two groups:

• globally used functions and

• locally used functions.

The globally used functions are used only in the main program, while

the locally used ones are called by the globally used functions. This

hierarchy is used to make the discussion of the separate functions

easier and this section is divided accordingly.

4.2.1 Globally used tunccions

The structure of the main program was already shown in section 4.1.2,

but it was not yet complete, as there are still some functions needed

to have it work right. These extra functions were omitted to make the

resemblance with the structure of the algorithm more illustrative. The

functions are grouped together below and afterwards discussed one by

one. How they fit into the main program is evident, but the reader can

always check upon it by reading the source text of the program, as for

each function the file in which it is stored will be indicated. The

main program is stored in the file "eskiss.c".

The globally used functions are:

IMPLEMENTATION IN C - 27 -

init _ defaul ts ()

process_option(option)

read_input_file_into(A, names)

find_primes_of(A)

stateselect(ss, nrs)

updat_state_order_rnatrix(ss)

updat_constraint_matrix(ss)

find_candidates(ss, cs)

adjoin(S)

codeselect(cs, 5es)

append_to_state_encoding_matrix(scs)

print_state_encoding()

• init defaults()

lIinit_def .e"

"proc_option.c ll

"read_input. ell

"find_primes. ell

"stateselect.c"

"updat_rnatric.c"

lIupdat_matric.c ll

flfind cand.e"

"adjoin.e"

"codeselect.c"

"append.c"

"print_codes.e"

This function initializes the default values for the variables

corresponding to the possible options. See also section 4.3.3.

• process_option(option)

The parameter "option" is a string read from the command line. This

function checks if it is a legal option and updates the correspond

ing option indicator (see section 4.3.3). If "option" is not a legal

option, an error message is send to stderr.

• read_Input_file into(A, names)

From the standard input file a table generated by the symbolic

minimizer ESPRESSO is read and the column of this table correspond

ing to the one-hot-encoded old-state is entered into A (the con

straint matrix). As the input to ESPRESSO is a symbolic cover, the

input to eskiss will contain one line defining the relation between

the statenames and the one-hot-encoding of the states. This relation

is stored in the array of strings Tlnames", where names[i] contains

the name of the state that is one-hot-encoded as a string of zeros

with only one I in the ith position from the left. The globals

nrstates and nrgroups are also updated. Note that A may contain

meets as well as primes.

To read the input file in a structured way, the following locally

used functions are called:

IHPLEHENTATION IN C - 28 -

nextsymbol(symbol): collects from the standard input the next
symbol and assigns it to IIsymholl1. A symbol is any string

of characters, separated by newlines, blanks or tabs.

checksymbol(symbol, str): checks
string "str" or not. If not,

stderr.

if "symbol" is equal to the

an error message is send to

make_int(symhol, 1): assigns to "i" the integer value repres

ented by the string "symbol". If "symbol" contains non

numeric characters an error message is send to stderr,

equal_symbol(symbol, str): returns TRUE if "symbol" i.s equal
to the string "str", FALSE if not. No error messag;es are

send .

• find_primes_of(A)

After the constraint matrix is filled with the one-hot-encod"d old

state, the meets have to be deleted. Remind: A row of A is a meet if

it is the bit-wise conjunction of two or more state groups. The glo

bal nrgoups is updated at the end of the function. Note that accord

ing to its definition, the constraint matrix may contain only state

groups, i.e. rows with more than one non-zero entry.

Method: Delete all rows with less than two non-zero entries. as

those rows cannot be primes. To check if a certain row is a prime or

a meet, first find all other rows that have non-zero entries in the

same positions as in the current row. Then check if for each zero

entry in the current row there exists a row (among the rows with the

same non-zero entries) that has a zero entry in the same position.

If for each zero entry there exists such a row, the current row is a

meet; otherwise it is a prime.

After all rows have been given a label (prime or meet), the ones

that are meets are deleted from A and nrgroups is updated.

IHPLEHENTATION IN C - 29 -

• stateselect(ss. nrs)

A heuristic strategy determines which state or state subset ~ill be

selected and assigned to "SSII. The number of selected states is

returned through the parameter "nrs". The selecting strategy was

already explained in section 3.2.

This function uses one option. At the first invocation of the func

tion, a dominating set is assigned to "SSII. If the burden of encod

ing this dominating set is to great, it is possible to have sta

teselect assign at the first invocation only one state instead of a

dominating set. The option that indicates this is -D. Then the func

tion will be:

The

if (nrencoded_states -- 0) /* First invocation. */

if ("option -D present")

(

find_highest_column_count(&(*ss));
*nrs == 1;

else /* Use a dominating set. */
find_dominating_set(&(*ss), &(*nrs));

else /* Second or further call. */
(

find_highest_column_count(&(*ss));
*nrs ..., 1;

locally used functions and

find_dominating_set search for the state with the highest column 1-

count in the constraint matrix and for a dominating set respec

tively .

• updat_state_order_matrix(ss)

As the states are encoded in an order different from the order of

the symbolic names in the input file (see read_input_file_into),

each time a state set ss is selected the order of the elements has to

be stored in the matrix state order matrix. When state encoding is

IMPLEMENTATION IN C - 30 -

finished, the state encoding matrix contains the encodings of the

states in the order represented by the state order matrix. If

j, then state with number j (position of 1

in one~hot-encoding) has been encoded the ith time and its encoding

is the ith row of the state encoding matrix .

• updat_constraint_matrix(ss)

This function adds to the current constraint matrix (A') the columns

of the constraint matrix (A) corresponding to the states in the

selected stateset ss (L) .

• find_candidates(ss, cs)

The candidateset cs (C) contains

selected stateset ss (L): C

straint relation}.

all possible encodings

{c such that [5] satisfies
c

for the

the con-

Method: Assign all possible codes with length nrbits to the first

element of ss. Then find all candidates for the set ss\{first ele

ment of 55}. Note that this is recursive.

if (ss !- EMPTY)

for (code - 00 ... 0; code <- 11 ... 1; next code)
if ("code is not yet assigned")
{

"assign code";

find_candidates (ss->next, &(*cs»;
else;

else 1* All states have a code now. *1

if ("codes satisfy constraint relation")
"add the codes to the candidateset";

The function tries all possible combinations of codes between 00 ... 0

and 11 ... 1 of length nrbits and checks if the constraint relation is

satisfied. If so, the set of codes, corresponding to the selected

stateset, is added to the candidateset. Note that most of the time

ss contains only one element, as only the first invocation from the

IMPLEMENTATION IN C - 31 -

main program may have to deal with a dominating set.

The candidateset contains beside the codesets also an indication

about the utilization of Boolean space by each specific codeset (see

section 3.2). This utilization is determined by the function that

checks if the codes satisfy the constraint relation and will be used

by the function codeselect, to determine from the candidateset the

most suitable codeset. Locally used function: satisfies_constr_rel .

• adjoin(S)

The task of this function was already discussed in section 3.2. Its

structure is:

if (t < nrselected states) return([SIT]);
else

R' columns of R not already adjoined to S;
r column of R' with minimal 1-count;

return([Sir]);

n x 1

where T - {OJ SSt' th 1 f S 1 T con a~ns e co umns 0 not equa to and

t is the number of columns of S equal to T. The columns of R are the

rows of the current constraint matrix having a non-zero entry in one

of the columns corresponding to the states in the selected stateset.

Note that when for a certain stateset adjoin is invoked for the

first time, t is set to zero, R is updated again and R' = R. Each

time it is invoked for the same stateset (candidateset was empty), R

remains the same and t or R' is updated.

Now the function becomes:

IMPLEMENTATION IN C

static

static

t;

R'. R;

- 32 -

if (llnot the same stateset as the one just serviced")

(

t - 0;

"update R according to the selected stateset ll
;

R' "'" R;

"determine S;

if (t < nrselected_states)
(

t++; nrbits++;

"add one column of zeros to SI1;

else

(

r ... "column of R' with minimal 1-count";
"delete column r from R' I';

nrbits = nrbits - t + 1;

t == 0;

"add column r to S";

S - S;

In the real implementation S is called dime and a set of already

adjoined columns is used instead of R' .

• codeselect

From the candidateset lies", the best codeset IISCS
II is selected

according to the minimal utilization (see section 3.2 and function

find_candidates). Afterwards the candidateset will not be used any

more and may therefore be freed using freer . ..).

min utilization - power2(nrbits);
for ("all elements L of cs")

if (L->utilization <- min_utilization)
(

min utilization - L->utilization;

*scs = L;

IIremove the candidateset cs ll ;

IMPLEMENTATION IN C - 33 -

The locally used function power2(n) returns the nth power of 2 and

removing the candidateset is the task of the locally used functions

rm codeset and rm set of codeset .

• append_to_state_encoding_matrix(scs)

The codeset IISCS" selected by the previously discussed function has

to be added to the state encoding matrix, with the rows in the right

order: corresponding to the order of the states in the selected sta

teset. In IISCS" the order of the codes is the other way around than

the order of the states in the selected stateset. This situation is

ideal for a recursive function:

if (scs !- EMPTY)
(

append_to_state_encoding_matrix(scs->next);
lIadd first element of 5es to state_encoding_matrix";

Afterwards the global nrencoded_states is updated and the codeset

5es is removed using free(...) .

• print_state_encoding()

This function sends the result of the state encoding program to

stdout. The output consists of "nrstates" lines and each line con

tains a symbolic statename and its assigned encoding, separated by a

tab. The global state order matrix is used to determine the right

order of the encodings in the output.

One option is relevant here. Usually, a FSM has one initial state.

the state which the system enters after powerup. The most easy way

to realize such a powerup state is using a state register with an

asynchronous clear input which resets the register to state 00 ... 0.

It is therefore useful to be optionally able to define one state as

the initial one and make sure that it will get encoding 00 ... 0

assigned.

IHPLEHENTATION IN C - 34 -

When state encoding is finished, the constraint relation is invari

ant under some permutations on the state encoding matrix S. One of

these permutations is inversion of all entries in a column. Proof of

this theorem follows below. Using this permutation makes it easy to

assign 00 ... 0 to the initial state: invert each column of the state

encoding matrix having a non-zero entry in the row corresponding to

the initial state. This permutation is done by the locally used

function ass_initialstate_code_O(E).

Very rarely a column of zero entries only or nono-zero entries only

may appear in the state encoding matrix. Such a column is called

redundant, as it may well be deleted from the matrix: One bit of the

state register never changes its value. Within the function

print_state_encoding this situation is recognized and removed by the

locally used function check_for_redundant_columns.

Theorem:

If S satisfies the constraint relation for A, then 8' ...

satisfies it too, where the permutation matrix P. inVE~rts
L

entries of column i of S.

Proof:

Let S - [s·l s·2 s
·1

s] .n
b

then F - A . S - [f'l f.2 f. f] • L .n
b

with f -A s
'p 'p

and ;k - [~k l<. ~k] ·1 'L 'n
b

P.S
L

the

Il1PLEl1ENTATION IN C - 35 -

with £k - [: k . Sk) -: k . S
'p . "p' kp

and FA? - [£'lA£\

[

I I
Now S' - s.l I s.2 I

I I

I
Is.
I 'L

1"'1£ A~ -~ I I -]
I I 'nb 'nb

for k - 1, 2, ... , n
1

I] I S
I 'nb

Let the inversion of ¢ and * be defined as ¢ and * respectively.

Then F' - A
[

I I
. S' - £ I £ I

·1 ·2
I I

- [fk ·1

I-

I-
I £ .
I 'L

I £ .Aa k,sk' I . L' L

I] I £
I .nb

for k - 1, 2, ... , n 1

The only difference between F A;k and F' A (?)' is the ith column.

Consider now the jth element of those columns:

1 < . < 1 < i - J - n
1

, - S nb

IMPLEMENTATION IN C - 36 -

Then there are two possibilities:

1. Bjk - 0 results into:

Remember that F A "?< - ill !!

•

••

If fji E (O,l,*) then row j of F A ~k contains at least one ¢

entry on position(s) not equal to i. As the entries of row j

of F' A ("?<) , on those positions are equal to the same entries

in F A ~k it follows that F' A ("?<) , - ill for ,

k - 1, 2, ... n
l

and S' satisfies the constraint re1.ation.

If fji ¢ then fji - ~ and

F' A ("?<)' - ill for k - I, 2, ... ,n
l

and S' satisfies the

constraint relation.

Since there are no other possibilities for f .. , it is
)1

for B jk - 0 S' satisfies the constraint relation.

1 results into:

••• If f .. - sk' E (O, 1) or f.. - * then f.. A Sk'
)1 1)1)1 1

(O,l) and the same reasoning as after. can be

that 5' satisfies the constraint relation.

fji A Ski E

given to prove

IMPLEMENTATION IN C - 37 -

•••• Ski E (0.1) or "ji - '" thell

'" and

F' A (~)' ~ ~ for k - 1. 2 n
l

and S' satisfies the con

straint relation.

Since there are no other possible combinations for f .. and sk" it
J" "

is proved that for a
jk

- 1 5' satisfies the constraint relation.

From the two possibilities 1. and 2. for a
jk

era! S' satisfies the constraint relation if

4.2.2 Locally used functions

it follows that

S does.

in gen-

Functions that are not directly called from the main program, but are

used in other functions. are called locally used functions. In the

previous subsection some of them were already encountered, here they

are all discussed in order. The names and the files follow:

nextsymbol(symbol)
checksymbol(sl. s2)
equal symbol (sl. s2)
make_int(s. i)
find_dominating_set(dom_set. card)
make_first_list(stptr)
make_search_tree(stptr. dam_set)

longest_path(stptr. dom_set. length)
remove_search_tree(stptr)

find_highest_column_count(ae. A. ss)
satisfies_constr_rel(cs, ut)

disjunction(bl. b2)
conjunction(bl. b2)
check_for_redundant_columns(S. R)
ass_initialstate_code_O(E)
convert_to_binary(i. c)
power2(i)
element_of_set(c, se)

element_of_array(c. A)

"nextsyrnbol.c"

u checksymbol.c"

"equalsymbol.c"

II make int.e ll

IIfind dornset.cl!

"make tree.e"

Umake tree.e U

"longest_path. e"
IIremove tree.c"

IIfind_high_cc.c ll

IIsat con rel.c"

"condisjunct.c"
ueondisjunct.e ll

"check redun.c"
lIass init.c ll

lI eonv to bin.c"

"power2.c l1

lIelement of.e ll

"element of.e"

IMPLEMENTATION IN C - 38 -

• next.ymbol(.ymbol)

Collects from the standard input the next symbol.

• check.ymbol(.l, .2)

If string 51 is not equal to string 52 an error message is send to

stderr.

• equalsymbol(.l, .2)

Returns TRUE if string sl is equal to string s2, FALSE otherwise. No

error messages are generated.

• make_int(., i)

The parameter i becomes equal to the integer value represented by

the string s. If s contains non-numeric characters an error message

is send to stderr.

• find_dominating_.et(dom_set, card)

This function searches in the constraint matrix for a dominating set

and assigns that set to dom set and its cardinality to card. The

problem of finding a dominating set is very complex and must be

solved through intelligent searching. One possibility is using a

search·tree, that basically has the following form:

Each element of the search-tree contains a statenumber and two

pointers. The statenumher corresponds to a column of the constraint

matrix. The first pointer (sub_tree) points to a list of "sons ",

which forms the basis of a sub search-tree. Elements chained

together with the second pointer (rest_list) are all "brothers· of

each other. Brothers of an element that can be reached by walking

through pointers rest_list in the correct direction, are called

"younger brothers". "Elder brothers" can only be reached by walking

back, against the direction of the pointers.

IMPLEMENTATION IN C

TOP
-->

- 39 -

Figure 4.2. Basic form of a search-tree.

Rule 1: Each list of brothers hanging under element Y, through

pointer Y.sub_tree, contains all elements that each individually

may be part of a dominating set, in which also Y is present.

Rule 2: The set of sons of an element is a subset of the set of

younger brothers of that element.

Theorem: If a search-tree is constructed satisfying the above rules,

then the longest path possible, starting from the begin pointer TOP

and walking through pointers sub_tree (possibly skipping over ele

ments through pointers rest_list), gives the dominating set.

Using this theorem, finding a dominating set can be realized as fol

lows:

IMPLEMENTATION IN C - 40 -

find_dominating_set(dom_set, card)
(

make_first_list(&TOP);
make_search_tree(TOP);
longest_path(TOP, &(*dom_set), &(*card»;
remove_search_tree(TOP);

Firstly, the list of brothers consisting of all states is created

and it satisfies rule I, while rule 2 is still irrelevant. Then the

remainder of the search-tree is created, such that rule 1 and rule 2

are never violated. According to the theorem above, the dominating

set can be found by searching for the longest path. Afterwards, the

search-tree will not be used any more and may be removed using

free(.. .) .

• make_first_list(stptr)

One new type is introduced:

STATENUMBER value;
struct search_tree e1 *sub tree, *rest_list;

EL_SEARCH_TREE, *SEARCH_TREE_PTR;

Further details are evident .

• make_search_tree(stptr, dom_set)

(The extra parameter !ldem_seCII is necessary as this function uses

recursion.) Formally, this function creates the sub search-tree with

begin pointer stptr, satisfying rule 1 and rule 2 and the restric

tion that all elements of the resulting sub search-tree may - each

individually - be part of a dominating set containing also the set

of states dom set.

Stated in this way, the function can easily be described using

recursion:

/-

IMPLEMENTATION IN C - 41 -

make_search_tree(stptr, dom_set)

(

for (naIl elements L of list stptr-> ... n)
(

"add L->value to dam_set";

for (nall elements B of list L->rest_list-> ... n)
(

if (nB->value may be part of a dominating set
containing also dam_set")

nadd an element with value B->value to the
list of sons under L->sub tree";

make_search_tree(L->sub_tree, &(*dom_set));
"remove L->value from dam_set n

;

It is easy to see, that rule 1 and rule 2 are never violated. while

the same is true for the restriction that each element can be part

of a dominating set containing also dom set.

One option is relevant here. The maximal cardinality of a dominating

set may be initialized by the user. This means, that the user may

restrict the number of states in a dominating set to a certain value

"max_carddomset ll
• When the complete dominating set would exceed this

value, a semi-dominating set, containing exactly max_carddomset ele

ments, will be returned. The set is called a semi-dominating set as

the complete dominating set has by definition maximal cardinality,

while the semi-dominating set has less elements. The option is given

as: -d n, where n is the defined maximal cardinality. If this option

is absent, max carddomset is set to 3.

Implementing this option requires statements that abort the further

construction of the search-tree as soon as the cardinality is equal

to max carddomset. Then, longest_path will always find a semi-

dominating set with cardinality max carddomset. The function

make search tree will return TRUE if max carddomset is not exceeded,

IHPLEHENTATION IN C - 42 -

FALSE otherwise. This abies the function find_dominating_set to send

an intermediate result to stderr if exceeding max carddornset occurs

and if the option -r is present .

• longest_path(stptr, dom_set, length)

This recursive function assigns to "dom_set" a pointer to the set of

states that belong to the dominating set. The cardinality of the set

is returned through "length" and the begin pointer of the (sub)

search-tree is "stptr". The function then becomes:

langest_path(stptr, dam_set, length)
(

SEARCH_TREE_PTR longest;
STATESET d;
STATENUMBER len;

1* Firstly, determine from the brothers in the list stptr-> ...
the one that has the longest path under it through sub_tree

*1

*length - 0; longest - stptr; *dom_set - EMPTY;
for ("all brothers B of stptr-> ... ")
(

longest_path(B->sub_tree, &d, &len);
if (len > *length)
(

*length
*dom set

longest

len;

d;

B;

1* Now *length is the length of the path *dom set under brother
longest*

*1

if (longest !- EMPTY)
lIadd this element to *dom_set";

IMPLEMENTATION IN C - 43 -

• remove_search_tree(stptr)

When the dominating set is found, the search-tree is not needed any

more. Removing this tree is realized as follows:

for ("all brothers B of stptr-> ... ")
remove_search_tree(B->sub_tree);

IIremove all brothers B";

• find_highest_column_count(ae, A, ss)

The array "ae" stands for "already encoded" and indicates which

states are already encoded (ae[.] - TRUE) and which are not (ae[.] -

FALSE). Then, this function assigns to "55
11 an element of a stateset

with value the first state that has the highest column l-count in

the constraint matrix "A" among the states that have ae [.] - FALSE.

Method: simply count the non-zero entries in each column with ae[.]

- FALSE and select the highest result.

• satisfies_constr_rel(cs, ut)

To determine whether the current state encoding matrix, augmented by

the codeset lies", satisfies the constraint relation for the current

constraint matrix, the matrices F - A . S and pi - a . . ~
be determined. This is straightforward (see also section

s. have to
~ .

2.3). Then,

the relation F A Fi - ~ has to be verified and if the relation is

satisfied for all i, the function returns TRUE, otherwise FALSE. The

matrices F and Fi are called face matrix and dim_inv_face_matrix

respectively.

During the construction of F the utilization of Boolean space, "ut",

can be determined, according to (see section 3.2):

ut -
min (2number of *)

all faces

with * is the don't care value

IHPLEHENTATION IN C - 44 -

where a face is a row of the face_matrix. The value of ut is used by

the globally used function codeselect.

• dlsjunctlon(bl, b2)

Returns the disjunction of the EXTENDED_BOOLEAN variables "bl" and

"h2". See sec tion 2.3.

• conjunctlon(bl, b2)

Returns the conjunction of the EXTENDED BOOLEAN variables "bl" and

"b2". See section 2.3.

• check_for_redundant_columns(S, R)

A redundant column is one with zero entries only or non~zero entries

only. For all i, this function assigns to "R[ij" TRUE if column i of

state encoding matrix "SII is redundant, FALSE otherwise,

• ass_initialstate_code_O(E)

If the option -i NAME is present on the command line, the state with

name NAME must be assigned code 00 ... 0. This function simply inverts

all columns of the state encoding matrix "E" that have a nonwzero

entry in the row corresponding to the initial state. The number of

the initial state is determined by the function read_input_file_into

and is assigned to the global variable lIinitial_state". Inversion

of an entire column leaves the constraint relation invariant, as

proved by the theorem in the discussion of the globally used func

tion print_state_encoding.

• convert_to_binary(i, c)

The function find candidates needs the statement

for (code - 00 ... 0; code <~ 11 ... 1; next code)
{

IMPLEMENTATION IN C - 45 -

This is realized by means of this function as follows:

for (c - 0; c <- (power2(nrbits)-1); c++)
(

convert_to_binary(c, sel_code);

(The description of power2(i) follows below.) This function converts

the integer i into a binary code with length "nrbits", preceded by

zeros if necessary. Method:

k - 0;
while (i > 0)

(

k++;
c [k]

i

i % 2;

i I 2;
1* i MOD 2 *1
1* i DIV 2 *1

"add necessary leading zeros";

• power2(i)

Returns the ith power of 2, where "i" must be a positive integer.

• element_of_set(c, se)

Checks whether the code "e" is an element of the codeset "sc" and

returns TRUE if so, FALSE otherwise. The length of the code must be

equal to the global !Tnrbies".

• element_of_array(e, A)

Checks whether the code "e" with length II nrbits" is contained within

the ENCODING MATRIX "All. If S0, the function returns TRUE, otherwise

FALSE. Note that A has "nrencoded states ll rows and II nrbits ll columns.

IMPLEMENTATION IN C - 46 -

4.3 The concept of the input

It was mentioned earlier. that ESPRESSO takes as input a different

format than the one discussed in section 2.2. It is therefore needed

to preprocess the input before sending it to ESPRESSO. After describ

ing the input to ESPRESSO and the input to the preprocessor (or forma

tor), the latter program is discussed, followed by the construction of

the formator and eskiss into a complete system for symbolic input

state assignment.

4.3.1 ESPRESSO: input and output

Appendices 1 and 2 show the format definitions of the input and output

concept for ESPRESSO respectively. The input concept differs slightly

from the input concept for the complete system. The most important

differences are (see also appendix 3: input concept for FORMAT):

• The order of the variables (columns) in the transition table;

• symbolic values for the output variable.

Here, the need for a preprocesser becomes clear. It would be very

inconsistent if the output variable could not be given using symbolic

values. The preprocessor does allow the use of symbolic values.

The output generated by ESPRESSO is straightforward: the heading con

tains the global Unrstates ll and the label-list contains the names of

the states. The second to last column forms the expanded constraint

matrix, where meets as well as primes may occur. This concept is

immediately accepted by eskiss.

IMPLEMENTATION IN C - 47 -

4.3.2 The preprocessor FORMAT

The output concept for the preprocessor is of course the same as the

input concept for ESPRESSO. The differences between the input concepts

for ESPRESSO and for the preprocessor have been discussed in the pre

vious subsection and the translation of the latter into the former is

straightforward. The description of the input concept for the prepro

cessor can be found in appendix 3.

The program that performs the translation is called format and uses

stdin and stdout as input and output files respectively. Format uses

the functions nextsymbol and make int that have already been discussed

in the previous section. It also uses one new function called

one hot_encode(val, size). This function encodes the symbolic value

given by the parameter "valli, using a one-hot-encoding scheme with

length equal to IIsize". At the ith time the function is invoked, it

returns a string of "size" zeros, except for one 1 in position i. The

function is necessary as ESPRESSO needs an output variable that is

one-hot-encoded rather than symbolic.

The source text of the preprocessor is stored in file "format.c" and

the function one hot encode in file "one hot enc.c".

4.3.3 Using eskiss, options

Input passed through stdin, formated as given by appendix 3, may be

entered into the following system, resulting in a state encoding pro

gram, sending its output to stdout:

format I espresso I eskiss [options]

Input may come from the terminal, from an existing file using cat ...

or from another program using a pipeline lilli, Output may go to the

terminal screen, to a file using redirection ">" or to another program

using "III,

IMPLEMENTATION IN C - 48 -

The options are passed to eskiss as command line arguments. Each

option starts with a minus sign and is separated from other

options by a blank. Two options may be appended to one single minus

sign. if the first option consists of a single character, ot:herwise

they must be separated. So -ri START -e is correct, while -d 2r -e is

incorrect, as ~d 2 is one option, consisting of more than one charac·

ter.

The recognized options are:

-D

-d n

-r

-e

-i NAME

Do not use a dominating set when selecting the first

stateset, but select a state with highest column count.

The maximal cardinality of a dominating set is set to
n. If a dominating set would exceed this maximal cardi
nality, only the first n elements of that set will be
selected, instead of the complete dominating set.

Generate intermediate results and send them to stderr.

A list of all intermediate result messages can be found

in appendix 4.

Suppress all error messages to stderr. Note that inter

mediate results are not suppressed! A list of all error
messages can be found in appendix 5.

The state with name NAME is taken to be the initial

state and will get code 00 ... 0 assigned to it. If NAME
is not a legal name, an error message is send to stderr
and no initial state is assumed. Any other (legal) name

may be used.

EXAl1PLES - 49 -

5. EXAMPLES

To be able to say something about the performance of the resulting

program, some tests on examples of FSM's have to be done. It is of

course necessary to use examples that correspond to realistic systems,

rather than to just some random state transitions, as in practice only

realistic systems will be entered. In [1] some results of the program

KISS are given, based on examples that are also available at the group

Automatic System Design, at the Eindhoven University of Technology.

They are stored in the files assX.mv, where X stands for the number of

the example, 1 ~ X s 7.

The table below shows an excerpt of the results obtained by KISS and

by eskiss.

KISS eskiss

FSM ni no ns nb time(sec) nb time(sec)

FSM 1 4 1 5 3 4 3 1.6

FSM 2 8 5 7 5 31 5 14.1

FSM 3 8 5 4 4 10 4 6.9

FSM 4 4 3 27 9 748 ? ? *
FSM 5 4 3 8 4 11 5 7.4 **
FSM 6 2 2 7 3 4 3 1.3

FSM 7 2 3 15 5 26 5 11.0

ni number of input symbols
no number of output symbols

ns number of internal states

nb number of bits per code

* and ** : See following text.

EXAMPLES - 50 -

Comparing the results of the different programs, it is clear that

eskiss shows about the same or even better performance as KISS

does, when FSM's with little number of states (15) are concerned.

FSM 5 is implemented by eskiss using one bit more than the imple

mentation generated by KISS. Even if a full dominating set is used

to select the first stateset, a s-bit solution is found. The cause

of this difference can be the fact that a dominating set is not

necessarily unique. If KISS finds an other dominating set than

eskiss does, a different result may appear.

KISS generates a 9-bit code length solution within about 12 minutes

for FSM 4. For the same FSM eskiss does not give any result.

Using the full dominating set takes too much memory to store the

search-tree (section 4.2.2) and the program terminates abn,ormally.

If the full dominating set is not used, the resulting codelength

will be longer than the resulting 9 bits of KISS. Re;;ching a

codelength of more than 12 bits makes the program run for hours.

The main reason that the program becomes that time-consuming when

greater code lengths are concerned, is the bad implementation of

the function find_candidates. Using the option -r on the command

line (sending intermediate results to stderr) shows indeed, that

the program runs properly, but needs a lot of time to find the set

of candidates. The effect of this bad implementation becomes

apparent as soon as a code length of about 12 bits has been

obtained.

Calling the program 'useful' is allowed only after changing the

implementation of this function, to make it run much faster. More

about this topic can be found in the next chapter.

CONCLUSIONS - 51 -

6. CONCLUSIONS

After testing the resulting program for optimal state assignment in

the previous chapter, some conclusions and suggestions for improvement

can be stated. As the program is not yet implemented as efficient as

it should and could be, a task is still lying open for a practical

traineeship. An indication to what direction has to be taken to

improve the program, is given below. Thus, this report and the docu

mentation inside the program source text are sufficient literature for

other investigators.

Chapter 5 already indicated that the function find_candidates has to

be implemented more efficiently, as this is the most time-consuming

part of the entire program. For FSM's with a small number of internal

states, the effect of the inefficiency of this function stays unno

ticed. As soon as the number of states increases, the effect is

exponentially increased and the program is not useful any more.

The main reason for find candidates to be that time-consuming, is the

fact that it tests the constraint relation for each possible code with

the current codelength. So, if the current length is n, the function

satisfies constr reI is called 2
n

times at one invocation of

find_candidates. Implementing this function more efficiently will

therefore have the greatest effect on total process time.

The first improvement of the function satisfies constr reI may come

from the more efficient implementation of the different matrices like

the constraint matrix and the state encoding matrix. As they are now

implemented as two-dimensional arrays of integers, efficiency is very

low. A better way would be the implementation using bit operations, as

allowed in the programming language C. This may speed up the calcula

tion of the intermediately used matrices inside satisfies constr reI.

CONCWSIONS - 52 -

A second improvement can be effectuated by updating the intermediately

used matrix instead of calculating them fully, each time they are

needed. Research on the possibilities of this implementation have to

be done first.

And last but certainly not least, an improvement can he realized. using

the fact that the utilization of Boolean space is calculated before

the complete test of the constraint relation is executed. As out of

the set of candidates only one code is selected according to its util·

ization (see chapter 4), only those candidates that show an optimal

utilization need to be substituted into the constraint relation. In

that way it is possible, to have satisfies_constr_rel execute not only

the testing of the constraint relation, but also the selecting of the

best candidate according to the utilization. Thus, find_candidates

will return only one candidate, the one that has the most optimal

utilization. This saves a great deal of computing time, as the con

straint relation is tested many times less than it is in the current

version of eskiss.

Improving the function find candidates itself can also be realized.

Now, all codes with the current code length are regarded. Suppose the

function would stop testing after it has found a certain number of

candidates. Then, only a fraction of the process time will be used,

while the optimal solution may still be part of the found set of can

didates.

A completely different approach to the method for finding the set of

candidates can be regarded. Suppose a constructive function is used

instead of a searching one. The construction of the set of candidates

can probably be done in a fraction of the time needed to search for

the same set. Construction should be executed based on the constraint

relation, using the current constraint matrix and the state encoding

matrix. This topic will probably be the most effective one, as it

changes the order of the method to find the candidateset, while all

CONCLUSIONS - 53 -

other suggestions introduce only marginal changes. Research on this

topic will be necessary and will probably result in an effectively

implemented function.

As mentioned above, the suggestions for improvement of the program

leave a task for a practical traineeship. Implementation of some of

the suggestions above may result into a program for optimal state

assignment, working correctly and within reasonable time.

REFERENCES - 54 -

REFERENCES

[1] De Micheli, G. and R.K. Brayton, A. Sangiovanni-Vincentelli

OPTIMAL STATE ASSIGNMENT FOR FINITE STATE MACHINES.

IEEE Trans. Comput.-Aided Des. Integrated Circuits & Syst.,

Vol. CAD-4(1985) , p. 269-285.

[2] Kernighan, B.W. and D.M. Ritchie

THE C PROGRAMMING LANGUAGE.

Englewood Cliffs, N.J.: Prentice-Hall, 1978.

Prentice-Hall software series

[3] Hezewijk, J.G. van

TRANSLATION OF A SET OF REGULAR EXPRESSIONS INTO A FINITE

STATE MACHINE.

Practical Work Report. Automatic System Design Group,

Department of Electrical Engineering, Eindhoven University

of Technology, 1987. (In preparation).

[4] McNaughton, R. and H. Yamada

REGULAR EXPRESSIONS AND STATE GRAPHS FOR AUTOMATA.

IRE Trans. Electron. Comput., Vol. EC-9(1960) , p. 39-47.

[5] Floyd, R.W. and J.D. Ullman

THE COMPILATION OF REGULAR EXPRESSIONS INTO INTEGRATED

CIRCUITS.

J. Assoc. Comput. Mach., Vol. 29(1982), p. 603-622.

[6] Hill, F.J. and G.R. Peterson

INTRODUCTION TO SWITCHING THEORY AND LOGICAL DESIGN. 2nd ed.

New York: Wiley, 1974.

[7] Stok, L. and R. van den Born, G.L.J.M. Janssen

HIGHER LEVELS OF A SILICON COMPILER.

Department of Electrical Engineering, Eindhoven University

of Technology, 1986.

EUT Report 86-E-163.

INPUT CONCEPT FOR ESPRESSO - 55 -

APPENDIX 1: INPUT CONCEPT FOR ESPRESSO

(*
Definition of input to ESPRESSO.

*)

<ESPRESSO-input> ::- <heading> <body> <end> .

<heading> ::- II .mv" <nrvars> <nrbinary-vars>

{ <sizeof-mv-input> }

<sizeof-old-stste> <sizeof-new-state>
<sizeof-mv-output>

I1<RETURN>"

If .kiss" .

<nrvars> ::- IIpositive-integerll

<nrbinary-vars> ::- "0". (* Only multiple valued variables used. *)

<sizeof-mv-input> ::- "negative-integer ll
•

<sizeof-old-state> ::= "negative-integer ll

<sizeof-new-state> ::- "negative-integer l1

<sizeof-mv-output> ::- "positive-integer" (* Output not symbolic *)

<body> ::- (<implicant>)+

<implicant> ::- (<input>) <old state> <new-state> <output> .

<input> ::- "symbolic-name"

<old-state> ::"'" "symbolic-name"

<new-state> ::- "symbolic-name"

<output> ::- lIone-hot-encoded-name ll

<end> ::- ".e ll
•

INPUT CONCEPT FOR ESPRESSO - 56 -

(*
Symbols may be separated by white-space characters (TABs, newlines,

blanks). A "symbolic-name" is any sequence of two or more characters,

EXCEPT FOR THE CHARACTER "I", THE NAMES ".mv" , lI.label ll
, ".kiss", n.e ll

".end" AND ".p" ARE ALSO NOT ALLOWED.

The number of occurrences of <sizeof-mv-input> must be equal to:

<nrvars> - 3. The number of different symbolic names must for all var
iables but the output, be equal to their corresponding size in the
header: <sizeof-mv input>, <sizeof-old-state> and <sizeof-new-state>.
The same applies t; the one-hot-encoded values of the output variable
and <sizeof-mv-output>. Note that this is not necessarily true for the
new-state. The number of <input> in <implicant> must be equ.al to:

<nrvars> - 3.

*)

OUTPUT CONCEPT FOR ESPRESSO - 57 -

APPENDIX 2: OUTPUT CONCEPT FOR ESPRESSO

(*
Definition of output format from ESPRESSO, when the input was format
ted according to appendix 1.

*)

<ESPRESSO-output> ::- <heading> <label-list> <nr-implicants>

<body> <end> .

<heading> ::- ".mv" <nrvars> <nrbinary-vars> (<sizeof-mv-input>

<nrstates> <sizeof-cornbined-output>

<nrvars> ::- "positive-integerll .

<nrbinary-vars> ::- "0". (* Only mUltiple valued variables used. *)

<sizeof-mv-input> ::- "positive-integer ll

<nrstates> ::- "positive-integer" .

<sizeof-combined-output> ::- "positive-integerll

<label-list> ::- (<label>)+ .

<label> ::- ".Iabell! IIvar_" <var-number> <value-name> }+ .

<var-nurnber> ::= "non-negative-integer"

<value-name> ::== "symbolic-name" .

<nr- implicants> ::= ". p" "positive- integer"

<body> ::- (<implicant>)+

<implicant> ::- (<input>) <old-state> <combined-output> .

<input> ::- "one-hot-encoded-name" .

<old-state> ::= "one-hot-encoded-name"

<combined-output> ::- "one-hot-encoded-name"

<end>::-tl.e".

OUTPUT CONCEPT FOR ESPRESSO - 58 -

(*
Symbols may be separated by white- space characters (TABs. nE,wlines.
blanks). A nsymbolic~name" is any sequence of two or more characters,

EXCEPT FOR THE CHARACTER "I". THE NAMES lI.mv", lI.labell!, ".kiss", lI.e"

".end" AND ".p" ARE ALSO NOT ALLOWED.

The number of occurrences of <sizeof~mv-input> will be equal to:

<nrvars> - 2. The number of <label> in <label-list> is equal to:
<nrvars> - 1. For each <label> the number of <value-name> is equal to
the corresponding <sizeof-mv-input> or <nrstates> in <beading>. The

number of <input> in <implicant> is equal to <nrvars> - 2.

The last line of <label-list> contains the definition of the nB,mes of
the states corresponding to the one-hot-encoded old-state.

The <combined-output> is the combination of the one-hot-encode,d old

state and the output variable.

*)

INPUT CONCEPT FOR FORHAT - 59 -

APPENDIX 3: INPUT CONCEPT FOR FORMAT

(*
Definition of input to state encoding program:

FSMDL, Finite State Machine Description Language.

*)

<FSMDL> ::- <heading> <body> <end> .

<heading> ::- <nrinputs> { <sizeof-input>

<nroutputs> (<sizeof-output>)+

<nrstates> .

<nrinputs> ::= "positive-integer"

<sizeof-input> ::- "positive-integer"

<nroutputs> ::- "positive-integer" .

<sizeof-output> ::= "positive-integer"

<nrstates> ::- "positive-integer"

<body> ::- (<implicant> J+

<implicant> ::- (<input>) <output> }+ <old-state> <new-state> .

<input> ::- "symbolic-name ll

<output> ::- "symbolic-name" .

<old-state> ::- "symbolic-name"

<new-state> ::- "symbolic-name ll

<end> ::_ II .e ll
•

INPUT CONCEPT FOR FORHAT - 60 -

(*
Symbols may be separated by white-space characters (TABs, newlines,
blanks). A "symbolic·name" is any sequence of two or more characters,
EXCEPT FOR THE CHARACTER III". THE NAMES ".mv" , ".label", ".kiss", lI.e ll

".end" AND ".p" ARE ALSO NOT ALLOWED.

The number of occurrences of <sizeof-input> and <sizeof-output> must

be equal to <nrinputs> and <nroutputs> respectively. The number of

different symbolic names must for all variables (inputs, outputs, old
state, new-state) be equal to their corresponding size in the header:

<sizeof-input>, <sizeof-output>, <nrstates>. Note that this is not

necessarily true for the new-state. The number of <input> and <output>

in <implicant> must be equal to <nrinputs> and <nroutputs> respec

tively.

*)

LIST OF INTERHEDIATE RESULTS - 61 -

APPENDIX 4: LIST OF INTERMEDIATE RESULTS

The following messages will be send to stderr if the option -r is

given on the command line. The order in which they will be send

depends on the progress of the state encoding program.

"reading standard input"

"searching for primes"

"constraint matrix is:"

"selecting first stateset"

"searching for dominating setl!

"maximum cardinality of dominating set exceeded"

"continue with cardinality is .. "

"cardinality dominating set is .. "
"selected states are: ... "

"selecting next state"

"searching for state with highest column countll

"selected state is: ... n

"searching for candidates ll

"candidateset is empty"

"selecting code(s)"

"state encoding matrix is:"

lI adjoining"
"Now state encoding matrix is:fI

"assign to state .. code 00 ... 0"

Il s tate encoding finished"

LIST OF ERROR HESSAGES - 62 -

APPENDIX 5: LIST OF ERROR MESSAGES

The following error messages can be send to stderr if run-time errors

occur. If the option -e is present on the command line, error mes-

sages are suppressed.

"ERROR: options must start with '.' ..
"unknown option: .. ,n

"option will be ignored"
"ERROR: the given initial state name is illegal"
"The program will continue without initial state lt

"ERROR: no binary variables allowed."
"Use two-valued MV variables."
"WARNING: Characters after' .e' "
II Remaining characters are ignored and program

continues"

"ERROR: .. , expected tl where is a string of characters
"ERROR: integer expected"

HANUAL INPUT USING REGULAR EXPRESSIONS - 63 -

APPENDIX 6: MANUAL INPUT USING REGULAR EXPRESSIONS

It is sometimes desirable to be able to enter the description of a FSM

by hand and to have the program assign the optimal encoding to the

states. This approach requires an input language that makes the input

easy to enter and easy to read by the user. On this subject a student

is working and results are not yet known. Referring to [3] means wait

ing for the report of traineeship by that student.

The idea behind the input language is formed by [4] and [5], where the

concept of regular expressions is discussed and where an algorithm is

presented to translate a description using regular expressions into a

state-diagram. Once a state-diagram for a FSM is known, the transition

table is easily constructed and the input forma ted according to appen

dix 3 can be send to the state encoding system. Some extensions to the

algorithm have to be made, as the original algorithm can handle only

regular expressions indicating a FSM with only one input and one out

put. More about this can be found in [3].

Regular expressions able the user to design his FSM on a higher level

than ordinary states. A regular expression indicates what happens if a

certain order of input signals occurs and says nothing about how this

should be implemented using states. Defining states is the task of the

translating algorithm. More about these subjects can be found in [4]

and [5].

SUPPLEMENT - 64 -

SUPPLEMENT

As mentioned in chapter 6, the most promising way to alter the func·

tion find candidates in order to speed up the program for state encod

ing, is to have the function construct the set of candidates instead

of search for it. The construction will be based on some formulae

stated below.

Suppose the state encoding matrix S' with b columns and m rows satis

fies the constraint relation for the current constraint matrix A',

having m columns and n rows. Constructing the candidateset is the

problem of determining all possible codes q with length b, so that S

satisfies the constraint relation for A, with:

A - [A' 8 1 n

1

and S - [
S'] m
q 1

I>

where a is the column of the overall constraint matrix corresponding

to the state yet to be encoded.

Now F' - A' . S' and a . . ~ s .
~.

and for all

~, where ~ has at least one ~ entry on each row.

It is easy to see, that

F A·S F' V (8 . q)

for i :S m

8 . q for i - m+l

i

SUPPLEMENT - 65 -

Firstly, consider for ism the kth row of F A Fi:

v

v ((a . (7) A (F
i
),)

k· k·

((a
k

. (7) A (F i
),)

k·

For each k there is at least one p, such that (~i), _~.
kp

(~i), _ ~ and S
kp

satisfies the constraint relation for A,

following relation must be true for all k:

(a
k

(7) A (F
i
), - ~

p kp

So, if

then the

Thus, if sk - 0 then 17 E (0,1), otherwise 17 must be the inverse of
p p

(Fi)'kP' This restriction (for all k) will be used to construct the

set of candidates of codes for the state yet to be encoded.

Secondly, consider for i - m+l the kth row of F A Fi:

((F')k. A (a . u)k.) V «a· (7) A (a . (7))k.

If Bk - 1 then a row of ~ entries only occurs, otherwise at least one

~ entry should occur, when 17 is substituted.

In order to construct the set of candidates, the following variables

have to be stored statically:

SUPPLEMENT - 66 -

F' the previous face matrix

the previous diminished inverted face matrices

the previous ~-matrices

The algorithm then becomes:

SUPPLEMENT - 67 -

u - (* * ___ *) 1* All don't care values_ *1

for (i
(

for
(

I-, i :S m-, i++)

(k - 1-, ks n-, k++)

if
(

(a
k

- 1)

determine p such that (~i), _
kp of>

if ((Fi)'kP - of> or (Fi)'kP *)

1* u must be a Boolean *1
(P

candidateset - EMPTY
stop

else

1* up must become equal to -(Fi)'kP *1

if (u - *)
P

u
P

else if (u _ (F i),)
p kp

1* Contradiction I *1
(

candidate set - EMPTY
stop ;

i - m + 1;

for (k - 1; k S n; k++)

if (a
k

- 0)

check if at least one ~ occurs when u is substituted

generate candidate set according to *-entries in u

SUPPLEHENT - 68 -

The working of the algorithm is apparent: All necessary restrictions

upon a are stored by changing the corresponding *-entries into a 1 or

a O. At the end, the *-entries indicate the different possible codes a

can have. The candidateset can then be constructed by expanding the

*-entries in a into 1 and 0 respectively.

The other improvements mentioned in chapter 6 can also be applied to

this algorithm. For instance, not all candidates have to be generated,

but only a fraction should give good results; checking the fac,. matrix

first upon utilization of Boolean space makes it possible to have the

algorithm generate only one candidate (with the lowest utili"ation);

etcetera.

This supplement can be a good start for a

improve the program eskiss. A practical

acquainted with the theoretical basis of the

practical traineellhip

worker should fir"t1y

a1gori thm KISS and

to

get

the

construction of the program eskiss. The thesis report will be an ade

quate piece of literature for this purpose. Then, the idea stated

above .to improve find_candidates must be investigated and implemented

if found satisfactory.

Eindhoven University of Technology Research Reports
Department of Electrical Engineering

(147) Rozendaa1, L.T. en M.P.J. Stevens, P.M.C.M. van den Eijnden

ISSN 0167-9708
Coden: TEUEDE

DE REALISATIE VAN EEN MULTIFUNCTIONELE I/O-CONTROLLER MET BEHULP VAN EEN GATE-ARRAY.

EUT Report 85-E-147. 1985. ISBN 90-6144-147-1

(148) Eijnden, P.M.C.M. van den

A COURSE ON FIELD PROGRAMMABLE LOGIC.

EUT Report 85-E-148. 1985. ISBN 90-6144-146-X

(149) Beeckman, P.A.

MILLIMETER-WAVE ANTENNA MEASUREMENTS WITH THE HP8S10 NETWORK ANALYZER.

EUT Report 85-E-149. 1985. ISBN 90-6144-149-8

(150) Meer, A.C.P. van

EXAMENRESULTATEN IN CONTEXT MBA.

EUT Report 85-E-150. 1985. ISBN 90-6144-150-1

(151) Ramakrishnan, S. and W.M.C. van den Heuve1

SHORT-CIRCUIT CURRENT INTERRUPTION IN A LOW-VOLTAGE FUSE WITH ABLATING WALLS.

EUT Report 85-E-151. 1995. ISBN 90-6144-151-X

(152) Stefanov, B. and L. Zarkova, A. Veefkind

DEVIATION FROM LOCAL~DYNAMIC EQUILIBRIUM IN A CESIUM-SEEDED ARGON PLASMA.

EUT Report 85-E-152. 1985. ISBN 90-6144-152-8

(153) Hof. P.M.J. Van den and P.H.M. ~

SOME ASYMPTOTIC PROPERTIES OF HULTIVARIABLE MODELS IDENTIFIED BY EQUATION ERROR TECHNIQUES.

EUT Report 85-E-153. 1985. ISBN 90-6144-153-6

(154) Geer1inqs. J.H.T.

LIMIT CYCLES IN DIGITAL FILTERS: A bibliography 1975-1984.

EUT Report 85-£-154. 1985. ISBN 90-6144-154-4

(155) ~. J.F.G. de

THE INFLUENCE OF A HIGH-INDEX MICRO-LENS IN A LASER-TAPER COUPLING.

EUT Report 85-E-155. 1985. ISBN 90-6144-155-2

(156) Ame1sfort, A.M.J. van and Th. Scharten

A THEORETICAL STUDY OF THE ELECTROMAGNETIC FIELD IN A LIMB. EXCITED BY ARTIFICIAL SOURCES.

EUT Report 86-E-156. 1986. ISBN 90-6144-156-0

(157) Ladder, A. and H.T. van Stiphout. J.T.J. van Eijndhoven

ESCHER: Eindhoven SCHematic EditoR reference manual.

EUT Report 86-E-157. 1986. ISBN 90-6144-157-9

(158) Arnbak, J.C.

DEVELOPMENT OF TRANSMISSION FACILITIES FOR ELECTRONIC MEDIA IN THE NETHERLANDS.

EUT Report 86-E-158. 1986. ISBN 90-6144-158-7

(159) Wang Jingshan

HARMONIC AND RECTANGULAR PULSE REPRODUCTION THROUGH CURRENT TRANSFORMERS.

EUT Report 86-E-159. 1986. ISBN 90-6144-159-5

(160) Wo1zak, G.G. and A.M.F.J. van de Laar, E.F. Steennis

PARTIAL DISCHARGES AND THE ELECTRICAL AGING OF XLPE CABLE INSULATION.

EUT Report 86-E-160. 1986. ISBN 90-6144-160-9

(161) Veenstra, P.K.

RANDOM ACCESS MEMORY TESTING: Theory and practice. The gains of fault modelling.

EUT Report 86-E-161. 1986. ISBN 90-6144-161-7

(162) Meer, A.C.P. van

TMS32010 EVALUATION MODULE CONTROLLER.

EUT Report 86-E-162. 1986. ISBN 90-6144-162-5

(163) Stok, L. and R. van den Born, G.L.J.H. Janssen

HIGHER LEVELS OF A SILICON COMPILER. ---

EUT Report 86-E-163. 1986. ISBN 90-6144-163-3

(164) R.J. van and J.F.M. Theeuwen

FOR RANDOM LOGIC: Cell generation schemes.

EUT Report 86-E-164. 1986. ISBN 90-6144-164-1

(165) ~, P.E.R. and A.G.J. Slenter

GAOL: A ~ate Array Description Language.

EUT Report 87-E-165. 1987. ISBN 90-6144-165-X

(166) Die1en, M. and J.F.M. Theeuwen

AN OPTIMAL CMOS STRUCTURE FOR THE DESIGN OF A CELL LIBRARY.

EUT Report 87-E-166. 1987. ISBN 90-6144-166-8

(167) Oerlemans, C.A.M. and J.F.H. Theeuwen

ESKISS: A program for optimal state assignment.

EUT Report 87-E-167. 1987. ISBN 90-6144-167-6

	Contents
	1. Introduction
	2. Theoretical approach
	2.1 Hardware implementation
	2.2 Symbolic cover and symbolic minimization
	2.3 Constrained state encoding
	3. State encoding algorithm
	3.1 The structure of the algorithm
	3.2 State encoding algorithm
	4. Implementation in C
	4.1 The global structure of the program
	4.2 Discussion of the separate functions
	4.3 The concept of the input
	5. Examples
	6. Conclusions
	References
	Appendix 1: Input concept for espresso
	Appendix 2: Output concept for espresso
	Appendix 3: Input concept for format
	Appendix 4: List of intermediate results
	Appendix 5: List of error messages
	Appendix 6: Manual input using regular expressions
	Supplement

