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ABSTRACT 

Essays in Applied Microeconomics 

Lesley Jeanne Turner 

 

This dissertation broadly focuses on the role government should play in providing and financing 

education. The first chapter estimates the economic incidence of need-based student aid, one tool 

intended to ameliorate credit constraints in the market for higher education. The second chapter 

examines whether government programs providing support to low-income families should 

explicitly support or deny access to higher education by analyzing the impact of college 

attendance on the labor market outcomes of current and former welfare recipients. Chapter 3 

focuses on publicly provided education at the primary and secondary levels, and estimates the 

impact of a teacher incentive pay program on student achievement. 
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INTRODUCTION 
 

 

In the United States, like many developed countries, government provides substantial 

support for primary, secondary, and postsecondary education. In 2011, expenditures on 

education equaled 7.6 percent of GDP (National Center for Education Statistics 2011). At the 

postsecondary level, federal grants and loans for college students aim to ameliorate credit market 

imperfections. Publicly provided K-12 education insures universal access to human capital 

development for all children. This dissertation broadly addresses the question what role 

government should play in financing and providing education.  

The first chapter estimates the economic incidence of need-based student aid, one tool 

used to address credit market imperfections in the market for higher education. The federal Pell 

Grant Program provides billions of dollars in subsidies to low-income college students to 

increase affordability and access to higher education. Using regression discontinuity (RD) and 

regression kink (RK) designs, I show that 16 percent of all Pell Grant aid is passed-through to 

schools in the form of higher effective prices. Additionally, I reconcile differences between RD 

and RK estimates using a framework in which the treatment of Pell Grant aid is 

multidimensional: students receive an additional dollar of Pell Grant aid and are also labeled as 

Pell Grant recipients. RD estimates confound the effects of these dimensions, which have 

opposite impacts on schools’ pricing decisions. With my combined RD/RK approach, I am able 

to separately identify schools’ willingness to pay for students categorized as needy and the 

pricing response to outside subsidies.  

The second chapter of my dissertation examines whether government programs providing 

support to low-income families should explicitly support or deny access to higher education. I 

1



estimate the impact of college credits and credentials on the labor market outcomes of several 

cohorts of current and former welfare recipients. I use an event-study approach to control for 

time-invariant individual characteristics, such as differences in ability and motivation. Women 

who are induced to attend college after entering welfare experience large and significant earnings 

gains, however, these returns are driven by credential receipt and when sub-associate’s degree 

credentials are unobservable, positive earnings gains will be inappropriately attributed to college 

attendance alone.  

The final chapter of my dissertation addresses the question of how to efficiently provide 

education at the primary and secondary levels. Teacher compensation schemes are often 

criticized for lacking a performance-based component. Proponents argue that teacher incentive 

pay can raise student achievement and stimulate system-wide innovation. My coauthor and I 

examine a group-based teacher incentive scheme implemented in New York City and investigate 

whether specific features of the program contributed to its ineffectiveness. Although overall the 

program had little effect on student achievement, we show that in schools where incentives to 

free-ride were weakest, the program led to small increases in math achievement. Our results 

underscore the importance of carefully considering the design of teacher incentive pay programs.  
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CHAPTER 1 
 

 

The Incidence of Student Financial Aid: Evidence from the Pell Grant Program 
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1.1 Introduction 

The federal government provides billions of dollars in targeted need-based aid to low-income 

college students every year. Although students are the statutory recipients of this aid, its 

economic incidence may fall partially on schools (Fullerton and Metcalf 2002). Specifically, 

schools may strategically increase recipients’ effective prices, crowding out federal aid by 

reducing discounts provided through institutional aid. Concurrent tuition and student aid 

increases combined with substantial growth in the for-profit sector of higher education 

underscore the importance of evaluating federal aid crowd out.  

In this paper, I estimate the economic incidence of the federal Pell Grant Program, the 

largest source of need-based student aid in the United States, using detailed student-level data 

from the National Postsecondary Student Aid Study. I show that institutions capture 16 percent 

of all Pell Grant aid – approximately $6 billion in 2011 – through price discrimination. 

Furthermore, I illustrate that the extent and pattern of capture vary substantially by institutional 

control and selectivity. For example, on average, public schools do not capture any Pell Grant 

aid, while among students attending selective nonprofit schools, decreases in institutional aid 

crowd out over 50 percent of the value of Pell Grant aid. Additionally, the incidence of the Pell 

Grant Program also varies across students within some sectors. For instance, among public 

school students near the Pell Grant eligibility threshold, Pell Grant aid appears to crowd in rather 

than crowd out institutional aid.  

I identify these impacts using discontinuities in the relationship between Pell Grant aid 

and the federal government’s measure of student need. Specifically, the Pell Grant Program’s 

schedule contains discontinuities in both the level and in the slope of aid, resulting in students 

with very similar levels of need receiving significantly different grants. This variation allows me 
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to use both regression discontinuity (RD) and regression kink (RK) designs (Angrist and Lavy 

1999; Hahn et al. 2001; Card et al. 2009; Nielsen et al. 2010). My analysis illustrates the 

relationship between these two methods and provides an example of circumstances under which 

RD and RK designs will yield significantly different conclusions.  

The RK approach relates the change in the slope of the Pell Grant schedule at the 

eligibility cut-off with the change in the slope of the institutional aid schedule at this same point. 

RK estimates imply that, on average, schools capture a portion of Pell Grant aid through price 

discrimination. In contrast, the RD approach relates the change in the level of Pell Grant aid at 

the eligibility cut-off with the change in the level of institutional aid at this same point. RD 

estimates imply that, on average, schools increase institutional aid for Pell Grant recipients.  

I reconcile these disparate estimates using a framework in which the “treatment” of Pell 

Grant receipt is multidimensional. Specifically, students at the margin of Pell Grant eligibility 

receive an extra dollar of outside aid but are also given the label of being a Pell Grant recipient, 

which may change some institutions’ willingness to direct resources towards them. I show that it 

is possible to identify both schools’ willingness to pay for students categorized as Pell Grant 

recipients and their pricing response to outside subsidies using a combined RD/RK approach.  

RD estimates only identify the combined impact of these dimensions, and near the Pell 

Grant eligibility threshold, a greater willingness to pay dominates the pass-through of outside aid 

from students to schools. This result is misleading, however, since using my combined RD/RK 

approach, I estimate that fewer than one third of Pell Grant recipients benefit from these 

transfers. This is because the pass-through of each additional dollar of Pell Grant quickly 

overtakes these schools’ willingness to pay for needy students. My results suggest that, on 

average, Pell Grant recipients receive an additional $260 in institutional aid due to schools’ 
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willingness to pay for needy students, but every additional dollar of Pell Grant aid is crowded out 

by a 22 cent reduction in institutional aid. 

My paper is one of the first to combine these two identification strategies and the first to 

explicitly show how a multidimensional treatment affects RD estimates. Although the Pell Grant 

Program provides an especially stark example of how a multidimensional treatment affects RD 

estimates, in other circumstances where both a discontinuity and a kink are present, my results 

suggest that additional information can potentially be gained from using my combined RD/RK 

approach. 

Little is known about how institutions compete for students or the objectives of public 

and nonprofit schools. This paper provides insight into the industrial organization of higher 

education by showing how variation in schools’ response to Pell Grant aid relates to differences 

in schools’ objectives and market power across sectors. Public schools demonstrate a willingness 

to pay for students categorized as Pell Grant recipients. Although the net capture of Pell Grants 

in the public sector is close to zero, increases in institutional aid for recipients near the eligibility 

threshold come at the expense of the neediest Pell recipients. Conversely, selective nonprofit 

institutions appropriate 79 percent of their students’ Pell Grants, suggesting these schools have 

considerable market power.  

The for-profit sector of higher education has grown substantially over the last decade and 

in recent years, has been criticized for unethical marketing practices and financial aid fraud (U.S. 

Government Accountability Office 2010).  Although these schools disproportionately serve 

federal aid recipients, I find that for-profit institutions behave no differently than nonselective 

nonprofit schools and, combined, these schools appropriate only 18 percent of their students’ 

Pell Grants.  
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Finally, this paper contributes to a broader literature on the effectiveness of targeted 

subsidies and the importance of considering impacts on the behavior of both consumers and 

firms.1 Research by Long (2004) and Turner (2012) suggests that other sources of financial aid 

crowd out institutional discounts by as much as 100 percent. However, previous studies 

specifically focusing on the Pell Grant Program estimate a positive correlation between prices 

and Pell Grant generosity. These impacts are identified using time-series variation in the 

maximum award, variation that is likely correlated with unobservable year specific shocks to the 

economy (e.g., McPherson and Schapiro 1991; Singell and Stone 2007).  

The remainder of this paper proceeds as follows: the next section describes the Pell Grant 

program and previous estimates of the impact of student aid on prices. Section 1.3 discusses the 

NPSAS data and presents descriptive statistics, while Section 1.4 describes the regression kink 

design and my estimation strategy. Section 1.5 presents results from RD and RK estimates and 

Section 1.6 provides a conceptual framework that reconciles differences between these estimates. 

I estimate the overall incidence of the Pell Grant Program in Section 1.7, while Section 1.8 

concludes. 

1.2 The Pell Grant Program and Need-based Student Aid  

An extensive literature estimates large private returns to higher education and positive 

externalities associated with a highly educated population.2 Between 1979 and 2009, real tuition 

and fees increased by close to 200 percent, outpacing growth in income and student aid (National 

Center for Education Statistics, 2011). If some individuals face credit constraints and cannot 

                                                 
1 For example, Rothstein (2008) shows that Earned Income Tax Credit (EITC) induced increases in labor supply 
drive down wages, and firms receive over half of the benefit of EITC payments. Hastings and Washington (2010) 
show that grocery stores benefit from public assistance via cyclical pricing in response to recipients’ impatience. 
 
2 For example, see Card (1999), Moretti (2004), Lochner and Moretti (2004), and Dee (2004). 
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borrow against future income to finance college attendance, education levels may be inefficiently 

low. For these reasons, the United States federal and state governments provide substantial 

subsidies to low-income college students.  

Established to promote access to postsecondary education, the Pell Grant Program is the 

largest source of need-based student aid in the United States. In 2011, the program provided 9.5 

million low-income students with subsidies totaling $35 billion. The maximum Pell Grant award 

has grown in generosity from $452 during the 1973-1974 school year (hereafter, 1974) to $5,550 

in 2011, a 62 percent increase in real terms (Figure 1.1). However, over this period the 

purchasing power of the maximum Pell Grant award declined (Figure 1.2). In 2010, the 

maximum Pell Grant represented 42 percent of average tuition and fees at public institutions and 

only 17 percent at private schools (National Center for Education Statistics, 2011).  

A student’s Pell Grant award depends both on the annual maximum award and upon her 

expected family contribution (EFC), the federal government’s measure of need. Students are 

required to complete a Free Application for Federal Student Aid (FAFSA) to qualify for Pell 

Grants and other federal student aid (e.g., loans, work-study). FAFSA inputs include a detailed 

set of financial and demographic information, such as income, untaxed benefits, assets, family 

size and structure, and number of siblings in college. When filing the FAFSA, students also must 

specify up to (but no more than) six schools they are considering attending.3  

The federal government calculates a student’s EFC using a complicated, non-linear 

function of these inputs (e.g., U.S. Department of Education 2006). The federal government 

provides the listed schools with the student’s EFC and FAFSA inputs, and these schools 

calculate federal (and in some cases state) grants and loans. With this information in hand, 

                                                 
3 Beginning in 2009, students could specify up to 10 schools that would receive their FAFSA information.  
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schools choose how institutional aid will be distributed across students. Thus, a school observes 

the student’s FAFSA, EFC, and outside aid before deciding the level of its own discount, which 

it provides via institutional aid. Students receive a financial aid package from each school 

specifying federal, state, and institutional grant aid and loans. Students do not observe their Pell 

Grant award until this point, where it is included as a component of the final price displayed in 

their financial aid package.  

A full-time, full-year student i in year t qualifies for a Pell award equal to: 

(1.1)          200,400400400  ittittittit EFCmaxPellEFCmaxPellEFCmaxPellPell 11  

Where maxPellt is the maximum Pell award available in year t (Figure 1.1), EFCit is the expected 

family contribution of student i in year t, and  1  is the logical indicator function. Pell Grant 

awards are rounded up to the next $100 and students qualifying for an award between $399 and 

$200 receive $400.4 Students who qualify for less than $200 in aid do not receive a Pell Grant. 

The Pell Grant formula generates two sources of variation that I use for identification. First, 

crossing the Pell Grant eligibility threshold leads to a discrete increase in a student’s statutory 

award, from $0 to $400, which enables me to use a regression discontinuity design. Second, the 

variation created by the change in the slope of the Pell Grant-EFC function, from 0 to -1, allows 

me to use a regression kink design.5 Figure 1.3 displays the Pell Grant award schedule in 1996, 

2000, 2004, and 2008.6  

                                                 
4 The minimum Pell Grant award increased to $890 in 2009, $976 in 2010, and $1176 in 2011. However, the 
minimum award remained $400 in the years I examine.  
 
5 The Pell Grant formula for part-time students is   0,max ittit EFCmaxPell0.5Pell  ; the change in the slope of the 

relationship between EFC and Pell Grant aid is -0.5. The minimum Pell Grant does not depend on attendance 
intensity. Part-year students receive a prorated Pell Grant. 
 
6 Eligibility for other types of federal aid (e.g., Supplemental Educational Opportunity Grants, Stafford loans, work 
study) also depends on the EFC. The Pell Grant Program is the only federal entitlement for college students.   
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1.2.1  Previous Estimates of the Impact of Pell Grant Aid on College Enrollment and Prices 

Tuition and financial aid influence important outcomes, from the decision to enroll in 

college, to persistence and degree completion (Angrist 1993; Bound and Turner 2002; Dynarski 

2003; Bettinger 2004). Although the Pell Grant Program aims to increase low-income students’ 

access to higher education, past research finds little impact on college enrollment except for 

older, non-traditional students (Kane 1995; Seftor and Turner 2002, Deming and Dynarski 

2010). Students only receive information concerning the level of their Pell Grant after they have 

submitted a FAFSA, and this information is provided as part of a school’s financial aid package, 

where the final price (tuition net of state, federal, and institutional grants) is likely the most 

salient feature. If low-income students lack information about the Pell Grant Program, Pell Grant 

aid may not increase college enrollment. The complexity of the FAFSA form imposes a large 

cost on potential students (Dynarski and Scott-Clayton 2008). Bettinger et al. (forthcoming) 

show that information on the availability of financial aid and assistance with the FAFSA 

application process increase the likelihood of enrollment. 

The relatively weak response of student demand to Pell Grant aid suggests the potential 

for schools to appropriate student aid through price increases. However, previous studies show 

no conclusive evidence that increases in Pell Grant generosity cause schools to raise prices. 

McPherson and Schapiro (1991) show that overall institutional aid levels are positively 

correlated with Pell Grant generosity; Singell and Stone (2007) find a positive correlation 

between published tuition and Pell Grant generosity among private institutions. In both cases, 

identification comes from time-series variation in the maximum Pell Grant.  

Raising tuition is only one method schools may use to benefit from Pell Grant generosity. 

Schools can also adjust students’ prices through price discrimination by reducing institutional 
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aid. The practice of price discrimination, or offering a schedule of prices that varies according to 

consumer demand elasticities, has been documented in a variety of imperfectly competitive 

markets and the market for higher education is unique in the extensive amount of customer 

information schools observe, including a measure of students’ ability to pay.7  

Two studies explicitly examine whether student aid crowds out institutional aid. Turner 

(2012) estimates the incidence of education tax credits, which primarily benefit middle-income 

students, and finds that schools reduce institutional aid dollar for dollar as tax-based aid 

increases. Long (2004) examines the implementation of the Georgia HOPE scholarship program, 

which provides substantial assistance to students in Georgia who achieve a 3.0 GPA. Public 

schools responded to the HOPE program by increasing fees, capturing 10 percent of HOPE aid, 

while private nonprofit institutions captured 30 percent of HOPE aid by increasing tuition and 

fees and reducing institutional aid. Additionally, using administrative Pell Grant data and a 

simulated instrumental variables approach, Li (1999) finds a positive relationship between Pell 

Grant aid and both listed tuition and net tuition per student. By comparing the impact of Pell 

Grant aid on net tuition per student and listed tuition per student, it is possible to infer whether 

schools also alter institutional aid. Results suggest that four-year institutions both increase tuition 

and reduce institutional aid in response to Pell Grant generosity 

Schools’ response to the HOPE program suggests that the economic incidence of the Pell 

Grant Program may vary by institutional control. Traditionally, public and nonprofit schools 

primarily serve the market for higher education. However, the last decade has seen substantial 

growth in the for-profit sector. For-profit institutions increasingly serve low-income students and 

have been criticized for high student loan default rates and deceptive recruiting practices (U.S. 

                                                 
7 E.g., housing (Yinger 1998), loans (Charles et al. 2008), and vehicles (Langer 2011). 
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Government Accountability Office 2010) and charge significantly higher tuition than comparable 

public schools.8 Influenced by these concerns, “gainful employment” legislation will specifically 

regulate programs primarily offered by for-profit schools beginning in 2012.9  

1.3 Data and Descriptive Statistics  

The National Postsecondary Student Aid Study (NPSAS) is a restricted-use, nationally 

representative, repeated cross-section of college students.10 I observe each student’s EFC, 

demographic characteristics, FAFSA inputs (e.g., family income and assets), and financial aid 

provided by the federal government and other sources. My sample includes students present in 

the 1996, 2000, 2004, and 2008 NPSAS waves. I eliminate graduate and first-professional 

students as well as noncitizens and non-permanent residents, as these students are ineligible for 

Pell Grant aid. Additionally, I exclude students who attended multiple schools in the survey year, 

received athletic scholarships, and were not enrolled in the fall semester11  

I exclude all students attending schools that only offer sub-associate certificate programs, 

theological seminaries, and other faith-based institutions, since many of these schools are not 

eligible to distribute federal aid. Finally, I focus on students whose EFC is within $10,000 of the 

Pell Grant eligibility threshold, although in a subset of analyses, I look at students within 

                                                 
8 The share of Pell Grant recipients attending for-profit schools increased from 13 to 25 percent between 2000 and 
2010 (Pell Grant End of Year Reports). Conversely, the share of all students at for-profit schools grew from 4 to 11 
percent (Deming et al. 2012).  The 2009, 15 percent of former for-profit students defaulted on their student loans 
within two years of exiting college. The rates for public and non-profit institutions were 7 and 5 percent, 
respectively. In 2010, average public school tuition was $5,000; for-profit students paid $15,700 (National Center 
for Education Statistics 2011). 
 
9 The legislation requires that for-profit institutions and certificate programs in other sectors prepare students for 
“gainful employment” to qualify for federal student aid (76 FR 34386). 
 
10 After the original 2008 NPSAS sample was drawn, additional observations of National Science and Mathematics 
Access to Retain Talent (SMART) Grant recipients were added. For my main set of estimates, I drop oversampled 
SMART Grant recipients. My results are robust to using the NPSAS sample weights and retaining SMART Grant 
recipients or excluding observations from 2008, the first year of the NPSAS in which students eligible for SMART 
Grants could potentially be sampled (results available upon request). 
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narrower windows around this threshold. My final sample includes approximately 133,270 

undergraduate students attending 1,800 unique institutions. Due to the National Center for 

Education Statistics’ confidentiality requirements, all NPSAS sample sizes are rounded to the 

nearest 10 observations. 

My sample includes new and continuing students. Although upper-year students likely 

have less elastic demand than first year students, EFC and institutional aid are highly correlated 

over time. Schools award multi-year institutional aid packages and for many students, one of the 

primary components of EFC – family income – does not vary substantially over time. 

I classify schools by selectivity and control, distinguishing between public, nonprofit, and 

for-profit institutions that are either selective or nonselective. I use the IPEDS and Barrons’ 

Guide to determine an institution’s selectivity. The IPEDS contains annual data on acceptance 

rates and the Barrons’ College Guide classifies four-year public and nonprofit institutions into 

six categories of selectivity based on acceptance rates, college entrance exam performance, and 

the minimum class rank and grade point average required for admission. First, I classify all for-

profit and institutions offering two-year programs as non-selective. If the IPEDS lists an 

institution as “inclusive” (i.e., open admissions), I also classify it as nonselective. Finally, I 

classify remaining institutions as nonselective if either the Barrons’ Guide lists them as less 

competitive or non-competitive or they are missing Barrons’ rankings and admit more than 75% 

of applicants. Under this scheme, schools I classify as “selective” are not highly selective. 

Rather, these schools reject some portion of applicants.12  

Public schools are either operated by publicly elected or appointed officials or receive the 

majority of their funding from public sources. Conversely, private institutions receive the 

                                                 
12 On average, selective public institutions admit 61 percent of applicants and selective nonprofits admit 56 percent.  
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majority of funding from private sources and are run by privately appointed individuals. 

Nonprofit institutions are exempt from federal taxes but are subject to the “non-distribution 

constraint” which prohibits a school from distributing revenue to its controlling body in excess of 

regular wages and other operating expenses (Hansmann 1980).13 For-profit schools pay corporate 

income taxes, but may also distribute profits to owners or shareholders.  

1.3.1  Characteristics of Students and Schools 

Table 1.1 displays summary statistics by sector. In my sample, for-profit students are the 

most likely to receive Pell Grant aid, while students attending selective institutions are the least 

likely to receive Pell Grants. However, conditional on receiving a Pell Grant, award amounts are 

similar across sectors and approximately three quarters of Pell Grant recipients receive less than 

the maximum award. Schools in all sectors use institutional aid to provide discounts from the list 

price, although students attending for-profit and nonselective public institutions are the least 

likely to receive these discounts. On average, for-profit students are more likely to be non-white 

and are older than students in other sectors. Students attending nonselective schools are more 

likely to be classified as independent, a status given to students who are married, have 

dependents, are veterans, or are older than 24.  

I use information from the Integrated Postsecondary Student Data System (IPEDS) to 

examine overall revenue and expenditures for schools in my sample. The IPEDS contains the 

universe of institutions that receive federal student aid and the U.S. Department of Education 

collects detailed information on school characteristics, enrollment, faculty and staff, and finances 

through annual surveys. Table 1.2 displays institutional revenue and expenditures for each sector 

                                                 
13 Internal Revenue Code (IRC) section 501(c)(3). Income from activities unrelated to the provision of education is 
subject to taxation (IRC sections 511-514).  
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using data from the IPEDS. For-profit schools are the only institutions that receive a substantial 

portion of revenue from the Pell Grant Program (14 percent). Pell Grants represent only 7 

percent of public nonselective schools’ revenue, 4 percent of revenue in private nonselective 

schools, and only 1 to 2 percent for more selective institutions. With the exception of for-profit 

institutions, these calculations suggest that relative to other sources of revenue, even if 

institutions responded to Pell Grant increases by raising overall tuition, the potential gains would 

be quite small. 

1.4 Empirical Framework 

Previous studies identify the impact of Pell Grant aid on prices using time series variation in the 

maximum award. However, if aid generosity is correlated with unobservable time-varying 

shocks, these estimates will suffer from omitted variables bias. Since Pell Grant generosity also 

varies across students within a given year, it is possible to separate the impact of Pell Grant aid 

from year-specific shocks under the assumption that, conditional on observables, Pell Grant aid 

is not correlated with unobservable student characteristics. This is a strong assumption. Pell 

Grant generosity is increasing in need, and while I can explicitly control for EFC, the specific 

functional form of the relationship between EFC and unobservable heterogeneity is unknown.  

To overcome concerns of omitted variables bias, I take advantage of the relationship 

between Pell Grant aid and EFC. Specifically, I identify the impact of Pell Grant aid on student 

prices using variation induced by the kink and the discontinuity in the relationship between Pell 

Grant and EFC. The kink occurs where the slope of the  efcPell  schedule changes from 0 to -1, 

while the discontinuity is driven by the increase from in Pell Grant aid from $0 to $400 at the 

eligibility threshold, due to the rounding-up of awards scheduled to fall between $200 and $400. 

This variation allows me to use both a regression discontinuity (Angrist and Lavy 1999; Lee and 
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Lemieux 2010) and a regression kink design (Card et al. 2009; Nielsen et al. 2010). Like the 

regression discontinuity design, the regression kink estimator identifies the average treatment 

effect for individuals near the eligibility cut-off under specific conditions. 

1.4.1   Regression Kink and Regression Discontinuity Designs 

 Similar to the regression discontinuity (RD) design, the regression kink (RK) design 

allows for identification of the impact of an endogenous regressor that is a known function of an 

observable assignment variable (Card et al. 2009). Here, the endogenous regressor is Pell Grant 

aid, while EFC is the assignment variable. The RK design uses variation induced by a change in 

the slope of the relationship between Pell Grant aid and EFC as the eligibility threshold is 

approached from above and below. Like the RD design, the RK design will be invalidated if 

individuals are able to sort perfectly in the neighborhood of the kink.  

Let     UEFCgPellfY  ,  represent the causal relationship between institutional 

aid, Y, and Pell Grant aid,  EFCPellPell  , in a given school and year, where U is random 

vector of unobservable, predetermined characteristics. Given the existence of a kink in the Pell 

Grant schedule, the required identifying assumptions are: (1) the direct marginal impact of EFC 

on institutional aid is continuous and (2) the conditional density of EFC (with respect to U) is 

continuously differentiable at the threshold for Pell Grant eligibility (Card et al. 2009). These 

assumptions encompass those required for identification using a RD design, which requires 

institutional aid to be continuous (rather than continuously differentiable) in EFC and that the 

conditional density of EFC be continuous (rather than continuously differentiable). Essentially, 

even if many other factors affect college pricing decisions, as long as there are no discontinuities 

in the relationship between these factors and EFC at the eligibility threshold, the RK estimator 

approximates random assignment in the neighborhood of the kink. Additionally, as in the case of 
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the RD design, the second assumption generates testable predictions concerning how the density 

of EFC and the distribution of observable characteristics should behave in the neighborhood of 

the eligibility cut-off.  

Assume that each additional dollar of Pell Grant aid has the same marginal effect on 

schools’ pricing decisions (at least in the neighborhood of the eligibility threshold): 

(1.2)       PellPellf 1,     

In this case, 1  represents the pass-through of each additional dollar of Pell Grant aid from 

students to schools.  

If the required identifying assumptions hold, the RK estimator identifies: 
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Where 0efc  represents the eligibility threshold for the Pell Grant Program. Since the Pell Grant 

Program’s schedule also contains a discontinuity in the level of aid at the eligibility threshold, I 

can also identify the impact of Pell Grant aid on college pricing decisions using a RD design. As 

long as equation (1.2) describes the relationship between Pell Grant aid and colleges’ pricing 

decisions, the RD estimator also identifies 1 : 
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In practice, my estimation strategy involves “fuzzy” RD/RK. Some eligible students do 

not apply for federal aid and thus, do not receive Pell Grants.14 Additionally, variables in the 

NPSAS contain measurement error induced by random perturbations to preserve respondent 
                                                 
14 Results are robust to eliminating students who do not submit a FAFSA (available upon request).  
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confidentiality. Since the location of the Pell Grant Program’s eligibility threshold changes as the 

maximum award increases, I create a standardized measure of the distance of a student’s EFC 

from the year-specific EFC representing the eligibility threshold: 
titit efcEFCCFE 0

~  , where 

t
efc0  is the cut-off for Pell Grant eligibility in year t and all students with 0

~ itCFE  are 

ineligible for Pell Grant aid.15 Figure 1.4 displays the empirical distribution of Pell Grant aid for 

students in my sample by standardized EFC.16
  

Consider the following first stage and reduced form equations: 

(1.5)           ijttjititititit CFECFECFECFEPell 
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Here, i indexes students, j indexes institutions, and t indexes years. itPell  is the Pell Grant award 

received by student i in year t, while yijt represents the institutional aid provided by school j to 

this student. The term  `

0
~ itCFE1  is an indicator for Pell Grant eligibility while ρ indexes the 

degree of polynomial in the assignment variable, itCFE
~

. I include year and school fixed effects 

as well as a vector of student characteristic to reduce residual variation; these terms are not 

necessary for identification.17 The ratio of the reduced form and first-stage coefficients for the 

                                                 
15 For the years I examine, efc0t equals $2140 (1996), $2925 (2000), $3850 (2004), and $4110 (2008). 
 
16 In a given year, the kink and discontinuity in the relationship between Pell Grant aid and EFC occur at slightly 
different values of EFC (see Appendix Figure A2). However, the distance between these points is quite small and 
only a small fraction of students have an EFC falling on this “plateau”. I treat both the slope and the level of Pell 
Grant funding changes as occurring at the eligibility cut-off. My results are robust to removing students whose EFC 
falls on the plateau (forcing the discontinuity and kink to occur at the same value of EFC). 
 
17 These characteristics include indicators for gender, race, fall attendance intensity, enrollment length, level (e.g., 
whether the student is a first year, second year, etc.), out-of-state student, and a quadratic in age. 
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interaction between  0
~ itCFE1  and the linear term in itCFE

~
, 



ˆ

ˆ
ˆ RK , represents the RK 

estimate of the impact of Pell Grant aid on institutional aid. Likewise, the ratio of the reduced 

form and first-stage coefficients for Pell Grant eligibility, 


ˆ

ˆ
ˆ RD , represents the RD estimate 

of the impact of Pell Grant aid on institutional aid.  

To further illustrate the mechanics of this framework, Figures 1.5A and 1.5B illustrate 

potential behavior of the relationship between institutional aid and EFC near the eligibility 

threshold (i.e., potential values for γ and β) and corresponding implications for RK and RD 

estimates. In the first case (Figure 1.5A), there is no discontinuity or kink in the relationship 

between institutional aid and EFC near the eligibility cut-off – the change in the level and the 

slope of institutional aid are both equal to zero – indicating students receive the full benefit of 

Pell Grant aid. In this case, the RD and RK estimators both yield an estimate of zero. 

Conversely, Figure 1.5B illustrates the case where Pell Grant aid fully crowds out institutional 

aid. The change in the level of institution aid is equal (in absolute value) to the change in the 

level in Pell Grant aid, suggesting the RD approach will yield an estimate of -1, or full pass-

through of Pell Grant aid from students to institutions. The change in the slope of institutional 

aid at the eligibility threshold is likewise equal (in absolute value) to the change in the slope of 

the Pell Grant schedule at this same point, also resulting in an estimate of -1. As in the first 

example, both RD and RK designs produce the same estimate; in this case, suggesting schools 

appropriate 100 percent of Pell Grant aid.  
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1.4.2  Evaluating the RD and RK Identifying Assumptions 

Identification using the RK or RD design hinges on the assumption that students cannot 

exactly sort to obtain a more advantageous EFC. Students and their parents likely act to reduce 

their estimated need, but as long as they cannot chose an exact value of EFC, the RK and RD 

estimators will be consistent (Lee 2008). Although online calculators and guides help families 

predict their potential EFC, these guides are based on prior year Pell Grant schedules and the 

relationship between income and EFC is complicated and non-linear. In the years I examine, the 

maximum Pell Grant awards are set by amendments to the Higher Education Act. However, this 

legislation only specifies authorized annual maximum awards. The appropriated maximum 

award, which determines the actual Pell Grant schedule, is generally smaller than the authorized 

amount. Furthermore, the Department of Education releases the Pell Grant schedule after the end 

of calendar year, making it impossible for families to make real adjustments to most of the inputs 

used to determine EFC (e.g., adjusted gross income). Families might still misreport EFC inputs; 

however, many of these inputs are also reported to the IRS (e.g., adjusted gross income, number 

of dependents) and over one-third of all FAFSA applications are audited through the Department 

of Education’s verification process.18 

Nonetheless, I test for continuity and smoothness in the density of EFC to rule out the 

possibility that students perfectly manipulate their EFCs. Figure 1.6 displays the unconditional 

density of EFC, plotting the proportion of students in each $100 EFC interval. The x-axis 

measures the standardized distance from the Pell Grant eligibility cut-off. I limit the sample to 

                                                 
18 The NPSAS contains an additional year of FAFSA information for continuing students who applied for federal aid 
for the following academic year. For these students, I test whether barely missing the eligibility threshold in the 
current year is correlated with any evidence of strategic behavior for the following year (e.g., bunching to the left of 
the new threshold). I find no evidence of this behavior (results available upon request). 
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students with  2100,2100
~ CFE  because of the large mass of individuals with an EFC of 

zero.19 In 1996, a zero EFC corresponds to 2140
~ CFE , thus, this window prevents my 

estimates from being driven by the large increase in density at EFC = 0. Due to the smaller 

window, I use smaller bins ($100) than in other graphical analyses. 

I use the McCrary (2008) test to determine whether the density of EFC is continuous 

across the threshold for Pell Grant eligibility. My method for testing continuity in the derivative 

around the cut-off is less precise, since there is presently no analog to the McCrary test statistic 

for the RK design. I follow Card et al. (2009), collapse the data into $100 EFC bins, and run the 

following regression:  

(1.7)          bbbbbb CFECFECFECFEN 
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0
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11  

Where b indexes bins, Nb is the number of students in bin b, ρ is a second order 

polynomial, bCFE
~

is the distance from the eligibility threshold, and a test of 0 estimates 

whether the density function is smooth. Figure 1.6 displays ̂  and the McCrary test statistic as 

well as the corresponding standard errors. I find no evidence that the level or the slope of the 

density changes discontinuously at the eligibility threshold.  

I examine the distribution of predetermined student characteristics around the eligibility 

threshold, including race, gender, dependency status, average SAT score (first-year students 

only), and age; here bins represent $200 EFC intervals (Figures 1.7A through 1.7E).  I also 

estimate equation (1.6), with up to a fifth degree polynomial in EFC, and test for discontinuous 

changes in the slope or level of baseline characteristic at the eligibility threshold. I display results 

                                                 
19 In the years I examine, dependent students and independent students with dependents other than a spouse received 
an automatic zero EFC if (1) anyone in their household receive means tested benefits or their household was not 
required to file IRS Form 1040, and (2) their household income was less than $20,000.  
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from the specification using the optimal degree of polynomial (determined via the Akaike 

Information Criterion) for three different windows around the eligibility threshold in Table 1.3. 

For the majority of specifications, estimated coefficients are insignificant and all coefficients are 

quite small in magnitude. 

Finally, I plot the density of EFC by institutional control and selectivity (Figures 1.8A 

through 1.8E). I find no evidence of a discontinuity in the density or its first derivative among 

public and nonselective private institutions. There is a positive increase in the density of EFC to 

the right of the Pell Grant eligibility threshold among selective nonprofit institutions, but the 

magnitude of the change in density is small and insignificant.20 

1.5 Results 

Figure 1.9 previews my main results. I pool observations from all schools across years and plot 

the relationship between Pell Grant aid, institutional aid, and standardized EFC (e.g., $200 

indicates a student’s EFC is $200 above the cut-off for Pell Grant eligibility). I collapse my data 

into $200 EFC bins and plot average institutional aid and average Pell aid by distance from the 

threshold for Pell Grant eligibility, where both institutional aid and Pell aid are residuals from a 

regression on year and institution fixed effects. Institutional aid is represented by hollow circles, 

with larger circles representing a greater number of students. Average Pell Grant aid is 

represented by the gray “X” markers. The black lines represent the linear fit of institutional aid 

on EFC, estimated separately on either side of the eligibility threshold and weighted by the 

number of students in the bin.21 The dashed gray lines represent the 95 percent confidence 

                                                 
20 Unfortunately, the NPSAS only contains information for accepted students who choose to enroll in a specific 
school, making it impossible to determine whether the density of EFC is smooth and continuous for all applicants. 
 
21 Figure 1.10 replicates this exercise, allowing for a more flexible fit of the relationship between institutional aid 
and EFC with a local linear regression. The resulting discontinuity and kink are very similar.  
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intervals for these estimates. Finally, the dashed black line represents the linear fit of average 

Pell Grant aid on EFC for eligible students. At the eligibility threshold, there is both 

discontinuous change in the relationship between EFC and institutional grant aid. For students 

who are ineligible for Pell Grants, there is a positive relationship between need and institutional 

aid, while for students who are eligible for Pell Grant aid, institutional aid is decreasing in need.  

I replicate this exercise by sector (Figures 1.11A through 1.11C). Due to sample size 

constraints, I pool selective and nonselective public schools into a single category and likewise 

group nonselective nonprofit schools (parametric regression estimates, presented in the next 

section, suggest that schools within each of these groups respond similarly to need-based aid). 

The incidence of Pell Grant aid varies substantially between public and private schools, with 

public institutions appearing to supplement Pell Grants with increased institutional aid.22 Private 

institutions’ response to Pell Grant aid is more straightforward. There is a clear discontinuity in 

the slope of institutional aid to the left of the Pell Grant eligibility threshold and a negative, but 

insignificant change in the level of aid among nonselective private schools (Figure 1.11B). There 

is a small, insignificant jump in institutional aid for selective nonprofit schools, but the kink in 

the institutional aid schedule clearly dominates (Figure 1.11C).  

1.5.1  Parametric RD and RK Estimates 

 Table 1.4 presents OLS and 2SLS estimates of equations (1.5) and (1.6) with a second 

degree polynomial in CFE
~

. The first two columns display the first stage and reduced form 

estimates, respectively. Columns 3 and 4 present separate RK and RD instrument variables 

estimates. Results are consistent with Figure 1.9 – RK estimates suggest that institutions capture 

                                                 
22 To better illustrate the behavior of institutional aid around the eligibility threshold in the public sector, the left axis 
measures institutional aid while the right axis represents Pell aid. 
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around 22 cents of every Pell Grant dollar through a reduction in institutional aid while the RD 

estimator results in a point estimate of 0.32, suggesting schools increase institutional aid by over 

30 cents for every dollar of Pell Grant aid. The test of equality of the RD and RK coefficients 

confirms that these estimated impact is statistically different. The test of equality also serves as a 

formal test of whether the impact of the Pell Grant Program on institutional pricing varies with 

EFC.  

Before further investigating the surprising result suggested by the RD estimator – that 

schools respond to each additional dollar of Pell Grant aid by increasing institutional aid – I test 

how robust my main results are to difference specifications by varying the window and 

polynomial in CFE
~

to confirm that this result is not an artifact of a particular specification (Table 

1.5). I use three windows of standardized ECF: 000,10
~ CFE ,  4000,4000

~ CFE , and 

 3000,3000
~ CFE .23 For each window, I include up to a third degree polynomial in 

standardized EFC and use the Aikake Information Criterion (AIC) to determine the optimal 

degree of polynomial. For all but the largest window, a linear term in standardized EFC provides 

the best fit to the data. Results are consistent across windows and polynomials in CFE
~

. 

1.6 A Framework for Understanding Differences in RK and RD Estimates 

Would a profit-maximizing firm ever pass-through more than 100 percent of a subsidy to 

consumers? When firms have market power, the economic incidence of a tax or subsidy may 

exceed 100 percent, but a simple model suggests that my result would not occur without very 

specific patterns of student demand or a departure from profit-maximization.  

                                                 
23 The largest window encompasses students with an AGI ranging from $0 to approximately $90,000, the second 
window includes families whose AGI falls between $20,000 and $60,000, and the smallest window restricts the 
analysis to families with an AGI between $25,000 and $50,000. 
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First, suppose a profit-maximizing monopolist serving N distinct student groups solves: 

            


N

i iii
pp

cppQ
N

1,...,1

max   

where Qi is the demand of students in group i and c is the marginal cost of serving an additional 

student. For simplicity, I assume marginal costs are constant, both in the number of students 

served and across student groups, which is reasonable if instruction and facilities make up the 

majority of expenses. The school charges students in group i a price that is equal to overall 

tuition (which does not vary across groups) minus institutional aid (which may vary across 

groups). Groups are defined by students observable characteristics (e.g., demographic 

characteristics, EFC), and schools use these characteristics to practice price discrimination. This 

is a static problem, where a school’s behavior in the current period does not affect cost or 

demand in future periods.  

A profit-maximizing monopolist charges group i students price ii cp  , where 












1i

i

i
e

e
  and ie is the price elasticity of demand for students in group i. When federal need-

based aid (s) is introduced, the school charges   ii scp  , where ics  . The change in the 

final price paid by students in group i in response to the subsidy will be: 

(1.8)      
ds

d
sc

ds

dp i

i

i 
      

For instance, 0
ds

dpi  indicates that the school fully captures every additional dollar of the 

subsidy, while 1
ds

dpi  indicates subsidies are fully passed-through to students. The sign of 
ds

dpi  

depends on both the elasticity and the curvature of the demand function for students in group i 
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(Bulow and Pfleiderer 1983; Weyl and Fabinger 2011). If demand is log-concave, 1
ds

dpi , and 

schools capture a portion of students’ Pell Grant aid by increasing prices (decreasing institutional 

aid).24 If demand is log-convex, 1
ds

dpi , and schools respond to Pell Grant aid by decreasing 

prices (increasing institutional aid), the result suggested by the RD estimator. 25 

However, the increase in institutional aid combined with the change in the slope of the 

institutional aid-EFC schedule at the threshold, with institutional transfers decreasing with every 

additional dollar of Pell Grant aid, is more surprising. If student demand is log-convex, then 

institutional transfers should increase as Pell Grant aid increases. There would have to be sharp 

changes in the demand functions of students near the eligibility threshold to account for the 

patterns of institutional aid provision I observe. Specifically, the initial $400 Pell Grant award 

would have to move students from a log-concave portion of the demand curve to a log-convex 

portion, requiring the existence of an inflection point. This is unlikely, since the eligibility 

threshold for Pell Grant aid changes over time, while pricing patterns are persistent (results 

available upon request). 

Conversely, suppose a subset of schools have a different objective function, and 

maximize weighted student enrollment, where weights vary across student groups: 

                                                 
24 The price set by a school has two components: tuition and institutional aid:

ii atp  . Since schools set tuition 

before Pell Grant awards are announced, only institutional aid responds to Pell Grant awards, thus 
ds

da

ds

dp ii  . 

 
25 In the short-run, this model can be easily generalized to represent institutional pricing with monopolistically 
competitive firms offering differentiated products. In this case, student demand will depend not only on an 
institution’s price but the prices offered by competitors,  ijiii ppQQ  , , and pricing will also depend on the cross-

price elasticities of demand. Pass-through will be decreasing in the number of competitors in the market and the 
degree of substitutability between programs offered by institutions. In the long-run, incidence will depend on the 
ease of entry into a specific market. Additionally, a substantial minority of institutions are monopolists. In 2009, 17 
percent of all institutions eligible to disburse federal aid were the only institution in their county. 
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The constraint stems from the requirement that in a static model, expenditures cannot exceed 

revenue. If the constraint is binding, schools will offer a schedule of prices that vary by demand 

elasticity as well as the weight placed on the group in the schools objective function ( i ) and the 

marginal “utility” of revenue (represented by the Lagrange multiplier):   iii cp ~ , where 

i
~  is the weight on students in group i divided by the Lagrange multiplier. If being labeled as a 

Pell Grant recipient affects this weight, schools’ pricing response to subsidy s is now:  

(1.9)          
ds

d
ssc

ds

d

ds

dp i

ii

ii 










  ~1

~
  

Equation (1.9) implies that if Pell Grant recipients receive a positive weight in the 

school’s objective function (e.g.,   0~ si ), the second term will be smaller than in the case of 

static profit maximization. Furthermore, if Pell Grant recipients’ weights are larger than those of 

observationally similar students who do not qualify for Pell Grant aid (e.g., 0
~


ds

d i ), the first 

term will be larger. If either of these terms is positive, these schools will capture a smaller 

portion of Pell Grant aid. Furthermore, rearranging equation (1.9): 

(1.10)        
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Here the first term represents the pass-through of outside student aid due to profit maximization 

(or cost minimization), while the second term accounts for a school’s willingness to pay for Pell 

Grant recipients. If, in the neighborhood of the cut-off for Pell Grant eligibility, 
ds

d i
~

does not 
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vary with s for Pell Grant recipients (e.g., if being a Pell Grant recipient increases your weight in 

the school’s objective function by a constant amount), the relationship between the prices for 

group i students and Pell Grant aid can be approximated by:   iiii ussp  10 0  1 . Here, pi 

is the final price faced by students in group i, 0 and 1 represent willingness to pay for Pell 

Grant recipients and pass-through of each additional dollar of Pell Grant aid, respectively, and ui 

is an idiosyncratic error term.26 

There are a number of reasons why schools might treat Pell Grant recipients differently 

than other students. First, schools might have objectives beyond profit maximization, such as 

increasing school-wide diversity or maximizing (weighted) student welfare. Schools might solve 

a dynamic problem where additional Pell Grant recipients in the current period increase the 

expected value of the stream of future revenue (or reduce the expected value of the stream of 

future costs). For example, schools that serve a larger number of Pell Grant recipients might 

receive more funding from state legislatures in the long-run or experience an increase in student 

demand. For instance, in recent years, the U.S. News and World Report began incorporating a 

measure of Pell Grant receipt in its school ranking calculations. For the purposes of this paper, I 

remain agnostic as to the reasons schools might treat Pell Grant recipients differently from 

students who barely miss the cut-off for eligibility.  

1.6.1  Estimating the Multiple Treatment Dimensions of Pell Grant Receipt 

Equation (1.10) suggests that the “treatment” of receiving a Pell Grant affects prices 

along two dimensions: a school’s willingness to pay for Pell Grant recipients ( 0 ) and ability to 

appropriate outside aid due to the pass-through of cost decreases ( 1 ). To see how these two 

                                                 
26 This approximation also assumes that in the neighborhood of the Pell Grant eligibility threshold, each additional 
dollar of Pell Grant aid does not lead to large changes in the log-curvature of demand.  
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dimensions are related to RD and RK estimates, consider a simplified version of equation (1.6), 

the reduced form impact of Pell Grant eligibility on institutional aid in a specific school and year:  

           iiiiii CFECFECFECFEy  
~~

0
~

0
~

11  

Furthermore, assume that all eligible students receive a Pell Grant, where the minimum award is 

$400 (e.g., “sharp” RD/RK).  

The RD design provides a reduced form estimate of the “treatment” of Pell Grant receipt, 

where 40010    and 1
0

400



 RD , which confounds the school’s ability to capture an 

additional dollar of outside aid with its willingness to pay for students labeled as Pell Grant 

recipients (see Appendix). When these two dimensions have opposite signs, RD estimates will 

not identify the magnitude and sign of either dimension.  

The RK design will consistently estimate the pass-through of an additional dollar of 

outside aid, under the assumption that 1 is constant in the neighborhood of the cut-off for Pell 

Grant eligibility (see Appendix). Since 1 RK  and the RK/RD design is fuzzy: 

(1.11)       00

1

ˆˆˆ

ˆˆ

efcPellRKRD

RK






  

Where  0efcPell  is the minimum Pell Grant award, RD̂  and RK̂ are the RD and RK estimators, 

respectively, 0̂  is the estimated willingness to pay for Pell Grant recipients, and 1̂ is the pass-

through of Pell Grant aid from the student to the school. The appendix provides further details 

for the derivation of these parameters.  

Table 1.6 presents estimates of the capture and willingness to pay parameters for the 

pooled sample (Panel A) and by sector (Panel B). I use the delta method to calculate standard 

errors. Across all institutions, estimated pass-through is 0.22, suggesting institutions receive 22 
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cents of every additional dollar of Pell Grant aid. However, due to schools’ willingness to pay for 

Pell Grant recipients, Pell Grant recipients experience a $260 increase in institutional aid. Since 

students ineligible for Pell Grants received $1,800 in institutional aid on average (including 

students that did not receive any institutional aid), this transfer represents a 14 percent increase in 

the expected value of institutional aid.27 However, only Pell Grant recipients near the eligibility 

threshold benefit from these transfers, and these students make up less than a third of all 

recipients. For the remainder of Pell Grant recipients, schools’ ability to capture Pell Grant aid 

outweighs willingness to pay for needy students.   

Figures 1.10A through 1.10C suggest that pass-through Pell Grant aid and willingness to 

pay for Pell Grant recipients vary across sectors. I test for differences in behavior by fully 

interacting Pellit with a vector of indicators for the different sectors of higher education. Private 

institutions do not demonstrate a willingness to pay for Pell Grant recipients and 13 to 15 cents 

of every Pell Grant dollar is passed-through from students to nonselective institutions. 

Conversely, public schools increase institutional aid for recipients by $300 to $600 in public 

schools. The difference in willingness to pay between selective and nonselective public schools 

is only marginally significant. This additional aid represents a 140 percent increase in the 

expected value of institutional grants among nonselective public school students and a 90 percent 

increase for selective public school students.28  

While public schools appropriate 17 to 18 cents of every Pell Grant dollar, pass-through 

of Pell Grant aid is the largest among selective nonprofit institutions. These schools capture 69 

                                                 
27 This calculation includes students within $10,000 of the Pell Grant eligibility threshold. However, if I limit the 
distance to be $4,000, estimated institutional aid is quite similar ($1850). 
 
28 On average, Pell ineligible students receive approximately $230 in institutional aid from nonselective public 
schools and $700 from selective public schools. 
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cents every Pell Grant dollar, while any willingness to pay for Pell Grant recipients is quickly 

overtaken. This result suggests that selective nonprofits either serve students with less elastic 

demand or have greater market power. 

1.6.2  Heterogeneity by Student and Market Characteristics 

To determine whether differences in student demand can explain differences in pass-

through between sectors, I examine heterogeneity in pass-through and schools willingness to pay 

for Pell Grant recipients across three student demographic groups, defined by race (white versus 

nonwhite), dependency status, and gender (Table 1.7). If students with similar characteristics 

have relatively similar demand elasticities, this analysis provides a test of whether the greater 

degree of pass-through in the selective nonprofit sector stems from differences in the demand of 

the students these schools serve. Specifically, if selective nonprofits serve a segment of the 

market is with less elastic demand, pass-through will be greater without any differences in these 

schools’ underlying objectives.  

I find that across all demographic groups, pass-through of Pell Grant aid in the selective 

nonprofit sector is significantly greater than in other sectors, except in the case of independent 

students.29 Additionally, public schools display a willingness to pay for Pell Grant recipients 

across all groups. These results suggest that differences in the characteristics of students served 

cannot fully explain selective nonprofit institutions’ large degree of capture or public schools’ 

valuation of students receiving Pell Grant aid.  

Measuring schools’ market power is a more difficult task. I measure the ex ante degree of 

competition in a school’s market using a Herfindahl index of institutional shares of the 

                                                 
29 In independent students in all sectors experience the smallest degree of crowd-out, suggesting these students have 
more elastic demand than dependent students. 
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undergraduate population during the prior academic year. I define the market served by a 

particular institution to be the county in which it is located, since the median distance a student 

travels to attend a nonselective institution is 15 miles (Horn and Nevill 2006), and use data from 

the IPEDS to measure the total number of undergraduate full-time equivalent (FTE) students in a 

county and institutional shares for NPSAS and non-NPSAS schools.30 Although some selective 

schools effectively serve a national market, I find evidence that Pell Grant receipt causes some 

students to switch from attending nonselective schools to selective institutions, suggesting 

students may be evaluating their choices in their local market.  

To test whether pass-through varies by market structure, I create a dichotomous measure 

of concentration based on the index (H>0.25) and estimate equation (1.11), fully 

interacting itPell ,  0
~ itCFE1 , and    iit CFECFE

~
0

~ 1  with this measure. Table 1.8 displays 

these results (estimates of willingness to pay by market concentration are available upon 

request). In column 2, I consider all other institutions when constructing the index; in column 3, I 

only consider institutions with similar selectivity (e.g., assuming that selective nonprofit schools 

do not compete with for-profit schools for students). I find some evidence that selective 

nonprofit institutions respond to competitors – in markets with few similarly selective schools, 

these institutions capture 79 cents of every Pell Grant dollar, while in more competitive markets, 

only 44 cents of every Pell dollar are passed through. However, my measure of market power is 

blunt and does not account for endogenous entry decisions.  

My results represent the short-run incidence of Pell Grant aid. In the long-run, increases 

in competition may limit schools’ ability to capture student aid. Although the supply of public 

                                                 
30 Unfortunately, prior to 2000, the IPEDS data files do not accurately represent the presence of for-profit 
institutions among the set of schools eligible to disburse federal student aid. However, as shown in column 1 of 
Table 1.9, estimates of pass-through are quite similar for this truncated sample.  
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institutions is relatively fixed, Cellini (2010) shows that student aid increases lead to for-profit 

entry. If for-profit institutions retain captured Pell Grant aid as profits, my results provide a 

rationale for this response. An increase in number of schools should reduce the ability of schools 

to capture Pell Grant aid and in the long-run, institutional capture should be driven to zero. 

Incidence analysis in this case is complicated by the fact that captured Pell Grant funds in the 

present period ultimately lead to an expansion provision of higher education. Although current 

Pell recipients lose out, new students, who would not have otherwise attended college, will gain 

from the ability of schools to capture Pell aid. However, the market for higher education also has 

substantial barriers to entry, since schools face large fixed costs (e.g., investments in facilities). 

Schools also must gain accreditation and demonstrate a sufficiently high level of enrollment for 

two years before their students are eligible for Pell Grant aid.  

1.6.3  Evaluating Alternate Explanations for Institutional Pricing 

  Thus far, I have attributed differences in institutional pricing responses to Pell Grant aid 

to differences in institutional objectives and market power. However, there are other potential 

explanations for this behavior. First, differences in unmet need and institutional policies across 

sectors could potentially explain differences in estimated crowd-out. For instance, since public 

schools charge significantly lower prices than private institutions, institutional aid may 

mechanically fall if increases in Pell Grant aid reduce students’ unmet need to zero. State need-

based aid may be distributed differently across sectors, also contributing to this effect. Figures 

1.12 and 1.13 explore this possibility and plot the percentage of students with any unmet need 

and average unmet need and by EFC and sector, where unmet need is defined as the difference 

between a student’s cost of attendance and her expected family contribution, Pell Grant and other 

federal grant aid, and state grant aid. Across all sectors, over 90 percent of students near the Pell 
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Grant eligibility threshold had remaining unmet need, and on average, these students faced an 

additional $10,000 in expected education-related expenses that are not covered by federal or state 

grant aid. Even students attending nonselective public institutions –schools with the lowest cost 

of attendance – had substantial remaining need. 

 Second, students may respond to Pell Grant generosity by upgrading to a higher quality 

institution. In this case, price increases would be expected, as students are receiving a more 

valuable product. Although I find some evidence of sorting across sectors at the eligibility 

threshold – with a small, discrete increase in the probability of attending a selective institution as 

the eligibility threshold is crossed – there is no evidence of a kink. Since selectivity is just one 

dimension of school quality, I also test for evidence of quality upgrading by examining 

institutional revenue, expenditures, and the outcomes of former students. I use information from 

the IPEDS linked to NPSAS institutions to create measures of revenue and expenditures, 

including tuition and total revenue per full-time equivalent (FTE) student and institutional grants, 

instruction-related expenditures, and expenditures on student services per FTE.31 Finally, I use 

the Department of Education’s official cohort default rate, which measures the proportion of 

individuals defaulting on their federal loans within the two years, to measure the outcomes of 

former students.  

I little evidence of upgrading along any of these measures of school quality and in many 

cases, find evidence of a negative relationship between Pell Grant generosity and school quality 

(Table 1.9). I estimate a positive relationship between Pell Grant aid and expenditures on 

institutional grants and instruction for students attending public schools, but the magnitudes of 

                                                 
31 I use prior-year revenue and expenditure data to create these measures. Unfortunately, the IPEDS only began 
collected revenue and expenditure data for the majority of schools in 2000, thus, when examining these measures of 
quality, my sample is limited to students attending institutions in 2004 and 2008. 
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these effects are quite small. A $1000 increase in Pell Grant aid is correlated with a $14 (1 

percent) increase in institutional grants/FTE offered by nonselective public schools. For selective 

public schools, a $1000 increase in Pell Grant aid is correlated with a $22 (1 percent) increase in 

institutional aid and a $132 (2 percent) increase in instruction-related expenditures for students 

attending selective public schools. Pell Grant aid is negatively correlated with student loan 

default rates in the for-profit sector, where a $1000 increase in Pell Grant aid is correlated with a 

0.9 percentage point reduction in the default rate of graduating students. However, among 

students attending selective nonprofit institutions – the sector which shows the highest degree of 

crowd-out – there is no evidence of quality upgrading. 

1.7 Incidence Across All Pell Grant Recipients 

So far, I have only focused on estimating the incidence of Pell Grant aid in the neighborhood of 

the cut-off for Pell Grant eligibility. With stronger assumptions, I can use the observable 

relationship between institutional aid and EFC for ineligible students to estimate the incidence of 

the Pell Grant program across all students. Specifically, I assume that the relationship between 

institutional aid and EFC for ineligible students provides a valid counterfactual for what the 

relationship between institutional aid and EFC would have been for Pell Grant recipients in the 

absence of the Pell Grant Program. For this approach to work, heterogeneous treatment effects 

must be linear. Specifically, the pass-through of Pell Grant aid and schools’ willingness to pay 

for Pell Grant recipients must be constant in the amount of Pell Grant aid 

Figure 1.14 provides an illustration of my approach. The shaded area under the Pell Grant 

curve represents the total amount of aid directed towards Pell Grant recipients by the federal 

government. The solid lines represent the observed relationship between institutional aid and 

EFC for eligible and ineligible students, while the dashed line represents counterfactual 
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institutional aid for eligible students in the absence of the Pell Grant Program. In other words, 

each point along this line represents the amount of institutional aid a student with a particular 

EFC would have received had the Pell Grant Program not existed. The difference between the 

area under the first curve (counterfactual institutional aid) and the second curve (actual 

institutional aid) represents institutional capture (A – B). The ratio of total capture to total Pell 

aid, 
PellTotal

BA 
, represents the percentage of Pell Grant aid captured by institutions, and is also 

the average treatment effect of Pell Grants on institutional aid.  

Across all sectors, every dollar of Pell Grant aid reduces students’ effective prices by 84 

cents, with institutions appropriating the remaining 16 cents through price discrimination (Table 

1.10). Nonselective private institutions, a category encompassing nonprofit and for-profit 

schools, receive 18 cents of every Pell Grant dollar while selective nonprofit institutions capture 

79 cents. In the public sector, net crowd-out of Pell Grant aid is close to zero; the point estimate 

is small and only marginally insignificant. However, this result masks important heterogeneity – 

transfers to students close to the eligibility threshold are offset by decreases in institutional aid 

for the neediest Pell Grant recipients (Figure 1.10A).  

1.8 Conclusions 

Although low-income students are the statutory recipients of Pell Grant aid, they do not receive 

the full benefit of these subsidies. Using a combined regression discontinuity and regression kink 

approach, I estimate the impact of Pell Grants on institutional aid. I show that schools 

strategically respond to changes in federal need-based aid by systematically altering the 

distribution of institutional aid. Overall, I estimate that institutions capture 16 percent of all Pell 
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Grant aid. However, this result masks important variation in pass-through across sectors and 

across students with different levels of need.  

RK and RD designs yield conflicting estimates of the impact of Pell Grant aid on college 

pricing, with RK estimates suggesting schools capture Pell Grant aid and the RD estimator 

implying schools supplement Pell Grants with increased institutional aid. I show that these 

disparate estimates can be reconciled using a framework in which schools place different weights 

on students with different characteristics. In this case, the “treatment” of Pell Grant aid has two 

dimensions: the additional dollar of outside aid that the school would like to capture and the 

school’s willingness to pay for Pell Grant recipients.  

Through a combined RD/RK approach, I separately identify schools’ willingness to pay 

for students categorized as needy and the pricing response to outside subsidies. The RD design 

only identifies the reduced form impact of these two dimensions, and for RD estimates, schools’ 

willingness to pay dominates their ability to capture outside aid. Using the combined RD/RK 

approach, I estimate that less than one third of Pell Grant recipients benefit from these transfers, 

since schools’ ability to capture Pell Grant aid quickly overtakes their willingness to pay for 

needy students. My paper is the first to combine RD and RK estimators to distinguish between 

different treatment dimensions.  

The Pell Grant Program provides an especially stark example of how a multidimensional 

treatment affects RD estimates. However, in other circumstances where both a discontinuity and 

a kink are present, my results suggest that additional information is present in the kink, and this 

information may provide insight into the channels through which the “treatment” of interest 

works. In a number of the studies cited by Lee and Lemieux’s (2010) survey on the RD design 

that examine the impact of a continuous endogenous regressor, the deterministic relationship 
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between the endogenous regressor and assignment variable leads to both a discontinuity and a 

kink. For instance, in cases where a minimum class size rule leads to a discontinuous relationship 

between total enrollment and class size (e.g., Angrist and Lavy 1999; Hoxby 2000; Urquiola 

2006), this rule creates both a discontinuity and a kink.32 If, for instance, the creation of an 

additional classroom leads to smaller classes and sorting of children by achievement, behavior, 

or some other dimension (e.g., Lazear 2001), the discontinuity and the kink could potentially be 

used to separately analyze the influence of these dimensions on educational outcomes.  

My paper also provides insight into the industrial organization of higher education. I 

show how schools’ responses to Pell Grant aid illustrate differences in schools’ objectives and 

market power across sectors. Public schools demonstrate a positive willingness to pay for Pell 

Grant recipients. Overall, selective nonprofit institutions capture close to 80 percent of their 

students’ Pell Grants. Across different student demographic groups, I estimate a similar degree 

of capture students attending selective nonprofits, suggesting these schools’ extensive ability to 

appropriate Pell Grant aid stems from a greater degree of market power rather than differences in 

student demand. Although the net crowd-out of Pell Grants in the public sector is close to zero, 

increases in institutional aid for recipients near the eligibility threshold come at the expense of 

the neediest Pell recipients.  

Finally, I find no evidence that for-profit institutions behave differently than other 

nonselective schools in the private sector in their response to Pell Grant aid, and combined, 

schools in this sector capture just 17 percent of their students’ Pell Grant aid. However, in many 

                                                 
32 For example, if the rule mandates a maximum class size of N , when enrollment reaches 1N , average class size 

changes discontinuously from N  to 
2

1N . This rule also leads to a kink in the relationship between average class 

size and total enrollment. When enrollment is less than N , the slope of relationship between class size and total 

enrollment is 1. When class size is greater than N , but less than N2 , the slope of the relationship between class size 
and total enrollment is 0.5.  
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for-profit institutions, the majority of students receive Pell Grants. It may be easiest for these 

institutions to benefit from Pell Grant generosity by raising the list price of tuition. Consistent 

with this view, Cellini and Goldin (2012) show that in the for-profit sector, schools eligible to 

distribute federal student aid charge a list price that is 75 percent higher than ineligible schools 

with similar characteristics. 

Under the stronger assumption that the distribution of institutional aid to ineligible 

students near the threshold provides a valid counterfactual for the distribution of institutional aid 

in the absence of the Pell Grant Program, I calculate that schools capture 16 percent of all Pell 

Grant aid. In 2011, the federal government distributed $35 billion in Pell Grants to 9.5 million 

students. My results suggest that institutions captured $6 billion of this aid. 
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1.9 Appendix: Regression Discontinuity Estimation with a Multidimensional Treatment 

In this appendix, I provide a general example of how a multidimensional treatment will affect 

regression discontinuity (RD) design estimates. Additionally, I show how using a regression kink 

(RK) design, in combination with a RD design, allows estimation of more than one treatment 

dimension. Finally, I show how this approach is applied in the case of the Pell Grant Program.  

 Let Y be the outcome of interest, where  UXTyY ,,  and T is the “treatment” of 

interest and is continuous and potentially endogenous. X and U are covariates, where X is 

observable, U is unobservable, and both are determined prior to T. Finally, T is a deterministic 

function of X,   XtT  , and the data generating processes for Y and T are: 

(B1)         UXgTfY  ,  

(B2)         XhxXXxXT  0100 11   

Where  Xh  is continuously differentiable in the neighborhood of 0x . In this case, the 

deterministic relationship between T and X leads to both a change in the level and in the first 

derivative of T at 0x . I assume that treatment effects do not vary with X or U, but this assumption 

could be relaxed without affecting my main conclusions. Finally,  uFU is the cdf of U and 

 uxF UX ||  is the conditional cdf of X.  

Under the following identifying assumptions, the RD estimator will approximate random 

assignment (Hahn et al. 2001; Lee and Lemieux 2010): 

RD1 (Regularity):  uxty ,,  is continuous in x in the neighborhood of 0x  and   00 xfU . 
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RD2 (First Stage):   T is a known function, continuous on  0, x  and  ,0x , but  

   



 0

0
0

0
xX|TElimxX|TElim . 

RD3 (Continuous conditional density of the assignment variable):  uxf UX ||  is continuous 

in x in the neighborhood of 0x  for every u. This condition means that observations have 

imperfect control over X and rules out sorting in response to the treatment. 

Consider two different forms of  ,Tf : 

(B3)       TTf 1,    

(B4)      TTTf 10 ]0[1,    

If equation (B3) describes  ,Tf , “treatment” has a single dimension, as is generally assumed in 

RD designs, the RD estimator equals: 

   
   
    1






 









0
0

0
0

0
0

0
0

RD
xX|TElim-xX|TElim

xX|YElim-xX|YElim
 

If instead, T is multidimensional and equation (B4) describes  ,Tf , the RD estimator equals: 

 0

0
1

xT
RD


  .  

To see this, note that the numerator of the RD estimator is equal to: 

     



 0

0
0

0
xX|UXgTTElim-xX|UXgTTElim 1010 ]0[1]0[1  

41



  

Assumptions RD1 and RD3 imply:      



 0

0
0

0
xX|UXgElimxX|UXgElim . 

Since      



 0

0
0

0
xX|XhElimxX|XhElim  by assumption, the RD numerator is 

equal to  01010 x   and the RD estimator equals: 

(B5)     0

0
1

010

0
1

xTx
RD







 


  

Thus, when the treatment has more than one dimension, the RD estimator only recovers 

the reduced form impact of these dimensions. In this case, with the RD design alone, it is not 

possible to separately identify 0  and 1 . However, since the deterministic relationship between T 

and X  leads to both a discontinuous change in the level and a discontinuous change in the slope 

of T at 0x , it is possible to separately identify these dimensions using a combined RD and RK 

approach.  

In addition to the RD identifying assumptions, the RK design requires the following 

additional assumptions (Card et al., 2009): 

RK1 (Regularity): 
 

x

uxty


 ,,

 is continuous in x in the neighborhood of 0x .33
  

RK2 (First Stage):   T is continuously differentiable on  0, x  and  ,0x , but  

   
x

xX|TE
lim

x

xX|TE
lim 0

0

0

0 











. 

                                                 
33 Card et al. (2009) include the additional assumption that  

t

uxty


 ,, is continuous in t. If treatment is 

multidimensional, this condition is violated. Comparisons of RD and RK estimators allows for a test of whether this 
condition is met. 
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RD3 (Continuously differentiable conditional density of the assignment variable): 

 uxf UX ||  is continuously differentiable in x in the neighborhood of 0x  for every u.  

If these conditions are met, regardless of whether  ,Tf  is represented by equation (B3) 

or (B4), the RK estimator equals: 

   

   

    1







 






















x

xX|TE
lim

x

xX|TE
lim

x

xX|YE
lim

x

xX|YE
lim

0

0

0

0

0

0

0

0

RK  

To see this, first note that the numerator equals: 

     
x

xX|xX|UXgTTE
lim

x

xX|xX|UXgTTE
lim 00

0

00

0 











1010 ]0[1]0[1

 

By assumptions RK1 and RK3, 
     

x

xX|UXgE
lim

x

xX|UXgE
lim 0

0

0

0 











, 

   
0

]0[1]0[1









 x

xX|TE
lim

x

xX|TE
lim 0

0

0

0




, regardless of the value of 0 , and  

     
x

xX|XhE
lim

x

xX|XhE
lim 0

0

0

0 











, by assumption.  Thus, the RK numerator 

equals 
   
















 x

xX|TE
lim

x

xX|TE
lim 0

0

0

0




1
 and the RK estimator equals: 

(B6)     1 RK  

Furthermore, if the treatment has two dimensions, as described in equation (B4), the RD 

and RK estimators can be combined to identify both 0  and 1 . The RK estimator identifies 1 , 

and combining (B5) and (B6) allows for identification of the second treatment dimension: 
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(B7)       00 xTRKRD     

If  ,Tf has higher order terms, then       1

0021

0

0 ...
 p

pRD xTxT
xT




  and 

    1

0021 ...
 p

pRK xTxT  where p is the order of the polynomial in T. Thus, using a 

combined RD/RK approach, it is always possible to identify 0 , or the discrete change in the 

outcome that occurs when 0T , but it is not possible to separately recover higher order terms 

without discontinuities in higher order derivatives of T. 

B.1 Identification of multiple treatment dimensions in the case of the Pell Grant Program 

 In the case of the Pell Grant Program,  UEFCPellyY ,,  represents institutional aid. 

Since not every student submits an application for federal aid, Pell Grant aid is not completely 

determined by a student’s EFC, and the RD/RK designs will be fuzzy. The data generating 

processes for Y and Pell are: 

(B8)        UEFCgPellfY  ,  

(B9)       00 400 efcEFCefcEFCPell  1  

Where 0efc is the cut-off for Pell Grant eligibility, and  1,0  (e.g., the probability a student 

applies for federal aid) is a random variable where   efcE  0 . Although may also depend on 

EFC, since the decision to apply is determined prior to an individual receives their Pell Grant 

award, I assume that  EFC   is continuous and smooth in the neighborhood of 0efc . 
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 My model suggests that Pell Grant aid may affect institutional aid provision through two 

dimensions: by altering a school’s willingness to pay  0 and through schools’ ability to capture 

outside aid due to the pass-through of demand increases  1 : 

(B10)         PellPellPellf 10 0,   1  

The numerator of the RD estimator will be equal to: 

         



 0

0
0

0
efcEFC|UEFCgPellfElimefcEFC|UEFCgPellfElim ,,

Since      



 0

0
0

0
efcEFC|UEFCgElimefcEFC|UEFCgElim ,  

by assumptions RD1 and RD3, the RD numerator is equal to: 

     



 0

0
0

0
efcEFC|PellPellElimefcEFC|PellPellElim 1010 00 11  

      
    















0
0

0
0

0
0

0
0

efcEFC|PellElimefcEFC|PellElim

efcEFC|PellElimefcEFC|PellElim

1

0 00 11

 

      
    















0
0

0
0

0
0

0
0

efcEFC|PellElimefcEFC|PellElim

efcEFC|PellElimefcEFC|PellElim

1

0 00 11

 

Then the RD estimator is equal to: 

  
   
































0
0

0
0

0
0

RD
efcEFC|PellElimefcEFC|PellElim

efcEFC|PellElim 0

01

1
 

Where: 
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0
0

0
0

0
0

0
0

0
0

efcEFC|efcEFCElim

efcEFC|lim

efcEFC|PellElimefcEFC|PellElim

efcEFC|PellElim

0400

1Pr01
 

 
  400

1

1Pr400

1Pr



















0
0

0
0

efcEFC|lim

efcEFC|lim
 

Thus, as in the sharp case,  0

0
1

efcPell
RD


  , where   4000 efcPell . Following the 

arguments presented in the previous section, and assuming that  ,Pellf  does not include any 

higher order terms, the regression kink estimator is equal to 1  and   4000  RKRD  . 
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1.10 Figures and Tables 

Figure 1.1: Time Series Variation in Maximum Pell Grant Award 
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Figure 1.2: The Maximum Pell Grant Award as a Percentage of the Average Cost of Attendance 

1980: Max Pell = $4950 (64% of COA)

2010: Max Pell = $5511 (30% of COA)
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Figure 1.3: Pell Grant Award Schedules, NPSAS Sample Years 
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Notes: Each line represents the statutory Pell Grant award a full-time, full-year student with a 
given EFC would receive in the years covered by the NPSAS. All dollar amounts are nominal.  

 
Figure 1.4: The Empirical Distribution of Pell Grant Aid 
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 Notes: $50 EFC bins. Each marker represents the average Pell Grant received by students in the bin. 
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Figure 1.5: Conceptual Framework, RK/RD Design 
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Change in slope (institutional grant aid) = 0 

Change in slope (Pell) = B 
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Figure 1.6: The Density of EFC at the Pell Grant Eligibility Threshold 
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Notes: $100 EFC bins. Estimated discontinuity (McCrary test) = 0.028 (0.041).   
Estimated change in slope = -0.113 (0.083). 

 

Figure 1.7: The Distribution of Baseline Covariates 
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Notes: $200 EFC bins.  

50



.2.3.4.5.6
Percentage Male

-4
0

0
0

-2
0

0
0

0
2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0
D

is
ta

n
c
e

 f
ro

m
 P

e
ll 

G
ra

n
t 
E

lig
ib

ili
ty

 T
h

re
s
h

o
ld

B
. 

G
e

n
d

e
r

.3.4.5.6.7.8.9
Percentage Classified as Dependent Students

-4
0

0
0

-2
0

0
0

0
2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0
D

is
ta

n
c
e

 f
ro

m
 P

e
ll 

G
ra

n
t 
E

lig
ib

ili
ty

 T
h

re
s
h

o
ld

C
. 

D
e
p

e
n

d
e

n
c
y
 S

ta
tu

s
800900100011001200

Average SAT Score

-4
0

0
0

-2
0

0
0

0
2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0
D

is
ta

n
c
e

 f
ro

m
 P

e
ll 

G
ra

n
t 
E

lig
ib

ili
ty

 T
h

re
s
h

o
ld

D
. 

S
A

T
 S

c
o
re

 

212223242526
Average Age

-4
0

0
0

-2
0

0
0

0
2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0
D

is
ta

n
c
e

 f
ro

m
 P

e
ll 

G
ra

n
t 
E

lig
ib

ili
ty

 T
h

re
s
h

o
ld

E
. 

A
g

e

 

F
ig

u
re

 1
.7

: 
T

h
e 

D
is

tr
ib

u
ti

o
n
 o

f 
B

as
el

in
e 

C
o
v
ar

ia
te

s,
 c

o
n
t.

 
N

o
te

s:
 $

20
0

 E
F

C
 b

in
s.

 

  
  

                              

51



 
 

.0001.00015.0002.00025.0003.00035
Density

-2
0

0
0

-1
0

0
0

0
1
0

0
0

2
0

0
0

D
is

ta
n
c
e

 f
ro

m
 P

e
ll 

G
ra

n
t 
E

lig
ib

ili
ty

 T
h

re
s
h

o
ld

D
is

co
n
ti
n
u

ity
 e

s
tim

a
te

 =
 -

0
.0

0
2
 (

0
.0

6
1
).

 E
st

im
a

te
d

 c
h

a
n

g
e

 in
 s

lo
p

e
 =

 -
0
.0

0
0
0

0
3

 (
0
.0

0
0

0
0

1
).

A
. 

N
o

n
s
e

le
c
ti
v
e
 P

u
b

lic

.0001.00015.0002.00025.0003.00035
Density

-2
0

0
0

-1
0

0
0

0
1
0

0
0

2
0

0
0

D
is

ta
n
c
e

 f
ro

m
 P

e
ll 

G
ra

n
t 
E

lig
ib

ili
ty

 T
h

re
s
h

o
ld

D
is

co
n
ti
n
u

ity
 e

s
tim

a
te

 =
 -

0
.1

1
1
 (

0
.0

7
9
).

 E
st

im
a

te
d

 c
h

a
n

g
e

 in
 s

lo
p

e
 =

 0
.0

0
0

0
0
1

 (
0
.0

0
0

0
0

1
).

B
. 

S
e
le

c
ti
ve

 P
u

b
lic

.0001.00015.0002.00025.0003.00035
Density

-2
0

0
0

-1
0

0
0

0
1
0

0
0

2
0

0
0

D
is

ta
n
c
e

 f
ro

m
 P

e
ll 

G
ra

n
t 
E

lig
ib

ili
ty

 T
h

re
s
h

o
ld

D
is

co
n
ti
n
u

ity
 e

s
tim

a
te

 =
 -

0
.1

5
8
 (

0
.1

2
4
).

 E
st

im
a

te
d

 c
h

a
n

g
e

 in
 s

lo
p

e
 =

 -
0
.0

0
0
0

0
4

 (
0
.0

0
0

0
0

2
).

C
. 

N
o
n

s
e
le

c
ti
ve

 N
o
n

p
ro

fi
t

.0001.00015.0002.00025.0003.00035
Density

-2
0

0
0

-1
0

0
0

0
1
0

0
0

2
0

0
0

D
is

ta
n
c
e

 f
ro

m
 P

e
ll 

G
ra

n
t 
E

lig
ib

ili
ty

 T
h

re
s
h

o
ld

D
is

co
n
ti
n
u

ity
 e

s
tim

a
te

 =
 0

.0
8

4
 (

0
.0

9
6
).

 E
st

im
a

te
d

 c
h

a
n

g
e

 in
 s

lo
p

e
 =

 0
.0

0
0

0
0
1

 (
0
.0

0
0

0
0

1
).

D
. 

S
e

le
c
ti
v
e
 N

o
n
p

ro
fi
t

F
ig

u
re

 1
.8

: 
T

h
e 

D
en

si
ty

 o
f 

E
F

C
 a

t 
th

e 
P

el
l 

G
ra

nt
 E

li
gi

b
il

it
y

 C
u

t-
o

ff
, 
b

y
 S

ec
to

r 
N

o
te

s:
 $

10
0

 E
F

C
 b

in
s.

 S
A

T
 s

co
re

s 
fo

r 
fi

rs
t-

ye
ar

 s
tu

d
en

ts
 o

n
ly

. 
  

  

52



Figure 1.8: The Density of EFC at the Pell Grant Eligibility Cut-off by Sector, continued 
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Notes: $100 EFC bins.  

 

Figure 1.9: Pell Grant Generosity and Institutional Aid by EFC  
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Notes: $200 EFC bins. The black solid line represents a linear fit of institutional grant aid on 
EFC, estimated separately on each side of the cut-off; gray dashed lines are 95 percent 
confidence intervals. The thin black dashed line is a linear fit of Pell Grant aid on EFC. Larger 
circles indicate a larger number of students within the EFC bin. 
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Figure 1.10: Main Results, Local Linear Regression 

0
5

0
0

1
0
0

0
1

5
0

0
2

0
0

0
2

5
0

0
In

s
ti
tu

ti
o

n
a

l 
G

ra
n
ts

, 
P

e
ll 

G
ra

n
ts

 (
R

e
s
id

u
a
l)

-4000 -2000 0 2000 4000 6000 8000 10000
Distance from Pell Grant Eligibility Threshold

 
Notes: $200 EFC bins. The black solid line represents a local linear fit of institutional grant aid 
on EFC, estimated separately on each side of the cut-off. See Figure 1.9 notes. 
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Figure 1.11: Pell Grant Generosity and Institutional Aid by Sector 
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Notes: $250 EFC bins. The black solid line represents a linear fit of institutional grant aid on 
EFC, estimated separately on each side of the cut-off; gray dashed lines are 95 percent 
confidence intervals. The black dashed line is an extension of the linear fit of Pell Grant aid on 
EFC for Pell ineligible students. Larger circles indicate a larger number of students. 
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Figure 1.11: Pell Grant Incidence by Sector, continued 
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Notes: $250 EFC bins. The black solid line represents a linear fit of institutional grant aid on 
EFC, estimated separately on each side of the cut-off; gray dashed lines are 95 percent 
confidence intervals. The black dashed line is an extension of the linear fit of Pell Grant aid on 
EFC for Pell ineligible students. Larger circles indicate a larger number of students. 
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Figure 1.12: Percentage of Students with any Unmet Need 
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Figure 1.13: Average Unmet Need  
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Notes: Unmet need equals a student’s cost of attendance minus her EFC, Pell Grant and other 
federal grant aid, and state grant aid.   
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Figure 1.14: Framework for Estimating the Economic Incidence of the Pell Grant Program 
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First Stage Reduced Form IV (RK) IV (RD)

(1) (2) (3) (4)

Change in slope -0.699 0.153

(0.007)** (0.031)**

Change in level 397.74 128.45

(12.52)** (42.55)**

Pell Grant Aid -0.219 0.323

(0.044)** (0.106)**

F-test of excluded instrument(s) 7928 1132

Over-id test (p-value)

Observations 133,270 133,270 133,270 133,270

Table 1.4: RK and RD Estimates of the Impact of Pell Grant Generosity on Institutional Aid

Data: 1996, 2000, 2004, and 2008 NPSAS. Notes: Each column represents a separate regression. Number

of observations rounded to nearest 10. Standard errors clustered at institution level in parentheses; **

p<0.01, * p<0.05, + p<0.1; Pell Grants and instituional grants in constant 2011$. All regressions include

year and school fixed effects, linear and quadratic terms in age, and indicators for gender, race, fall

attendance status, enrollment length, level, dependency status, out-of-state student, and a quadratic in

student expected family contribution (EFC - kt, where kt is the threshold for Pell Grant eligibility in year t ).

In column 3, 1[EFC < kt] instruments for Pell Grant Aid. In column 4, (EFC - kt)*1[EFC<kt] instruments

for Pell Grant Aid. Students with EFC greater than 10,000 from Pell Grant eligibility thresold are excluded.

0.000
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Polynomial of IV (RK) IV (RD)

Order: (1) (2)

A. (EFC - kt) in [-4100,10000] One -0.294 0.298

(0.024)** (0.109)**

Two -0.219 0.323

(0.044)** (0.106)**

Three -0.028 0.315

(0.070) (0.174)+

Optimal Degree 2 2

Observations 133,270 133,270

B. (EFC-kt) in [-4000,4000] One -0.173 0.307

(0.031)** (0.184)+

Two -0.135 0.337

(0.107) (0.209)

Three -0.153 0.438

(0.110) (0.475)

Optimal Degree 1 1

Observations 87,290 87,290

C. (EFC-kt) in [-3000, 3000] One -0.183 0.383

(0.047)** (0.289)

Two -0.188 0.435

(0.134) (0.323)

Three -0.208 0.973

(0.142) (1.147)

Optimal Degree 1 1

Observations 62,420 62,420

Data: 1996, 2000, 2004, and 2008 NPSAS. Notes: Each cell represents a separate regression. Number of

observations rounded to nearest 10. Standard errors clustered at institution level in parentheses; ** p<0.01, *

p<0.05, + p<0.1; Pell Grants and instituional grants in constant 2011$. All regressions include year and school

fixed effects, linear and quadratic terms in age, and indicators for gender, race, fall attendance status, enrollment

length, level, dependency status, out-of-state student, and a up to a third degree polynominal in student expected

family contribution (EFC - kt, where kt is the threshold for Pell Grant eligibility in year t). The optimal degree of

polynomial for each bandwidth is determined using the minimum Akaike Information Criteria. RD estimates

instrument for Pell Grant aid with 1[EFC < kt]; RK estimates instrument with (EFC - kt)*1[EFC < kt]. 

Table 1.5: Robustness of RK and RD Estimates of the Impact of Pell Grant Generosity on

Institutional Aid to Varying Bandwidths and Polynomials
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Pass-Through Willingness to Pay

A. All institutions -0.219 260.5

(0.044)** (50.06)**

Observations

B. By sector

Public Nonselective -0.179 318.3

(0.017)** (63.31)**

Public Selective -0.173 618.9

(0.032)** (101.5)**

Nonprofit Nonselective -0.154 -193.3

(0.060)* (216.6)

Nonprofit Selective -0.687 97.23

(0.101)** (248.3)

For-profit -0.133 84.67

(0.029)** (80.84)

Observations

Table 1.6: The Impact of Pell Grant Generosity on Institutional Aid, Treatment Dimensions

Data: 1996, 2000, 2004, and 2008 NPSAS. Notes: Each column within a panel represents a separate

regression. Number of observations rounded to nearest 10. Standard errors clustered at institution

level in parentheses; ** p<0.01, * p<0.05, + p<0.1. Pell Grants and instituional grants in constant

2011$. All regressions include year and school fixed effects, linear and quadratic terms in age, and

indicators for gender, race, fall attendance intensity, enrollment length, level, dependency status, out-

of-state student, and a linear term in student expected family contribution. Panel A also includes a

quadratic in EFC. Students with EFC greater than 10,000 from Pell Grant cut-off are excluded. See

text for definitions of treatment dimensions.

133,270

133,270
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Grants Instruction Student Services

(1) (2) (3) (4) (5) (6)

A. All Sectors

Mean of depvar $10,619 $19,038 $1,061 $6,214 $5,748 6.55

* Pell Grant Aid -0.027 -0.030 0.004 -0.035 0.008 0.0003

(0.142) (0.198) (0.015) (0.060) (0.072) (0.0001)**

Observations 66,950 77,470 66,940 83,810 84,630 128,800

B. By Sector

Nonselective Public

Mean of depvar $5,160 $13,629 $1,086 $5,051 $3,828 8.2

* Pell Grant Aid -0.089 -0.153 0.014 -0.023 -0.047 -0.0001

(0.040)* (0.074)* (0.008)+ (0.024) (0.025)+ (0.00007)

Selective Public

Mean of depvar $7,839 $25,364 $1,495 $8,412 $5,503 4.5

* Pell Grant Aid 0.082 0.070 0.022 0.139 0.034 0.0003

(0.059) (0.170) (0.013)+ (0.064)* (0.036) (0.0001)**

Nonselective Nonprofit

Mean of depvar $15,247 $22,260 $799 $6,138 $7,872 7.1

* Pell Grant Aid -0.043 0.120 0.033 0.008 0.116 0.0001

(0.155) (0.259) (0.030) (0.088) (0.093) (0.0004)

Selective Nonprofit

Mean of depvar $22,449 $32,393 $1,500 $9,489 $10,288 3.2

* Pell Grant Aid 0.088 0.071 0.038 -0.038 0.064 0.0003

(0.175) (0.288) (0.051) (0.097) (0.112) (0.0001)**

For Profit

Mean of depvar $14,409 $15,860 $353 $3,522 $8,545 10.1

* Pell Grant Aid -0.231 -0.277 -0.006 0.022 -0.228 -0.001

(0.133)+ (0.161)+ (0.013) (0.057) (0.156) (0.0003)**

Observations 66,950 77,470 66,940 83,810 84,630 128,800

Table 1.9: RK Estimates of the Impact of Pell Grant Aid on Institution Quality

Data: 1996, 2000, 2004, and 2008 NPSAS, 2003 and 2007 IPEDS, Department of Education Official Cohort Default Rates. 

Notes: Each column within a panel represents a separate regression. Standard errors clustered at institution level in parentheses;

** p<0.01, * p<0.05, + p<0.1. Columns 1 through 6 include students attending institutions in 2004 and 2008 with revenue or

expenditure information available in prior year IPEDS. Column 6 includes students attending institutions in all years with

information on two-year cohort default rates. Number of observations rounded to nearest 10. Regressions include year fixed

effects and a linear term in student expected family contribution (EFC). Panel A also includes a quadratic in EFC.

Institutional Expenditures/FTE on:
CDRTuition/FTE Revenue/FTE
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Percent Captured 95% CI

All Institutions 0.163 [0.114, 0.212]

Public Institutions 0.031 [0.002, 0.060]

Nonselective Private Institutions 0.176 [0.062, 0.290]

Selective Nonprofit Institutions 0.787 [0.563, 1.011]

Data: 1996, 2000, 2004, and 2008 NPSAS. Notes: These estimates assume the observed

institutional aid-EFC relationship for Pell ineligible students is a valid counterfactual for Pell

eligible students in the absence of the Pell Grant Program. The overall percentage of Pell Grant

aid captured by institutions is equal to the ratio of the difference between the area below the

counterfactual Pell Grant-EFC curve and the actual Pell Grant-EFC curve and the overall

transfer of Pell Grant aid to eligible students (refer to section 6 for details).

Table 1.10: The Incidence of Pell Grant Aid across all Recipients
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2.1 Introduction 

Public two-year colleges serve an increasingly important role in meeting the growing demand for 

an educated workforce in the United States. The two-year sector of higher education absorbed 

much of the growth in college attendance over the past several decades and students induced to 

go to college by changes in the costs or returns to higher education are more likely to attend a 

two-year institution (Bound et al. 2010). Numerous studies provide evidence of substantial labor 

market returns to community college credits and credentials, with estimated earnings gains as 

high as 13 percent for each year of attendance and 30 percent for associate degree receipt (e.g., 

Kane and Rouse 1995, Jacobson et al. 2005). However, the marginal individual induced to enter 

college by changes in costs or returns may differ substantially from the average college student 

and it is unclear whether these individuals will experience equally large returns from attending a 

two-year institution.  

In this paper, I focus on a group of students who are likely especially constrained in their 

ability to finance college attendance – mothers who are current and former welfare recipients in 

Colorado. Mothers at risk for welfare receipt are especially relevant group given their generally 

low levels of income, education, and limits on lifetime cash assistance. Using information on 

earnings trajectories before and following entry into Colorado’s welfare program and taking 

advantage of variation in pre-existing county policies that affect the cost of college-going for 

several cohorts of women, I estimate medium term impacts of community college attendance, 

credits, and credential receipt on employment and earnings.  

I find that women who are induced to attend college following welfare entry experience 

large and significant earnings gains, however, these effects are primarily driven by credentials 

receipt. Women appear to benefit from all community college credentials, including short-term 
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certificates and career-oriented associate’s degrees; the sole exception to this finding associate of 

arts or general studies degrees. These credentials, while potentially facilitating transfers to a 

four-year program, do not appear to lead to increases in employment or earnings alone.  

My identification strategy uses an event-study framework to deal with concerns of 

selection bias. If college-going women only differ due to unobservable characteristics, such as 

ability or motivation, these estimates will represent the causal impact of higher education on 

labor market outcomes. Consistent with prior studies, my results suggest that women earning 

degrees in health, science, or technical fields experience the largest benefits on the labor market, 

but even those who earn short-term certificates in non-technical fields experience an increase in 

earnings following degree receipt. I document that failure to account for sub-associate 

credentials results in falsely attributing positive earnings gains to college attendance in the 

absence of degree receipt. Measures of educational attainment in most major surveys (e.g., 

decennial census, current population survey) do not include certificate receipt, suggesting the 

large category generally classified as “some college” includes a heterogeneous group of 

individuals.1 

Finally, I use information on direct and indirect costs of college attendance and reliance 

on public assistance to illustrate the potential short-run private and social returns college 

attendance. In the short-run, when foregone earnings and the direct costs of college attendance 

are taken into consideration, the private rate of return to certificates and most degrees is negative, 

providing a rationale as to why so few women complete credentials, even in light of the large 

impacts on earnings in the medium-term. I also find suggestive evidence of small negative (albeit 

marginally significant) impacts on welfare receipt in the short-run.   

                                                 
1 For instance, in the 2000 Census, 22 percent of adults belonged to this category. 
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My findings speak to the question of whether state and federal welfare policy should 

support formal human capital development. Both the Obama administration and the Gates 

Foundation have directed substantial attention and funds towards community college.2 

Additionally, community college students are more likely to benefit from increases in federal aid 

generosity. Grant aid provided through the Pell Grant Program, the largest source of need-based 

aid in the United States, grew from $7.2 to $30 billion between 2000 and 2010, with the 

percentage of recipients attending community colleges increasing from 36 to 57 percent.3 My 

results suggest that supports for credential completion are as, if not more important than funding 

directed towards increasing college attendance. 

 The remainder of this chapter proceeds as follows: in Section 2.2, I discuss the evolution 

of federal welfare policy towards human capital development, while the third section focuses on 

research findings on the returns to the two-year sector of higher education. Section 2.4 discusses 

my data and presents descriptive results, Section 2.5 discusses my primary empirical strategy and 

resulting estimates, and the sixth section concludes.  

2.2 Welfare Policy and Human Capital Development 

Over the past two decades, federal welfare policy has become increasingly less supportive of 

college enrollment for parents receiving cash assistance. Prior to the large federal reforms 

enacted in 1996, welfare recipients’ behavior was relatively unconstrained under the Aid to 

Families with Dependent Children (AFDC) program. Attending a post-secondary institution 

                                                 
2 The 2010 Health Care and Education Reconciliation Act directed $2 billion in competitive grants to community 
colleges while the 2009 American Recovery and Reinvestment Act included substantial funding for Pell Grants, 
workforce training programs, and work-study funds in community colleges. In October 2010, the Gates Foundation 
launched the Completion by Design program, which will award $35 million in competitive grants to community 
colleges in nine states.  
 
3 1999-2000 and 2009-2010 Federal Pell Grant Program End-of-Year Reports, U.S. Department of Education, 
Office of Postsecondary Education 
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while on welfare was not uncommon prior to welfare reform – one study estimates that 14 

percent of all recipients attended college while on welfare prior to 1996 (London 2006).  

The 1996 Personal Responsibility and Work Reconciliation Act (PRWORA) made it 

more difficult to receive welfare concurrently with college attendance; the legislation imposed 

work requirements and time limits on welfare recipients, increasing the costs associated with 

post-secondary education by requiring part-time employment or exit from welfare for those 

wishing to attend college full-time. Although states had the option to exempt welfare recipients 

enrolled in college from work requirements in their first two years of receipt, the policy change 

led to a significant reduction in college enrollment for single mothers. Dave et al. (2008) 

estimate that PRWORA decreased the probability of college enrollment by 20 percent among all 

adult mothers. An additional study finds similar impacts on full-time vocational education (Dave 

et al. 2011).  

The 2005 Deficit Reduction Act (DRA), increased pressure on states to place welfare 

recipients in “employment-related activities”. PROWRA required states to have at least 50 

percent of single parents participating in a specific set of work activities, including paid 

employment, workfare/community service, and education/training. Before DRA, states could 

deduct each percentage point of caseload reduction since 1995 from their work participation rate 

target. Since caseloads declined steeply following PRWORA, for most states, including 

Colorado, this requirement was not binding. DRA reset the base year to 2005. Furthermore, DRA 

Recipients were further limited to a total of 12 lifetime months of education that must be 

combined with another, employment-related activity, essentially limiting individuals to part-time 

college attendance while receiving welfare.  
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DRA reduced concurrent college attendance and cash assistance receipt for women in 

Colorado by over 20 percent. Figure 2.1 plots the percentage of recipients also attending a public 

college in each month prior to and following the policy change, and shows while 9 to 11 percent 

of women were enrolled in college while receiving assistance before the policy change, only 

around 7.5 percent were attending college after the rules were implemented. Conversely, total 

female enrollment in Colorado’s community colleges increased 9 percent between the fall of 

2004 and fall of 2009.4 

Whether low-skill parents at risk for welfare receipt benefit from higher education is an 

open question. The majority of studies that explicitly focus on welfare recipients compare the 

returns to education vs. a “work first” approach (e.g., job search assistance) in terms of income 

and welfare receipt. Earlier evaluations found returns to education and human capital 

development activities to be small or non-existent (e.g., findings from California’s GAIN 

experiment (Riccio and Friedlander 1992; Riccio et al. 1994)); later research illustrated the 

possibility that any earnings increases following education might be slower to appear. For 

instance, Hotz et al. (2006) find that an education-focused approach led to greater long-term 

earnings gains compared to a work-first approach among California welfare recipients. Although 

these studies offer the advantage of randomization, the “treatment” generally includes types of 

education and training activities, including basic skills training, vocational training, and 

community college coursework, with limited information on the amount of time spent in these 

activities and whether training or courses were attended and what, if any, degrees were received. 

 

 

                                                 
4 Colorado Department of Higher Education, “Student Headcount by Gender: Colorado Public Two-Year 
Institutions of Higher Education” reports. 
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2.3 Prior Research 

Numerous papers estimate positive returns to both college attendance and credential receipt in 

the two-year sector. Kane and Rouse (1995) find that each year of community college attendance 

is correlated with a 7 percent increase in annual earnings and women who complete two-year 

associate’s degrees earn 30 percent more than high school graduates. However, results from 

cross-sectional studies that compare labor market outcomes across individuals with different 

levels of education at a point in time may be biased by unobservable characteristics that are 

correlated with both the decision to go to college and employment or earnings (Card, 1999). 

Additionally, the data used in these studies does not measure certificate receipt or differentiate 

between academic and nonacademic associate’s degrees. 

One approach used to dealing with this type of selection bias is to use repeated 

observations of earnings and employment for individuals who are employed both before and 

after they enroll in college. With a sufficiently long panel of data, this event study framework 

essentially uses a student’s pre-college earnings as a counterfactual for what she would have 

earned had she not gone to school, eliminating concerns of selection on time-invariant 

characteristics such as ability or motivation. This strategy necessarily excludes “traditional” 

students who matriculate immediately following high school graduation; however, community 

college students increasingly older, non-traditional students. Additional federal workforce 

retraining programs focus their services on older, displaced workers, and among the women in 

my sample who attend college following welfare entry, the average age is 28. 

Jacobson et al. (2005) first use this approach to examine the returns to community college 

enrollment for high tenure, displaced workers. They estimate that each year of college attendance 

leads to a 13 percent increase in women’s earnings. The benefits of community college 
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attendance primarily accrue to individuals who take technical coursework. Their data only 

measures degree receipt and not receipt of credentials, such as short-term certificates, and few 

individuals in their sample remain in college long enough to complete an associate’s degree. 

Along with my paper, Jepsen et al. (2009) produce some of the first estimates of the 

returns to sub-associate credentials that do not rely on cross-sectional variation. Their paper 

focuses on two cohorts of degree-seeking community college students in Kentucky and also uses 

an individual fixed effects approach to deal with selection on unobservables. Because their 

sample only includes college-going individuals, returns are measured relative to the average 

credits earned by drop-outs, rather than relative to no college attendance. Women earnings 

increase by over 50 percent after earning an associate’s degree. Certificates requiring two to 

three semesters of coursework result in similar earnings gains, while the returns to short-term 

certificates are small (4 percent).5  

2.4 Data and Descriptive Results 

My underlying sample consists of adult welfare recipients who entered Colorado’s welfare 

system, Colorado Works, between the third quarter of 2004 and second quarter of 2007. I use 

program data which contains the universe of individuals who received any assistance from 

Colorado’s TANF program (Colorado Works) beginning September 2004. I observe monthly 

welfare receipt between entry and the first quarter of 2010 as well as a variety of characteristics 

including age, race, marital status, number of children, lifetime months of assistance, whether the 

individual is listed as having a disability, and whether she owns a vehicle. Moreover, I observe 

                                                 
5 Cellini and Chaudhary (2011) also use an event-study approach to test whether individuals attending private two-
year institutions experience greater returns than those attending public institutions. The authors find similar returns 
to public and private schools – around a 6 percent increase in earnings for each year of attendance and a 15 to 17 
percent increase in earnings for those that earn an associate’s degree. 
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changes in time-varying individual characteristics (e.g., marriages, births, becoming disabled) 

that are likely correlated with both the decision to enroll in college and labor market outcomes.6  

Individuals are linked to information from the Colorado Department of Higher Education 

which covers individuals’ lifetime college attendance, program of study, cost of attendance, 

financial aid, and credit and degree receipt at all public two and four-year colleges in Colorado. I 

convert semesters attended to quarters, with the fall semester corresponding with the fourth 

quarter, winter/spring semester corresponding to first and second quarters, and the summer 

semester corresponding to the third quarter of a year. Individuals are also matched to data on 

quarterly earnings and employment in all covered sectors from the Colorado Department of 

Labor for the 29 quarters between the third quarter of 2003 and the fourth quarter of 2010. 

Finally, I merge quarterly county unemployment rates from the Bureau of Labor Statistics’ Local 

Area Unemployment Statistics program to the panel. 

I drop the small number of male recipients and women who were younger than 19 or 

older than 60 at entry. My sample includes the small number women who attended four-year 

institutions, either prior to or following welfare receipt, although my results are robust to 

excluding these individuals. The remaining sample includes unique 29,556 individuals or 

857,124 person-quarter observations.  

2.4.1 Characteristics of Recipients by Post-entry College Attendance 

Table 2.1 displays the characteristics of the women in my sample, distinguishing between 

women who do not enroll in college following welfare entry, women who enroll but did not 

obtain a credential, and credential recipients. The fourth column includes women who were 

already enrolled in college for at least two quarters at entry rather than those who were induced 
                                                 
6 Unfortunately, I only observe these time-varying characteristics when individuals are receiving welfare benefits. 
For individuals who leave welfare, I use the last reported value of these characteristics. If individuals leave and 
return to welfare, I smooth the imputation of characteristics between spells.  

77



to enter college after entering Colorado’s welfare program (however, their pre-welfare labor 

market attachment is no weaker than that of women in the other groups). College-going women 

are slightly younger, are more likely to own vehicles, and are slightly less likely to be disabled. 

A portion of women in all four groups have attended college in the past. For instance, 34 percent 

of women who attend college and earn a degree following welfare entry enrolled in college for at 

least one semester. Finally, women who are induced to attend college following entry have 

higher pre-welfare earnings and employment, suggesting that estimates that do not account for 

individual effects may be biased upwards. 

The bottom portion of Table 2.1 contains information pertaining to the educational 

attainment and labor market outcomes I examine. Degree recipients earn close to 70 credits after 

welfare entry. The majority of these women earn a short-term vocational certificate, generally 

requiring 15 to 30 credits, or one to two semesters of part-time attendance, 14 percent earn a 

certificate requiring two to three semesters of full-time attendance, and 28 percent earn an 

associate’s degree.7 Associates’ degrees require between 60 and 90 credits of coursework. Associate 

of arts and associate of general studies (AA/AGS) degrees are designed for students who intend to 

transfer to a four-year program, and while these degrees may be awarded in specific areas (e.g., 

agricultural science), the vast majority are liberal arts degrees. Conversely, associate of applied science 

(AAS) degrees are terminal and apply to specific, commonly technical fields. Women who enroll in 

college following entry but do not earn a degree spend less time in school and only earn 19 

credits, on average.  

Not surprisingly, in the initial quarters after entry, college-going women earn less, on 

average, than women who do not attend college. But four years following entry, college 

                                                 
7 Common examples of certificates awarded to welfare recipients include real estate, computer information systems, 
emergency medical services, and nurse assistant/home health aid.  
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attendees earn approximately $400 more per quarter than their counterparts who do not attend 

college, while degree recipients earn close to $1000 more. 

2.4.2 Graphical Analysis 

 Figures 2.2 and 2.3 preview my main approach and results. Figure 2.2 graphs unadjusted 

average earnings by quarter, both before and following welfare entry. The black solid line 

indicates individuals who attend college following entry into Colorado Works but do not earn a 

credential following entry (drop-outs), the thick dashed line represents the earnings trajectories 

of degree recipients, and the gray line represents the earnings of women who do not attend 

college prior to or following welfare entry. I exclude women who were already enrolled in 

college at entry (described in the fourth column of Table 2.1). Thin dotted lines represent 95 

percent confidence intervals.  

Figure 2.2 shows an “Ashenfelter dip” in the quarters immediately surrounding entry. All 

sample members experience a decline in earnings in the two to three quarters before and 

following welfare entry. Up to three years after welfare entry, degree recipients have lower 

earnings than other women, likely due to a greater number of quarters spent in college. 

Conversely, drop-outs appear to have much lower foregone earnings, but their earnings gains 

following welfare entry are small. Beginning in the 12th quarter after entry, the earnings of 

degree recipients significantly exceed both the earnings of other groups and their own pre-

welfare earnings, although these gains are imprecisely estimated due to the small group size. 

  Figure 2.3 replicates this exercise, graphing residual earnings from a regression on 

individual fixed effects. The dashed line without a confidence interval represents the average 

quarterly county unemployment rate. The largest earnings gains to degree recipients accrue at the 

end of the sample period, when unemployment is increasing. During this same period, the 
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residual earnings of college drop-outs and women who do not attend college are 

indistinguishable and decline to below pre-entry levels at approximately 18 quarters after entry.  

2.5 Event Study Framework 

Simple regressions of wages on college enrollment will be biased if the decision to attend college 

is correlated with unobservable individual characteristics that affect employment and earnings. 

Selection bias is likely a concern even among welfare recipients; London (2006) shows that pre-

PRWORA women attending college while on welfare had higher test scores and were more 

likely to have a two-year institution in their county of residence.  

To address this concern, I follow an approach similar to Jacobson et al. (2005), taking 

advantage of the fact that I observe earnings for women both before and after welfare receipt and 

college attendance. If selection bias is only driven by time-invariant unobservable characteristics, 

then including an individual fixed effect will deal with the endogeneity of college attendance and 

degree receipt. Essentially, this approach differences out a person-specific mean level of wages 

from observed quarterly wages, using observations of individuals’ wages prior to college 

attendance as a counterfactual for current wages in the absence of college-going. Additionally, I 

include observations of individuals who do not attend college to identify year and quarter fixed 

effects and the impacts of other observable characteristics. The key identifying assumption is that 

there are no time-varying unobservable shocks correlated with education and labor market 

outcomes affect college-going women differentially than other recipients. 

I estimate the following linear regression model:  

(1)  itcohortpostcohortprequarteryearititititiit ttXedcfy   ),(  

where yit is the outcome of interest (i.e., quarterly earnings, probability of employment) for 

individual i in quarter t, αi is an individual-specific fixed effect that controls for time-invariant 
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unobservable qualities, such as ability or motivation, eit is an indicator for whether an individual 

is enrolled in college in quarter t, since individuals may substitute hours of employment for hours 

of school while enrolled, and Xit is a vector of time-varying observable individual 

characteristics.8 I include year, quarter and county fixed effects and a entry cohort specific time 

trend, allowing for a trend break at welfare entry (e.g., cohortpret   is the pre-entry trend); εit is an 

individual-specific error term that is uncorrelated with educational attainment.  

Finally, ),( itit dcf  is a function of credits and credentials received at the end of college 

enrollment; λ identifies the causal effect of education if there are no time varying unobservable 

characteristics correlated both with college attendance and employment/welfare outcomes. I 

examine two specifications of this function. My first specification includes a linear term in 

credits, ignoring any credentials received. In my second specification, I add indicators for degree 

receipt and again include a linear term in credits received interacted with an indicator for not 

having earned a credential:   
d

ddd

ititit DDdcdcf  ]0[1),( 1 , where dD is a vector of 

indicator variables for receipt of specific degrees (i.e., certificates, AA/AGS, AAS). This 

specification allows me to test the impacts of college-going on labor-market outcomes for 

women who ultimately drop-out. 

2.5.1  Estimates of the Impacts of College Credits and Credentials on Labor Market Outcomes 

Table 2.2 examines the effect of college attendance and number of credits received on 

wages and employment. Columns 1, 3, 5, and 7 are cross-sectional estimates, while the 

                                                 
8 These characteristics include a quadratic term in age, number of children, age of youngest child, vehicle 
ownership, and indicators for months of lifetime welfare receipt (0 months, 1 to 12, 13 to 24, 25 to 59, and 60 or 
more months). These intervals correspond to cut-offs that trigger changes in Colorado welfare rules. For instance, 
two thirds of a participant’s income is disregarded from benefit calculation for the first twelve months of 
participation. After 24 months of assistance, recipients are required to participate in at least 20 hours of work related 
activities per week (e.g., employment, job search, on the job training). Finally, Colorado follows the federal 60 
month lifetime limit on benefit receipt (although some participants are granted extensions for extenuating 
circumstances).  
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remaining columns include individual fixed effects. Quarterly earnings and the probability of 

employment are both increasing in the number of credits earned when I do not account for 

credentials. In the cross-section, the impact of credits on earnings and employment remains 

positive and significant, suggesting that one year of full-time college attendance leads to a $240 

increase in quarterly earnings (an approximately 14 percent increase from pre-welfare earnings) 

and a 3 percentage point increase in the probability of being employed in a given quarter. 

However, when I include individual fixed effects, credits are no longer significantly related to 

earnings or employment. Surprisingly, the coefficients representing the impacts of degree receipt 

are quite similar in the cross sectional and fixed effects estimates. 

All vocational degrees and credentials offered by community colleges in Colorado 

significantly raise quarterly earnings and employment. Even a short-term certificate, requiring 

less than one year of full-time attendance, increases earnings by $480 per quarter (a 28 percent 

increase from pre-welfare earnings). Longer term certificates result in slightly higher (but not 

statistically distinguishable) gains. Women who earn an AAS degree experience the largest 

increases in earnings and employment among community college attendees, with their earnings 

increasing by close to $2,500 per quarter (over a 100 percent increase). BA degree recipients see 

similar earnings gains, but the number of such individuals in my sample is quite small, so 

estimates relating to the outcomes of four-year college graduates should be interpreted with 

caution. Academic and general studies associate’s degree recipients do not experience any 

earnings or employment gains once time-invariant characteristics are accounted for.  

Table 2.3 subjects my main specification to a variety of robustness tests. In the first and 

fifth columns, I only examine women with a strong pre-welfare labor market attachment, to 

eliminate concerns that my results are driven by a negative correlation between employment and 
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post-entry college attendance. In columns 2 and 6, I eliminate women who were already 

attending college before entering welfare. In columns 3 and 7, I eliminate individuals who are 

still attending college at the end of my sample period, and in the last specification, I drop the 

quarters surrounding welfare entry where earnings display a dip. My results are quite consistent 

across specifications, with credentials and vocational associate’s degrees strongly correlated with 

earnings and employment gains, while AA/AGS degrees and credits alone do not result in 

improved labor market outcomes.  

In Table 2.4, I compare the impacts of credits and credentials, distinguishing math, 

science, and health-focused programs from other programs offered by community colleges. 

Jacobson et al. (2005) find that displaced workers who earn credits in these fields benefit the 

most on the labor market. Results including all credentials and credits by program are displayed 

in columns 1 and 3. I do not find evidence that credits from health, math, or science programs 

increase earnings or employment. Longer-term health, math, and science credentials lead to 

larger earnings gains than credentials from other programs, although the impacts of short term 

certificates on earnings and employment do not vary significantly by program. However, 

Jacobson et al. (2005) only observe associate degree receipt and do not observe whether 

individuals in their sample earn certificates. Thus, in columns 2 and 4, I treat certificates as 

unobservable and do find evidence of a positive impact of credits from math, health, and science 

programs on earnings (although not employment). When certificates are unobservable, estimates 

would erroneously suggest that credits from one year of full-time attendance in these programs 

leads to a $135 increase in quarterly earnings (approximately an 8 percent gain over pre-welfare 

earnings).  
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2.5.2 Short-run Private and Social Returns 

Despite the large estimated impacts of credential receipt on employment and earnings, 

only 10 percent of women who attend college after entering Colorado’s welfare program obtain a 

certificate or degree. It is difficult to determine whether this behavior is optimal (e.g., women 

learn about their “type” after enrolling in college and realize their own personal returns are too 

small), due to a market failure (e.g., credit constraints), or a result of self-control issues (e.g., 

hyperbolic discounting). Without a source of exogenous variation in these parameters, it is 

difficult to determine which, if any, affect completion rates.  

Nonetheless, in Table 2.5, I document the extent to which credit constraints may be an 

issue for women in this population. My estimates thus far have looked at the post-enrollment 

impacts of college-going on labor market outcomes, not accounting for foregone earnings while 

attending college. Additionally, from the Colorado Department of Higher Education, I observe 

financial aid women received while in college and the total cost of attendance in a given 

semester, giving me an accurate measure of the direct costs of college-going. The first two 

columns of Table 2.5 take these indirect costs into consideration. The dependent variable in 

column 1 is quarterly earnings, but I account for the indirect cost of schooling due to foregone 

earnings by including the impacts of degree and credit receipt both before and after college exit. 

Since I only observe women who earn a credential for one or two years after exit, while, as 

shown in Figure 2.2, women spend up to three years in college, these estimates will represent 

short-run returns. In comparison, the estimates presented in the beginning of this section 

represent medium- to long-run returns (depending on assumptions about age-earnings profiles).  

After accounting for foregone earnings, the only community college credential recipients 

who experience a positive return on their investment in the short-run are women who earn AAS 
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degrees, and the estimated impact on quarterly earnings falls to $500 per quarter. After 

accounting for direct and indirect costs of college attendance, even these women do not 

experience a significant return on their investment. Estimated returns to all other community 

college credentials and credits are negative and in some cases quite large. For instance, women 

who earn a longer-term certificate experience a $1,200 reduction in quarterly earnings. Although 

the majority of women who attend college receive both grants and loans from Colorado and the 

federal government, tuition and fees are substantially higher than the value of this aid.9 

In the third and fourth columns of Table 2.5, I investigate the extent to which Colorado’s 

safety net can mitigate these costs by taking into account the value of cash assistance (column 3) 

and subsidized child care (column 4) while on welfare.10 Cash assistance provide through 

Colorado’s welfare program does little to cushion women from the costs of college attendance. 

Even after accounting for the potential value of child care subsidies, most credential recipients 

do not experience a positive rate of return to their investment in the short run. If many of my 

sample members are credit constrained, in the short-run these negative returns could reduce 

educational attainment.  

In the final two columns of Table 2.5, I attempt to investigate the potential social returns 

to college attendance by estimating impacts of credit and degree receipt on the probability of 

reentering welfare and the value of cash assistance received after a sample member’s initial spell. 

I find little evidence in the way of positive social returns to higher education. However, the latter 

part of my sample period also coincides with changes in federal policy that increased the 

                                                 
9 I treat loans as grant aid while in school and assume 30 years of repayment following college exit.  
 
10 Women on welfare with children under 13 are eligible for child care subsidies. I do not directly observe child care 
subsidies, which vary by county and child age.  However, in each county, the reimbursement rate is set to 75 percent 
of the market rate, which I do observe and use to impute the value of a mother’s potential subsidy based on the 
number and age of her children. 
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pressure on states to reduce caseloads and enforce participation requirements for current 

recipients, making these results suggestive at best.  

2.6 Conclusions  

Using an individual fixed effects approach, I find that women at risk for welfare receipt benefit 

from college attendance, although the impacts driven credential receipt. Even women who 

receive a certificate for less than one year of full-time study see their earnings increase by close 

to $500 per quarter. These are significant gains, given that on average, these women only earned 

$1,700 per quarter prior to welfare entry. Women who earn a terminal associate’s degree see 

their earnings increase by close to $2,500 per quarter. The sole exception is for women receiving 

associate of arts and general studies degrees. These women experienced only small increases in 

earnings. Credentials earned in health, math, and science programs lead to larger earnings gains. 

However, converse to prior findings, credits earned in these programs do not appear to affect 

earnings or employment once certificate receipt is accounted for. 

My results and approach have important limitations. Since I only observe individuals for 

up to 14 quarters after welfare entry, I can only estimate the medium-term impacts of credentials 

on labor market outcomes. If some degrees, such as AA/AGS, take longer to produce earnings 

gains, results will not represent the long-run impact of higher education. Second, including 

individual-specific fixed effects essentially estimates individual-deviations from mean wages 

after college attendance and degree receipt. However, if time-varying unobservable 

characteristics are correlated with both the decision to attend college and outcomes, my estimates 

will still include this selection bias. Finally, I only observe college attendance and degree receipt 

at public institutions in Colorado. Cellini and Chaudhary (2011) find that the returns to private, 

two-year degrees are similar to the returns to degrees earned at community colleges. It is likely 
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that some women in my sample attended one of the 312 private technical schools licensed to 

operate in Colorado. Thus, my estimates are likely a lower bound of the returns to higher 

education.  

 These results have implications for how welfare policy and policy aimed at two-year 

schools can positively impact the labor market outcomes for low-skilled individuals. In 

particular, these results suggest that providing supports to ensure community college students 

receive a degree, even certificates for short-term periods of attendance, can substantially increase 

earnings. Many recent policies aimed at potential community college students primarily focus on 

college entry. My results suggest that the marginal student affected by these policies may not 

benefit substantially unless additional supports for degree completion are provided.  
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2.7  Figures and Tables 

 

Figure 2.1: Concurrent College Attendance and Cash Assistance Receipt,  
September 2004 – December 2012 

DRA Rules Released 12 Months Post-DRA
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Notes: Each circle represents the percentage of adult female TANF recipients attending a 
public college, with larger circles indicating larger total caseloads. The black dashed lines 
represent a linear fit of college going for three periods: before the Deficit Reduction Act 
(DRA) final rules were released, between 0 and 12 months after the rules were released, and 
12 or more months after the rules were released.  
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Figure 2.2: Average Quarterly Earnings by Educational Attainment following Welfare Entry 
A. Raw Means 
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Notes: Thick lines represent average quarterly earnings before and after welfare entry by 
educational attainment and credential receipt. Thin dashed lines represent 95 percent 
confidence intervals. 
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No College 

No Degree Any Degee

Number of individuals 23,115 3,329 380 2,732

Race

Hispanic 0.31 0.28 0.32 0.28

Native American or Asian/Pacific Islander 0.04 0.04 0.03 0.04

Black 0.17 0.21 0.12 0.2

White 0.49 0.47 0.53 0.48

Characteristics at welfare entry

Age 30 28 28 28

Never married 0.53 0.59 0.58 0.60

Number of children 2.0 1.9 1.8 1.9

Age of youngest child 4 4 3 4

Lifetime months on welfare 9.2 8.9 6.0 11.0

First spell on welfare 0.20 0.22 0.23 0.16

Own vehicle 0.29 0.34 0.39 0.40

Disabled 0.13 0.10 0.08 0.12

Average quarterly earnings before entry (2010$) $1,357 $1,642 $1,768 $1,544

Percentage of quarters worked before entry 0.41 0.49 0.52 0.51

Prior college attendance (1990 or later) 0.15 0.27 0.34 1.00

Prior credits earned (1990 or later) 4 10 19 50

Outcomes

Percentage of quarters employed after entry 0.40 0.51 0.53 0.51

Average quarterly earnings (2010$)

All quarters after entry $1,589 $1,870 $2,092 $2,119

1 year after entry $1,549 $1,890 $1,293 $1,839

2 years after entry $1,707 $2,139 $1,854 $2,298

3 years after entry $1,654 $2,133 $2,541 $2,510

4 years after entry $1,614 $2,017 $2,765 $2,456

Percentage of quarters on welfare 0.25 0.29 0.32 0.28

Percentage of quarters in school 0 0.24 0.42 0.23

Credits earned 0 19 67 25

Degree received

Certificate (less than 1 year) 0 0 0.53 0.03

Certificate (1 to less than 2 years) 0 0 0.14 0.02

Associate of Arts/General Studies 0 0 0.17 0.05

Associate of Applied Science 0 0 0.11 0.02

Bachelor's Degree 0 0 0.05 0.04

Table 2.1: Characteristics of Colorado Works Recipients by College Attendance and Degree Receipt

College Attendance

Data: CDHS program data, CDLE quarterly earnings records, and CDHE enrollment and degree files. Notes: Sample 

includes female adult Colorado Works recipients who began a spell of welfare receipt between 10/2004 and 6/2007.

Categories based on college-going after entering welfare. Race and marital status for women with non-missing values.

In College 

Pre-Entry
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(1) (2) (3) (4)

Credits | No degree

Health/Math/Science 1.84 4.53 0.0002 0.0002

(1.83) (1.91)* (0.0004) (0.0003)

Other program 0.29 0.03 0.0001 0.0001

(0.96) (0.81) (0.0002) (0.0001)

Test of equality (p-value) 0.484 0.043 0.996 0.866

Short-term Certificate

Health/Math/Science 619.14 -- 0.113 --

(153.60)** (0.028)**

Other 374.09 -- 0.060 --

(179.27)* (0.032)+

Test of equality (p-value) 0.313 0.210

Certificate

Health/Math/Science 1,538.21 -- 0.159 --

(406.24)** (0.042)**

Other two-year program 415.82 -- 0.128 --

(183.87)* (0.036)**

Test of equality (p-value) 0.013 0.586

Associate of Applied Science

Health/Math/Science 3,904.54 3,674.91 0.241 0.213

(569.33)** (563.18)** (0.042)** (0.041)**

Other two-year program 439.45 416.94 0.084 0.077

(335.82) (333.20) (0.044)+ (0.044)+

Test of equality (p-value) 0.000 0.000 0.011 0.025

Associate of Arts/GS -156.31 -141.91 0.026 0.025

(186.29) (185.66) (0.034) (0.034)

Bachelor's Degree 2,646.35 2,646.82 0.201 0.200

(294.02)** (293.61)** (0.033)** (0.033)**

Observations 857,124 857,124 857,124 857,124

Data: CDHS program data, CDLE quarterly earnings records, and CDHE enrollment and degree files. Notes: + 

significant at 10%; * significant at 5%; ** significant at 1%; robust standard errors clustered by individual in

parentheses; each column denotes a separate regression. Regressions include year, quarter, and individual fixed

effects, an indicator for college attendance, and a linear cohort trend allowing for a trend break at entry.

Regressions also control for vehicle ownership, number of children, age of youngest child, presence of a

disability, months on cash assistance (0, 1 to 12, 13 to 24, 25 or more), quarterly county unemployment rates,

and a quadratic in age. Columns 2 and 4 assume certificates are unobservable. All dollar amounts adjusted for

inflation (2010$).

Table 2.4: The Returns to College Credits and Degrees by Program

1. Quarterly Earnings 2. Pr(Employed)
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CHAPTER 3 
 

 

The Design of Teacher Incentive Pay and Educational Outcomes: 

Evidence from the New York City Bonus Program 
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3.1 Introduction 

Teacher compensation schemes are often criticized for their lack of performance pay. In other 

sectors, incentive pay increases worker effort and output by aligning the interests of workers and 

employers, providing information about the most valued aspects of an employee’s job, and 

motivating workers to provide costly effort (Gibbons 1998; Lazear and Oyer 2010). In this paper, 

we examine a group-based teacher incentive scheme implemented by the New York City 

Department of Education (DOE) and investigate whether specific features of the program 

contributed to its ineffectiveness.  

In 2007, close to two hundred schools were randomly selected from a group of high-

poverty schools.1 These schools could earn school-wide bonuses by surpassing goals primarily 

based on student achievement. Successful schools would earn lump sum payments equal to 

$3000 per union teacher (three to seven percent of annual teacher pay). Several independent 

studies show that the bonus program had little overall effect on either math or reading 

achievement (Springer and Winters 2009; Goodman and Turner 2010; Fryer 2011). We show 

that in schools where smaller groups of teachers were responsible for instructing tested students, 

the program led to small but significant increases in student achievement. Our finding is 

consistent with predictions that group-based incentives are diluted by the potential for free-riding 

when payments depend on actions of a large number of workers (Holmstrom 1982).  

Several features of the educational sector complicate the design of teacher performance 

pay. First, performance pay is most effective when employers can measure worker output or 

when observable effort and productivity are closely aligned. Monitoring teachers is costly and 

                                                 
1 This experiment was designed and implemented by the New York City Department of Education and teachers’ 
union, random assignment was conducted by Roland Fryer, and RAND performed the official evaluation.  
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measuring individual teachers’ contributions to student achievement is difficult. Second, 

although education is a complex good and teachers must allocate their effort across several 

activities, teacher incentive pay is often linked to a single performance measure (e.g., student test 

scores), which may lead teachers to direct effort away from other beneficial classroom activities 

(Holmstrom and Milgrom 1991).2 Despite these issues, studies from outside the United States 

demonstrate that teacher incentive pay can increase student achievement (e.g., Lavy 2002; Lavy 

2009; Muralidharan and Sundararaman 2011). 

 Specific features of the NYC bonus program may have limited its effectiveness. First, the 

program linked incentive pay to school-wide performance goals. In theory, group incentive pay 

is most effective in the context of a joint production technology (Itoh, 1991). For instance, if an 

individual teacher’s effort has positive impacts on the effort exerted by her peers (e.g., Jackson 

and Bruegmann 2009), group incentives may outperform individual incentives. Otherwise, 

relative to individual incentives, group incentives decrease individual returns to effort and will 

lead to free-riding unless workers monitor each other’s effort. 

We test for free-riding by allowing the bonus program’s impacts to vary by the number of 

teachers with students who are tested (and therefore contribute to the probability that a school 

qualifies for the bonus award). To test for the importance of joint production and monitoring, we 

examine whether program impacts vary by the degree to which teachers report collaborating in 

lesson planning and instruction using a survey administered prior to program implementation. 

We show that the bonus program raised math achievement in schools with a small number of 

teachers with tested students, although these impacts are small (0.08 student-level standard 

                                                 
2 Teachers may also be induced to focus on narrow, exam-related basic skills, manipulate test scores, or focus on 
students whose performance contributes more towards goals (e.g., Jacob and Levitt 2003; Jacob 2005; Cullen and 
Reback 2006; Neal and Schanzenbach 2010). 
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deviations) and only marginally significant in the program’s second year. We present suggestive 

evidence of positive program impacts in schools with a high degree of collaboration.  

Second, teachers already faced negative incentives when the bonus program was 

implemented. In fall 2007, the DOE instituted a district-wide accountability system that imposed 

sanctions on schools that did not meet the same goals used in determining bonus receipt. Thus, 

estimated impacts of the bonus program represent the effect of teacher performance pay in 

schools already under accountability pressure. However, this may be the most appropriate 

context to examine, since many states have implemented accountability systems and all public 

school districts face pressure from No Child Left Behind provisions. Finally, we find no 

differences in the impacts of the bonus program when we compare schools under different 

degrees of accountability pressure, suggesting that our results are not solely driven by the 

dilution of incentives due to the accountability system.  

Third, teachers’ lack of understanding of the bonus program’s complex goals may have 

limited its efficacy. Alternatively, since bonus awards were provided if a school’s performance 

reached a set threshold, if thresholds were set too high or too low, a large number of teachers 

may have optimally responded by not changing their behavior (Neal 2011). However, the metrics 

used to determine bonus payments were the same goals used by the district-wide accountability 

system and Rockoff and Turner (2010) show that negative incentives provided through this 

system increased student achievement.3 

The next section of this chapter describes New York City’s bonus program. Section 3.3 

provides an overview of the data and estimation framework while Section 3.4 presents results 

and the fifth section concludes. 

                                                 
3 On a related note, a committee within each school had some discretion over how bonuses would be distributed. 
However, the distribution scheme was set ex ante and most schools chose equal or close to equal distributions. 
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3.2 The New York City Bonus Program  

We use a policy experiment implemented by the New York City Department of Education 

(DOE) in the fall of 2007, the “School-Wide Performance Bonus Program” (hereafter, the bonus 

program). Both the DOE and the United Federation of Teachers (UFT) endorsed the program as 

an innovative model for teacher performance pay. In November 2007, 181 schools serving 

kindergarten through eighth grade were randomly selected from a group of 309 schools 

designated as “high need”; 128 schools were assigned to the treatment group. Two of the 181 

schools originally assigned to the treatment group were moved to the control group prior to 

notification of their assignment; for the purposes of our analyses, we consider these schools as 

part of the original treatment group. Treatment schools were eligible to participate in the 

program, contingent on 55 percent of a school’s full-time United Federal of Teachers (UFT) staff 

voting in favor of participation. Twenty-five schools voted not to participate or withdrew from 

the program following a vote of approval. Finally, four schools originally assigned to the control 

group were allowed to vote and ultimately chose to participate in the bonus program; for the 

purposes of our analyses, we consider these schools as part of the original control group. 

However, the group of schools that ultimately could earn bonus payments totaled 158.  

The schools that voted in favor of the program could earn a lump-sum bonus by meeting 

a school-wide goal. These goals were tied to the NYC accountability system which awarded 

letter grades to schools (explained below) and were primarily based on student achievement on 

state math and reading exams. Schools that achieved their goals received lump sum bonuses 

equal to $3,000 per union teacher, while schools that fell short but managed to meet 75 percent 

of their goal received $1,500 per union teacher. Thus, although total bonus awards varied across 

schools with different numbers of union teachers, the expected bonus payment was equal across 
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these schools. Schools that did not reach their target suffered no consequences beyond the 

absence of bonus pay. The full $3,000 award represents a seven percent increase in the salary of 

teachers at the bottom of the pay scale and a three percent increase for the most experienced 

teachers.4  

Each participating school selected a four-member compensation committee, consisting of 

the principal, a second administrator, and two union representatives elected by the school’s UFT 

members. In the program’s first year, this committee was required to submit a bonus distribution 

scheme after students took the state math and reading exams but before exam results were 

released. Thus, at least in the first year of the program, teachers’ effort decisions should not be 

affected by the distribution that was ultimately chosen. Program guidelines stipulated that within 

schools reaching their goal, all union teachers must receive a bonus payment and individual 

bonuses could not be explicitly based on seniority. Beyond these requirements, committees had 

complete freedom in determining individual teachers’ bonus payments and could also provide 

bonus payments to other school employees. Around half of treatment schools chose an 

approximately equal distribution (i.e., the difference between the highest and lowest bonus 

payment was less than $100). In the remainder of schools, the difference between the highest and 

lowest bonus ranged from $200 to $5000.  

The 2007-2008 school year also marked the implementation of the DOE’s new 

accountability system. Under this system, schools received accountability grades designed to 

summarize a school’s overall performance on a multidimensional metric of student learning.5 

                                                 
4 Similar to the majority of public school districts in the U.S., teacher salaries in New York City are determined 
through a schedule based on years of experience and graduate coursework (Podgursky and Springer 2007).  
 
5 The metric includes a measure of school environment (student attendance and results from survey of parents, 
teachers, and students), student performance (average student achievement on reading and math exams, median 
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Each school’s performance was scored relative to the entire district and to a group of peer 

schools. This group included the 40 schools that were most similar according to a “peer index” 

that was based on student demographic characteristics and prior achievement.6 Each school 

received a progress report documenting its overall performance, the corresponding accountability 

grade, and a target score for the following year. Schools with lower accountability grades needed 

to make larger improvements to reach their targets. Importantly, these target scores determined 

which schools participating in the bonus program received awards.  

Moreover, the accountability system provided additional incentives to improve student 

achievement, regardless of bonus program participation. Schools that earned an A or B 

accountability grade received rewards (e.g., principal bonuses, additional funds when students 

transferred from schools receiving a poor grade), while schools that received D and F grades 

faced consequences (e.g., school closure and principal removal).  Although this accountability 

system was more complex than systems based on a single metric (e.g., the percentage of students 

achieving proficiency), teachers and administrators received training on how to interpret the 

complicated set of measures determining a school’s grade, and it was clear that grades were 

largely determined by student performance on math and reading exams. Rockoff and Turner 

(2010) find that receiving an F or D led to a significant improvement in student test scores, a 

result consistent with school employees understanding that performance under the accountability 

system was dependent on student achievement. Bonus program impacts do not vary across 

schools with different accountability grades (see Section 4). However, it is still important to note 

                                                                                                                                                             
proficiency, and percentage students achieving proficiency), and student progress (average change and percent 
making progress on math and reading exams). Schools received extra credit for progress among high-need students. 
 
6 For elementary schools and schools serving kindergarten through eighth grade (K-8), the peer index was based on 
a function of the percentage of students that were English language learner (ELL), special education, Title I free 
lunch, and minority. For middle schools, the peer index was based on the 4th grade reading and math test scores of 
current students. 
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that our results represent the impact of group-based teacher performance pay for schools already 

under accountability pressure.  

The timing of program announcement and the selection of schools into the treatment 

group did not allow much room for behavioral responses to the program in its first year. The 

school vote took place in November 2007, less than two months before the January reading exam 

and less than four months before the March math exam.7 The program continued into the 2008-

2009 school year and all but three of the participating schools voted to continue participation.8 

Of the 158 schools that voted to participate in the first year of the program, 87 (55 percent) 

received bonus payments. The bonus pool averaged approximately $160,500 per school, and 

totaled $14.0 million in the first year. In the second year of the program, the vast majority of the 

151 schools that eligible to receive bonuses earned awards, totaling $27.1 million.  

3.3 Data and Empirical Framework 

Our analyses focus on schools classified as elementary, middle, and kindergarten through grade 

8 (K-8) schools eligible for selection into the bonus program. A total of 181 schools were chosen 

to participate in the bonus program; 128 schools were placed in the control group. We use 

publicly available DOE data and measure academic achievement using average math and reading 

test scores in the 2006-07, 2007-08, and 2008-09 school years (hereafter 2007, 2008, and 2009).  

We measure teacher absences, teacher turnover, and the characteristics of newly hired 

teachers using aggregate statistics from data on individual teachers.9  In some specifications, we 

                                                 
7 However, even given this short time period, the NYC accountability system led to significant improvements in 
math and, albeit smaller, improvements in reading (Rockoff and Turner 2010).  
 
8 Schools that voted no in the first year of the program were not given a second chance to vote on the program. 
However, we still consider these schools as part of the group originally assigned to the treatment group. 
  
9 We thank Jonah Rockoff for constructing these aggregate statistics for the purpose of this research.  
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include information on school demographic characteristics (the percentage of students in each 

school that are English Language Learners (ELL), special education students, Title I free lunch 

recipients, and minorities) and each schools performance under the new NYC accountability 

system, including each school’s accountability score and peer index. 

3.3.1 Was Randomization Successful? 

Our ability to make causal inferences about the effects of teacher incentive pay depends 

on the success of random assignment. In Table 3.1, we present comparisons of the characteristics 

of treatment and control groups prior to random assignment, where the treatment group includes 

schools that were initially selected but did not participate. Treatment and control schools are 

similar in terms of enrollment, accountability outcomes, student demographics, and teacher 

characteristics. We find no significant differences between the observable characteristics of 

treatment and control schools, suggesting a causal interpretation of our results is valid.  

We also compare the characteristics of the 309 schools in the experimental sample to 

other schools in NYC.10 Given that schools with low peer indices were eligible for selection into 

the bonus program, it is not surprising that the experimental sample differs from the remainder of 

NYC schools across a number of dimensions. Schools in the experimental sample had a higher 

proportion of English Language Learners (ELL), special education, minority students, and 

students eligible for the Title I free lunch program, as well as lower average math and reading 

scores.  Teachers in the experimental sample had slightly less experience and almost twice as 

many absences than teachers in other NYC schools.  Finally, experimental schools had lower 

enrollment and fewer teachers than other schools. 

                                                 
10 We restrict our universe to the 923 schools serving students in kindergarten through eighth grade that received 
accountability grades and were not charter schools or schools that only serve special education students. 
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Table 3.2 compares the characteristics of schools by whether or not they voted to 

participate in the program. Schools voting “no” are largely similar to schools that voted in favor 

of the program, although, on average, these 25 schools were relatively less disadvantaged and 

their students had higher test scores. 

3.3.2 Regression Framework 

We estimate the main effect of the bonus program using the following model: 

(3.1)    jtjtjt Dy   βX jt  

where jty is the outcome of interest for school j in year t, jtD  is an indicator selection into the 

bonus program’s treatment group (regardless of whether the school ultimately participated), jtX is 

a vector of school characteristics, and jt is an idiosyncratic error term.11 School observations are 

weighted by the number of tested students. With successful random assignment, jtD  is 

independent of omitted variables and ̂ represents the casual impact of the bonus program.  

3.4 Results 

To preview our estimates of the impact of the bonus program on student achievement, Figures 

3.1 and 3.2 display the distribution of average math and reading scores within treatment and 

control schools in 2007, 2008, and 2009.  On average, all NYC schools experienced an increase 

in average student performance in the two years following the implementation of the program; 

this pattern holds in the experimental sample. If the bonus program had an impact on test scores, 

we should observe a rightward shift in the distribution among treatment schools, relative to 

                                                 
11 Covariates include the outcome measured in 2007, school type indicators (i.e., elementary, middle, or K-8), the 
percentage of students that are English Language Learners, special education, Title I free lunch recipients, and 
minorities, and performance under the NYC accountability system (school accountability scores and peer indices).  
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control schools. The distribution of math and reading scores do not differ significantly between 

treatment and control schools in either 2008 or 2009.  

3.4.1 Math and Reading Achievement 

Table 3.3, which displays results from regressions estimating the impact of the program 

on average math and reading exam scores, confirms these findings. We find little evidence that 

the program led to increases in math and reading achievement and, if anything, it appears that 

eligibility to earn bonuses had a negative impact on math achievement. Panels A and B examine 

the first and second years of the program separately. The point estimates for 2008 are negative 

and quite small, although precisely estimated.12 In the second year of the program, eligibility to 

earn bonuses had no effect on student achievement in reading and a small negative impact on 

math scores, leading to an approximately 0.08 standard deviation reduction in math 

achievement.13  

3.4.2 Group Bonuses and the Free-rider Problem 

Teachers should respond to the bonus program by increasing their effort until the 

expected marginal benefit is equal to the expected marginal cost. However, the probability that a 

treated school reaches its goal and receives a bonus primarily depends on students’ performance 

on math and reading exams. Thus, the impact of an individual’s teacher’s effort on her expected 

bonus is decreasing as the number of teachers with tested students increases.14 The diffusion of 

                                                 
12 For instance, our IV estimates reject effects as small as a 0.7 point increase in reading achievement and a 0.2 point 
increase in math. These effects are quite small in magnitude, given the 2008 student level standard deviation in test 
scores was 35 points for reading and 31 points for math.  
 
13 Four schools in the treatment group were closed at the end of the 2008 school year, thus, our sample decreases by 
four in the second set of regressions. Our 2008 results remain unchanged when we restrict the sample to only 
include schools open in both 2008 and 2009.  
 
14 Consider two extremes, a school with only one teacher with tested students and a school with an infinite number 
of these teachers. In the first case, the teacher will either respond to the program by increasing her effort to the 
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responsibility for test score gains across many teachers may dilute the incentives of the bonus 

scheme. Moreover, monitoring may be more difficult in schools with more teachers. 

We test for evidence of free-riding by allowing treatment effects on math and reading 

scores to vary by the number of math and reading teachers, respectively. We only focus on 

teachers whose students take these exams, rather than the full set of teachers in a school, since 

only teachers with tested students contribute to the probability that a school earns its bonus.15 

The first set of regressions in Table 3.4 show the main effect of the bonus program on math and 

reading achievement.16 We first add an interaction between the number of math/reading teachers 

(relative to the mean number of such teachers in the sample) and the treatment indicator 

(columns 2 and 5), and finally, interact treatment status with an indicator for schools in the 

bottom quartile of the number of teachers with tested students (approximately 10 or fewer 

teachers in elementary and K-8 schools and 5 or fewer in middle schools). We only present 

results from specifications that include covariates, however, results are similar when we exclude 

covariates or instrument for actual treatment with initial assignment.  

We find evidence of free-riding. For schools at the bottom of the distribution of the 

number of teachers with tested students, we estimate a positive effect of the bonus program on 

math achievement in the first year of the program and a positive, but insignificant effect in the 

second year, although we cannot reject a test of equality of effects across years. In 2008, the 

                                                                                                                                                             
expected level necessary to achieve the school’s goal or not respond (if the size of the bonus is less than the cost of 
exerting this level of effort). In the second case, changes in a given teacher’s effort do not affect the probability that 
the school receives the bonus and it will be optimal for teachers to not respond to the program.  
 
15 On average, treatment and control group schools have 55 teachers in total, but only 16 teach tested students. 
 
16 The small number of middle and K-8 schools that are missing information on the number of teachers with tested 
subjects are excluded. 
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bonus program resulted in a 3.2 point (0.08 student-level standard deviation) increase in math 

achievement.17  

Group-based incentive pay may outperform individual incentives in the case of joint 

production. If the degree to which teachers work together varies across schools, the bonus 

program may have been effective in schools with a high level of cooperation between teachers. 

To proxy for the extent of joint production in a school, we construct a measure of school 

cohesiveness using teachers' answers to a set of five survey questions prior to the announcement 

of the bonus program.18 This measure may also incorporate the degree to which teachers are able 

to monitor their colleagues. We sum responses across survey questions and standardize the index 

so it has a mean of zero and standard deviation equal to one. Schools with high levels of 

cohesion are distinct from those with a small number of teachers with tested students.19  

Table 3.5 tests for heterogeneity in the impact of the bonus program by school cohesion. 

We first interact treatment with the linear index (columns 2 and 5) and then interact treatment 

with an indicator for schools with above average cohesion (columns 3 and 6). The point 

estimates for schools with below average cohesion are marginally significant and negative in 

both subjects and both years, while the interaction of treatment and the indicator for above 

average cohesion is significant, positive, and of greater magnitude. Results suggest that the 

                                                 
17 Another implication of this finding is that, in schools with a large number of teachers with tested students, the 
bonus program had a negative impact on student achievement. One explanation is the bonus program crowded out 
teachers’ intrinsic motivation and only in schools where incentives were not diluted by free-riding did the potential 
monetary rewards lead to increased teacher effort.  
 
18 These surveys were administered in spring 2007. Questions include: (1) the extent to which teachers report feeling 
supported by fellow teachers, (2) whether curriculum and instruction is aligned within and across school grades, (3) 
whether the principal involves teachers in decision making, (4) whether school leaders encourage collaboration, and 
(5) whether teachers collaborate to improve instruction. We exclude schools with a survey response rate under 10%.  
 
19 This index has a small, negative, and statistically insignificant correlation with the number of math and reading 
teachers in a school. 
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bonus program may have had detrimental effects in schools with low levels of cohesion, and 

small positive effects on achievement in cohesive schools.  

3.4.3 Teacher Effort 

A primary motivation for performance-based pay is to provide teachers with incentives to 

increase effort devoted to raising student achievement. Although we do not directly observe 

teacher effort, we can measure teacher attendance, which may be correlated with effort decisions 

and contributes to student achievement (e.g., Miller, Murnane, and Willett 2008; Herrmann and 

Rockoff forthcoming). We measure teacher absences using aggregate statistics from individual 

teacher data and estimate models where the dependent variable is the average number of 

absences taken during the months when schools first learned of their eligibility for the bonus 

program and when the last exams were taken. If teachers believe that their attendance can affect 

the probability of bonus receipt by raising student achievement, the program’s impacts on 

absenteeism should be largest over this period.20 We only examine absences that teachers likely 

have some control over – those taken for illness and personal reasons.  

Table 3.6 presents these results; each column within a panel contains the estimates from 

separate regressions. The first column examines the effect of the bonus program on absences 

across all teachers within a school and shows no measurable impact on overall attendance. 

Column 2 focuses on teachers with tested students, while the third and fourth columns follow the 

same approach as Table 3.4 and interact the treatment indicator with the number of teachers with 

tested students (column 3) or an indicator for whether a school falls in the bottom quartile of the 

number of such teachers (column 4).  

                                                 
20 In the first year of the program, schools learned of their eligibility in November while in the second year, 
eligibility was known in September. In both years, the last exams occurred in March. Results are robust to alternate 
definitions of the time period (e.g., November to March in the second year or September to March in the first year). 
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Program impacts on attendance are not consistent across years. In the program’s first 

year, for schools with a small number of teachers with tested students, attendance increased.21 

Conversely, in the second year of the program, we find positive but insignificant impacts on 

absenteeism. Finally, we test whether the bonus program had heterogeneous impacts according 

to initial teacher effort. For instance, initially low effort (high absence) teachers may be the only 

group with the ability to respond through increasing attendance. Conversely, if ex ante high 

effort teachers believed that achieving the bonus program goals was a high probability event, 

they may have responded by reducing their effort. However, we find no evidence teacher 

absenteeism varies along this dimension (available upon request). In the United States, 

attendance may not be the dimension along which teachers respond to incentive pay.  

3.4.4 Bonuses and School Accountability 

Finally, we test whether the NYC accountability system, also implemented in 2007, 

contributed to the bonus program’s ineffectiveness. Teachers may have already adjusted their 

effort or teaching practices in response to the accountability system’s incentives. If teachers face 

decreasing marginal returns or increasing marginal costs to effort, the size of potential bonus 

payments may not be large enough to induce additional effort.  

To evaluate this possibility, we take advantage of the fact that treatment schools face 

different incentives according to their accountability grades. Both treatment and control schools 

receiving low grades had additional motivation to improve student test scores, as they faced 

school closure or principal removal if student achievement did not improve in the following year. 

Conversely, schools receiving an A on their progress report generally needed to make the 

smallest gains to receive a bonus, thus, the program may not have provided a large incentive to 
                                                 
21 However, impacts are only significant in schools at the 10th percentile in the distribution of number of teachers 
(results available upon request).  
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teachers in treatment schools to alter their behavior. Treatment and control schools in the middle 

of the grade distribution faced the largest difference in incentives. We test whether treatment 

effects vary along this dimension, grouping schools into three separate bins by their 

accountability grades: A, B or C, and D or F. We find no significant differences in treatment 

effects between these grade groupings or for schools at the center of the grade distribution where 

the difference in incentives between treatment and control schools are largest (Table 3.7).   

3.5 Conclusions 

In many sectors, performance-based pay enhances effort, output, and other desirable outcomes. 

Evidence from Israel and India suggests that properly structured teacher incentive pay programs 

can benefit students. However, despite substantial expenditures – over $40 million in the 

program’s first two years – the NYC bonus program did not raise student achievement. This 

paper discusses several features of the NYC bonus program that may have contributed to its 

ineffectiveness. We provide suggestive evidence that the group-based structure of the program 

may have been detrimental in the majority of schools where the number of teachers responsible 

for tested students is large. Conversely, the program improved math achievement in schools with 

fewer teachers responsible for tested students or a more cohesive group of teachers. A lack of 

monitoring as well as the diffusion of responsibility for test score gains among many teachers 

may have diluted the incentives of the opportunity to earn bonuses. Our results are consistent 

with the long-standing literature in economics on the importance of taking into consideration 

free-riding, joint production, and monitoring when designing incentive systems and suggest that 

a one-size-fits-all approach may not be the most effective when implementing incentive pay 

schemes within a school district.  
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Given that team-based incentives in other contexts resulted in student achievement gains, 

other features of the NYC program may have also contributed to its ineffectiveness. Neal (2011) 

suggests that results from economic theory offer valuable insights into optimal incentive design.  

For instance, an intervention in India utilized a piece-rate payment scheme: teachers or schools 

received bonus payments for incremental improvements in student achievement (Muralidharan 

and Sundararaman 2011). This avoids threshold effects of schemes like the NYC bonus program, 

which dilute incentives for teachers with a probability of bonus receipt approaches zero or one.  

Even so, many challenges in designing effective teacher incentive schemes remain. 

Incentive pay programs that come about as a compromise between school districts and teachers 

unions’ might contain incentives that are so diluted they are destined to fail. Finally, the 

extensive margin may be most important margin through which teacher pay can improve student 

achievement. Small-scale teacher incentive pay experiments cannot provide information 

concerning the general equilibrium effects of overall increase in teacher pay or movement 

towards performance-based compensation.  

Currently, the U.S. government provides significant funding through the Race to the Top 

program. Eligibility for Race to the Top funding depends on districts’ ability and willingness to 

link student achievement to individual teachers and use this data in teacher evaluations, but 

grants districts a great deal of discretion in designing performance pay systems. In 2010, 62 

school districts and nonprofit groups received over $400 million in funding from the federal 

Teacher Incentive Fund. Our results underscore the importance of the structure of performance 

pay in education. Policy innovations in this area should be carefully considered, taking into 

account personnel economics theory and research. 
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3.6 Figures and Tables 

 

Figure 3.1: The Distribution of Average Math Scores by Treatment Status 
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Notes: Vertical lines denote mean math scores for treatment (solid) and control schools 
(dashed). 
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Figure 3.1: The Distribution of Average Math Scores by Treatment Status, cont. 
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Figure 3.2: The Distribution of Average Reading Scores by Treatment Status 
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Notes: Vertical lines denote mean math scores for treatment (solid) and control schools 
(dashed). 
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Figure 3.2: The Distribution of Average Reading Scores by Treatment Status, cont. 
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Notes: Vertical lines denote mean math scores for treatment (solid) and control schools 
(dashed). 
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Treatment 

Schools

Control 

Schools
Difference p-value

Non-Experimental 

Schools

Number of Schools 181 128 614

Average enrollment 558 558 0 0.852 687

Average enrollment, tested grades 363 367 -4 0.912 459

Fraction elementary school 0.62 0.63 -0.01 0.788 0.63

Fraction middle school 0.26 0.27 -0.01 0.586 0.24

Fraction K-8 school 0.12 0.10 0.02 0.452 0.13

School Accountability Outcomes

Peer index (mean = 0, sd = 1) -0.91 -0.93 0.02 0.452 0.44

Overall accountability score 52.6 52.1 0.6 0.750 54.6

Target score 66.3 65.9 0.4 0.772 67.8

Student Characteristics

Average math scale score (2007) 656 655 1 0.497 677

Change in math scale score (2006 to 2007) 10.5 10.3 0.2 0.741 8.7

Average reading scale score (2007) 640 640 1 0.603 660

Change in reading scale score (2006 to 2007) 1.4 1.9 -0.5 0.511 0.9

Fraction English Language Learner 0.19 0.19 0.01 0.614 0.11

Fraction special education 0.12 0.13 -0.01 0.246 0.09

Fraction free lunch 0.87 0.89 -0.02 0.315 0.62

Fraction Hispanic 0.56 0.53 0.03 0.428 0.33

Fraction Black 0.41 0.43 -0.03 0.425 0.29

Fraction White 0.01 0.01 0.00 0.640 0.20

Teacher Characteristics

Number of teachers 55 55 0 0.952 60

Number of teachers, tested classrooms 16 16 -1 0.431 17

Average years of experience 7.9 8.0 -0.1 0.703 8.6

Average absences/teacher (2007) 7.2 7.0 0.2 0.447 6.7

Average absences/teacher, tested classrooms (2007) 7.4 7.2 0.3 0.377 7.0

Notes: Characteristics measured at beginning of 2007-2008 school year unless otherwise noted; average absences per teacher include absences 

taken for personal or sick leave.

Table 3.1: Baseline School Characteristics by Original Assignment to Treatment and Control Groups
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Number of Schools 158 25

Average enrollment 558 574 -16 0.754

Average enrollment, tested grades 364 361 3 0.939

Fraction elementary school 0.61 0.72 -0.11 0.284

Fraction middle school 0.27 0.20 0.07 0.487

Fraction K-8 school 0.13 0.08 0.05 0.508

School Accountability Outcomes

Peer index (mean = 0, sd = 1) -0.91 -0.87 -0.05 0.247

Overall accountability score 52.5 55.1 -2.5 0.452

Target score 66.3 68.2 -1.9 0.480

Student Characteristics

Average math scale score (2007) 655 661 -6 0.102

Change in math scale score (2006 to 2007) 10.7 10.2 0.5 0.704

Average reading scale score (2007) 640 644 -5 0.040

Change in reading scale score (2006 to 2007) 1.7 0.2 1.4 0.316

Fraction English Language Learner 0.20 0.18 0.02 0.549

Fraction special education 0.12 0.12 0.00 0.773

Fraction free lunch 0.88 0.86 0.02 0.608

Fraction Hispanic 0.56 0.54 0.03 0.672

Fraction Black 0.41 0.42 -0.01 0.868

Fraction White 0.01 0.01 0.00 0.772

Teacher Characteristics

Number of teachers 55 56 -2 0.707

Number of teachers, tested classrooms 15 17 -2 0.237

Average years of experience 7.9 8.4 -0.6 0.163

Average absences (2007) 7.1 7.1 0.0 0.426

Average absences, tested classrooms (2007) 7.0 7.2 -0.2 0.775

p-value

Notes: Characteristics measured at beginning of 2007-2008 school year unless otherwise noted; average absences per 

teacher include absences taken for personal or sick leave.

Table 3.2: Baseline School Characteristics by Participation Vote

Voted "yes" Voted "no" Difference
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All Teachers
(1) (2) (3) (4)

A. Year 1: 2007-2008

Treatment 0.001 -0.158 -0.217 -0.156

(0.091) (0.146) (0.148) (0.163)

* Number of teachers (mean = 0) 0.013

(0.022)

* First quartile of number of teachers -0.236

(0.390)

Treatment effect: schools in first quartile -0.391

(0.352)

Observations 301 301 301 301

B. Year 2: 2008-2009

Treatment 0.045 0.151 0.203 0.161

(0.119) (0.175) (0.192) (0.200)

* Number of teachers (mean = 0) 0.005

(0.032)

* First quartile of number of teachers 0.158

(0.621)

Treatment effect: schools in first quartile 0.319

(0.576)

Observations 294 294 294 294

Notes: + significant at 10%; * significant at 5%; ** significant at 1%; each column within a panel denotes a separate 

regression; measures of the number of reading/math teachers are demeaned; dependent variable is average absences 

per teacher taken for personel or sick leave between November and March (Panel A) or September and March (Panel 

B); additional controls include: pre-treatment (2007) school test score, school level, peer index, overall accountability 

score, percentage of students ELL, special education, free lunch recipients, and student race (African American and 

Hispanic); regressions are weighted by number of tested students; schools with no teachers linked to tested students 

are dropped; the number of teachers for schools in the first quartile is less than or equal to: 10 (elementary 

schools),11 (middle and K-8 schools). 

Teachers of Tested Students

Table 3.6: The Impact of Teacher Incentives on Teacher Absences Due to Personal and Sick 
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(1) (2) (3) (4) (5) (6)

OLS OLS IV OLS OLS IV

A. Year 1: 2007 - 2008

Treatment*D or F -3.719 0.175 0.188 -5.292 -0.329 -0.379

(2.147)+ (1.116) (1.244) (3.407) (1.144) (1.279)

Treatment*B or C 0.454 -0.733 -0.892 0.944 -0.400 -0.470

(1.309) (0.615) (0.726) (2.163) (0.700) (0.825)

Treatment* A -1.856 0.063 0.091 -3.703 -1.542 -2.031

(2.489) (1.122) (1.439) (3.608) (1.084) (1.447)

Test A/B = C = D/F (pvalue) 0.231 0.698 0.685 0.238 0.653 0.625

Observations 309 309 309 309 309 309

B. Year 2: 2007 - 2008

Treatment*D or F -3.533 -1.924 -3.246 -7.273 -3.326 -5.582

(2.321) (1.300) (2.178) (4.017)+ (2.388) (3.924)

Treatment*B or C -0.488 -0.379 -0.465 -0.686 -0.463 -0.574

(0.976) (0.435) (0.518) (1.888) (0.658) (0.786)

Treatment* A 1.179 -0.091 -0.113 1.511 -0.603 -0.749

(1.802) (0.686) (0.843) (2.726) (0.952) (1.174)

Test A/B = C = D/F (pvalue) 0.277 0.450 0.400 0.193 0.515 0.460

Observations 305 302 302 305 302 302

Additional covariates X X X X

Notes: + significant at 10%; * significant at 5%; ** significant at 1%; each column within a panel denotes a

separate regression; dependent variable: school average reading or math scale score interacted with indicator

for school grade; robust standard errors in parentheses; all regressions weighted by number of students tested

in math or reading; additional covariates include: prior year scale score, indicators for school level, peer

index, overall accountability score, percentage of students ELL, special education, free lunch recipients, and

student race (African American and Hispanic); sample sizes differ across years due to the closure of four

schools at the end of the 2007-2008 school year and the elimination of an additional three schools that did

not receive 2008 accountability grades.

Table 3.7: Heterogeneity in Impact of Teacher Incentives on Student Math and Reading 
Achievement by Accountability Grade

Reading Math
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