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Abstract

Taxonomy independent analysis plays an essential role ¢notmial community analysis.
Hierarchical clustering is one of the most widely employpdraaches to finding OTUs (Oper-
ational Taxonomic Units), the basis for many downstreantygesa. Most existing algorithms
have quadratic space and computational complexities, langl ¢an be used only for small
or medium-scale problems. We propose a new online-leadn@sgd algorithm that simul-
taneously addresses the space and computational issuesmivprk. The basic idea is to
partition a sequence space into a set of subspaces usingiteopadree constructed using a
pseudometric, then recursively refine a clustering stredtuthese subspaces. The technique
relies on new methods for fast closest-pair searching diddegit dynamic insertion and dele-
tion of tree nodes. To avoid exhaustive computation of pagvdistances between clusters,
we represent each cluster of sequences as a probabiligtiersee, and define a set of opera-
tions to align these probabilistic sequences and computetigedistances between them. We
present analyses of space and computational complexdyjamonstrate the effectiveness of
our new algorithm using a human gut microbiota dataset witt one million sequences. The
new algorithm exhibits a quasilinear time and space conitylegmparable to greedy heuristic
clustering algorithms, while achieving a similar accuracihe standard hierarchical clustering
algorithm.
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1 Introduction

Microbes play an essential role in processes as diversemaarhbealth and biogeochemical activi-
ties critical to life in all environments on earth. The dgstons of complex microbial communities,
however, remain poorly characterized. Currently avadglrosequencing technologies easily and
inexpensively determine millions of signature sequennesratter of hours. However, analyzing
such massive nucleotide sequence collections can ovamwdéasting computational resources and
analytic methods, and consequently new computationalithgus are urgently needed [1].

Providing a detailed description of microbial populatioicluding high, medium and low
abundance components, is typically the first step in miedlobdmmunity analysis_[Z,]3]. PCR
amplification of the 16S rRNA gene, followed by DNA sequegirs now a standard approach
to studying microbial community dynamics at high resolat[d, [5,[6,[7[8]. Existing algorithms
for microbial classification using 16S rRNA sequences cagdrerally categorized into taxonomy
dependent or independent analyses [9]. In the former metlynebry sequences are first compared
against a database and then assigned to the organism ostheathed reference sequences (e.g.,
BLAST [L0Q]). Since most microbes have not been formally desd yet, these methods are inher-
ently limited by the completeness of reference databagedriontrast, taxonomy independent
analysis compares query sequences against each othemta fistance matrix followed by clus-
tering analysis to group sequences into operational tarimanits (OTUSs) at a specified level of
sequence similarity (e.g. sequences grouped at 97% igamétoften used as proxies for bacterial
species). Various ecological metrics can then be estinfabed the clustered sequences to char-
acterize a microbial community. This analysis does not o#lyany reference database, and can
thus enumerate novel pathogenic and uncultured microbeslaas known organisms. In addition
to microbial diversity estimation, there is currently ieased interest in applying taxonomy inde-
pendent analysis to analyze millions of sequences for caatipa microbial community analysis
[, [12].

The key step in taxonomy independent analysis is to groupesegs into OTUs based on
pairwise sequence differences, where hierarchical ¢ingtés one of the most widely employed
approaches [18, 15]. Hierarchical clustering is a classgupervised learning technique][16], and
has been used in nhumerous biomedical applications (2).[1[i,[18]). The main drawback of
hierarchical clustering is its high computational and spe@mplexities. In computer science, this
computational complexity is represented in so-called “Bignotation, where the number given
indicates how the time or space scales for large problens:sipe example, ar©O(N) algorithm
takes time proportional to the size of the input, andiiV?) algorithm takes time proportional
to the square of the size of the input (e.g., computing aliwiaé distances between sequences
takes time proportional to the square of the number of sampserbecause each sequence must be
compared to each other sequence). Gidéwobjects, a brute-force algorithm také¥ N2 log N)
time, and improved methods tak¥ N?) time [19]. The memory needed for conventional methods
also grows quadratically with respect to the data size. énldist decade, researchers developed
several approximate hierarchical-clustering algoritiwith sub-quadratic time complexity [20,121].
The basic idea is to employ a space-partitioning technigug,(dynamic closest-pair tree [22]) to



organize objects hierarchically into cells so that the estaneighbor of each object can be found
within its adjacent cells by using a divide-and-conqueatsgy. These algorithms can perform the
analysis inO(N log N) time and are good approximations. However, they can onlyllealow-
dimensional data in a numerical space where hyper-plamebedefined to partition the space as
well as the samples. Mathematically, in order to partitiospace with a hyper-plane, an inner-
product operator has to be defined so that a direction in theespan be specified to indicate the
inner and outer sides of the plane. For nucleotide sequence data, therembbesxist such an
inner-product operator, and thus no hyper-planes can beedefo efficiently partition the data.
Moreover, unlike numeric-valued vectors, the distancdsvden pairs of sequences can only be
computed through sequence alignment, because sequengéeslgagth and can have deletions and
insertions. Hence, a sequence can be considered as a datanmonucleotide space of undefined
dimensions, which poses additional mathematical chadieng

Several algorithms have been developed in the past decadaxtmomy independent analy-
sis. DOTUR is probably the first published hierarchical ®ugsg algorithm for pyrosequencing
data analysis and widely used by the microbiology commujdiB}. It requires users to provide
a distance matrix and load it into the main memory. Due to itadgatic complexity, it can pro-
cess only several ten thousand sequerices [13]. We recawjogped a new algorithm, referred
to as ESPRIT, that enables researchers to handle up to oimnmsigquences by using a computer
cluster [13[1P]. An online-learning based hierarchicaistéring algorithm called hcluster was
developed within the ESPRIT framework that addressed theaneissue associated with cluster
merging. Although ESPRIT usdsmer statistics to remove a large amount of unnecessary se-
quence comparisons, it is still ad(/N?) algorithm. Hcluster is incorporated in the well-known
mothur pipeline[[23] that replaced DOTUR. Unlike ESPRIT,tmo computes pairwise distances
by aligning input sequences against a pre-aligned referéat@base. Since a reference database can
be maintained off-line, the computational complexity of fequence-alignment step grows only
linearly with respect to the number of input sequences. Hewehe algorithm suffers the same
problem as those used for taxonomy dependent analysise &iost bacterial genomes have not
been sequenced yet, a large proportion of input sequermmsuinknown microorganisms may not
be able to find significant hits and can only be aligned to ditaelated reference sequences, lead-
ing to inaccurate estimates of pairwise distances. Momedke overall space and computational
complexities remairO(N?2). Another line of research is to develop greedy heurististeling
methods. Two well-known methods are CD-HIT][24] and UCLUZE][ Both methods use pair-
wise sequence alignment and process input sequences talljieGiven a predefined threshold,
an input sequence is either assigned to an existing clddter distance between the sequence and
a seed is smaller than the threshold, or becomes a seed mbhele computational complexity of
greedy heuristic clustering is on the order®fN M), whereM is the number of seeds and usually
M <« N. CD-HIT and UCLUST are the two only methods that we are awétkat are capable of
handling millions of sequences using a desktop computeéhodgh CD-HIT and UCLUST orga-
nize data in a hierarchical structure, they are not hiereaticlustering algorithms and there is no
guarantee that the true data structure can be recoverednumarical study presented below, we
show that although CD-HIT and UCLUST run several orders afmitade faster than a hierarchical



clustering algorithm, their accuracy is much worse. Irgtre readers may refer to a companion
paper [14] for a comprehensive review of existing algorishfior taxonomy independent analysis.

In this paper, we propose a new algorithm, referred to as EBPRe, for hierarchical clus-
tering analysis of massive sequence data. To avoid comiugie note that ESPRIT-Tree is not a
program for determining phylogenetic trees, but ratherpimducing hierarchical clusters of se-
guences based on sequence similarity, using a tree-likestiatcture. We extended the concept
of space partition used by previous methods for handlingiesecg data of varying lengths. By
assuming that sequence data lives in a pseudometric spaceeated a distance-based partition of
the data without explicitly defining an inner-product opierdo divide the space, and organized the
partition results in a pseudometric based patrtition treg.rdpeatedly applying the triangular in-
equality, a fast closest-pair searching algorithm wasldeegl within the ESPRIT-Tree framework.
An efficient method for dynamic insertion and deletion oétreddes were also developed. In order
to avoid exhaustive computation of pairwise distances eetwclusters, we represented a cluster
of sequences as a probabilistic sequence, and defined agatrations to align probabilistic se-
guences and to compute genetic distances and kmer distagtwa=en probabilistic sequences. The
analyses of space and computational complexities of ttegitiigh are presented. A large-scale test
was conducted on a human gut microbiota dataset consistingeo one million sequences that
demonstrated the effectiveness of the newly proposeditiguor

2 Methods

This section presents a detailed description of the nevdggsed ESPRIT-Tree algorithm. Through-
out the paper, we use a boldfaced lowercase letter é.th represent a vector or a sequence string,
and a boldfaced uppercase letter (eM), to represent a matrix, thig-th element of which is writ-
ten asM;;.

2.1 Prerequisites
2.1.1 Pseudometric space

We assume that sequence data lives in a pseudometric spaasseR, given a datasét and a
scoring functiond(-) used to measure the similarity between two sequences, forz € X, the
following properties hold: (1)i(x,y) = d(y,x), (2) d(x,x) = 0, and (3)d(x,y) < d(x,z) +
d(z,y) (this is the triangular inequality, which states that thea@not be a shorter path from A
to B that goes through a third point C than the direct path foto B). The first two properties
trivially hold. Although sequence data does not strictljdie the triangular inequality, the above
assumption is very weak. A Monte Carlo experiment was pearéal where only 7 out of 100K
trials were observed that violated the inequality (SeeiGe2).



2.1.2 Pseudometric Based Partition Tree

A pseudometric based partition (PBP) tree is a height-lcaldriree consisting of multiple layers
of nodes at pre-designated distance levels. Figlre 1 depitty tree with four layers. A similar
technique was first used in the well-known BIRCH algorithmdtustering large-scale numerical-
valued datal[26]. In this paper, we extend the concept tolbas®tjuence data of varying lengths.
Each node in the tree represents a hypersphere region ipdlce and includes all sub-nodes and
sequences that are positioned in the region, except foe thas have been included by a preceding
node. A non-leaf node is characterized By= {CF, 1, {Chj}jzl}, where.J is the total number
of children of the node{()hjbfz1 is anorderedlist of pointers to its child nodes, arids the order

of the node in the child list of its parenCF = {N,r,c} is a triple summarizing the sequences
absorbed in the node, whekéis the total number of the sequencess a sequence or a probabilistic
sequence ( described in Sectlon2.1.3) defining the centifreaiiode, ana is the distance level
used to determine whether to absorb a newly arrived sequetocde node or to create a new node.
A leaf node contains only a single sequence or a single ¢justd for ease of presentation, a root
node is created with no center and level defined that inclatletescendent nodes (Figure 3(b)).
We call one node a sibling of another node if both share thegarent. For two sibling node$
andB, assuming the order of is smaller tharB, A is then called the predecessori®f A detailed
description of how to build a PBP tree given a sequence datagien in Sectioh Z.2]1.

2.1.3 Probabilistic Sequences

A probabilistic sequence is a statistical model used toridsa group of similar sequences. Sup-
pose we have two sequenceandb, the optimal global alignment of which is given by:

a: ATCGATCGGGG 11

b: GTCG-TCGTG- 11 @

We create & x 11 matrix P, where each row from the top to the bottom represents a nigdeo
A, T, C, G and a gap, respectively, and each column representxleotide base of the aligned
sequences (The matrR is presented in Table S1). For notational convenience, wsecage with
matrix P a virtual sequence of length 11, and collectively callx, P} a probabilistic sequence.
Each element ok can take one of the four nucleotides or a gap, the probalfdityoccurrence
frequency) of which is specified iR. For example, the first column @& in the above example
reads|0.5,0,0,0.5,0]”, whereT is the matrix transpose. By using the probabilistic Neediem
Wunsch algorithm, which will be detailed in the followingcsien, the update oP when given
a newly arrived sequence and the computation of the genistiande between two probabilistic
sequences only involve the application of simple lineaekbig.

2.1.4 Probabilistic Needleman-Wunsch Algorithm

The newly proposed probabilistic Needleman-Wunsch algaris a generalization of the Needleman-
Wunsch algorithm[]27] and used to optimally align two viltsaquences. Suppose we have two



probabilistic sequencex, P} and{y, Q}. Denotex = [z1,--- ,x ] andy = [y1,- - ,yr]. Given
a scoring matrix, the best alignment score betwgerP} and{y, Q} can be computed by using
the following recursive equation:

S(j—1,1—1)+C(zj,y1)
S(j,1) = max ¢ S(j — 1,1) + C(z;, gap) (2)
S(]vl - 1) + C(gap>yl) 5

whereC(z;,y;), C(x;, gap) andC(gap, y;) are the costs of aligning, to y;, z; to a gap, and; to
a gap, respectively. However, since bethandy, can take a nucleotide base or a gap with a certain
probability, by denotingd = {A, T, C, G, gag, C(z;,y;) andC(z;, gap) can be computed as:

mmyl ZZPZ]inO Ai, Ap ) (3

i=1 n=1

5

C(zj, gap) = » | PyyC(Ai, gap) , 4

i=1

where P;; and @, are theij-th andnl-th elements of matriceB andQ, respectively, and; is
thei-th element ofAd. C(x;,y;) andC(z;, gap) can be interpreted as the expected cost of aligning
x; with 1, or a gap, respectively. The alignment score for each pasisictored in an array with
a pointer that records the current optimal operation andiges an effective path to backtrack the
optimal alignment. In the above descriptions, we use aligap penalty for simplicity. Extension
to an affine gap penalty is straightforward.

The proposed probabilistic Needleman-Wunsch algorithareshthe same idea as the profile-
profile alignment (PPA) used in the well-known MUSCLE algiom for multiple sequence align-
ment [28]. However, PPA works on two groups of sequencebgerahan two probabilistic se-
guences. With the concept of probabilistic sequence, wegodreyond PPA and compute genetic
distances directly based on alignment results, which isrdeesd below.

2.1.5 Genetic Distances Between Probabilistic Sequences

The genetic distance between two globally aligned seq@eisceomputed as the number of mis-
matches divided by the total length of the sequences. Thandis between two virtual sequences
can be calculated analogously. Uet, P} and{y, Q} be two aligned probabilistic sequences of
length L. Suppose that we randomly select two sequesces|s; - - - sy| andt = [t;---t1] fol-
lowing the probabilities specified iy andQ, respectively. The probability that the two sequences
differ at a given position, saly can be computed as:

P(s; # 1)) Z Py(1-Qa), ©)

and the genetic distance between virtual sequen(amly can be computed as

1 L
=1 D Plsi# ). ©)
=1



By construction, the matricd® andQ record the distributions of the sequences of two clustees. W
call d(x,y) a probabilistic average distance of two clusters, and uae &n approximation of av-
erage inter-cluster distances. A simulation study wasoperéd that showed that the two distances
have a nearly perfect correlation, and using probabil@iitances only has a negligible impact on
clustering outcomes (see Figufds 2 &hd 3). A highly desirphbperty is that the complexity of
computing probabilistic distances is a constadependentf the sizes of clusters.

We next define the operation of merging two aligned probstiilisequences. Suppose we have
two probabilistic sequencelx, P} and{y, Q}, representingV and M sequences, respectively.
After alignment,P and Q are updated a® and Q. The probabilistic matrixT’ of the merged
sequence can be readily computedias: (NP + MQ)/(N + M).

2.1.6 Kmer Distances Between Probabilistic Sequences

The data structure imposed by a PBP tree and using a pratimsiequence to represent a group of
similar sequences enable us to remove a large number ofessa@y sequence comparisons. Yet, it
is still computationally expensive to align millions of smapce pairs. One commonly used strategy
to alleviate the above issue is to Usmer distances to identify a short list of candidate sequence
for exact sequence comparison. This technique has beebysadous bioinformatics algorithms,
including MUSCLE 28], ESPRIT]13], CD-HITI24], UCLUSTI4=nd RDP classifie [30]. It has
been shown thatmer distances are highly correlated with genetic distaaoelscan be computed
thousands of times faster than sequence alignment. Inghi®a, we extend the concept kner
distances to handle probabilistic sequences.

A kmer is a sequence string consistingcafucleotides. By specifying the value/ofa complete
alphabet of kmers can be constructed. Given a sequen@kmer statistics vectov is computed,
where thei-th element ofv records the occurrence frequency of thid kmer ofC in sequencex.
Then, thekmer distance between two sequengemndy can be computed as:

ic|
dix,y)=1- Zmin (vx(3),vy (7)) / (min(Ly, La) — k + 1)) , @)
=1
where|C| is the number of elements ¢y andL; and L, are the lengths at andy, respectively.

In order to computeimer distances for probabilistic sequences, we need tofieedemer
statistics vectov. LetB = {A,T,C,G} andT = [r72- - 7x| be thei-th kmer of C. We fur-
ther assume that, - - - , 7 take thejy, - - - | jx-th nucleotides of3, respectively. The occurrence
frequency ofr in probabilistic sequencgx, P} of length L can then be computed as:

L—K+1
v(i) = D Py Py, Pisk—1)jx - (8)
=1

Pijy Piv1)j, - Ptk —1)j, €an be interpreted as the probability of observimger  at thei-th
base ofx.

The kmer statistics are used in two places in ESPRIT-Tree. insthen constructing a PBP
tree, we usé&mer distances as a filter to determine whether the distaratesebn a newly arrived

7



sequence and the centers of the nodes are within a predefiresthold before performing exact
sequence comparison. Secondly, when searching for thesteaighbor of a query sequence in a
set of candidate sequences, we calcukater distances to optimize the order of comparison and
perform a branch-and-bound search. Specifically, the datelisequence with the smallésher
distance to the query sequence is considered first, and taimed genetic distance is then used to
compute an upper bound based on the correlation relatiph&tiveerkmer and genetic distances.
Sequences witkmer distances larger than the bound are removed from thedzdadset, and the
remaining sequences are sorted and compared to the quelsneeq The procedure repeats until
the candidate set becomes empty. The sequence with theestrgghetic distance is identified as
the nearest neighbor of the query sequence.

2.2 ESPRIT-Tree

With the above prerequisites, we are ready to present thmpeadl algorithm. ESPRIT-Tree consists
of two steps. First, a PBP tree is constructed that roughititipaais an input space into a set of
hyperspherical cells. Second, a refinement procedure rigdayut that iteratively finds the closest
pairs of sequences or clusters and merges them into a ne@rcllibe two steps are detailed below.

2.2.1 Constructing a PBP Tree

A PBP tree contains multiple levels, uniformly spaced orgatdhmic scale starting from the top at
0.1 and to the bottom at 0.01, and grows incrementally tagelall input sequences. The number
of levels created is a parameter of the algorithm. Initjathe tree comprises only one branch of
nodes, the centers of which are all assigned to the firstergequence. Given a new sequence, we
first compare it with the center of the child nodes of the togenm a fixed order. If the resulting
pairwise distance is larger than the threshold, a new nocle#ed; otherwise, the sequence travels
down toward the leaf nodes through the first branch that gialdairwise distance smaller than the
threshold. The reason that we do not assign the sequence he#nest center is that since the tree
is constructed dynamically, the hyperspherical cells caalap (see Figure I{a)), which makes the
search of the closest pairs in the second step difficult. rAfteequence is absorbed into a node,
the parameter of that node is updated using the operatidireeden the previous section. The
procedure is repeated until the sequence reaches a leabhtddebottom. If we are not interested
in microbial diversities at distance levels larger than €h&re is no need to grow the tree upwards.
A PBP tree provides a coarse representation of the entiee datl the representation is most
accurate at the bottom level. Since only the sequence imdesniation and cluster feature vector
F = {CF,1, {Chm}jzl} of each node are saved in a PBP tree, the memory requiredyiswell.
We also see that when a sequence travels from the top to tlmdt visits only a very small
fraction of the tree and aligns only with the center sequgndée¢he visited nodes. For example, for
the tree presented in Figyre J(b), if we decide to use theé biginch, the nodes on the left branch
will never be touched. The computational complexity of ¢ating a PBP tree is on the order of
O(N), instead ofO(N?). For the problems we are most interestedihjs on the order ofl0°.



Hence, a PBP tree can be built very efficiently. In our simatastudy, it took only~ 0.5 hour to
build a PBP tree for one million sequences using a desktogpuatan

2.2.2 Clustering Refinement

Clustering refinement consists of two steps: finding theedbgair among existing clusters and
dynamically updating a PBP tree. The first step is computatip the most expensive module. A
naive implementation of finding distances between all pafirdusters and selecting the minimum
requiresO(N?) operations. This problem has been intensively studiedariéid of computational
geometry [[3lL]. Approximation algorithms can solve the peabin O(NV log N) time. However,
they work only for numerical-valued data of fixed dimensiand little work has been done to
handle sequence data of varying lengths. We below show howitze the data structure imposed
by a PBP tree to design a fast and accurate closest-paithgggadgorithm. A PBP tree partitions
an input sequence space into a set of non-overlapped hyyegisa regions at various distance
levels and organizes them in a hierarchical structure (E[@\ Similar sequences are grouped into
the same or adjacent cells, which suggests that the neagigtbor of a sequence can be found
locally, avoiding the need to explore the entire space.

Suppose that we have a dataset consistiny sequences. In order to find the nearest neighbor
of sequence, we first compare it with its successor sibling sequencesstiare the same parent
asx and have an order larger than thatxgfand find a sequengethat yields the minimal pairwise
distance among the sequences compared. We then move upgwaasparex with the center of
the parent nodd to validate the identified pair. The distance betwgesnd the boundary of the
parent node is computed ds= r; — d(x, c1 ), wherer; andc; are the distance level and the center
of T, respectively. There are two possibilities.

Case 1:If d(x,y) > dp, it can be inferred that there may exist a sequence outsileetion
covered byT that is closer tx thany. We thus move up one level and explore sequences
belonging to the successor sibling nodesIhfand use the parent @, K, as the new ref-
erence node. Note that we ignore all of the sequences in guepessor nodes @f, which
greatly speeds up the searching process. For each sucnesggawith centet, and levelr,,
we first compute the distance between sequenagd its center. Ifl(x,cy) > d(x,y) + ro,
it can be proved by using the triangular inequality thateta@wes not exist a sequence in the
node that can be closer ¥othany, and hence all sequences within that node can be ignored;
if d(x,c2) < d(x,y) + r2, we check the child nodes of the successor node by using the
triangular inequality, and repeat the above process ustitamch a leaf node. After all suc-
cessor nodes are explored, a sequenisadentified that yields the minimal distance among
all sequences checked. dfx,z) < d(x,y), y is replaced by: and compared to the center
of K to determine the next move.

Case 2: If d(x,y) < dp, we bypass all of the sibling nodes @fand go on to check if the sibling
nodes ofK need to be explored.



The above-described searching process continues untibtiienode is reached. Sequencesy
and the corresponding pairwise distance is recorded. Utidhae noted thay is not necessarily the
nearest neighbor of since only successor nodes are searched. We thug ttedsuccessor nearest
neighbor (SNN) of x. Given N sequences, a list aV sequence pairs is generated. By using a
heap structure_ [29], the minimal distance amongAhesequence pairs can be founddlog V)
time, and the algorithm requires ond§(/NV) space. For ease of presentation, we above consider
only how to find the closet pairs of sequences. The derivationbe easily generalized to find the
closet pairs of nodes containing a group of sequences by tis#probabilistic Needleman-Wunsch
algorithm described in Secti@n Z1L.4. The following lemmawves that although we do not explore
the entire dataset, the sequence pair found by the proptgeritiam is the closest pair among the
input sequences.

Lemma 1. Let X be a set of input sequences in a pseudometric space. Forghathim described
as above, the sequence pair found by the algorithm is thesigsir of the input sequences.

Proof. Itis trivial to prove that if all sequences in successor rsoaie searched, a SNN list contains
the closest pair. We then prove thatl{ix,y) < r; — d(x, c1), ho sequence in the sibling successor
nodes ofT is closer tox thany and thus can be ignored. Suppose there exists a sequémtiee
sibling successor nodes so thi#ik,z) < d(x,y). By using the triangular inequalityj(z,c;) <
d(z,x)+d(x,c1) < d(x,y)+d(x,c1) < r1, which contradicts the assumption tkds a sequence
in the sibling successor nodes '®f The same strategy can be used to prove thdtxf co) >
d(x,y) + re, there does not exist a sequence in the node that can be tos#rany. O

After the closest pair is found, we then merge the identifiegusnce pair into one cluster,
remove the two sequences from the tree, and insert the nemtyefl cluster into the PBP tree
by using the same procedure we used to construct the treesifirglh step. More specifically,
a probabilistic sequence is generated from the two mergggesees, and then compared to the
center of the children of the root node by using the probstiliNeedleman-Wunsch algorithm. If
the resulting pairwise distance is larger than the threkhelnew node is created; otherwise, the
sequence travels down toward the leaf nodes through théfasth that yields a pairwise distance
smaller than the threshold. The SNN table is then updatadt, e two identified sequences are
removed from the table, the nearest neighbor of the newlindar probabilistic sequence is then
identified and added to the table, and finally the sequenedsptiaviously set either of the two
identified sequences as the nearest neighbor are reassignedearest neighbors. It should be
noted that since the new formed cluster or probabilistizisage is added to the tree dynamically,
in order to maintain a correct SNN list, the new cluster is pared with all existing sequences,
except for those that are bypassed according to the triangneéquality. Nevertheless, due to the
hierarchical partitioning of the dataset by the PBP tredy ansmall fraction of sequences are
actually compared. The iteration of finding the closest, ma@ating new clusters and updating the
SNN table continues until only one cluster is left or the aliste between the closest pair is larger
than a predefined threshold.

Unlike conventional hierarchical clustering algorithrtige proposed algorithm does not require
the generation of a distance matrix. All of the operatioressexecuted on the fly, and the distances
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are computeanly when they are needed. The memory required to store a SSNgaisi¢he order

of O(N). The algorithm thus addresses the space-complexity issoeneentional methods. It

is difficult to conduct a computational complexity analysidowever, since our algorithm uses a
divide-and-conquer based strategy to recursively pamtii sequence space and refine clustering
results, it is well known that this type of algorithm has asgjliaear complexity[[200, 21, 22], which

is empirically verified in a simulation study.

3 Numerical Experiments

We present a numerical experiment to compare ESPRIT-Trietluiee other methods, namely,
CD-HIT [24], UCLUST [25] and ESPRTL[13]. CD-HIT and UCLUSTetwo greedy heuristic
clustering methods widely used by the microbiology communESPRIT is a standard imple-
mentation of hierarchical clustering and used to benchrttalperformance of ESPRIT-Tree. We
demonstrate that the proposed algorithm achieves a siaglauracy to the standard hierarchical
clustering algorithm but with a computational complexignparable to CD-HIT and UCLUST.
All experiments were performed on a desktop computer witkl B5462 2.8GHz and 16GB RAM.

3.1 Experimental Setup

A real-world sequence dataset was used to benchmark therpearice of the four methods. The
dataset was originally used to study the connection betwbesity and altered compositions of the
human gut microbial community[8]. It consists of about 1.&ktjuences with an average length
of 232 nucleotides, covering the V2 hypervariable regiol®$% rRNAs collected from the stool
samples of 154 individuals. This is one of the most comprsieri6S rRNA based surveys of the
human gut microbiota available to date.

One of the major obstacles of a benchmark study is that forpé®mmicrobial communities
there is no ground-truth information about what speciesetgally in the community. To overcome
this difficulty, we first constructed a reference databasmfthe RDP-II databasél[9], where each
reference sequence was fully annotated. We then ran a MagfaBL] search of the gut data
against the reference database, and used a stringeniocriterretain the annotated sequences if
the identity percentage 97% and the length of the aligned region 97% of the total length.
This resulted in a total of~ 750K reads classified into 671 species and 283 genera. We then
applied the four methods to the annotated sequences anthesemmmonly used NMI (normalized
mutual information) criterion[133] to evaluate how the artte of a clustering algorithm agrees
with the ground truth. NMI penalizes both assigning seqaemnith the same label into different
clusters and assigning sequences with different labetsthe same clusters. NMI = 1 means
that a clustering result completely agrees with the grawutit partition, and NMI = 0 means that
each sequence is randomly assigned. A mathematical deéserigif NMI can be found in the
supplementary Section 2S. In order to remove statistia&t@ns, the experiment was repeated 20
times. In each iteration, 30K sequences were randomly artiafrom the annotated dataset, the
four methods were used to group the sequences into clusteas@us distance levels ranging from
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0.01 to 0.15, a NMI score was computed at each distance lguadibg either the species or genus
assignments of input sequences as the ground truth, andakienoom NMI score was recorded.
We observed high, medium and low abundance componentsa(ileng tail) in the test datasets,
which is similar to what observed in a real microbial comntyiand much more complicated than
the previously used mock community generated from 43 knd@81rRNA sequences [113.134]. We
acknowledge that this benchmark is limited to known taxa iansubject to a certain degree of
inaccuracy because not all taxa evolve at equal rates and@lds &e not expected to map perfectly
onto species; however, these factors should not bias tteatiean in favor of any specific method
since they were all applied to the same dataset, and, albeisg equal, a method that gives clusters
consistent with existing taxonomic knowledge should gelhebe preferred over one that is less
consistent.

For UCLUST, the clustering outcomes may depend on the orfdsEquences presented to the
algorithms. The default setting is to sort input sequenasedt on their lengths, while another
possibility is based on their abundances (i.e. a sequentigésssubsequences are considered as one
sequence). We found that abundance sort yielded bettdtseshich are reported in the paper. For
ESPRIT, we used a loose kmer threshold of 0.8 to remove ussagesequence alignments. At the
distance levelg0.2, the results of ESPRIT are exactly the same as thoseajeddyy the standard
method. We considered both average and complete linkagsidas in ESPRIT, and found that
both performed similarly in terms of clustering performandnly the result of average linkage
was reported.

3.2 Experimental Results

A key assumption of the proposed method is that sequencdivizgan a pseudometric space. We
performed a simulation study to justify the above assumpti@/e first randomly selecte80K
sequences from the gut dataset and applied ESPRIT with #rage linkage function (ESPRIT-
AL) to group the selected sequences into clusters at vad@miance levels ranging from 0.01 to
0.10. We then randomly selected three clusters, and apleedrobabilistic Needleman-Wunsch
algorithm to generate three probabilistic sequencesesepted by, y andz, respectively, from
the sequences within the three selected clusters. Theahtle pairwise distances of the three
sequenced(y,z)/(d(x,y) + d(x,z)) was computed. A ratio of less than or equal to 1 means that
the triangular inequality is satisfied. We repeated the exy@t 100K times, and observed only
7 cases where the inequality was violated. This experimaggests that it is generally true that
sequence data follows the triangular inequality.

We next conducted a benchmark study to compare the clugteeriormance of the four meth-
ods. Figur¢ Z2(3) depicts the NMI scores as a function of déstdevels, averaged over the 20 runs,
by using the species assignments of input sequences adgiroim. \We observe that all curves
have a bell shape. This can be explained by the fact that wiléstance level is small, sequences
belonging to the same species are partitioned into diffeckrsters, and when a distance level is
large, sequences belonging to different species are gdnfeethe same clusters, and by definition
both result in suboptimal NMI scores. We also see that the Bddres of the four methods may
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peak at different positions, due to the different formwas used to define the distance between two
clusters. Hence, the NMI scores obtained at the same déestaxel are not directly comparable.
We thus compared the maximum NMI score of each method, whictebnition corresponds to the
best clustering result that a method can achieve. From &jg{), we observe that ESPRIT-Tree
performed similarly to ESPRIT-AL, and significantly betttian CD-HIT and UCLUST (p-value

< 1075 based on a Student’s t-test). We repeated the analysis by tis genus assignments as
ground truth, and observed similar results (Fiddre 3).

One of the main purposes of performing taxonomy indepenalealtysis is to estimate the bio-
diversity of a microbial community. In the microbiologydiature, 3% and 5% are the two most
commonly used criteria to define species and genus-levelgDiddpectively, although these defi-
nitions are controversial [15,136,137]. Table 1 reports thmbers of species and genera estimated
at the 0.03 and 0.05 distance levels, and those at the pusitwhere the NMI scores peak. We
see that the numbers of OTUs observed at the 0.03 and 0.@hckskevels are significantly larger
than the ground truths, and vary significantly for differeréthods although they were all applied
to the same datasets. It was previously thought that seogeaoors are the main reason for se-
vere overestimation of microbial diversity and severausgging-error-correction algorithms have
been developed to address the above issue (€.¢[, 134, 3B)evér, we observe from Tadle 1 that
the numbers of OTUs for each method obtained at the peakigusiare always much closer to
the ground truths than those obtained at the 0.03 and 0.@ndés levels. This suggests that the
overestimation to some extent is due to the incorrect usestarte levels. The commonly used 3%
and 5% are not proper for defining species and genus-levelsQhich was also observed [n]40],
and researchers should be careful when interpreting thargity estimates. ESPRIT-Tree and
ESPRIT-AL yielded the most accurate estimates of micradiiarsity among the four methods.

The massive amount of data generated by high-throughposeguencing technologies poses
serious challenges to existing algorithms. In addition ¢cousacy, computational complexity is
another important issue that needs to be considered. Torddrate the scaling property of the
new method, we compared ESPRIT-Tree with CD-HIT and UCLUSifigia human gut dataset
with a varying number of sequences, ranging from 1K to 1.1tMs tomputationally intractable
to run ESPRIT on 1.1M sequences using a desktop computeurdfsy reports the CPU times
of the three methods as a function of the numbers of sequeAdss empirical complexity and
confidence interval are also reported. In terms of compmurtatiefficiency, UCLUST performs the
best, ESPRIT-Tree the second and CD-HIT the third. Howealidhree methods have a quasilinear
computational complexity af(N'2). It took ESPRIT-Tree about 11 hours to process 1.1M reads
to generate OTUs at ten distance levels (0.01-0.1). We havéopisly applied ESPRIT to the same
gut dataset using a computer cluster of 100 procesisars IfitBpk ESPRIT about 4 days to finish
the analysis, which is about 800 times slower than ESPREE-Tr

We performed additional experiments using other hypeabgiregion and near full-length 16S
rRNA sequences and observed similar results. Due to spadations, the results are presented in
the supplementary data.
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4 Conclusion

With the advent of the massively parallel pyrosequencimtprielogy, researchers can now obtain
millions of signature sequences easily and inexpensiwlyliverse applications ranging from hu-
man epidemiological studies to global ocean surveys. Thecutar studies of microbial commu-
nities are recently entering an era of quantization, whetenly species richness but also detailed
compositions of microbial communities are required in otdegquery multiple biological and eco-
logical questions. Considering that bacterial populatiosually contain a significant amount of un-
known species, taxonomy independent analysis is a widelged and powerful tool for studying
microbial community dynamics at high resolutions, anddmehical clustering is an essential step
to explore the taxonomical information of bacterial popiolkas. In this paper, we have proposed a
novel computational algorithm that enables researchepetiorm clustering analysis of millions
of 16S rRNA tag sequences on a desktop computer, while ni@iimjaa clustering accuracy com-
parable to the standard hierarchical clustering algoritfifme new algorithm can be extended for
parallel computing. While parallel computing is generailty a viable solution to scaling up(N?)
algorithms, the quasilinear space and computational aexitj@s of the proposed algorithm make it
computationally tractable to process tens of millions afusmaces by using a small computer clus-
ter. Taxonomy independent analysis plays a key role in aévecently developed pipelines (e.g.,
QIIME, mothur and PANGEA), and our algorithm can signifidaritnprove the utility of these
pipelines, as each includes an OTU picking step that isdistiom the chimera checking step (we
note that ESPRIT-Tree can either be applied to chimerakeliedata, or that the representative or
consensus sequences from clusters of nearly identicabsegs generated from ESPRIT-Tree out-
put can be chimera-checked, to obtain improved OTU couaots fieal data in which chimeras are
frequent). Although in this paper we mainly focused on 168ARased studies, the new algorithm
can be used for other large-scale sequence based studiesgthige large-scale clustering analyses.
The ESPRIT-Tree software is availablenat p: // pl aza. uf | . edu/ sunyi | un/ ES- Tr ee. ht m
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Table 1: The numbers of OTUs observed at the 0.03 and 0.0&ndistlevels and at the peak
positions for the four methods. The ground truths of the nemmlof species and genera are 371
and170 + 5, respectively. The number in the parenthesis is one stdrataiation. ESPRIT-Tree
and ESPRIT with the average linkage function (ESPRIT-Alglged the most accurate estimates
of microbial diversity among the four methods.

ESPRIT-AL ESPRIT-Tree UCLUST CD-HIT

0.03 level 1045(19) 1137(30) 1193(26) 920(23)
0.05 level 241(7) 268(6) 362(11) 314(9)
peak NMI-species 402(9) 400 (9) 590(13) 314 (9)

peak NMI-genus 190(5) 176 (7) 216(6) 243(7)

19



bdbdbodbdbbdy

Figure 1. PBP tree. A PBP tree partitions an input space iat af non-overlapped hyperspherical
regions at various distance levels indicated by circles ditferent colors (a), and organizes input
sequences in a tree-like hierarchical structure (b). Eadft in (a) represents a sequence, and the
color of a node in (b) corresponds to the color of a circle in for ease of presentation, the leaf
nodes are omitted, and a root node is created that inclutlelesdendent nodes. The partition,
though not necessarily reflecting the true structure of a dat as shown in (a), can significantly
accelerate a clustering process by removing most unnegessguence alignment operations and
distance computation.
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Figure 2: (a) NMI scores of four methods evaluated at teradist levels. (b) Box-plot of the
maximum NMI scores of four methods. The species assignmodntgput sequences were used as

ground truth.
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Figure 3: (a) NMI scores of four methods evaluated at fomrgistance levels. (b) Box-plot of the
maximum NMI scores of four methods. The genus assignmeritgpaf sequences were used as
ground truth.
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