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ABSTRACT

Motivation: Intrinsically disordered regions are key for the function of
numerous proteins, and the scant available experimental annotations
suggest the existence of different disorder flavors. While efficient
predictions are required to annotate entire genomes, most existing
methods require sequence profiles for disorder prediction, making
them cumbersome for high-throughput applications.
Results: In this work, we present an ensemble of protein
disorder predictors called ESpritz. These are based on bidirectional
recursive neural networks and trained on three different flavors of
disorder, including a novel NMR flexibility predictor. ESpritz can
produce fast and accurate sequence-only predictions, annotating
entire genomes in the order of hours on a single processor core.
Alternatively, a slower but slightly more accurate ESpritz variant using
sequence profiles can be used for applications requiring maximum
performance. Two levels of prediction confidence allow either to
maximize reasonable disorder detection or to limit expected false
positives to 5%. ESpritz performs consistently well on the recent
CASP9 data, reaching a Sw measure of 54.82 and area under the
receiver operator curve of 0.856. The fast predictor is four orders
of magnitude faster and remains better than most publicly available
CASP9 methods, making it ideal for genomic scale predictions.
Conclusions: ESpritz predicts three flavors of disorder at two
distinct false positive rates, either with a fast or slower and slightly
more accurate approach. Given its state-of-the-art performance, it
can be especially useful for high-throughput applications.
Availability: Both a web server for high-throughput analysis
and a Linux executable version of ESpritz are available from:
http://protein.bio.unipd.it/espritz/
Contact: silvio.tosatto@unipd.it
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Protein function has been traditionally thought to be determined by
tertiary structure. More recently, an alternative view is emerging
with respect to non-folding regions, which suggests a reassessment
of the structure-to-function paradigm (Dunker and Obradovic,
2001; Dunker et al., 2008; Schlessinger et al., 2011; Wright
and Dyson, 1999). Flexible segments lacking a unique native
structure within a protein are known as disordered regions
(Tompa, 2002). Disorder has been shown to be widespread
within known natural proteins, especially in eukaryotic organisms
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(Dunker et al., 2000, 2008; Schlessinger et al., 2011). It also
plays a key role in human disease (Uversky et al., 2008) where
it is thought that 79% of all cancer-associated proteins are at
least in part unstructured/disordered (Dunker et al., 2008). Proteins
with disordered segments are frequently associated with molecular
recognition (Tompa and Fuxreiter, 2008; Tompa et al., 2009).
They have also been observed to be common among hub proteins,
i.e. those with a large number of interaction partners (Dosztanyi
et al., 2006). In addition, protein disorder is also important for
protein expression, purification and crystallization since difficulties
often arise when long disordered regions are present, as happens
frequently at the N and C termini.

Protein disorder is experimentally determined with an assortment
of indirect biochemical methods collected in the DisProt database
(Sickmeier et al., 2007) currently containing ∼640 proteins.
Alternatively, missing residues in X-ray crystallographic structures
from ∼70 000 structures deposited in the Protein Data Bank (PDB)
(Berman et al., 2007) can be used. The analysis of ∼6000 nuclear
magnetic resonance (NMR) ensembles from the PDB is also
possible (Martin et al., 2010), but to the best of our knowledge,
has never been used to train a prediction method. It is assumed
that different flavors of protein disorder exist (Dunker et al.,
2008). The most common distinction is between long (DisProt) and
short (X-ray) segments (Schlessinger et al., 2011). Alternatively,
there has also been an attempt to distinguish flavors based on
enrichment for certain amino acid types (Vucetic et al., 2003).
The characteristically skewed amino acid distribution of disordered
segments, lacking in hydrophobic and enriched in polar and charged
residues (Uversky et al., 2000), can be easily exploited for sequence-
based predictions. Available prediction methods can be broadly
divided into three classes. Biophysical methods (Dosztanyi et al.,
2005; Galzitskaya et al., 2006; Lobanov and Galzitskaya, 2011;
Obradovic et al., 2005; Prilusky et al., 2005; Uversky, 2002) exploit
the sequence distribution to derive pseudo-energy propensities to
adopt a disordered state. Of these, IUPred (Dosztanyi et al., 2005) is
probably the most widely used due to its availability and efficiency,
as it does not require multiple sequence alignments. Machine
learning techniques have been widely used for the prediction of
protein disorder (Cheng et al., 2005; Hirose et al., 2007; Ishida
and Kinoshita, 2007; Linding et al., 2003; McGuffin, 2008; Vullo
et al., 2006; Ward et al., 2004; Yang et al., 2005). In most cases,
PSI-BLAST sequence profiles (Altschul et al., 1997) are combined
with additional features, e.g. predicted secondary structure in the
widely used Disopred (Ward et al., 2004). On average, these methods
are slower but somewhat more accurate than biophysical predictors.
The last, and most recent, category of disorder predictors use a
consensus of various biophysical and machine learning methods
(Mizianty et al., 2010; Schlessinger et al., 2009; Walsh et al., 2011;
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Xue et al., 2010). Here, a further improvement in accuracy is
obtained at the cost of running several predictors in parallel and
averaging their output.

Among the applications of disorder prediction, we can distinguish
at least two different scenarios. The first is represented by the
Critical Assessment of techniques for protein Structure Prediction
(CASP) experiment, where the methods are used to predict disorder
on a relatively small number of proteins with maximum accuracy
(Noivirt-Brik et al., 2009). Here, clearly consensus predictors aiming
for maximum accuracy should excel. However, a more practical
scenario is represented by high-throughput analysis of protein
disorder, e.g. on entire genomes (Schlessinger et al., 2011). In
this case, the focus is shifted toward fast predictors producing a
minimum number of false positives (Sirota et al., 2010). Over the
years, most prediction methods have addressed the first problem,
with comparatively little attention to the practicalities of large-
scale predictions. This has led to a relative paucity of accurate fast
predictors, as adding more prediction layers has produced slightly
more accurate but increasingly cumbersome methods (e.g. Mizianty
et al., 2010; Schlessinger et al., 2009; Walsh et al., 2011; Xue et al.,
2010).

Here we present the ESpritz methods for determining disorder
based solely on sequence, aimed for high-throughput applications.
The predictor is tested on large datasets of different disorder types,
including a novel NMR mobility definition. The sole input for
the ESpritz method is the amino acid. It does not require sliding
windows to capture local contextual information or any complex
sources of information and is shown to be both state-of-the-art and
efficient.

2 METHODS
ESpritz uses bidirectional recurrent neural networks (BRNN) (Baldi et al.,
1999) to predict disorder from sequence information.ABRNN can be likened
to an ensemble of three neural networks, learning the N-terminal sequence
context, the sequence and the C-terminal sequence context, respectively.
Where regular neural networks use a sliding window of predetermined size,
BRNNs learn this context information through the recursive dynamics of
the network, reducing the number of parameters and extracting information
implicitly from the surrounding local context. Another important feature
is a top layer filter which takes as input ‘semi-global’ information from
the bottom layer in analogy to Pollastri and McLysaght (2005). Parameter
learning proceeds by gradient descent and the back-propagation algorithm
and the output contains two units producing the probability of order and
disorder. The total number of parameters depends on the number of neuronal
units in the various network layers. ESpritz never exceeds 5886 which is
acceptable and very unlikely to overfit considering the amount of training
examples which is between 30 and 100 times the number of parameters
(Supplementary Table S1). BRNNs with a similar number of parameters
have already been applied to various prediction problems, e.g. secondary
structure (Pollastri and McLysaght, 2005). In the following, we introduce
the four basic variants and their consensus (Table 1) before describing the
datasets used and evaluation measure.

2.1 Sequence-only predictions
In analogy to our work on repeat proteins (Marsella et al., 2009), ASpritz
uses the five Atchley sequence metrics (Atchley et al., 2005) as numerical
sequence attributes for BRNN input. Each scale, listed in Table 2 of Atchley
et al. (2005), was obtained by clustering almost 500 different amino acid
scales from the AAindex database (Kawashima et al., 1999). The scales
were shown to reflect polarity, secondary structure, molecular volume, codon

Table 1. Definition of Spritz variants and
acronyms used

Acronym Sequence Profile Consensus

ESpritz Both Yes Four-way
ESpritzP Both Yes Two-way
ESpritzS Both Two-way
ASpritzP Attributes Yes
ASpritzS Attributes
SSpritzP Identities Yes
SSpritzS Identities

Definitions for the Spritz variants. Sequence relates to
the input information with attributes (five Atchley scales)
or identities (20 residue types). Two-way consensus is
calculated for the two sequence coding schemes with and
without profile. Four-way consensus is calculated among all
four basic variants.

diversity and electrostatic charge (Atchley et al., 2005) and may allow
for a richer amino acid representation. As the five scales have different,
asymmetric, ranges they require normalization in order to be useful as neural
network inputs. As in our previous work, normalization is performed so that
the squares of the scales sum to 1 (Marsella et al., 2009):

20∑

t=1

[
At

(
X

)]2 =1 (t =1,2,....5) (1)

where X = [A, C, D, E, …, W , Y ] is the one letter code corresponding to each
of the 20 amino acids, and At(X) is the sequence metric for amino acid X.
ASpritz has five inputs i to the neural network for each sequence position k,
each representing one normalized Atchley scale. If position k in the sequence
contains amino acid X then the five inputs to this system are as follows:

itk =At(X) (t =1,2,....5) (2)

Alternatively, SSpritz considers the 20 amino acids in ‘one-hot’ encoding. It
consists of 20 inputs i where each unit for sequence position k is allocated
for 1 of the 20 amino acids:

i1−20
k =Rk(X) (3)

where Xis the residue at positionk,Rk(X) ∈R20 is an alphabetically ordered
vector of positions Rj

k corresponding to the 20 amino acids (i.e. [A, C, D, E,

..., W , Y ]). Rj
k= 1 if the position amino acid is in the sequence at position

k and Rj
k= 0 otherwise. ASpritz and SSpritz are combined into a consensus

score ESpritzS. As previously shown for CSpritz (Walsh et al., 2011), simply
averaging the two scores proved most effective (data not shown).

2.2 Multiple sequence alignment-based methods
Evolutionary information in the form of multiple sequence alignments is
commonly used to improve predictor performance. Here, the two sequence
encodings are extended to accommodate sequence profiles. Let a sequence
profile pk(X) give the probability of finding amino acid X in the multiple
sequence alignment at position k along the sequence (gaps not considered).
For the Atchley scales, the profile-based predictor (ASpritzP) contains six
inputs i for sequence position k, one for each scale plus gaps:

itk =
∑

X∈Ck (X)

At
(
X

)
pk(X) (t =1,....5) i6k = g

n+ l
(4)

where Ck(X) is the set of amino acids for position k, g is the number of
gaps, n is the number of non-gaps and l is the total number of sequences
involved in the multiple sequence alignment.Alternatively, when considering
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the 20 amino acids, the sequence profile pk(X) is multiplied against the input
vector from SSpritz:

i1−20
k =

∑

X∈Ck (X)

Rk(X)pk(X) (5)

The fraction of gaps in the sequence profile is included as an additional
input (i21

k ) and the system is called SSpritzP. Averaging the ASpritzP and
SSpritzP output into a consensus prediction will be termed ESpritzP, while
ESpritz is the ensemble combination of all four single predictors by averaging
their probabilities (Table 1). In order to assess the effect of using the BRNN
architecture, we also train a standard feed-forward neural network (NN) using
‘one-hot’ encoding [Equation (3)] and a fixed window size of 23 residues
(6484 parameters) found to be the best combination on the X-ray training
set.

2.3 Datasets
To train and measure the performance of the predictors, we created several
datasets from structures deposited at the PDB (Berman et al., 2007) and
from experimental data as deposited in the Disprot database (Sickmeier
et al., 2007). Training and testing data are strictly separated, with appropriate
separation and redundancy reduction (maximum ∼25% for X-ray and NMR,
40% for DisProt) to present truly unseen data during testing. Unless stated
otherwise, all alignments were calculated using PSI-Blast (Altschul et al.,
1997) using options -b 3000 -e 0.001 -h 1e-10. The alignment sequence
database for PSI-Blast was non-redundant (NR) at a 90% sequence identity
level. Low complexity sequences, transmembrane helices and coiled-coil
regions were filtered from the sequence database using Pfilt (Jones and
Swindells, 2002). All new datasets used for training and testing are available
for download from URL: http://protein.bio.unipd.it/espritz/.

2.3.1 X-ray disorder The X-ray training set was constructed from
crystallographic structures deposited in the PDB until May 1, 2008, restricted
to X-ray protein chains of length between 25 and 2000 amino acids, with
resolution at most 2.5 Å and R-factor up to 25%. Disordered residues are
defined as those with missing backbone C-alpha atoms. All proteins were
classified into those containing at least three consecutive disordered amino
acids and those with no disordered regions. Both subsets were sorted by
decreasing quality and reduced by sequence identity using UniqueProt (Mika
and Rost, 2003) to an HSSP value of 0 (∼25% over 100 aligned residues)
giving priority to proteins with better quality (-m option). The resulting lists
were merged and redundancy reduced in a similar manner leaving proteins
with disordered regions as a priority. The training set contains 3244 proteins
with 660 120 residues of which 5.68% are disordered. The test set was created
using the same procedure for proteins released by the PDB between May 1,
2008 and September 13, 2010. The test set contains 569 proteins with 94 520
residues of which 7.34% are disordered.

2.3.2 DisProt disorder The training set is based on DisProt version 3.7
(January 28, 2008) in order to ensure that we have sufficient testing data,
i.e. proteins annotated between 2008 and 2010. It contains 484 proteins with
219 424 residues where we consider 25.71% disordered. Here we define
a residue as disordered if the DisProt curators consider the residue to be
disordered at least once while all other residues (including unannotated) are
considered structured. Since many residues are unannotated in DisProt, and
this could be a potential source of bias in testing, we extend the coverage
of the test set by annotating DisProt version 5.7 with PDB structures in
analogy to the work of Sirota et al. (2010). Briefly, all sequences from
DisProt 5.7 with >40% sequence identity to the training set are removed. The
remainder was matched to PDB entries through the UniProt accession code
from DisProt and linked through the SIFTS database (Velankar et al., 2005).
Entries were annotated for disorder considering DisProt definitions where
available. Unannotated residues are deemed structured if they exist in both
the SEQRES and ATOM sections, and as disordered for regions of length at

least five residues missing from the latter. The DisProt and PDB sequences
were then aligned to take into account possible variations, and PDB disorder
annotations transferred to the DisProt sequence with at least 95% sequence
identity. The new test set contains 52 proteins where 49.72% of the residues
are unannotated, 41.04% are disordered and 9.24% are ordered for a total of
18 096 residues.

2.3.3 NMR mobility NMR mobility datasets are calculated using the Mobi
server (Martin et al., 2010). Mobi is based on a simple algorithm to find
regions with different conformations among all models in an NMR ensemble.
Briefly put, residues with a variation of atomic coordinates and torsion
angles between models above a fixed threshold are marked as mobile. The
threshold was optimized to replicate the NMR disorder definition used in
CASP8 (Noivirt-Brik et al., 2009). The extraction and redundancy reduction
is identical to the X-ray datasets (see above) except that PDB NMR structures
are considered (no quality filter). The training set consists of 2187 proteins
with 173 154 residues of which 16.90% are considered disordered. The
testing set contains 671 proteins with 59 384 residues and 18.70% disorder.

2.3.4 Other datasets The MxD dataset (Mizianty et al., 2010), sharing
<25% sequence identity with CASP8, was downloaded from the website
at URL: http://biomine-ws.ece.ualberta.ca/MxD.txt. Note that the 5-fold
cross-validation used here might differ from the one used in the paper.
The Homo sapiens protein sequences were downloaded from URL:
ftp://ftp.ncbi.nih.gov/genomes/. The total number of proteins as of September
2010 for the human genome was 39 151. The time comparison was calculated
for 1% of the human genome (i.e. 391 proteins).

2.4 Comparison with available methods
ESpritz is compared with several other methods which were either
downloaded (Disopred, MULTICOM, DisEMBL, IUpred) or used as web
server (PONDR-FIT). The original Spritz method (Vullo et al., 2006)
and our recently published improvement CSpritz (Walsh et al., 2011) are
also shown for comparison. In all cases, the methods were used with
default parameters. Multiple sequence alignments for Disopred and ESpritz
were calculated on the 90% reduction of the May 2008 non-NR database
and preprocessed with the pfilt program. MULTICOM alignments were
calculated using an internal database. The CASP9 data was downloaded
from the official website (URL: http://predictioncenter.org/casp9/). Note
that, in contrast to our previous paper (Walsh et al., 2011), 252 residues
marked as ‘x’ in CASP9 were not considered in the analysis and disordered
segments of 1 or 2 residues are considered. ESpritz is available both as a
web server and as a pre-compiled executable for Linux machines from URL:
http://protein.bio.unipd.it/espritz/.

2.5 Measuring performance
The assessment of our predictions use similar measures as used in
CASP8 and previous CASPs (Noivirt-Brik et al., 2009). There are two
types of measures. Binary measures are calculated once the probability
decision threshold is found. All our disorder probability thresholds were
found on the corresponding training sets. We define the binary measures
sensitivity (Sens = TP/Ndis), specificity (Spec=TN/Nord), selectivity
(Sel=TP/TP+FP), F- measure [F =2× Sen × Sel/(Sen + Sel)], Matthews
correlation coefficient (MCC), accuracy [Acc=(Sens+Spec)/2] and the
score (Sw =Sens+Spec-1) (Lobanov et al., 2010). TP, TN, FN and FP
are the number of true positives, true negatives, false negatives and false
positives, respectively (positive is disorder, negative is order). Ndis, Nord are
the number of disorder and ordered residues, respectively. We also use area
under the receiver operator curve (AUC), calculated between false positive
rate (FPR = 1 - specificity; x axis) and true positive rate (TPR = sensitivity; y
axis), as a measure of the quality of the probabilities. As in CASP8 (Noivirt-
Brik et al., 2009), the statistical significance of the evaluation scores was
determined by bootstrapping (Supplementary Material): 80% of the targets

505

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/4/503/211681 by guest on 21 August 2022



[15:31 9/2/2012 Bioinformatics-btr682.tex] Page: 506 503–509

I.Walsh et al.

were randomly selected 1000 times, and the standard error of the scores was
calculated (i.e. 1.96 × standard_error gives 95% confidence around mean
for normal distributions).

3 RESULTS

3.1 Training and consensus building
The different Spritz variants (Table 1) have been trained on pre-
CASP8 data from all three flavors of protein disorder (X-ray,
DisProt, NMR). A comparison between training and test set
performance can be found in Supplementary Table S1, which also
show how the training examples is 30–100 times the number
of parameters for each predictor. The consistent performance on
independent training and test sets is an indication of the good
generalization capability of ESpritz. Table 2 and Supplementary
Table S2 show the results for the X-ray disorder definition
in comparison with various other methods and Table 3 and
Supplementary Table S3 for analogous data on DisProt. From the
data, it is apparent that the Spritz variants present high specificity and
clearly outperform the methods used for comparison. The difference
is more pronounced for the DisProt dataset, probably because it
contains longer disordered segments on which fewer methods have
been trained. This appears to confirm the hypothesis that long
(i.e. DisProt) and short (i.e. X-ray) disorder are different flavors
(Schlessinger et al., 2011). As expected, the profile-based predictors
perform slightly better than the sequence-only ones, although the
latter are still competitive. The effect of the BRNN architecture
becomes apparent in comparison to the standard neural network
(NN), which performs significantly worse. It is also interesting to
note that the differences between sequence encoding schemes appear
minimal. Each Spritz variant remains, nevertheless, competitive
against other state-of-the-art methods such as IUPred and DisoPred.
These results are also verified using 5-fold cross-validation on an
independent set provided by the MxD database (Mizianty et al.,
2010) (Supplementary Table S4).

Table 2. Benchmark results on X-ray disorder test set

Predictor Sens Spec Sw AUC

CSpritz 79.63 85.05 64.68 0.8993
SSpritzP 76.48 87.02 63.50 0.8893
ESpritz 77.23 85.63 62.85 0.8912
ESpritzP 77.49 85.29 62.77 0.8876
MULTICOM 81.99 80.37 62.37 0.8879
ASpritzP 76.06 84.81 60.86 0.8766
ESpritzS 73.67 86.23 59.89 0.8748
SSpritz 73.98 85.39 59.37 0.8699
ASpritz 73.03 86.23 59.25 0.8721
NN (w=23) 69.39 87.74 57.12 0.8645
PONDR-FIT 69.20 86.73 55.92 0.8609
Disopred 56.48 93.87 50.33 0.8391
IUPred (short) 54.00 94.95 48.92 0.8475
Spritz (old) 41.63 93.09 34.69 0.7884
DisEMBL465 31.91 97.67 29.61 0.8320

Performance measured on X-ray disorder for 569 structures.
Methods performing at least as well as or not statistically different
from ESpritz are highlighted in bold. Methods performing at least
as well as or not statistically different from ESpritzS, our best fast
predictor, are in italics and underlined.

Once the performance has been established, the question
becomes whether the same disorder information is detected to
a different degree or slightly distinct signals are picked up by the
Spritz variants. This information could then be used to create a
consensus predictor. Figure 1 shows how the different methods
represent somewhat different predictions and an implicit confidence
estimate. Whenever the four variants agree, as they do for ∼80%
of all residues, the accuracy is close to 100% for order and
∼40% for disorder (see Supplementary Table S5 for Pearson’s
correlation coefficients). The relative rarity of intermediate cases
should allow a simple averaging of the probabilities (ESpritz)
to outperform each individual method, as shown in Table 2. In
order to maintain the efficiency of the sequence-only variants, the
two partial combinations between SSpritz/ASpritz (ESpritzS) and
SSpritzP/ASpritzP (ESpritzP) are also shown. In the following, for

Table 3. Benchmark results on enhanced DisProt
disorder test set

Predictor Sens Spec Sw AUC

ESpritz 77.51 80.37 70.58 0.892
ESpritzS 73.78 93.66 67.44 0.901
ESpritzP 75.47 91.69 67.15 0.888
PONDR-FIT 68.89 93.18 62.08 0.885
IUPred (long) 61.57 96.83 58.4 0.878
Disopred 64.19 93.9 58.54 0.824
CSpritz 79.07 78.02 57.09 0.877
MULTICOM 77.35 78.89 56.23 0.853
NN (w=23) 69.05 82.66 51.71 0.815
IUPred (short) 49.17 97.61 46.77 0.855
Spritz (old) 81.74 59.86 41.6 0.770
DisEMBL465 32.51 98.03 30.53 0.792
DisEMBL 46.74 82.89 29.63 0.692

Performance on enhanced Disprot disorder for 52 structures.
Methods performing at least as well as or not statistically different
from ESpritz are highlighted in bold. Methods performing at least
as well as or not statistically different from ESpritzS, our best fast
predictor, are in italics and underlined.

Fig. 1. Agreement between the four Spritz variants. The relative frequency
(coverage) of each state distribution for the four predictors is plotted together
with the accuracy for that case.
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Table 4. Benchmark results on NMR disorder test set

Predictor Sens Spec Sw AUC

ESpritzP 72.83 79.19 52.01 0.8366
ESpritz 72.53 79.33 51.85 0.8401
ESpritzS 66.94 80.77 47.71 0.8179
CSpritz 71.93 74.74 46.67 0.7964
MULTICOM 75.14 69.55 44.69 0.7976
PONDR-FIT 63.74 75.55 39.29 0.7533
Disopred 48.69 89.19 37.88 0.7556
IUPred (short) 45.07 90.73 35.79 0.7505
NN (w=23) 51.73 80.27 31.99 0.7301
Spritz (old) 29.29 96.49 26.28 0.7481
DisEMBL HL 25.38 82.08 7.46 0.6329

Performance on NMR disorder for 671 structures. Methods
performing at least as well as or not statistically different from
ESpritz are highlighted in bold. Methods performing at least as
well as or not statistically different from ESpritzS, our best fast
predictor, are in italics and underlined. IUpred long performs worse
than IUPred short and is not shown. DisEMBL HL is the hot loops
predictor which performs better than DisEMBL465 on this dataset.

simplicity we will only show results for the ESpritz variants. Full
data is available in the Supplementary Material.

3.2 Novel NMR mobility flavor
A unique feature of ESpritz is the explicit prediction of NMR
mobility through a dedicated predictor. To the best of our knowledge,
no other method has been developed to predict disorder defined
on mobile residues in NMR structural ensembles, although this
has been benchmarked since CASP8 in 2008 (Noivirt-Brik et al.,
2009). One of the problems was the unique automatic definition of
NMR mobility, which we have recently addressed (Martin et al.,
2010). As can be seen from the results shown in Table 4 (and
Supplementary Table S6), ESpritz has a strong performance and
even the sequence-based predictors outperform existing methods.
NMR mobility appears to harbor a distinct signal that is somewhere
between short (X-ray) and long (DisProt) disorder. ESpritz is
particularly useful to detect this novel flavor of disorder, although
the specificity values remain below those of other variants. The latter
may be speculatively attributed to the variability of NMR structures,
which combine greater structural flexibility than crystal structures
with a wider range of experimental conditions. In general, the NMR
flavor appears to predict more disorder than the X-ray and DisProt
ones, with segments of length somewhere between the other two.
Supplementary Figure S1 shows as example ESpritz predictions for
the human p53 protein using the three different flavors.

3.3 Comparison on CASP9 data
In order to fully compare our method to the state-of-the-art, we use
data from the recent CASP9 experiment. Table 5 and Supplementary
Table S7 show the results for all targets, while Supplementary
Table S8 shows only the NMR targets. ESpritz is significantly more
accurate than all methods using both the Sw and AUC criteria.
This strong performance can be partially explained by the use
of a dedicated NMR prediction mode. Perhaps not unexpectedly,
the ESpritz variants excel on NMR targets thanks to the novel
NMR prediction mode, where they outperform the best CASP9

Table 5. Benchmark results on CASP9 targets ranked by Sw

Predictor Sens Spec Sw AUC

ESpritz 67.41 87.52 54.82 0.8558
PRDOS2(291) 60.78 90.03 50.65 0.8544
CSpritz 63.66 86.37 49.91 0.8316
Multicom-refine(119) 64.98 85.02 49.89 0.8217
Biomine(351) 59.63 89.01 48.48 0.8213
ESpritzS 59.75 88.83 48.43 0.8308
GSMETADISORDERMD(374) 65.72 81.93 47.57 0.8184
MASON (193) 53.70 92.76 46.25 0.7438

Performance on 117 CASP9 targets (19 NMRs and 98 X-rays). The top five performing
CASP9 groups are shown with their official group name and number in brackets. Methods
performing at least as well as or not statistically different from ESpritz are highlighted in
bold. Methods performing at least as well as or not statistically different from ESpritzS,
our best fast predictor, are in italics and underlined. Note that group 351 was missing 10
proteins.

Fig. 2. Time versus performance plot for different predictors. The time in
minutes for pedicting 1% of the human genome on a single Intel Xeon
processor core is plotted against the AUC for each locally installed method.
Note that the time axis uses a logarithmic scale.

methods by at least 15% on Sw and 7% on AUC (Supplementary
Table S8). ESpritz also outperforms our recent consensus-based
CSpritz method (Walsh et al., 2011), which combines three different
predictors including a preliminary version of SSpritz but lacks an
explicit NMR mode.

3.4 Large-scale predictions
The large-scale analysis across entire genomes is an important
application of disorder predictors (Schlessinger et al., 2011; Sirota
et al., 2010; Ward et al., 2004), both to further our understanding
of disorder as a biological phenomenon and to help establishing
protein function. The efficiency in terms of CPU time versus AUC of
different methods on a randomly selected 1% of the human genome
is shown in Figure 2. As can be seen, the field is divided between fast
methods with somewhat lower accuracy and much slower methods
using multiple sequence alignment information from PSI-BLAST.
The latter improve AUC by up to four percentage points at the
cost of four orders of magnitude of computation time. ESpritzS
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Fig. 3. Receiver-operating characteristic curve for X-ray test set data. The
plot shows the FPR in the region from 0% to 15% false positives for various
methods. The two vertical lines represent the ESpritz decision thresholds
corresponding to a predicted 5% FPR (left) and the optimal Sw threshold
(right).

combines the best of both worlds, by maximizing performance for
a fast method that does not require multiple sequence alignments.

When analyzing large numbers of sequences, it can be especially
useful to be able to limit the number of expected false positives
to avoid drawing false conclusions on the prevalence of disorder
(Sirota et al., 2010). Figure 3 shows a typical receiver-operating
characteristic curve plot on the X-ray dataset. As can be seen,
ESpritzS is particularly good at low FPRs up to around 5% FPR,
after which the relative FPR increases. The optimal binary Sw
decision threshold can be found around 13.5% FPR. An alternative
5% expected FPR threshold was derived on the training dataset for
all ESpritz variants. On the testing data this yields ∼63% sensitivity
and 45% selectivity at ∼6.5% FPR. The more stringent decision
threshold provides a simple way to limit the number of false positives
at the expense of somewhat lower sensitivity. At this low FPR
threshold, the ESpritz variants perform better than the other tested
methods using similar decision thresholds. For the full analysis on
all datasets, including F-measure and MCC values, please refer to
the Supplementary Material. The 5% expected FPR threshold should
prove useful for high-throughput applications requiring low FPRs. It
is, therefore, expected that ESpritzS can provide a valid alternative
in applications requiring the high-throughput analysis of thousands
of sequences or entire genomes.

4 CONCLUSIONS
We have presented a new ensemble of disorder predictors, called
ESpritz, having state-of-the-art performance on three different
flavors of disorder. Compared with our previous methods Spritz
(Vullo et al., 2006) and CSpritz (Walsh et al., 2011), ESpritz
combines a more sophisticated BRNN architecture with enhanced
definitions of disorder flavors. The BRNN improves performance
slightly on X-ray data but substantially on the other two disorder
datasets. The comparatively larger improvement on DisProt data
may be related to our usage of an enhanced re-annotation of
ordered segments in DisProt (Sirota et al., 2010), providing a clearer
distinction between the two states. Unsurprisingly, where ESpritz
really excels is on NMR mobility. This is a novel definition which,

to the best of our knowledge, was never incorporated before in a
disorder predictor. Our comparison with existing methods, and the
strong performance on CASP9 data, suggest that NMR flexibility
is encoded by a somewhat different but related signal to the other
two flavors. The NMR flavor appears to capture a larger fraction of
amino acids at the borderline between the ordered and disordered
states, perhaps at the expense of more false positive predictions.
Nevertheless, the differences between disorder datasets support
the hypothesis of different flavors being encoded by somewhat
different sequence features as suggested by Schlessinger et al.
(2011). The second major improvement in ESpritz is the creation of
a sequence-only predictor which is four orders of magnitude faster
than multiple sequence alignment-based methods at the expense of a
slight reduction in accuracy. This allows the user to choose between
highly accurate predictions for single proteins or high-throughput
predictions at genomic scale. The third, and final, improvement in
ESpritz is the definition of an alternative, more stringent, disorder
threshold limiting the expected FPR to 5%. This allows the user
to choose between detection of more disorder or highly selective
predictions depending on the data being analyzed. The very high
specificity of ESpritz also ensures a low rate of false positives on
high-throughput problems, making it even more valuable for this
task. This scenario is typically overlooked when developing disorder
prediction methods, but accounts for a large part of the biological
problems to be addressed. We believe that ESpritz offers an accurate
and efficient way to address many biologically relevant problems
encountered with disordered proteins.
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