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Abstract

Taxonomy independent analysis plays an essential role in microbial community analysis.
Hierarchical clustering is one of the most widely employed approaches to finding OTUs (Oper-
ational Taxonomic Units), the basis for many downstream analyses. Most existing algorithms
have quadratic space and computational complexities, and thus can be used only for small
or medium-scale problems. We propose a new online-learningbased algorithm that simul-
taneously addresses the space and computational issues of prior work. The basic idea is to
partition a sequence space into a set of subspaces using a partition tree constructed using a
pseudometric, then recursively refine a clustering structure in these subspaces. The technique
relies on new methods for fast closest-pair searching and efficient dynamic insertion and dele-
tion of tree nodes. To avoid exhaustive computation of pairwise distances between clusters,
we represent each cluster of sequences as a probabilistic sequence, and define a set of opera-
tions to align these probabilistic sequences and compute genetic distances between them. We
present analyses of space and computational complexity, and demonstrate the effectiveness of
our new algorithm using a human gut microbiota dataset with over one million sequences. The
new algorithm exhibits a quasilinear time and space complexity comparable to greedy heuristic
clustering algorithms, while achieving a similar accuracyto the standard hierarchical clustering
algorithm.
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1 Introduction

Microbes play an essential role in processes as diverse as human health and biogeochemical activi-
ties critical to life in all environments on earth. The descriptions of complex microbial communities,
however, remain poorly characterized. Currently available pyrosequencing technologies easily and
inexpensively determine millions of signature sequences in a matter of hours. However, analyzing
such massive nucleotide sequence collections can overwhelm existing computational resources and
analytic methods, and consequently new computational algorithms are urgently needed [1].

Providing a detailed description of microbial populations, including high, medium and low
abundance components, is typically the first step in microbial community analysis [2, 3]. PCR
amplification of the 16S rRNA gene, followed by DNA sequencing, is now a standard approach
to studying microbial community dynamics at high resolution [4, 5, 6, 7, 8]. Existing algorithms
for microbial classification using 16S rRNA sequences can begenerally categorized into taxonomy
dependent or independent analyses [9]. In the former methods, query sequences are first compared
against a database and then assigned to the organism of the best-matched reference sequences (e.g.,
BLAST [10]). Since most microbes have not been formally described yet, these methods are inher-
ently limited by the completeness of reference databases [9]. In contrast, taxonomy independent
analysis compares query sequences against each other to form a distance matrix followed by clus-
tering analysis to group sequences into operational taxonomic units (OTUs) at a specified level of
sequence similarity (e.g. sequences grouped at 97% identity are often used as proxies for bacterial
species). Various ecological metrics can then be estimatedfrom the clustered sequences to char-
acterize a microbial community. This analysis does not relyon any reference database, and can
thus enumerate novel pathogenic and uncultured microbes aswell as known organisms. In addition
to microbial diversity estimation, there is currently increased interest in applying taxonomy inde-
pendent analysis to analyze millions of sequences for comparative microbial community analysis
[11, 12].

The key step in taxonomy independent analysis is to group sequences into OTUs based on
pairwise sequence differences, where hierarchical clustering is one of the most widely employed
approaches [13, 15]. Hierarchical clustering is a classic unsupervised learning technique [16], and
has been used in numerous biomedical applications (e.g., [12, 17, 18]). The main drawback of
hierarchical clustering is its high computational and space complexities. In computer science, this
computational complexity is represented in so-called “Big-O” notation, where the number given
indicates how the time or space scales for large problem sizes: for example, anO(N) algorithm
takes time proportional to the size of the input, and anO(N2) algorithm takes time proportional
to the square of the size of the input (e.g., computing all pairwise distances between sequences
takes time proportional to the square of the number of sequences, because each sequence must be
compared to each other sequence). GivenN objects, a brute-force algorithm takesO(N2 log N)

time, and improved methods takeO(N2) time [19]. The memory needed for conventional methods
also grows quadratically with respect to the data size. In the last decade, researchers developed
several approximate hierarchical-clustering algorithmswith sub-quadratic time complexity [20, 21].
The basic idea is to employ a space-partitioning technique (e.g., dynamic closest-pair tree [22]) to
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organize objects hierarchically into cells so that the nearest neighbor of each object can be found
within its adjacent cells by using a divide-and-conquer strategy. These algorithms can perform the
analysis inO(N log N) time and are good approximations. However, they can only handle low-
dimensional data in a numerical space where hyper-planes can be defined to partition the space as
well as the samples. Mathematically, in order to partition aspace with a hyper-plane, an inner-
product operator has to be defined so that a direction in the space can be specified to indicate the
inner and outer sides of the plane. For nucleotide sequence data, there doesnot exist such an
inner-product operator, and thus no hyper-planes can be defined to efficiently partition the data.
Moreover, unlike numeric-valued vectors, the distances between pairs of sequences can only be
computed through sequence alignment, because sequences vary in length and can have deletions and
insertions. Hence, a sequence can be considered as a data point in a nucleotide space of undefined
dimensions, which poses additional mathematical challenges.

Several algorithms have been developed in the past decade for taxonomy independent analy-
sis. DOTUR is probably the first published hierarchical clustering algorithm for pyrosequencing
data analysis and widely used by the microbiology community[15]. It requires users to provide
a distance matrix and load it into the main memory. Due to its quadratic complexity, it can pro-
cess only several ten thousand sequences [13]. We recently developed a new algorithm, referred
to as ESPRIT, that enables researchers to handle up to one million sequences by using a computer
cluster [13, 12]. An online-learning based hierarchical clustering algorithm called hcluster was
developed within the ESPRIT framework that addressed the memory issue associated with cluster
merging. Although ESPRIT usesk-mer statistics to remove a large amount of unnecessary se-
quence comparisons, it is still anO(N2) algorithm. Hcluster is incorporated in the well-known
mothur pipeline [23] that replaced DOTUR. Unlike ESPRIT, mothur computes pairwise distances
by aligning input sequences against a pre-aligned reference database. Since a reference database can
be maintained off-line, the computational complexity of the sequence-alignment step grows only
linearly with respect to the number of input sequences. However, the algorithm suffers the same
problem as those used for taxonomy dependent analysis. Since most bacterial genomes have not
been sequenced yet, a large proportion of input sequences from unknown microorganisms may not
be able to find significant hits and can only be aligned to distantly related reference sequences, lead-
ing to inaccurate estimates of pairwise distances. Moreover, the overall space and computational
complexities remainO(N2). Another line of research is to develop greedy heuristic clustering
methods. Two well-known methods are CD-HIT [24] and UCLUST [25]. Both methods use pair-
wise sequence alignment and process input sequences sequentially. Given a predefined threshold,
an input sequence is either assigned to an existing cluster if the distance between the sequence and
a seed is smaller than the threshold, or becomes a seed otherwise. The computational complexity of
greedy heuristic clustering is on the order ofO(NM), whereM is the number of seeds and usually
M ≪ N . CD-HIT and UCLUST are the two only methods that we are aware of that are capable of
handling millions of sequences using a desktop computer. Although CD-HIT and UCLUST orga-
nize data in a hierarchical structure, they are not hierarchical clustering algorithms and there is no
guarantee that the true data structure can be recovered. In anumerical study presented below, we
show that although CD-HIT and UCLUST run several orders of magnitude faster than a hierarchical
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clustering algorithm, their accuracy is much worse. Interested readers may refer to a companion
paper [14] for a comprehensive review of existing algorithms for taxonomy independent analysis.

In this paper, we propose a new algorithm, referred to as ESPRIT-Tree, for hierarchical clus-
tering analysis of massive sequence data. To avoid confusion, we note that ESPRIT-Tree is not a
program for determining phylogenetic trees, but rather forproducing hierarchical clusters of se-
quences based on sequence similarity, using a tree-like data structure. We extended the concept
of space partition used by previous methods for handling sequence data of varying lengths. By
assuming that sequence data lives in a pseudometric space, we created a distance-based partition of
the data without explicitly defining an inner-product operator to divide the space, and organized the
partition results in a pseudometric based partition tree. By repeatedly applying the triangular in-
equality, a fast closest-pair searching algorithm was developed within the ESPRIT-Tree framework.
An efficient method for dynamic insertion and deletion of tree nodes were also developed. In order
to avoid exhaustive computation of pairwise distances between clusters, we represented a cluster
of sequences as a probabilistic sequence, and defined a set ofoperations to align probabilistic se-
quences and to compute genetic distances and kmer distancesbetween probabilistic sequences. The
analyses of space and computational complexities of the algorithm are presented. A large-scale test
was conducted on a human gut microbiota dataset consisting of over one million sequences that
demonstrated the effectiveness of the newly proposed algorithm.

2 Methods

This section presents a detailed description of the newly proposed ESPRIT-Tree algorithm. Through-
out the paper, we use a boldfaced lowercase letter (e.g.,a) to represent a vector or a sequence string,
and a boldfaced uppercase letter (e.g.,M) to represent a matrix, theij-th element of which is writ-
ten asMij.

2.1 Prerequisites

2.1.1 Pseudometric space

We assume that sequence data lives in a pseudometric space. Precisely, given a datasetX and a
scoring functiond(·) used to measure the similarity between two sequences, forx,y, z ∈ X , the
following properties hold: (1)d(x,y) = d(y,x), (2) d(x,x) = 0, and (3)d(x,y) ≤ d(x, z) +

d(z,y) (this is the triangular inequality, which states that therecannot be a shorter path from A
to B that goes through a third point C than the direct path fromA to B). The first two properties
trivially hold. Although sequence data does not strictly follow the triangular inequality, the above
assumption is very weak. A Monte Carlo experiment was performed where only 7 out of 100K
trials were observed that violated the inequality (See Section 3.2).
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2.1.2 Pseudometric Based Partition Tree

A pseudometric based partition (PBP) tree is a height-balanced tree consisting of multiple layers
of nodes at pre-designated distance levels. Figure 1 depicts a toy tree with four layers. A similar
technique was first used in the well-known BIRCH algorithm for clustering large-scale numerical-
valued data [26]. In this paper, we extend the concept to handle sequence data of varying lengths.
Each node in the tree represents a hypersphere region in the space and includes all sub-nodes and
sequences that are positioned in the region, except for those that have been included by a preceding
node. A non-leaf node is characterized byF = {CF, i, {Chj}

J
j=1}, whereJ is the total number

of children of the node,{Chj}
J
j=1 is anorderedlist of pointers to its child nodes, andi is the order

of the node in the child list of its parent.CF = {N, r, c} is a triple summarizing the sequences
absorbed in the node, whereN is the total number of the sequences,c is a sequence or a probabilistic
sequence ( described in Section 2.1.3) defining the center ofthe node, andr is the distance level
used to determine whether to absorb a newly arrived sequenceinto the node or to create a new node.
A leaf node contains only a single sequence or a single cluster, and for ease of presentation, a root
node is created with no center and level defined that includesall descendent nodes (Figure 1(b)).
We call one node a sibling of another node if both share the same parent. For two sibling nodesA
andB, assuming the order ofA is smaller thanB, A is then called the predecessor ofB. A detailed
description of how to build a PBP tree given a sequence dataset is given in Section 2.2.1.

2.1.3 Probabilistic Sequences

A probabilistic sequence is a statistical model used to describe a group of similar sequences. Sup-
pose we have two sequencesa andb, the optimal global alignment of which is given by:

a : ATCGATCGGGG 11

b : GTCG–TCGTG – 11
(1)

We create a5 × 11 matrix P, where each row from the top to the bottom represents a nucleotide
A, T, C, G and a gap, respectively, and each column representsa nucleotide base of the aligned
sequences (The matrixP is presented in Table S1). For notational convenience, we associate with
matrix P a virtual sequencex of length 11, and collectively call{x,P} a probabilistic sequence.
Each element ofx can take one of the four nucleotides or a gap, the probability(or occurrence
frequency) of which is specified inP. For example, the first column ofP in the above example
reads[0.5, 0, 0, 0.5, 0]T , whereT is the matrix transpose. By using the probabilistic Needleman-
Wunsch algorithm, which will be detailed in the following section, the update ofP when given
a newly arrived sequence and the computation of the genetic distance between two probabilistic
sequences only involve the application of simple linear algebra.

2.1.4 Probabilistic Needleman-Wunsch Algorithm

The newly proposed probabilistic Needleman-Wunsch algorithm is a generalization of the Needleman-
Wunsch algorithm [27] and used to optimally align two virtual sequences. Suppose we have two
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probabilistic sequences{x,P} and{y,Q}. Denotex = [x1, · · · , xJ ] andy = [y1, · · · , yL]. Given
a scoring matrix, the best alignment score between{x,P} and{y,Q} can be computed by using
the following recursive equation:

S(j, l) = max











S(j − 1, l − 1) + C(xj , yl)

S(j − 1, l) + C(xj, gap)

S(j, l − 1) + C(gap, yl) ,

(2)

whereC(xj, yl), C(xj, gap) andC(gap, yl) are the costs of aligningxj to yl, xj to a gap, andyl to
a gap, respectively. However, since bothxj andyl can take a nucleotide base or a gap with a certain
probability, by denotingA = {A, T, C, G, gap}, C(xj, yl) andC(xj , gap) can be computed as:

C(xj , yl) =

5
∑

i=1

5
∑

n=1

PijQnlC(Ai,An) , (3)

C(xj, gap) =

5
∑

i=1

PijC(Ai, gap) , (4)

wherePij andQnl are theij-th andnl-th elements of matricesP andQ, respectively, andAi is
thei-th element ofA. C(xj , yl) andC(xj , gap) can be interpreted as the expected cost of aligning
xj with yl or a gap, respectively. The alignment score for each position is stored in an array with
a pointer that records the current optimal operation and provides an effective path to backtrack the
optimal alignment. In the above descriptions, we use a linear gap penalty for simplicity. Extension
to an affine gap penalty is straightforward.

The proposed probabilistic Needleman-Wunsch algorithm shares the same idea as the profile-
profile alignment (PPA) used in the well-known MUSCLE algorithm for multiple sequence align-
ment [28]. However, PPA works on two groups of sequences, rather than two probabilistic se-
quences. With the concept of probabilistic sequence, we cango beyond PPA and compute genetic
distances directly based on alignment results, which is described below.

2.1.5 Genetic Distances Between Probabilistic Sequences

The genetic distance between two globally aligned sequences is computed as the number of mis-
matches divided by the total length of the sequences. The distance between two virtual sequences
can be calculated analogously. Let{x,P} and{y,Q} be two aligned probabilistic sequences of
lengthL. Suppose that we randomly select two sequencess = [s1 · · · sL] andt = [t1 · · · tL] fol-
lowing the probabilities specified byP andQ, respectively. The probability that the two sequences
differ at a given position, sayl, can be computed as:

P (sl 6= tl) =
5

∑

i=0

Pil(1 − Qil) , (5)

and the genetic distance between virtual sequencesx andy can be computed as

d(x,y) =
1

L

L
∑

l=1

P (sl 6= tl). (6)
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By construction, the matricesP andQ record the distributions of the sequences of two clusters. We
call d(x,y) a probabilistic average distance of two clusters, and use itas an approximation of av-
erage inter-cluster distances. A simulation study was performed that showed that the two distances
have a nearly perfect correlation, and using probabilisticdistances only has a negligible impact on
clustering outcomes (see Figures 2 and 3). A highly desirable property is that the complexity of
computing probabilistic distances is a constantindependentof the sizes of clusters.

We next define the operation of merging two aligned probabilistic sequences. Suppose we have
two probabilistic sequences{x,P} and{y,Q}, representingN andM sequences, respectively.
After alignment,P andQ are updated aŝP and Q̂. The probabilistic matrixT of the merged
sequence can be readily computed asT = (NP̂ + MQ̂)/(N + M).

2.1.6 Kmer Distances Between Probabilistic Sequences

The data structure imposed by a PBP tree and using a probabilistic sequence to represent a group of
similar sequences enable us to remove a large number of unnecessary sequence comparisons. Yet, it
is still computationally expensive to align millions of sequence pairs. One commonly used strategy
to alleviate the above issue is to usekmer distances to identify a short list of candidate sequences
for exact sequence comparison. This technique has been usedby various bioinformatics algorithms,
including MUSCLE [28], ESPRIT [13], CD-HIT [24], UCLUST [25] and RDP classifier [30]. It has
been shown thatkmer distances are highly correlated with genetic distancesand can be computed
thousands of times faster than sequence alignment. In this section, we extend the concept ofkmer
distances to handle probabilistic sequences.

A kmer is a sequence string consisting ofk nucleotides. By specifying the value ofk, a complete
alphabetC of kmers can be constructed. Given a sequencex, akmer statistics vectorv is computed,
where thei-th element ofv records the occurrence frequency of thei-th kmer ofC in sequencex.
Then, thekmer distance between two sequencesx andy can be computed as:

d(x,y) = 1 −

|C|
∑

i=1

min (vx(i), vy(i)) / (min(L1, L2) − k + 1)) , (7)

where|C| is the number of elements inC, andL1 andL2 are the lengths ofx andy, respectively.
In order to computekmer distances for probabilistic sequences, we need to re-define kmer

statistics vectorv. Let B = {A,T,C,G} andτ = [τ1τ2 · · · τK ] be thei-th kmer of C. We fur-
ther assume thatτ1, · · · , τK take thej1, · · · , jK -th nucleotides ofB, respectively. The occurrence
frequency ofτ in probabilistic sequence{x,P} of lengthL can then be computed as:

v(i) =

L−K+1
∑

i=1

Pij1P(i+1)j2 · · ·P(i+K−1)jK
. (8)

Pij1P(i+1)j2 · · ·P(i+K−1)jK
can be interpreted as the probability of observingkmer τ at thei-th

base ofx.
Thekmer statistics are used in two places in ESPRIT-Tree. Firstly, when constructing a PBP

tree, we usekmer distances as a filter to determine whether the distances between a newly arrived

7



sequence and the centers of the nodes are within a predefined threshold before performing exact
sequence comparison. Secondly, when searching for the nearest neighbor of a query sequence in a
set of candidate sequences, we calculatekmer distances to optimize the order of comparison and
perform a branch-and-bound search. Specifically, the candidate sequence with the smallestkmer
distance to the query sequence is considered first, and the obtained genetic distance is then used to
compute an upper bound based on the correlation relationship betweenkmer and genetic distances.
Sequences withkmer distances larger than the bound are removed from the candidate set, and the
remaining sequences are sorted and compared to the query sequence. The procedure repeats until
the candidate set becomes empty. The sequence with the smallest genetic distance is identified as
the nearest neighbor of the query sequence.

2.2 ESPRIT-Tree

With the above prerequisites, we are ready to present the proposed algorithm. ESPRIT-Tree consists
of two steps. First, a PBP tree is constructed that roughly partitions an input space into a set of
hyperspherical cells. Second, a refinement procedure is carried out that iteratively finds the closest
pairs of sequences or clusters and merges them into a new cluster. The two steps are detailed below.

2.2.1 Constructing a PBP Tree

A PBP tree contains multiple levels, uniformly spaced on a logarithmic scale starting from the top at
0.1 and to the bottom at 0.01, and grows incrementally to include all input sequences. The number
of levels created is a parameter of the algorithm. Initially, the tree comprises only one branch of
nodes, the centers of which are all assigned to the first arrived sequence. Given a new sequence, we
first compare it with the center of the child nodes of the top node in a fixed order. If the resulting
pairwise distance is larger than the threshold, a new node iscreated; otherwise, the sequence travels
down toward the leaf nodes through the first branch that yields a pairwise distance smaller than the
threshold. The reason that we do not assign the sequence to the nearest center is that since the tree
is constructed dynamically, the hyperspherical cells can overlap (see Figure 1(a)), which makes the
search of the closest pairs in the second step difficult. After a sequence is absorbed into a node,
the parameter of that node is updated using the operations defined in the previous section. The
procedure is repeated until the sequence reaches a leaf nodeat the bottom. If we are not interested
in microbial diversities at distance levels larger than 0.1, there is no need to grow the tree upwards.

A PBP tree provides a coarse representation of the entire data, and the representation is most
accurate at the bottom level. Since only the sequence index information and cluster feature vector
F = {CF, i, {Chm}J

j=1} of each node are saved in a PBP tree, the memory required is very small.
We also see that when a sequence travels from the top to the bottom, it visits only a very small
fraction of the tree and aligns only with the center sequences of the visited nodes. For example, for
the tree presented in Figure 1(b), if we decide to use the right branch, the nodes on the left branch
will never be touched. The computational complexity of constructing a PBP tree is on the order of
O(N), instead ofO(N2). For the problems we are most interested in,N is on the order of106.
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Hence, a PBP tree can be built very efficiently. In our simulation study, it took only∼ 0.5 hour to
build a PBP tree for one million sequences using a desktop computer.

2.2.2 Clustering Refinement

Clustering refinement consists of two steps: finding the closest pair among existing clusters and
dynamically updating a PBP tree. The first step is computationally the most expensive module. A
naive implementation of finding distances between all pairsof clusters and selecting the minimum
requiresO(N2) operations. This problem has been intensively studied in the field of computational
geometry [31]. Approximation algorithms can solve the problem inO(N log N) time. However,
they work only for numerical-valued data of fixed dimension,and little work has been done to
handle sequence data of varying lengths. We below show how toutilize the data structure imposed
by a PBP tree to design a fast and accurate closest-pair searching algorithm. A PBP tree partitions
an input sequence space into a set of non-overlapped hyperspherical regions at various distance
levels and organizes them in a hierarchical structure (Figure 1). Similar sequences are grouped into
the same or adjacent cells, which suggests that the nearest neighbor of a sequence can be found
locally, avoiding the need to explore the entire space.

Suppose that we have a dataset consisting ofN sequences. In order to find the nearest neighbor
of sequencex, we first compare it with its successor sibling sequences that share the same parent
asx and have an order larger than that ofx, and find a sequencey that yields the minimal pairwise
distance among the sequences compared. We then move upwardsto comparex with the center of
the parent nodeT to validate the identified pair. The distance betweenx and the boundary of the
parent node is computed asdb = r1−d(x, c1), wherer1 andc1 are the distance level and the center
of T, respectively. There are two possibilities.

Case 1: If d(x,y) > db, it can be inferred that there may exist a sequence outside the region
covered byT that is closer tox thany. We thus move up one level and explore sequences
belonging to the successor sibling nodes ofT, and use the parent ofT, K, as the new ref-
erence node. Note that we ignore all of the sequences in the predecessor nodes ofT, which
greatly speeds up the searching process. For each successornode with centerc2 and levelr2,
we first compute the distance between sequencex and its center. Ifd(x, c2) > d(x,y) + r2,
it can be proved by using the triangular inequality that there does not exist a sequence in the
node that can be closer tox thany, and hence all sequences within that node can be ignored;
if d(x, c2) ≤ d(x,y) + r2, we check the child nodes of the successor node by using the
triangular inequality, and repeat the above process until we reach a leaf node. After all suc-
cessor nodes are explored, a sequencez is identified that yields the minimal distance among
all sequences checked. Ifd(x, z) < d(x,y), y is replaced byz and compared to the center
of K to determine the next move.

Case 2: If d(x,y) ≤ db, we bypass all of the sibling nodes ofT and go on to check if the sibling
nodes ofK need to be explored.
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The above-described searching process continues until theroot node is reached. Sequencesx, y

and the corresponding pairwise distance is recorded. It should be noted thaty is not necessarily the
nearest neighbor ofx since only successor nodes are searched. We thus cally thesuccessor nearest
neighbor (SNN) of x. GivenN sequences, a list ofN sequence pairs is generated. By using a
heap structure [29], the minimal distance among theN sequence pairs can be found inO(log N)

time, and the algorithm requires onlyO(N) space. For ease of presentation, we above consider
only how to find the closet pairs of sequences. The derivationcan be easily generalized to find the
closet pairs of nodes containing a group of sequences by using the probabilistic Needleman-Wunsch
algorithm described in Section 2.1.4. The following lemma proves that although we do not explore
the entire dataset, the sequence pair found by the proposed algorithm is the closest pair among the
input sequences.

Lemma 1. LetX be a set of input sequences in a pseudometric space. For the algorithm described
as above, the sequence pair found by the algorithm is the closest pair of the input sequences.

Proof. It is trivial to prove that if all sequences in successor nodes are searched, a SNN list contains
the closest pair. We then prove that ifd(x,y) ≤ r1 − d(x, c1), no sequence in the sibling successor
nodes ofT is closer tox thany and thus can be ignored. Suppose there exists a sequencez in the
sibling successor nodes so thatd(x, z) < d(x,y). By using the triangular inequality,d(z, c1) ≤

d(z,x)+d(x, c1) < d(x,y)+d(x, c1) < r1, which contradicts the assumption thatz is a sequence
in the sibling successor nodes ofT. The same strategy can be used to prove that ifd(x, c2) >

d(x,y) + r2, there does not exist a sequence in the node that can be closerto x thany.

After the closest pair is found, we then merge the identified sequence pair into one cluster,
remove the two sequences from the tree, and insert the newly formed cluster into the PBP tree
by using the same procedure we used to construct the tree in the first step. More specifically,
a probabilistic sequence is generated from the two merged sequences, and then compared to the
center of the children of the root node by using the probabilistic Needleman-Wunsch algorithm. If
the resulting pairwise distance is larger than the threshold, a new node is created; otherwise, the
sequence travels down toward the leaf nodes through the firstbranch that yields a pairwise distance
smaller than the threshold. The SNN table is then updated. First, the two identified sequences are
removed from the table, the nearest neighbor of the newly formed probabilistic sequence is then
identified and added to the table, and finally the sequences that previously set either of the two
identified sequences as the nearest neighbor are reassignednew nearest neighbors. It should be
noted that since the new formed cluster or probabilistic sequence is added to the tree dynamically,
in order to maintain a correct SNN list, the new cluster is compared with all existing sequences,
except for those that are bypassed according to the triangular inequality. Nevertheless, due to the
hierarchical partitioning of the dataset by the PBP tree, only a small fraction of sequences are
actually compared. The iteration of finding the closest pair, creating new clusters and updating the
SNN table continues until only one cluster is left or the distance between the closest pair is larger
than a predefined threshold.

Unlike conventional hierarchical clustering algorithms,the proposed algorithm does not require
the generation of a distance matrix. All of the operations are executed on the fly, and the distances
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are computedonlywhen they are needed. The memory required to store a SSN tableis on the order
of O(N). The algorithm thus addresses the space-complexity issue of conventional methods. It
is difficult to conduct a computational complexity analysis. However, since our algorithm uses a
divide-and-conquer based strategy to recursively partition a sequence space and refine clustering
results, it is well known that this type of algorithm has a quasilinear complexity [20, 21, 22], which
is empirically verified in a simulation study.

3 Numerical Experiments

We present a numerical experiment to compare ESPRIT-Tree with three other methods, namely,
CD-HIT [24], UCLUST [25] and ESPRT [13]. CD-HIT and UCLUST are two greedy heuristic
clustering methods widely used by the microbiology community. ESPRIT is a standard imple-
mentation of hierarchical clustering and used to benchmarkthe performance of ESPRIT-Tree. We
demonstrate that the proposed algorithm achieves a similaraccuracy to the standard hierarchical
clustering algorithm but with a computational complexity comparable to CD-HIT and UCLUST.
All experiments were performed on a desktop computer with Intel E5462 2.8GHz and 16GB RAM.

3.1 Experimental Setup

A real-world sequence dataset was used to benchmark the performance of the four methods. The
dataset was originally used to study the connection betweenobesity and altered compositions of the
human gut microbial community [8]. It consists of about 1.1Msequences with an average length
of 232 nucleotides, covering the V2 hypervariable region of16S rRNAs collected from the stool
samples of 154 individuals. This is one of the most comprehensive 16S rRNA based surveys of the
human gut microbiota available to date.

One of the major obstacles of a benchmark study is that for complex microbial communities
there is no ground-truth information about what species areactually in the community. To overcome
this difficulty, we first constructed a reference database from the RDP-II database [9], where each
reference sequence was fully annotated. We then ran a MegaBlast [32] search of the gut data
against the reference database, and used a stringent criterion to retain the annotated sequences if
the identity percentage> 97% and the length of the aligned region> 97% of the total length.
This resulted in a total of∼ 750K reads classified into 671 species and 283 genera. We then
applied the four methods to the annotated sequences and usedthe commonly used NMI (normalized
mutual information) criterion [33] to evaluate how the outcome of a clustering algorithm agrees
with the ground truth. NMI penalizes both assigning sequences with the same label into different
clusters and assigning sequences with different labels into the same clusters. NMI = 1 means
that a clustering result completely agrees with the ground-truth partition, and NMI = 0 means that
each sequence is randomly assigned. A mathematical description of NMI can be found in the
supplementary Section 2S. In order to remove statistical variations, the experiment was repeated 20
times. In each iteration, 30K sequences were randomly extracted from the annotated dataset, the
four methods were used to group the sequences into clusters at various distance levels ranging from
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0.01 to 0.15, a NMI score was computed at each distance level by using either the species or genus
assignments of input sequences as the ground truth, and the maximum NMI score was recorded.
We observed high, medium and low abundance components (i.e., a long tail) in the test datasets,
which is similar to what observed in a real microbial community and much more complicated than
the previously used mock community generated from 43 known 16S rRNA sequences [13, 34]. We
acknowledge that this benchmark is limited to known taxa andis subject to a certain degree of
inaccuracy because not all taxa evolve at equal rates and so OTUs are not expected to map perfectly
onto species; however, these factors should not bias the evaluation in favor of any specific method
since they were all applied to the same dataset, and, all elsebeing equal, a method that gives clusters
consistent with existing taxonomic knowledge should generally be preferred over one that is less
consistent.

For UCLUST, the clustering outcomes may depend on the order of sequences presented to the
algorithms. The default setting is to sort input sequences based on their lengths, while another
possibility is based on their abundances (i.e. a sequence and its subsequences are considered as one
sequence). We found that abundance sort yielded better results, which are reported in the paper. For
ESPRIT, we used a loose kmer threshold of 0.8 to remove unnecessary sequence alignments. At the
distance levels<0.2, the results of ESPRIT are exactly the same as those generated by the standard
method. We considered both average and complete linkage functions in ESPRIT, and found that
both performed similarly in terms of clustering performance. Only the result of average linkage
was reported.

3.2 Experimental Results

A key assumption of the proposed method is that sequence datalives in a pseudometric space. We
performed a simulation study to justify the above assumption. We first randomly selected30K
sequences from the gut dataset and applied ESPRIT with the average linkage function (ESPRIT-
AL) to group the selected sequences into clusters at variousdistance levels ranging from 0.01 to
0.10. We then randomly selected three clusters, and appliedthe probabilistic Needleman-Wunsch
algorithm to generate three probabilistic sequences, represented byx, y andz, respectively, from
the sequences within the three selected clusters. The ratioof the pairwise distances of the three
sequencesd(y, z)/(d(x,y) + d(x, z)) was computed. A ratio of less than or equal to 1 means that
the triangular inequality is satisfied. We repeated the experiment 100K times, and observed only
7 cases where the inequality was violated. This experiment suggests that it is generally true that
sequence data follows the triangular inequality.

We next conducted a benchmark study to compare the clustering performance of the four meth-
ods. Figure 2(a) depicts the NMI scores as a function of distance levels, averaged over the 20 runs,
by using the species assignments of input sequences as ground truth. We observe that all curves
have a bell shape. This can be explained by the fact that when adistance level is small, sequences
belonging to the same species are partitioned into different clusters, and when a distance level is
large, sequences belonging to different species are grouped into the same clusters, and by definition
both result in suboptimal NMI scores. We also see that the NMIscores of the four methods may
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peak at different positions, due to the different formulations used to define the distance between two
clusters. Hence, the NMI scores obtained at the same distance level are not directly comparable.
We thus compared the maximum NMI score of each method, which by definition corresponds to the
best clustering result that a method can achieve. From Figure 2(b), we observe that ESPRIT-Tree
performed similarly to ESPRIT-AL, and significantly betterthan CD-HIT and UCLUST (p-value
≤ 10−5 based on a Student’s t-test). We repeated the analysis by using the genus assignments as
ground truth, and observed similar results (Figure 3).

One of the main purposes of performing taxonomy independentanalysis is to estimate the bio-
diversity of a microbial community. In the microbiology literature, 3% and 5% are the two most
commonly used criteria to define species and genus-level OTUs, respectively, although these defi-
nitions are controversial [15, 36, 37]. Table 1 reports the numbers of species and genera estimated
at the 0.03 and 0.05 distance levels, and those at the positions where the NMI scores peak. We
see that the numbers of OTUs observed at the 0.03 and 0.05 distance levels are significantly larger
than the ground truths, and vary significantly for differentmethods although they were all applied
to the same datasets. It was previously thought that sequencing errors are the main reason for se-
vere overestimation of microbial diversity and several sequencing-error-correction algorithms have
been developed to address the above issue (e.g., [34, 35]). However, we observe from Table 1 that
the numbers of OTUs for each method obtained at the peak positions are always much closer to
the ground truths than those obtained at the 0.03 and 0.05 distance levels. This suggests that the
overestimation to some extent is due to the incorrect use of distance levels. The commonly used 3%
and 5% are not proper for defining species and genus-level OTUs, which was also observed in [40],
and researchers should be careful when interpreting their diversity estimates. ESPRIT-Tree and
ESPRIT-AL yielded the most accurate estimates of microbialdiversity among the four methods.

The massive amount of data generated by high-throughput pyrosequencing technologies poses
serious challenges to existing algorithms. In addition to accuracy, computational complexity is
another important issue that needs to be considered. To demonstrate the scaling property of the
new method, we compared ESPRIT-Tree with CD-HIT and UCLUST using a human gut dataset
with a varying number of sequences, ranging from 1K to 1.1M. It is computationally intractable
to run ESPRIT on 1.1M sequences using a desktop computer. Figure 4 reports the CPU times
of the three methods as a function of the numbers of sequences. The empirical complexity and
confidence interval are also reported. In terms of computational efficiency, UCLUST performs the
best, ESPRIT-Tree the second and CD-HIT the third. However,all three methods have a quasilinear
computational complexity ofO(N1.2). It took ESPRIT-Tree about 11 hours to process 1.1M reads
to generate OTUs at ten distance levels (0.01-0.1). We have previously applied ESPRIT to the same
gut dataset using a computer cluster of 100 processors [12].It took ESPRIT about 4 days to finish
the analysis, which is about 800 times slower than ESPRIT-Tree.

We performed additional experiments using other hypervariable region and near full-length 16S
rRNA sequences and observed similar results. Due to space limitations, the results are presented in
the supplementary data.
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4 Conclusion

With the advent of the massively parallel pyrosequencing technology, researchers can now obtain
millions of signature sequences easily and inexpensively for diverse applications ranging from hu-
man epidemiological studies to global ocean surveys. The molecular studies of microbial commu-
nities are recently entering an era of quantization, where not only species richness but also detailed
compositions of microbial communities are required in order to query multiple biological and eco-
logical questions. Considering that bacterial populations usually contain a significant amount of un-
known species, taxonomy independent analysis is a widely accepted and powerful tool for studying
microbial community dynamics at high resolutions, and hierarchical clustering is an essential step
to explore the taxonomical information of bacterial populations. In this paper, we have proposed a
novel computational algorithm that enables researchers toperform clustering analysis of millions
of 16S rRNA tag sequences on a desktop computer, while maintaining a clustering accuracy com-
parable to the standard hierarchical clustering algorithm. The new algorithm can be extended for
parallel computing. While parallel computing is generallynot a viable solution to scaling upO(N2)

algorithms, the quasilinear space and computational complexities of the proposed algorithm make it
computationally tractable to process tens of millions of sequences by using a small computer clus-
ter. Taxonomy independent analysis plays a key role in several recently developed pipelines (e.g.,
QIIME, mothur and PANGEA), and our algorithm can significantly improve the utility of these
pipelines, as each includes an OTU picking step that is distinct from the chimera checking step (we
note that ESPRIT-Tree can either be applied to chimera-checked data, or that the representative or
consensus sequences from clusters of nearly identical sequences generated from ESPRIT-Tree out-
put can be chimera-checked, to obtain improved OTU counts from real data in which chimeras are
frequent). Although in this paper we mainly focused on 16S rRNA based studies, the new algorithm
can be used for other large-scale sequence based studies that require large-scale clustering analyses.
The ESPRIT-Tree software is available athttp://plaza.ufl.edu/sunyijun/ES-Tree.htm.
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Table 1: The numbers of OTUs observed at the 0.03 and 0.05 distance levels and at the peak

positions for the four methods. The ground truths of the numbers of species and genera are 371±7

and170 ± 5, respectively. The number in the parenthesis is one standard deviation. ESPRIT-Tree

and ESPRIT with the average linkage function (ESPRIT-AL) yielded the most accurate estimates

of microbial diversity among the four methods.

ESPRIT-AL ESPRIT-Tree UCLUST CD-HIT

0.03 level 1045(19) 1137(30) 1193(26) 920(23)

0.05 level 241(7) 268(6) 362(11) 314(9)

peak NMI-species 402(9) 400 (9) 590(13) 314 (9)

peak NMI-genus 190(5) 176 (7) 216(6) 243(7)
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Figure 1: PBP tree. A PBP tree partitions an input space into aset of non-overlapped hyperspherical

regions at various distance levels indicated by circles with different colors (a), and organizes input

sequences in a tree-like hierarchical structure (b). Each point in (a) represents a sequence, and the

color of a node in (b) corresponds to the color of a circle in (a). For ease of presentation, the leaf

nodes are omitted, and a root node is created that includes all descendent nodes. The partition,

though not necessarily reflecting the true structure of a data set as shown in (a), can significantly

accelerate a clustering process by removing most unnecessary sequence alignment operations and

distance computation.
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Figure 2: (a) NMI scores of four methods evaluated at ten distance levels. (b) Box-plot of the

maximum NMI scores of four methods. The species assignmentsof input sequences were used as

ground truth.
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Figure 3: (a) NMI scores of four methods evaluated at fourteen distance levels. (b) Box-plot of the

maximum NMI scores of four methods. The genus assignments ofinput sequences were used as

ground truth.
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Figure 4: Scalability of ESPRIT-Tree, CDHIT and UCLUST performed on a human gut microbiota

dataset with a varying number of sequences ranging from 1K to1.1M. The empirical complexity

and confidence interval (CI) are also reported.
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