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Abstract. This paper describes the second major release

of the Earth System Model Evaluation Tool (ESMValTool),

a community diagnostic and performance metrics tool for

the evaluation of Earth system models (ESMs) participat-

ing in the Coupled Model Intercomparison Project (CMIP).

Compared to version 1.0, released in 2016, ESMValTool ver-

sion 2.0 (v2.0) features a brand new design, with an im-

proved interface and a revised preprocessor. It also features

a significantly enhanced diagnostic part that is described in

three companion papers. The new version of ESMValTool

has been specifically developed to target the increased data

volume of CMIP Phase 6 (CMIP6) and the related chal-

lenges posed by the analysis and the evaluation of output

from multiple high-resolution or complex ESMs. The new

version takes advantage of state-of-the-art computational li-

braries and methods to deploy an efficient and user-friendly

data processing. Common operations on the input data (such

as regridding or computation of multi-model statistics) are

centralized in a highly optimized preprocessor, which allows

applying a series of preprocessing functions before diagnos-

tics scripts are applied for in-depth scientific analysis of the

model output. Performance tests conducted on a set of stan-

dard diagnostics show that the new version is faster than its

predecessor by about a factor of 3. The performance can

be further improved, up to a factor of more than 30, when

the newly introduced task-based parallelization options are

used, which enable the efficient exploitation of much larger

computing infrastructures. ESMValTool v2.0 also includes

a revised and simplified installation procedure, the setting

of user-configurable options based on modern language for-

mats, and high code quality standards following the best

practices for software development.

1 Introduction

The future generations of Earth system model (ESM) ex-

periments will challenge the scientific community with an

increasing amount of model results to be analyzed, evalu-

ated, and interpreted. The data volume produced by Cou-

pled Model Intercomparison Project Phase 5 (CMIP5; Tay-

lor et al., 2012) was already above 2 PB, and it is estimated
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to grow by about 1 order of magnitude in CMIP6 (Eyring

et al., 2016a). This is due to the growing number of pro-

cesses included in the participating models, the improved

spatial and temporal resolutions, and the widening number of

model experiments and participating model groups. Not only

the larger volume of the output, but also the higher spatial and

temporal resolution and complexity of the participating mod-

els is posing significant challenges for the data analysis. Be-

sides these technical challenges, the variety of variables and

scientific themes covered by the large number (currently 23)

of CMIP6-endorsed Model Intercomparison Projects (MIPs)

is also rapidly expanding.

To support the community in this big data challenge, the

Earth System Model Evaluation Tool (ESMValTool; Eyring

et al., 2016c) has been developed to provide an open-source,

standardized, community-based software package for the

systematic, efficient, and well-documented analysis of ESM

results. ESMValTool provides a set of diagnostics and met-

rics scripts addressing various aspects of the Earth system

that can be applied to a wide range of input data, includ-

ing models from CMIP and other model intercomparison

projects, and observations. The tool has been designed to fa-

cilitate routine tasks of model developers, model users, and

model output users, who need to assess the robustness and

confidence in the model results and evaluate the performance

of models against observations or against predecessor ver-

sions of the same models. Version 1.0 of ESMValTool was

specifically designed to target CMIP5 models, but the grow-

ing amount of data being produced in CMIP6 motivated the

development of an improved version, implementing a more

efficient and systematic approach for the analysis of ESM

output as soon as the output is published to the Earth Sys-

tem Grid Federation (ESGF, https://esgf.llnl.gov/, last ac-

cess: 20 February 2020), as also advocated in Eyring et al.

(2016b).

This paper is the first in a series of four presenting ESM-

ValTool v2.0, and it focuses on the technical aspects, high-

lights its new features, and analyzes its numerical perfor-

mance. The new diagnostics and the progress in scientific

analyses implemented in ESMValTool v2.0 are discussed

in the companion papers: Eyring et al. (2019), Lauer et al.

(2020), and Weigel et al. (2020).

A major bottleneck of ESMValTool v1.0 (Eyring et al.,

2016c) was the relatively inefficient preprocessing of the

input data, leading to long computational times for run-

ning analyses and diagnostics whenever a large data volume

needed to be processed. A significant part of this preprocess-

ing consists of common operations, such as time subsetting,

format checking, regridding, masking, and calculating tem-

poral and spatial statistics, which are performed on the input

data before a specific scientific analysis is started. Ideally,

these operations, collectively named preprocessing, should

be centralized in the tool, in a dedicated preprocessor. This

was not the case in ESMValTool v1.0, where only a few of

these preprocessing operations were performed in such a cen-

tralized way, while most of them were applied within the

individual diagnostic scripts. This resulted in several draw-

backs, such as slow performance, code duplication, lack of

consistency among the different approaches implemented at

the diagnostic level, and unclear documentation.

To address this bottleneck, ESMValTool v2.0 has been de-

veloped: this new version implements a fully revised pre-

processor addressing the above issues, resulting in dramatic

improvements in the performance, as well as in the flexibil-

ity, applicability, and user-friendliness of the tool itself. The

revised preprocessor is fully written in Python 3 and takes

advantage of the data abstraction features of the Iris library

(Met Office, 2010–2019) to efficiently handle large volumes

of data. In ESMValTool v2.0 the structure has been com-

pletely revised and now consists of an easy-to-install, well-

documented Python package providing the core functionali-

ties (ESMValCore) and a set of diagnostic routines. The ES-

MValTool v2.0 workflow is controlled by a set of settings

that the user provides via a configuration file and an ESM-

ValTool recipe (called namelist in v1.0). Based on the user

settings, ESMValCore reads in the input data (models and

observations), applies the required preprocessing operations,

and writes the output to netCDF files. These preprocessed

output files are then read by the diagnostics and further an-

alyzed. Writing the preprocessed output to a file, instead of

storing it in memory and directly passing it as an object to the

diagnostic routines, is a requirement for the multi-language

support of the diagnostic scripts. Multi-language support has

always been one of the ESMValTool main strengths, to al-

low a wider community of users and developers with dif-

ferent levels of programming knowledge and experience to

contribute to the development of ESMValTool by provid-

ing innovative and original analysis methods. As in ESM-

ValTool v1.0, the preprocessing is still performed on a per-

variable and per-dataset basis, meaning that one netCDF file

is generated for each variable and for each dataset. This fol-

lows the standard adopted by CMIP5, CMIP6, and other

MIPs, which requires that data for a given variable and model

is stored in an individual file (or in a series of files covering

only a part of the whole time period in the case of long time

series).

To give ESMValTool users more control on the function-

alities of the revised preprocessor, the ESMValTool recipe

has been extended with more sections and entries. To this

purpose, the YAML format (http://yaml.org/, last access:

20 February 2020) has been chosen for the ESMValTool

recipes and consistently for all other configuration files in

v2.0. The advantages of YAML include an easier to read and

more user-friendly code and the possibility for developers to

directly translate YAML files into Python objects.

Moreover, significant improvements are introduced in this

version for provenance and documentation: users are now

provided with a comprehensive summary of all input data

used by ESMValTool for a given analysis and the output

of each analysis is accompanied by detailed metadata (such
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as references and figure captions) and by a number of tags.

These make it possible to sort the results by, e.g., scien-

tific theme, plot type, or domain, thereby greatly facilitat-

ing collecting and reporting results, for example on brows-

able web-sites. Furthermore, a large part of the ESMValTool

workflow manager and of the interface, handling the com-

munication between the Python core and the multi-language

diagnostic packages at a lower level, has been completely

rewritten following the most recent coding standards for code

syntax, automated testing, and documentation. These qual-

ity standards are strictly applied to the ESMValCore pack-

age, while for the diagnostics more relaxed standards are

used to allow a larger community to contribute code to ES-

MValTool. As for v1.0, ESMValTool v2.0 is released under

the Apache license. The source code of both ESMValTool

and ESMValCore is freely accessible on the GitHub repos-

itory of the project (https://github.com/ESMValGroup, last

access: 20 February 2020) and is fully based on freely avail-

able packages and libraries.

This paper is structured as follows: the revised structure

and workflow of ESMValTool v2.0 are described in Sect. 2.

The main features of the new YAML-based recipe format are

outlined in Sect. 3. Section 4 presents the functionalities of

the revised preprocessor, describing each of the preprocess-

ing operations in detail as well as the capability of ESMVal-

Tool to fix known problems with datasets and to reformat

data. Additional features, such as the handling of external

observational datasets, provenance, and tagging, as well as

the automated testing are briefly summarized in Sect. 5. The

progress in performance achieved with this new version is an-

alyzed in Sect. 6, where results of benchmark tests compared

to the previous version are presented for one representative

recipe. Section 7 closes with a summary.

This paper aims at providing a general, technical overview

of ESMValTool v2.0. For more detailed instructions on ES-

MValTool usage, users and developers are encouraged to take

a look at the extensive ESMValTool documentation available

on Read the Docs (https://esmvaltool.readthedocs.io/, last ac-

cess: 20 February 2020).

2 Revised design, interface, and workflow

ESMValTool v2.0 has been completely redesigned to facili-

tate the development of core functionalities by the core de-

velopment team, on the one hand, and the implementation of

new scientific analyses (diagnostics and metrics) by diagnos-

tic developers and the application of the tool by the casual

users, on the other hand. These two target groups typically

have different levels of programming experience: highly ex-

perienced programmers and software engineers maintain and

develop the core functionalities that affect the whole tool,

while scientists or scientific programmers mainly contribute

new diagnostics and analyses to the tool. A schematic repre-

sentation of ESMValTool v2.0 is given in Fig. 1.

ESMValTool v2.0 is distributed as an open-source pack-

age containing the diagnostic code and related interfaces,

while the core functionalities are located in a Python pack-

age (ESMValCore), which is distributed via the Python pack-

age manager or via Conda (https://www.anaconda.com/, last

access: 20 February 2020) and which is installed as a de-

pendency of ESMValTool during the installation procedure.

The procedure itself has been greatly improved over v1.0 and

allows installing ESMValTool and its dependencies using

Conda just following a few simple steps. No detailed knowl-

edge of ESMValCore is required by the users and scien-

tific developers to run ESMValTool or to extend it with new

analyses and diagnostic routines. The ESMValCore package

is developed and maintained in a dedicated public GitHub

repository, where everybody is welcome to report issues, re-

quest new features, or contribute new code with the help of

the core development team. ESMValCore can also be used

as a stand-alone package, providing an efficient preproces-

sor that can be utilized as part of other analysis workflows or

coupled with different software packages.

ESMValCore contains a task manager that controls the

workflow of ESMValTool, a method to find and read input

data, a fully revised preprocessor performing several com-

mon operations on the data (see Sect. 4), a message and

provenance logger, and the configuration files. ESMValCore

is installed as a dependency of ESMValTool and it is coded as

a Python library (Python v3.7), which allows all preprocessor

functions to be reused by other software or used interactively,

for example from a Jupyter Notebook (https://jupyter.org/,

last access: 20 February 2020). The new interface for config-

uring the preprocessing functions and the diagnostics scripts

from the recipe is very flexible: for example, it allows design-

ing custom preprocessors (these are pipelines of configurable

preprocessor functions acting on input data in a customizable

order), and it allows each diagnostic script to define its own

settings. The new recipe format also allows ESMValTool to

perform validation of recipes and settings and to determine

which parts of the processing can be executed in parallel,

greatly reducing the run time (see Sect. 6).

Although ESMValCore is fully programmed in Python,

multi-language support for the ESMValTool diagnostics is

provided, to allow a wider community of scientists to con-

tribute their analysis software to the tool. ESMValTool v2.0

supports diagnostics scripts in Python 3, NCL (NCAR Com-

mand Language, v6.6.2, https://www.ncl.ucar.edu/, last ac-

cess: 20 February 2020), R (v3.6.1, https://www.r-project.

org/, last access: 20 February 2020), and, since this version,

Julia (v1.0.4, https://julialang.org/, last access: 20 Febru-

ary 2020). Support for other freely available programming

languages for the diagnostic scripts can be added on request.

The coupling between ESMValCore and the diagnostics is

accomplished using temporary interface files generated at

run time for each variable–diagnostic combination. These

files contains all the information that a diagnostic script may

require to be run, such as the path to the preprocessed data,
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Figure 1. Schematic representation of ESMValTool v2.0.

the list of input datasets, the variable metadata, the diagnos-

tic settings from the recipe, and the destination path for re-

sult files and plots. The interface files are written by the ES-

MValCore preprocessor in the same language as the recipe

(YAML; see Sect. 3), which highly simplifies the coupling.

An exception is NCL, which does not support YAML and for

which a dedicated interface file structure has been introduced

based on the NCL syntax.

ESMValTool v2.0 adopts modern standards for storing

configuration files (YAML v1.2), data (netCDF4), and prove-

nance information (W3C-PROV, using the Python package

prov v1.5.3). Professional software development approaches

such as code review (through GibHub pull requests), auto-

mated testing and software quality monitoring (static code

analysis and a consistent coding style enforced through unit

tests) ensure that ESMValTool is reliable, well-documented,

and easy to maintain. These quality control practices are en-

forced for the ESMValCore package. For the diagnostic, code

standards are somewhat more relaxed, since compliance with

all of these standards can be quite challenging and may in-

troduce unnecessary hurdles for scientists contributing their

diagnostic code to ESMValTool.

3 New recipe format

To allow a flexible and comprehensive user control on the

many new features of ESMValTool v2.0, a new format for

the configuration files defining datasets, preprocessing oper-

ations, and diagnostics (the so-called recipe) is introduced:

YAML is used to improve user readability of the numerous

settings and to facilitate their passing through to the diagnos-

tics code, as well as the communication between ESMVal-

Core and the diagnostics.

An ESMValTool v2.0 recipe consists of four sections: doc-

umentation, preprocessors, datasets, and diagnostics. Within

each of these sections, settings are given as lists or as ad-

ditional nested dictionaries for more complex settings. This

allows controlling many options and features at different lev-

els in an intuitive way. The diagnostic package contains many

example recipes that can be used as a starting point to create

more complex and extensive applications (see the compan-

ion papers for more details). In the following, each of the

four sections of the recipe is described. A few ESMValTool

recipes are provided in the Supplement as a reference.

3.1 Documentation section

This section of the recipe provides a short description of its

content and purpose, together with the (list of) author(s) and

project(s) which supported its development and the corre-

sponding reference(s). All these entries are specified using

tags which are defined in the references configuration file

(config-references.yml) of ESMValTool. At run time,

the recipe documentation is collected by the provenance log-

ger (see Sect. 5.2), which translates the tags into full text

string and adds them to the output produced by the recipe

itself.

3.2 Datasets section

This section replaces the MODELS section used in ESMVal-

Tool v1.0 namelists, and it is now called datasets to ac-

count for the fact that not only models but also observations

or reanalyses can be listed here. The datasets to be processed

by all diagnostics in the recipe are provided as a list of dic-

tionaries, each containing predefined sets of key–value pairs

that unambiguously define the dataset itself. The required

keys depend on the project class of the dataset (e.g., CMIP3,
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CMIP5, CMIP6, OBS, obs4mips) and are defined in the de-

veloper configuration file (config-developer.yml) of the

tool. Typically, the user does not need to edit this file but

only to provide the root path to the data in the user config-

uration file (config-user.yml). Based on the information

contained in both files, the tool reconstructs the full path of

the dataset(s) to locate the input file(s). During the ESMVal-

Tool execution, the dataset dictionary is always combined

with the variable dictionary defined in the diagnostic section

(see Sect. 3.4) into a single dictionary, such that the key–

value pairs for the dataset and for the variable can be given

in either dictionary. This has several advantages, for example

the same dataset can be defined for multiple variables from

different MIPs (such as the CMIP5 “Amon” and “Omon”),

just defining the common keys in the dataset dictionary and

the variable-specific one (e.g., mip) in the variables dictio-

naries. The tool collects the dataset information by combin-

ing the keys from the two dictionaries, depending on the vari-

able currently processed. This also makes the recipe more

compact, since common keys, such as project class or time

period, have to be defined only once and not repeated for all

datasets. As in v1.0, the datasets listed in the datasets sec-

tion are processed for all diagnostics and variables defined in

the recipes. Datasets to be used only by a specific diagnostic

or providing only a specific variable can be added as addi-

tional datasets in the diagnostic or in the variable dictionary,

respectively, using exactly the same syntax.

3.3 Preprocessor section

This is a new feature of ESMValTool v2.0: in the

preprocessors section, one or more sets of preprocessing

operations (preprocessors) can be defined. Each preproces-

sor is identified by a unique name and includes a list of op-

erations and settings (see Sect. 4 for details). Once defined,

a preprocessor can be applied to an arbitrary number of vari-

ables listed in the diagnostics section. This applies also when

variable-specific settings are given in the preprocessor: it is

possible, for example, to set a reference dataset as a target

grid for the regridding operator with the reference dataset be-

ing different for each variable. When parsing the recipe, the

tool automatically replaces these settings in the preprocessor

definition with the corresponding variable settings, depend-

ing on the preprocessor-variable combination. The usage of

the YAML format makes all these operations quite intuitive

for the user and easy to implement for the developer. The pre-

processor section in a recipe is optional and can be omitted

if only the default preprocessing of the data is desired. The

default preprocessor will apply fixes to the data (if required),

perform CMOR (Climate Model Output Rewriter) compli-

ance checks, and select the data for the requested time frame

only.

3.4 Diagnostics section

In the diagnostics section one or more diagnostics can be

defined. Each diagnostic is identified by a name and contains

one or more variables and one or more diagnostic scripts.

The variables and the scripts are defined as subsections of

the diagnostics section. This nested structure allows for the

easy definition of complex diagnostics dealing with multi-

ple variables and/or applying multiple diagnostics scripts to

the same set of variables. Within the variable dictionary, ad-

ditional settings can be defined, such as the preprocessor to

be applied (as defined in the preprocessor section), the ad-

ditional variable-specific datasets which are not included in

the datasets section, and other variable-specific settings used

by the diagnostic. The same can be done for the scripts dic-

tionary by providing a list of settings to customize the run-

time behavior of a diagnostic, together with the path to the

diagnostic script itself. This feature replaces the language-

specific cfg files that were used in ESMValTool v1.0 and

allows the centralization of all user-configurable settings in

a single file (the recipe). Note that the diagnostic scripts sub-

section can be left out, meaning that it is possible to only

apply a given preprocessor to one or more variables without

any further analysis, i.e., to use ESMValTool just for prepro-

cessing purposes.

3.5 Advanced recipe features

In an ESMValTool v2.0 recipe, it is also possible to make

use of the anchor and reference capability of the YAML for-

mat in order to avoid code duplication by reusing already

defined recipe blocks and to keep the recipe compact. A list

of settings given in a diagnostics script dictionary can, for

instance, be anchored and referenced in another script dic-

tionary within the same recipe, while changing only some of

the settings in the list: a typical application is when the same

diagnostic is applied to multiple variables using a different

set of contour levels for each plot each time while keeping

other settings identical.

Another feature is the possibility of defining ancestors, i.e.,

tasks that have to be completed before a given diagnostic can

be run. This is useful for complex recipes in which a diagnos-

tic collects and plots the results obtained by other diagnos-

tics. For example in recipe_perfmetrics_CMIP5.yml,

the grading metrics for individual variables across many

datasets are pre-calculated and then collected by another

script, which combines them into a portrait diagram.

4 Data preprocessing

A typical requirement for the analysis of output from ESMs

is some preprocessing of the input data by a number of oper-

ators which are quite common to many analyses and include,

for instance, temporal and spatial subsetting, vertical and

horizontal regridding, masking, and multi-model statistics.

www.geosci-model-dev.net/13/1179/2020/ Geosci. Model Dev., 13, 1179–1199, 2020
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As mentioned in the introduction, in ESMValTool v1.0 these

operations were performed in two different parts of the tool:

at the preprocessor level (as part of the Python-based work-

flow manager controlling ESMValTool) and at the diagnos-

tic level (distributed across the various diagnostic scripts and

only partly centralized in the ESMValTool language-specific

libraries). In ESMValTool v2.0, the code for these prepro-

cessing operations is moved from the diagnostic scripts to

the completely rewritten and revised preprocessor within the

ESMValCore package.

The structure of the revised preprocessor is schematically

depicted in the light blue box in Fig. 1: each of the prepro-

cessor functionalities is represented by a yellow box and can

be controlled by a number of recipe settings, depicted by the

purple tabs. Some operations require user-provided scripts,

e.g., for variable derivation or fixes to the CMOR format,

which are represented by the blue tabs. The figure shows the

default order in which these operations are applied to the in-

put data. This order has been defined in a way that minimizes

the loss of information through the various steps, although

it may not always be the optimal choice in terms of per-

formance (see also Sect. 4.6). For example, regridding and

multi-model statistics are applied before temporal and spa-

tial averaging. This default order can be changed and cus-

tomized by the user in the ESMValTool recipe, although not

all combinations are possible: multi-model statistics, for in-

stance, can only be calculated after regridding the data.

The ESMValTool v2.0 preprocessor is entirely written in

Python and takes advantage of the Iris library (v2.2.1) devel-

oped by the Met Office (Met Office, 2010–2019). Iris is an

open-source, community-driven Python 3 package for ana-

lyzing and visualizing Earth science data, building upon the

rich software stack available in the modern scientific Python

ecosystem. Iris supports reading several different popular

scientific file formats, including netCDF, into an internal

format based on the Climate and Forecast (CF) Metadata

Convention (http://cfconventions.org/, last access: 20 Febru-

ary 2020). Iris preserves the metadata that describe the data,

allowing users to handle their multi-dimensional data within

a meaningful, domain-specific context and through a rich and

expressive interface. Iris represents multi-dimensional data

and the associated metadata for a single phenomenon through

the abstraction of a hypercube, also known as Iris cube, i.e.,

a multi-dimensional numerical array that stores the numer-

ical values of a physical variable, coupled with a metadata

object that fully describes the actual data. Iris cubes allow

users to perform a powerful and extensive range of cube op-

erations from simple unit conversion, subsetting and extrac-

tion, merging and concatenation to statistical aggregations

and reductions, regridding and interpolation, and arithmetic

operations. Internally, Iris keeps pace with the modern de-

velopments provided by the scientific Python community, to

ensure that users continue to benefit from advances in the

Python ecosystem. In particular, Iris takes advantage of Dask

(v2.3.0, https://dask.org/, last access: 20 February 2020) to

provide lazy evaluation (meaning that the actual data do not

have to be loaded into the memory before they are really

needed) and out-of-core processing, allowing Iris to perform

at scale from efficient single-machine workflows through to

multi-core clusters and high-performance machines. One of

the major advantages of Iris, which motivated its adoption for

the revised ESMValTool preprocessor, is its ability to load

large datasets as cubes and to pass these objects from one

module to another and alter them as needed during the pre-

processor workflow, while keeping all these stages in mem-

ory without need for time-intensive I/O operations. Each of

the preprocessor modules is a Python function that takes an

Iris cube and an optional set of arguments as input and re-

turns a cube. The arguments controlling the operations to be

performed by the modules are in most cases directly spec-

ified in the ESMValTool recipe. This makes it easy to read

the recipe and also allows simple reuse of the ESMValTool

preprocessor functions in other software.

In addition to Iris, NumPy (v1.17, https://numpy.org/,

last access: 20 February 2020), and SciPy (v1.3.1, https:

//www.scipy.org/, last access: 20 February 2020) for generic

array and mathematical/statistical operations, the ESMVal-

Tool preprocessor uses some specialized packages like

Python-stratify (v0.1, https://github.com/SciTools-incubator/

Python-stratify, last access: 20 February 2020) for vertical

interpolation, ESMPY (v7.1.0, https://www.earthsystemcog.

org/projects/esmpy/, last access: 20 February 2020) for re-

gridding of irregular grids, and cf_units (v2.1.3, https://

github.com/SciTools/cf-units, last access: 20 February 2020)

for standardization and conversion of physical units. Sup-

port for geographical maps is provided by the Cartopy li-

brary (v0.17.0, https://scitools.org.uk/cartopy/, last access:

20 February 2020) and the Natural Earth dataset (v4.1.0,

https://www.naturalearthdata.com/, last access: 20 Febru-

ary 2020).

In the following, the ESMValTool preprocessor operations

are described, together with their respective user settings.

A detailed summary of these settings is given in Table 1.

4.1 Variable derivation

The variable derivation module allows the calculation of vari-

ables which are not directly available in the input datasets.

A typical example is total column ozone (toz), which is

usually included in observational datasets (e.g., ESACCI-

OZONE; Loyola et al., 2009; Lauer et al., 2017), but it is not

part of the CMIP5 model data request. Instead the model out-

put includes a three-dimensional ozone concentration field.

In this case, an algorithm to derive total column ozone from

the ozone concentrations and air pressure is included in the

preprocessor. Such algorithms can also be provided by the

user. A corresponding custom CMOR table with the required

variable metadata (standard_name, units, long_name, etc.)

must also be provided, since this information is not avail-

able in the standard tables. Variable derivation is activated in
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Table 1. Overview of the preprocessor functionalities and related recipe settings.

Functionality Key Possible values Description

Variable derivation

(Sect. 4.1)

derive true, false Derive the variable from basic variables using

a derivation function

force_derivation true, false Force derivation even if the variable is available

in the input data

CMOR check and fixes

(Sect. 4.2)

Check CMOR compliance and apply dataset-

specific fixes if required

Vertical interpolation levels (List of) level(s) (Pa) or (m) Extract or interpolate at the given level(s)

(Sect. 4.3) dataset name Extract or interpolate at the levels of the given

dataset

reference_dataset Extract or interpolate at the levels of the reference

dataset

alternative_dataset Extract or interpolate at the levels of the alterna-

tive dataset

scheme linear Interpolate using a linear scheme

nearest Interpolate using a nearest-neighbor scheme

linear_extrapolate Interpolate using a linear scheme allowing for

extrapolation

nearest_extrapolate Interpolate using a nearest-neighbor scheme

allowing for extrapolation

Land–sea weighting area_type land Weigh data by land fraction of the grid cell

(Sect. 4.4) sea Weigh data by sea fraction of the grid cell

exclude (List of) dataset name(s) Exclude the given dataset(s) from weighting

Land, sea, or ice mask-

ing

(Sect. 4.5)

mask_out land Set grid points with more than 50 % land cover-

age to missing

sea Set grid points with more than 50 % sea coverage

to missing

ice Set grid points with more than 50 % ice coverage

to missing

glaciated Set grid points with more than 50 % of glaciers

coverage to missing

Horizontal regridding target_grid NxM Regrid to a N◦
× M◦ rectangular grid

(Sect. 4.6) dataset name Regrid to the same grid of the given dataset

reference_dataset Regrid to the same grid of the reference dataset

alternative_dataset Regrid to the same grid of the alternative dataset

lat_offset true, false Offset the grid centers of latitude by half a grid

cell size

lon_offset true, false Offset the grid centers of longitude by half a grid

cell size

scheme linear Regrid using linear regridding

linear_extrapolate Regrid using linear regridding allowing for ex-

trapolation

nearest Regrid using nearest-neighbor regridding

area_weighted Regrid using area-weighted regridding

unstructured_nearest Regrid using nearest-neighbor regridding for

unstructured data

Missing value masking threshold_frac [0,1] Apply a uniform missing value mask

(Sect. 4.7)
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Table 1. Continued.

Functionality Key Possible values Description

Detrend dimension Dimension name Detrend data along a given dimension

(Sect. 4.9) method linear Subtract the linear trend of the given dimension

from the data

constant Subtract the mean along the given dimension

from the data

Multi-model statistics statistics mean Calculate multi-model mean of the input datasets

(Sect. 4.10) median Calculate multi-model median of the input

datasets

span overlap Consider only the overlapping time period

among all datasets

full Consider the maximum time period covered by

all datasets

exclude (List of) dataset name(s) Exclude the given dataset(s) from the multi-

model calculation

reference_dataset Exclude the reference dataset from the multi-

model calculation

alternative_dataset Exclude the alternative dataset from the multi-

model calculation

Temporal statistics regrid_time Re-align time axis to new time units

(Sect. 4.8 and 4.11) frequency mon, day

extract_time Extract time between start and end date

start_year Any year

start_month [1,12]

start_day [1,31]

end_year Any year

end_month [1,12]

end_day [1,31]

extract_season Extract a specific season

season DJF, MAM, JJA, SON

extract_month Extract a specific month

month [1,12]

daily_statistics Apply daily statistics

operator mean, median, std_dev,

min, max, sum

monthly_statistics Apply monthly statistics

operator mean, median, std_dev,

min, max, sum

seasonal_statistics Apply seasonal statistics

operator mean, median, std_dev,

min, max, sum

annual_statistics Apply annual statistics

operator mean, median, std_dev,

min, max, sum
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Table 1. Continued.

Functionality Key Possible values Description

decadal_statistics Apply decadal statistics

operator mean, median, std_dev,

min, max, sum

climate_statistics Apply climate statistics

operator mean, median, std_dev,

min, max, sum

period full, season, month,

day

Calculate full, seasonal, monthly, or daily climatology

anomalies Calculate anomalies

period full, season, month,

day

Calculate full, seasonal, monthly, or daily anomaly

Spatial statistics extract_region Extract a rectangular region given the limits

(Sect. 4.8 and 4.11) start_latitude [−90, 90]

start_longitude [0, 360]

end_latitude [−90, 90]

end_longitude [0, 360]

extract_named_regions Extract a predefined named region

regions A (list of) named region(s)

extract_shape Extract one or more shapes or a representative point for

these shapes

shapefile Path to shape file

method contains Select all points contained by the shape

representative Select a single representative point of the shape

crop true, false Crop (true) or mask (false) the selected shape

decomposed true, false Mask the regions in the shape files separately, adding an

extra dimension

extract_volume Extract a depth range

z_min Depth (m)

z_max Depth (m)

extract_transect Extract a transect at a given latitude or longitude

latitude [−90,90]

longitude [0,360]

extract_trajectory Extract a transect along the given trajectory

latitude_points List of latitudes

longitude_points List of longitudes

number_point No. of points to interpolate

zonal_statistics Apply statistics along the longitude axis

operator mean, median, std_dev,

min, max, sum

meridional_statistics Apply statistics along the latitude axis

operator mean, median, std_dev,

min, max, sum

area_statistics Apply statistics along the latitude and longitude axes

operator mean, median, std_dev,

min, max, sum

volume_statistics Calculate the volume-weighted average of a 3-D field

operator mean

depth_integration Calculate the volume-weighted z-dimensional sum

Unit conversion units A UDUNITS∗ string Convert units of the input data

(Sect. 4.12)

∗ https://www.unidata.ucar.edu/software/udunits/, last access: 20 February 2020
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the variable dictionary of the recipe setting the flag derive:

true. Note that, by default, the preprocessor gives priority

to existing variables in the input data before attempting to

derive them, e.g., if a derived variable is already available in

the observational dataset. This behavior can be changed by

forcing variable derivation, i.e., the preprocessor will derive

the variable even if it is already available in the input data,

by setting force_derivation: true. The ESMValCore

package currently includes derivation algorithms for 34 vari-

ables, listed in Table 2.

4.2 CMOR check and fixes

Similar to ESMValTool v1.0, the CMOR check module

checks for compliance of the netCDF input data with the CF

metadata convention and CMOR standards used by ESM-

ValTool. As in v1.0, it checks for the most common dataset

problems (e.g., coordinate names and ordering, units, miss-

ing values) and includes a number of project-, dataset- and

variable-specific fixes to correct these known errors. In v1.0,

the format checks and fixes were based on the CMOR

tables of the CMIP5 project (https://github.com/PCMDI/

cmip5-cmor-tables, last access: 20 February 2020). This has

now been extended and allows the use of CMOR tables from

different projects (like CMIP5, CMIP6, obs4mips, etc.) or

user-defined custom tables (required in the case of derived

variables which are not part of an official data request; see

Sect. 4.1). The CMOR tables for the supported projects are

distributed together with the ESMValCore package, using

the most recent version available at the time of the release.

The adoption of Iris with strict requirements of CF compli-

ance for input data required the implementation of fixes for

a larger number of datasets compared to v1.0. Although from

a user’s perspective this makes the reading of some datasets

more demanding, the stricter standards enforced in the new

version of the tool ensure their correct interpretation and re-

duce the probability of unintended behavior or errors.

4.3 Level selection and vertical interpolation

Reducing the dimensionality of input data is a common task

required by diagnostics. Three-dimensional fields are often

analyzed by first extracting two-dimensional data at a given

level. In the preprocessor, level selection can be performed

on any input data containing a vertical coordinate, like pres-

sure level, altitude, or depth. One or more levels can be spec-

ified by the levels key in the reprocessor section of the

recipe: this may be a (list of) numerical value(s), a dataset

name whose vertical coordinate can be used as target levels

for the selection, or a predefined set of CMOR standard lev-

els. If the requested level(s) is (are) not available in the input

data, a vertical interpolation will be performed among the

available input levels. In this case, the interpolation scheme

(linear or nearest neighbor) can be specified as a recipe set-

ting (scheme), and extrapolation can be enabled or disabled.

The interpolation is performed by the Python-stratify pack-

age, which, in turn, uses a C library for optimal computa-

tional performance. This operation preserves units and mask-

ing patterns.

4.4 Land–sea fraction weighting

Several land surface variables, for example fluxes for the car-

bon cycles, are reported as mass per unit area, where the area

refers to land surface area and not grid-box area. When glob-

ally or regionally integrating these variables, weighting by

both the surface quantity and the land–sea fraction has to

be applied. The preprocessor implements such weighting, by

multiplying the given input field by a fraction in the range

0–1, to account for the fact that not all grid points are com-

pletely land- or sea-covered. This preprocessor makes it pos-

sible to specify whether land or sea fraction weighting has

to be applied and also gives the possibility of excluding those

datasets for which no information about the land–sea fraction

is available.

4.5 Land, sea, or ice masking

The masking module makes it possible to extract specific

data domains, such as land-, sea-, ice-, or glacier-covered re-

gions, as specified by the mask_out setting in the recipe.

The grid points in the input data corresponding to the speci-

fied domain are masked out by setting their value to missing,

i.e., using the netCDF attribute _FillValue. The masking

module uses the CMOR fx variables to extract the domains.

These variables are usually part of the data requests of CMIP

and other projects and therefore have the advantage of being

on the same grid as their corresponding models. For example,

the fx variables sftlt and sftot are used to define land-

or sea-covered regions, respectively, on regular and irregular

grids. In the case of these variables not being available for

a given dataset, as is often the case for observational datasets,

the masking module uses the Natural Earth shape files to gen-

erate a mask at the corresponding horizontal resolution. This

latter option is currently only available for regular grids.

4.6 Horizontal regridding

Working with a common horizontal grid across a collec-

tion of datasets is a very important aspect of multi-model

diagnostics and metric computations. Although model and

observational datasets are provided at different native grid

resolutions, it is often required to scale them to a common

grid in order to apply diagnostic analyses, such as the root-

mean-square error (RMSE) at each grid point, or to calculate

multi-model statistics (see Sect. 4.10). This operation is re-

quired both from a numerical point of view (common oper-

ators cannot be applied to numerical data arrays with differ-

ent shapes) and from a statistical point of view (different grid

resolutions imply different Euclidian norms; hence data from

each model have different statistical weights). The regrid-
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ding module can perform horizontal regridding onto user-

specified target grids (target_grid) with a number of in-

terpolation schemes (scheme) available. The target grid can

either be a standard regular grid with a resolution of M × N

degrees or the grid of a given dataset (for example, the refer-

ence dataset). Regridding is then performed via interpolation.

While the target grid is often a standard regular grid, the

source grids exhibit a larger variety. Particularly challeng-

ing are grids where the native grid coordinates do not coin-

cide with standard latitudes and longitudes, often referred to

as irregular grids, although varying terminology exists. As

a consequence, the relationship between source and target

grid cells can be very complex. Such irregular grids are com-

mon for ocean data, where the poles are placed over land to

avoid the singularities in the computational domain, thereby

distorting the resulting grid. Irregular grids are also com-

monly used for map projections of regional models. As long

as these grids exhibit a rectangular topology, data living on

them can still be stored in cubes and the resulting coordinates

in the latitude–longitude coordinate system can be provided

in standardized form as auxiliary coordinates following the

CF conventions. For CMIP data, this is mandatory for all ir-

regular grids. The regridding module uses this information

to perform regridding between such grids, allowing, for ex-

ample, for the easy inclusion of ocean data in multi-model

analyses.

The regridding procedure also accounts for masked data,

meaning that the same algorithms are applied while preserv-

ing the shape of the masked domains. This can lead to small

numerical errors, depending on the domain under consid-

eration and its shape. The choice of the correct regridding

scheme may be critical in the case of masked data. Using

an inappropriate option may alter the mask significantly and

thus introduce a large bias in the results. For example, bilin-

ear regridding uses the nearest grid points in both horizontal

directions to interpolate new values. If one or more of these

points are missing, calculation is not possible and a miss-

ing value is assigned to the target grid cell. This procedure

always increases the size of the mask, which can be partic-

ularly problematic for areas where the original mask is nar-

row, e.g., islands or small peninsulas in the case of land or sea

masking. A much more recommended scheme in this case is

nearest-neighbor regridding. This option approximately pre-

serves the mask, resulting in smaller biases compared to the

original grid. Depending on the target grid, the area-weighted

scheme may also be a good choice in some cases. The most

suitable scheme is strongly dependent on the specific prob-

lem and there is no one-fits-all solution. The user needs to

be aware that regridding is not a trivial operation which may

lead to systematic errors in the results. The available regrid-

ding schemes are listed in Table 1.

4.7 Missing value masking

When comparing model data to observations, the different

data coverage can introduce significant biases (e.g., de Mora

et al., 2013). Coverage of observational data is often in-

complete. In this case, the calculation of even simple met-

rics like spatial averages could be biased, since a different

number of grid boxes are used for the calculations if data

are not consistently masked. The preprocessor implements

a missing values masking functionality, based on an approach

which was originally part of the “performance metrics” rou-

tines of ESMValTool v1.0. This approach has been imple-

mented in Python as a preprocessor function, which is now

available to all diagnostics. The missing value masking re-

quires the input data to be on the same horizontal and ver-

tical grid and therefore must necessarily be performed after

level selection and horizontal regridding. The data can, how-

ever, have different temporal coverage. For each grid point,

the algorithm considers all values along the time coordinate

(independently of its size) and the fraction of such values

which are missing. If this fraction is above a user-specified

threshold (threshold_fraction) the grid point is left un-

changed; otherwise it is set to missing along the whole time

coordinate. This ensures that the resulting masks are con-

stant in time and allows masking datasets with different time

coverage. Once the procedure has been applied to all input

datasets, the resulting time-independent masks are merged to

create a single mask, which is then used to generate consis-

tent data coverage for all input datasets. In the case of multi-

ple selected vertical levels, the missing-values masks are as-

sembled and applied to the grid independently at each level.

This approach minimizes the loss of generality by apply-

ing the same threshold to all datasets. The choice of the

threshold strongly depends on the datasets used and on their

missing value patterns. As a rule of thumb, the higher the

number of missing values in the input data, the lower the

threshold, which means that the selection along the time co-

ordinate must be less strict in order to preserve the original

pattern of valid values and to avoid completely masking out

the whole input field.

4.8 Temporal and spatial subsetting

All basic time extraction and concatenation functionalities

have been ported from v1.0 to the v2.0 preprocessor and have

not changed significantly. Their purpose is to retrieve the in-

put data and extract the requested time range as specified by

the keys start_year and end_year for each of the dataset

dictionaries of the ESMValTool recipe (see Sect. 3 for more

details). If the requested time range is spread over multiple

files, a common case in the CMIP5 data pool, the prepro-

cessor concatenates the data before extracting the requested

time period. An important new feature of time concatenation

is the possibility to concatenate data across different model

experiments. This is useful, for instance, to create time series
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combining the CMIP historical experiment with a scenario

projection. This option can be set by defining the exp key

of the dataset dictionary in the recipe as a Python list, e.g.,

[historical, rcp45]. These operations are only applied

while reading the original input data.

More specific functions are applied during the prepro-

cessing phase to extract a specific subset of data from the

full dataset. This extraction can be done along the time

axis, in the horizontal direction or in the vertical direction.

These functions generally reduce the dimensionality of

data. Several extraction operators are available to subset

the data in time (extract_time, extract_season,

extract_month) and in space (extract_region,

extract_named_regions, extract_shape,

extract_volume, extract_transect,

extract_trajectory); see again Table 1 for details.

4.9 Detrend

Detrending is a very common operation in the analysis of

time series. In the preprocessor, this can be applied along

any dimension in the input data, although the most usual

case is detrending along the time axis. The method used for

detrending can be either linear (the linear trend along the

given dimension is calculated and subtracted from the data)

or constant (the mean along the given dimension is calcu-

lated and subtracted from the data).

4.10 Multi-model statistics

Computing multi-model statistics is an integral part of model

analysis and evaluation: individual models display a vari-

ety of biases depending, for instance, on model configura-

tions, initial conditions, forcings, and implementation. When

comparing model data to observational data, these biases

are typically smaller when multi-model statistics are con-

sidered. The preprocessor has the capability of comput-

ing a number of multi-model statistical measures: using the

multi_model_statisticsmodule enables the user to cal-

culate either a multi-model mean, median, or both, which are

passed as additional dataset(s) to the diagnostics. Additional

statistical operators (e.g., standard deviation) can be easily

added to the module if required. Multi-model statistics are

computed along the time axis and, as such, can be computed

across a common overlap in time or across the full length

in time of each model: this is controlled by the span argu-

ment. Note that in the case of the full-length case being used,

the number of datasets actually used to calculate the statis-

tics can vary along the time coordinate if the datasets cover

different time ranges. The preprocessor function is capable

of excluding any dataset in the multi-model calculations (op-

tion exclude): a typical example is the exclusion of the ob-

servational dataset from the multi-model calculations. Model

datasets must have consistent shapes, which is needed from

a statistical point of view since weighting is not yet imple-

mented. Furthermore, data with a dimensionality higher than

4 (time, vertical axis, two horizontal axes) are also not sup-

ported.

4.11 Temporal and spatial statistics

Changing the spatial and temporal dimensions of model

and observational data is a crucial part of most analyses. In

addition to the subsetting described in Sect. 4.8, a second

general class of preprocessor functions applies statisti-

cal operators along a temporal (daily_statistics,

monthly_statistics, seasonal_statistics,

annual_statistics, decadal_statistics,

climate_statistics, anomalies) or spatial

(zonal_statistics, meridional_statistics,

area_statistics, volume_statistics) axis. The

statistical operators allow the calculation of mean, median,

standard deviation, minimum, and maximum along the

given axis (with the exception of volume_statistics,

which only supports the mean). An additional operator,

depth_integration, calculates the volume-weighted

z-dimensional sum of the input cube. Like the subsetting

operators (Sect. 4.8), these also significantly reduce the

size of the input data passed to the diagnostics for further

analysis and plotting.

4.12 Unit conversion

In ESMValTool v2.0, input units always follow the CMOR

definition, which is not always the most convenient for plot-

ting. Degree Celsius, for instance, is for some analyses more

convenient than the standard kelvin unit. Using the cf_units

Python package, the unit conversion module of the prepro-

cessor can convert the physical unit of the input data to a dif-

ferent one, as given by the units argument. This function-

ality can also be used to make sure that units are identical

across all datasets before applying a diagnostic.

5 Additional features

5.1 CMORization of observational datasets

As discussed in Sect. 4.2, ESMValTool requires the in-

put data to be in netCDF format and to comply with

the CF metadata convention and CMOR standards. Ob-

servational and reanalysis products in the standard CF

or CMOR format are available via the obs4mips (https://

esgf-node.llnl.gov/projects/obs4mips/, last access: 20 Febru-

ary 2020) and ana4mips (https://esgf.nccs.nasa.gov/projects/

ana4mips/, last access: 20 February 2020) projects, respec-

tively (see also Teixeira et al., 2014). Their use is strongly

recommended, when possible. Other datasets not available in

these archives can be obtained by the user from the respec-

tive sources and reformatted to the CF/CMOR standard using

the CMORizers included in ESMValTool. The CMORizers
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Table 2. List of variables for which derivation algorithms are available in ESMValTool v2.0 and the corresponding input variables. ISCCP is

the International Satellite Cloud Climatology Project; TOA means top of the atmosphere.

Derived variable Description Realm Input variables for derivation

alb Albedo at the surface Atmosphere rsds, rsus

amoc Atlantic Meridional Overturning Circulation Ocean msftmyz

asr Absorbed shortwave radiation Atmosphere rsdt, rsut

clhmtisccp ISCCP high-level medium-thickness cloud area fraction Atmosphere clisccp

clhtkisccp ISCCP high-level thick cloud area fraction Atmosphere clisccp

cllmtisccp ISCCP low-level medium-thickness cloud area fraction Atmosphere clisccp

clltkisccp ISCCP low-level thick cloud area fraction Atmosphere clisccp

clmmtisccp ISCCP middle-level medium-thickness cloud area fraction Atmosphere clisccp

clmtkisccp ISCCP middle-level thick cloud area fraction Atmosphere clisccp

ctotal Total carbon mass in ecosystem Land cVeg, cSoil

et Evapotranspiration Atmosphere hfls

lvp Latent heat release from precipitation Atmosphere hfls, ps, evspsbl

lwcre TOA longwave cloud radiative effect Atmosphere rlut, rlutcs

lwp Liquid water path Atmosphere clwvi, cliwi

netcre TOA net cloud radiative effect Atmosphere rlut, rlutcs, rsut, rsutcs

ohc Heat content in grid cell Ocean thetao, volcello

rlns Surface net downward longwave radiation Atmosphere rlds, rlus

rlnst Net atmospheric longwave cooling Atmosphere rlds, rlus, rlut

rlnstcs Net atmospheric longwave cooling assuming clear sky Atmosphere rldscs, rlus, rlutcs

rlntcs TOA net downward longwave radiation assuming clear sky Atmosphere rlutcs

rsns Surface net downward shortwave radiation Atmosphere rsds, rsus

rsnst Heating from shortwave absorption Atmosphere rsds, rsdt, rsus, rsut

rsnstcs Heating from shortwave absorption assuming clear sky Atmosphere rsdscs, rsdt, rsuscs, rsutcs

rsnstcsnorm Heating from shortwave absorption assuming clear sky Atmosphere rsdscs, rsdt, rsuscs, rsutcs

normalized by incoming solar radiation

rsnt TOA net downward shortwave radiation Atmosphere rsdt, rsut

rsntcs TOA net downward shortwave radiation assuming clear sky Atmosphere rsdt, rsutcs

rtnt TOA net downward total radiation Atmosphere rsds, rsut, rlut

sispeed Speed of ice to account for back and forth Sea ice siu, siv

movement of the ice

sithick Sea ice thickness Sea ice sit, sic

sm Volumetric moisture in upper portion of soil column Land mrsos

swcre TOA shortwave cloud radiative effect Atmosphere rlut, rlutcs, rsut, rsutcs

toz Total ozone column Atmosphere tro3, ps

uajet Jet position expressed as latitude of maximum Atmosphere ua

meridional wind speed

vegfrac Vegetation fraction Land baresoilFrac

are dataset-specific scripts that can be run once to generate

a local pool of observational datasets for usage with ESM-

ValTool, since no observational datasets are distributed with

the tool. Supported languages for CMORizers are Python

and NCL. These scripts also include detailed instructions on

where and how to download the original data and serve as

templates to create new CMORizers for datasets not yet in-

cluded. The current version features CMORizing scripts for

46 observational and reanalysis datasets. As in v1.0, the ob-

servational datasets are grouped in tiers, depending on their

availability: Tier 1 (for obs4mips and ana4mips datasets),

Tier 2 (for other freely available datasets), and Tier 3 (for

restricted datasets, i.e., datasets which require a registration

to be downloaded or that can only be obtained upon request

by the respective authors). An overview of the Tier 2 and

Tier 3 datasets for which a CMORizing script is available

in ESMValTool v2.0 is given in Table 3. Note that observa-

tional datasets CMORized for ESMValTool v1.0 may not be

directly working with v2.0, due to the much stronger con-

straints on metadata set by the Iris library.

5.2 Provenance and tags

ESMValTool v2.0 contains a large number of recipes that

perform a wide range of analyses on many different scientific

themes (see the companion papers). Depending on the appli-

cation, sorting and tracking of the scientific output (plots and

netCDF files) produced by the tool can therefore be quite
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Table 3. List of the observational and reanalysis datasets for which a CMORizing script is available in ESMValTool v2.0, together with the

corresponding variables (realms), tier level and reference.

Dataset Variable (realm) Tier Reference

AURA-TES tro3 (atmosphere) 3 Beer (2006)

CDS-SATELLITE-LAI-

FAPAR

fapar, lai (land) 3 Baret et al. (2007)

CDS-SATELLITE-SOIL-

MOISTURE

sm, smStderr (land) 3 Gruber et al. (2019)

CDS-UERRA sm (land) 3 Ridal et al. (2017)

CDS-XCH4 xch4 (atmosphere) 3 Buchwitz et al. (2018)

CDS-XCO2 xco2 (atmosphere) 3 Buchwitz et al. (2018)

CERES-EBAF rlut, rlutcs, rsut, rsutcs (atmosphere) 2 Loeb et al. (2018)

CERES-SYN1deg rlds, rldscs, rlus, rluscs, rlut, rlutcs,

rsds, rsdscs, rsdt, rsus, rsuscs, rsut,

rsutcs (atmosphere)

3 Wielicki et al. (1996)

CRU pr, tas (atmosphere) 2 Harris et al. (2014)

Duveiller2018 albDiffiTr13 2 Duveiller et al. (2018)

Eppley-VGPM-MODIS intpp (ocean) 2 Behrenfeld and Falkowski

(1997)

ERA5 clt, pr, prsn, ps, psl, ptype, rls, rlds,

rsds, rsdt, rss, uas, vas, tas, tasmax,

tasmin, tdps, ts, tsn (atmosphere), evspsbl,

evspsblpot, mrro (land), orog (fx)

3 C3S (2017)

ERA-Interim clivi, clt, clwvi, hfds, hur, hus, pr, prsn,

prw, ps, psl, rlds, rsds, rsdt, rss, ta, tas,

tasmax, tasmin, tauu, tauv, tdps, ts, ua,

uas, va, vas, wap, zg (atmosphere), evspsbl, tsn

(land), orog, sftlf (fx), hfds, tos (ocean)

3 Dee et al. (2011)

ERA-Interim-Land sm (Lmon) 3 Balsamo et al. (2015)

ESACCI-AEROSOL abs550aer, od550aer, od550aerStderr,

od550lt1aer, od870aer, od870aerStderr

(aero)

2 Popp et al. (2016)

ESACCI-CLOUD clivi, clt, cltStderr, clwvi (atmosphere) 2 Stengel et al. (2017)

ESACCI-FIRE burntArea (land) 2 Chuvieco et al. (2016)

ESACCI-LANDCOVER baresoilFrac, cropFrac, grassFrac,

shrubFrac, treeFrac (land)

2 Defourny (2016)

ESACCI-OC chl (ocean) 2 Sathyendranath et al. (2016)

ESACCI-OZONE toz, tozStderr, tro3prof, tro3profStderr

(atmosphere)

2 Loyola et al. (2009)

ESACCI-SOILMOISTURE dos, dosStderr, sm, smStderr (land) 2 Liu et al. (2011, 2012)
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Table 3. Continued.

Dataset Variable (realm) Tier Reference

ESACCI-SST ts, tsStderr (atmosphere) 2 Merchant et al. (2014)

FLUXCOM gpp (land) 3 Jung et al. (2019)

GCP nbp (land), fgco2 (ocean) 3 Le Quéré et al. (2018)

GHCN pr (atmosphere) 2 Jones and Moberg (2003)

HadCRUT3 tas, tasa (atmosphere) 2 Brohan et al. (2006)

HadCRUT4 tas, tasa (atmosphere) 2 Morice et al. (2012)

HadISST tos, sic (ocean), ts (atmosphere) 2 Rayner et al. (2003)

HWSD cSoil (land), areacella, sftlf (fx) 2 Wieder (2014)

ISCCP-FH alb, prw, ps, rlds, rlus, rlut, rlutcs, rsds, rsdt, rsus,

rsut, rsutcs, tas, ts (atmosphere)

2 Zhang et al. (2019)

JMA-TRANSCOM nbp (land), fgco2 (ocean) 3 Maki et al. (2010)

LAI3g lai (land) 3 Zhu et al. (2013)

LandFlux-EVAL et, etStderr (land) 3 Mueller et al. (2013)

Landschuetzer2016 fgco2, spco2, dpco2 (ocean) 2 Landschützer et al. (2016)

MERRA2 sm (land) 3 Gelaro et al. (2017)

MODIS cliwi, clt, clwvi, iwpStderr, lwpStderr (atmosphere),

od550aer (aero)

3 Platnick et al. (2003); Levy

et al. (2013)

MTE gpp, gppStderr (land) 3 Jung et al. (2011)

NCEP hur, hus, pr, rlut, ta, tas, ua, va, wap, zg (atmosphere) 2 Kalnay et al. (1996)

NDP cVeg (land) 3 Gibbs (2006)

NIWA-BS toz, tozStderr (atmosphere) 3 Bodeker et al. (2005)

NSIDC-0116 usi, vsi (sea ice) 3 Tschudi (2019)

PATMOS-x clt (atmosphere) 2 Heidinger et al. (2014)

PHC thetao, so (ocean) 2 Steele et al. (2001)

PIOMAS sit (ocean) 2 Zhang and Rothrock (2003)

UWisc clwvi, lwpStderr (atmosphere) 3 O’Dell et al. (2008)

WOA no3, o2, po4, si, so, thetao (ocean) 2 Locarnini et al. (2013)

challenging. To simplify this task, ESMValTool v2.0 imple-

ments a provenance and tagging system that makes it possi-

ble to document and organize the results, while keeping track

of all the input data used to produce them (reproducibility

and transparency of the results).

Provenance information is generated using the W3C-

PROV reference format and collected at run time. It is then

attached to any output (plots and netCDF files) produced

by the tool and is also saved to a separate log file. Using

the W3C-PROV format ensures that the ESMValTool prove-

nance is compatible with other (external) tools for viewing

and processing provenance information. Examples of stored

information include all global attributes of input netCDF

files, preprocessor settings, diagnostic script settings, and

software version numbers. Along with this rather technical

information, a set of scientific provenance tags are avail-

able. These include, for example, diagnostic script name and

recipe authors, funding projects, references for citation pur-

poses, as well as tags for categorizing the result plots into

various scientific topics (like chemistry, dynamics, sea ice,

etc.), realms (land, atmosphere, ocean, etc.), or statistics ap-

plied (RMSE, anomaly, trend, climatology, etc.). This facil-

itates the publication and browsing of the ESMValTool out-

put on web pages, like the ESMValTool-based CMIP6 results
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browser hosted by the ESGF node at the Deutsches Klima

RechenZentrum (DKRZ, https://cmip-esmvaltool.dkrz.de/,

last access: 20 February 2020), where model developers and

users can inspect the results and filter them according to their

scientific interests.

5.3 Automated testing and coding standards

To ensure code stability, maintainability, and quality, the ES-

MValCore package and the installation procedures are au-

tomatically tested on a continuous integration server (Cir-

cleCI, https://circleci.com/, last access: 20 February 2020)

every time a change to the source code is pushed to the

GitHub repository, making sure that these core components

are reliable. Furthermore, static code analysis is performed

by Codacy (https://www.codacy.com/, last access: 20 Febru-

ary 2020) on all Python code, to identify possible sources

of error without requiring any extra effort by the develop-

ers. Less strict static code analysis and basic requirements

for the code formatting style are implemented for the diag-

nostics of ESMValTool in the form of a unit test, to enforce

a clean, uniform-looking, and easy-to-read code for all sup-

ported languages (Python, NCL, R and Julia). Code review-

ers are encouraged to make use of the CircleCI and Codacy

results to ensure that all contributions to ESMValTool are re-

liable and can be maintained in the future with reasonable ef-

fort. CircleCI and Codacy offer free services for open-source

projects. We use these services to run open-source software

that could equally easily be run on other infrastructure. On

CircleCI the unit tests are run in a Debian Linux docker

container with a minimal version of Anaconda pre-installed

(https://hub.docker.com/r/continuumio/miniconda3, last ac-

cess: 20 February 2020). On Codacy we make use of the

various open-source Python linters that are bundled into

Prospector (https://github.com/PyCQA/prospector, last ac-

cess: 20 February 2020). These tools can also be installed

and used on contributors’ own computers with a minimal ef-

fort, as described in our contribution guidelines.

6 Performance and scaling tests

To demonstrate the improved performance of ESMVal-

Tool v2.0 over its predecessor version, a benchmark test has

been performed for a representative recipe. The test was per-

formed on the post-processing nodes of the Mistral Super-

computer at the DKRZ (see https://www.dkrz.de/up/systems/

mistral, last access: 20 February 2020, for more details).

ESMValTool recipe_perfmetrics_CMIP5.yml (see

Supplement) is used as a benchmark and compared with the

corresponding namelist of v1.1.0 (Eyring et al., 2016c). This

recipe (namelist) is used as a test case as it represents all typ-

ical operations performed by ESMValTool fairly well. For

consistency, the recipe (namelist) in the two ESMValTool

versions being compared contains exactly the same diagnos-

Table 4. Times required for running

recipe_perfmetrics_CMIP5.ymlwith ESMValTool v1.1.0

and v2.0 using different numbers of maximum parallel tasks. Note

that v1.0 did not support parallelization. The corresponding

maximum memory usage as diagnosed in v2.0 is also shown. Each

number in this table corresponds to the median of 10 ESMValTool

runs, to account for the variability in the performance across

different nodes. The nodes used for this analysis feature 24 physical

cores.

Number of Run time Run time Max memory

parallel tasks v1.1.0 (min) v2.0 (min) usage v2.0 (Gb)

1 (serial) 534.1 177.1 41.5

2 – 78.7 41.8

4 – 45.2 44.1

8 – 27.4 54.0

16 – 19.6 62.4

32 – 16.6 66.9

64 – 16.5 74.7

68 (max) – 16.2 75.0

tics and variables and is applied to the same datasets (mod-

els and observations) over identical time periods. The results

produced with this setup are identical in v1.1.0 and v2.0.

Since ESMValTool v1.1.0 did not support parallel execution,

the performances of the two versions in running this recipe

(namelist) can be only compared in serial mode. For v2.0,

benchmarking results are further analyzed using an increas-

ing number of parallel tasks to demonstrate the gain in run

time when taking advantage of this new feature.

The benchmarking results are summarized in Table 4 and

show that already in serial mode the time required to run the

recipe with the new version is reduced by about a factor of 3.

Taking advantage of the task-based parallelization capability

of v2.0, the performance can be further improved. This al-

lows reducing the run time up to a maximum of a factor of

about 33 with respect to v1.1.0 when using parallel capabili-

ties. The maximum theoretical performance is obtained when

all recipe tasks (68 in this example) are executed in paral-

lel. Note, however, that the run time is limited by the slow-

est task in the recipe, which acts as a bottleneck. As shown

in Table 4, this implies that no significant gain is obtained

for this recipe when increasing the number of parallel tasks

above 32. A further aspect that needs to be considered here is

that increasing the number of parallel tasks requires a larger

amount of memory (last column in Table 4), since data from

all tasks running simultaneously must be stored in memory

at the same time. The optimal choice of the number of par-

allel tasks to be used depends, therefore, on the total number

of tasks in the recipe, on the differences in their individual

run times, and on the amount of memory available on the

machine in use. Memory-intensive recipes, for instance, may

require execution with a small number of parallel tasks on
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machines with limited memory, at the expense of the recipe

run time.

Since the task manager of v2.0 prioritizes tasks which are

listed first in the recipe, the user can optimize the execution

times by placing the more time-consuming tasks at the be-

ginning of the recipe, especially when the execution times of

individual tasks vary greatly and when ESMValTool is run

with a number of parallel tasks which is significantly smaller

than the total number of tasks performed by the recipe.

7 Summary

A new version of ESMValTool has been developed to ad-

dress the challenges posed by the increasing data volume

of simulations produced by Earth system models as con-

tributions to large model intercomparison projects, such as

CMIP6. The code of ESMValTool v2.0 has been completely

restructured and now includes an independent Python pack-

age (ESMValCore), which features core functionalities such

as the task manager, a revised preprocessor, and an improved

interface. The set of diagnostic scripts implementing scien-

tific analysis on a wide range of Earth system model variables

and realms has also been extended and is described in the

companion papers Eyring et al. (2019), Lauer et al. (2020),

and Weigel et al. (2020).

The redesigned ESMValCore package and its implemen-

tation in ESMValTool v2.0 resulted in significant improve-

ments for both users (improved user-friendliness and more

customization options) and developers (better code readabil-

ity and easier maintenance). Benchmark tests performed with

a representative ESMValTool recipe demonstrated the huge

improvement in terms of performance (run time) achieved

by this new version: in serial mode it is already a factor of

3 faster than the previous ESMValTool version and can be

even faster when executed in parallel, with a factor of more

than 30 reduction in run time attainable on powerful com-

pute resources. The centralization of the preprocessing oper-

ations in a core package also facilitated further optimization

of the code, the possibility of running ESMValTool in paral-

lel, and higher consistency among different diagnostics (e.g.,

regridding and masking of data). The revised and simplified

interface also enables an easy installation and configuration

of ESMValTool for running at high-performance computing

centers where data are stored, such as the super nodes of the

ESGF. In addition to the technical improvements discussed

in this paper, ESMValTool v2.0 also features many new di-

agnostics and metrics which are discussed in detail in the

three companion papers.

ESMValTool undergoes continuous development, and ad-

ditional improvements are constantly being implemented or

planned for future releases. These include (but are not limited

to)

– an increased flexibility of the CMOR check module of

the preprocessor, allowing for the automatic recognition

and correction of more errors in the input datasets, thus

making the reading of data more flexible, especially for

data which are not part of any CMIP data request;

– more regridding options featuring, for example, mask-

ing options beyond the standard CMOR fx masks of the

CMIP data request, especially for irregular grids;

– a new preprocessor module for model ensemble statis-

tics, reducing the amount of input data to be processed

in multi-ensemble analyses;

– the increased usage of Dask arrays in preprocessor func-

tions to keep the memory requirements low and further

improve the performance;

– the possibility of reusing the output produced by spe-

cific preprocessor-variable combinations across differ-

ent diagnostics, thus further improving the ESMVal-

Tool performance, while also reducing the disk space

requirements;

– linking external tools such as the Community Intercom-

parison Suite (CIS; Watson-Parris et al., 2016) to ESM-

ValTool to target more specific topics, such as the spatial

and temporal co-location of model and satellite data.

Note that some of the above issues could in principle al-

ready be addressed in ESMValTool v2.0 at the diagnostic

level, but being general purpose functionalities, their imple-

mentation should take place in ESMValCore, where high-

quality code standard and testing will ensure their correct

implementation.

ESMValTool is a community development with currently

more than 100 developers that contribute to the code. The

wider climate community is encouraged to use ESMValTool

and to participate in this development effort by joining the

ESMValTool development team for contributions of addi-

tional more in-depth diagnostics for the evaluation of Earth

system models.

Code availability. ESMValTool (v2.0) is released under

the Apache License, VERSION 2.0. The latest release

of ESMValTool v2.0 is publicly available on Zenodo at

https://doi.org/10.5281/zenodo.3401363 (Andela et al., 2020b).

The source code of the ESMValCore package, which is installed

as a dependency of ESMValTool v2.0, is also publicly available

on Zenodo at https://doi.org/10.5281/zenodo.3387139 (Andela et

al., 2020a). ESMValTool and ESMValCore are developed on the

GitHub repositories available at https://github.com/ESMValGroup,

last access: 20 February 2020.

Supplement. The supplement related to this article is available on-

line at: https://doi.org/10.5194/gmd-13-1179-2020-supplement.

www.geosci-model-dev.net/13/1179/2020/ Geosci. Model Dev., 13, 1179–1199, 2020

https://doi.org/10.5281/zenodo.3401363
https://doi.org/10.5281/zenodo.3387139
https://github.com/ESMValGroup
https://doi.org/10.5194/gmd-13-1179-2020-supplement


1196 M. Righi et al.: ESMValTool v2.0 – technical overview

Author contributions. MR designed the concept of the new version,

coordinated its development and testing, contributed some parts of

the code, and wrote the paper. BA wrote most of the code, con-

tributed to the concept of the new version, and reviewed code contri-

butions by other developers. VE designed the concept. AL designed

the concept and contributed some parts of the code and its testing.

VP and JVR wrote the code for most of the preprocessor modules.

LB and BB contributed some parts of the code and its testing. LdM

wrote the code for the preprocessor modules for temporal and spa-

tial operations and contributed to documentation. FD developed and

tested the installation procedure. LD contributed to the concept and

active support with the Iris package. ND contributed to the technical

architecture of the new version, to the initial prototype for the new

preprocessor, and to the testing. PE contributed to the concept. BH

contributed to documenting and testing the code. NK contribute to

the concept and to testing. BL contributed to the concept and active

support with the Iris package. SLT contributed to the preprocessor

module for CMOR check. MS contributed some parts of the code,

to its testing and documentation. KZ wrote the code for the two pre-

processor modules for irregular regridding and unit conversion. All

authors contributed to the text.

Competing interests. The authors declare that they have no conflict

of interest.

Disclaimer. The content of the paper is the sole responsibility of

the authors, and it does not represent the opinion of the European

Commission, and the Commission is not responsible for any use

that might be made of information contained in it.

Acknowledgements. The authors are grateful to Matthias Nützel

(DLR, Germany) for his helpful suggestions on a previous version

of the paper and to the two anonymous referees who reviewed the

paper. The computational resources of the DKRZ (Hamburg, Ger-

many) were essential for developing and testing this new version

and are kindly acknowledged.

Financial support. The technical development work for ESValTool

v2.0 was funded by various projects, in particular (1) the Coper-

nicus Climate Change Service (C3S) “Metrics and Access to

Global Indices for Climate Projections (C3S-MAGIC)” project; (2)

the European Union’s Horizon 2020 Framework Programme for

Research and Innovation “Infrastructure for the European Network

for Earth System Modelling (IS-ENES3)” project under grant

agreement no. 824084; (3) the European Union’s Horizon 2020

Framework Programme for Research and Innovation “Coordinated

Research in Earth Systems and Climate: Experiments, kNowledge,

Dissemination and Outreach (CRESCENDO)” project under grant

agreement no. 641816; (4) the the European Union’s Horizon 2020

Framework Programme for Research and Innovation “PRocess-

based climate sIMulation: AdVances in high-resolution modelling

and European climate Risk Assessment (PRIMAVERA)” project

under grant agreement no. 641727; (5) the Helmholtz Society

project “Advanced Earth System Model Evaluation for CMIP

(EVal4CMIP)”; (6) project S1 (Diagnosis and Metrics in Climate

Models) of the Collaborative Research Centre TRR 181 “Energy

Transfer in Atmosphere and Ocean” funded by the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation)

project no. 274762653; and (7) National Environmental Research

Council (NERC) National Capability Science Multi-Centre (NC-

SMC) funding for the UK, Earth System Modelling project (grant

no. NE/N018036/1).

The article processing charges for this open-access publica-

tion were covered by a Research Centre of the Helmholtz

Association.

Review statement. This paper was edited by Juan Antonio Añel and

reviewed by two anonymous referees.

References

Andela, B., Brötz, B., de Mora, L., Drost, N., Eyring, V.,

Koldunov, N., Lauer, A., Predoi, V., Righi, M., Schlund,

M., Vegas-Regidor, J., Zimmermann, K., Bock, L., Diblen,

F., Dreyer, L., Earnshaw, P., Hassler, B., Little, B., and

Loosveldt-Tomas, S.: ESMValCore (Version v2.0.0b5). Zenodo,

https://doi.org/10.5281/zenodo.3611371, 2020a.

Andela, B., Brötz, B., de Mora, L., Drost, N., Eyring, V., Koldunov,

N., Lauer, A., Mueller, B., Predoi, V., Righi, M., Schlund, M.,

Vegas-Regidor, J., Zimmermann, K., Adeniyi, K., Amarjiit, P.,

Arnone, E., Bellprat, O., Berg, P., Bock, L., Caron, L.-P., Carval-

hais, N., Cionni, I., Cortesi, N., Corti, S., Crezee, B., Davin, E.

L., Davini, P., Deser, C., Diblen, F., Docquier, D., Dreyer, L.,

Ehbrecht, C., Earnshaw, P., Gier, B., Gonzalez-Reviriego, N.,

Goodman, P., Hagemann, S., von Hardenberg, J., Hassler, B.,

Hunter, A., Kadow, C., Kindermann, S., Koirala, S., Lledó, L.,

Lejeune, Q., Lembo, V., Little, B., Loosveldt-Tomas, S., Lorenz,

R., Lovato, T., Lucarini, V., Massonnet, F., Mohr, C. W., Pérez-

Zanón, N., Phillips, A., Russell, J., Sandstad, M., Sellar, A., Sen-

ftleben, D., Serva, F., Sillmann, J., Stacke, T., Swaminathan, R.,

Torralba, V., and Weigel, K.: ESMValTool (Version v2.0.0b2).

Zenodo, https://doi.org/10.5281/zenodo.3628677, 2020b.

Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E.,

Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappen-

berger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-

Interim/Land: a global land surface reanalysis data set, Hydrol.

Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-

389-2015, 2015.

Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M.,

Berthelot, B., Niño, F., Weiss, M., Samain, O., Roujean, J. L., and

Leroy, M.: LAI, fAPAR and fCover CYCLOPES global products

derived from VEGETATION, Remote Sens. Environ., 110, 275–

286, https://doi.org/10.1016/j.rse.2007.02.018, 2007.

Beer, R.: TES on the aura mission: scientific objectives, measure-

ments, and analysis overview, IEEE T. Geosci. Remote, 44,

1102–1105, https://doi.org/10.1109/TGRS.2005.863716, 2006.

Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates de-

rived from satellite-based chlorophyll concentration, Limnol.

Oceanogr., 42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001,

1997.

Geosci. Model Dev., 13, 1179–1199, 2020 www.geosci-model-dev.net/13/1179/2020/

https://doi.org/10.5281/zenodo.3611371
https://doi.org/10.5281/zenodo.3628677
https://doi.org/10.5194/hess-19-389-2015
https://doi.org/10.5194/hess-19-389-2015
https://doi.org/10.1016/j.rse.2007.02.018
https://doi.org/10.1109/TGRS.2005.863716
https://doi.org/10.4319/lo.1997.42.1.0001


M. Righi et al.: ESMValTool v2.0 – technical overview 1197

Bodeker, G. E., Shiona, H., and Eskes, H.: Indicators of Antarc-

tic ozone depletion, Atmos. Chem. Phys., 5, 2603–2615,

https://doi.org/10.5194/acp-5-2603-2005, 2005.

Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.:

Uncertainty estimates in regional and global observed tempera-

ture changes: A new data set from 1850, J. Geophys. Res., 111,

D12106, https://doi.org/10.1029/2005JD006548, 2006.

Buchwitz, M., Reuter, M., Schneising, O., Bovensmann, H., Bur-

rows, J. P., Boesch, H., Anand, J., Parker, R., Detmers, R. G.,

Aben, I., Hasekamp, O. P., Crevoisier, C., Armante, R., Zehner,

C., and Schepers, D.: Copernicus Climate Change Service (C3S)

Global Satellite Observations of Atmospheric Carbon Diox-

ide and Methane, Adv. Astronaut. Sci. Technol., 1, 57–60,

https://doi.org/10.1007/s42423-018-0004-6, 2018.

C3S: ERA5: Fifth generation of ECMWF atmospheric reanalyses of

the global climate, Tech. rep., Copernicus Climate Change Ser-

vice Climate Data Store (CDS), available at: https://cds.climate.

copernicus.eu/cdsapp#!/home (last access: 20 February 2020),

2017.

Chuvieco, E., Pettinari, M., Alonso-Canas, I., Bastarrika, A.,

Roteta, E., Tansey, K., Padilla Parellada, M., Lewis, P.,

Gomez-Dans, J., Pereira, J., Oom, D., Campagnolo, M.,

Storm, T., Böttcher, M., Kaiser, J., Heil, A., Mouillot,

F., Ciais, P., Cadule, P., Yue, C., and van der Werf,

G.: ESA Fire Climate Change Initiative (Fire_cci): Burned

Area Grid Product Version 4.1, Centre for Environmental

Data Analysis, https://doi.org/10.5285/D80636D4-7DAF-407E-

912D-F5BB61C142FA, 2016.

de Mora, L., Butenschön, M., and Allen, J. I.: How should

sparse marine in situ measurements be compared to a con-

tinuous model: an example, Geosci. Model Dev., 6, 533–548,

https://doi.org/10.5194/gmd-6-533-2013, 2013.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,

P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,

Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, I., Biblot,

J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Greer, A.

J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isak-

sen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P.,

Mong-Sanz, B. M., Morcette, J.-J., Park, B.-K., Peubey, C., de

Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart, F.: The ERA-

Interim reanalysis: Configuration and performance of the data

assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597,

https://doi.org/10.1002/qj.828, 2011.

Defourny, P.: ESA Land Cover Climate Change Ini-

tiative (Land_Cover_cci): Global Land Cover Maps,

Version 1.6.1. Centre for Environmental Data Anal-

ysis, available at: http://catalogue.ceda.ac.uk/uuid/

4761751d7c844e228ec2f5fe11b2e3b0 (last access: 20 Febru-

ary 2020), 2016.

Duveiller, G., Hooker, J., and Cescatti, A.: A dataset mapping the

potential biophysical effects of vegetation cover change, Sci.

Data, 5, 180014, https://doi.org/10.1038/sdata.2018.14, 2018.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,

Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled

Model Intercomparison Project Phase 6 (CMIP6) experimen-

tal design and organization, Geosci. Model Dev., 9, 1937–1958,

https://doi.org/10.5194/gmd-9-1937-2016, 2016a.

Eyring, V., Gleckler, P. J., Heinze, C., Stouffer, R. J., Taylor,

K. E., Balaji, V., Guilyardi, E., Joussaume, S., Kindermann,

S., Lawrence, B. N., Meehl, G. A., Righi, M., and Williams,

D. N.: Towards improved and more routine Earth system

model evaluation in CMIP, Earth Syst. Dynam., 7, 813–830,

https://doi.org/10.5194/esd-7-813-2016, 2016b.

Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones,

C., Anav, A., Andrews, O., Cionni, I., Davin, E. L., Deser, C.,

Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-

D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J.,

Kunert, D., Levine, R., Loew, A., Mäkelä, J., Martin, G., Ma-

son, E., Phillips, A. S., Read, S., Rio, C., Roehrig, R., Sen-

ftleben, D., Sterl, A., van Ulft, L. H., Walton, J., Wang, S., and

Williams, K. D.: ESMValTool (v1.0) – a community diagnos-

tic and performance metrics tool for routine evaluation of Earth

system models in CMIP, Geosci. Model Dev., 9, 1747–1802,

https://doi.org/10.5194/gmd-9-1747-2016, 2016c.

Eyring, V., Bock, L., Lauer, A., Righi, M., Schlund, M., Andela,

B., Arnone, E., Bellprat, O., Brötz, B., Caron, L.-P., Carvalhais,

N., Cionni, I., Cortesi, N., Crezee, B., Davin, E., Davini, P., De-

beire, K., de Mora, L., Deser, C., Docquier, D., Earnshaw, P.,

Ehbrecht, C., Gier, B. K., Gonzalez-Reviriego, N., Goodman, P.,

Hagemann, S., Hardiman, S., Hassler, B., Hunter, A., Kadow,

C., Kindermann, S., Koirala, S., Koldunov, N. V., Lejeune, Q.,

Lembo, V., Lovato, T., Lucarini, V., Massonnet, F., Müller, B.,

Pandde, A., Pérez-Zanón, N., Phillips, A., Predoi, V., Russell,

J., Sellar, A., Serva, F., Stacke, T., Swaminathan, R., Torralba,

V., Vegas-Regidor, J., von Hardenberg, J., Weigel, K., and Zim-

mermann, K.: ESMValTool v2.0 – Extended set of large-scale

diagnostics for quasi-operational and comprehensive evaluation

of Earth system models in CMIP, Geosci. Model Dev. Discuss.,

https://doi.org/10.5194/gmd-2019-291, in review, 2019.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A.,

Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Re-

ichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella,

S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-

K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Par-

tyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,

Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective

Analysis for Research and Applications, Version 2 (MERRA-

2), J. Clim., 30, 5419–5454, https://doi.org/10.1175/jcli-d-16-

0758.1, 2017.

Gibbs, H.: Olson’s Major World Ecosystem Complexes Ranked

by Carbon in Live Vegetation: An Updated Database Us-

ing the GLC2000 Land Cover Product (NDP-017b, a

2006 update of the original 1985 and 2001 data file),

https://doi.org/10.3334/CDIAC/LUE.NDP017.2006, 2006.

Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and

Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate

data records and their underlying merging methodology, Earth

Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-

717-2019, 2019.

Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated

high-resolution grids of monthly climatic observations –

the CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642,

https://doi.org/10.1002/joc.3711, 2014.

Heidinger, A. K., Foster, M. J., Walther, A., and Zhao,

X. T.: The Pathfinder Atmospheres-Extended AVHRR

Climate Dataset, B. Am. Meteorol. Soc., 95, 909–922,

https://doi.org/10.1175/BAMS-D-12-00246.1, 2014.

www.geosci-model-dev.net/13/1179/2020/ Geosci. Model Dev., 13, 1179–1199, 2020

https://doi.org/10.5194/acp-5-2603-2005
https://doi.org/10.1029/2005JD006548
https://doi.org/10.1007/s42423-018-0004-6
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://doi.org/10.5285/D80636D4-7DAF-407E-912D-F5BB61C142FA
https://doi.org/10.5285/D80636D4-7DAF-407E-912D-F5BB61C142FA
https://doi.org/10.5194/gmd-6-533-2013
https://doi.org/10.1002/qj.828
http://catalogue.ceda.ac.uk/uuid/4761751d7c844e228ec2f5fe11b2e3b0
http://catalogue.ceda.ac.uk/uuid/4761751d7c844e228ec2f5fe11b2e3b0
https://doi.org/10.1038/sdata.2018.14
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/esd-7-813-2016
https://doi.org/10.5194/gmd-9-1747-2016
https://doi.org/10.5194/gmd-2019-291
https://doi.org/10.1175/jcli-d-16-0758.1
https://doi.org/10.1175/jcli-d-16-0758.1
https://doi.org/10.3334/CDIAC/LUE.NDP017.2006
https://doi.org/10.5194/essd-11-717-2019
https://doi.org/10.5194/essd-11-717-2019
https://doi.org/10.1002/joc.3711
https://doi.org/10.1175/BAMS-D-12-00246.1


1198 M. Righi et al.: ESMValTool v2.0 – technical overview

Jones, P. D. and Moberg, A.: Hemispheric and Large-

Scale Surface Air Temperature Variations: An

Extensive Revision and an Update to 2001, J.

Clim., 16, 206–223, https://doi.org/10.1175/1520-

0442(2003)016<0206:HALSSA>2.0.CO;2, 2003.

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson,

A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen,

J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G.,

Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors,

E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams,

C.: Global patterns of land-atmosphere fluxes of carbon diox-

ide, latent heat, and sensible heat derived from eddy covariance,

satellite, and meteorological observations, J. Geophys. Res., 116,

G00J07, https://doi.org/10.1029/2010JG001566, 2011.

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls,

G., Papale, D., Schwalm, C., Tramontana, G., and Reichstein,

M.: The FLUXCOM ensemble of global land-atmosphere en-

ergy fluxes, Sci. Data, 6, 74, https://doi.org/10.1038/s41597-019-

0076-8, 2019.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven,

D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen,

J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M.,

Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C.,

Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.:

The NCEP/NCAR 40-Year Reanalysis Project, B. Am.

Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-

0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.

Landschützer, P., Gruber, N., and Bakker, D. C. E.:

Decadal variations and trends of the global ocean car-

bon sink, Global Biogeochem. Cy., 30, 1396–1417,

https://doi.org/10.1002/2015GB005359, 2016.

Lauer, A., Eyring, V., Righi, M., Buchwitz, M., Defourny, P.,

Evaldsson, M., Friedlingstein, P., de Jeu, R., de Leeuw, G., Loew,

A., Merchant, C. J., Müller, B., Popp, T., Reuter, M., Sandven, S.,

Senftleben, D., Stengel, M., Roozendael, M. V., Wenzel, S., and

Willèn, U.: Benchmarking CMIP5 models with a subset of ESA

CCI Phase 2 data using the ESMValTool, Rem. Sens. Environ.,

203, 9–39, https://doi.org/10.1016/j.rse.2017.01.007, 2017.

Lauer, A., Eyring, V., Bellprat, O., Bock, L., Gier, B. K., Hunter,

A., Lorenz, R., Pérez-Zanón, N., Righi, M., Schlund, M., Sen-

ftleben, D., Weigel, K., and Zechlau, S.: Earth System Model

Evaluation Tool (ESMValTool) v2.0 – diagnostics for emergent

constraints and future projections from Earth system models in

CMIP, Geosci. Model Dev. Discuss., in preparation, 2020.

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck,

J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P.,

Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos,

A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C.,

Gkritzalis, T., Goll, D. S., Harris, I., Haverd, V., Hoffman, F. M.,

Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A.

K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Gold-

ewijk, K. K., Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z.,

Lombardozzi, D., Metzl, N., Munro, D. R., Nabel, J. E. M. S.,

Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon,

A., Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Re-

hder, G., Resplandy, L., Robertson, E., Rocher, M., Rödenbeck,

C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stein-

hoff, T., Sutton, A., Tans, P. P., Tian, H., Tilbrook, B., Tubiello,

F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N.,

Walker, A. P., Wiltshire, A. J., Wright, R., Zaehle, S., and Zheng,

B.: Global Carbon Budget 2018, Earth Syst. Sci. Data, 10, 2141–

2194, https://doi.org/10.5194/essd-10-2141-2018, 2018.

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A.

M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol

products over land and ocean, Atmos. Meas. Tech., 6, 2989–

3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.

Liu, Y., Dorigo, W., Parinussa, R., de Jeu, R., Wagner,

W., McCabe, M., Evans, J., and van Dijk, A.: Trend-

preserving blending of passive and active microwave soil

moisture retrievals, Remote Sens. Environ., 123, 280–297,

https://doi.org/10.1016/j.rse.2012.03.014, 2012.

Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M.,

Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., and Evans,

J. P.: Developing an improved soil moisture dataset by blending

passive and active microwave satellite-based retrievals, Hydrol.

Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-

425-2011, 2011.

Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Gar-

cia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan,

J. R., Johnson, D. R., Hamilton, M., and Seidov, D.: World Ocean

Atlas 2013, Volume 1: Temperature, NOAA Atlas NESDIS 73,

40 pp., 2013.

Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen,

C., Corbett, J. G., Liang, L., Mitrescu, C., Rose, F. G.,

and Kato, S.: Clouds and the Earth’s Radiant Energy Sys-

tem (CERES) Energy Balanced and Filled (EBAF) Top-of-

Atmosphere (TOA) Edition-4.0 Data Product, J. Climate, 31,

895–918, https://doi.org/10.1175/jcli-d-17-0208.1, 2018.

Loyola, D. G., Coldewey-Egbers, R. M., Dameris, M., Garny, H.,

Stenke, A., Roozendael, M. V., Lerot, C., Balis, D., and Kouk-

ouli, M.: Global long-term monitoring of the ozone layer – a pre-

requisite for predictions, Int. J. Remote Sens., 30, 4295–4318,

https://doi.org/10.1080/01431160902825016, 2009.

Maki, T., Ikegami, M., Fujita, T., Hirahara, T., Yamada, K., Mori,

K., Takeuchi, A., Tsutsumi, Y., Suda, K., and Conway, T. J.:

New technique to analyse global distributions of CO2 concentra-

tions and fluxes from non-processed observational data, Tellus B,

62, 797–809, https://doi.org/10.1111/j.1600-0889.2010.00488.x,

2010.

Merchant, C. J., Embury, O., Roberts-Jones, J., Fiedler, E., Bulgin,

C. E., Corlett, G. K., Good, S., McLaren, A., Rayner, N., Morak-

Bozzo, S., and Donlon, C.: Sea surface temperature datasets for

climate applications from Phase 1 of the European Space Agency

Climate Change Initiative (SST CCI), Geosci. Data J., 1, 179–

191, https://doi.org/10.1002/gdj3.20, 2014.

Met Office: Iris – A Python library for analysing and visualising me-

teorological and oceanographic data sets, Exeter, Devon, 2010–

2019.

Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.:

Quantifying uncertainties in global and regional tempera-

ture change using an ensemble of observational estimates:

The HadCRUT4 data set, J. Geophys. Res., 117, D08101,

https://doi.org/10.1029/2011JD017187, 2012.

Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A.,

Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan,

F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield,

J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S.

I.: Benchmark products for land evapotranspiration: LandFlux-

Geosci. Model Dev., 13, 1179–1199, 2020 www.geosci-model-dev.net/13/1179/2020/

https://doi.org/10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2
https://doi.org/10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2
https://doi.org/10.1029/2010JG001566
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1002/2015GB005359
https://doi.org/10.1016/j.rse.2017.01.007
https://doi.org/10.5194/essd-10-2141-2018
https://doi.org/10.5194/amt-6-2989-2013
https://doi.org/10.1016/j.rse.2012.03.014
https://doi.org/10.5194/hess-15-425-2011
https://doi.org/10.5194/hess-15-425-2011
https://doi.org/10.1175/jcli-d-17-0208.1
https://doi.org/10.1080/01431160902825016
https://doi.org/10.1111/j.1600-0889.2010.00488.x
https://doi.org/10.1002/gdj3.20
https://doi.org/10.1029/2011JD017187


M. Righi et al.: ESMValTool v2.0 – technical overview 1199

EVAL multi-data set synthesis, Hydrol. Earth Syst. Sci., 17,

3707–3720, https://doi.org/10.5194/hess-17-3707-2013, 2013.

O’Dell, C. W., Wentz, F. J., and Bennartz, R.: Cloud Liquid Water

Path from Satellite-Based Passive Microwave Observations: A

New Climatology over the Global Oceans, J. Climate, 21, 1721–

1739, https://doi.org/10.1175/2007JCLI1958.1, 2008.

Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum,

B. A., Riedi, J. C., and Frey, R. A.: The MODIS cloud products:

algorithms and examples from Terra, IEEE T. Geosci. Remote,

41, 459–473, https://doi.org/10.1109/TGRS.2002.808301, 2003.

Popp, T., de Leeuw, G., Bingen, C., Brühl, C., Capelle, V.,

Chedin, A., Clarisse, L., Dubovik, O., Grainger, R., Griesfeller,

J., Heckel, A., Kinne, S., Klüser, L., Kosmale, M., Kolmo-

nen, P., Lelli, L., Litvinov, P., Mei, L., North, P., Pinnock, S.,

Povey, A., Robert, C., Schulz, M., Sogacheva, L., Stebel, K.,

Stein Zweers, D., Thomas, G., Tilstra, L. G., Vandenbussche,

S., Veefkind, P., Vountas, M., and Xue, Y.: Development, Pro-

duction and Evaluation of Aerosol Climate Data Records from

European Satellite Observations (Aerosol_cci), Remote Sens., 8,

421, https://doi.org/10.3390/rs8050421, 2016.

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexan-

der, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global

analyses of sea surface temperature, sea ice, and night marine air

temperature since the late nineteenth century, J. Geophys. Res.,

108, 4407, https://doi.org/10.1029/2002JD002670, 2003.

Ridal, M., Olsson, E., Unden, P., Zimmermann, K., and Ohlsson,

A.: HARMONIE reanalysis report of results and dataset, Tech.

rep., UERRA (EU FP7 Collaborative Project, Grant agreement

607193), available at: http://uerra.eu/component/dpattachments/

?task=attachment.download&id=296 (last access: 20 Febru-

ary 2020), 2017.

Sathyendranath, S., Grant, M., Brewin, R., Brockmann, C., Brotas,

V., Chuprin, A., Doerffer, R., Dowell, M., Farman, A., Groom,

S., Jackson, T., Krasemann, H., Lavender, S., Martinez Vicente,

V., Mazeran, C., Mélin, F., Moore, T., Müller, D., Platt, T., Reg-

ner, P., Roy, S., Steinmetz, F., Swinton, J., Valente, A., Züh-

lke, M., Antoine, D., Arnone, R., Balch, W., Barker, K., Bar-

low, R., Bélanger, S., Berthon, J.-F., Beşiktepe, c., Brando, V.,
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