
ESL: A Language for Supporting Robust Plan Execution
in Embedded Autonomous Agents

Erann Gat
Jet Propulsion Lab, California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91107

gat @jpl.nasa.gov

ABSTRACT

ESL (Execution Support Language) is a language for
encoding execution knowledge in embedded
autonomous agents. It is similar in spirit to RAPs
[Firby89] and RPL [McDermott91], and RS
[Lyons93], and its design owes much to these
systems. Unlike its predecessors, ESL aims for a
more utilitarian point in the design space. ESL was
designed primarily to be a powerful and easy-to-use
tool, not to serve as a representation for automated
reasoning or formal analysis (although nothing
precludes its use for these purposes). ESL consists of
several sets of loosely coupled features that can be
composed in arbitrary ways. It is currently
implemented as a set of extensions to Common Lisp,
and is being used to build the executive component of
a control architecture for an autonomous spacecraft
[Pel196].

1. Introduction

ESL (Execution Support Language) is a language for
encoding execution knowledge in embedded
autonomous agents. It is designed to be the
implementation substrate for the sequencing
component of a three-layer architecture such as 3T
[Bonasso96] or ATLANTIS [Gat92]. The sequencer in
such an architecture coordinates the actions of a
reactive controller, which controls the agent’s actions,
and a deliberative component, which generates plans
and performs other high-level computations. The
sequencer must be able to respond quickly to events
while bringing potentially large quantities of
information -- both knowledge and run-time data --
to bear on its decisions. An implementation substrate
for such a system should also be able to deal with a
variety of different strategies for assigning
responsibilities to the various layers, from mostly
reactive strategies, to ones where the planner is the
prime mover.

ESL is similar in spirit to RAPs [Firby89], RPL
[McDermott91], and RS [Lyons93], and its design
owes much to these systems. Unlike its predecessors,
ESL aims for a more utilitarian point in the design

space. ESL was designed primarily to be a powerful,
flexible, and easy-to-use tool, not to serve as a
representation for automated reasoning or formal
analysis (although nothing precludes its use for these
purposes). ESL consists of several sets of loosely
coupled features that can be composed in arbitrary
ways. It is currently implemented as a set of
extensions to Common Lisp, and is being used to
build the executive component of a control architecture
for an autonomous spacecraft [Gat96a, Pel196].

The following sections provide a brief overview of
most of the major feature sets in ESL. For a complete
(though terse) description of the language see the ESL
User’s Guide [Gat96b].

2. Contingency Handling

The contingency-handling constructs of ESL are based
on the concept of cognizant failure, which is a design
philosophy that states that systems should be designed
to detect failures when they occur so that the system
can respond appropriately. This approach presumes
that the multiple possible outcomes of actions are
easily categorized as success or failure. (It also
assumes that failures are inevitable.) This approach
can be contrasted with approaches such as universal
plans [Schoppers87] where multiple outcomes are all
treated homogeneously. Our experience has been that
the cognizant-failure approach provides a good
reflection of human intuitions about agent actions.

2.1 Basic Constructs

The two central contingency-handling constructs of
ESL are a means of signaling that a failure has
occurred, and a means of specifying a recovery
procedure for a particular type of failure. These
constructs are:

(FAIL cause . arguments)

(WITH-RECOVERY- PROCEDURES
(&rest recovery-clauses)
&body body)

The FAIL construct signals that a failure has occurred,
and WITH-RECOVERY-PROCEDURES sets up

59

From: AAAI Technical Report FS-96-01. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

recovery procedures for failures¯ A call to FAIL is
equivalent to a call to an active recovery procedure (i.e.
one whose restarts limit has not been reached).
Recovery procedures have dynamic scope.

The syntax for a recovery clause is:

(cause &key retries body)

or

((cause args) &key retries body)

In the first case any arguments in a FAIL statement
which transfers control to the recovery procedure are
discarded. In the second case arguments are lexically
bound to ARGS. Excess arguments are discarded, and
missing arguments default to nil. The optional
keyword argument RETRIES specifies the maximum
number of times that that recovery procedure can be
invoked during the current dynamic scope of the
WITH-LOCAL-RECOVERY-PROCEDURES form.
RETRIES defaults to 1. The value of RETRIES can
be the keyword :INFINITE, with the obvious results.

Within the BODY of a recovery procedure the special
form (RETRY) does a non-local transfer of control
throw) to the BODY of the WITH-LOCAL-
RECOVERY-PROCEDURES form of which the
recovery procedure is a part, and the special form
(ABORT &optional result) causes RESULT
to be immediately returned from the WITH-
RECOVERY-PROCEDURES form.

A recovery procedure for cause :GENERAL-FAILURE
is applicable to a failure of any cause. It is possible to
generalize this mechanism to a full user-defined
hierarchy of failure classes, but so far we have not
tbund this to be necessary.

The scope of a set of recovery procedures is mutually
recursive in the manner of the Lisp LABELS
construct, or Scheme LETREC. That is, the scope of
a recovery procedure includes the recovery procedure
itself, and all other recovery procedures that are part of
the same WITH-RECOVERY-PROCEDURES form.
Failures are only propagated upwards when no recovery
procedures for a given failure exist within the current
WITH-RECOVERY-PROCEDURES form, or when
all the retries for that failure have been exhausted. For
example, the following code will print FOO BAZ
FOO BAZ, and then fail with cause :FOO.

(with-recovery-procedures
((:foo :retries

(print ’foo) (fail :baz))
(:baz :retries

(print ’baz) (fail :foo))
(fail :foo))

2.2 Cleanup Procedures

It is often desirable to insure that certain actions get
taken "if all else fails" and the execution thread exits a
certain dynamic context with a failure. For example,
one might want to insure that all actuators are shut
down if a certain procedure fails and the available
recovery procedures can’t deal with the situation. Such
a procedure is called a cleanup procedure, and is
provided in ESL using the following construct:

(WITH-CLEANUP-PROCEDURE cleanup
&body body)

This construct executes BODY, but if BODY fails,
CLEANUP is executed before the failure is propagated
out of the WITH-CLEANUP-PROCEDURE form.
This construct is similar to the Lisp UNWIND-
PROTECT construct except that the cleanup procedure
is only executed if BODY fails. (Because ESL is
implemented on top of Common Lisp, UNWIND-
PROTECT is also available for implementing
unconditional cleanup procedures.)

2.3 Examples

To illustrate the use of ESL’s contingency handling
constructs, consider a widget that is operated with the
primitive call OPERATE-WIDGET. This call fails
cognizantly is the widget is broken. We can break the
widget by calling BREAK-WIDGET, which takes an
optional argument to specify how badly to break the
widget. There is also a repair primitive, ATTEMPT-
WIDGET-FIX, which will fix the widget if passed an
argument that matches the current widget state. The
following execution trace illustrates the basic
principles of widget physics:

? (operate-widget)
OPERATING WIDGET SUCCESSFULLY.
NIL
v (break-widget)
:BROKEN

(operate-widget)
Failure :WIDGET-BROKEN, no recovery
available.
Aborted

(attempt-widget-fix :broken)
Widget is fixed.
NIL
? (operate-widget)
OPERATING WIDGET SUCCESSFULLY.
NIL

(break-widget :severely-broken)
:SEVERELY-BROKEN
? (operate-widget)

60

Failure :WIDGET-BROKEN, no recovery

available.
Aborted
v (attempt-widget-fix :broken)
Widget fix didn’t work.
NIL
? (operate-widget)
Failure :WIDGET-BROKEN, no recovery

available.
Aborted

(attempt-widget-fix
:severely-broken)

Widget is fixed.
NIL

(operate-widget)
OPERATING WIDGET SUCCESSFULLY.
NIL

Notice that attempting to operate the widget in a
broken state results in a cognizant failure. Now
consider the following code:

(defun recovery-demo-i ()
(with-recovery-procedures

((:widget-broken
(attempt-widget-fix :broken)
(retry))

(:widget-broken

(attempt-widget-fix
:severely-broken)

(retry))
(:widget-broken :retries

(attempt-widget-fix
:weird-state)

(retry)))
(operate-widget)))

This code provides three different recovery procedures
for recovering from widget failures. The operation of
this code is illustrated by the following execution
trace;

(recovery-demo- i)
; If the widget is OK nothing
special happens

OPERATING WIDGET SUCCESSFULLY.
NIL

(break-widget)
: BROKEN

(recovery-demo- i)
; If the widget is broken it now
gets fixed
Failure :WIDGET-BROKEN, recovery

available. (No retries)
Widget is fixed.

OPERATING WIDGET SUCCESSFULLY.

NIL
? (break-widget :severely-broken)
:SEVERELY-BROKEN
? (recovery-demo-l)
; First attempt to recover from a
simple broken state
Failure :WIDGET-BROKEN, recovery

available. (No retries)
Widget fix didn’t work.
; Now try the second recovery
procedure
Failure :WIDGET-BROKEN, recovery
available. (No retries)
Widget is fixed.

OPERATING WIDGET SUCCESSFULLY.
NIL

(break-widget :irrecoverably-

broken)
:IRRECOVERABLY-BROKEN

(recovery-demo-l)
; None of the recovery procedures

will work, but the third
; one gets three retries before
giving up.

Failure :WIDGET-BROKEN, recovery
available. (No retries)
Widget fix didn’t work.
Failure :WIDGET-BROKEN, recovery

available. (No retries)
Widget fix didn’t work.
Failure :WIDGET-BROKEN, recovery

available. (2 retries)
Widget fix didn’t work.
Failure :WIDGET-BROKEN, recovery
available. (i retry)
Widget fix didn’t work.
Failure :WIDGET-BROKEN, recovery
available. (No retries)
Widget fix didn’t work.
Failure :WIDGET-BROKEN, no recovery
available.
Aborted

3. Goal achievement

Decoupling of achievement conditions and the methods
of achieving those conditions is provided by the
ACHIEVE and TO-ACHIEVE constructs. The syntax
for these constructs is:

(TO-ACHIEVE condition . methods)
(ACHIEVE condition)

Each METHOD is a COND clause. For example:

61

(defun widget-ok? () (eq *widget-
status* :ok))

(to-achieve (widget-ok?)
((eq *widget-status* :broken)

(attempt-widget-fix :broken)
((eq *widget-status*

:severely-broken)
(attempt-widget-fix

:severely-broken)))

The TO-ACHIEVE construct is somewhat analogous
to the RAP METHOD clause in that it associates
alternative methods with conditions under which those
methods are appropriate. In this case there are two
methods, one for the broken state and another for the
severely broken state. The operation of this code is
illustrated in the following execution trace, beginning
with an unbroken widget:

? (operate-widget)
OPERATING WIDGET SUCCESSFULLY.
NIL
? (achieve (widget-ok?)
(WIDGET-OK?) achieved. (No action

needed.)
NIL

(break-widget :broken
: BROKEN
? (achieve (widget-ok?)
Attempting to achieve (WIDGET-OK?)
Widget is fixed.
(WIDGET-OK?) achieved.

T
(break-widget

: irrecoverably-broken)
: IRRECOVERABLY-BROKEN
? (achieve (widget-ok?))
Attempting to achieve (WIDGET-OK?)
Failure :NO-APPLICABLE-METHOD, no
recovery available.
Aborted

4. Task Management

4.1 Events

ESL supports multiple concurrent tasks. Task
synchronization is provided by a data object type called
an event. A task can wait for an event, at which point
that task will block until another tasksignals that
event. The constructs are straightforward:

(WAIT-FOR-EVENTS events
&optional test)

62

(SIGNAL event &rest args)

A task can wait on multiple events simultaneously; it
becomes unblocked when any of those events are
signaled. Also, multiple tasks can simultaneously
wait on one event. When that event is signaled, all
the waiting tasks are unblocked simultaneously.
(Which task actually starts running first depends on the
task scheduler.)

If arguments are passed to SIGNAL-EVENT those
arguments are returned as multiple values from the
corresponding WAIT-FOR-EVENT. If WAIT-FOR-
EVENTS is provided an optional TEST argument,
then the task is not unblocked unless the arguments
passed to SIGNAL answer true to TEST (i.e. TEST
returns true when called on those arguments).

4.2 Checkpoints

ESL tasks are themselves first-class data objects which
inherit from event. Thus, tasks can be waited-for and
signaled. However, because tasks have a linear
execution thread it is desirable to slightly modify the
semantics of an event associated with a task. Normal
events do not record signals; a task waiting on an
event blocks until the next time the event is signaled.
However, a task waiting for another task should not
block if the other task has already passed the relevant
point in the execution thread. (For example, if task
T1 starts waiting for task T2 to end after T2 has
already ended it should not block.) Thus, ESL
provides an additional mechanism called a checkpoint
for signaling task-related events. Signaling a
checkpoint is the same as signaling an event, except
that a record is kept of the event having happened.
When a checkpoint is waited-for, the record of past
signals is checked first. In order to disambiguate
checkpoints, an identifying argument is required. Thus
we have the following constructs:

(CHECKPOINT-WAIT task id)
(CHECKPOINT id)

CHECKPOINT-WAIT waits until checkpoint ID has
been signaled by task TASK. CHECKPOINT signals
checkpoint ID in the current task. There is a
privileged identifier for signaling a checkpoint
associated with the end of a task. This checkpoint is
automatically signaled by a task when it finishes. To
v~ait for this privileged identifier there is an additional
construct, WAIT-FOR-TASK, which is simply a
CHECKPOINT-WAIT for the task-end identifier.

4.3 Task Nets

ESL provides a construct called TASK-NET for setting
up a set of tasks in a mutually recursive lexical
context. The syntax is:

(TASK-NET [:allow-failures]
(identifier &rest body)
(identifier &rest body)
¯ . .)

The bodies in a TASK-NET are run in parallel in a
lexical scope in which the identifiers are bound to their
corresponding tasks. The TASK-NET form itself
blocks until all its children finish. Unless the
optional :ALLOW-FAILURES keyword is specified, if
one subtask in a task net fails the other tasks are
immediately aborted and the whole TASK-NET
construct fails. There is also an OR-PARALLEL
construct which finishes when any one of its subtasks
finishes successfully, or all of them fail.

For example, the following code prints 1 2 3 4:

(TASK-NE~
(tl (print i)

(checkpoint :cp)
(checkpoint-wait t2 :cp)
(print 3))

(t2 (checkpoint-wait tl :cp)
(print 2)
(wait-for-task tl)
(print 4)))

4.4 Guardians

One common idiom in agent programming is having a
monitor task which checks a constraint that must be
maintained for the operation of another task. We refer
to the monitoring task as a guardian task. The
relationship between a guardian and its associated main
task is asymmetric. A constraint violation detected by
the guardian should cause a cognizant failure in the
main task, whereas termination of the main task (for
any reason) should cause the guardian to be aborted.
This asymmetric pair of tasks is created by the
following form:

(WITH-GUARDIAN guardform failform
&body body)

For example, the following code operates a widget
while monitoring the widget in parallel. If
MONITOR-WIDGET returns, then OPERATE-
WIDGET will fail cognizantly.

(with-guardian (monitor-widget)
(fail :widget-failed)

(operate-widget))

5. Logical database

A logical database is provided as a modular
functionality in ESL. The major constructs
supporting this database are ASSERT and RETRACT,
for manipulating the contents of the database, DB-
QUERY for making queries, and WITH-QUERY-
BINDINGS, which establishes a dynamic context for
logical variable bindings and continuations. The
syntax for WITH-QUERY-BINDINGS is:

(WITH-QUERY-BINDINGS query
[: inherit-bindings] body)

Within a WITH-QUERY-BINDINGS form a call to
NEXT-BINDINGS calls the binding continuation, i.e.
it causes a jump to the start of BODY with the next
available bindings for QUERY. If there are no more
bindings, NEXT-BINDINGS fails with cause :NO-
MORE-BINDINGS. (If there were no bindings to
begin with the WITH-QUERY-BINDINGS form fails
with cause :NO-BINDINGS.)

The special reader syntax #?VAR accesses the logical
binding of ?VAR. The :INHERIT-BINDINGS
keyword causes the bindings in a WITH-QUERY-
BINDINGS form to be constrained by any bindings
that were established by an enclosing WITH-QUERY-
BINDINGS form.

For example, the following code will try all known
widgets until it finds one that it can operate
successfully:

(with-query-bindings
’(is-a ?widget widget)

(with-recovery-procedures
(:general-failure

(next-bindings))
(operate-widget #?widget)))

6. Summary

WITH-GUARDIAN executes BODY and
GUARDFORM in parallel. If body ends,
GUARDFORM is aborted. If GUARDFORM ends,
then the task executing body is interrupted and forced
to execute FAILFORM (which is usually a call to
FAIL).

This paper has described some of the major feature sets
of ESL (Execution Support Language), a language
designed for encoding execution knowledge in
embedded autonomous agents. ESL consists of several
independent sets of features, including constructs for

63

contingency handling, task management, goal
achievement, and logical database management. The
contingency handling is based on a cognizant-failure
model, while task synchronization is based on a first-
class event data object. In addition, there are feature
sets for dealing with real time, debugging, and
constraint management which space does not permit us
to describe here. The interested reader is referred to
[Gat96b].

Unlike its predecessors, RAPs, RPL and RS, ESL
targets a more utilitarian point in the design space,
aiming to be a useful programming tool first, and a
representation for automated reasoning or formal
analysis second. It does this by offering a toolkit of
loosely coupled, freely composable constructs rather
than a constraining framework. (This is both a feature
and a bug, making it easier to do many things,
including shoot yourself in the foot.) In this respect,
ESL is similar to TCA [Simmons90]. The main
difference between ESL and TCA is that TCA is a C
subroutine library, whereas ESL includes new control
constructs that have no analog in C and thus cannot be
duplicated in TCA. For example, TCA cannot abort a
task that has gotten into an infinite loop; ESL can.
Also, because ESL introduces new syntax, it allows
similar functionality to be achieved in fewer lines of
code.

Finally, there is one very important missing feature
set which is currently being designed: resource
management. Getting this right turns out to be quite
challenging.

Acknowledgments

Barney Pell, Jim Firby and Reid Simmons provided
many useful comments on the design of ESL. This
work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract
with the National Aeronautics and Space
Administration.

References

[Bonasso96] R. Peter Bonasso, et al., "Experiences
with an Architecture for Intelligent Reactive
Agents," Journal of Experimental and
Theoretical AI, to appear.

[Firby89] R. James Firby, Adaptive Execution in
Dynamic Domains, Ph.D. thesis, Yale
University Department of Computer Science,
1989.

[Gat92] Erann Gat, "Integrating Reaction and
Planning in a Heterogeneous Asynchronous
Architecture for Controlling Real World Mobile
Robots," Proceedings of the Tenth National
Conference on Artificial Intelligence (AAAI),
1992.

[Gat96a] Erann Gat, "News From the Trenches: An
Overview of Unmanned Spacecraft for AI
Researchers, " Presented at the 1996 AAAI
Spring Symposium on Planning with
Incomplete Information.

[Gat96b] Erann Gat, "The ESL User’s Guide",
unpublished. Available at http://www-
aig.jpl.nasa.gov/home/gat/esl.html

[Lyons93] Damian Lyons, "Representing and
Analyzing action plans as networks of
concurrent processes, " IEEE Transactions on
Robotics and Automation, 9(3), June 1993.

[McDermott91] Drew McDermott, "A Reactive Plan
Language," Technical Report 864, Yale
University Department of Computer Science.

[Pelt96] Barney Pell, et al. "Plan Execution for
Autonomous Spacecraft." Working Notes of
the 1997 AAAI Fall Symposium on Plan
Execution.

[Schoppers87] M. J. Schoppers, "Universal Plans for
Reactive Robots in Unpredictable Domains,"
Proceedings of the International Joint
Conference on Artificial hztelligence (1JCAI),
1987.

[Simmons90] Reid Simmons, "An Architecture for
Coordinating Planning, Sensing and Action,"
Proceedings of the DARPA Workshop on
Innovative Approaches to Planning,
Scheduling, and Control, 1990.

64

