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Abstract. We propose a compressed self-index based the edit-sensitive
parsing (ESP). Given a string S, its ESP tree is equivalent to a context-
free grammar deriving just S, which can be represented as a DAG G.
Finding pattern P in S is reduced to embedding P into G. Succinct
data structures are adopted and G is then decomposed into two LOUDS
bit strings and a single array for permutation, requiring (1 + ε)n log n +
4n + o(n) bits for any 0 < ε < 1 where n corresponds to the number of
different symbols in the grammar. The time to count the occurrences of
P in S is in O( log∗u

ε
(m log n+occc(log m log u))), where m = |P |, u = |S|,

and occc is the number of occurrences of a maximal common subtree in
ESP trees of P and S. Using an additional array in n log u bits of space,
our index supports locating P and displaying substring of S. Locating
time is the same as counting time and displaying time for a substring of
length m is O(m + log u).

1 Introduction

We propose a compressed index based on the edit-sensitive parsing (ESP), which
was introduced to approximate a variant of string edit distance where a moving
operation for any substring with unit cost is permitted. For instance, anbn is
transformed to bnan by a single operation. This problem called edit distance with
move is NP-hard, and the distance was proved to be O(log u)-approximable [9]
for strings of length u. Moreover, the harder problem, edit distance matching
with move, was also proved to be approximable within almost O(log u) ratio by
embedding of string into L1 vector space using ESP [3].

When we consider tighter embedding, i.e. a string is embedded into another
one as a substring, this problem becomes the pattern matching. In this work we
use ESP to represent a grammar which is transformed to a compressed index
based on our theoretical results for efficient pattern matching and data structures
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on ESP. The following outlines the proposed data structures and its operations.
We first preprocess the text S and build ESP tree TS . Given a pattern P , we
construct TP and decomposes it into a sequence of subtrees, whose roots are
labeled by x1, . . . , xk. This sequence is an evidence of occurrence of P in T : S
contains an occurrence of P iff there is a sequence v1, . . . , vk of nodes in TS

such that the label of vi is xi and the subtrees rooted by vi, vi+1 are adjacent
in this order. We should note that P itself is always evidence of P . We design
algorithms to extract as short evidence as possible by analysis of ESP, and to
embed the evidence in TS .

Another contribution is to develop compact data structures for the proposed
algorithms. An ESP is represented by a restricted CFG, and is equivalent to a
DAG G where every internal node has its left and right children. G is then decom-
posed into two in-branching spanning trees. The one called the left tree is con-
structed by the left edges, whereas the other, called the right tree, is constructed
by the right edges. Both the left and right trees are encoded by LOUDS [4], one
of the succinct data structures for ordered trees. Further, correspondence among
the nodes of the trees is stored in a single array. Adding the data structure for
the permutation [5] over the array makes it possible to traverse G. The size of
such data structures is at most (1+ε)n log n+4n+o(n) bits of space for arbitrary
0 < ε < 1, where n is the number of variables in G.

On the other hand, the compression algorithm should refer to a function,
called reverse dictionary to get a name of the variable associated with a digram.
For example, if a production rule Z → XY exists, any occurrence of the digram
XY in P , which is determined to be replaced, should be replaced by the same
Z. Taking up the hash function H(XY ) = Z for preprocessing P compels that
index size be increased. Thus our algorithm obtains the names of variables for
P directly from the compressed G using binary search.

The time to count all occurrences of a pattern P in S is O( log∗u
ε (m log n +

occc(log m log u))) time, where m = |P |, u = |S|, and occc is the number of
occurrences of a core in TS , which is the maximal common subtrees of TS and
TP . The other two operations to locate/display are supported by an additional
array requiring n log u bits of space to store the length of the substring encoded
by each variable. This array can be reduced by level-wise sampling because the
ESP tree is balanced. The time to display S[i, j] is O(j − i + log u).

We compare the performance of ESP-index with other practical self-indexes [6–
8] under several reasonable parameters. Beyond that, we give an experimental
result for maximal common substring detection. These common substrings are
obtained to find common variables in compressed TS and TP . In these experi-
ments, we conclude that the proposed index is efficient enough for cases where
the pattern is long.

2 Pattern Matching on ESP

The set of all strings over an alphabet Σ is denoted by Σ∗. The length of a string
w ∈ Σ∗ is denoted by |w|. A string ak (k ≥ 1) is also denoted by a+, and is called



a repetition, denoted by a++, if k ≥ 2. S[i] and S[i, j] denote the i-th symbol
of S and the substring from S[i] to S[j], respectively. We let log(1) u = log u,
log(i+1) u = log log(i) u, and log∗u = min{i | log(i) u ≤ 1}, i.e. log∗u ≤ 5 for
u ≤ 265536. Thus We can treat any log∗u as constant in a practical sense.

We assume that any context-free grammar G is admissible, i.e., G derives just
one string and for each variable X, exactly one production rule X → α exists.
The set of variables is denoted by V (G), and the set of production rules, called
dictionary, is denoted by D(G). We also assume that for any α ∈ (Σ ∪ V (G))∗

at most one X → α ∈ D(G) exists. We use V and D instead of V (G) and D(G)
when G is omissible. The string derived by D from a string S ∈ (Σ ∪ V )∗ is
denoted by S(D). For example, when S = aY Y and D = {X → bc, Y → Xa},
we obtain S(D) = abcabca.

2.1 Edit-sensitive parsing (ESP)

We start with the outline of ESP. For any string, it is uniquely partitioned to
w1a

++
1 w2a

++
2 · · ·wka++

k wk+1 by maximal repetitions, where each ai is a symbol
and wi is a string containing no repetition. Each a++

i is called Type1 metablock,
wi is called Type2 metablock if |wi| ≥ log∗ n, and other short wi is called Type3
metablock, where if |wi| = 1, this is attached to a++

i−1 or a++
i , with preference

a++
i−1 when both are possible. Any metablock is longer than or equal to two.

Let S be a metablock and D be a current dictionary starting with D = ∅.
We set ESP (S,D) = (S′, D ∪ D′) for S′(D′) = S and S′ described as follows:

1. In case S is Type1 or Type3 of length k ≥ 2,
(a) If k is even, let S′ = t1t2 · · · tk/2, and make ti → S[2i − 1, 2i] ∈ D′.
(b) If k is odd, let S′ = t1t2 · · · t(k−3)/2 t, and make ti → S[2i − 1, 2i] ∈ D′,

t → S[k − 2]t′, and t′ → S[k − 1, k] ∈ D′, where t0 denotes the empty
string for k = 3.

2. In case S is Type2,
(c) for the partitioned S = s1s2 · · · sk (2 ≤ |si| ≤ 3) by alphabet reduction,

let S′ = t1t2 · · · tk, and make ti → XY ∈ D′ if si = XY and make
ti → XY ′, Y ′ → Y Z ∈ D′ if si = XY Z.

Case (a) and (b) denote a typical left aligned parsing. For example, in case
S = a6, S′ = x3 and x → a2 ∈ D′, and in case S = a9, S′ = x3y and x →
a2, y → ay′, y′ → aa ∈ D′. In Case (c), we omit the description of alphabet
reduction [3] because the details are unnecessary in this paper.

Finally, we define ESP for any string S ∈ (Σ ∪ V )∗ that is partitioned to
S1S2 · · ·Sk by k metablocks; ESP (S,D) = (S′, D ∪ D′) = (S′

1 · · ·S′
k, D ∪ D′),

where D′ and each S′
i satisfying S′

i(D
′) = Si are defined in the above.

Iteration of ESP is defined by ESP i(S,D) = ESP i−1(ESP (S,D)). In par-
ticular, ESP ∗(S,D) denotes the iterations of ESP until |S| = 1. After computing
ESP ∗(S,D), the final dictionary represents a rooted ordered binary tree deriv-
ing S, which is denoted by ET (S). We refer to several characteristics of ESP,
which are bases of our study.



Lemma 1. (Cormode and Muthukrishnan [3]) The height of ET (S) is O(log |S|)
and ET (S) can be computed in time O(|S| log∗|S|) time.

Lemma 2. (Cormode and Muthukrishnan [3]) Let S = s1s2 · · · sk be the par-
tition of a Type2 metablock S by alphabet reduction. For any 1 ≤ j ≤ |S|, the
block si containing S[j] is determined by at most S[j − log∗|S| − 5, j + 5].

2.2 Pattern embedding problem

We focus on the problem to find occurrences of P by embedding of P into a pars-
ing tree. Given a parsing tree TS = ET (S) by DS and a pattern P , the key idea is
to compute ESP (P,DS) and find an embedding of resulting tree TP into TS . The
label of node v is denoted by L(v) ∈ Σ ∪ V , and L(v1 · · · vk) = L(v1) · · ·L(vk).
Let yield(v) denote a substring of S derived by L(v), and yield(v1 · · · vk) =
yield(v1) · · · yield(vk). We note that TS and TP are ordered binary trees.

Let us define some notations for ordered binary tree. The parent and left/right
child of node v are denoted by parent(v) and left(v)/right(v), respectively. For
an internal node v, edges (v, left(v)) and (v, right(v)) are called left edge and
right edge. Node v is called the lowest right ancestor of x, denoted by lra(x), if v
is the lowest ancestor satisfying that the path from v to x contains at least one
left edge. If x is a rightmost descendant, lra(x) is undefined. Otherwise, lra(x)
uniquely exists. The lowest left ancestor of x, denoted by lla(x), is similarly
defined. Let v1, v2 be different nodes. If lra(v1) = lla(v2), we call that v1, v2 are
adjacent in this order, and we also call that v1 is left adjacent to v2 (or v2 is
right adjacent to v1). We can derive the following characterization immediately.

fact 1 v1 is left adjacent to v2 iff v2 is a leftmost descendant of right(lra(v1)),
and v2 is right adjacent to v1 iff v1 is a rightmost descendant of left(lla(v2)).

Using this adjacency, we define an embedding of sequence of nodes, v1, . . . , vk

(k ≥ 2), as follows: if vi, vi+1 are adjacent in this order (1 ≤ i ≤ k − 1) and z
is the lowest common ancestor of v1 and vk denoted by z = lca(v1, vk), we state
that the sequence is embedded in z and it is denoted by (v1, . . . , vk) ≺ z. For
such z, if yield(v1 · · · vk) = P , z is called an occurrence node of P . We introduce
a special type of strings to guarantee occurrences of P in S.

Definition 1. A string Q ∈ (Σ ∪ V )∗ of length k satisfying the following con-
dition is called an evidence of P : node z in TS is an occurrence node of P iff
there is a sequence v1, . . . , vk such that (v1, . . . , vk) ≺ z, yield(v1 · · · vk) = P ,
and L(v1 · · · vk) = Q.

For any TS and P , at least one evidence of P exists because P itself is an
evidence of P . We propose an algorithm to find as short evidence as possible for
given TS and P ; we also propose another algorithm to find all occurrences of P
in S using obtained evidence.



Find evidence(P, DS)
let D′ ← ∅, Qp = Qs be the empty string;
while(|P | > 1){ /* appending prefix and suffix of P to Q */

let P = αβγ for the first/last metablock α/γ; /* possibly |βγ| = 0 */
(P ′, DS ∪ D′) ← ESP (P, DS), where

P ′ = α′β′γ′, α′(D′) = α, β′(D′) = β, γ′(D′) = γ;

if(α is Type1 or 3) {Qp ← Qpα, remove the prefix α′ of P ′;}
else{

let α = α1 · · ·α`, α′ = p1 · · · p`, where pi → αi ∈ D′;
Qp ← Qpα1 · · ·αj , remove the prefix p1 · · · pj of P ′ for j = min(log∗u + 5, `);

}/* the bound j for prefix is guaranteed by Lemma 2 */

if(γ is Type1 or 3) {Qs ← γQs, remove the suffix γ′ of P ′;}
else{

let γ = γ1 · · · γr, γ′ = q1 · · · qr, where qi → γi ∈ D′;
Qs ← γr−j · · · γrQs, remove the suffix qr−j · · · qr of P ′ for j = min(5, r);

}/* the bound j for suffix is also from Lemma 2 */
P ← P ′, DS ← DS ∪ D′, D′ ← ∅; /* update */

} if(|QpQs| > 0) return Q ← QpQs; else return P ;

Fig. 1. Algorithm to find evidence of pattern P using dictionary DS from ESP ∗(S, D).

3 Algorithms and Data Structures

We propose two algorithms: one generates an evidence Q of pattern P from pre-
processed ESP ∗(S,D) = (S′, DS), and the other algorithm finds the occurrence
node z of P such that (v, v1 . . . , vk) ≺ z for given Q and v in TS satisfying
L(v) = Q[1]. Finally, we propose data structures to access the next node v′ sat-
isfying L(v′) = L(v) for each v in TS . By this, all occurrences of P are found to
check if (v, v1 . . . , vk) ≺ z for all candidates v satisfying L(v) = Q[1].

3.1 Finding evidence of pattern

The algorithm to generate evidence Q of pattern P is described in Fig. 1.
An outline follows. Input is a pair of pattern P and final dictionary DS from
ESP ∗(S,D). P is partitioned to P = αβγ for the first metablock α and the
last metablock γ. Depending on the type of metablocks, P is further parti-
tioned to P = αpαsβγpγs. The algorithm then updates current Q = QpQs by
Qp ← Qpαp and Qs ← γsQs, and P ← P ′ such that P ′ is the string produced
by ESP (αsβγp, DS). This is continued until P is entirely deleted.

Lemma 3. Let Q be an output string of Find evidence(P,DS) and let Q =
Q1 · · ·Qk, Qi ∈ {q+

i } for some symbol qi and qi 6= qi−1, qi+1. Then Q is an
evidence of P satisfying k = O(log m log∗u) for m = |P |.



Proof. For P = αβγ by the first/last metablock α/γ, if α, γ are Type1 or 3, αβγ
is clearly an evidence of P . In this case, any occurrence of β inside S[n, m] = αβγ
is transformed to a same β′ in this while loop. Thus, αβ′γ is an evidence of P .

If α, γ are Type2, by alphabet reduction, the prefix α of P is partitioned
to α = α1 · · ·α` (2 ≤ |αi| ≤ 3). Then j = min(log∗u + 5, `) is determined and
α1 · · ·αj is appended to current Q, and a short suffix of γ is similarly appended
to Q. By Lemma 2, for any S = xβy (|x| ≥ log∗u + 5, |y| ≥ 5), any occurrence
of β inside S[n,m] = xβy is transformed to a same β′ in this while loop. The
selected j for α satisfies either |α1 · · ·αj | ≥ log∗u + 5 or α1 · · ·αj = α and the
selected j for β similarly satisfies either |γr−j · · · γr| ≥ 3 or γr−j · · · γr = γ. Thus
we can obtain an evidence α1 · · ·αjβ

′γr−j · · · γr of P , and the other cases, one
of α, γ is Type1 or 3 and the other is Type2, are similarly proved.

Applying the above analysis to β′ until its length becomes one, we can finally
obtain Q as an evidence of P . The number of iterations of ESP (P,D) = (P ′, D∪
D′) is O(log m) because |P ′| ≤ |P |/2. In i-th iteration, if current Q = QpQs is
updated to QpαpγsQs, αpγs contains O(log∗u) different symbols. Therefore we
conclude k = O(log m log∗u). 2

3.2 Finding pattern occurrence

The algorithm to find an occurrence node of P is described in Fig. 2. Using
Find evidence(P,DS) as subroutine, the algorithm Find pattern(Q,DS , v, TS)
finds an embedding (v, v1, . . . , v`) ≺ z satisfying yield(vv1 · · · v`) = P for fixed v
having the label Q[1]. By Lemma 3, such z exists iff z is an occurrence node of
P . We show the correctness of this algorithm and the time complexity.

Lemma 4. Find pattern(Q, DS , v, TS) outputs node z in TS iff z is an occur-
rence node of P satisfying (v, v1, . . . , v`) ≺ z for some v1, . . . , v` and fixed v in
TS . The time complexity is O(log m log u log∗u) for m = |P | and u = |S|.

Proof. We outline the proof. For any node v in TS and q ∈ Σ ∪ V , we can check
if (v, v′) ≺ z and L(v′) = q for some nodes v′, z in O(log u) time because such v′

must be a leftmost descendant of right(lra(v)) and the height of TS is O(log u).
Let Q = Q1 · · ·Qk and Qi ∈ {q++

i } for some qi ∈ Σ ∪ V . If Q contains no
repetition and we assume that (v1, . . . , vj) ≺ z is found for Q1 · · ·Qj = q1 · · · qj .
From (vj , vj+1) ≺ z′ and L(vj+1) = qj+1, we obtain (v1, . . . , vj+1) ≺ lca(z, z′)
in O(log u) time because z, z′ must be in a same path. Thus an embedding of
length at most O(log m log∗u) from v is computed in O(log m log u log∗u) time.

Let Qj = q` for some symbol q and ` ≥ 2. In ESP, any repetition is trans-
formed to a shorter string by the left aligned parsing, and this transformation
is continued as long as the resulting string contains a repetition. Thus, by TS ,
an occurrence S[s, t] = q` is partitioned to S[s, t] = S[s1, t1]S[s2, t2] · · ·S[sk, tk]
such that |S[si, ti]| = 2`i ≥ 1, vi in TS is the root of the complete binary tree
deriving S[si, ti], and k = O(log `). Let S[si, ti] be the longest segment. We note
that all symbols in current string are replaced by the next iteration of ESP. By
this characteristic, when S[si, ti] is transformed to S′[j], the adjacent digram



Find pattern(Q, DS , v, TS) /* L(v) = Q[1] */
let Q = Q1 · · ·Qk, Qi ∈ {q+

i }, qi ∈ Σ ∪ V , qi 6= qi−1, qi+1;
initialize j ← 1, z ← v; /* current block Qj and embedding in z */
if(|Q| = 1) return z;
while(j ≤ k){

if(|Qj | = 1){ /* block Qj is just one symbol */
if((v, v′) ≺ z′, L(v′) = qj+1 for some v′, z′ in TS)

v ← v′, z ← lca(z, z′), j ← j + 1;
else return 0;

}
else{ /* block Qj is a repetition */

` ← |Qj |;
while(` > 0){ /* find maximal complete binary tree parsing q++

j */

if((v, v′) ≺ z′, L(v′) = qj for some v′, z′ in TS){
let va be the highest ancestor of v′ satisfying X0 = L(va), Xd = qj ,

X0 → X2
1 , . . . , Xd−1 → X2

d ∈ DS , 1 ≤ 2d ≤ `;

v ← va, z ← lca(z, z′), ` ← ` − 2d;
}/* next complete binary tree until whole q++

j is covered */

else return 0;
}j ← j + 1;

}
}return z;

Fig. 2. Algorithm to find occurrence node of P starting with a given node v.

S′[j − 2, j − 1] derives a string containing S[s1, t1] · · ·S[si−1, ti−1] as its suffix.
Thus, we can check if (v1, . . . , vi−1) ≺ vp for some vp in O(log ` + log u) =
O(log m + log u) time. The time to check if (vp, vi) ≺ z is O(log u). Hence, the
time to embed q` is O(log m + log u). Therefore, we find the occurrence of P in
O(log m log∗u(log m + log u)) = O(log m log u log∗u) time. 2

3.3 Data structures

We develop compact data structures for Find pattern(Q,DS , v, TS) to access a
next occurrence of v satisfying L(v) = q for any q ∈ Σ ∪V . These improvements
are achieved by two techniques: one is decomposition of DAG into left tree and
right tree; the other is simulation of the reverse dictionary for pattern compres-
sion. First we treat decomposition of DAG G, which is a graph representation
of DS . Introducing a super sink v0 together with left and right edges from any
sink of G to v0, G can be modified to have the unique source/sink.

fact 2 Let G be a DAG with single source/sink such that any node except the
sink has exactly two children. For any in-branching spanning tree of G, the graph
defined by the remaining edges is also an in-branching spanning tree of G.
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Fig. 3. Succinct representation of a CFG by left tree and right tree in LOUDS bit-string
with a permutation array.

In-branching spanning tree of G constructed by left edges only is called left
tree of G and denoted by TL. Thus the complementary tree is called right tree of
G and denoted by TR. An example of G and its left/right tree is shown in Fig. 3
with its succinct representation proposed hereafter.

When a DAG is decomposed into TL and TR, the two are represented by
succinct data structures for ordered trees and permutations. The bit-string by
LOUDS in [4] for an ordered tree is defined as shown below. We visit any node
in level-order from the root. As we visit a node v with d ≥ 0 children, we append
1d0 to the bit-string beginning with the empty string. Finally, we add 10 as the
prefix corresponding to an imaginary root, which is the parent of the root of the
tree. For the n-node tree, LOUDS uses 2n + o(n) bits to support constant time
access to the parent, the i-th child, and the number of children of a node.

To traverse G equivalent to TS , we also need the correspondence of nodes in
one tree to the other. For this purpose, we employ the succinct data structure
for permutation in [5]. For a given permutation π of N = (0, . . . , n − 1), using
(1 + ε)n log n + o(n) bits of space, this data structure supports access to π[i]
in O(1) time and π−1[i] in O(1/ε) time. For instance, if π = (2, 3, 0, 4, 1), then
π[2] = 0 and π−1[4] = 3; that is, π[i] is the i-th member of π and π−1[i] is the
position of the member i. For each node i in LOUDS(TL) and the corresponding
node j in LOUDS(TR), we can get the relation by π[i] = j and π−1[j] = i.

We introduce another preprocess for G. For each iteration ESP (S,D) =
(S′, D ∪ D′), we rename new variables in D′ and S′ by sorting1 all production
rules X → XiXj ∈ D′ by (i, j): If the rank of X → XiXj is k, all occurrences
of X in D′ and S′ are renamed to Xk. For example, D′ = {X1 → ab,X2 →
1 A similar technique was proposed in [2] but variables are sorted by encoded strings.



bc, X3 → ac,X4 → aX2} and S′ = X1X2X3X4 are renamed to D′ = {X1 →
ab, X2 → ac,X3 → aX4, X4 → bc} and S′ = X1X4X2X3. Thus, variable Xi

in G coincides with node i in LOUDS of TL because they are both named in
level-order. The G in Fig. 3 is already renamed. By this improvement, the size
of the array required for node correspondence is reduced to n log n bits of space.

Finally we simulate the reverse dictionary using G for pattern compression.
When ESP ∗(S,D) is computed, the naming function HS(XY ) = Z defined by
Z → XY ∈ D is realized by a hash function. However, because our index does
not contain this data structure, we must simulate HS by only G to obtain an
evidence of P . By preprocessing, variable Xk corresponds to the rank of its left
hand side XiXj for Xk → XiXj . Conversely, given Xi, the children of Xi in TL

are already sorted by the ranks of their parents in TR. Because LOUDS supports
referring to the number of children and i-th child, HS(XiXj) = Xk is obtained
by binary search in the following time complexity.

Lemma 5. The function HS(XY ) = Z is computable in O( 1
ε log k) = O( 1

ε log n)
time, where k is the maximum degree and n is the number of nodes of TL.

Theorem 1. The size of ESP-index for string S is (1+ε)n log n+4n+o(n) bits
of space, where n is the number of variables in TS . With pattern P , the number
of its occurrence in S is computable in O( log∗u

ε (m log n+occc(log m log u))) time
for any 0 < ε < 1, where u = |S|, m = |P |, and occc is the number of occurrences
of a maximal common subtree in TS and TP .

Proof. We can modify Find pattern to find (v1, . . . , vk) ≺ z from vk to v1. Thus,
starting with v` labeled by q which encodes a longest string, we can find z by
(v1, . . . , v`) ≺ z1, (v`, . . . , vk) ≺ z2, and (v1, . . . , vk) ≺ lca(z1, z2) = z. This
derives the time bound. 2

Locating and displaying are realized by an additional array to store the length
of each variable. Since ESP tree is balanced, we obtain the bound below.

Corollary 1. With additional n log u + o(n) bits of space, ESP-index supports
locating P and displaying S[i, j]. The time to locate is the same as the case of
counting, and the time to display a substring of length m is O(m + log u).

4 Experiments

The environment is OS:CentOS 5.5 (64-bit), CPU:Intel Xeon E5504 2.0GHz
(Quad)×2, Memory:144GB RAM, HDD:140GB, and Compiler:gcc 4.1.2. Datasets
of English texts and DNA sequences of 200MB each are obtained from the text
collection in Pizza&Chili Corpus.2

We first show how a long string is encoded by evidence of pattern in Fig. 4.
This figure shows the maximum length of a string encoded by a symbol in ev-
idence Q according to the pattern length. We call this symbol in Q a core. By
2 http://pizzachili.dcc.uchile.cl/texts.html
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this result, sufficiently long common substrings in S1 and S2 are extracted as
common variables in ET (S1) and ET (S2).

We next compare our ESP-index with other compressed indexes referred to
as LZ-index (LZI)3, Compressed Suffix Array, and FM-index (CSA and FMI)4.
These implementations are based on [6–8]. Due to the trade-off between con-
struction time and index size, the indexes referred to above are examined with
respect to reasonable parameters.

For ESP-index, we set ε = 1, 1/4 for permutation. In CSA, the option (-P1:L)
means that the ψ function is encoded by the gamma function and L specifies
the block size for storing ψ. In FMI, (-P4:L) means that BW-text is represented
by a Huffman-shaped wavelet tree with compressed bit-vectors and L specifies
the sampling rate for storing rank values; (-P7:L) is the uncompressed version.
In addition, these CSA and FMI do not make indexes for occurrence position.

The result of index size is shown in Fig. 5, where the space for locating is
removed in all indexes except LZI; total index size including the space for lo-
cating/displaying is shown in the last two tables. Fig. 5 reveals that ESP-index
is compact enough and comparable to CSA(-P1:64). The result of construction
time is shown in Fig. 6. It is deduced from this result that ESP-index is com-
parable with FMI and CSA in the parameters in construction time, and slower
than LZI. Further, a conspicuous difference is not seen in construction time.
3 http://pizzachili.dcc.uchile.cl/indexes/LZ-index/LZ-index-1
4 http://code.google.com/p/csalib/
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Fig. 7 shows the time to count the occurrences of pattern for both types of
English and DNA. Random5 selection of pattern from the text was made 1000
times for each fixed pattern length; the search time indicates the average time.
In this implementation, we modified our search algorithm so that the core q is
extracted by preprocessing a short prefix of P . And an occurrence of P in S
is examined by finding q and the exact match of the remaining substrings by
partial decoding of the compressed S. By preliminary experiments, we determine
the length of preprocessed prefix to be 1% of u = |P | in practice. In DNA and
ENGLISH, our method is faster than LZI and CSA in case of long patterns.

Finally, we show the results of locating and displaying in Table 1 and Table 2
respectively. Locating is achieved with an additional array to store the length
of the encoded string for each variable. Because ESP tree is balanced, the size
of this array is reduced by level-wise sampling; in this experiment, the array is
developed only for variables produced in odd level of ESP. In CSA/FMI, option
-I:{D}:{D2} indicates sampling parameter D for suffix array and D2 for the
reverse array. We get better results for m = 100 than for m = 1000. This is
because the frequency of longer pattern becomes one and the search time is thus
proportional to m. For comparison of theoretical time/space bound, see e.g. [2].

5 Discussion

We have another motivation to apply our data structures to practical use. Origi-
nally, ESP was proposed to solve a difficult variant of the edit distance by finding
the maximal common substrings of two strings. Thus, our method will exhibit
its ability if both strings are sufficiently long. Such situations are found in the
framework of normalized compression distance [1] to compare two long strings
directly. Improving log m log u in time complexity is also an important work.

5 The result for random generated pattern is omitted because the search time immedi-
ately converges under milliseconds in ESP, CSA, and FMI due to its rare occurrence.



Table 1. Locating Time

ENGLISH
index size locating time [sec]
[Kbytes] m = 10 m = 100 m = 1000

ESP (1/ε = 4) 223292 84.27 0.93 2.44

ESP (1/ε = 1) 282646 60.76 0.67 1.81

ESP sparse (1/ε = 4) 181756 88.91 0.97 2.47

ESP sparse (1/ε = 1) 241110 73.09 0.67 1.81

LZI-1 290915 0.61 2.00 30.12

CSA (-P1:64 -I:4:0) 308927 0.81 0.67 3.36

CSA (-P1:64 -I:256:0) 107327 53.65 0.96 3.76

CSA (-P1:256 -I:4:0) 288307 1.21 1.32 8.35

CSA (-P1:256 -I:256:0) 86707 82.41 1.94 7.81

FMI (-P4:512 -I:4:0) 265706 2.24 0.55 3.46

FMI (-P4:512 -I:256:0) 64106 180.51 1.22 4.26

FMI (-P7:128 -I:4:0) 336193 0.80 0.33 1.43

FMI (-P7:128 -I:256:0) 134593 55.48 0.78 1.77

DNA

index size locating time [sec]
[Kbytes] m = 10 m = 100 m = 1000

212847 1923.45 0.63 1.73

269424 1271.55 0.46 1.33

170954 1701.10 0.77 1.78

227532 1400.90 0.46 1.32

214161 7.23 0.77 16.34

314529 1.79 0.66 3.56

112929 168.83 1.02 3.17

293865 3.02 1.41 8.67

92265 314.05 1.43 8.81

255483 3.94 0.36 2.54

53883 412.22 0.64 2.59

268264 1.17 0.19 0.67

66664 96.22 0.25 0.59

Table 2. Displaying Time

ENGLISH
index size displaying time [sec]
[Kbytes] m = 10 m = 100 m = 1000

ESP (1/ε = 4) 223292 0.09 0.37 1.63

ESP (1/ε = 1) 282646 0.07 0.25 1.18

ESP sparse (1/ε = 4) 181756 0.16 0.47 2.58

ESP sparse (1/ε = 1) 241110 0.10 0.37 1.99

LZI-1 290915 0.01 0.04 0.27

CSA (-P1:64 -I:0:4) 308927 0.04 0.28 1.20

CSA (-P1:64 -I:0:256) 107327 0.30 0.47 1.22

CSA (-P1:256 -I:0:4) 288307 0.04 0.31 1.83

CSA (-P1:256 -I:0:256) 86707 0.25 0.53 2.17

FMI (-P4:512 -I:0:4) 265706 0.09 0.39 2.52

FMI (-P4:512 -I:0:256) 64106 0.09 0.41 2.27

FMI (-P7:128 -I:0:4) 336193 0.05 0.30 0.94

FMI (-P7:128 -I:0:256) 134593 0.08 0.37 1.10

DNA

index size displaying time [sec]
[Kbytes] m = 10 m = 100 m = 1000

212847 0.12 0.21 1.08

269424 0.05 0.16 0.80

170954 0.14 0.34 2.20

227532 0.09 0.30 1.80

227532 0.01 0.03 0.20

314529 0.03 0.27 1.16

112929 0.31 0.34 1.28

293865 0.05 0.21 1.69

92265 0.22 0.60 2.01

255483 0.05 0.27 1.41

53883 0.04 0.27 1.67

268264 0.05 0.18 0.58

66664 0.05 0.16 0.44
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