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Abstract

Purpose—Parallel imaging allows the reconstruction of images from undersampled multi-coil 

data. The two main approaches are: SENSE, which explicitly uses coil sensitivities, and GRAPPA, 

which makes use of learned correlations in k-space. The purpose of this work is to clarify their 

relationship and to develop and evaluate an improved algorithm

Theory and Methods—A theoretical analysis shows: 1. The correlations in k-space are 

encoded in the null space of a calibration matrix. 2. Both approaches restrict the solution to a 

subspace spanned by the sensitivities. 3. The sensitivities appear as the main eigenvector of a 

reconstruction operator computed from the null space. The basic assumptions and the quality of 

the sensitivity maps are evaluated in experimental examples. The appearance of additional 

eigenvectors motivates an extended SENSE reconstruction with multiple maps, which is compared 

to existing methods

Results—The existence of a null space and the high quality of the extracted sensitivities are 

confirmed. The extended reconstruction combines all advantages of SENSE with robustness to 

certain errors similar to GRAPPA.

Conclusion—In this paper the gap between both approaches is finally bridged. A new 

autocalibration technique combines the benefits of both.
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Introduction

In parallel MRI, data is simultaneously acquired from multiple receiver coils. Each coil 

exhibits a different spatial sensitivity profile, which acts as additional spatial encoding 

function. This can be used to accelerate the acquisition by subsampling k-space and 

reconstructing images by using the sensitivity information. Two different lines of 

reconstruction algorithms are in use today: Reconstruction algorithms based on explicit 

knowledge of the coil sensitivities such as SENSE [1, 2] and algorithms based on local 

kernels in k-space, which exploit the learned correlation between multiple channels in 

neighboring points in k-space, such as GRAPPA [3] and SPIRiT [4].

At least in principle, algorithms based on explicit knowledge of the sensitivities allow 

optimal reconstruction, e.g. in the sense of minimum mean square error or minimum-

variance unbiased estimation, when used with exact sensitivities. Another advantage is that 

they are very general. They can be used with arbitrary sampling trajectories [5], and priors 

on the image can be easily incorporated [6, 7, 8]. However, it is often very difficult to 

accurately and robustly measure the sensitivities and even small errors can result in 

inconsistencies that lead to visible artifacts in the image. Various algorithms have been 

developed to enable autocalibration of the coil sensitivities [9] and to improve the 

calibration, for example by joint estimation of the sensitivities and image [10, 11]. On the 

other hand, algorithms based on learned correlations tend to fail for high acceleration 

factors, but are much more robust to errors. This later property makes them the preferred 

choice in clinical practice today.

In this work we bridge the gap by describing SENSE and GRAPPA as subspace methods, 

i.e., both reconstruct missing data by restricting the solution to a subspace. SENSE achieves 

this by combining the coil images using precalculated sensitivity maps, while 

autocalibrating methods achieve it by filtering with calibrated kernels in k-space. We then 

show that the dominant eigenvector of these k-space operators appear and behave as 

sensitivity maps. More importantly we show how these maps can be rapidly computed using 

an eigenvalue decomposition in image space, which results in robust high-quality sensitivity 

maps that can be estimated just from autocalibration lines in k-space. Because this procedure 

has evolved from the calibration of the original SPIRiT approach and its efficient 

eigenvector-based implementation [12, 13], parallel imaging using eigenvector maps will be 

referred to as ESPIRiT in this manuscript. Finally, a specific implementation of ESPIRiT is 

presented, which utilizes multiple sets of sensitivity maps. This approach enforces relaxed 

(“soft”) sensitivity constraints in an extended SENSE-based reconstruction algorithm instead 

of the usual strict constraint based on a single set of sensitivities – hence we coin the term 

“soft SENSE”. This implementation of ESPIRiT uses explicit maps, but offers robustness 

against certain types of error similar to autocalibrated methods. In particular, it is robust to 

the FOV limitation problem described in [14].
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Theory

SENSE

SENSE poses the parallel imaging reconstruction as a linear inverse problem. Let m be the 

underlying magnetization image. Let Si be a diagonal matrix representing the sensitivity of 

the ith coil (1 ≤ i ≤ N for N coils) and let ℱ be a Fourier operator and  an operator that 

chooses only acquired locations in k-space. The received signal for the ith coil can be written 

as

(1)

When the coil sensitivities are known or can be measured with sufficient accuracy, the 

reconstruction is a linear inverse problem that can be solved by (usually regularized) least 

squares either directly [2] or iteratively [5].

For the individual coil images mi = Sim, it follows that

(2)

Where Si are the normalized sensitivity maps. Equation 2 states that 

the vector of individal coil images is spanned point-wise by the vector of coil sensitivities. It 

also implies that the coil images vector belongs to a smaller subspace of a dimensionality 

1/N of its size – i.e., has redundant, correlated information. This subspace idea is exploited 

in a related algorithm by Samsonov et. al. [15], where the reconstruction problem in 

Equation 1 can be re-defined to solve for the individual coils images mi = Sim. It uses the 

projection-onto-convex-sets algorithm (POCS) to compute a solution which lies in the 

subspace defined by Equation 2 and is consistent with the data according to yi = ℱmi.

GRAPPA

GRAPPA is an auto-calibrating coil-by-coil reconstruction method. It poses the parallel 

imaging reconstruction as an interpolation problem in k-space. In the GRAPPA algorithm 

unacquired k-space values are synthesized by a linear combination of acquired neighboring 

k-space data from all coils.

To describe GRAPPA in simple notations it is convenient to define a set of block operators. 

The operators Rr represent the operation of choosing a block of k-space (from all the coils) 

out of the entire grid around the k-space positions indexed by r. The operators Pr represent 

local sampling patterns that choose only acquired samples from a block of k-space. Let y be 

a multi-coil k-space grid concatenated into a vector in which unacquired data are zero filled. 

So, the product PrRry is a vector containing only the acquired k-space neighborhood around 

the k-space position r. Then, the recovery of a missing sample in the ith coil at an unacquired 

position r is simply given by
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(3)

Here gri are sets of reconstruction weights, called a GRAPPA kernel, specific to the 

particular sampling pattern around position r. The notation ()T represents a non-conjugated 

transpose. The full k-space grid is reconstructed by evaluating Equation 3 for all coils at 

each unacquired k-space position.

The GRAPPA kernels can be obtained by solving the relation in Equation 3 for the unknown 

variables gri at different positions in k-space, where the xi are known. Typically, this is done 

in a fully acquired region in the center of k-space, e.g., autocalibration (AC) region. To 

perform the calibration it is useful to construct a so called calibration matrix, denoted by A, 

from the AC portion of the acquired data. It is constructed by sliding a window throughout 

the AC data, taking each block (Rry)T inside the AC region to be a row in the matrix. The 

columns of A are shifted versions of the AC area, leading to a matrix structure known as 

Block-Hankel. Figure 1 illustrates the operators and data organization described so far. To 

obtain conditions for the weights gri, Equation 3 is rewritten using the calibration matrix and 

applied to all locations inside the AC region. This yields a set of ideal conditions for the 

reconstruction weights:

(4)

where  are data from the ith coil inside the AC region (orange square in the Fig. 1). In 

practice, kernels which solve this set of equations approximately are computed by solving a 

regularized least-squares problem [4, 16, 17].

By construction, one of the columns of A is . This is illustrated in Figure 1 where the 

area in the calibration marked by dashed orange square is used to construct the 5th column of 

A. We can write this as  where ei is a vector with ‘1’ in the appropriate position 

that chooses the ith coil data, and ‘0’ elsewhere. Rewriting Equation 4, we get,

(5)

This means that  are null-space vectors of the calibration matrix. The existence of 

a null-space implies redundancy in A and hence correlations between blocks of k-space, 

which can be used to synthesize missing samples. However  are very specific 

null-space vectors which may represent only part of the redundant information. For this 

reason, we turn to characterize the null space directly.

Calibration Matrix and Null-Space Reconstruction

A very useful way to analyze the calibration matrix is to compute its singular value 

decomposition (SVD):
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(6)

The columns of the V matrix in the SVD are a basis for the rows of A, and therefore basis for 

all the overlapping blocks in the calibration data. We can separate V into V⊥ which spans the 

null space of A and V‖ which spans its row-space. This is demonstrated well in Figure 2 

using data obtained with an eight-channel head coil. The underlying information that we 

learn from the decomposition of the calibration data is that it lies in the subspace spanned by 

V‖ and not by V⊥. This information can then be used in the reconstruction to extrapolate 

unacquired measurements as this relation should be true for all the blocks in k-space and not 

just for the AC lines.

Given an undersampled k-space grid, each k-space block of the reconstruction x must satisfy 

two constraints,

(7a)

(7b)

The first is consistency with the calibration and the second is consistency with the data 

acquisition. Interpreting the (formally overdetermined) set of null-space constraints in the 

least-squares sense yields the normal equations

(8)

In the following, periodic boundary conditions are assumed, because they simplify the 

discussion considerably. Although this assumption is often implicitely used in MRI, it 

should be noted that it introduces minor numerical errors, which could be avoided by a 

rigorous derivation [18]. Assuming this, the equation can be transformed further to

(9)

where M represents  and equals the number of samples in each patch of k-space 

data selected by Rr. This result can also be obtained by multiplying the first equation in 7a 

with  from the left and summing over r. Because an operation of the form 

computes the correlation with each kernel in V‖ when performed for all r, it can be expressed 

as a set of convolutions.
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This also applies to its adjoint  and the symmetric product . Thus, 

by construction,  is a convolution with a matrix-valued kernel where the matrix operates 

on the channel dimension. While the operations  and  are projections operating 

on patches, the operation  is an average of projections and therefore Hermitian and 

positive semi-definite with eigenvalues smaller or equal to one.

Rewriting the first constraint in matrix form and merging all identical equations of the 

second constraint yields

(10a)

(10b)

where  is a mask selecting only the acquired samples out of a full grid and results from 

merging the overlapping PrRr for all patches. The constraints can be enforced iteratively as 

in SPIRiT, which is different only in the operator . This leads to a null-space 

reconstruction [13], which was independently developed by Zhang et. al., and reported in 

[19]. We extend these notions further and develop a new computationally efficient approach 

in which the connection to SENSE-based methods is made.

Sensitivity Maps as an Eigenvalue Problem

The null-space method (Eqs. 10) computes a solution in the null space of  – I, while 

SENSE computes a solution in the subspace spanned by the coil sensitivities (Eq. 2). This 

suggests that these subspaces can be explicitly identified.

The solution x must satisfy x = x, therefore, by definition, x belongs to a subspace spanned 

by the eigenvectors of  corresponding to the eigenvalue ‘1’. If we write x in terms of the k-

space of the original image weighted by the coil sensitivities, we get

(11)

where S = [S1S2 … SN]T is a vector of stacked coil sensitivities. Assuming that this is indeed 

a solution of Equations 10, we get

(12)

Applying the inverse Fourier transform on both sides of the equation, it follows that the 

vector of coil images is an eigenvector of ℱ−1 ℱ for the eigenvalue ‘1’:

(13)

If we perform a direct eigenvalue decomposition of , we should be able to find the 

sensitivities explicitly. Because the operator  is a positive semi-definite matrix-valued 
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convolution, it decouples into point-wise positive semi-definite matrix operations in the 

image domain:

(14)

The eigenvalue decomposition of the operator  is simplified to solving a much smaller 

eigenvalue decomposition of q for each position q in images space. The steps of one 

possible procedure for the computation of q from the K kernels in V‖ are illustrated in 

Figure 3. Defining  as the sensitivities at spatial position q and 

m(q) as the magnetization at this position, Equation 13 is reduced to

(15)

At positions where m(q) is non-zero, this yields a condition for the sensitivities:

(16)

Thus, the explicit sensitivity maps can be found by an eigenvalue decomposition of all q's 

choosing only the eigenvectors corresponding to eigenvalue ‘=1’. This is shown in Figure 4 

for data from an eight-channel head coil. At locations where no eigenvalue ‘=1’ is found, the 

sensitivities are set to zero. These position correspond to locations without signal. The 

eigenvectors are defined only up to multiplication with an arbitrary complex number. For 

this reason, the norm of the eigenvectors at each location are normalized to one and one 

arbitrary chosen channel is used as a reference with zero phase [20].

In the ideal case, there is only a single eigenvector to the eigenvalue ‘1’ at each location and 

all other eigenvalues are ≪ 1. Then the solution for Equation 16 is equivalent to the 

projection onto the subspace spanned by the coil sensitivities (Eq. 2).

ESPIRiT: Implementation Using Soft SENSE

After computation of a single set of sensitivities, a standard SENSE reconstruction can be 

performed. In some cases errors in the acquisition lead to the appearance of multiple 

eigenvectors to eigenvalue ‘=1’ or additional eigenvalues smaller than one, indicating signal 

components which cannot be explained in terms of the strict SENSE model. Then, q has 

the following form:

(17)

Here, Mq is usually one or two and all λj are often close to one. This motivates an extension 

of the reconstruction process: Instead of using a single set of sensitivity maps, Equation 1 is 

extended to a “soft” SENSE reconstruction, which uses a relaxed model of the signal based 

on multiple (M) image components mj and multiple sets of maps Sj:
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(18)

A least-squares solution of this equation then yields several images (image components) mj 

at once.

In most applications the first component can be used as the reconstruction, while the other 

components represent errors which only have to be taken into account during reconstruction 

to avoid artifacts. If the other components present image content and can not be discarded, it 

might be necessary to do a magnitude combination to avoid signal loss due to phase 

cancellation. A third possibility is to compute the individual coil images according to 

 and then combine the coil images mi in a post-processing step similar to 

GRAPPA. The first and last option can also be used for applications using phase information 

in the same way as SENSE and GRAPPA respectively.

As mentioned above, the reconstruction can be extended to integrate various regularization 

terms Q by formulating it as the optimization of a functional

(19)

For example, using the ℓ1-norm with a sparsity (e.g. wavelet) transform Ψ in 

 yields ℓ1-ESPIRiT, which is usefull for a compressed sensing 

reconstruction of randomly undersampled data, similar to ℓ1-SPIRiT [4, 21].

Methods

In the spirit of reproducible research, we provide source code with examples for the 

proposed algorithm. It can be downloaded from: http://www.eecs.berkeley.edu/∼mlustig/

Software.html

Fully-sampled data of the human brain was acquired on a 1.5 T scanner (GE, Waukesha, 

WI) using an eight-channel head coil for multiple subjects. Two data sets have been 

acquired with inversion-recovery prepared 3D RF-spoiled gradient-echo sequence (TR/TE = 

12.2/5.2 ms and TR/TE = 9.7/4.1 ms, TI = 450 ms, FA = 20°, BW = 15 kHz, matrix size: 

256 × 180 × 230 and 200 × 200 × 200, resolution: 1 mm isotropic) and one data set with a 

2D spin-echo sequence (TR/TE = 550/14 ms, FA = 90°, BW = 19 kHz, matrix size: 320 × 

168, slices: 6, slice thickness: 3 mm) using a reduced FOV of 200 mm × 150 mm, which 

was smaller than the head of the subject in phase-encoding direction (lateral).

The 3D data has been Fourier transformed along the readout direction and all further 

processing has been done for 2D k-space data of selected sections. The computation of the 

eigenvalue and eigenvector maps and the ESPIRiT reconstruction have been implemented in 

Uecker et al. Page 8

Magn Reson Med. Author manuscript; available in PMC 2014 November 06.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.eecs.berkeley.edu/~mlustig/Software.html
http://www.eecs.berkeley.edu/~mlustig/Software.html


MatLab (MathWorks, Natick, MA) and in the C programming language using the FFTW 

[22] (http://www.fftw.org) and ACML (http://www.amd.com/acml, AMD, Sunnyvale, CA) 

libraries. For the computation of the eigendecomposition of q, a version using orthogonal 

iteration has been implemented, which allows the efficient computation of the eigenvectors 

of only the largest eigenvalues. The number of iterations was set to 30.

The basic assumptions of the present work have been confirmed by computing the SVD of 

the calibration matrix and computing all eigenvalue and eigenvector maps for a single 

section of a 3D RF-spoiled gradient-echo data set using a calibration region of size 24 × 24 

and a kernel size of 6 × 6.

In the following experiments, the quality of the computed sensitivity maps has been 

evaluated in different ways. If not mentioned otherwise, a calibration region of size 20 × 20 

and kernel size of 5 × 5 has been used. In this work, the size of the null space has been 

estimated by setting a cut-off relative to the maximum singular value. The effect of this 

parameter has been evaluated for different values  for k = 1 ⋯5 by computing 

eigenvalue maps and computing sensitivity maps corresponding to the largest eigenvalue. 

For these sensitivity maps, it has been tested how well fully-sampled data can be 

reproduced. In detail, fully-sampled coil images mj are projected onto the subspace spanned 

by the maps (see Eq. 2) and then the original images mj are subtracted to obtain the 

projection onto its orthogonal complement:

(20)

This shows the part of the images mj which is in the null space as approximated by the maps. 

Only noise should remain and any residual signal indicates imperfections of the sensitivities. 

For better visualization, the residual images for all channels have been combined by 

computing the point-wise root of the sum of absolute squares.

For the same data, the reconstruction quality of ESPIRiT has been compared with other 

autocalibrating parallel imaging algorithms. The following algorithms have been used: 

SENSE reconstruction using sensitivities estimated from the fully sampled k-space center 

according to [9], nonlinear inverse reconstruction (NLINV) [11], and GRAPPA [3] as 

described in the present work. The null space has been determined using  and 

sensitivity maps have then been computed at all locations with eigenvalues larger than a 

threshold 0.9 and set to zero elsewhere. Reconstructions have been performed for a single 

section of a 3D data set orthogonal to the readout direction, which has retrospectively been 

undersampled along both phase-encoding direction by factors 3 × 2 and 2 × 2. GRAPPA 

kernels have been regularized by Tikhonov regularization with 3 × 10−4 relative to the 2-

norm of AH A. SENSE and ESPRiT reconstructions have been regularized with 0.001 (using 

normalized sensitivities and Fourier transform), while NLINV was used with nine Newton 

steps.
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Again using the same parameters, the quality of the calibration of different methods has 

been compared by computing how well fully-sampled data can be reproduced (as described 

above). For GRAPPA, a combined reconstruction kernel has been computed for a regular 

undersampling of 3 × 2 and used in place of  in Equation 20. It should be noted 

that the computation of all necessary GRAPPA kernels depends on the sampling scheme, 

and the combination into a single convolution kernel is possible for regular sampling on a 

grid. Then, all kernels can be applied everywhere using a convolution, because the sampling 

pattern matched to a patch at a shifted location between the intended grid positions yields 

PrRr = 0.

To study the effect of different noise level on the calibration Gaussian white noise has been 

added to k-space to create data with 10× and 20× the noise level of the original acquisition. 

Using the same parameters as above, ESPIRiT calibration has been performed and the 

accuracy of the obtained sensitivity maps has been evaluated by projecting fully-sampled 

coil images mj of the original data onto the subspace spanned by the maps (see Eq. 2). In 

addition, images have been reconstructed for all noise levels for undersampling in both 

phase-encoding directions by 2 × 2 using ESPIRiT and GRAPPA.

That ESPIRiT has similar properties as GRAPPA is demonstrated with examples where the 

FOV is smaller than the object. Eigenvalue and eigenvector maps have been computed for a 

data set with full FOV, with reduced FOV in one dimension, and with reduced FOV in two 

dimensions. The ability to reconstruct proper images in this case by using multiple maps is 

demonstrated for spin-echo data, which has been undersampled by a factor of two in the 

phase-encoding (lateral) direction, and compared with other reconstruction algorithms. Here, 

a lower threshold of 0.8 has been used for calculation of the sensitivity maps to avoid 

truncation artifacts.

Finally, the behavior for other kinds of data corruption has been investigated with two 

examples. The first example used single-shot fly-back EPI (TE = 78.4 ms, ΔTE = 1.504 ms, 

BW = 125 kHz, matrix size: 128 × 48, FOV: 35 mm, slice thickness: 4 mm) of a human 

brain without fat suppression. Maps and corresponding images from an ESPIRiT 

reconstruction have been computed (calibration region: 24 × 24, kernel size: 6 × 6, 

, threshold: 0.9). The second example used 3D fast spin-echo MRI (TR/TE 

= 1,600/20.8 ms, 37 echos, BW = 62.5 kHz, matrix size: 320 × 288 × 236, resolution: 0.5 

mm × 0.5 mm × 0.6 mm) of a human knee, which has been accelerated by a factor of 8.4 

using variable-density Poisson-disc sampling [23]. Here, 3D sensitivity maps have been 

computed (calibration region: 243, kernel size: 63, , threshold: 0.9) for an 

eight-channel coil compressed to six virtual channels [24]. Each section along the readout 

direction has been reconstructed with a compressed-sensing ℓ1-ESPIRiT reconstruction with 

wavelet regularization. Volumes corresponding to the different maps have then been 

combined as described before to obtain a single volume for comparison with a similar ℓ1-

SPIRiT [4, 21] reconstruction.
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Results

The basic assumptions of the present work have been validated by computing the singular 

value decomposition of a calibration matrix constructed from experimental eight-channel 

data (Fig. 2). The data used to construct A was of size 24 × 24 × 8, and the kernel size 

(window size) was 6 × 6. These correspond to A being a [(24 − 6 + 1)2 × (6*6*8)] = [361 × 

288] matrix. The figure shows the calibration data in k-space and the magnitude of the 

associated A, U, Σ and V matrices. It confirms that A indeed has a null space, which relates 

to the fact that the rows of A are correlated. That sensitivity maps can be estimated using the 

procedure outlined in the present work is demonstrated in Figure 4. It shows eigenvalue and 

eigenvector maps, which have been obtained by a point-wise eigendecomposition of the 

operator . There exists an eigenvalue ‘=1’ everywhere in the area of support of the image, 

and the corresponding eigenvector has the structure of normalized coil sensitivities. The last 

row shows the corresponding individual coil images for comparison.

Figure 5 shows eigenvalue maps computed using a row space V‖ with different size K, which 

has been estimated by a cut-off σcut-off relative to the largest singular value of the calibration 

matrix. Here and in the following, the calibration matrix of size [(20 − 5 + 1)2 × (5 * 5 * 8)] 

= [256 × 200] has been computed from a calibration region of size 20 × 20 × 8 and for a 

kernel size of 5 × 5. For the values  with k = 1 … 5 the number of kernels in 

V‖ are K = 21, 33, 44, 57, 101, respectively, from a total of 200 kernels. For higher 

thresholds, the estimated V‖ gets smaller until parts of the signal gets incorrectly included 

into the null space V⊥. In this case, even the largest eigenvalue of q becomes smaller than 

one inside the support of the image. For lower thresholds, the null space gets very small and 

does not fully capture all correlations in the data. In the extreme case, when there is no null 

space left, all eigenvalues are ‘=1’ (not shown). Both extremes lead to errors in the 

sensitivities, which is evident by visual inspection of the sensitivities and indicated by 

residual energy in the projection of fully-sampled coil images onto the null space as 

approximated by the maps using Equation 20. Very good sensitivities can be obtained for a 

large range of values between .

Reconstructions using the estimated sensitivities are compared to other reconstruction 

algorithms for undersampling factors of 2 × 2 and 3 × 2 (see Fig. 6). For 2 × 2 

undersampling, ESPIRiT and NLINV reconstruct artifact-free images, which have slightly 

better quality than the images reconstructed with SENSE and GRAPPA. For higher 

acceleration, all reconstructions start to deteriorate showing increased noise and aliasing 

artifacts (the trade-off is controlled by the regularization parameter). Under the experimental 

conditions chosen here, GRAPPA shows more severe artifacts and noise amplification 

compared to the other three algorithms, indicating errors in the calibration of the GRAPPA 

kernels. In contrast, the ESPIRiT algorithm, which uses sensitivities estimated from exactly 

the same calibration matrix as GRAPPA, allows a better reconstruction similar to the other 

SENSE-based algorithms. This is further confirmed by a direct evaluation of the quality of 

the maps. The last row of Figure 6 shows the projection of the coil images obtained from 

fully-sampled data onto the null space of different reconstruction methods. For NLINV and 
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ESPIRiT the signal is almost completely removed and only noise remains, while for the 

other two algorithms some remaining signal indicates errors in the calibration.

Data with different noise-level (orignal, 10×, 20×) has been used for calibration and 

reconstruction using ESPIRiT and GRAPPA (Fig. 7). The projection of the coil images of 

the original data onto the null space defined by ESPIRiT sensitivities shows only slightly 

increasing error even for a very high noise level. The images reconstructed from 2 × 2 

undersampled data with the original noise level using ESPIRiT and GRAPPA are identical 

the images shown in Figure 6 and show better image quality for ESPIRiT than for 

GRAPPA, which is slightly compromised by aliasing artifacts. For higher noise levels, the 

images from both algorithms get disturbed by noise, although ESPIRiT is less affected than 

GRAPPA.

In the following experiments, the FOV has been choosen to be smaller than the head of the 

subject. Figure 8 shows maps from a measurement where the FOV has been reduced in one 

and in two dimensions. Up to four eigenvectors for eigenvalue ‘=1’ appear in overlapping 

areas. This corresponds to the observation that a single smooth sensitivity map is not able to 

model the data correctly, but that this is possible using multiple maps. Figure 9 shows 

respective reconstructions from a two-fold undersampled scan. The methods assuming a 

single set of smooth sensitivity maps, i.e. SENSE with direct calibration and NLINV, are not 

able to recover correct coil sensitivities. The reconstructions show a severe artifact in the 

center of the image, which is absent for GRAPPA and ESPIRIT.

Multiple eigenvalues can also appear for other reasons. Figure 10 shows images of a highly-

accelerated 3D fast spin-echo acquisition of a human knee presumably corrupted by motion. 

An additional eigenvalue close to one appears in the parts of the image, which are affected 

by motion, and the corresponding ESPIRiT reconstructions yield multiple image 

components. A comparison between ℓ1-ESPIRiT using only the first and using two maps 

shows that the use of additional maps can be beneficial. Restricting the reconstruction to use 

only one map as in SENSE causes a loss of signal, while the use of two maps yields image 

quality similar to ℓ1-SPIRiT. Figure 11 (supplementary material) shows eigenvalue maps for 

a single-shot EPI scan of a human brain without fat suppression. Here, an additional 

eigenvalue close to one appears in the parts of the image, which are affected by the shifted 

fat signal. The corresponding ESPIRiT reconstructions yield multiple images which reflect 

the different signal components.

Discussion

Null Space of the Calibration Matrix

Doing a coil-by-coil calibration in k-space involves building the calibration matrix A. The 

linear dependence between the samples causes A to have a null space. Values in the row 

space of A correspond to the underlying signal, whereas those in the null space are not 

consistent and correspond to noise. This idea to analyze a correlation matrix to identify 

signal and noise subspaces has been known for a long time in frequency estimation [25, 26, 

27]. Similar ideas have been used multichannel blind deconvolution [28, 29] and exploited 
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for autocalibrated parallel MRI [30, 31]. The idea is also used in recent work about 

calibrationless parallel MRI reconstruction using low-rank matrix completion [32].

The vectors that span the null space can be used to synthesize missing samples. This leads to 

a null-space reconstruction [19, 13], which can be understood as an improved version of the 

SPIRiT algorithm [4]. In the null-space reconstruction, the reconstruction operator is 

constructed directly from the SVD of the calibration matrix, and is guaranteed to only pass 

components in row space and none in null space, which is not necessarily true for the 

original SPIRiT operator.

Properties of GRAPPA

As shown in the present work, GRAPPA kernels are also related to null-space vectors of the 

calibration matrix. This insight leads to a better understanding of GRAPPA, whose 

properties have sometimes been described as paradoxical [33, 34]. GRAPPA kernels have a 

specific structure to allow reconstruction in a single step: they only have entries where 

samples have been acquired and are required to have a one in the center. Due to these 

restrictions, the least-squares solution often only approximates the null-space constraint and 

this approximation becomes worse with higher acceleration as fewer and fewer entries are 

allowed and GRAPPA becomes less and less accurate. The examples shown in the present 

work use a relatively small kernel size, which makes them more susceptible to this effect. 

SPiRiT and null-space kernels do not depend on the sampling pattern and make use of all 

but one samples in each patch, allowing a more accurate approximation of the null-space 

constraint.

GRAPPA kernels are usually not uniquely defined by the null-space constraint. This makes 

it possible to choose the one with the smallest norm using regularization, which avoids noise 

amplification during the reconstruction. A paradoxical effect related to this is that the quality 

of a GRAPPA reconstruction can improve with increasing noise in the calibration area, 

which has been empirically described in [34]. The existence of a null space of the calibration 

matrix implies that its condition number is infinite in the ideal noise-less case and becomes 

finite only due to noise (or explicit regularization). Another property of GRAPPA which has 

remained somewhat mysterious is the ability to reconstruct images even when the FOV 

becomes smaller than the object [14, 33]. In this case even the calibration data itself 

becomes undersampled. As shown here for null-space kernels, this is related to the 

appearance of multiple eigenvectors to the eigenvalue one in the reconstruction operator.

Computation of Sensitivity Maps

This work links GRAPPA, SPIRiT, and the null-space method to SENSE-based 

reconstruction techniques which make explicit use of coil sensitivities. The sensitivities can 

be calculated from an eigendecomposition of the reconstruction operator, which can be 

performed efficiently in the image domain. This local computation of the sensitivities has 

some similarity to a previously published method for the estimation of the sensitivities from 

a local correlation matrix in image space [35, 20] and could also be thought of as a 

generalization of the subspace-based method presented in [36]. Using these sensitivities for 

image reconstruction offers all advantages of SENSE, i.e. linear scaling with the number of 
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receive channels with respect to computational demand, optimal reconstruction quality, 

straightforward extension to non-Cartesian sampling, and integration of various types of 

regularization techniques.

With a sufficiently large calibration area, the technique decribed in the present work allows 

the estimation of the sensitivities with very high precision, as demonstrated by direct 

evaluation of their accuray and by comparison with other methods. Notably, this is possible 

even though the kernels are usually too small to fully capture all correlations in k-space. 

Iterative enforcement of the constraints as in SPIRiT at all positions in k-space leads to 

additional consistency conditions, which are not visible in a small patch of k-space. This is 

similar to how a repeated application of a filter with small support can achieve a sharper 

transition from stop to pass band than what is possible with a single application. Computing 

the eigenvector to the eigenvalue ‘=1’ of the reconstruction directly extracts a consistent 

subspace, which then describes also correlations in k-space which might reach further than 

the size of the kernel.

Reconstruction with Multiple Maps

Multiple eigenvectors to the eigenvalue one appear when the data does not conform to the 

SENSE model. By extending a SENSE reconstruction to use multiple maps, these additional 

signal components can be taken into account. For example, it is possible to reconstruct 

images from under-sampled data without a central aliasing artifact when using a small FOV, 

which is possible with GRAPPA and SPIRiT, but not with basic SENSE or NLINV. It 

should be noted that NLINV can also recover a correct image in this situation, when 

explicitely using an extended FOV in the reconstruction [18]. Other errors might also lead to 

the occurrence of additional eigenvalues, as long as the calibration region is affected. For 

example, in the case of a shifted fat ghost in single-shot EPI the appearance of an additional 

map corresponds to the fact that the fat signal is compatible with shifted coil sensitivities 

[37, 38]. Because the two components do not correspond to water and fat, but to an arbitrary 

mixture, a separation or a removal of the fat signal is not directly possible. Nevertheless, the 

use of two maps could allow a parallel MRI reconstruction, which would have errors related 

to the fat signal when using only one map. For other errors additional maps might also allow 

an improved reconstruction, such as in the example of with motion corruption, although this 

depends on the exact nature of the corruption and can not always be expected. While noise 

behavior using a single set of maps is identical to SENSE-based methods, this changes when 

multiple maps are used. In this case, g-factor maps can be computed using a straightforward 

extension of the formula given by Pruessmann et al. [2] for periodic sampling and with 

Monte-Carlo methods in the general case.

Computation Time

Using a multi-threaded implementation on two CPUs with six cores, calibration for a single 

2D slice and iterative reconstruction using two maps each took less than one second for all 

presented examples. Calibration and compressed-sensing parallel-imaging reconstruction of 

the complete 3D knee data set took about 1:30 minutes and 4:30 minutes, respectively. With 

an implementation using similar to [21] using four CPUs, the 3D reconstruction can be 

performed in 2 minutes. Because the point-wise eigendecomposition is parallelizable, a 

Uecker et al. Page 14

Magn Reson Med. Author manuscript; available in PMC 2014 November 06.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



similar speed-up is expected from a GPU implementation of the calibration, which is already 

in development.

Conclusions

In this paper, the gap between the two main approaches to parallel MRI has finally been 

bridged. We have shown that all parallel imaging methods restrict the solution to a subspace 

spanned by the coil-sensitivities. Based on this observation, properties of methods such as 

GRAPPA and SPIRiT can be analyzed and better understood. In addition, a new hybrid 

reconstruction method has been presented, which combines the advantages from both 

approaches. While other related methods which operate in k-space such as nullspace method 

(PRUNO) may achieve comparable image quality, they don't offer the flexibility and 

efficiency of the proposed image-domain method. Nevertheless, more work will necessary 

to define the most optimal method for a given application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Data organization, indexing and operators that are used in the paper. Top: The calibration 

matrix A is constructed by sliding a window through the calibration data. The rows of A are 

overlapping k-space blocks from calibration data. Bottom-left: The indexing used to 

represent samples in k-space. Bottom-right: Applying Rr extracts a block in k-space and 

reorders it as a vector. Bottom-middle: Pattern set matrices associated with the k-space 

positions on the right. Applying PrRry extracts only acquired data from a block in k-space 

around position r.
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Figure 2. 
Singular value decomposition (SVD) of the calibration matrix. a) Magnitude of the 

calibration data in k-space and images from an eight-channel head coil. b) Magnitude of the 

SVD decomposition. The singular values are ordered by magnitude and appear on the 

diagonal of Σ. c) A zoomed view of the V matrix of the SVD and a plot of the singular 

vectors show that the calibration matrix has a null space. The k-space signal has support in 

V‖ and none in V⊥.
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Figure 3. 
The construction of the q matrices in Equation [14] is an efficient way to calculate the 

eigenvalues and vectors of . Each basis vector in V‖ is reshaped (and flipped) into a 

convolution kernel in k-space. The convolutions can be efficiently implemented as 

multiplications in image space, resulting in separable K × N matrix multiplications Gq for 

each image-space position, where K is the number of kernels in V‖ (the rank of the 

calibration matrix A). Then .
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Figure 4. 
Explicit sensitivity maps from autocalibration data using eigenvalue decomposition: The 

figure shows the eigenvalues and eigenvectors of all q in a map. q has been computed as 

the Fourier transform of the reconstruction operator  for data from an eight-channel head-

coil using a 24 × 24 k-space calibration region and 6 × 6 kernel size. Left: Eigenvalues 

sorted in increasing magnitude from top to bottom. Eigenvalues ‘=1’ appear in positions 

where there is signal in the image. Right: Magnitude and phase of the eigenvector maps for 

each eigenvalue at all spatial positions. As expected, eigenvectors corresponding to 

eigenvalues ‘=1’ appear to be sensitivity maps. The magnitude and phase of the sensitivities 

follows closely the magnitude and phase of the individual coil images (bottom row). The 

eigenvectors are defined only up to multiplication with an arbitrary complex number. For 

this reason, the norm of the eigenvectors at each location are normalized to one and the 8th 

channel is used as a reference with zero phase.
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Figure 5. 
Eigenvalue maps computed when using a different number of kernels to estimate the row 

space V‖ of the calibration matrix A (rows). The percentages with respect to the total number 

of kernels are shown, corresponding to 101, 57, 44, 33, 21 kernels out of 200. The rightmost 

column shows a projection of fully-sampled coil images onto the null space as approximated 

by the sensitivities using Equation [20] (scaled by a factor 5 compared to the corresponding 

anatomical images in the following figures). If this projection contains residual energy in 

addition to noise, this indicates errors in the calibration.
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Figure 6. 
Images of a human brain. Fully-sampled data from an eight-channel coil has been 

retrospectively undersampled by factors of 2 × 2 and 3 × 2. Reconstruction has been 

performed using SENSE with autocalibration (SENSE/auto), nonlinear inversion (NLINV), 

GRAPPA, and ESPIRiT. The projection of fully-sampled individual coil images onto the 

null space has been computed for all methods and combined to a single image scaled by a 

factor of 5 (bottom row). For GRAPPA, the projection corresponds to a reconstruction 

operator corresponding to a regular 2 × 3 undersampling pattern. If the null space contains 

residual energy in addition to noise, this indicates errors in the calibration.
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Figure 7. 
The effect of noise on the calibration of the sensitivity maps has been studied by adding 

noise to fully-sampled data (noise levels: 1×, 10×, 20×). 1st column: Fully-sampled images 

corresponding to the first channel for different noise levels. 2nd column: Sensitivity map of 

the first channel as estimated using the ESPIRiT calibration. 3rd column: The projection of 

the fully-sampled original data onto the nullspace defined by the sensitivities (scaled by a 

factor of 5). 4th and 5th column: Reconstruction results for ESPIRiT and GRAPPA for 2 × 2 

undersampling.

Uecker et al. Page 24

Magn Reson Med. Author manuscript; available in PMC 2014 November 06.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 8. 
The effect of reduced FOV of the calibration lines. Top: When the supported FOV of the 

calibration covers the entire image, there is a single eigenvalue ‘=1’ at each spatial position 

and a single set of sensitivity maps. Bottom: When the the supported FOV of the calibration 

is smaller than the image, there are multiple eigenvalues ‘=1’ at positions that exhibit 

folding. For each eigenvalue ‘=1’ there is an associated set of sensitivity maps that is needed 

to faithfully represent the data. GRAPPA-like autocalibration methods implicitly use all the 

sensitivities with eigenvalues ‘=1’ and are not prone to the FOV limitation that is described 

in [14]. The eigenvalue approach is a tool to find these sensitivities explicitly. These 

sensitivities can be used in a SENSE-like ESPIRiT reconstruction that exhibits the same 

robustness to the calibration FOV as autocalibrating methods.
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Figure 9. 
Reconstruction from two-fold undersamed data acquired with a FOV smaller than the object. 

In this case, a single set of sensitivity maps on the restricted FOV cannot represent the signal 

correctly. Direct calibration and nonlinear inversion cannot recover the sensitivities, and the 

corresponing reconstructed images have a severe artifact in the center of the image (SENSE/

auto and NLINV). GRAPPA and ESPIRiT are able to reconstruct the center of the image 

correctly.
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Figure 10. 
A single sagittal section from a motion-corrupted 3D scan of a human knee (readout 

direction: superior-inferior). Additional eigenvalues appear and the reconstruction with two 

sets of sensitivity maps yields two images (top). When restricting the ℓ1-ESPIRiT 

reconstruction to use only one set of maps, the signal corresponding to the second 

component is lost and additional artifacts appear. The combined image from ℓ1-ESPIRiT 

using two maps and the image reconstructed with ℓ1-SPIRIT do not suffer from this problem 

(bottom).
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Figure 11. 
Single-shot EPI of the human brain without fat suppression. The signals of water and shifted 

fat are not compatible with a single sensitivity map, and the maps of the two highest 

eigenvalues show that an additional eigenvalue appears in affected locations (top). An 

ESPIRiT reconstruction using two sets of sensitivity maps yields two separate images 

(bottom).
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