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ABSTRACT

ESSAYS IN ASSET PRICING AND VOLATILITY RISK

Gill Segal

Amir Yaron

In the first chapter (“Good and Bad Uncertainty: Macroeconomic and Financial Market Im-

plications” with Ivan Shaliastovich and Amir Yaron) we decompose aggregate uncertainty

into ‘good’ and ‘bad’ volatility components, associated with positive and negative innova-

tions to macroeconomic growth. We document that in line with our theoretical framework,

these two uncertainties have opposite impact on aggregate growth and asset prices. Good

uncertainty predicts an increase in future economic activity, such as consumption, and in-

vestment, and is positively related to valuation ratios, while bad uncertainty forecasts a

decline in economic growth and depresses asset prices. The market price of risk and eq-

uity beta of good uncertainty are positive, while negative for bad uncertainty. Hence, both

uncertainty risks contribute positively to risk premia.

In the second chapter (“A Tale of Two Volatilities: Sectoral Uncertainty, Growth, and Asset-

Prices”) I document several novel empirical facts: Technological volatility that originates

from the consumption sector plays the “traditional” role of depressing the real economy and

stock prices, whereas volatility that originates from the investment sector boosts prices and

growth; Investment (consumption) sector’s technological volatility has a positive (negative)

market-price of risk; Investment sector’s technological volatility helps explain return spreads

based on momentum, profitability, and Tobin’s Q. I show that a standard DSGE two-sector

model fails to fully explain these findings, while a model that features monopolistic power

for firms and sticky prices, can quantitatively explain the differential impact of sectoral

volatilities on real and financial variables.

In the third chapter (“From Private-Belief Formation to Aggregate-Vol Oscillation”) I pro-
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pose a model that relies on learning and informational asymmetry, for the endogenous

amplification of the conditional volatility in macro aggregates and of cross-sectional dis-

persion during economic slowdowns. The model quantitatively matches the fluctuations

in the conditional volatility of macroeconomic growth rates, while generating realistic real

business-cycle moments. Consistently with the data, shifts in the correlation structure

between firms are an important source of aggregate volatility fluctuations. Cross-firm cor-

relations rise in downturns due to a higher weight that firms place on public information,

which causes their beliefs and policies to comove more strongly.
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CHAPTER 1 : Good and Bad Uncertainty: Macroeconomic and Financial Market

Implications

(with Ivan Shaliastovich and Amir Yaron)1

1.1. Introduction

How do changes in economic uncertainty affect macroeconomic quantities and asset prices?

We show that the answer to this question hinges on the type of uncertainty one considers.

‘Bad’ uncertainty is the volatility that is associated with negative innovations to macroe-

conomic quantities (e.g., output, consumption, earnings), and with lower prices and invest-

ment, while ‘good’ uncertainty is the volatility that is associated with positive shocks to

these variables, and with higher asset prices and investment.

To illustrate these two types of uncertainties, it is instructive to consider two episodes: (i)

the high-tech revolution of early-mid 1990s, and (ii) the recent collapse of Lehman Brothers

in the fall of 2008. In the first case, and with the introduction of the world-wide-web, a

common view was that this technology would provide many positive growth opportunities

that would enhance the economy, yet it was unknown by how much? We refer to such a

situation as ‘good’ uncertainty. Alternatively, the second case marked the beginning of the

global financial crisis, and with many of the ensuing bankruptcy cases one knew that the

state of economy was deteriorating—yet, again, it was not clear by how much? We consider

this situation as a rise in ‘bad’ uncertainty. In both cases, uncertainty level rises relative to

its long-run steady-state level, yet, the first case coincides with an optimistic view, and the

second with a pessimistic one.

In this paper, we demonstrate that variations in good and bad uncertainty have separate

and significant opposing impacts on the real economy and asset prices. We use an extended

version of the long-run risks model of Bansal and Yaron (2004) to theoretically show con-

1Reprinted from the Journal of Financial Economics, Vol 117, Segal, G., Shaliastovich, I., Yaron, A.,
Good and bad uncertainty: Macroeconomic and Financial Market Implications, Pages 369–397, Copyright
2015, with permission from Elsevier.
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ditions under which good and bad uncertainty have different impacts on prices. To make a

meaningful distinction between good and bad uncertainty, we decompose, within the model,

the overall shocks to consumption into two separate zero-mean components (e.g., jumps)

which capture positive and negative growth innovations. The volatilities of these two shocks

are time varying, and capture uncertainty fluctuations associated with the positive and neg-

ative parts of the distribution of consumption growth. Thus, in the model, valuation ratios

are driven by three state variables: predictable consumption growth, good uncertainty, and

bad uncertainty. Consequently, the stochastic discount factor, and therefore risk premia,

are determined by three sources of risk: cash flow, good uncertainty, and bad uncertainty

risks.

We show that with a preference for early resolution of uncertainty, the direct impact of both

types of uncertainty shocks is to reduce prices, though, prices respond more to bad than to

good uncertainty. For prices to rise in response to a good uncertainty shock there has to be

an explicit positive link between good uncertainty and future growth prospects—a feature

that we impose in our benchmark model.2 We further show that the market price of good

uncertainty risk and its equity beta have the same (positive) sign. Thus, even though prices

can rise in response to good uncertainty, it commands a positive risk premium.

Overall, the model’s key empirical implications include: (i) good uncertainty positively

predicts future measures of economic activity, while bad uncertainty negatively forecasts

future economic growth; (ii) good uncertainty fluctuations are positively related to asset

valuations and to the real risk-free rate, while an increase in bad uncertainty depresses asset

prices and the riskless yield; and (iii) the shocks to good and bad uncertainty carry positive

and negative market prices of risk, respectively, yet both contribute positively to the risk

premium.3

2Backus et al. (2010) also feature a direct feedback from volatility to future growth. However, they focus
on total volatility and show the importance of this feedback for reconciling various lead-lag correlations
between consumption growth and market returns.

3Although both uncertainties carry positive risk premium, their covariance, which may capture a common
component, could contribute negatively to the risk premium.
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We evaluate our model’s empirical implications by utilizing a novel econometric approach to

identify good and bad uncertainty from higher-frequency realized variation in the variables

of interest (see Barndorff-Nielsen et al., 2010). Empirically, we use the exante predictable

components of the positive and negative realized semivariances of industrial production

growth rate as the respective proxies for good and bad uncertainty.4 In its limiting be-

havior, positive (negative) semivariance captures one-half of the variation in any Gaussian

symmetric movements in the growth rate of the variable of interest, as well as the variation

of any non-Gaussian positive (negative) component in it. Thus, in our empirical work the

positive (negative) semivariance captures the volatility component that is associated with

the positive (negative) part of the total variation of industrial production growth, and its

predictive component corresponds to the model concept for good (bad) uncertainty.

Consistent with the model, we document in the data that across various macroeconomic

growth rates, and across various horizons, good economic uncertainty positively predicts

future growth. This evidence includes growth for horizons of one to five years in con-

sumption, output, investment, research and development (R&D), market earnings, and

dividends. Similarly, we find a negative relationship between bad uncertainty and future

growth rates of these macro variables. Together, these findings support the model feedback

channel from macroeconomic uncertainty to future growth rates. Quantitatively, the im-

pact of uncertainty has a large economic effect on the macro variables. For example, the

private gross domestic product (GDP) growth increases by about 2.5% one year after a one

standard deviation shock to good uncertainty, and this positive effect persists over the next

three years. On the other hand, bad uncertainty shocks decrease output growth by about

1.3% one year after and their effects remain negative for several years. The responses of

investment and R&D to these shocks are even stronger. Both capital and R&D investment

significantly increase with good uncertainty and remain positive five years out, while they

significantly drop with a shock to bad uncertainty. An implication of the offsetting re-

4We use industrial production because high-frequency real consumption data are not available for the
long sample.

3



sponses to good and bad uncertainty is that the measured responses to overall uncertainty

are going to be muted. Indeed, GDP growth declines only by about 0.25% after a shock

to total uncertainty. The response to total uncertainty is significantly weaker than that to

bad uncertainty, which underscores the potential importance of decomposing uncertainty

into good and bad components.

The empirical evidence in the data is further consistent with the model’s key asset-pricing

implications. We document that the market price-dividend ratio and the risk-free rate ap-

preciate with good uncertainty and decline with bad uncertainty. Quantitatively, the market

log price-dividend ratio rises by about 0.07 one year out in response to a one standard devi-

ation shock to good uncertainty and remains positive ten years afterward. Bad uncertainty

shock depresses the log price-dividend ratio by 0.06 on impact and remains negative for ten

years out. Similar to the macroeconomic growth rates, the response of the price-dividend

ratio to total uncertainty is negative, but is understated relative to the response to bad

uncertainty. The evidence for the response of the price-earnings ratio is very similar to that

of the price-dividend ratio. In addition, consistent with the model, we show that both bad

and good uncertainty positively predict future excess returns and their volatility.

Finally, we estimate the market prices of good and bad volatility risks using the cross-section

of asset returns that includes the market return, 25 equity portfolios sorted on book-to-

market ratio and size, and two bond portfolios (Credit and Term premium portfolios). We

show that the market price of risk is positive for good uncertainty, while it is negative for bad

uncertainty. Moreover, asset returns have a positive exposure (beta) to good uncertainty

risk, and a negative exposure to bad uncertainty risk. Consequently, both good and bad

uncertainty command a positive risk premium, although the interaction of their shocks can

contribute negatively to the total risk compensation, since the good and bad uncertainty

shocks are positively correlated. The market risk premium is 7.2% in the data relative to

8.2% in the model. In the data, the value spread is 4.38%, which is comparable to 3.34%

in the model. The size spread is 4.39%, relative to 5.21% in the model. For the Credit

4



premium portfolio the risk premium is 1.98% in the data and 2.15% in the model, and the

Term premium is 1.82% in the data relative to 0.64% in the model.

1.1.1. Related literature

Our paper is related to a growing theoretical and empirical literature that documents the

connection between economic uncertainty, aggregate quantities, and asset prices. Our con-

cept of economic uncertainty refers to the time series volatility of shocks to economic quan-

tity variables of interest (e.g., consumption and GDP growth). This is distinct from other

aspects of uncertainty, such as parameter uncertainty, learning, robust-control, and ambi-

guity (see discussions in Pastor and Veronesi, 2009a; Hansen and Sargent, 2010; Epstein

and Schneider, 2010). While there is a long-standing and voluminous literature on the

time-varying second moments in asset returns, the evidence for time variation in the second

moments of macro aggregates, such as consumption, dividends, earnings, investment, and

output, is more limited and recent. Kandel and Stambaugh (1991) is an early paper pro-

viding evidence for stochastic volatility in consumption growth. More recently, McConnell

and Perez-Quiros (2000), Stock and Watson (2003), and Bansal, Khatchatrian, and Yaron

(2005b) provide supporting evidence that volatility measures based on macro aggregates

feature persistent predictable variation.

The evidence on time-varying volatility of macro aggregates has also instilled recent inter-

est in examining the role of uncertainty in dynamic stochastic general equilibrium (DSGE)

production models. Bloom (2009) shows that increased volatility, measured via VIX, leads

to an immediate drop in consumption and output growth rates as firms delay their invest-

ment decisions. Generally, the literature has emphasized a negative relationship between

growth and uncertainty—see Ramey and Ramey (1995), Gilchrist et al. (2014), Fernandez-

Villaverde et al. (2011), and Basu and Bundick (2012), to name a few. Other papers, such

as Gilchrist and Williams (2005), Jones et al. (2005), Malkhozov (2014), and Kung and

Schmid (2014) feature alternative economic channels which can generate a positive rela-

tionship between uncertainty and investment and thus growth. In addition, Croce et al.
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(2012) and Pastor and Veronesi (2012) highlight the negative impact of government policy

uncertainty on prices and growth.

In terms of asset prices, Bansal and Yaron (2004) show that with Epstein and Zin (1989)

recursive preferences and an intertemporal elasticity of substitution (IES) larger than one,

economic uncertainty is a priced risk, and is negatively related to price-dividend ratios. More

recently, Bansal et al. (2014) examine the implications of macroeconomic volatility for the

time variation in risk premia, for the return on human capital, and for the cross-section of

returns. They develop a dynamic capital asset-pricing model (CAPM) framework for which

one of the factors, in addition to the standard cash flow and discount rate risks, is aggregate

volatility. Campbell et al. (2012) also analyze the role of uncertainty in an extended version

of the intertemporal capital asset-pricing model (ICAPM). While both papers document a

significant role for uncertainty, Bansal et al. (2014) find both the betas and market price of

uncertainty risk to be negative, and thus uncertainty to positively contribute to equity risk

premia, whereas the evidence in Campbell et al. (2012) is more mixed in terms of whether

assets have negative or positive exposure (beta) to volatility. The empirical framework in

this paper, allowing for two types of uncertainties, can in principle accommodate several of

these uncertainty effects.

Our framework features two types of macroeconomic uncertainties. In terms of estimating

two types of uncertainties, the literature has mainly focused on return-based measures.

Patton and Sheppard (2015), Feunou et al. (2013), and Bekaert et al. (2015) use return

data to capture fluctuations in good and bad volatilities, and study their effects on the

dynamics of equity returns. Specifically, Patton and Sheppard (2015) and Feunou et al.

(2013) use realized semivariance measures to construct the two volatilities, whereas we

construct bad and good uncertainty measures directly from the macro aggregates.

Our framework is also related to a recent literature which highlights non-Gaussian shocks

in the fundamentals. One analytically convenient specification that our framework accom-

modates and which is widely used features Poisson jumps in consumption dynamics (see,
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e.g., Eraker and Shaliastovich, 2008; Benzoni et al., 2011; Drechsler and Yaron, 2011; and

Tsai and Wachter, 2014 for recent examples). In another specification, which again can

be accommodated within our framework, the cash flow shocks are drawn from a Gamma

distribution with a time-varying shape parameter, in which case the consumption shock dy-

namics follow the good and bad environment specification in Bekaert and Engstrom (2009).

Finally, an alternative approach for generating time variation in higher-order moments is

provided in Colacito et al. (2013). They model shocks to expected consumption as drawn

from a skew-normal distribution with time-varying parameters and allow for a separate pro-

cess for stochastic volatility. Our modeling approach focuses on bad and good volatility as

the key driving forces for time variation in consumption growth distribution, and is largely

motivated by our empirical analysis.

There is also a voluminous literature on the implications of time-varying higher-order mo-

ments of returns for risk pricing. For example, Bansal and Viswanathan (1993) develop

a nonlinear pricing kernel framework and show its improvement in explaining asset prices

relative to a linear arbitrage pricing theory (APT) model, while Chabi-Yo (2012) develops

an intertemporal capital asset pricing model in which innovations in higher moments are

priced. The empirical literature identifies these risks based on financial market data, and

generally finds that left-tail risk is important for explaining the time series and cross-section

of returns above and beyond the market volatility risk; see, e.g., Kapadia (2006), Adrian

and Rosenberg (2008), Harvey and Siddique (2000), Chang et al. (2013), and Conrad et al.

(2013).5

The rest of this paper is organized as follows. In Section 1.2 we provide a theoretical

framework for good and bad uncertainty and highlight their role for future growth and asset

prices. Section 1.3 discusses our empirical approach to construct good and bad uncertainty

in the macroeconomic data. In Section 1.4 we show our empirical results for the effect

of good and bad uncertainties on aggregate macro quantities and aggregate asset prices,

5See also a related literature on market downside risk, e.g., Ang et al. (2006) and Lettau et al. (2014),
which emphasizes the importance of market left-tail risk.
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and the role of uncertainty risks for the market return and the cross-section of risk premia.

Section 1.5 discusses the robustness of our key empirical results, and the last section provides

concluding comments.

1.2. Economic model

To provide an economic structure for our empirical analysis, in this section we lay out a

version of the long-run risks model that incorporates fluctuations in good and bad macroe-

conomic uncertainties. We use our economic model to highlight the roles of the good and

bad uncertainties for future growth and the equilibrium asset prices.

1.2.1. Preferences

We consider a discrete-time endowment economy. The preferences of the representative

agent over the future consumption stream are characterized by the Kreps and Porteus

(1978) recursive utility of Epstein and Zin (1989) and Weil (1989):

Ut =

[

(1− β)C
1−γ
θ

t + β(EtU
1−γ
t+1 )

1
θ

] θ
1−γ

, (1.1)

where Ct is consumption, β is the subjective discount factor, γ is the risk-aversion coeffi-

cient, and ψ is the elasticity of intertemporal substitution (IES). For ease of notation, the

parameter θ is defined as θ ≡ 1−γ

1− 1
ψ

. Note that when θ = 1, that is, γ = 1/ψ, the recursive

preferences collapse to the standard case of expected power utility, in which case the agent

is indifferent to the timing of the resolution of uncertainty of the consumption path. When

risk aversion exceeds the reciprocal of IES (γ > 1/ψ), the agent prefers early resolution of

uncertainty of consumption path, otherwise, the agent has a preference for late resolution

of uncertainty.

As is shown in Epstein and Zin (1989), the logarithm of the intertemporal marginal rate of
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substitution implied by these preferences is given by:

mt+1 = θlog β −
θ

ψ
∆ct+1 + (θ − 1)rc,t+1, (1.2)

where ∆ct+1 = log(Ct+1/Ct) is the log growth rate of aggregate consumption, and rc,t is

a log return on the asset which delivers aggregate consumption as dividends (the wealth

portfolio). This return is different from the observed return on the market portfolio as the

levels of market dividends and consumption are not the same. We solve for the endogenous

wealth return and the equilibrium stochastic discount factor in (1.2) using the dynamics for

the endowment process and the standard Euler equation,

Et [exp{mt+1}Ri,t+1] = 1, (1.3)

which hold for the return on any asset in the economy, Ri,t+1, including the wealth portfolio.

1.2.2. Consumption dynamics

Our specification of the endowment dynamics incorporates the underlying channels of the

long-run risks model of Bansal and Yaron (2004), such as the persistent fluctuations in

expected growth and the volatility of consumption process. The novel ingredients of our

model include: (i) the decomposition of the total macroeconomic volatility into good and

bad components associated with good and bad consumption shocks, respectively, and (ii)

the direct effect of macroeconomic volatilities on future economic growth. We show that

these new model features are well-motivated empirically and help us interpret the relation

between the good and bad uncertainties, the economic growth, and the asset prices in the

data.
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Our benchmark specification for the consumption dynamics is written as follows:

∆ct+1 = µc + xt + σc(εg,t+1 − εb,t+1), (1.4)

xt+1 = ρxt + τgVgt − τbVbt

+σx(εg,t+1 − εb,t+1), (1.5)

where xt is the predictable component of next-period consumption growth, and εgt+1 and

εbt+1 are two mean-zero consumption shocks which for parsimony affect both the realized

and expected consumption growth.6 The shocks εgt+1 and εbt+1 separately capture positive

and negative shocks in consumption dynamics, respectively, and are modeled as,

εi,t+1 = ε̃i,t+1 − Etε̃i,t+1, for i = {g, b}, (1.6)

where the underlying shocks ε̃i,t+1 have a positive support, namely, ε̃i,t+1 > 0 for i = {g, b}.

This ensures that the consumption shocks εgt+1 and εbt+1 are conditionally mean zero, and

are driven by positive and negative shocks to consumption growth, respectively.

We assume that the volatilities of consumption shocks are time varying and driven by the

state variables Vgt and Vbt; in particular,

V artεg,t+1 = V artε̃g,t+1 ≡ Vgt,

V artεb,t+1 = V artε̃b,t+1 ≡ Vbt.

This allows us to interpret Vgt and Vbt as good and bad macroeconomic uncertainties, that

is, uncertainties regarding the right and left tail movements in consumption growth. In our

6It is straightforward to extend the specification to allow for separate shocks in realized and expected
consumption growth rates and break the perfect correlation of the two. This does not affect our key results,
and so we do not entertain this case to ease the exposition.
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specification, the good and bad uncertainties follow separate AR(1) processes,

Vg,t+1 = (1− νg)Vg0 + νgVgt + σgwwg,t+1, (1.7)

Vb,t+1 = (1− νb)Vb0 + νbVbt + σbwwb,t+1, (1.8)

where for i = {g, b}, Vi0 is the level, νi the persistence, and wi,t+1 the shock in the uncer-

tainty. For simplicity, the volatility shocks are Normally distributed, and we let α denote

the correlation between the good and bad volatility shocks.

By construction, the macro volatilities govern the magnitude of the good and bad con-

sumption innovation. In addition to that, our feedback specification in (1.5) also allows

for a direct effect of good and bad macro uncertainty on future levels of economic growth.

Backus et al. (2010) use a similar feedback specification from a single (total) volatility to

future growth. Our specification features two volatilities (good and bad), and for τg > 0

and τb > 0, an increase in good volatility raises future consumption growth rates, while an

increase in bad volatility dampens future economic growth. The two-volatility specification

captures, in a reduced-form way, an economic intuition that good uncertainty, through the

positive impact of new innovation on growth opportunities, would increase investment and

hence future economic growth, while bad uncertainty, due to the unknown magnitude of

adverse news and its impact on investment, would result in lower growth in the future.

While we do not provide the primitive micro-foundation for this channel, we show direct

empirical evidence to support our volatility feedback specification. Further, we show that

the volatility feedback for future cash flows also leads to testable implications for the asset

prices which are supported in the data.

It is important to note that our specification for consumption growth displays non-Gaussian

dynamics with time-varying mean, volatility, and higher-order moments. Specifically, total

consumption volatility is equal to the sum of the good and bad uncertainties, Vgt + Vbt,

whereas skewness, kurtosis, and all other higher moments are functions of the underlying

volatility variables Vgt and Vbt. The specific way in which Vgt and Vbt affect those higher
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moments depends on the underlying distribution for ǫ̃i,t+1, i = {b, g}. One specification

that is analytically convenient and widely used features Poisson jumps in the consumption

fundamentals, in which case, skewness is directly related to fluctuations in the intensity of

jumps. In this case, the time variation in jump intensity affects separately the left and right

tails of the consumption distribution, and hence the movements in good and bad volatility

and higher-order moments. Another specification is one in which ǫ̃i,t+1 are drawn from

a Gamma distribution with a scale parameter 1 and a time-varying shape parameter, in

which case the consumption shocks dynamics follow the good and bad environment specifi-

cation in Bekaert and Engstrom (2009). The time-varying shape parameters governing the

Gamma distribution drive the variance and higher-order moments of consumption growth

distribution. An alternative approach for generating time variation in higher-order moments

is given in Colacito et al. (2013). They model shocks to expected consumption as drawn

from a skew-normal distribution with time-varying parameters and a separate process for

stochastic volatility which leads to separate movements in consumption volatility and skew-

ness. Our modeling approach focuses on bad and good volatility as the key driving forces

for time variation in consumption growth distribution, which is largely motivated by our

empirical analysis.

1.2.3. Equilibrium asset prices

To get closed-form expressions for the equilibrium asset prices, we consider the consumption

shock distribution for which the log moment-generating function is linear in the underlying

variances Vg,t and Vb,t. That is,

logEte
uεi,t+1 = f(u)Vi,t, for i = {g, b}, (1.9)

and the function f(u) captures the shape of the moment-generating function of the under-

lying consumption shocks. As discussed earlier, prominent examples of such distributions

include compound Poisson jump distribution and Gamma distribution. As shown in A.1.2,

for this class of distributions the function f(.) is non-negative, convex, and asymmetric,
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that is, f(u) > f(−u) for u > 0.

We use a standard log-linearization approach to obtain analytical solutions to our equilib-

rium model. Below we show a summary of our key results, and all the additional details

are provided in A.1.2.

In equilibrium, the solution to the log price-consumption ratio on the wealth portfolio is

linear in the expected growth and the good and bad uncertainty states:

pct = A0 +Axxt +AgvVgt +AbvVbt. (1.10)

The slope coefficients are given by:

Ax =
1− 1

ψ

1− κ1ρ
,

Agv = Ãgv + τg
κ1Ax

1− κ1νg
, Ãgv =

f(θ((1− 1
ψ )σc + κ1Axσx))

θ(1− κ1νg)
,

Abv = Ãbv − τb
κ1Ax

1− κ1νb
, Ãbv =

f(−θ((1− 1
ψ )σc + κ1Axσx))

θ(1− κ1νg)
,

(1.11)

where the parameter κ1 ∈ (0, 1) is the log-linearization coefficient, and the Ãs are the uncer-

tainty loadings on the price-consumption ratio that would be obtained if the consumption

dynamics did not include a direct feedback from uncertainty to growth prospects, namely,

if τb = τg = 0.

As can be seen from the above equations, the response of the asset valuations to the un-

derlying macroeconomic states is pinned down by the preference parameters and model

parameters which govern the consumption dynamics. The solution to the expected growth

loading Ax is identical to Bansal and Yaron (2004), and implies that when the substitution

effect dominates the wealth effect (ψ > 1), asset prices rise with positive growth prospects:

Ax > 0.

The expressions for the uncertainty loadings are more general than the ones in the literature
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and take into account our assumptions on the volatility dynamics. First, our specification

separates positive and negative consumption innovations which have their own good and bad

volatility, respectively. The impact of this pure volatility channel on asset prices is captured

by the first components of the volatility loadings in (1.11), Ãgv and Ãbv. In particular, when

both γ and ψ are above one, these two loadings are negative: Ãgv, Ãbv < 0. That is, with

a strong preference for early resolution of uncertainty, the agent dislikes volatility, good or

bad, so the direct effect of an increase in uncertainty about either positive or negative tail of

consumption dynamics is to decrease equilibrium equity prices. In the absence of the cash

flow effect, both good and bad uncertainties depress asset valuations, albeit by a different

amount. Indeed, due to a positive skewness of underlying consumption shocks, an increase in

good (bad) uncertainty asymmetrically raises the right (left) tail of the future consumption

growth distribution, and this asymmetry leads to a quantitatively larger negative response

of the asset prices to bad uncertainty than to good uncertainty: |Ãbv| > |Ãgv|.

In addition to the direct volatility effect, in our model the good and bad uncertainties can

also impact asset prices through their feedback on future cash flows (see Eq. (1.5)). For

τb > 0, the negative effect of bad uncertainty on future expected growth further dampens

asset valuations, and as shown in (1.11), the bad volatility coefficient Abv becomes even

more negative. On the other hand, when good uncertainty has a positive and large im-

pact on future growth, the cash flow effect of the good uncertainty can exceed its direct

volatility effect, and as a result the total asset-price response to good uncertainty becomes

positive: Agv > 0. Hence, in our framework, good and bad uncertainties can have oppo-

site impact on equity prices, with bad uncertainty shocks decreasing and good uncertainty

shocks increasing asset valuations, which we show is an important aspect of the economic

data.7

The aforementioned effect of uncertainty on asset valuations is related to several recent

7Note that in our simple endowment economy, welfare is increasing in the value of the consumption claim.
When Agv is positive, the implication is that good uncertainty shock increases welfare. This is not surprising
since for Agv to be positive there must be a significant positive feedback from this uncertainty to future
growth. The bad uncertainty, as in Bansal and Yaron (2004), unambiguously reduces welfare.
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studies. In the context of long-run risks models with preferences for early resolution of un-

certainty, Eraker and Shaliastovich (2008) and Drechsler and Yaron (2011) entertain jumps

in cash flows and show that asset valuations drop with increase in jump intensity, and

in particular, are sensitive to jumps which affect the left tail of consumption distribution.

This effect on prices is also reflected in Colacito et al. (2013) who show that asset valuations

decline when skewness becomes more negative. Tsai and Wachter (2014) consider a spec-

ification that incorporates time-varying rare disasters and booms. As their Poisson jump

shocks are uncompensated, the intensities of booms and disasters have a direct impact on

expected growth and thus capture the differential τ effects highlighted above, which leads

to a differential impact of jump intensity on prices. Finally, in the context of the habits

model in Bekaert and Engstrom (2009), prices decline at times of high expected growth

and increase at times of good or bad variance of Gamma-distributed consumption growth

shocks. The difference in the response of prices to uncertainty relative to our specification

is due to the preference structure, and in particular, the preference for early resolution of

uncertainty.

In the model, the good and bad uncertainty can also have different implications on equi-

librium risk-free rates. Using a standard Euler equation (1.3), the solutions to equilibrium

yields on n−period real bonds are linear in the underlying state variables:

yt,n =
1

n
(B0,n +Bx,nxt +Bgv,nVgt +Bbv,nVbt), (1.12)

where Bx,n, Bgv,n, and Bbv,n are the bond loadings to expected growth, good, and bad

uncertainty factors, whose solutions are provided in A.1.2. As shown in the literature, real

bond yields increase at times of high expected growth, and the bond loading Bx,n is positive.

Further, an increase in either good and bad uncertainty raises the precautionary savings

motive for the representative agent, so the direct impact of either uncertainty on risk-free

rates is negative. However, in addition to the direct volatility effect, in our framework

good and bad uncertainties also have an impact on future economic growth. Similar to the
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discussion of the consumption claim, bad uncertainty reduces future growth rates which

further dampens real rates, so Bbv,n becomes more negative. On the other hand, the

positive cash flow impact of good volatility can offset the precautionary savings motive at

longer maturities and can lead to a positive response of interest rates to good uncertainty.

Thus, due to the volatility feedback, in our framework good and bad uncertainties can have

opposite effects on the risk-free rates, which we show is consistent with the data.

1.2.4. Risk compensation

Using the model solution to the price-consumption ratio in (1.10), we can provide the

equilibrium solution to the stochastic discount factor in terms of the fundamental states

and the model and preference parameters. The innovation in the stochastic discount factor,

which characterizes the sources and magnitudes of the underlying risk in the economy, is

given by:

mt+1 − Et[mt+1] = −λxσx(εg,t+1 − εb,t+1)

−λgvσgwwg,t+1

−λbvσbwwb,t+1, (1.13)

and λx, λgv, and λbv are the market prices of risk of growth, good volatility, and bad volatility

risks. Their solutions are given by:

λx = (1− θ)κ1Ax + γ
σc
σx

(1.14)

λgv = (1− θ)κ1Agv, (1.15)

λbv = (1− θ)κ1Abv. (1.16)

When the agent has a preference for early resolution of uncertainty, the market price of

consumption growth risk λx is positive: λx > 0. Consistent with our discussion of the price-

consumption coefficients, the market prices of the volatility risks depend on the strength of
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the volatility feedback for future cash flow. When the good and bad uncertainties have no

impact on future growth (τg = τb = 0), the market prices of both volatility risks are negative.

Indeed, with preference for early resolution of uncertainty, the agent dislikes volatility, good

or bad, and thus high uncertainties represent high risk states for the investor. The market

prices of uncertainty risks change when we introduce volatility feedback for future growth.

When bad volatility predicts lower future growth, it makes bad volatility fluctuations even

riskier, which increase, in absolute value, the market price of bad uncertainty risk, so

λbv < 0. On the other hand, when good uncertainty positively impacts future economic

growth, the market price of good uncertainty can become positive: λgv > 0. Thus, in our

framework, bad and good uncertainty can have opposite market prices of risk.

To derive the implications for the risk premium, we consider an equity claim whose dividends

represent a levered claim on total consumption, similar to Abel (1990) and Bansal and Yaron

(2004). Specifically, we model the dividend growth dynamics as follows,

∆dt+1 = µd + φxxt + σdud,t+1, (1.17)

where φx > 0 is the dividend leverage parameter which captures the exposure of equity cash

flows to expected consumption risks, and ud,t+1 is a Normal dividend-specific shock which

for simplicity is homoskedastic and independent from other economic innovations.8 Using

the dividend dynamics, we solve for the equilibrium return on the equity claim, rd,t+1, in

an analogous way to the consumption asset. The return dynamics satisfies,

rd,t+1 = Et[rd,t+1] + βxσx(εg,t+1 − εb,t+1)

+βgvσgwwg,t+1 + βbvσbw

+σdud,t+1, (1.18)

8It is straightforward to generalize the dividend dynamics to incorporate stochastic volatility of dividend
shocks, correlation with consumption shocks, and the feedback effect of volatility to expected dividends
(see, e.g., Bansal et al., 2012; and Schorfheide et al., 2013). As our focus is on aggregate macroeconomic
uncertainty, these extensions do not affect our key results, and for simplicity are not entertained. However,
it is worth noting that, by convexity, separate idiosyncratic dividend volatility can be positively related to
equity prices (see, e.g., Pastor and Veronesi, 2006; Ai and Kiku, 2012; and Johnson and Lee, 2014).

17



where βx, βgv, and βbv are the equity betas which reflect the response of the asset valuations

to the underlying expected growth, good, and bad volatility risks, respectively. Similar

to the consumption asset case, the equity betas to growth risks and good volatility risks

are positive, while the equity beta to bad uncertainty risks is negative: βx > 0, βgv >

0, βbv < 0. Further, since the volatilities of ǫb,t+1 and ǫg,t+1 are driven by Vb,t and Vg,t, it

immediately follows from Eq. (1.18) that the conditional variance of returns is time varying

and increasing in good and bad uncertainties (see A.1.2 for details).

In equilibrium, the risk compensation on equities depends on the exposure of the asset to the

underlying sources of risk, the market prices of risks, and the quantity of risk. Specifically,

the equity risk premium is given by,

EtRd,t+1 −Rf,t ≈ log Ere
rd,t+1−rf,t

= [f(−λxσx)− f((βx − λx)σx) + f(βxσx)]Vgt

+ [f(λxσx)− f((λx − βx)σx) + f(−βxσx)]Vbt

+ βgvλgvσ
2
gw + βgvλbvσ

2
bw

+ ασbwσgw(βgvλbv + βbvλgv).

(1.19)

In our model, all three sources of risks contribute to the risk premia, and the direct con-

tribution of each risk to the equity risk premium is positive. The first two components of

the equity premium above capture the contribution of the non-Gaussian growth risk, which

is time varying and driven by the good and bad volatilities. When γ > 1 and ψ > 1, the

market price of growth risk λx and the equity exposure to growth risk βx are both positive.

As we show in A.1.2, this implies that the equity premium loadings on both good and bad

volatilities are positive, so that the growth risks receive positive risk compensation uncon-

ditionally, and this risk compensation increases at times of high good or bad volatility. The

remaining constant components in the equity risk premia equation capture the contribu-

tions of the Gaussian volatility shocks. As the market prices of volatility risks and equity

exposure to volatility risks have the same sign, the volatility risks receive positive risk com-
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pensation in equities. The last term in the decomposition above captures the covariance

between good and bad uncertainty risk, and is negative when the two uncertainties have

positive correlation (α > 0).

To get further intuition for the nature of the risk compensation, we consider a Taylor

expansion of the equity risk premium:

EtRd,t+1 −Rf,t ≈ const+ βxλxσ
2
x(Vgt + Vbt)

− λxβxσ
3
x(λx − βx)(Vgt − Vbt) + . . .

(1.20)

The constant in this equation captures constant contribution of volatility risks to the risk

premia. Subsequent terms pick out the second- and third-order components in the decom-

position of the non-Gaussian growth risk premia; for simplicity, we omit higher-order terms.

The second-order component is standard, and is equal to the negative of the covariance of

log returns and log stochastic discount factor. This component is driven by the quantity of

total consumption variance, Vgt + Vbt. An increase in either good or bad volatility directly

raises total consumption variance, and hence increases equity risk premia (βx and λx are

both positive). The third-order component is driven by the quantity of consumption skew-

ness, Vgt − Vbt. Under typical parameter calibration of the model, λx > βx.
9 This implies

that when Vbt increases relative to Vgt and the skewness of consumption shocks decreases

(becomes more negative), the equity premium goes up. Hence, the total risk premium in-

creases at times of high good or bad volatility, but the bad volatility has a larger effect

capturing the importance of the left tails.

The quantities of total consumption variance and skewness risk are time varying themselves,

and directly contribute to the equity risk premium. In our model, the total variance and

skewness are linearly related to the good and bad volatilities, so that the risk compensation

9In the model, λx = (1 − θ)κ1Ax + γσc/σx, and βx = κ1,dHx. The term (1 − θ) is positive under early
resolution of uncertainty, and amounts to 28 under a typical calibration of γ = 10, ψ = 1.5. The equity price
response to growth news Hx is magnified relative to consumption asset-price response Ax by the leverage of
the dividend stream φx, so that Hx/Ax is around 3–5. The log-linearization parameters κ1 ≈ κ1,d ≈ 1. In
all, this provides, λx > βx.
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for the variance and skewness risk are components of the constant risk compensation for

good and bad volatility risks in (1.19)–(1.20). We show the implied market prices and

equity betas to variance and skewness risk in A.1.2. In particular, in our framework agents

dislike states with low consumption growth skewness (larger left tails), thus leading asset

prices to fall in those states.

1.3. Data and uncertainty measures

1.3.1. Data

In our benchmark analysis we use annual data from 1930 to 2012. Consumption and out-

put data come from the Bureau of Economic Analysis (BEA) National Income and Product

Accounts (NIPA) tables. Consumption corresponds to the real per capita expenditures on

non-durable goods and services and output is real per capita gross domestic product minus

government consumption. Capital investment data are from the NIPA tables; R&D invest-

ment is available at the National Science Foundation (NSF) for the 1953 to 2008 period, and

the R&D stock data are taken from the BEA Research and Development Satellite Account

for the 1959 to 2007 period. To measure the fluctuations in macroeconomic volatility, we

use monthly data on industrial production from the Federal Reserve Bank of St. Louis.

Our aggregate asset-price data include 3-month Treasury bill rate, the stock price and divi-

dend on the broad market portfolio from the Center for Research in Security Prices (CRSP),

and aggregate earnings data from Robert Shiller’s website. We adjust nominal short-term

rate by the expected inflation to obtain a proxy for the real risk-free rate. Additionally,

we collect data on equity portfolios sorted on key characteristics, such as book-to-market

ratio and size, from the Fama-French Data Library. Our bond portfolios, as in Ferson et al.

(2013), include the excess returns of low- over high-grade corporate bonds (Credit premium

portfolio), and the excess returns of long- over short-term Treasury bonds (Term premium

portfolio).10 To measure the default spread, we use the difference between the BAA and

10We thank Wayne Ferson for providing us data on these bond portfolios which we extend till 2012 using
long-term government data and corporate bond data from Barclays.
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AAA corporate yields from the Federal Reserve Bank of St. Louis.

The summary statistics for the key macroeconomic variables are shown in Panel A of Table

1. Over the 1930 to 2012 sample period the average consumption growth is 1.8% and its

volatility is 2.2%. The average growth rates in output, capital investment, market dividends,

and earnings are similar to that in consumption, and it is larger for the R&D investment

(3.5%) over the 1954 to 2008 period. As shown in the table, many of the macroeconomic

variables are quite volatile relative to consumption: the standard deviation of earnings

growth is 26%, of capital investment growth is almost 15%, and of the market dividend

growth is 11%. Most of the macroeconomic series are quite persistent with an AR(1)

coefficient of about 0.5.

Panel B of Table 1.1 shows the summary statistics for the key asset-price variables. The

average real log market return of 5.8% exceeds the average real rate of 0.3%, which implies

an equity premium (in logs) of 5.5% over the sample. The market return is also quite

volatile relative to the risk-free rate, with a standard deviation of almost 20% compared to

2.5% for the risk-free rate. The corporate yield on BAA firms is on average 1.2% above that

for the AAA firms, and the default spread fluctuates significantly over time. The default

spread, real risk-free rate, and the market price-dividend ratio are very persistent in the

sample, and their AR(1) coefficients range from 0.72 to 0.88.

1.3.2. Measurement of good and bad uncertainties

To measure good and bad uncertainty in the data, we follow the approach in Barndorff-

Nielsen et al. (2010) to decompose the usual realized variance into two components that

separately capture positive and negative (hence, “good” and “bad”) movements in the

underlying variable, respectively. While we focus on the variation in the aggregate macroe-

conomic variables, Feunou et al. (2013) and Patton and Sheppard (2015) entertain a similar

type of semivariance measures in the context of stock market variation.11

11The use of semivariance in finance goes back to at least Markowitz (1959), and more recent applications
include, for example, Hogan and Warren (1974) and Lewis (1990).
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Specifically, consider an aggregate macroeconomic variable y (e.g., industrial production,

earnings, consumption), and let ∆y stand for the demeaned growth rate in y. Then, we

define the positive and negative realized semivariances, RVp and RVn, as follows:

RVp,t+1 =
N∑

i=1

I(∆yt+ i
N

≥ 0)∆y2
t+ i

N

, (1.21)

RVn,t+1 =

N∑

i=1

I(∆yt+ i
N
< 0)∆y2

t+ i
N

, (1.22)

where I(.) is the indicator function and N represents the number of observations of y

available during one period (a year in our case). It is worth noting that RVp and RVn add

up to the standard realized variance measure, RV , that is,

RVt+1 =

N∑

i=1

∆y2
t+ i

N

= RVn,t+1 +RVp,t+1.

Barndorff-Nielsen et al. (2010) show that in the limit the positive (negative) semivariance

captures one-half of the variation of any Gaussian symmetric shifts in ∆y, plus the variation

of non-Gaussian positive (negative) fluctuations; see A.1.1 for further details. Notably,

the result in this paper implies that asymptotically, the semivariances are unaffected by

movements in the conditional mean; however, given the finite-sample considerations, we

confirm the robustness of our results removing the fluctuations in conditional mean.

The positive and negative semivariances are informative about the realized variation asso-

ciated with movements in the right and left tail, respectively, of the underlying variable.

Positive (negative) semivariance therefore corresponds to good (bad) realized variance states

of the underlying variable and thus, we use the predictable component of this measure as

the empirical proxy for exante good (bad) uncertainty. To construct the predictive com-

ponents, we project the logarithm of the future average h−period realized semivariance on
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the set of time t predictors Xt :

log

(

1

h

h∑

i=1

RVj,t+i

)

= constj + ν ′jXt + error, j = {p, n}, (1.23)

and take as the proxies for the exante good and bad uncertainty Vg and Vb the exponentiated

fitted values of the projection above:

Vg,t = exp
(
constp + ν ′pXt

)
, Vb,t = exp

(
constn + ν ′nXt

)
. (1.24)

The log transformation ensures that our exante uncertainty measures remain strictly posi-

tive.

In addition to measuring the exante uncertainties, we use a similar approach to construct a

proxy for the expected consumption growth rate, xt which corresponds to the fitted value

of the projection of future consumption growth on the same predictor vector Xt :

1

h

h∑

i=1

∆cj,t+i = constc + ν ′cXt + error,

xt = constc + ν ′cXt.

In our empirical applications we let y be industrial production, which is available at monthly

frequency, and use that to construct realized variance at the annual frequency. As there

are 12 observations of industrial production within a year, our measurement approach is

consistent with the model setup which allows for multiple good and bad shocks within a

period (a year). To reduce measurement noise in constructing the uncertainties, in our

benchmark empirical implementation we set the forecast window h to three years. Finally,

the set of the benchmark predictors Xt includes positive and negative realized semivariances

RVp, RVn, consumption growth ∆c, the real-market return rd, the market price-dividend

ratio pd, the real risk-free rate rf , and the default spread def .12

12As shown in Section 1.5, our results are robust to using standard ordinary least squares (OLS) regression
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Panel C of Table 1 reports the key summary statistics for our realized variance measures.

The positive and negative semivariances contribute about equally to the level of the total

variation in the economic series, and the positive semivariance is more volatile than the

negative one. The realized variation measures co-move strongly together: the contempora-

neous correlation between total and negative realized variances is 80%, and the correlation

between the positive and negative realized variance measures is economically significant,

and amounts to 40%.

Fig. 1.1 shows the plot of the total realized variance, smoothed over the three-year window

to reduce measurement noise. As can be seen from the graph, the overall macroeconomic

volatility gradually declines over time, consistent with the evidence in McConnell and Perez-

Quiros (2000) and Stock and Watson (2003), as well as Bansal, Khatchatrian, and Yaron

(2005b), Lettau et al. (2008), and Bansal et al. (2014). Further, the realized variance

is strongly countercyclical: indeed, its average value in recessions is twice as large as in

expansions. The most prominent increases in the realized variance occur in the recessions of

the early and late 1930s, the recession in 1945, and more recently, in the Great Recession in

the late 2000s. Not surprisingly, the countercyclicality of the total variance is driven mostly

by the negative component of the realized variance. To highlight the difference between the

positive and negative variances, we show in Fig. 1.2 the residual positive variance (smoothed

over the three-year window) which is orthogonal to the negative variance. This residual is

computed from the projection of the positive realized variance onto the negative one. As

shown on the graph, the residual positive variance sharply declines in recessions, and the

largest post-war drop in the residual positive variance occurs in the recession of 2008–2009.

We project the logarithms of the future three-year realized variances and the future three-

year consumption growth rates on the benchmark predictor variables to construct the exante

uncertainty and expected growth measures. It is hard to interpret individual slope coeffi-

cients due to the correlation among the predictive variables, so for brevity we do not report

instead of the log, the use of alternative predictors, different forecast windows h, removing the conditional
mean in constructing the semivariance measures, and using other measures for y.
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them in the paper; typically, the market variables, such as the market price-dividend ratio,

the market return, the risk-free rate, and the default spread, are significant in the regres-

sion, in addition to the lags of the realized variance measures themselves. The R2 in these

predictive regressions ranges from 30% for the negative variance and consumption growth

to 60% for the positive variance.

We show the fitted values from these projections alongside the realized variance measures on

Fig. 1.3. The logs of the realized variances are much smoother than the realized variances

themselves (see Fig. 1.1), and the fitted values track well both the persistent declines and

the business-cycle movements in the underlying uncertainty. We exponentiate the fitted

values to obtain the proxies for the good and bad exante uncertainties. Figs. 1.4 and

1.5 show the total uncertainty and the residual exante good uncertainty which is obtained

from the projection of the good uncertainty on the bad uncertainty. Consistent with our

discussion for the realized quantities, the total uncertainty gradually decreases over time,

and the residual good uncertainty generally goes down in bad times. Indeed, in the recent

period, the residual good uncertainty increases in the 1990s, and then sharply declines in

2008. Notably, the exante uncertainties are much more persistent than the realized ones:

the AR(1) coefficients for good and bad uncertainties are about 0.5, relative to 0.2–0.3 for

the realized variances.

1.4. Empirical results

In this section we empirically analyze the implications of good and bad uncertainty along

several key dimensions. In Section 1.4.1 we analyze the effects of uncertainty on aggregate

macro quantities such as output, consumption, and investment. In Section 1.4.2 we consider

the impact of uncertainties on aggregate asset prices such as the market price-dividend ratio,

the risk-free rate, and the default spread. In Section 1.4.3 we examine the role of uncertainty

for the market and cross-section of risk premia. Our benchmark analysis is based on the

full sample from 1930–2012 and in the robustness section we show that the key results are

maintained for the post-war period.
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1.4.1. Macroeconomic uncertainties and growth

Using our empirical proxies for good and bad uncertainty, Vgt and Vbt, we show empirical

support that good uncertainty is associated with an increase in future output growth, con-

sumption growth, and investment, while bad uncertainty is associated with lower growth

rates for these macro quantities. This is consistent with our cash flow dynamics in the

economic model specification shown in Eq. (1.5).

To document our predictability evidence, we regress future growth rate for horizon h years

on the current proxies for good and bad uncertainty and the expected growth, that is, we

run a predictive regression

1

h

h∑

j=1

∆yt+j = ah + b′h[xt, Vgt, Vbt] + error,

for the key macroeconomic variables of interest y and forecast horizons h from one to five

years. Table 1.2 reports the slope coefficients and the R2 for the regressions of consumption

growth, private GDP, corporate earnings, and market dividend growth, and Table 1.3 shows

the evidence for capital investment and R&D measures.

It is evident from these two tables that across the various macroeconomic growth rates

and across all the horizons, the slope coefficient on good uncertainty is always positive.

This is consistent with the underlying premise of the feedback channel of good uncertainty

on macro growth rates. Further, except for the three-year horizon for earnings, all slope

coefficients for bad uncertainty are negative, which implies, consistently with the theory,

that a rise in bad uncertainty would lead to a reduction in macro growth rates. Finally,

in line with our economic model, the expected growth channel always has a positive effect

on the macro growth rates as demonstrated by the positive slope coefficients across all the

predicted variables and horizons.

The slope coefficients for all three predictive variables are economically large and in many
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cases are also statistically significant. All our tables include the usual Newey-West t−

statistics for all the estimated coefficients. Additionally, to facilitate the comparison of

the empirical results with our economic model, we also indicate the significance of the

coefficients against the economically motivated alternative one-sided hypotheses. For the

growth predictability regressions, our hypotheses are that growth and good uncertainty have

a positive impact, while bad uncertainty has a negative impact, respectively. As shown in

Tables 1.2 and 1.3, the expected growth (cash flow) channel is almost always significant,

while the significance of good and bad uncertainty varies across predicted variables and

maturities, although they tend to be significant in one-sided tests. Because, the uncertainty

measures are quite correlated, the evaluation of individual significance may be difficult to

assess. Therefore, in the last column of these tables we report the p−value of a Wald test

for the joint significance of good and bad uncertainty. For the most part the tests reject the

joint hypothesis that the loadings on good and bad uncertainty are zero. In particular, at

the five-year horizon, all of the p−values are below 5%, and they are below 1% for all the

investment series at all the horizons.

It is worth noting that the adjusted R2s for predicting most of the future aggregate growth

series are quite substantial. For example, the consumption growth R2 is 50% at the one-year

horizon, and the R2 for the market dividends reaches 40%, while it is about 10% for earnings

and private GDP. For the investment and R&D series the R2s at the one-year horizon are

also substantial and range from 28% to 55%. The R2s generally decline with the forecast

horizon but for many variables, such as consumption and investment, they remain quite

large even at five years.

To further illustrate the economic impact of uncertainty, Figs. 1.6–1.8 provide impulse

responses of the key economic variables to good and bad uncertainty shocks. The im-

pulse response functions are computed from a first-order vector autoregression (VAR(1))

that includes bad uncertainty, good uncertainty, predictable consumption growth, and the

macroeconomic variable of interest. Each figure provides three panels containing the re-
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sponses to a one standard deviation shock in good, bad, and total uncertainty, respectively.

Fig. 1.6 provides the impulse response of private GDP growth to uncertainty. Panel A

of the figure demonstrates that output growth increases by about 2.5% after one year due

to a good uncertainty shock, and this positive effect persists over the next three years.

Panel B shows that bad uncertainty decreases output growth by about 1.3% after one year,

and remains negative even ten years out. Panel C shows that output response to overall

uncertainty mimics that of bad uncertainty but the magnitude of the response is significantly

smaller—output growth is reduced by about 0.25% one year after the shock, and becomes

positive after the second year. Recall that good and bad uncertainty have opposite effects

on output yet they tend to comove, and therefore the response to total uncertainty becomes

less pronounced.

Fig. 1.7 provides the impulse response of capital investment to bad, good, and total uncer-

tainty, while Fig. 1.8 shows the response of R&D investment to these respective shocks. The

evidence is even sharper than that for GDP. Both investment measures significantly increase

with good uncertainty and remain positive till about five years out. These investment mea-

sures significantly decrease with a shock to bad uncertainty and total uncertainty several

years out. Total uncertainty is a muted version of the impulse response to bad uncertainty

and is consistent with the finding in Bloom (2009) who shows a significant short-run reduc-

tion of total output in response to uncertainty shock, followed by a recovery and overshoot.

Comparing Panels B and C of the figures highlights a potential bias in the magnitude of the

decline in investment (and other macro quantities) in response to uncertainty when total

uncertainty is used rather than bad uncertainty. For example, for capital investment the

maximal decline is about 2.3% for total uncertainty and 3% for bad uncertainty, and for

the R&D investment the maximal response is 0.6% for total uncertainty while it is 1.1%

for bad uncertainty, which indicates that the response differences are economically signifi-

cant. Thus, decomposing uncertainty to good and bad components allows for a cleaner and

sharper identification of the impact of uncertainty on growth.
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Finally, we have also considered the impact of good and bad uncertainty on aggregate

employment measures. Consistent with our findings for economic growth rates, we find

that high good uncertainty predicts an increase in future aggregate employment and hours

worked and a reduction in future unemployment rates, while high bad uncertainty is asso-

ciated with a decline in future employment and an increase in unemployment rates. In the

interest of space, we do not report these results in the tables.

1.4.2. Macroeconomic uncertainties and aggregate prices

We next use our good and bad uncertainty measures to provide empirical evidence that

good uncertainty is associated with an increase in stock market valuations and decrease in

the risk-free rates and the default spreads, while bad uncertainty has an opposite effect on

these asset prices. This is consistent with the equilibrium asset-price implications in the

model specification in Section 1.2.

To document the link between asset prices and uncertainties, we consider contemporaneous

projections of the market variables on the expected growth and good and bad uncertainties,

which we run both in levels and in first differences, that is:13

yt = a+ b′[xt, Vgt, Vbt] + error,

∆yt = a+ b′[∆xt,∆Vgt,∆Vbt] + error,

where now, y refers to the dividend yield, risk-free rate, or default spread.

Table 1.4 shows the slope coefficients and the R2s in these regressions for the market price-

dividend ratio, the real risk-free rate, and the default spread. As is evident from the table,

the slope coefficients on bad uncertainty are negative for the market price-dividend ratio and

the real risk-free rate, and they are positive for the default spread. The slope coefficients

are of the opposite sign for the good uncertainty, and indicate that market valuations and

interest rates go up and the default spread falls at times of high good uncertainty. Finally,

13Instead of the first difference, we have also run the regression on the innovations into the variables, and
the results are very similar.
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the price-dividend ratio and the risk-free rates increase, while the default spread falls at

times of high expected growth. Importantly, all these empirical findings are consistent with

the implication of our model, outlined in Section 1.2, that high expected growth, high good

volatility, and low bad volatility are good economic states.

The slope coefficients for our three state variables are economically large. In most cases,

the volatility slope coefficients are statistically significant using economically motivated one-

sided tests. These tests specify that good (bad) volatility has a positive (negative) impact on

price-dividend ratio and risk-free rate, and opposite for the default spreads. Jointly, the two

uncertainty variables are always significant with a p−value of 1% or below. The statistical

significance is especially pronounced for the first difference projections. Recall that the

asset-price variables that we use are very persistent and may contain slow-moving near-unit

root components which can impact statistical inference. First difference (or alternatively,

using the innovations into the variables) substantially reduces the autocorrelation of the

series and allows us to more accurately measure the response of the asset prices to the

underlying shocks in macroeconomic variables.

It is also worth noting that our three macroeconomic factors can explain a significant portion

of the variation in asset prices. The R2 in the regressions is 20% for the level of the price-

dividend ratio and 60% for the first difference. For the real rate, the R2s are about 20%,

and it is 50% for the level of the default spread and 30% for the first difference.

Figs. 1.9 and 1.10 further illustrate the impact of uncertainties on asset prices and show the

impulse responses of the price-dividend and price-earnings ratio to a one-standard deviation

uncertainty shock from the VAR(1). Panel A of Fig. 1.9 documents that the price-dividend

ratio increases by 0.07 one year after a good uncertainty shock and remains positive ten years

out. Similarly, the price-earnings ratio increases to about 0.04 in the first two years and its

response is also positive at ten years, as depicted in Panel A of Fig. 1.10. Bad uncertainty

shocks depress both immediate and future asset valuations. Price-dividend ratio drops by

0.06 on the impact, while price-earnings ratio declines by about 0.04 one year after, and
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all the impulse responses are negative ten years after the shock. The response of the asset

prices to the total uncertainty shock is significantly less pronounced than the response to

bad uncertainty: the price-dividend ratio decreases immediately by only 0.04 on the impact

of the total uncertainty shock, and the response reaches a positive level of 0.01 at one year

and goes to zero after three years. Similarly, price-earnings ratio decreases by 0.01 one

year after the impact, and the response becomes positive after three years. This weaker

response of prices to total uncertainty is consistent with the analysis in Section 1.2, where

it is shown that asset prices’ react less to good uncertainty than they do to bad uncertainty

even when there was no feedback effect from good uncertainty to expected growth and

asset prices reaction to both uncertainties were negative. In the model and in the data,

total uncertainty is a combination of the correlated bad and good uncertainty components,

which have opposite effects on the asset prices, and it therefore immediately follows that

the response of asset prices to the total uncertainty shock is less pronounced. This muted

response of asset prices to the total uncertainty masks the significant but opposite effects

that different uncertainty components can have on asset valuations, and motivates our

decomposition of the total uncertainty into the good and bad parts.

As a final assessment of the model implications for the market return, we evaluate the

impact of our macroeconomic uncertainty measures on future level and realized variation

in excess returns. In our framework Vgt and Vbt are the key state variables which drive

fluctuations in risk premia and volatility of returns, and in particular, the model-implied

loadings of the risk premia and volatility on both Vgt and Vbt are positive. Panel A in Table

1.5 provides the regression results for predicting excess returns for one, three, and five years.

At one- and three-year horizons, the loading coefficients are positive on both measures of

exante uncertainty and jointly statistically significant. At the five-year horizon the loading

on Vbt is positive while that on Vgt is negative although both coefficients are statistically

insignificant. The R2s for the three- and five-year horizons are non-negligible at about

10%. Similarly, Panel B of Table 1.5 shows that return volatility loadings on good and bad

uncertainty are positive and jointly statistically significant at all horizons with economically
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significant R2s of 15–30%. These findings are in line with the model implications. It is also

interesting to note that the coefficient on Vgt is smaller than that of Vbt, consistent with the

notion that the effect of bad uncertainty is more important for asset pricing than that of

good uncertainty. This is also consistent with the findings in Colacito et al. (2013) for the

importance of time variation in skewness and left tail.

1.4.3. Macroeconomic uncertainties and cross-section of returns

Using our empirical measures in the data, we show the implications of macroeconomic

growth and good and bad uncertainties for the market and a cross-section of asset returns.

Our empirical analysis yields the following key results. First, the risk exposures (betas)

to bad uncertainty are negative, and the risk exposures to good uncertainty and expected

growth are positive for the market and across the considered asset portfolio returns. This is

consistent with our empirical evidence on the impact of growth and uncertainty fluctuations

for the market valuations in Section 1.4.2, and with the equilibrium implications of the

model in Section 1.2. Second, in line with the theoretical model, we document that bad

uncertainty has a negative market price of risk, while the market prices of good uncertainty

and expected growth risks are positive in the data. Hence, the high-risk states for the

investors are those associated with low expected growth, low good uncertainty, and high

bad uncertainty. We show that the risk premia for all the three macroeconomic risk factors

are positive, and the uncertainty risk premia help explain the cross-section of expected

returns beyond the cash flow channel.

Specifically, following our theoretical model, the portfolio risk premium is given by the prod-

uct of the market prices of fundamental risks Λ = (λx, λgv, λbv), the variance-covariance ma-

trix Ω which captures the quantity of risk, and the exposure of the assets to the underlying
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macroeconomic risk βi:
14

E[Ri,t+1 −Rf,t] = Λ′Ωβi. (1.25)

Given the innovations to the portfolio returns and to our aggregate risk factors, we can

estimate the equity exposures and the market prices of expected growth and bad and good

uncertainty risks using a standard Fama and MacBeth (1973) procedure.15 We first obtain

the return betas by running a multivariate regression of each portfolio return innovation on

the innovations to the three factors:

ri,t+1 − Etri,t+1 = const + βi,x(xt+1 − Et[xt+1])

+βi,gv(Vg,t+1 − Et[Vg,t+1])

+βi,bv(Vb,t+1 − Et[Vb,t+1])

+ error. (1.26)

The slope coefficients in the above projection, βi,x, βi,gv, and βi,bv, represent the portfolio

exposures to expected growth, good uncertainty, and bad uncertainty risk, respectively.

Next we obtain the factor risk premia Λ̃ by running a cross-sectional regression of average

returns on the estimated betas:

Ri −Rf = λ̃xβi,x + λ̃gvβi,gv + λ̃bvβi,bv + error. (1.27)

We impose a zero-beta restriction in the estimation and thus run the regression without an

intercept. The implied factor risk premia, Λ̃ = (λ̃x, λ̃gv, λ̃bv), encompass both the vector of

14In our model growth shocks are non-Gaussian and therefore the risk premia may include higher-order
terms associated with expected growth risk. The volatility risk premia are still linear in the volatility risk
exposures. As the focus of our paper is on volatility risk, we maintain a standard linear framework for
cross-section evaluation.

15We have also considered an alternative econometric approach to measure return innovations similar to
Bansal, Dittmar, and Lundblad (2005a), Hansen et al. (2008), and Bansal et al. (2014). The results are
similar to our benchmark specification.
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the underlying prices of risks Λ and the quantity of risks Ω :

Λ̃ = ΩΛ.

To calculate the underlying prices of expected growth, good and bad uncertainty risk Λ,

we pre-multiply the factor risk premia Λ̃ by the inverse of the quantity of risk Ω, which

corresponds to the estimate of the unconditional variance of the factor innovation in the

data. To compute standard errors, we embed the two-state procedure into Generalized

Method of Moments (GMM), which allows us to capture statistical uncertainty in estimating

jointly asset exposures and market prices of risk.

In our benchmark implementation, we use the market return, the cross-section of 25 equity

portfolios sorted on book-to-market ratio and size, as well as two bond portfolios (Credit

premium and Term premium portfolios).16 Table 1.6 shows our key evidence concerning

the estimated exposures of these portfolios to expected growth and uncertainty risks and

the market prices of risks. Panel A of the table documents that our macroeconomic risk

factors are priced in the cross-section, and the market prices of expected growth and good

uncertainty risks are positive, while the market price of bad uncertainty risk is negative.

This indicates that the adverse economic states for the investor are those with low growth,

high bad uncertainty, and low good uncertainty, consistent with the theoretical model.

Using one-sided tests against these economically motivated alternatives, the market price

of the expected growth risk is significant at a 1% level, while the market prices of volatility

risks are significant at a 5% level.

Panel B of the table shows that the equity and bond returns are exposed to these three

sources of risks. In particular, all assets have a positive exposure to expected growth risk.

The estimated exposures to bad uncertainty risks are negative, while the betas to good

uncertainty risks are positive for all the considered asset portfolios. Thus, consistent with

16In a related literature, Chen (2010), Bhamra et al. (2010), and McQuade (2014) develop economic
models to study defaults and corporate bond spreads, and Bansal and Shaliastovich (2013) and Piazzesi and
Schneider (2007) consider model implications for nominal bond yields.
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our economic model, our evidence indicates that asset returns increase at times of high

expected growth and high good uncertainty and decrease at times of high bad uncertainty,

and the magnitudes of the response vary in the cross-section. Nearly all of the estimated

exposures are significant at a 1% level.

We combine the estimated market prices of risk, quantity of risk, and the equity and bond

betas to evaluate the cross-sectional risk premia implications of our model, and report these

empirical results in Table 1.7. As shown in the table, our estimated model can match quite

well the level and the dispersion of the risk premia in the cross-section of assets. The

market risk premium is 7.2% in the data relative to 8.2% in the model. To help compare

the implications of the model to the data, we aggregate the reported average returns into

value and size spreads. We define the value spread as the difference between the weighted

average returns on the highest and lowest book-to-market portfolios across the five sizes.

Similarly, the size spread is defined as the difference between the weighted average returns

on the biggest and smallest size portfolios across the book-to-market sorts. In the data, the

value spread is 4.38%, which is comparable to 3.34% in the model. The size spread is 4.39%,

relative to 5.21% in the model. For the Credit premium portfolio the risk premium is 1.98%

in the data and 2.15% in the model. The Term premium is 1.82% in the data relative to

0.64% in the model.17 We further use the risk premium condition (1.25) to decompose the

model risk premia into the various risk contributions. Because our risk factors are correlated,

in addition to the own risk compensations for individual shocks (i.e., terms involving the

variances on the diagonal of Ω) we also include the risk components due to the interaction

of different shocks (i.e., the covariance elements off the diagonal). As shown in the table,

the direct risk compensations for the expected growth and good and bad uncertainty shocks

are positive for all the portfolios. This is an immediate consequence of our empirical finding

that the equity and bond betas and the market prices of risks are of the same sign, so the

direct contribution of each source of risk to the total risk premium is positive. On the other

17The model excludes an inflation factor which is well known to be important for explaining the term
premia.
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hand, the risk premia interaction terms can be negative and quite large, e.g., the risk premia

due to the covariance of good and bad uncertainty. While it is hard to assess separate risk

contributions of each risk factor due to the non-negligible covariance interactions, our results

suggest that both good and bad uncertainties have considerable impact on the level and

the cross-section of returns.

Overall, our findings for the expected growth risk channel are in line with Bansal, Dittmar,

and Lundblad (2005a), Hansen et al. (2008), and Bansal et al. (2014) who show the im-

portance of growth risk for the cross-section of expected returns. Our evidence for the bad

uncertainty is further consistent with Bansal et al. (2014), who document that total macroe-

conomic volatility has a negative market price of risk and depresses asset valuations in the

cross-section. On the other hand, our finding for the separate role of the good uncertainty

for the stock returns, above and beyond the expected growth and total uncertainty channel,

is a novel contribution of this paper.

1.5. Robustness

Our benchmark empirical results are based on the predictive uncertainty measures which

are constructed from industrial production data, and which span the full sample period

from 1930 to 2012. In this section, we show that our main conclusions are not mechanical

and are robust to alternative proxies for the realized variation measures, the construction

of the exante uncertainties, and using the post-war period.

1.5.1. Simulation analysis

We use a calibrated model to conduct a Monte-Carlo simulation analysis of the realized

semivariances and verify that our empirical results are not driven by the mechanics of

the constructed estimators. Specifically, we consider a long-run risks model of Bansal and

Yaron (2004) which features conditionally Gaussian consumption shocks, a single stochastic

volatility process, and no volatility feedback into the expected growth. Hence, under the

null of the model, there are no separate movements in good and bad volatilities and no
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effect of volatility on future growth. This allows us to assess whether the mechanics of the

construction of the semivariances or the finite-sample considerations can spuriously generate

our empirical findings. The model setup and calibration are described in A.1.3 and follow

Bansal, Kiku, and Yaron (2012). We simulate the model on monthly frequency, and use

the same approach as in Section 1.3.2 to construct realized positive and negative variances

based on the simulated consumption data.The exante expectations of the quantities are

determined from the projections on the model predictive variables, which include positive

and negative semivariances, consumption growth, market return, the market price-dividend

ratio, and the risk-free rate.

Tables 1.8–1.9 show the model evidence for the projections of consumption and dividend

growth rates, for horizons of one to five years, on the extracted expected growth, and the

good and bad uncertainties. We report model evidence for finite samples of 83 years each,

and population values based on a long simulation of 1,000,000 years. The top panels in the

tables report the findings under the benchmark specification. Consistent with our empir-

ical robustness analysis (see below), we also consider two modifications of the benchmark

specification, where the predictive uncertainties are based on straight OLS rather than log

of the variances, and where we use the AR(1) fit to the monthly consumption growth to

remove the fluctuations in the conditional mean.

Table 1.8 reports the slopes and the R2s for the consumption and dividend projections.

As shown in the table, the slope coefficients on bad (good) volatility are generally posi-

tive (negative), at least for one- and three-year horizons, and these coefficients decrease

(increase) with the horizon of the regressions. The evidence is especially pronounced in

the population; indeed, in benchmark simulation specifications all the bad (good) volatility

slopes from one to five years to maturity are positive (negative). This is opposite of what we

find in the data, where the coefficients on bad (good) volatility are generally most negative

(positive) at short horizons, and tend to increase (decrease) with the horizon. The table

also shows a considerable amount of noise in estimating the exante uncertainties in small
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samples, as all the small-sample volatility loadings are insignificant.

In Table 1.9 we assess the joint probability for finding the same volatility signs as in the

data combining the evidence across the horizons and across the consumption and dividend

regressions. The table documents that across one- to five-year horizon consumption growth

regressions, all bad volatility loadings turn out negative and all good volatility turn out

positive in 3% of the cases. For dividend regressions, this number is 9%. Finally, combining

the evidence from both the consumption and dividend predictability regression, the prob-

abilities of finding the same signs in simulations as in the data are less than 1%. Thus,

the simulation evidence clearly shows that the patterns in volatility loadings we find in the

data cannot be simply attributed to the mechanics of construction of the realized variance

estimators or the finite-sample considerations.

1.5.2. Empirical analysis

We consider various robustness checks concerning the construction of the realized variances

in the data. For the first round of robustness checks, we maintain the industrial production

growth data to measure the realized variances and modify the construction of exante good

and bad uncertainties in several dimensions. First, to mitigate potential small-sample con-

cerns with the realized variance estimators, we consider removing the conditional (rather

than the unconditional) mean of industrial production growth in constructing good and

bad realized variances. We do so by using the residuals based on fitting an AR(1) to indus-

trial production growth. The summary of the key results for this specification is reported

in Table 1.10. By and large, the findings are qualitatively and quantitatively similar to

those reported in the benchmark specification. It is worth emphasizing that asymptotically,

the conditional mean dynamics do not impact the properties of the realized variance. Our

empirical results indicate the conditional mean dynamics also do not affect the realized

variance in our finite sample.

Next, we consider changing the cutoff point for defining good and bad uncertainty. In-
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stead of using the unconditional mean, now the good variance state is defined for the states

in which industrial production is above its 75 percentile. Table 1.11 provides key results

for this case and shows that the main findings for our benchmark specification are intact.

Further, instead of taking the logs of the realized variances and exponentiating the fitted

values, we run standard OLS regressions on the levels of the positive and negative realized

variances and use directly the fitted values from these regressions as proxies for good and

bad uncertainties, respectively. Alternatively, while in our benchmark approach we predict

the realized variances over a three-year forecast window, for robustness, we also consider

shorter and longer horizons, such as one- and five-year window specifications. We also ex-

pand the set of the predictive variables and include the term spread, defined as the difference

between the 10-year and 3-month Treasury yield, to the benchmark set of predictors. We

also experimented with removing some of the variables (e.g., default spread, price-dividend

ratio, risk-free rate) from the benchmark set of predictive variables. Finally, we also con-

sider using the cross-section of industry portfolios instead of size and book-to-market to

identify the betas and market prices of risk. In the interest of space we do not report these

additional tables but note that across all of these modifications of the benchmark specifi-

cation, we confirm our key empirical results regarding: (i) the relation between good and

bad uncertainties and the future macroeconomic growth rates, (ii) the relation between the

two uncertainties and the aggregate asset prices, and (iii) the market prices and exposures

to the three underlying risks.

For the second set of robustness checks, we consider monthly earnings data, instead of

industrial production data, to construct realized variances. Table 1.12 shows a summary

of the key macroeconomic and asset-pricing implications of the good and bad uncertainty

using these alternative measures of volatility. The table shows that the earnings-based un-

certainty measures deliver very similar implications to the industrial-production-based ones.

Indeed, as shown in Panel A, with a single exception of R&D investment growth, all future

macroeconomic growth rates increase following positive shocks to expected growth, positive

shocks to good uncertainty, and negative shocks to bad uncertainty. As shown in Panel B
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of the table, the contemporaneous responses of aggregate asset prices to uncertainty based

on earnings volatility measures are very similar to those based on industrial production

measures of volatility. With the exception of the risk-free rate projection, this evidence

again is consistent with interpreting the high expected growth, high good uncertainty, and

low bad uncertainty as good states for asset valuations. This conclusion is confirmed in

Panel C which documents that the market prices of expected consumption and good un-

certainty risks are positive, and that of bad uncertainty is negative. As in the benchmark

specification, the estimated equity exposures to these risk factors have the same sign as the

market prices of risks, so the direct contribution of each macroeconomic risk to the equity

risk premium is positive.

Using the estimated expected growth and uncertainty measures we verify whether the results

are robust to the post-war sample. As shown in Table 1.13, for the majority of the considered

projections, our benchmark conclusions for the relation of the macroeconomic volatilities

to growth and asset prices are unchanged.

1.6. Conclusion

In this paper we present an economic framework and empirical measures for studying good

and bad aggregate uncertainty. We define good and bad uncertainty as the variance associ-

ated with the respective positive and negative innovations of an underlying macroeconomic

variable. We show that in the model and in the data, fluctuations in good and bad macroe-

conomic uncertainty have a significant and opposite impact on future growth and asset

valuations.

We develop a version of the long-run risk model which features separate volatilities for good

and bad consumption shocks, and feedback from volatilities to future growth. We show that

the equity prices decline with bad uncertainty and rise with good uncertainty, provided there

is a sufficiently large feedback from good uncertainty to future growth. Moreover, we show

that the market price of risk and equity beta are both positive for good uncertainty, while
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they are both negative for bad uncertainty. This implies that both good and bad uncertainty

risks contribute positively to the risk premia.

Empirically, we use the realized semivariance measures based on the industrial production

data to construct good and bad uncertainties, and show the model implications are consis-

tent with the data. Specifically, future economic growth, such as consumption, dividend,

earnings, GDP, and investment, rise with good uncertainty, while they fall with bad un-

certainty. Consistent with the model, equity prices and interest rates increase (decrease)

with good (bad) uncertainty. Finally, using the cross-section of assets we estimate a pos-

itive market price of good uncertainty risk, and a negative one for bad uncertainty risk.

In all, our theoretical and empirical evidence shows the importance of separate movements

of good and bad uncertainty for economic growth and asset prices. We leave it for future

work to provide explicit economic channels, linking good and bad uncertainty risks with

technological aspects of production, investment, and financing opportunities.
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Table 1.1: Data summary statistics

Mean Std. dev. AR(1)
Panel A: Macro growth rates
Consumption growth 1.84 2.16 0.50
GDP growth 2.04 12.91 0.41
Earnings growth 1.77 26.11 0.01
Market dividend growth 1.27 11.32 0.20
Capital investment growth 1.75 14.80 0.42
R&D investment growth 3.51 4.69 0.18
Panel B: Asset prices
Market return 5.79 19.85 -0.01
Market price-dividend ratio 3.39 0.45 0.88
Real risk-free rate 0.34 2.55 0.73
Default spread 1.21 0.81 0.72
Panel C: Realized volatility
RVp 2.34 7.37 0.24
RVn 2.27 5.68 0.29
RV 4.61 10.91 0.44

The table shows summary statistics for the macroeconomic variables (Panel A), aggregate asset prices (Panel
B), and the realized variance measures (Panel C). Consumption, private GDP, as well as capital and R&D
investment series are real and per capita. Dividends, earnings, stock prices, and returns are computed
for a broad market portfolio. The real risk-free rate corresponds to a 3-month T-bill rate minus expected
inflation. Default spread is the difference between the yields on BAA- and AAA-rated corporate bonds. The
total realized variance, RV , is based on the sum of squared observations of demeaned monthly industrial
production growth over one year, re-scaled to match the unconditional variance of consumption growth.
The positive and negative realized semivariances, RVp and RVn, decompose the total realized variance
into the components pertaining to only positive and negative movements in industrial production growth,
respectively. All growth rates and returns are in percentages, and the realized variances are multiplied by
10,000. Data on R&D investment are annual from 1954 to 2008, and all the other data are annual from 1930
to 2012.
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Table 1.2: Macroeconomic uncertainties and aggregate growth

x Vb Vg Adj −R2 p-Value
Consumption growth:
1Y Ahead 1.98⋄ −64.76† 12.97 0.51 0.25

[4.98] [−1.42] [0.83]
3Y Ahead 1.07⋄ −22.56 12.67 0.33 0.05

[2.98] [−0.68] [1.21]
5Y Ahead 0.46⋄ −2.20 6.81 0.18 < 0.01

[2.93] [−0.08] [0.73]
GDP growth:
1Y Ahead 4.87⋄ −733.08† 277.73† 0.07 0.25

[7.37] [−1.62] [1.44]
3Y Ahead 2.53∗ −410.36† 180.07† 0.04 0.28

[2.13] [−1.29] [1.44]
5Y Ahead 1.46⋄ −142.27∗ 66.85⋄ 0.01 0.02

[2.53] [−1.72] [2.51]
Market dividend growth:
1Y Ahead 8.93⋄ −474.89⋄ 55.04 0.41 < 0.01

[4.46] [−2.41] [0.84]
3Y Ahead 2.89† −107.83 60.23 0.08 0.16

[1.45] [−0.66] [1.17]
5Y Ahead 1.22† −182.40∗ 79.83⋄ 0.04 0.01

[1.52] [−2.02] [2.67]
Earnings growth:
1Y Ahead 12.34⋄ −682.77† 134.02 0.10 < 0.01

[3.59] [−1.29] [0.66]
3Y Ahead 0.78 60.55 21.86 −0.02 0.46

[0.28] [0.19] [0.19]
5Y Ahead 0.85 −155.41 98.54∗ 0.01 < 0.01

[0.78] [−0.97] [1.84]

The table shows the predictability evidence from the projection of future macroeconomic growth rates on
the current expected consumption growth x, good uncertainty Vg, and bad uncertainty Vb :

1
h

∑h
j=1 ∆yt+j =

ah + b′h[xt, Vgt, Vbt] + error. The table reports the slope coefficients bh, t−statistics, and the adjusted R2s
for the regression horizons of h = 1, 3, and 5 years for the corresponding aggregate series y. The p−values
are computed for the Wald test for the joint significance of good and bad uncertainty, H0 : bgv = bbv =
0. Standard errors are Newey-West adjusted. The notations †, ∗, and ⋄ indicate the significance of the
coefficients at 10%, 5%, and 1% levels, respectively, against the economically motivated, alternative one-
sided hypotheses bx > 0, bgv > 0, and bbv < 0. The data are annual from 1930 to 2012.
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Table 1.3: Macroeconomic uncertainties and investment

x Vb Vg Adj −R2 p-Value
Gross private capital investment growth:
1Y Ahead 24.85⋄ −2309.41⋄ 912.46⋄ 0.40 < 0.01

[4.42] [−2.85] [3.41]
3Y Ahead 7.76⋄ −891.16∗ 542.32⋄ 0.28 < 0.01

[2.61] [−2.18] [3.60]
5Y Ahead 3.53⋄ −399.32∗ 287.53⋄ 0.29 < 0.01

[2.46] [−2.17] [4.31]
Nonresidential capital investment growth:
1Y Ahead 13.81⋄ −789.80∗ 226.19† 0.45 0.07

[6.74] [−1.83] [1.51]
3Y Ahead 5.72⋄ −272.28 167.58∗ 0.22 < 0.01

[3.04] [−1.26] [2.11]
5Y Ahead 2.90⋄ −124.54 93.97∗ 0.18 0.01

[3.44] [−1.01] [2.15]
R&D investment growth:
1Y Ahead 4.45⋄ −822.83⋄ 571.37∗ 0.28 0.05

[4.05] [−2.43] [2.16]
3Y Ahead 1.53⋄ −980.22⋄ 885.88⋄ 0.23 < 0.01

[2.59] [−2.59] [4.76]
5Y Ahead 0.59† −847.67⋄ 775.23⋄ 0.24 < 0.01

[1.59] [−2.88] [4.86]
R&D stock growth:
1Y Ahead 1.13⋄ −983.80⋄ 308.73∗ 0.55 < 0.01

[3.83] [−3.31] [1.74]
3Y Ahead 1.05⋄ −950.27⋄ 342.17† 0.46 < 0.01

[3.60] [−2.86] [1.57]
5Y Ahead 0.68⋄ −998.32⋄ 428.55∗ 0.41 < 0.01

[2.54] [−2.86] [1.81]
Utility patents count growth:
1Y Ahead 2.57∗ −209.98 13.11 0.11 0.11

[1.72] [−1.01] [0.15]
3Y Ahead 2.40∗ −158.15∗ 18.55 0.13 0.02

[1.88] [−1.78] [0.64]
5Y Ahead 1.54∗ −159.60∗ 26.64 0.14 < 0.01

[1.96] [−1.94] [0.92]

The table shows the predictability evidence from the projection of future investment growth rates on the
current expected consumption growth x, good uncertainty Vg, and bad uncertainty Vb : 1

h

∑h
j=1 ∆yt+j =

ah + b′h[xt, Vgt, Vbt] + error. The table reports the slope coefficients bh, t−statistics, and the adjusted R2s
for the regression horizons of h = 1, 3, and 5 years for the corresponding investment series y. The p−values
are computed for the Wald test for the joint significance of good and bad uncertainty, H0 : bgv = bbv =
0. Standard errors are Newey-West adjusted. The notations †, ∗, and ⋄ indicate the significance of the
coefficients at 10%, 5%, and 1%, levels respectively, against the economically motivated, alternative one-
sided hypotheses bx > 0, bgv > 0, and bbv < 0. R&D investment data are from 1954 to 2008, R&D stock
data are from 1960 to 2007, and all the other data are annual from 1930 to 2012.
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Table 1.4: Macroeconomic uncertainties and aggregate prices

Panel A: Level-based projection
x Vb Vg Adj −R2 p-Value

Market price- 8.82 −2313.28⋄ 279.27 0.21 < 0.01
dividend ratio [0.94] [−2.67] [0.93]

Real risk-free rate 0.05 −222.24⋄ 80.50⋄ 0.21 < 0.01
[0.08] [−2.36] [2.74]

Default spread −0.36∗ 50.54⋄ −3.80 0.47 < 0.01
[−1.81] [2.99] [−0.52]

Panel B: First difference-based projection
∆x ∆Vb ∆Vg Adj −R2 p-Value

∆Market price- 18.57⋄ −1353.26⋄ 448.49⋄ 0.61 < 0.01
dividend ratio [9.97] [−4.21] [3.11]

∆Real risk-free rate 0.01 −107.47∗ 31.75 0.16 < 0.01
[0.04] [−1.65] [1.19]

∆Default spread −0.26⋄ 40.46⋄ −10.64∗ 0.30 0.01
[−2.61] [2.84] [−1.98]

The table reports the evidence from the projections of the aggregate asset-price variables on the contem-
poraneous expected consumption growth x, and the good and bad uncertainty variables, Vg and Vb. Panel
A shows the regression results based on the levels of the variables, and Panel B shows the output for the
first differences. The table reports the slope coefficients, t−statistics, the adjusted R2s, and the p−values
for the Wald test for the joint significance of good and bad uncertainty, H0 : bgv = bbv = 0. Standard errors
are Newey-West adjusted. The notations †, ∗, and ⋄ indicate the significance of the coefficients at 10%, 5%,
and 1% levels, respectively, against the economically motivated, alternative one-sided hypotheses bx > 0,
bgv > 0, and bbv < 0 for the market price-dividend ratio and the real risk-free rate, and bx < 0, bgv < 0, and
bbv > 0 for the default spread. The data are annual from 1930 to 2012.
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Table 1.5: Macroeconomic uncertainties and equity returns

x Vb Vg Adj −R2 p-Value
Panel A: Excess return projection
1Y Ahead −1.91 198.57 19.85 −0.01 0.05

[−0.45] [0.45] [0.12]
3Y Ahead −1.41 82.02 69.42 0.09 < 0.01

[−1.15] [0.37] [0.90]
5Y Ahead −2.04∗ 227.97† −30.34 0.08 0.14

[−2.44] [1.54] [−0.74]
Panel B: Return volatility projection
1Y Ahead −1.94† 24.39 49.10∗ 0.34 < 0.01

[−1.66] [0.34] [2.19]
3Y Ahead −1.39 64.42 3.35 0.16 0.02

[−1.15] [0.87] [0.16]
5Y Ahead −0.63 34.51 10.75 0.15 < 0.01

[−0.80] [0.63] [0.75]

The table reports the evidence from the projections of future excess returns (Panel A) and realized variance
of returns (Panel B) on expected consumption growth x, and the good and bad uncertainty variables, Vg
and Vb. The table reports the slope coefficients, t−statistics, the adjusted R2s, and the p−values for the
Wald test for the joint significance of good and bad uncertainty, H0 : bgv = bbv = 0. Standard errors are
Newey-West adjusted. The notations †, ∗, and ⋄ indicate the significance of the coefficients at 10%, 5%,
and 1% levels, respectively, against the economically motivated alternative hypotheses bx 6= 0, bgv > 0, and
bbv > 0. The data are annual from 1930 to 2012.
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Table 1.6: Cross-sectional implications

Panel A: Market-prices of risk (Λ/100)
λx λbv λgv

λ 0.95⋄ −66.06∗ 38.58∗

[4.37] [−1.82] [2.13]
Panel B: Exposures to risks (β/100)

βx βbv βgv βx βbv βgv
MKT 25.08⋄ −1537.04⋄ 613.89⋄ S3BM4 33.53⋄ −1591.13⋄ 707.77⋄

[15.33] [−4.87] [3.95] [13.47] [−3.45] [3.16]
S1BM1 34.49⋄ −2888.64⋄ 1016.18⋄ S3BM5 37.73⋄ −1493.40⋄ 696.40⋄

[6.16] [−4.24] [2.99] [13.10] [−2.89] [2.97]
S1BM2 47.06⋄ −1351.55∗ 939.72⋄ S4BM1 25.92⋄ −1809.04⋄ 732.72⋄

[10.37] [−1.72] [2.72] [9.56] [−5.70] [4.47]
S1BM3 40.52⋄ −2058.56⋄ 919.29⋄ S4BM2 28.82⋄ −1585.84⋄ 757.34⋄

[14.79] [−3.90] [3.79] [12.48] [−3.89] [4.10]
S1BM4 42.95⋄ −1919.89⋄ 1001.33⋄ S4BM3 32.46⋄ −1790.46⋄ 802.42⋄

[12.81] [−3.88] [4.54] [14.91] [−4.30] [3.97]
S1BM5 46.40⋄ −1943.51⋄ 1049.88⋄ S4BM4 35.95⋄ −2178.10⋄ 975.61⋄

[14.18] [−3.66] [4.38] [22.20] [−8.36] [7.03]
S2BM1 35.86⋄ −1351.02∗ 615.07∗ S4BM5 39.92⋄ −1871.59⋄ 1085.74⋄

[10.85] [−2.18] [2.10] [12.09] [−3.91] [4.38]
S2BM2 37.06⋄ −1225.38∗ 588.72⋄ S5BM1 23.11⋄ −1592.88⋄ 563.17⋄

[15.11] [−2.30] [2.44] [9.95] [−4.26] [3.01]
S2BM3 37.04⋄ −1637.18⋄ 775.61⋄ S5BM2 24.51⋄ −1684.39⋄ 683.83⋄

[12.08] [−2.56] [2.79] [14.23] [−6.77] [5.74]
S2BM4 38.42⋄ −1672.86⋄ 863.86⋄ S5BM3 27.41⋄ −1617.78⋄ 733.52⋄

[15.77] [−3.81] [4.19] [11.65] [−6.94] [6.90]
S2BM5 36.69⋄ −2316.27⋄ 1000.77⋄ S5BM4 31.47⋄ −1503.41⋄ 734.06⋄

[13.68] [−5.37] [4.45] [11.36] [−4.17] [4.26]
S3BM1 33.92⋄ −1754.57⋄ 812.16⋄ S5BM5 27.62⋄ −3842.95⋄ 1570.43⋄

[12.46] [−3.32] [3.49] [11.72] [−15.80] [15.55]
S3BM2 31.04⋄ −1648.15⋄ 634.32⋄ DEF 8.36⋄ −388.33⋄ 33.08

[13.45] [−3.87] [3.32] [6.60] [−3.15] [0.57]
S3BM3 31.62⋄ −1542.86⋄ 640.69⋄ TERM 1.80† −227.44⋄ 89.18∗

[17.24] [−3.53] [3.14] [1.46] [−2.46] [1.91]

The table shows the estimates of the market prices of risks (Panel A) and asset exposures (Panel B) to
expected growth, good uncertainty, and bad uncertainty risks. The cross-section includes the market (MKT),
25 portfolios sorted on size (S) and book-to-market (BM), and Credit (DEF) and Term premium (TERM)
bond portfolios. The reported betas and the market prices of risks are divided by 100. T-statistics are in
brackets, and are based on Newey-West standard errors from GMM estimation. The notations †, ∗, and ⋄
indicate the significance of the coefficients at 10%, 5%, and 1% levels, respectively, against the economically
motivated, alternative one-sided hypotheses that λx, βx, λgv, and βgv are positive, and λbv and βbv are
negative. Data are annual from 1930 to 2012.
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Table 1.7: Risk premia decomposition

Total Model decomposition
Model Data RPx,x RPbv,bv RPgv,gv RPx,bv RPx,gv RPbv,gv

MKT 8.15 7.17 10.27 9.92 12.98 1.12 −5.64 −20.51

S1BM1 11.04 5.48 14.12 18.65 21.49 1.81 −8.35 −36.68
S1BM2 16.15 10.78 19.27 8.72 19.87 1.58 −9.84 −23.46
S1BM3 13.35 13.93 16.59 13.29 19.44 1.67 −8.85 −28.79
S1BM4 14.55 16.43 17.59 12.39 21.17 1.68 −9.48 −28.80
S1BM5 15.74 18.68 19.00 12.55 22.20 1.77 −10.13 −29.65
S2BM1 11.52 8.47 14.68 8.72 13.01 1.32 −7.15 −19.05
S2BM2 11.91 11.97 15.17 7.91 12.45 1.30 −7.22 −17.70
S2BM3 12.21 13.71 15.17 10.57 16.40 1.44 −7.87 −23.50
S2BM4 12.94 14.59 15.73 10.80 18.27 1.49 −8.37 −24.98
S2BM5 12.27 15.90 15.03 14.95 21.16 1.67 −8.60 −31.94
S3BM1 11.31 9.40 13.89 11.33 17.17 1.41 −7.56 −24.93
S3BM2 9.85 11.39 12.71 10.64 13.41 1.30 −6.54 −21.67
S3BM3 10.17 12.09 12.95 9.96 13.55 1.28 −6.64 −20.92
S3BM4 10.95 13.28 13.73 10.27 14.97 1.34 −7.14 −22.22
S3BM5 12.25 14.73 15.45 9.64 14.72 1.41 −7.69 −21.29
S4BM1 8.58 8.54 10.61 11.68 15.49 1.24 −6.16 −24.28
S4BM2 9.78 9.18 11.80 10.24 16.01 1.23 −6.66 −22.85
S4BM3 10.80 11.28 13.29 11.56 16.97 1.39 −7.32 −25.08
S4BM4 12.10 12.46 14.72 14.06 20.63 1.60 −8.41 −30.50
S4BM5 14.07 12.91 16.35 12.08 22.96 1.59 −9.35 −29.57
S5BM1 7.30 7.07 9.46 10.28 11.91 1.10 −5.18 −20.27
S5BM2 8.10 7.17 10.04 10.87 14.46 1.16 −5.80 −22.63
S5BM3 9.23 8.27 11.22 10.44 15.51 1.21 −6.38 −22.78
S5BM4 10.55 8.54 12.89 9.70 15.52 1.26 −6.95 −21.88
S5BM5 10.23 11.03 11.31 24.81 33.21 1.98 −9.30 −51.77

DEF 2.15 1.98 3.42 2.51 0.70 0.33 −1.28 −3.53
TERM 0.64 1.82 0.74 1.47 1.89 0.12 −0.56 −3.01

The table shows the estimates of risk premia in the data and in the model, and the decomposition of the
model risk premia into the compensations for expected growth, good uncertainty, bad uncertainty, and the
covariance components.The cross-section includes the market (MKT), 25 portfolios sorted on size (S) and
book-to-market (BM), and Credit (DEF) and Term premium (TERM) bond portfolios. Data are annual
from 1930 to 2012.
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Table 1.9: Model-implied significance of the volatility coefficients

Pr(bbv < 0) Pr(bgv > 0) Pr(bbv<0 & bgv > 0)
Benchmark model:

Consumption growth: 0.05 0.04 0.03
Dividend growth: 0.24 0.12 0.09
Joint: 0.02 0.01 0.01

Straight OLS model:
Consumption growth: 0.004 0.004 0.002
Dividend growth: 0.21 0.13 0.11
Joint: 0.002 0.001 0.001

AR(1) Adjustment model:
Consumption growth: 0.05 0.04 0.03
Dividend growth: 0.24 0.12 0.09
Joint: 0.02 0.01 0.01

The table shows the Monte-Carlo predictability evidence for the projection of future consumption and divi-
dend growth rates on the current expected consumption growth x, good uncertainty Vg, and bad uncertainty
Vb : 1

h

∑h
j=1 ∆yt+j = ah + b′h[xt, Vgt, Vbt] + error. The table reports the fraction of samples in which bad

(good) uncertainty loadings at 1-, 3-, and 5-year maturities are all negative (positive). The data are sim-
ulated on monthly frequency and aggregated to annual horizon under the long-run risks, single-volatility
model configuration of Bansal, Kiku, and Yaron (2012). Realized positive and negative variances are con-
structed from the model-simulated demeaned monthly consumption growth rate over the year. The exante
uncertainty measures correspond to the projections of the log realized variances on the set of predictors, such
as realized positive and negative variances, consumption growth, market return, the market price-dividend
ratio, and the risk-free rate. Small-sample evidence is based on 100,000 simulations of 83 years of monthly
data.
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Table 1.10: Conditionally demeaned industrial production-based uncertainties

x Vb Vg Adj −R2

Panel A: Aggregate growth rate predictability
Consumption growth 2.11⋄ −63.49 21.41 0.48

[4.80] [−1.03] [0.79]
GDP growth 7.22⋄ −910.48† 460.51† 0.13

[2.69] [−1.39] [1.29]
Market dividend growth 7.26⋄ 76.37 −154.09 0.29

[3.41] [0.29] [−1.18]
Earnings growth 13.05⋄ −401.02 75.59 0.09

[2.69] [−0.67] [0.26]
Capital investment growth 24.56⋄ −1574.59† 885.52∗ 0.32

[3.65] [−1.59] [2.01]
R&D investment growth 4.11⋄ −1046.42∗ 594.90∗ 0.22

[4.92] [−1.95] [1.77]
Panel B: Aggregate asset prices
Level-based projections:
Market price-dividend ratio 3.60 −588.21 −470.52 0.17

[0.43] [−0.47] [−1.09]
Real risk-free rate −0.44 −106.17† 39.29† 0.07

[−0.71] [−1.45] [1.53]
Default spread −0.44⋄ 63.02⋄ −13.20 0.45

[−2.43] [2.66] [−1.15]
First difference-based projections:
∆Market price-dividend ratio 21.25⋄ −706.94∗ 367.33⋄ 0.52

[9.35] [−2.23] [3.22]
∆Real risk-free rate 0.36† −111.12∗ 41.35† 0.15

[1.53] [−2.17] [1.57]
∆Default spread −0.33⋄ 33.99⋄ −11.47∗ 0.22

[−2.83] [2.52] [−2.28]
Panel C: Asset-pricing implications
Prices of risk (Λ/100) 1.04⋄ −18.65 36.98†

[3.53] [−0.52] [1.58]
Market exposures (β/100) 30.92⋄ −1452.43⋄ 811.16⋄

[15.11] [−3.82] [6.33]

The table presents a summary of the macroeconomic and asset-price evidence using alternative measures
of good and bad uncertainty based on monthly, conditionally demeaned, industrial-production data. The
conditional mean is estimated based on an AR(1) model of industrial production growth. Panel A documents
the slope coefficients, t−statistics, and the R2 in the projections of one-year-ahead macroeconomic growth
rates on the expected growth x, good uncertainty Vg, and bad uncertainty Vb. Panel B shows the evidence
from the contemporaneous regressions of the aggregate asset prices on these factors. Panel C shows the
estimates of the market prices of risks and the market return exposures to expected growth, good uncertainty,
and bad uncertainty risks. The notations †, ∗, and ⋄ indicate the significance of the coefficients at 10%, 5%,
and 1% levels, respectively, against the economically motivated, alternative one-sided hypotheses, specified
in earlier tables. Data are annual from 1930 to 2012 (post-war for R&D).
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Table 1.11: Industrial production-based uncertainties with shifted cutoff

x Vb Vg Adj −R2

Panel A: Aggregate growth rate predictability
Consumption growth 2.01⋄ −80.25† 16.91 0.52

[5.14] [−1.56] [1.09]
GDP growth 4.48⋄ −680.39† 229.82† 0.05

[6.60] [−1.58] [1.50]
Market dividend growth 8.78⋄ −459.88∗ 38.09 0.40

[4.37] [−1.96] [0.50]
Earnings growth 12.26⋄ −724.71 129.06 0.10

[3.58] [−1.19] [0.60]
Capital investment growth 24.08⋄ −2319.51∗ 830.56⋄ 0.38

[4.28] [−2.31] [2.65]
R&D investment growth 4.39⋄ −724.28⋄ 582.91∗ 0.28

[4.02] [−2.73] [2.31]
Panel B: Aggregate asset prices
Level-based projections:
Market price-dividend ratio 10.46 −3075.22⋄ 493.02† 0.24

[1.16] [−2.96] [1.49]
Real risk-free rate −0.02 −226.10∗ 73.65⋄ 0.19

[−0.03] [−2.14] [2.51]
Default spread −0.41⋄ 72.97⋄ −10.93† 0.52

[−2.42] [4.30] [−1.40]
First difference-based projections:
∆Market price-dividend ratio 18.54⋄ −1588.31⋄ 445.77⋄ 0.61

[10.25] [−4.72] [3.58]
∆Real risk-free rate −0.01 −117.20† 28.81 0.14

[−0.06] [−1.53] [1.10]
∆Default spread −0.28⋄ 57.12⋄ −14.03∗ 0.39

[−2.89] [3.13] [−2.21]
Panel C: Asset-Pricing Implications
Prices of risk (Λ/100) 0.94⋄ −76.20∗ 37.39∗

[4.32] [−1.73] [2.06]
Market exposures (β/100) 24.39⋄ −1642.30⋄ 560.40⋄

[16.86] [−5.18] [4.19]

The table presents a summary of the macroeconomic and asset-price evidence using alternative measures of
good and bad uncertainty based on monthly industrial-production data, computed under a shifted cutoff for
the good and bad uncertainty observations. The expost positive (negative) semivariance is computed using
observations above (below) the 75th percentile of industrial production growth. Panel A documents the
slope coefficients, t−statistics, and the R2 in the projections of one-year-ahead macroeconomic growth rates
on the expected growth x, good uncertainty Vg, and bad uncertainty Vb. Panel B shows the evidence from
the contemporaneous regressions of the aggregate asset prices on these factors. Panel C shows the estimates
of the market prices of risks and the market return exposures to expected growth, good uncertainty, and
bad uncertainty risks. The notations †, ∗, and ⋄ indicate the significance of the coefficients at 10%, 5%, and
1% levels, respectively, against the economically motivated, alternative one-sided hypotheses, specified in
earlier tables. Data are annual from 1930 to 2012 (post-war for R&D).
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Table 1.12: Earnings-based uncertainties

x Vb Vg Adj −R2

Panel A: Aggregate growth rate predictability
Consumption growth 1.86⋄ −160.58∗ 41.10∗ 0.53

[7.10] [−2.00] [1.97]
GDP growth 4.86∗ −371.75⋄ 98.78⋄ 0.05

[2.00] [−2.73] [2.84]
Market dividend growth 6.28⋄ −1448.37⋄ 354.80⋄ 0.37

[3.01] [−3.99] [3.85]
Earnings growth 4.12 −1319.52† 166.00 0.21

[0.67] [−1.60] [0.86]
Capital investment growth 18.98⋄ −3498.01⋄ 901.57⋄ 0.43

[5.40] [−3.17] [3.21]
R&D investment growth 2.63⋄ 720.54⋄ −195.27⋄ 0.26

[2.72] [2.55] [−2.69]
Panel B: Aggregate Asset Prices
Level-based projections:
Market price-dividend ratio 2.38 −5282.53⋄ 1377.15⋄ 0.13

[0.37] [−2.59] [2.66]
Real risk-free rate −0.40 51.03 −24.48 −0.01

[−0.39] [0.25] [−0.44]
Default spread −0.08 76.82∗ −15.42 0.19

[−0.51] [1.68] [−1.26]
First difference-based projections:
∆Market price-dividend ratio 16.81⋄ −1688.33⋄ 399.38⋄ 0.61

[7.89] [−4.93] [4.48]
∆Real risk-free rate −0.44 −74.01∗ 12.36 0.05

[−0.96] [−2.02] [1.24]
∆Default spread −0.09 39.07† −6.31 0.44

[−1.15] [1.28] [−0.81]
Panel C: Asset-pricing implications
Prices of risk (Λ/100) 0.46 −238.78⋄ 69.48⋄

[1.24] [−3.32] [3.19]
Market exposures (β/100) 25.68⋄ −1502.40⋄ 401.75⋄

[13.54] [−6.92] [7.49]

The table presents a summary of the macroeconomic and asset-price evidence using alternative measures
of good and bad uncertainty based on monthly corporate earnings data. Panel A documents the slope
coefficients, t−statistics, and the R2 in the projections of one-year-ahead macroeconomic growth rates on
the expected growth x, good uncertainty Vg, and bad uncertainty Vb. Panel B shows the evidence from the
contemporaneous regressions of the aggregate asset prices on these factors. Panel C shows the estimates of
the market prices of risks and the market return exposures to expected growth, good uncertainty, and bad
uncertainty risks. The notations †, ∗, and ⋄ indicate the significance of the coefficients at 10%, 5%, and 1%
levels, respectively, against the economically motivated, alternative one-sided hypotheses, specified in earlier
tables. Data are annual from 1930 to 2012 (post-war for R&D).
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Table 1.13: Benchmark uncertainties: post-war sample

x Vb Vg Adj −R2

Panel A: Aggregate growth rate predictability
Consumption growth 1.43⋄ −275.72⋄ 123.23⋄ 0.41

[6.27] [−3.57] [2.88]
GDP growth 2.27† −1127.75⋄ 1174.93∗ 0.44

[1.33] [−2.41] [2.09]
Market dividend growth 2.41 −362.83 136.85 −0.01

[1.26] [−0.59] [0.51]
Earnings growth 11.39∗ −1941.22 666.54 0.02

[1.78] [−0.77] [0.67]
Capital investment growth 8.33⋄ −2231.30⋄ 1813.75⋄ 0.42

[3.45] [−4.51] [3.88]
Panel B: Aggregate asset prices
Level-based projections:
Market price-dividend ratio −5.92 −3987.38† −1011.95 0.34

[−0.65] [−1.59] [−0.75]
Real risk-free rate 1.32⋄ −440.50⋄ 80.05 0.37

[3.04] [−2.35] [1.12]
Default spread −0.41⋄ 113.33∗ −49.41∗ 0.33

[−3.15] [1.66] [−2.11]
First difference-based projections:
∆Market price-dividend ratio 20.93⋄ −2740.74⋄ 665.55⋄ 0.61

[12.62] [−4.31] [2.70]
∆Real risk-free rate 0.37 −364.57⋄ 174.82⋄ 0.46

[1.09] [−3.39] [5.60]
∆Default spread −0.40⋄ 122.58⋄ −4.44 0.61

[−3.63] [2.99] [−0.77]
Panel C: Asset-pricing implications
Prices of risk (Λ/100) 0.82⋄ −74.95⋄ 38.15⋄

[4.87] [−2.81] [3.43]
Market exposures (β/100) 28.84⋄ −2912.56⋄ 938.32⋄

[11.35] [−4.74] [2.57]

The table presents a summary of the macroeconomic and asset-price evidence using the benchmark uncer-
tainty measures in the post-war period. Panel A documents the slope coefficients, t−statistics, and the R2

in the projections of one-year-ahead macroeconomic growth rates on the expected growth x, good uncer-
tainty Vg, and bad uncertainty Vb. Panel B shows the evidence from the contemporaneous regressions of the
aggregate asset prices on these factors. Panel C shows the estimates of the market prices of risks and the
market return exposures to expected growth, good uncertainty, and bad uncertainty risks. The notations
†, ∗, and ⋄ indicate the significance of the coefficients at 10%, 5%, and 1% levels, respectively, against the
economically motivated, alternative one-sided hypotheses, specified in earlier tables. Data are annual from
1947 to 2012.
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Figure 1.1: Total realized variance
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The figure shows the time series plot of the total realized variance smoothed over a 3-year window. The total
realized variance is based on the sum of squared observations of demeaned monthly industrial production
growth over 1-year, re-scaled to match the unconditional variance of consumption growth. The shaded areas
represent National Bureau of Economic Research (NBER) recessions.

Figure 1.2: Residual positive variance
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The figure shows the time series plot of the residual positive variance, smoothed over a 3-year window, which
is orthogonal to the negative variance. The positive and negative realized semivariances decompose the total
realized variance into the components pertaining only to positive and negative movements in industrial
production growth, respectively. The residual positive variance is computed from the projection of the
positive realized semivariance onto the negative one. The shaded areas represent NBER recessions.
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Figure 1.3: Realized and predictive log volatilities
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The figure shows the time series plots of the log positive (left panel) and negative (right panel) realized
variances and their predictive values from the projection. The shaded areas represent NBER recessions.
The benchmark predictive variables in the projection include positive and negative realized semivariances,
consumption growth rate, the real-market return, the market price-dividend ratio, the real risk-free rate,
and the default spread.

Figure 1.4: Total exante uncertainty
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The figure shows the time series plot of the total exante uncertainty. The total exante uncertainty is
constructed from the predictive regressions of future overall realized variance. The shaded areas represent
NBER recessions.
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Figure 1.5: Residual good uncertainty
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The figure shows the time series plot of the residual good uncertainty which is orthogonal to the bad
uncertainty. The good and bad uncertainties are constructed from the predictive regressions of future
realized positive and negative variances, respectively. The residual good uncertainty is computed from the
projection of good uncertainty onto bad uncertainty. The shaded areas represent NBER recessions.
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Figure 1.6: Impulse response of GDP to macro uncertainties

(a) GDP growth response to good uncertainty shock
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(b) GDP growth response to bad uncertainty shock
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(c) GDP growth response to total uncertainty shock
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The figure shows impulse responses of private GDP growth to one-standard deviation good, bad, and total
uncertainty shocks. The impulse responses are computed from a VAR(1) which includes macroeconomic
uncertainty measures (bad and good uncertainty for the first two panels, and total uncertainty for the last
panel), expected consumption growth, and GDP growth rate. Data are annual from 1930 to 2012.
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Figure 1.7: Impulse response of capital investment to macro uncertainties

(a) Capital investment growth response to good uncertainty shock
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(b) Capital investment growth response to bad uncertainty shock
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(c) Capital Investment growth response to overall uncertainty shock
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The figure shows impulse responses of capital investment growth to one-standard deviation good, bad, and
total uncertainty shocks. The impulse responses are computed from a VAR(1) which includes macroeconomic
uncertainty measures (bad and good uncertainty for the first two panels, and total uncertainty for the last
panel), expected consumption growth, and capital investment growth rate. Data are annual from 1930 to
2012.
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Figure 1.8: Impulse response of R&D investment to macro uncertainties

(a) R&D investment growth response to good uncertainty shock
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(b) R&D investment growth response to bad uncertainty shock
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(c) R&D investment growth response to overall uncertainty shock
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Impulse response of R&D investment to macro uncertainties. The figure shows impulse responses of R&D
investment growth to one-standard deviation good, bad, and total uncertainty shocks. The impulse responses
are computed from a VAR(1) which includes macroeconomic uncertainty measures (bad and good uncertainty
for the first two panels, and total uncertainty for the last panel), expected consumption growth, and R&D
investment growth rate. Data are annual from 1954 to 2008.
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Figure 1.9: Impulse response of price-dividend ratio to macro uncertainties

(a) Price-dividend ratio response to good uncertainty shock
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(b) Price-dividend ratio response to bad uncertainty shock
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(c) Price-dividend ratio response to overall uncertainty shock
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The figure shows impulse responses of the market price-dividend ratio to one-standard deviation good, bad,
and total uncertainty shocks. The impulse responses are computed from a VAR(1) which includes macroe-
conomic uncertainty measures (bad and good uncertainty for the first two panels, and total uncertainty for
the last panel), expected consumption growth, and the market price-dividend ratio. Data are annual from
1930 to 2012.
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Figure 1.10: Impulse response of price-earnings ratio to macro uncertainties

(a) Price-earnings ratio response to good uncertainty shock
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(b) Price-earnings ratio response to bad uncertainty shock
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(c) Price-earnings ratio response to overall uncertainty shock
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Impulse response of price-earnings ratio to macro uncertainties. The figure shows impulse responses of the
market price-earnings ratio to one-standard deviation good, bad, and total uncertainty shocks. The impulse
responses are computed from a VAR(1) which includes macroeconomic uncertainty measures (bad and good
uncertainty for the first two panels, and total uncertainty for the last panel), expected consumption growth,
and the market price-earnings ratio. Data are annual from 1930 to 2012.
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CHAPTER 2 : A Tale of Two Volatilities: Sectoral Uncertainty, Growth, and

Asset-Prices

2.1. Introduction

It is a common notion, especially among policymakers, that uncertainty played an important

role in inhibiting economic recovery from the Great Recession. Consequently, there has been

a growing research effort in macroeconomics and in finance to understand the implications

of volatility shocks, yielding mixed evidence. In macroeconomic studies, it is debatable

whether volatility, particularly in general equilibrium, lowers or increases investment. In

asset-pricing, most studies argue that volatility drops asset-valuation ratios, while others

claim it is a mechanism that boosts stock prices.1 Corporate finance studies show that

higher volatility increases the cost of capital, thus lowering investment and leverage.

In this study I show that it is possible to reconcile the mixed evidence about the implications

of volatility by decomposing the source of uncertainty into sectoral origins. Specifically, I

ask what is the impact of technological (TFP) volatility on asset-prices and aggregate cash-

flows? I shed new light on this question, and find that the answer depends empirically and

theoretically on the sector from which the volatility emanates. I split the economy into

two super-sectors: the consumption sector and the investment sector. I study the pricing

and the macroeconomic implications of sectoral innovations (first-moment sectoral TFP

shocks), as well as sectoral volatility shocks (second-moment sectoral TFP shocks), of these

two sectors.

I document a novel empirical regularity: the TFP-volatilities of the investment sector and

the consumption sector have opposite impact on the real and financial economy. Contrary to

the typical view of policymakers, TFP-volatility is not always contractionary empirically.

The market’s fear of uncertainty is well-justified when the productivity of the consump-

tion sector is more uncertain. The TFP-volatility of the consumption sector depresses

1See a comprehensive discussion related to the implications of volatility shocks for economic growth and
asset-prices in existing literature in Section 2.2.
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stock prices and aggregate investment. By contrast, uncertainty about the productivity of

investment-good producers boosts aggregate cash-flows, raises equity valuations, and lowers

credit spreads. Moreover, investment TFP-volatility helps explain return spreads based on

momentum and Tobin’s Q, beyond the ability of first-moment sectoral TFP innovations.

I explain the empirical findings using a quantitative general-equilibrium production-based

model. The model features two-sectors, consumption and investment, whose production

is subject to sectoral TFP shocks with time-varying volatility. While a standard perfect-

competition model fails to fully explain the data, I show that a model that features mo-

nopolistic power for firms and sticky prices, as well as early resolution of uncertainty under

Epstein and Zin (1989) and Weil (1989) preferences, is capable of explaining the differential

impact of sectoral volatilities on real and financial variables.

The implications of this study contribute to several disciplines. On the macroeconomic

front, this paper shows that higher uncertainty should not be suppressed if it stems from

investment firms. On the asset-pricing front, my work highlights that sectoral volatility

shocks, in particular in the investment sector, can go beyond first-moment innovations in

explaining return spreads. On the corporate-finance front, I demonstrate that sectoral

volatilities lead to differential impact on credit spreads, and on firms’ incentive to take

leverage.

A starting-point of my study is that uncertainty takes many different forms, and therefore,

can lead to the mixed findings in the literature regarding its effect on economic growth

and valuations. Focusing on the consumption versus the investment sector’s TFP-volatility,

stems from a voluminous macro-finance literature which divides the economy to these two

classifications. This literature stresses the importance of innovations to the level of invest-

ment TFP (first-moment shocks) for the business-cycle, the equity premium, and certain

return spreads.2 To the best of my knowledge, my work is the first to examine the differen-

2More precisely, these works discuss investment-specific technological shocks, or IST. IST shocks refer to
the log-difference between investment and consumption TFP level innovations. With some contrast, in my
work I examine the total Solow residual in both sectors. For symmetry, I use the terms investment-TFP and
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tial role of consumption and investment TFP-volatility (second-moment shocks) for prices

and growth.

The focus on the TFP-volatility of the two sectors can be motivated economically. In a

reduced form manner, higher investment TFP-volatility could be thought of as a bundle

of R&D growth options, which raises uncertainty. Some of these options would turn out

to be bad, but some in the right tail would be successful. Future exercising of successful

options could be manifested in improved productivity and welfare. For example, uncertainty

about the productivity of a firm like “Delta Airlines”, classified as consumption-producing

firm (service producer), can be quite different than uncertainty about “Pratt & Whitney”

productivity (a large aircraft engine producer), classified under the investment sector.3

Perhaps, creative R&D work done at “Pratt & Whitney”, which is a source for higher

uncertainty, would generate the next technological advancement (e.g. fuel efficient engine),

from which “Delta Airlines” could also benefit? Interestingly, I find results along this

intuition.

Empirically, using measures of sectoral innovations and volatility shocks, I document four

novel stylized facts:4 (1) While consumption-sector’s TFP-volatility is associated with lower

investment, output, and consumption, investment-sector’s TFP-volatility is associated with

boosting these quantities; (2) Investment TFP-volatility risk has a positive market-price,

and consumption TFP-volatility has a negative market-price. The sectoral volatilities also

affect the default spread in opposite directions: investment TFP-volatility lowers it; (3) By

and large, equities are exposed in a similar fashion to the sectoral volatilities. Investment

TFP-volatility increases firms’ stock-prices (positive exposures, or positive “betas”), while

firms’ beta to consumption TFP-volatility is negative; (4) I show that investment TFP-

volatility is important for the market risk-premium, and for explaining the momentum

spread.

consumption-TFP innovations. Both terms in my paper refer to sectoral Hicks-neutral technology shocks.
3I follow here the classification suggested by Gomes et al. (2009), of SIC codes into industries.
4I measure the TFP-volatility of the consumption and investment sectors via the predictable component

of sectoral TFP realized variances. For more details, see discussion in Section 2.3.2.
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Why does investment TFP-volatility impact differ from consumption TFP-volatility? Us-

ing a quantitative DSGE theory, my work explains the impact of sectoral volatilities on

aggregate cash-flows and aggregate valuations. The model features a consumption sector,

and an investment sector, and builds on Smets and Wouters (2007), Liu et al. (2012), and

Garlappi and Song (2013b). The output of the consumption sector is a final-good used

for consumption only, and it is subject to a consumption TFP shock. The output of the

investment sector is the economy’s aggregate investment, and it is subject to an investment

TFP shock. It flows to both consumption firms, and investment firms that wish to invest.

Given the economy’s structure, a consumption TFP innovation is a multiplicative shock that

only rescales consumption, and thus has a transitory impact. By contrast, an investment

TFP innovation affects multi-period stock of aggregate capital, and thus has a prolonged

impact. As a result, consumption TFP-volatility resembles pure short-run capital risk,

while investment TFP-volatility resembles more long-run income risk. As discussed below,

this implies that the strength of the motive to save (invest) in order to hedge against higher

uncertainty differs between the two volatilities.

When TFP-volatility of the investment sector rises, it implies that in future periods the

probability of having sub-optimal amount of investment goods rises. In this case, the

household has a strong incentive to invest more, and consume less, due to “precautionary

saving”. Investing more ensures higher aggregate capital in the future. Capital can be used

for both consumption and investment production. Hence, it acts as a buffer of savings. If

a bad investment TFP shock is realized, the buffer can be used to smooth consumption.

By contrast, I show that under early resolution of uncertainty preferences, more consump-

tion TFP-volatility makes the household more impatient. This triggers more consumption,

and less investment. Intuitively, under early resolution of uncertainty case, the agent dis-

likes uncertainty. To minimize her exposure to volatility build-up in the future, she shifts

her consumption profile as much as possible to the present, which implies lower investment.
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The former discussion demonstrates that consistently with the data, a model with perfect

competition leads investment expenditures to rise (drop) with investment (consumption)

TFP-volatility. However, because consumption and investment are substitutes, with per-

fectly competitive firms, a sectoral TFP-volatility shock would cause consumption and ag-

gregate investment to counterfactually diverge.5 The model therefore features time-varying

markups, which builds upon monopolistic competition and sticky prices.6 Time-varying

markups make consumption and aggregate investment comove in response to sectoral volatil-

ity shocks, consistently with the data.7 Consequently, sticky prices play an important role

in explaining macroeconomic facts and volatility risk premia.

As is common in production models, aggregate investment and stock prices comove. Conse-

quently, the two sectoral TFP-volatilities have opposite impact on stock prices. In particu-

lar, since higher investment TFP-volatility increases investment, it increases the demand for

capital goods, and also their relative price. As a result, the value of firms’ capital rises, and

stock prices appreciate. This implies, as in the data, a positive beta to investment TFP-

volatility. The opposite logic applies to consumption TFP-volatility, and implies negative

betas to consumption TFP-volatility, consistently with the data.

The behavior of the market-prices of risk is derived from consumption dynamics and prefer-

ences. Consumption TFP-volatility depresses aggregate consumption, and generates a more

volatile consumption profile. Both effects, under early resolution of uncertainty, increase

the marginal utility of the investor, and imply a negative market-price of risk. Investment

TFP-volatility increases consumption’s volatility on one hand. On the other hand, this

volatility has a prolonged effect on the economy through capital build-up. This capital

build-up leads to a rise in long-run consumption. Quantitatively, the latter channel can

5This divergence implies that consumption TFP-volatility would counterfactually boosts consumption,
not only contemporaneously but also in the future. Counterfactual consumption behavior could also ad-
versely affect the market-price of consumption TFP-volatility risk.

6Markups in the model are countercyclical: They increase with consumption TFP-volatility. As higher
consumption TFP-volatility has a contractionary impact, this is consistent with some empirical evidence
suggesting that markups are countercyclical (see e.g. Barsky et al., 1994; and Chevalier and Scharfstein,
1996).

7See related discussion in Basu and Bundick (2012), and Fernández-Villaverde et al. (2015).

67



dominate the first, implying a positive market-price of risk for investment TFP-volatility,

as in the data.

The rest of this paper is organized as follows. In Section 2.2, I review related literature.

Section 2.3 documents the novel empirical facts regarding sectoral TFP volatilities. In

Section 2.4, I present the general-equilibrium model, and discuss its intuition in Section 2.5.

Section 2.6 presents the quantitative results. Section 2.7 provides concluding remarks.

2.2. Related Literature

My paper relates to three main strands of literature. First, my study is related to the

growing literature discussing the implications of volatility shocks for macroeconomic growth,

and asset-prices. I contribute to this line of works by documenting and rationalizing novel

channels, through which fundamental volatilities can interact both positively and negatively

with macro-aggregates and prices. Volatility in this work refers to the time-series conditional

volatility of shocks, to an economic variable of interest (in my case, TFP).

Empirically, the typical relation between volatility and the macroeconomy is negative. This

negative link is documented in the early work of Ramey and Ramey (1995), Martin and

Rogers (2000), and more recently by Engel and Rangel (2008), Bloom (2009), and Baker

and Bloom (2013). Fewer empirical works, document a positive impact of volatility, such

as Kormendi and Meguire (1985) on output, and Stein and Stone (2013) on R&D expendi-

tures.8

From a theoretical perspective, there is an on-going debate regarding the impact of volatility

on investment. On one hand, some studies highlight a negative impact on investment. The

works of McDonald and Siegel (1986), Dixit and Pindyck (1994), and recently Bloom (2009),

use real-option effects to explain why volatility suppresses investment and hiring. The work

of Fernandez-Villaverde et al. (2011) discusses uncertainty in an open-economy, showing

8Related, the work of Imbs (2007) shows that on average, within-industry volatility of value-added is
non-negatively (or weakly positively) related to the same industry’s growth. Yet, average within-sector
volatility across industries, relates negatively to aggregate growth. Differently from my work, Imbs does not
identify which sectors’ volatility interact positively or negatively with aggregate growth, or why.
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that volatility lowers domestic investment. Other works argue that volatility increases

the cost of capital, or credit spreads, making investment more costly (see e.g. Christiano

et al., 2014; Arellano et al., 2012; and Gilchrist et al., 2014). Basu and Bundick (2012) and

Fernández-Villaverde et al. (2015) rely on nominal rigidities to show that both consumption

and investment drop in response to volatility shocks. On the other hand, other studies rely

on economic forces which yield a positive link between volatility and investment, including

precautionary savings, time-to-build, and investment irreversibility.9

Most asset-pricing studies argue for a negative effect of volatility on financial variables.

Focusing first on the impact of aggregate-fundamental’s volatility, Bansal et al. (2005b)

show that higher aggregate volatility depresses asset-valuation ratios. Related, Drechsler

and Yaron (2011), and Shaliastovich (2015), show that higher aggregate volatility increases

risk premia. Bansal et al. (2014) find that the market-price of aggregate volatility risk is

negative. In the context of real options, Ai and Kiku (2012) argue that higher aggregate

volatility may decrease the value of growth options, as the volatility is priced, and affects

discount rates.

Other works, argue also for a negative impact, yet of different facets of volatility. Croce

et al. (2012), and Pastor and Veronesi (2012), demonstrate the negative impact of pol-

icy uncertainty on prices. In the context of learning, Van Nieuwerburgh and Veldkamp

(2006), show that slower learning and higher belief uncertainty in bad times, generates slow

recoveries and countercyclical movements in asset prices.10

Some financial studies argue for a more positive link between volatility and valuations.

Campbell et al. (2012) analyze aggregate volatility in an extended version of the intertem-

9see e.g. Abel and Eberly, 1996; Bar-Ilan and Strange, 1996; Gilchrist and Williams, 2005; Jones et al.,
2005; Malkhozov, 2014; and Kung and Schmid, 2014. Related, Johnson (2007) highlights that higher uncer-
tainty, accompanied with technological revolutions, encourages investment as a mean of optimal learning.
For an excellent survey of uncertainty impact on macroeconomic quantities, the reader may also refer to
Bloom (2014).

10Related, Fajgelbaum et al. (2015) also show that higher belief uncertainty discourages investment.
Herskovic et al. (2015) show that the common component of idiosyncratic volatility among firms raises the
households marginal utility, and is negatively priced. Krishnan et al. (2009), show that correlation risk
carries a significant negative price of risk.
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poral capital asset-pricing model (ICAPM), and find that in a recent-sample, equities have

positive exposure to volatility. Pastor and Veronesi (2009b) show that stock prices of firms

rise as a result of higher uncertainty during times of technological revolutions.11

Different frameworks exhibit a more ambivalent link between volatility and returns. Segal

et al. (2015) show that the positive and negative semivariances of industrial-production

have opposite impact on stock and bond prices. Patton and Sheppard (2015) show that

negative semivariances of returns leads to higher future return volatility.12

The second strand of literature related to my paper, discusses the role of investment TFP

innovations for the business cycle and asset prices. Yet, the focus of this literature so far

evolved around first-moment TFP innovations, as opposed to second-moment TFP shocks,

which are at the focus of the current work. A long strand of macroeconomic works stress

the importance of investment technology innovations for business-cycle fluctuations.13

In the context of asset-pricing, the works of Christiano and Fisher (2003), Papanikolaou

(2011), and Garlappi and Song (2013a) among others, highlight the ability of investment

specific technological shocks (IST) to explain the equity premium puzzle. Nonetheless, while

Papanikolaou (2011) finds that IST shocks carry a negative beta and a negative market-

price of risk, Garlappi and Song (2013a) and Li et al. (2013) find that these shocks carry a

positive beta and a positive market-price. Importantly, in this work I do not examine IST

shocks, but rather focus on the total TFP of the investment sector (in comparison to the

consumption sector’s TFP). I document a negative beta to investment (first-moment) TFP

innovations. I document that the sign of the market-price of risk of investment first-moment

TFP innovations, is not a strictly robust feature of the quarterly data. In my benchmark

11Other related papers include Johnson and Lee (2014), which highlight that the the common component
of firm-specific cash-flow volatility increases equity valuation ratios, especially for levered equity claims. In
the context of executive compensation, Cohen et al. (2000) argue that since executive options increase in
stock’s volatility, they provide incentives for managers to take actions that increase firm risk, thus pursuing
more projects.

12Other related papers include Feunou et al., 2013; Bekaert and Engstrom, 2009; Bekaert et al., 2015;
Colacito et al., 2013; McQuade, 2014; and Feunou et al., 2015.

13see e.g. Greenwood et al., 1997; Greenwood et al., 2000; Fisher, 2006; Jaimovich and Rebelo, 2009;
Justiniano et al., 2010; and Basu et al., 2006.
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analysis, I find a positive market-price for investment first-moment TFP innovations, though

this market-price turns negative in some of the robustness checks. More relevant, the

market-prices of sectoral TFP-volatility shocks are robust features of the quarterly data.

Investment specific innovations are shown to be helpful in explaining certain return spreads:

Value spread (see Papanikolaou, 2011), spreads based on past-investment, market-betas and

idiosyncratic volatility (see Kogan and Papanikolaou, 2014; and Kogan and Papanikolaou,

2013), and commodity-based spreads (see Yang, 2013). Li (2014) argues that investment

specific innovations can explain the momentum spread, though Garlappi and Song (2013a)

find that the magnitude of this spread captured by these shocks is low, in particular at

quarterly frequency. My work documents that investment TFP-volatility shocks, are capable

of explaining a significant fraction of the momentum spread at quarterly frequency.

The last voluminous literature that my paper is more broadly related to, are production/

investment based asset-pricing papers. These works, study the role of (neutral) technologi-

cal innovations for the joint dynamics of asset-prices and macroeconomic quantities.14 For

example, Liu et al. (2009), find that conditional expectations of stock returns are posi-

tively correlated with expectations of investment returns. Belo et al. (2014), provide an

investment-based model to explain why firms with high hiring rates earn lower returns,

while Jones and Tuzel (2013) offer an investment-based framework to explain why firms

with higher inventory growth earn lower returns, relying on adjustment costs channels.

Lastly, Gârleanu et al. (2012) study “displacement risk”, that is, that innovation works to

the advantage of new generations of innovators at the expense of older generations, helping

to rationalize the value premium.15

14For a survey of this comprehensive literature, the reader may also refer to Kogan and Papanikolaou
(2012).

15Other works discussing asset-pricing moments in a general-equilibrium production models include Jer-
mann, 2010; Berk et al., 1999; Tallarini, 2000; Boldrin et al., 2001; Gomes et al., 2003; Carlson et al., 2004;
Zhang, 2005; Croce, 2014; Kaltenbrunner and Lochstoer, 2010; Gomes and Schmid, 2010; Favilukis and Lin,
2013; Eisfeldt and Papanikolaou, 2013; Lustig et al., 2011; Lin, 2012; and Ai et al., 2013, to name a few.
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2.3. The Facts

In this section I empirically examine the implications of sectoral first-moment TFP innova-

tions and volatility shocks. Sections 2.3.1 and 2.3.2, describe the data and the methodology

used to construct first- and second- moment sectoral TFP shocks empirically. In Section

2.3.3, I analyze the effects of sectoral shocks, and in particular volatility shocks, on aggregate

macro quantities such as output, consumption, and investment. In Section 2.3.4, I examine

the implications of sectoral shocks for cross-sectional risk-premia. I further highlight the

asset-pricing role of sectoral TFP-volatility shocks, above and beyond sectoral first-moment

TFP shocks, in Section 2.3.5. In the robustness section, Section 2.3.7, I show that the key

results are maintained for alternative methods of extracting TFP-volatility shocks from the

data.

2.3.1. Data

In my benchmark analysis I use quarterly data from 1947-Q1 to 2014-Q4. Consumption

and output data come from the Bureau of Economic Analysis (BEA) National Income and

Product Accounts (NIPA) tables. Consumption corresponds to the real per capita expen-

ditures on non-durable goods and services and output is real and per capita gross domestic

product. Capital investment data are from the NIPA tables; Data on average weekly hours

worked, and average hourly earnings, of production and nonsupervisory employees in good-

producing industries are from BLS. Quarterly sales, capital-expenditures, and net-earnings

for publicly traded firms are taken from Compustat. All nominal time-series are adjusted

for inflation using Consumer-Price Index from BEA. Data on price deflators of non-durables

and services, and on equipment and software goods, are from NIPA tables as well. Total-

factor productivity data, are taken from the Federal Reserve Bank of San-Fransisco. I

elaborate more on the TFP data used in section 2.3.2.

Aggregate asset-prices data include 3-month Treasury bill rate, the stock price and dividend

on the broad market portfolio from the Center for Research in Security Prices (CRSP). I
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adjust the nominal short-term rate by the expected inflation to obtain a proxy for the real

risk-free rate. Additionally, I collect data on equity portfolios sorted on key characteristics,

such as size, book-to-market ratio, momentum, operating profitability and idiosyncratic

return volatility from the Fama-French Data Library. To measure the default spread, I use

the difference between BAA and AAA corporate yields, obtained from the Federal Reserve

Bank of St. Louis.

2.3.2. Construction of Sectoral Shocks

I obtain quarterly aggregate and sectoral TFP data (Solow residual) from Fernald (2012).

In computing the TFP, labor includes an adjustment for “quality” or composition. Cap-

ital services are also adjusted for changes in composition over time. I further obtain

capacity-utilization adjusted TFP data from Basu et al. (2006). Using the relative prices

of investment-goods, the aggregate TFP series is decomposed into separate sectoral TFP

series, for the (non-structures, non-residential) “investment” sector, and “consumption” sec-

tor. “Consumption” in this context means everything that is not in the investment sector,

i.e., everything other than private business equipment (e.g. non-durables and services).16

The use of the relative price of investment goods to obtain investment TFP innovations was

originally proposed by Greenwood et al. (1997). It can be shown that if producers in both

sectors have equal factor shares of capital and labor, pay the same factor prices (i.e., wages

16See Fernald (2012) for details. To be specific, the log-growth in aggregate TFP is defined as:

∆TFPt = ∆Yt − αt∆Kt − (1− αt)(∆hourst +∆labor-productivityt)

where ∆Y is the log-growth in gross value-added, ∆K is the log-growth in perpetual inventory stocks
(calculated from disaggregated quarterly NIPA investment data), and α is capital’s share of output. Let
∆P̃i,t be the log-growth in the relative price of investment (equipment):

∆P̃i,t = log(Pi/Pc)t − log(Pi/Pc)t−1,

where Pi is the price deflator of investment-goods, and Pc is the price deflator of non-equipment goods and
services. Let wi,t be equipment share of business output. Then consumption TFP log-growth ∆C-TFP, and
investment TFP log-growth ∆I-TFP are computed by solving:

∆TFPt = wi,t∆I-TFPt + (1− wi,t)∆C-TFPt

∆P̃i,t = ∆C-TFPt −∆I-TFPt.
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and capital rents), have similar markups, and capital flows freely between the two-sectors

intra-temporally, then changes in relative TFP of both sectors equal changes in the relative

price of investment.

In my benchmark case, I use the sectoral TFP time-series proposed by Fernald (2012).

The sectoral TFP data of Fernald (2012) account for the time-varying output share of the

investment-sector, and capture the overall TFP in each of the sector. As such, these data

correspond well with my general-equilibrium setup, in which sectors’ sizes are also time-

varying. Yet, in section 2.3.7, I demonstrate that the empirical results are robust to other

proxies as well.17

As is common in the investment literature, the log-growth in consumption TFP and invest-

ment TFP are the respective sectoral first-moment innovations.18 I denote these innovations

as ∆C-TFP and ∆I-TFP, respectively, where C is a short for consumption, and I is a short

for investment.

To obtain second-moment (volatility) TFP shocks I follow four steps. First, I filter the

sectoral TFP growth rates using an AR(k) filter, where k is chosen by Akaike Information

Criterion. I do so, in order to remove any potential conditional mean from the time series,

and obtain sectoral TFP residuals, denoted {εj,t}, j ∈ {C, I}.

Second, I construct sectoral realized variances RVj , j ∈ {C, I}, from the sectoral TFP

residuals, over a window of W quarters:

RVj,t−W+1→t = Σtk=t−W+1ε
2
j,k (2.1)

17In particular, the results are robust when sectoral TFPs are adjusted for capacity-utilization, as in Basu
et al. (2006). Furthermore, it is very common in the investment literature to use only the relative investment
price deflator as a proxy for investment-specific shocks (see e.g. Greenwood et al. (1997), Fisher (2006), and
Garlappi and Song (2013a)). The results are robust to the use of the relative-price of investment deflator
proxy instead. Other proxies considered are described in section 2.3.7.

18The construction of first-moment TFP innovations via log growth is identical to the empirical construc-
tion of TFP innovations in the works of Garlappi and Song (2013a) and of Kogan and Papanikolaou (2014).
It is also consistent with the fact that in the model, the sectoral TFPs are random walks. However, the
results are robust to filtering the sectoral TFP growth series using an AR(k) filer, and using the residuals
as the first-moment TFP innovations.
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These realized variances capture ex-post (or backward-looking) volatility in each sector.

Third, to make the volatilities forward-looking, in-line with the model, I project future

sectoral log-realized variances on a set of predictors, denoted by Γt:

log(RVj,t+1→t+W ) = b0 + b′Γt + error (2.2)

The exponentiated fitted value of these projections are the sectoral ex-ante TFP-volatilities

(Vj = exp(b̂0+b̂
′Γ), j ∈ {C, I}). The log transformation ensures that the ex-ante volatility

measures remain strictly positive, in a similar fashion to Segal et al. (2015).

Lastly, I use the logarithm first-difference of the sectoral ex-ante TFP-volatility series, as

the sectoral TFP-volatility shocks. I consider this step as a reduced-form way to obtain

a proxy of second-moment shocks, that is both in-line with the construction of the first-

moment innovations, and does not require further filtering. Taking the first-difference of the

volatility series, also reduces their auto-correlation, and thus, alleviates potential Stambaugh

(1986) biases in predictive projections. However, the results are still robust when the total

ex-ante volatilities are used as well in the various projections, instead of their first-difference.

In the benchmark case, I set k = 3, and W = 8 quarters. Motivated by the general-

equilibrium setup, the benchmark predictors I use, Γt, are the four variables which from a

production perspective, are sufficient describe the economy’s evolution: consumption and

investment TFP growth, and the two sectoral realized variances. However, the results are

robust to exclusion or inclusion of other predictors. Following these steps, I obtain four

shocks: ∆C-TFP and ∆I-TFP, capturing (first-moment) sectoral TFP innovations, and

∆C-TFP-VOL and ∆I-TFP-VOL capturing second-moment sectoral TFP shocks. With

these four shocks, I obtain a set of novel empirical facts, as illustrated in sections 2.3.3 -

2.3.5.

As the TFP of the consumption and the investment sectors comove, their volatilities are

also correlated. To emphasize the distinction between the two sectoral volatilities, Figure
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2.1 shows the component of investment TFP-volatility which is orthogonal to consumption

TFP-volatility. The orthogonal component is obtained from the projection of investment

TFP-volatility on consumption TFP-volatility. The residual investment TFP-volatility is

procyclical. Specifically, we can see a decrease in the residual investment TFP-volatility

during the Great Recession. On the other hand, the residual volatility rises during the

high-tech revolution of mid to late 1990s.

2.3.3. Sectoral Shocks and The Macroeconomy

In this section, using the empirical proxies for sectoral volatility shocks, I document the

first stylized fact, related to the interaction of sectoral volatilities and the macroeconomy.

Fact I: Investment-sector’s TFP-volatility predicts positively both the growth rates and the

business-cycle component of key macroeconomic variables: consumption, output, in-

vestment, and labor; Consumption-sector’s TFP-volatility predicts these quantities

negatively.

I first project contemporaneous and future cumulative macroeconomic growth rates, for

horizon h quarters, on the current proxies for sectoral shocks: first-moment sectoral TFP

innovations of the two-sectors, and second-moment TFP shocks of the two-sectors. In other

words, I run the following regressions:







∆yt = β0 + β′0Xt + error if h = 0

1
h

∑h
j=1∆yt+j = β0,h + β′hXt + error if h > 1.

(2.3)

where Xt = [∆C-TFPt,∆I-TFPt,∆C-TFP-VOLt,∆I-TFP-VOLt]. The variable y is a

macroeconomic log-variable of interest, and the forecast horizon h varies between h ∈

{0, 1, 4, 12, 20} quarters. Table 2.1 shows the slope coefficients, along with the adjusted R2

of the regressions, for aggregate cash-flow (macroeconomic) growth variables – consump-

tion, GDP, corporate sales and earnings. Table 2.2 shows the evidence for inputs growth

measures – capital inputs: non-residential capital investment, corporate capital expendi-
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tures, and the relative-price of investment, as well as labor inputs: average hours worked

and wages.

It is evident from these two tables that across the various macroeconomic growth rates

and across all the horizons, the slope coefficient on consumption TFP innovation is always

positive and almost always significant (with the exception of an insignificant negative slope

for sales growth contemporaneously). This evidence is consistent with the notion that higher

productivity is associated with higher growth, and increased economic activity.

With some contrast, investment TFP innovation’s loadings are positive contemporaneously

(and also in shorter predictive horizons), but turn negative for medium and long-run pre-

dictive projections. Investment innovations also have strictly negative loadings in aggregate

prices projections: wages and the relative-price of investment. As shown in Panel A of Ta-

ble 2.2, investment TFP innovations increase capital investment growth contemporaneously.

This finding is broadly consistent with the empirical evidence of Kogan and Papanikolaou

(2014) and Kogan and Papanikolaou (2013), that investment-specific shocks (measured via

the relative price of investment, or via investment-minus-consumption portfolio returns),

also raise firms’ investment-rates contemporaneously. Yet, some of the negative loadings

on investment TFP innovations, in particular for consumption and GDP, are consistent

with recent empirical evidence of Basu et al. (2006) and Liu et al. (2012), that investment

technology shocks can be contractionary.

Consumption TFP-volatility carries always a negative slope coefficient. It is statistically

significant mostly in shorter horizons of zero quarters up to one year. This is the typical

negative interaction of volatility and growth, documented by Bloom (2009) and others. By

sharp contrast, investment TFP-volatility has always a positive correlation with contem-

poraneous and future growth. This positive interaction is also statistically significant at

horizons of one-year, and three-years ahead. However, in the case of capital investment, the

positive loading on investment TFP-volatility is also significant contemporaneously.
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It is worth noting that the adjusted R2s for the contemporaneous projections of GDP and

capital investment are quite substantial. For GDP growth the adjusted R2 is close to 50%,

and for capital investment it is 36%. Generally, the R2s decline with the forecast horizon.

The positive interaction of investment TFP-volatility is not limited to growth rates. In

Table 2.3, I repeat the same projections of the former Tables, but now the dependent

variable is the business-cycle component of an economic variable of interest y, averaged

over the predictive horizon h. The business-cycle component is obtained via filtering the

level data using a one-sided HP-filter, with a smoothing parameter of 1600. Averaging the

business-cycle component is made to reduce the amount of noise, and extract the “long-

term” business-cycle component of the variables of interest. For brevity, I consider in Table

2.3 a subset of macroeconomic variables, including consumption, GDP, capital investment,

hours, and the relative-price of investment.

The Table conveys a similar message to the growth-rate evidence. Consumption TFP-

volatility shocks predict negatively, while investment TFP-volatility shocks predict posi-

tively, the cyclical component of macroeconomic variables. The significance of the volatili-

ties generally drops with the predictive horizon. For some variables, such as hours-worked,

the significance of the volatility loadings is stronger in the business-cycle evidence, than in

the growth-rate evidence.19

Though the projections in Tables 2.1 - 2.3 are multivariate, and account for the corre-

lations between the factors, I further illustrate the impact of TFP-volatility shocks via

impulse-responses, shown in Figure 2.2. The impulse-response functions are computed from

a first-order vector autoregression (VAR(1)) that includes investment TFP-volatility, con-

sumption TFP-volatility, investment TFP innovation, consumption TFP innovation, and

the detrended macroeconomic variable of interest. The detrended macroeconomic variable is

19From the fact that the sectoral TFP volatilities impact both growth rates and cyclical components
similarly, one may learn that the impact of TFP-volatilities on macroeconomic variables is not only persistent,
but even tends to amplify some period after the volatility shock hits. This pattern is theoretically consistent
with the existence of adjustment costs, that prevent firms from fully responding to the volatility shocks upon
impact.
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also standardized. I plot one-standard deviation Cholesky TFP-volatility shock responses,

to detrended consumption, output and capital investment.

Figure 2.2 illustrates again the expansionary pattern for investment TFP-volatility, and

the contractionary pattern for consumption TFP-volatility. Panels (a), (b) and (c), demon-

strate that a one-standard deviation of consumption TFP-volatility shock, drops the cyclical

component of consumption, investment and output by 0.13, 0.16 and 0.24 standard devia-

tions, respectively, one-quarter after the shock hits. The negative impact persists up to ten

quarters ahead. In particular for investment, the negative response is persistent up to 20

quarter ahead.

By contrast, Panels (d), (e), and (f) show that one standard-deviation shocks to investment

TFP-volatility increase one-quarter ahead detrended consumption, investment and output

by 0.04, 0.12, and 0.13 standard deviations, and the positive impact persists up to 20

quarters onwards. Economically, the negative impact of consumption TFP-volatility is

somewhat larger than the positive impact of investment TFP-volatility.

2.3.4. Sectoral Shocks and The Cross-Section of Returns

In this section I show the implications of sectoral first-moment TFP innovations and TFP-

volatility shocks for the cross-section of stock returns. To the extent that sectoral volatilities

interact with aggregate consumption growth in an opposite way, it may suggest that the

marginal utility of the household is affected differently by sectoral volatilities. In-line with

this conjecture, my empirical analysis yields the second stylized fact:

Fact II: Consumption TFP-volatility has a negative market price of risk, while the mar-

ket price of investment TFP-volatility is positive. Hence, the high-risk states for the

investors are associated with low investment uncertainty, and high consumption un-

certainty.
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Generally, a portfolio risk premium is given by the product of the market prices of funda-

mental risks Λ = (λC-TFP, λI-TFP, λC-TFP-VOL, λI-TFP-VOL), the variance-covariance matrix

of the risk-factors, denoted by Ω, which captures the quantity of risk, and the exposure of

the portfolio to the underlying macroeconomic risk βi:

E[Ri,t+1 −Rf,t] = Λ′Ωβi. (2.4)

Given a cross-section of returns, and the risk-factors’ shocks, I can estimate the equity expo-

sures and the market prices of risks using a standard Fama and MacBeth (1973) procedure,

described below.

First, I obtain the return betas by running a multivariate regression of each portfolio returns

on the sectoral shocks20:

ri,t = const + βi,C−TFP∆C-TFPt

+βi,I−TFP∆I-TFPt

+βi,C−TFP−V OL∆C-TFP-VOLt

+βi,I−TFP−V OL∆I-TFP-VOLt

+ error. (2.5)

The slope coefficients in the above projection, represent the portfolio’s exposures to sectoral

TFP innovation risks and sectoral TFP-volatility risks. Next, I obtain factor risk premia Λ̃

by running a cross-sectional regression of average excess returns on the estimated betas:

Rei = λ̃C-TFPβi,C-TFP + λ̃I-TFPβi,I-TFP + λ̃C-TFP-VOLβi,C-TFP-VOL + λ̃I-TFP-VOLβi,I-TFP-VOL

+ error. (2.6)

20I obtain similar results when I use excess returns, or first-difference of the returns as a dependent variable,
as a reduced-form return innovation.

80



I impose a zero-beta restriction in the estimation and thus run the regression without an

intercept. The implied factor risk premia, Λ̃ = (λ̃C-TFP, λ̃I-TFP, λ̃C-TFP-VOL, λ̃I-TFP-VOL),

encompass both the vector of the underlying prices of risks Λ, and the quantity of risks Ω :

Λ̃ = ΩΛ.

To compute the underlying prices of risk Λ, I pre-multiply the factor risk premia Λ̃ by the

inverse of the quantity of risk matrix Ω.To obtain standard errors, I embed the two-state

procedure into Generalized Method of Moments (GMM), which allows to capture statistical

uncertainty in estimating jointly asset exposures and market-prices of risk.

In the benchmark implementation, the menu of cross-sectional assets includes the market

return, the cross-section of ten portfolios sorted on size, ten portfolios sorted on book-to-

market, and ten portfolios sorted on momentum. Panel A of Table 2.4 shows the market

prices of risks estimates along with their t-statistics.

Panel A documents that consumption sector’s TFP first-moment innovations have a positive

and significant market price. This is in-line with several works (e.g. Garlappi and Song

(2013a)).

The market-price of risk of investment TFP first-moment innovations is positive yet not

statistically significant. Importantly, this finding is not at odds with Papanikolaou (2011)

and Kogan and Papanikolaou (2013), who find that IST shocks are negatively priced. This

is because investment TFP positively shares a common component with consumption TFP,

which has a positive market price as well, while an IST shock is the log-difference between

investment and consumption TFPs.

I find that the market-price of risk of investment TFP innovations, is not a strictly robust

feature of the data – at least not at quarterly frequency. Though the benchmark analysis

yields a positive market-price for investment innovations, this market-price turns negative in

some of the robustness checks. For example, when ten industry portfolios are added to the
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cross-section, this market price turns negative, yet with a very low t-statistic. In my model, I

choose to adopt the view that investment TFP innovations are positively priced. In most of

the robustness checks this market price is positive. A positive sign is also consistent with an

intertemporal elasticity of substitution greater than one, which is important for explaining

the impact of sectoral volatilities on investment. More importantly, the market-prices of

sectoral TFP-volatility shocks, as I discuss next, are robust features of the data.

Panel A also shows that the market price of investment TFP-volatility is positive, while the

market-price of consumption TFP-volatility is negative. Both market prices are statistically

significant. This is consistent with the effect of sectoral volatilities on the evolution of

aggregate cash-flows (and consumption in particular).

The next stylized fact is evident from Panel B of Table 2.4:

Fact III: For most equities, the risk exposures (betas) to consumption TFP-volatility are

negative, and the risk exposures to investment TFP-volatility are positive.

All assets have a positive exposure to consumption TFP first-moment innovations, and a

negative exposure to investment TFP first-moment innovations. In addition, all equities ex-

cept for portfolios comprised of very small stocks, are exposed in a similar fashion to sectoral

TFP-volatility shocks. By and large, consumption TFP-volatility lowers equity valuations

(negative betas), while investment TFP-volatility raises equity valuations (positive betas).

Table 2.4 reports exposures without t-statistics to save space. In Table 2.5, I report industry

(sectoral) portfolios’ exposures to the sectoral shocks, along with t-statistics, obtained from

running projection (2.5). Sorting stocks into industry portfolios is based on Gomes et al.

(2009) SIC classifications for sectors.

Similarly to Panel B of Table 2.4, Table 2.5 shows that all sectors’ exposures to sectoral

shocks share the same pattern described earlier. In particular, the non-durables, services,

and investment portfolios have positive exposure to investment TFP-volatility, and a neg-

ative one to consumption TFP-volatility. Except for two-cases in the Table, all betas are
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statistically significant.

2.3.5. The Pricing Role of Sectoral Volatilities

Section 2.3.4 demonstrates that the sectoral TFP-volatility shocks are priced in the cross-

section of returns. Consequently, a production-based stochastic discount factor that ex-

cludes the volatility shocks is misspecified. Yet, is this misspecification also economically

important for matching asset-pricing moments? In this section I argue that sectoral volatil-

ity shocks, and in particular in the investment sector, contribute positively and significantly

to the equity premium, and can also explain a significant variation of the momentum spread,

and of investment-based spreads.

To highlight the importance of the TFP-volatility shocks, I compare two factor model spec-

ifications. In the first specification, I include four risk factors: consumption and investment

(first-moment) TFP innovations, and consumption and investment TFP-volatility shocks.

The second model specification excludes the sectoral volatilities, and only includes two risk

factors: the first-moment TFP innovations of the two-sectors. I tabulate a summary of the

asset-pricing implications for the two models – in Table 2.6, for the four-factor model, and

in Table 2.7, for the two-factor model.

Panel A of Tables 2.6 and 2.7 reports the adjusted R2 of the second-stage projection in the

Fama-Macbeth procedure (i.e., mean excess returns on cross-sectional risk exposures, as

in equation (2.6)), performed separately for each of the models. The cross-sectional assets

in each case are identical to those used in Section 2.3.4, and include ten portfolios sorted

on size, ten portfolios sorted on book-to-market, and ten portfolios sorted on momentum.

The fit of the four-factor model is significantly better than the two-factor specification. The

adjusted R2 rises from about 50% with only sectoral first-moment innovations, to 70% when

volatilities are included.21

Furthermore, panel B of Tables 2.6 and 2.7 reports the factor model-implied quantile based

21The Akaike Information Critertion of the second-stage projection also rises from the two- to four- factor
specification.
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quarterly return spreads, of several cross-sections, against their data counterpart. The

dimensions tabulated include size, book-to-market, momentum, lagged firm value to capital

value (Tobin’s Q), operating profitability, and idiosyncratic return volatility spreads.22

The fit of the four-factor model is significantly improved along the momentum, Q, operating

profitability, and idiosyncratic volatility dimensions, in comparison to the two-factor speci-

fication. In the data, the quarterly momentum spread amounts to 2.65%. When volatilities

are included, the factor model-implied spread amounts to 0.83%. While this is only 30%

of the data-spread’s magnitude, in the model without volatilities, the model-implied spread

bears the wrong sign (that is, low momentum portfolio earns a higher return than high

momentum portfolio), and amounts to -0.50%. Similarly, model-implied spreads based on

operating profitability and idiosyncratic volatility bear the opposite sign compared to the

empirical counterparts when the sectoral volatilities are excluded, but become close to the

empirical estimates once the volatility shocks are included. The model-implied quarterly

Q-spread is 1.28% when volatilities are included, but only 0.41% without volatilities, while

the data-spread is 0.98%.

The literature on investment-specific shocks documents that IST shocks are helpful in ex-

plaining the Value spread (see Papanikolaou, 2011), and commodity-based spreads (see

Yang, 2013). Li (2014) argues that IST innovations can explain the momentum spreads

at annual frequency. Yet, the ability of IST innovations to explain the momentum spread

is disputed in the literature. Garlappi and Song (2013a) find that the fraction of the mo-

mentum spread, captured by these innovations is low at quarterly frequency. Although I

do not explicitly consider IST shocks, but rather the total investment TFP innovations,

Table 2.7 is broadly consistent with the notion that investment first-moment innovations

alone are not enough to explain the momentum spread. By sharp contrast, I find that the

ability of investment TFP-volatility shocks to explain the momentum spread is large and

22Tobin’s Q is measured as Market-to-Book ratio as in Hennessy et al. (2007). Operating profitability is
measured via operating profits divided by book equity. Idiosyncratic volatility is measured via the variance
of the residuals from the Fama-French three-factor model over 60 days.

84



economically significant.

Panel B of Table 2.6 shows the decomposition of the model-implied momentum spread to

the contribution of each risk factor.23 The momentum spread, emanating from investment

TFP-volatility risk channel, is 2.43% compared to 2.65% in the data (90% of the momentum

spread’s magnitude).

In Panel C of Tables 2.6 and 2.7, I tabulate the model-implied market excess return, along

with its decomposition to the risk-premia contributions coming from the different risk fac-

tors. The model-implied quarterly market excess return, when volatilities are included, is

1.63%, strikingly close to the empirical counterpart of 1.64%. For comparison, the model-

implied market excess return in a model without volatilities is 1.39%. Panel C of Table 2.6

shows that most of the market risk premium stems from consumption TFP innovation risk,

and investment TFP-volatility risk.

Tables 2.6 and 2.7 thus lead to the following stylized fact:

Fact IV: Investment TFP-volatility shocks are important for the market risk premium, and

explaining the magnitude of the momentum spread.

Lastly, I examine the differential impact of sectoral TFP volatilities on the default spread in

Panel A of Table 2.8. I project contemporaneous and future cumulative log growth rates of

the default spread, on the current proxies of sectoral shocks, as specified in projection (2.3).

Interestingly, I find that while consumption TFP-volatility raises the spread, investment

TFP-volatility significantly lowers it, in predictive horizons of up to three years ahead. This

evidence may suggest that investment TFP-volatility lowers the cost of capital for firms,

thus spurring investment, consistently with the evidence of Section 2.3.3. The differential

impact of the volatilities on the economy-wide default spread seems to be translated into

an opposite incentive of firms to issue debt. Panel B of Table 2.8 shows that consumption

23The contribution of a risk factor to a model-implied return includes the risk-premium from the factor’s
own quantity of risk, as well as one-half of the risk-premium from the covariance terms between the risk
factor and other shocks in the model.
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TFP-volatility drops total debt growth, whereas investment TFP-volatility raises it.

2.3.6. Volatility Feedback to Technological Growth

Section 2.3.3 shows that the sectoral TFP volatilities have a significant impact on the growth

of aggregate cash-flows. In this section I examine whether the sectoral volatilities also affect

the evolution of production technology itself, positively or negatively. I project one-quarter

ahead consumption- and investment- TFP growth rates on the current level of the four

factors: two sectoral first-moment TFP innovations, and two sectoral TFP-volatilities. The

results are reported in Table 2.9.

Table 2.9 shows that investment and consumption TFP growth rates depend significantly

(and positively) only on their own lagged value. Beyond that, there is a positive and signif-

icant feedback between investment TFP-volatility today to one-quarter ahead consumption

TFP growth. I denote this feature the ‘volatility feedback’. This is the only significant

interaction between second-moment shocks to first moment TFP innovations predictively.

Although not micro-founded, one can think of this volatility feedback as delayed culmination

of growth options in the investment sector. In a reduced form manner, higher investment

TFP-volatility could be thought of as a bundle of R&D growth options, which raises uncer-

tainty. Some of these options would turn out to be bad, but some in the right tail would

be successful. Because higher volatility also causes a delay in exercising growth options,

the positive impact of the successful growth options would not be seen immediately today.

But in the future (one quarter), these successful growth options are exercised. This could

be manifested as improved productivity in the final good sector one quarter ahead.

The economic significance of this finding will be clarified in the model section. The empirical

feedback of investment TFP-volatility to future consumption productivity would be used

to quantitatively explain the positive market-price of risk of investment TFP-volatility.
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2.3.7. Robustness

I consider various robustness checks regarding the construction of the ex-ante sectoral

volatilities in the data. First, I consider different predictors for predicting future realized

variances, as in projection (2.2). I add to the benchmark predictors additional variables

such as the risk-free rate and the market-price dividend ratio. The summary of the key

results are shown in Table 2.12. In unreported results, I consider different sets of predictors

as well: including the default-spread as an additional predictor, or including only the lagged

sectoral realized-variances as predictors. In all cases, the results are broadly unchanged.

I also consider a different window for the realized variances construction, as in equation

(2.1). In Table 2.13, I tabulate a summary of the results when the window is expanded to

three years. The results are also largely robust when the window is shortened to just four

quarters.

Next, I consider the usage of the total ex-ante volatilities as risk-factors in the various

projections, as opposed to their first-difference (referred to in this work as their reduced-

form shocks). The results are reported in Table 2.10. Similarly, I also replace the ex-ante

volatilities by their realized-variance counterparts (i.e., backward-looking volatilities) in

Table 2.14. In both cases, by and large, the findings are qualitatively similar to those

reported in the benchmark specification.

I also consider the usage of a different proxy for sectoral volatilities. Specifically, I split

the universe of Compustat firms into consumption and investment sectors, according to

the classifications of Gomes et al. (2009). I then consider the dispersion of sales growth

for consumption firms, versus the dispersion of sales for investment firms, as proxies for

the two-sectors’ technological volatilities. The summary results are reported in Table 2.11.

Notably, dispersion differs conceptually from time-series conditional volatility of aggregate

shocks. Yet, I obtain qualitatively the same results as with the benchmark proxies. Sales

dispersion of consumption firms generates a contractionary impact, while sales dispersion

of investment firms an expansionary one.
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Lastly, I consider other modifications: (1) Filtering the sectoral TFP growth rates using an

AR(k) filter, and using the residuals as first-moment TFP innovations; (2) Using capacity-

utilization adjusted TFPs, as in Basu et al. (2006), for sectoral productivity shocks; (3)

Using the relative-price of investment goods as an investment specific technology shock,

against a neutral TFP; (4) Constructing the sectoral volatilities by estimating GARCH(1,1)

processes; (5) Accounting for estimation errors in the ex-ante sectoral volatilities, by col-

lapsing projection (2.2) and projection (2.3) into a single GMM system. In the interest of

space, I do not report these additional tables but note that across all of these modifications,

I broadly confirm the key empirical results qualitatively.

2.4. The Model

Why is consumption TFP-volatility contractionary for macroeconomic quantities and prices,

while investment TFP-volatility expansionary? I rationalize the findings using a quantita-

tive framework. This section describes the general-equilibrium model. The model is quite

rich, and I provide intuition regarding the role of the various model ingredients in Section

2.5.24

An overview of the economy follows below. Figure 2.3 provides a schematic illustration

of the model players and their interactions.25 The economy is populated by a continuum

of identical households, deriving felicity from an Epstein and Zin (1989) and Weil (1989)

utility over a stream of consumption-goods and leisure. The household supplies labor to

two good-producing sectors: a “consumption” sector and an “investment” sector.

In each sector, there is a mass of intermediate good producers, who produce differen-

24Only a subset of the model assumptions are needed to rationalize the impact of volatility shocks on
investment behavior. Namely, even without monopolistic competition and nominal rigidities, a two-sector
of perfect competition is sufficient to explain volatilities’ impact on investment, as I illustrate in section 2.5.
Other model ingredients are placed to generate comovement of consumption and investment in response to
volatility shocks (see Basu and Bundick (2012)), and to quantitatively amplify the impact of volatility shocks
on real and financial quantities.

25The economy structure builds on the two-sector production economies of Papanikolaou (2011), Liu
et al. (2012), and Garlappi and Song (2013b), but also features Epstein and Zin (1989) utility and stochastic
volatility in the productivity of both sectors.
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tiated products: either differentiated-intermediate consumption goods or differentiated-

intermediate investment goods. The intermediate good producers produce their output

using a Cobb-Douglas production function over capital and labor, which is subject to sec-

toral TFPs, that also feature stochastic volatilities. The intermediate good producers face

monopolistic competition in the product markets. They pick their nominal product price,

but face adjustment costs in doing so.

In each sector, a representative aggregator converts the intermediate goods to a final com-

posite good. The consumption-sector’s aggregator sells the final consumption-good to the

household for consumption. The investment aggregator produces final investment goods

(capital), and sells them back to the intermediate-good producers in both sectors, who buy

these goods when they wish to invest. In the economy a monetary policy authority also

operates, and sets the nominal interest rate according to a Taylor (1993) rule. This Tay-

lor rule, along with the pricing kernel of the household, endogenously pins down inflation.

Next, I describe in more detail each model ingredient.

2.4.1. Aggregation

The aggregator in the consumption (investment) sector produces composite or “final” con-

sumption (investment) goods, denoted Yc,t (Yi,t). Yc,t will be used for consumption by the

household, while Yi,t will be equal to aggregate investment in the economy. Production of

the composite consumption (investment) good requires a continuum of differentiated inter-

mediate goods as inputs, denoted by {yc,t(n)}{n∈[0,1]} ({yi,t(n)}{n∈[0,1]}). The aggregation

technology in both sectors is symmetric, so I describe it below jointly.

The production of the final composite Yj,t, in sector j ∈ {c, i}, converts the intermedi-

ate goods of sector j into a final-good using a constant elasticity of substitution (CES)

technology:

Yj,t =





1∫

0

(yj,t(n))
µj−1

µj dn





µj
µj−1

, j ∈ {c, i}. (2.7)
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The parameter µj , j ∈ {c, i}, measures the degree of substitutability among the interme-

diate goods. Perfect competition among the intermediate good producers implies µj → ∞.

Under finite µj , the intermediate goods in sector j are not perfect substitutes, and thus

each intermediate good producer possesses some monopolistic power.

Each intermediate good producer of variety n in sector j sells its intermediate good to the

aggregator at a nominal price pj,t(n). Each final good producer (aggregator) in sector j,

sells its composite output Yj,t at nominal price Pj,t. The aggregator in each sector j ∈ {c, i}

faces perfectly competitive market, thus solving:

max
{yj,t(n)}

Pj,tYj,t −

1∫

0

pj,t(n)yj,t(n)dn, j ∈ {c, i}, (2.8)

where Yj,t is given by (2.7), and the prices are taken as given. The first-order condition of

(2.8) yields the demand for differentiated intermediate good of type n in sector j:

yj,t(n) =

[
pj,t(n)

Pj,t

]−µj

Yj,t, j ∈ {c, i}. (2.9)

As the market for final goods is perfectly competitive, the final-good producing firm (ag-

gregator) in sector j earns zero profits in equilibrium. This condition, along with equations

(2.8) and (2.9), yields the aggregate price index in sector j, given by:

Pj,t =





1∫

0

(pj,t(n))
1−µjdn





1
1−µj

, j ∈ {c, i}. (2.10)

2.4.2. Intermediate Good Production

2.4.2.1. Sectoral Intermediate-Good Producers

This section describes the production and price-setting decisions of intermediate goods. To

save space, and since the description of production in the consumption sector and investment
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sector is symmetric, I describe them jointly.

Intermediate goods in sector j ∈ {c, i} are differentiated, and each variety is denoted by

n ∈ [0, 1]. Each intermediate-good producer n in sector j rents labor nj,t(n) from the

household, and owns capital stock kj,t(n). The intermediate-good producer n in sector

j produces an intermediate good yj,t(n), using a constant returns-to-scale Cobb-Douglas

production function over capital and labor, and subject to sectoral TFP shocks Zj,t:

yj,t(n) = Zj,tkj,t(n)
αjnj,t(n)

1−αj , j ∈ {c, i}, (2.11)

where αj is the capital share of output of intermediaries in sector j, and Zj,t, j ∈ {c, i},

are the sectoral TFPs. Each intermediate good producer who wishes to invest an amount

ij,t(n)kj,t(n), where ij,t(n) is the investment-rate, must purchase Φk(ij,t(n))kj,t(n) units of

capital goods, under an equilibrium price of investment goods Pi,t. Following Papanikolaou

(2011) and Garlappi and Song (2013b), the convex adjustment cost function Φk(i) is given

by:

Φk(i) =
1

φ
(1 + i)φ −

1

φ
. (2.12)

The parameter φ captures the degree of adjustment cost. When φ = 1 there are no adjust-

ment costs. When φ = 2, adjustment costs are quadratic. Capital of each producer of type

n in sector j, depreciates at rate δ, and evolves according to:

kj,t+1(n) = (1− δ + ij,t(n))kj,t(n). (2.13)

Intermediate good producers in both sectors are price takers in the input market, and

monopolistic competitors in the product market. They face a quadratic costs of changing

their nominal output price pj,t(n) each period, similarly to Rotemberg (1982), given by:

ΦP,j(pj,t(n), pj,t−1(n)) =
φP,j
2

[
pj,t(n)

Πjpj,t−1(n)
− 1

]2

pj,t−1(n)Yj,t, j ∈ {c, i}, (2.14)
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where Yj,t is the final composite good in sector j, Πj is the steady-state inflation in the

j sector, and φP,j governs the degree of nominal rigidity in sector j. The assumption

of Rotemberg (1982), as opposed to Calvo (1983) pricing, implies that I can model the

intermediate good production in each sector as a single representative intermediate goods-

producing firm. In all, the period nominal dividend of intermediate good producer of type

n in sector j, d$j,t(n), in terms on nominal consumption goods, is given by:

d$j,t(n) = pj,t(n)yj,t(n)−Wtnj,t(n)−Pi,tΦk(ij,t(n))kj,t(n)−ΦP,j(pj,t(n), pj,t−1(n)), j ∈ {c, i}.

(2.15)

Each intermediate good producer n, chooses optimal hiring, investment, and nominal out-

put price, to maximize the firm’s market value, taking as given nominal wages Wt, the

nominal price of investment goods Pi,t, the demand for differentiated intermediate good

n in sector j given by (2.9), and the nominal stochastic discount factor of the household

M$
t,t+1. Specifically, the intermediate good-producers maximize:

V $
j,t(n) = max

{nj,s(n),kj,s(n),pj,s(n)}
EtΣ

∞
s=tM

$
t,t+sd

$
j,t+s(n), (2.16)

subject to (2.13), (2.15), and the demand constraint:

[
pj,t(n)

Pj,t

]−µj

Yj,t ≤ Zj,tkj,t(n)
αjnj,t(n)

1−αj , j ∈ {c, i}. (2.17)

Notice that V $
j,t(n), j ∈ {i, c}, is measured in nominal consumption units. Define the real

firm value Vj,t(n), and real dividend dj,t(n) (in terms of real consumption goods), for firm

n in sector j, by:

Vj,t(n) = V $
j,t(n)/Pc,t; dj,t(n) = d$j,t(n)/Pc,t. (2.18)

Lastly, define the real growth rate in aggregate investment expenditures (in terms of real

consumption goods) as ∆It =
(Pi,t/Pc,t)Yi,t

(Pi,t−1/Pc,t−1)Yi,t−1
, and the growth rate in the relative price

of investment goods by ∆Pi,t =
Pi,t/Pc,t

Pi,t−1/Pc,t−1
.
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2.4.2.2. Productivity Shocks

The production in the investment sector is subject to a sectoral TFP shock, denoted Zi,t,

and similarly, the production in the consumption sector is subject to a sectoral TFP shock

denoted Zc,t. The sectoral TFP growth rates are characterized as follows:

Zi,t
Zi,t−1

= µz,i + ε̃i,t, (2.19)

Zc,t
Zc,t−1

= µz,c + ε̃c,t, (2.20)

where ε̃i,t = σzi,t−1εi,t, and ε̃c,t = τ(σ2zi,t−1−σ
2
zi,0)+σzc,t−1εc,t. The shocks εi,t and εc,t are or-

thogonal, and are i.i.d. standard Normal.26 Driven by the empirical findings of Section 2.3.6,

equation (2.20) shows that I incorporate a positive volatility feedback from investment-

technology volatility, σ2zi,t−1 to one-period-ahead consumption TFP growth, which is gov-

erned by the parameter τ > 0. The processes σzc,t and σzi,t capture time-variation in the

volatility of sectoral growth shocks. They follow independent AR(1) processes:

σ2zi,t = (1− ρσ,zi)σ
2
zi,0 + ρσ,ziσ

2
zi,t−1 + σw,iεσ,i,t, (2.21)

σ2zc,t = (1− ρσ,zc)σ
2
zc,0 + ρσ,zcσ

2
zc,t−1 + σw,cεσ,c,t, (2.22)

where the volatility shocks εσ,i,t and εσ,c,t are i.i.d. over time and are standard Normal.

2.4.3. Household

The economy is populated by a mass of identical households, or alternatively, by a one

representative household. The representative household supplies total labor Nt, which flows

to the consumption and investment sectors. It derives utility from an Epstein and Zin (1989)

and Weil (1989) utility over a stream of consumption-goods Ct and disutility from labor

26Notice that I do not exponentiate the right-hand side of the sectoral growth rates in equations (2.19),
and (2.20). Thus, TFP growth rates are normal, instead of log-normal. The motivation for this modeling
choice is to exclude any hard-wired Jensen effect that can mechanically yield an impact of volatility on the
mean growth rate. Moreover, the parameters µzc and µzi will be set to values above one, while the shocks
are small, ensuring the growth rate is never negative in any population simulation. However, exponentiating
the growth rates to ensure positivity does not change the qualitative or quantitative results of this work.
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Nt:

Ut =

{

(1− β) [Ct(1− ξNη
t )]

1−1/ψ
+ β

(

EtU
1−γ
t+1

) 1−1/ψ
1−γ

} 1
1−1/ψ

, (2.23)

where β is the time discount-rate, γ is the relative risk aversion, ψ is the intertemporal

elasticity of substitution (IES), ξ is the amount of disutility from labor, and η is the sensi-

tivity of disutility to working hours. When γ = 1
ψ , the utility becomes time-separable power

utility. When γ > (<) 1ψ the household has preferences exhibiting early (late) resolution of

uncertainty. The preferences nest a class of multiplicative preferences over consumption

and labor, as discussed in King et al. (1988).

The household derives income from labor, as well as from the dividends of well-diversified

portfolio of intermediate consumption and investment good producers. She chooses the

labor supply and consumption to maximize her lifetime utility, subject to the following

budget constraint:27

max
{Cs,Ns}

Ut, s.t. Pc,tCt =WtNt +

1∫

0

d$c,t(n)dn+

1∫

0

d$i,t(n)dn, (2.24)

where Pc,t is the nominal price of final consumption goods, and Wt is the nominal market

wage.

From the consumer problem, I can obtain the nominal SDF used to discount the nominal

dividend of intermediate-good producing firms in both sectors:

M$
t+1 = β

(
Ct+1

Ct

)−1/ψ (1− ξNη
t+1

1− ξNη
t

)1−1/ψ






Ut+1
(

EtU
1−γ
t+1

) 1
1−γ






1/ψ−γ

Pc,t
Pc,t+1

. (2.25)

27This is a simplified budget constraint. I implicitly imposed the market-clearing condition that the
nominal bond holding of the household is zero every period (Bt = Bt+1 = 0), and the household is the
owner of all shares for all firms (ωj,t(n) = ωj,t+1(n) = 1, j ∈ {i, c}, n ∈ [0, 1], where ωj,t(n) is the fraction
of firm n in sector j held by the household).
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2.4.4. Monetary Authority

The economy is cashless. The monetary authority sets the nominal log-interest rate r$t

according to a Taylor (1993) rule. Thus, r$t evolves as follows:

r$t = ρrr
$
t−1 + (1− ρr)(r

$
ss + ρπ(πt − πss) + ρy(∆yt −∆yss)) (2.26)

where πt is log inflation (in the consumption sector) defined as πt = log
(

Pc,t
Pc,t−1

)

, and where

∆yt is log-growth of real total output, ∆yt = log
(

Yc,t+Pi,t/Pc,tYi,t
Yc,t−1+Pi,t−1/Pc,t−1Yi,t−1

)

. r$ss, πss, and

∆yss are the steady-state log-levels of nominal interest rate, inflation, and output growth.

2.4.5. Equilibrium

In equilibrium, (nominal) wage Wt, price of investment goods Pi,t, and consumption-sector

inflation πt, are set to clear all markets:

- Labor market clearing:

1∫

0

nc,t(n)dn+

1∫

0

ni,t(n)dn = Nt. (2.27)

- Consumption-good market clearing:

Ct = Yc,t. (2.28)

- Investment-good market clearing:

1∫

0

Φk(ic,t(n))Kc,t(n)dn+

1∫

0

Φk(ii,t(n))Ki,t(n)dn = Yi,t. (2.29)
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- Zero net supply of nominal bonds:

1

R$
t

= Et[M
$
t+1] (2.30)

An equilibrium consists of prices and allocations such that (i) taking prices and wage

as given, each household’s allocation solves (2.24); taking aggregate prices and wage as

given, firm’s allocations in each sector j ∈ {c, i} solve (2.16); (iii) labor, consumption-good,

investment-good and bond markets clear.

I am looking for a symmetric equilibrium, in which all intermediate good firms, in both

sectors, choose the same price Pj,t(n) = Pj,t, employ the same amount of labor nj,t(n) = nj,t,

and choose to hold the same amount of capital kj,t(n) = kj,t.

2.5. Model Intuition

To understand the model intuition, in this section I shut down certain channels, to highlight

the core economic forces of the model. As I illustrate below, even in a stripped-down perfect-

competition model, I am able to rationalize the impact of volatility shocks on investment,

and the risk-exposures of firms to the sectoral shocks. Yet, the simplified model described

below generates divergence of investment and consumption in response to volatility shocks,

and hence, cannot rationalize the impact of volatility shocks on consumption. This could

also result in counterfactual market-prices of volatility risks. The layers of monopolistic

competition and nominal rigidities address this matter.

To facilitate the discussion, assume a two-sector economy under perfect competition, inelas-

tic labor supply, and without adjustment costs.28 Under these assumptions, I can collapse

28Specifically, I assume that (1) There is no disutility from labor ξ = 0, so labor supply is inelastic; (2)
µj → ∞, j ∈ {c, i}, implying perfect competition in both sectors; (3) Assume τ = 0, that is, no volatility
feedback to future TFP growth; (4) φ = 1, so there are no capital adjustment costs ; (5) The capital share
of output is the same in both sectors αc = αi = α.
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the model of Section 2.4 to a representative agent problem, as follows:

Vt(Γt) = max
Ii,t,Ic,t,nc,t,ni,t

{

(1− β)C
1−1/ψ
t + β

(
EtVt+1(Γt+1)

1−γ
) 1−1/ψ

1−γ

} 1
1−1/ψ

(2.31)

s.t.

Ct = zctk
α
ctn

1−α
ct (2.32)

Yi,t = zitk
α
itn

1−α
it (2.33)

kc,t+1 = (1− δ)kct + Ict (2.34)

ki,t+1 = (1− δ)kit + Iit (2.35)

Ict + Iit = Yi,t (2.36)

nct + nit = 1, (2.37)

where Γt = [kct, kit, zct, zit], and
zjt

zj,t−1
= σzj,t−1εj,t, j ∈ {c, i}.29 In appendix A.2.1, I show

that the solution to program (2.31) is equal to the solution of the maximization program

(2.38), given by:

Ṽt(kct, kit, zit) = max
Ii,t,Ic,t,nc,t,ni,t

{

(1− β)
(
kαctn

1−α
ct

)1−1/ψ

+β

(

Et

(
zct+1

zct

)1−γ
) 1−1/ψ

1−γ

︸ ︷︷ ︸

β̃t

(

EtṼt+1(kct+1, kit+1, zit+1)
1−γ
) 1−1/ψ

1−γ







1
1−1/ψ

(2.38)

s.t.

(2.33), (2.34), (2.35), (2.36), and (2.37),

zct+1

zct
= µzc + σzc,tεzc,t+1,

zit+1

zit
= µzi + σzi,tεzi,t+1.

29In program (2.31) the sectoral volatilities, σzc,t and σzi,t, are also carried as state variables. For brevity
of notation, I omitted them from the vector of state variables.

97



The equivalence of programs (2.31) and (2.38) relies on the fact that the detrended value

function of the social planner is homogeneous of degree one in consumption TFP growth.

Homogeneity of degree one in consumption TFP growth stems from the fact that zct is

random walk, and from the fact that an Epstein-Zin utility is a homogeneous of degree one

function.

2.5.1. Sectoral Volatilities and Investment Implications

To understand the impact of consumption TFP-volatility on investment, it is constructive to

realize that higher consumption TFP-volatility, σzc,t, increases the social planner’s effective

impatience, under the case of early resolution of uncertainty. To see this, notice first that in

maximization program (2.38), the ex-ante expectation of consumption TFP growth (that

is, the expression β̃t = β

(

Et

(
zct+1

zct

)1−γ
) 1−1/ψ

1−γ

) acts like a time “preference shock” that

changes in the effective time-discount rate of the planner.

When γ > 1, (·)(1−γ) is a convex function. With more consumption TFP-volatility (higher

σzc), Et

(
zct+1

zct

)1−γ
increases by Jensen’s inequality. When the agent has early resolution

of uncertainty preferences, ψ > 1, and the expression 1−1/ψ
1−γ is negative. Thus, higher

σzc translates into a lower effective discount factor β̃. In other words, the representative

agent puts lower weight on the continuation value. This implies a more impatient agent.

Moreover, consumption TFP-volatility only affects impatience, as the growth of zc appears

nowhere else in the program, except for its ex-ante impact on β̃t.

As a result of greater impatience, when σzc rises, the agent decides to shift her consumption

profile to the present.30 To implement such policy, the agent would shift labor to the

consumption sector, to increase consumption today; she would also increase investment

in the consumption sector, to ensure higher consumption in near-future. Consequently,

investment sector’s labor drops (ni,t ↓), and investment sector’s investment drops. Since

30An alternative intuitive argument for this claim, is that under early resolution of uncertainty case the
agent dislikes uncertainty. To minimize her exposure to volatility build-up in the future, and void capital
loss, she prefers shifting her consumption profile as much as possible to the present.
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capital in the investment sector is predetermined, but investment’s labor drops, higher

consumption TFP-volatility lowers aggregate investment, in-line with the empirical findings.

Notice, that the impact of σzc on the agent’s patience depends on the preference parameters.

When γ = 0, 1, there is no Jensen effect, and so consumption TFP-volatility would not

impact β̃t. If ψ < 1 (late resolution of uncertainty preferences), consumption technology

volatility would boost investment, as the agent becomes more patient (higher β̃t).
31

The program (2.38) shows that consumption TFP ex-ante expectations change the effective

discount rate. Beyond that, under the specification for zc growth, consumption TFP shocks

have no other effect ex-post except for “rescaling” the flow of consumption (see equation

(2.32)). This is a transitory (short-run) impact.32 By contrast, investment innovations

zi affect multi-period stock of aggregate capital dynamics, which flows to both sectors.

Investment innovations, consequently, have a long-run and persistent impact. As a result,

when these shocks become more volatile they induce a strong precautionary saving motive.33

When TFP-volatility of the investment sector rises (higher σzi), it implies that in the future

the probability of having sub-optimal amount of investment-goods rises. This would inhibit

the ability to smooth consumption, as aggregate investment goods flow to both sectors,

much like total output in a one-sector economy. The household has a strong incentive to

invest more in the investment sector, and consume less, by shifting labor to the investment

sector (ni,t ↑). Implementing such a policy, ensures higher aggregate capital in the future.

Capital can be used for both consumption and investment production. Hence, it acts as a

31The dependence of investment’s response to consumption TFP-volatility on the value of IES is consistent
with the works of Levhari and Srinivasan (1969), Sandmo (1970), and Obstfeld (1994). In a one-sector
context, these studies analyze the impact of higher volatility of multiplicative shocks, which only affect the
riskiness of capital (similarly to consumption TFP). These models share the prediction that for high values
of IES, the substitution effect dominates, and higher volatility induces less investment.

32The notion that consumption TFP has a short-run impact, that is, rescales consumption traces back to
Kimball (1994).

33A necessary condition for precautionary saving is Decreasing Absolute Risk Aversion (see e.g. Leland,
1968 ;Kimball and Weil, 2009), satisfied by Epstein and Zin (1989) utility. Quantitatively, I find that the
motive to hedge against low consumption states, in response to higher investment TFP-volatility, prevails
the substitution effect for both high and low IES values. This is consistent with the study of Jones et al.
(2005), who show that in a one-sector economy, and under most realistic calibrations, higher volatility raises
savings and growth in equilibrium.
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buffer of savings. If a bad investment TFP shock is realized, the buffer of capital can be used

to smooth consumption. Higher investment partially hedges the investment TFP-volatility

shock. Consequently, higher investment TFP-volatility increases aggregate investment, in-

line with the empirical findings.

2.5.2. Sectoral Volatilities and Pricing Implications

The illustrated logic shows that investment TFP-volatility, σzi, increases the demand for

investment goods, while consumption TFP-volatility, σzc, lowers the demand for investment

goods (when IES is greater than one). As a result, the relative price of new investment goods

(in the decentralized economy) intuitively increases when σzi rises, but drops when σzc rises.

To see this more formally, let qc,t be the Lagrange multiplier of constraint (2.34), let qi,t

be the Lagrange multiplier of constraint (2.35), and let Pi,t be the Lagrange multiplier of

constraint (2.33).34 From first-order conditions of program (2.31), and in particular, from

equating the marginal productivity of labor in both sectors, one obtains:

Pi,t = qi,t = qc,t, (2.39)

Pi,t =
zc,t
zi,t

(
kc,t
ki,t

ni,t
nc,t

)α

. (2.40)

Since higher consumption TFP-volatility σzc lowers ni,t and raises nc,t, the price of new

investment goods Pi,t (measured here in real consumption units) must fall by equation

(2.40). Likewise, higher investment TFP-volatility σzi increases ni,t and lowers nc,t, causing

the price Pi,t to rise.

Generally, the marginal value of assets in place (i.e., Tobin’s Q: qc or qi), should equal the

marginal cost of new capital (Pi), times the marginal adjustment cost (installation cost).

In the absence of adjustment costs, we obtain equation (2.39), which implies that the price

of installed capital is equal in the consumption and investment sectors. Thus, consumption

TFP-volatility lowers qc,t and qi,t, and the opposite happens in response to investment

34I normalize all multipliers by the marginal utility from consumption at time t, to parallel the multipliers
with prices of the decentralized economy
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TFP-volatility.

Firms in the model exhibit constant returns to scale in capital and labor. By a stan-

dard argument, Tobin’s Q is a sufficient statistic for the (ex-dividend) firm values. Higher

σzi increases Pi,t and so increases both qi,t and qc,t. This implies that higher investment

TFP-volatility increases firms’ values in both sectors, and by definition, βj,I-TFP-VOL >

0, j ∈ {c, i}. The exact opposite logic applies to consumption TFP-volatility, and implies

βj,C-TFP-VOL < 0, j ∈ {c, i}. The risk-exposure patterns with respect to sectoral volatility

shocks, are consistent with the data.

2.5.3. Sectoral Volatilities and The Role of Nominal Rigidities

The intuition of sections 2.5.1 and 2.5.2 demonstrates that in the perfect-competition model,

investment expenditures rise in response to investment TFP-volatility, and drop in response

to consumption TFP-volatility, in-line with the data. Yet, in the simplified setup, consump-

tion and aggregate investment diverge in response to volatility shocks. As a result, con-

sumption TFP-volatility counterfactually boosts consumption, not only contemporaneously

but also in the future.35 Counterfactual consumption behavior also induces a counterfactual

impact on the market-price of consumption TFP-volatility risk.

The full version of the model features time-varying markups, that rely on monopolistic

competition in the two sectors, along with sticky prices. As suggested in Basu and Bundick

(2012) and Fernández-Villaverde et al. (2015), these model features make consumption and

aggregate investment expenditures to commove with respect to sectoral volatility shocks.

Specifically, when sticky prices are added (in particular, to consumption producing firms),

consumption and investment expenditures both decrease in response to consumption TFP-

volatility. The intuition is described below.

Section 2.5.1 shows that higher consumption TFP-volatility makes the agent more impa-

tient. This increases the demand for consumption goods, and causes the agent to desire to

35In the data, consumption TFP-volatility drops both consumption and investment. See Figure 2.2.
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supply more labor to the consumption sector. As a consequence, wages and the price of in-

vestment drop.36 Thus, the marginal cost of producing consumption goods declines. When

monopolistic competition is added, along with nominal price rigidity, higher consumption

TFP-volatility causes the markups of consumption producing firms to rise, due to a drop

in their marginal production costs.37

Higher markups of consumption producing firms lower the demand of these firms for labor

at any given level of wages. This is because higher markups are equivalent to a higher

degree of monopolistic power, which has a rationing impact on the quantity produced, and

involves less utilization of labor.38 Differently put, facing higher markups the consumption

good producers would have optimally liked to reduce their prices, in order to drop markups,

and increase their capacity. However, due to the nominal price rigidities, the consumption

producing firms are limited in doing so. Since these firms cannot expand their capacity by

lowering their output price, they demand less labor.

If the decline in labor demand from consumption producing firms (due to higher markups)

is sufficiently strong, higher consumption TFP-volatility would cause these firms to hire

less. Hence, consumption drops upon a positive consumption TFP-volatility shock, which is

consistent with the data.

As labor flows out of the consumption sector, and into the investment sector, production of

investment goods (Yi,t) rises. The increased supply of investment goods (rise in Yi,t), along

with the reduced demand for these products from the household (due to higher effective

impatience), causes their relative price Pi to decline even further.

36Wages move in the simplified model in an opposite direction to consumption labor. The price of invest-
ment drops due to decreased demand for capital.

37With Rotemberg pricing, gross markup equals the inverse of the real marginal costs.
38The demand curve for labor from consumption producing firms is given by:

Wt = (1− α)
1

θc,t
kαctn

−α
ct ,

where Wt is aggregate wage, and θc,t is the markup in the consumption sector. Thus, a higher markup
θc,t, shifts the labor demand curve of consumption producing firms downwards. As a result, consumption
TFP-volatility shock makes consumption producing firms to demand less labor.
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If the decline in the relative price of investment Pi is strong enough, investment expenditures,

defined as It = Pi,tYi,t, would drop in response to consumption TFP-volatility shock. This

would happen simultaneously with a decline in consumption, as seen in the data.

2.6. Quantitative Model Results

2.6.1. Calibration

Table 2.15 shows the parameter choices of the model in the Benchmark case. The model is

calibrated at quarterly frequency. There are three main parameter groups.

Production and technologies parameters. I set αi = αc = 0.33, so that the labor share in

each sector is about 2/3. The quarterly depreciation rate is 0.015, which implies annual

depreciation of 6%. Similarly to Papanikolaou (2011), the capital adjustment cost parameter

is φ = 1.2. I set the growth rates of the sectoral TFPs, µzc and µzi, to values that are

consistent with the empirical estimates of Fernald (2012) and Basu et al. (2006), and such

that the steady state growth rate of per-capita consumption is about 2%. The ratio between

the log of µzi and µzc is about 2, which is consistnet also with the estimates obtained by

Liu et al. (2011). This ratio also matches the model-implied growth rate for the relative

price of investment to the data. The unconditional volatilities of the sectoral TFP shocks

σzc,0 and σzi,0, are also close to the empirical estimates of Fernald (2012) and of Justiniano

et al. (2010). They are set to match the volatility of consumption growth and investemnt

growth. The ratio of σzi,0 to σzc,0 is 2, which is in-line with the calibration of Garlappi and

Song (2013b). The peristence of the stochastic volatility in both sectors ρσ is set to 0.95,

which is higher than Basu and Bundick (2012), but smaller than the estimate of Bansal

and Shaliastovich (2013). The standard deviation of the volatility shock in each sector is

set such that the ratio between the standard deviation of the sectoral volatility process to

its unconditional mean is similar to the empirical estimate. The feedback from investment

TFP-volatility to one quarter ahead consumption TFP growth is τ = 1.5, which falls in the

90%-confidence interval of its empirical estimate.
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Preference parameters. The time discount factor is β = 0.997, close to the value set in both

Liu et al. (2012) and Garlappi and Song (2013b), and allows to closely match the value of

the real risk-free rate. The relative risk aversion γ is set to 25. Though this number is quite

high, it is consistent with and even smaller than some estimates at quarterly frequency

(see e.g. Bansal and Shaliastovich, 2013; Van Binsbergen et al., 2012; and Rudebusch and

Swanson, 2012). The intertemporal elasticity of substitution is set to 1.7, consistently with

Bansal et al. (2012) and Bansal and Shaliastovich (2013). The sensitivity of disutility to

working hours η is set to 1.4, consistently with Jaimovich and Rebelo (2009). The degree

of disutility to working hours ξ is chosen such that in the deterministic steady state, the

household works roughly 20% of their time.

Nominal rigidities and monetary policy parameters. Monetary policy parameters are con-

sistent with Basu and Bundick (2012) and are standard in the literature. I set ρr = 0.5,

ρπ = 1.5, and ρπ = 0.5. The nominal risk-free steady-state is set such that the deterministic

steady-state inflation rate is 0.005 per quarter, or 2% per annum. I choose market power

parameters of µc = µi = 4, which implies on average a 25% markup for firms in both sectors,

and is identical to the market power set in the work of Garlappi and Song (2013b). Lastly,

the nominal adjustment cost parameter is set to φC = 250, and contributes to matching the

volatility of the relative price of investment. This value is slightly higher, but of a similar

magnitude to the parameter used in Basu and Bundick (2012) of 160.

I solve the model numerically via third-order perturbations method around the stochas-

tic steady state, and using the above benchmark calibration. A characterization of the

equilibrium conditions is specified in Appendix A.2.2.

2.6.2. Macroeconomic Moment Implications

I simulate the model at quarterly frequency and time-aggregate the model-implied time-

series to form annual observations. The mean, standard deviation, and auto-correlation

moments of annual real (log) consumption growth, investment expenditure growth, output
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growth, and the growth in the relative price of investment, are reported in Table 2.16, along

with their empirical counterparts. Almost all data moments fall inside the model-implied

90%-confidence intervals.

Specifically, consumption growth mean is about 2% in the model and in the data. In the

model, the standard deviation of consumption growth is about 2.2%, while the standard

deviation of output growth is 3%. These estimates are slightly higher than the data counter-

parts of 1.52% and 2.53%, respectively, for the sample of 1947-2014. Yet, the model-implied

standard deviations are consistent with the long-run sample (1930-2014) data volatilities.

The auto-correlation of consumption growth is 0.54 in the model, versus 0.49 in the data.

The standard deviation and auto-correlation of investment expenditure growth are 6.6%

and 0.30 in the model, closely related to a standard deviation of 6.75% and autocorrelation

of 0.18 in the data. The mean growth rate of the relative price of investment is -0.97%

in the data, while it is -0.95% in the model. The model-implied volatility of the relative

investment price growth is 3.48%, closely matching its empirical counterpart of 3.62%.

2.6.3. Sectoral Shocks and Macroeconomic Implications

In this Section I analyze the impact of sectoral first-moment and volatility TFP shocks on

macroeconomic quantities in the model. I document in the benchmark case a positive impact

of investment TFP-volatility on macro aggregates, and a negative impact of consumption

TFP-volatility on macro aggregates, consistently with the data.

I plot impulse-responses from sectoral shocks to key macroeconomic variables.39 The

39The impulse responses are computed by Monte-Carlo simulations. In each simulation i ∈ {1, 2, .., S}, I
simulate the economy for 140 periods. Denote the simulated path of simulation i from period 100 onward by
{pi}. I then simulate the economy again, using the same shocks as were drawn before, but in period 100, I
increase shock j by one standard deviation. Let the second simulated path from period 100 onward be {p′i}.
The impulse-responses of shock j are given by the matrix 1

S
ΣSs=1(p

′
i− pi). I pick S = 10, 000 simulations for

the impulse-response computations.
Similar results are obtained by computing the impulse-responses using Vector Auto-regression of order

one, as in the empirical section. In unreported results, I construct first- and second- moment TFP shocks
from simulated model sample, in an identical fashion to the empirical construction. I then project detrended
model variables on these shocks. Consistently, I obtain negative loadings on consumption TFP-volatility, and
positive loadings on investment TFP-volatility. The quantitative magnitude of the model-implied loadings
is similar to the data for detrended output and investment projections.
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impulse-responses are computed for three separate model calibrations: (1) the benchmark

case; (2) an identical calibration to the benchmark case, but in which there is no volatility

feedback from investment TFP-volatility to future consumption TFP (i.e., τ = 0); (3) an

identical calibration to the benchmark case, but in which there is no volatility feedback,

and no monopolistic competition or nominal rigidities (i.e., perfect competition).40 Speci-

fications (2) and (3) allow to highlight the role of volatility feedback and nominal rigidities

in the model.

Since sectoral volatilities are the main focus of this work, I first analyze the implications

of sectoral TFP-volatility shocks, εσ,c and εσ,i. Figure 2.4 shows model-implied impulse

responses from consumption TFP-volatility and investment TFP-volatility shocks, to ag-

gregate consumption (Panels (a) and (d)), aggregate investment expenditures (Panels (b)

and (e)), and aggregate output (Panels (c) and (f)). All variables are real and detrended

using the model’s stochastic trend. Each impulse-response is in units of percent change

from the stochastic steady-state. Observing first Panels (b) and (e), one can see a negative

impact of consumption TFP-volatility on investment, both at the time of the shock and

up to 40 quarters ahead, and a positive impact of investment TFP-volatility on invest-

ment, that persists 40 quarters ahead as well, for all three model calibrations. This pattern

aligns with the empirical findings. Though the magnitude and shape of the graphs may

change somewhat between the specifications, the plots demonstrate that neither a volatility

feedback, nor time-varying markups, are crucial to explain the impact of volatilities on in-

vestment. As discussed in section 2.5.1, it fundamentally stems from precautionary saving

motive induced by investment TFP-volatility, and from higher effective impatience induced

by consumption TFP-volatility.

Panel (a) of Figure 2.4 shows that in the benchmark case, consumption TFP-volatility

lowers consumption, contemporaneously and predictively, in-line with the data. The neg-

40Case 3 is almost identical quantitatively to the case in which there is monopolistic competition but no
sticky prices, that is, constant markups. To save space, I do not report the results of the constant-markups
case.
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ative impact on consumption is a result of higher markups, which rise when consumption

TFP-volatility rises. As discussed in Section 2.5.3, higher markups lower the demand of

consumption good producers for labor at any given wage, causing them to hire less, and the

production of the consumption sector falls. By contrast, and consistently with the data,

Panel (d) shows that investment TFP-volatility generates in the benchmark case mostly a

positive impact on consumption (a large overshoot), a few periods after the shock.41 This is

a consequence of prolonged capital build-up, which occurs upon the impact of this volatility

shock. The build-up of capital translates into higher consumption in the future. Panel

(a) shows that under perfect competition, consumption TFP-volatility shock increases con-

sumption upon impact, and the response remains positive 20 quarters ahead. This feature

is counterfactual to the empirical evidence. As explained in Section 2.5.3, in a perfect

competition model consumption and aggregate investment diverge in response to volatility

shocks. The layer of sticky prices, featured in the benchmark model, allows to flip the sign

of consumption’s response to consumption TFP-volatility, making it negative, consistently

with the data.

Panels (c) and (f) show that output’s response is strictly negative to consumption TFP-

volatility, and strictly positive to investment TFP-volatility, for all three model configura-

tions. This pattern is consistent with the empirical impulse-responses. Adding sticky prices

amplifies in absolute value the magnitude of output’s impulse-responses. This is a result of

the fact that sticky prices cause consumption and investment expenditures, that comprise

total output, to comove, instead of offsetting each other.

In figure 2.5, I plot impulse-responses from sectoral TFP-volatility shocks to hours, to

detreded real wages, and the relative price of investment. In general, in the benchmark case,

the Figure shows that investment TFP-volatility boosts these variables, while consumption

TFP-volatility depresses these quantities. These volatility impacts are consistent with the

41Panels (a) and (d) also show that the impulse-responses to consumption in a model without volatility
feedback, closely track the benchmark plots. Thus, the volatility feedback is not responsible for qualitatively
generating these results.
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data. In addition, all sub-plots illustrate that the volatility feedback is not qualitatively

material for these macro responses. Observing Panels (c) and (f) of Figure 2.5, qualitatively,

the price of investment-goods drops with consumption TFP-volatility, due to lower demand

for investment goods (as the household is more impatience), and rises with investment

TFP-volatility, due to higher demand for these goods (as the household desires to save

more). Nominal rigidities amplify the magnitude of sectoral volatilities impulse-responses to

investment-price. This feature arises as the price of investment-goods is inversely related in

equilibrium to the markup of the consumption sector. This markup rises with consumption

TFP-volatility, and drops with investment TFP-volatility.42 A similar pattern arises for

wages.

In all, figures 2.4 and 2.5 illustrate the ability of the benchmark model to rationalize the

impact of sectoral TFP-volatilities on macro aggregates. The volatility feedback channel

is not a (qualitative) driving force behind the macro results. The volatility feedback only

plays a role in rationalizing the behavior of market-prices of investment volatility risk, as

discussed in Section 2.6.4. Nominal rigidities can help reverse the shape of consumption’s

responses to volatility shocks, and quantitatively amplify other responses.

In figure 2.6, I plot the impulse-responses of sectoral first-moment TFP innovations to

detrended consumption, investment expenditures and output. Panels (a)-(c) show that

consumption TFP impact on these quantities is positive, at the time that the shock hits,

but revert to zero shortly afterwards (or immediately afterwards, in the case of perfect-

competition). Consumption TFP raises consumption by definition, and raises investment

expenditures to the extent that it rescales positively the relative price of investment. Yet,

all responses are short-lived. By contrast, investment TFP impact is very persistent on

all three variables.43 Panels (d)-(f) show that investment TFP raises investment, as the

42Differently put, with sticky prices the supply of investment-goods increases in response to consumption
TFP-volatility, while the demand for these goods drops by higher impatience. The increased supply amplifies
the depreciation in investment price, compared to the perfect-competition case.

43As highlighted in Section 2.5.1, the persistent (long-run) nature of investment TFP innovations im-
plies that when their volatility rises, it induces a strong desire to hedge against low consumption states
(precautionary savings).
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investment sector becomes more productive, and in absence of labor frictions, labor flows

into the investment sector. As a result, investment TFP drops consumption, as resources are

allocated to the investment sector.44 Output’s response to an investment TFP innovation

is mixed: positive contemporaneously, but negative predictively, as is also the case in the

data.

Next, I examine the role of IES in the model. In figure 2.7, I plot the impulse-responses of

sectoral TFP-volatility shocks to consumption, aggregate investment and output, for two

cases: (1) the benchmark calibration (IES = 1.7); (2) A calibration that is identical to the

benchmark case, but in which there is no monopolistic competition or volatility feedback,

and in which IES is calibrated to 0.8. When the IES is less than one, the impact of either

consumption TFP-volatility or investment TFP-volatility on the macro quantities is qual-

itatively the same. The reason is that when the IES is less than one, higher consumption

TFP-volatility acts as a preference shock that increases the household patience (see Section

2.5.1). As a result, with more consumption TFP-volatility, the household desires to invest

more. Similarly, upon a positive shock to investment TFP-volatility, the household also

desires to invest more due to a strong precautionary saving motive. By sharp contrast,

allowing the IES to be greater than one allows to obtain a differential volatility impact:

positive for investment TFP-volatility, and negative for consumption TFP-volatility, con-

sistently with the data.

2.6.4. Sectoral Shocks and Asset-Pricing Implications

In this Section I analyze the impact of sectoral TFP first-moment and second-moment

shocks on asset-pricing quantities in the model. I show that the benchmark model is able to

rationalize the signs of the market prices of risk, and the signs of cross-sectional exposures

to the different sources of risk.

The model-implied log-returns for consumption firms’, and investment firms’, are defined

44In longer horizons, investment TFP generates an overshoot in consumption, as a result of a build-up in
the amount of capital.
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as:

rc,t+1 = log

(
Vc,t+1

Vc,t − dc,t

)

; ri,t+1 = log

(
Vi,t+1

Vi,t − di,t

)

, (2.41)

where Vj,t is the cum-dividend real market firm values, defined in equation (2.18), for

j ∈ {c, i}. At each time t, the aggregate market value is the sum of the market values for

consumption and investment firms, Vm,t = Vc,t + Vi,t. The market log-return is given by:

rm,t+1 = log

(
Vm,t+1

Vm,t − dc,t − di,t

)

. (2.42)

In Table 2.17, I show the mean, standard deviation, and auto-correlation moments of annu-

alized equity premium and real risk free rate, along with their empirical counterparts.45 For

the most part, the data moments fall inside the model-implied 90%-confidence intervals. In

the model, the annualized (levered) equity premium is 6.6%, while it is 6.20% in the data

for the period of 1947-2014.46 The volatility of the equity premium is smaller compared to

the data. This is an artifact of the relatively high value of risk aversion, coupled with the

absense of investment efficiency shocks in the model.47 The real risk free rate in the model

is 1.37%, while the data counterpart is slightly below 1%. The volatility and autocorrelation

of the risk-free rate closely match their empirical counterparts.

Allowing for market-prices and betas to (potentially) time-vary, and using a log-linear ap-

proximation for the log-SDF and log-returns, the innovation to the real log-SDF (mt,t+1),

45Following Papanikolaou (2011), I multiply the model-implied market excess return by a factor of 5/3,
to account for the fact the firms in the model are unlevered.

46A significant contribution to the equity premium stems from the volatility risks-premia, and in particular
investment TFP-volatility risk-premium. This is a result of the fact that the volatilities are persistent
processes, and the preferences are Epstein and Zin (1989). This resembles long-run volatility risk-premia in
a Long-Run Risks model (see Bansal and Yaron, 2004).

47As demonstrated in Papanikolaou (2011), a model that does not include shocks to the efficiency of
capital goods, in addition to investment TFP shocks, tends to generate too little quantity of risk in asset
returns. I refrain from including such efficiency shocks in my model, in order to keep the number of shocks
in the model the same as in the empirical section. This fasilitates a comparison between the model-implied
signs of betas and market-prices of each shock against the data.
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and real log-return of asset k ∈ {c, i,m}, (rk,t+1), are given by:

mt,t+1 − Etmt,t+1 = −λzc,tσzc,tεc,t+1 − λzi,tσzi,tεi,t+1 − λσ,zc,tσw,cεσ,c,t+1

− λσ,zi,tσw,iεσ,i,t+1; (2.43)

rk,t+1 − Etrk,t+1 = βk,zc,tσzc,tεc,t+1 + βk,zi,tσzi,tεi,t+1 + βk,σ,zc,tσw,cεσ,c,t+1

+ βk,σ,zi,tσw,iεσ,i,t+1, (2.44)

where λt = [λzc,t, λzi,t, λσ,zc,t, λσ,zi,t]
′ is the vector of market-prices of risk, and

βk,t = [βk,zc,t, βk,zi,t, βk,σ,zc,t, βk,σ,zi,t]
′ is the vector of risk-exposures of asset k, to con-

sumption TFP, investment TFP, consumption TFP-volatility and investment TFP-volatility

risks, respectively.

Consider a projection of long-sample simulated paths of log-SDF and log-returns, on long-

sample paths of simulated shocks in the model:

mt,t+1 = m0 + λ̃zcεc,t+1 + λ̃ziεi,t+1 + λ̃σ,zcεσ,c,t+1 + λ̃σ,ziεσ,i,t+1 + error; (2.45)

rk,t+1 = rk,0 + β̃k,zcεc,t+1 + β̃k,ziεi,t+1 + β̃k,σ,zcεσ,c,t+1 + β̃k,σ,ziεσ,i,t+1 + error. (2.46)

From identities (2.43) and (2.44), I define the model-implied average market-prices of risk,

as the negative of the factor loadings of projection (2.45), dividend by the average quantity

of risks that corresponds to each shock, as in the data. Similarly, I define the average

exposures of asset k, as the factor loadings of projection (2.46), dividend by the average

quantity of risks that corresponds to each shock, as in the data:

λ =

[

−
1

σzc,0
λ̃zc, −

1

σzi,0
λ̃zi, −

1

σw,c
λ̃σ,zc, −

1

σw,i
λ̃σ,zi

]′

, (2.47)

βk =

[
1

σzc,0
β̃k,zc,

1

σzi,0
β̃k,zi,

1

σw,c
β̃k,σ,zc,

1

σw,i
β̃k,σ,zi

]′

. (2.48)

I simulate population paths of the log-SDF and log-returns, and project them onto the
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shocks paths’, to obtain the market-prices of risk and exposures, as defined in (2.45) and

(2.46). Importantly, in both projections, the R2 is close to 99%. This indicates that

the model-implied log-SDF and log-returns are almost log-linear, as specified in identities

(2.43) and (2.44). Thus, I ignore any higher-order, non-linear SDF specifications. The

model-implied market-prices and exposues are reported in Table 2.18. The Table shows the

results for two model calibrations: (1) The benchmark case, in Panel A; (2) An identical

calibration to the benchmark case, but without a volatility feedback (τ = 0), and under

perfect competition (µj → ∞, j ∈ {c, i}), in Panel B.

2.6.4.1. Risk Exposures Implications

Panel A of Table 2.18 shows the risk exposures (betas) in the benchmark model. The risk

exposures of the market, of consumption firms, and of investment firms to the sectoral

shocks, are all consistent with the empirical findings. Namely, all assets have a positive

exposure to consumption TFP, and investment TFP-volatility, and a negative exposure to

investment TFP, and consumption TFP-volatility. For volatility risks, the exposures are

also of roughly similar magnitude as their empirical counterparts, as can be seen in Table

2.5. Panel B of Table 2.18 shows the risk exposures in a simplified framework, in which

firms are perfectly competitive. The signs of the risk exposures are unaltered.

The intuition behind the signs of the volatility exposures is explained in Section 2.5.2. For

completeness, I briefly repeat it here. Since firms in the model exhibit constant returns

to scale, the sign of an exposure is determined primarily by the impact of the volatility

shock on the firm’s Tobin’s Q. In the model, Tobin’s Q of firms, and the aggregate price

of investment goods are positively related (they are identical in the absence of adjustment

costs). Consumption TFP-volatility causes the household to be more impatient. This

lowers the demand for investment goods, causing their price to drop, and consequently,

depreciates the value of installed capital of firms. A reduction in the firms’ value implies

a negative exposure to consumption TFP-volatility (βj,C-TFP-VOL < 0, j ∈ {c, i,m}). By

contrast, investment TFP-volatility raises the incentive of the household to save. In turn,
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it increases the demand for investment goods, appreciates the value of the price of capital,

and raises firms’ value. Thus, firms are positively exposed to investment TFP-volatility

(βj,I-TFP-VOL > 0, j ∈ {c, i,m}).

The signs of exposures to first-moment TFP innovations are also rationalized through their

impact on the relative price of investment. The relative price of investment drops with

higher investment TFP, as a positive investment TFP innovation increases the supply of in-

vestment goods, and drops their price. Alternatively, a positive investment TFP innovation

implies that it is cheaper to produce and replace assets-in-place and so their marginal value

falls. A decline in the price of capital implies a negative impact on firms’ valuations, and a

negative exposure to investment TFP (βj,I-TFP < 0, j ∈ {c, i,m}). A positive consump-

tion TFP innovation increases the productivity of consumption firms, causing an increase

in the demand for new capital goods, and increases their price. As a result, the marginal

value of firms’ installed capital appreciates, suggesting a positive exposure to consumption

TFP (βj,C-TFP > 0, j ∈ {c, i,m}). Panel B shows that neither monopolistic competition,

nor a volatility feedback, are necessary to rationalize the signs of the empirical betas.

2.6.4.2. Market-Prices of Risk Implications

Panel A of Table 2.18 shows that the benchmark model is capable of explaining the signs of

the empirical market prices of risk: positive market-price for consumption TFP, investment

TFP, and investment TFP-volatility, and a negative market-price for consumption TFP-

volatility. The magnitudes of the market prices are of roughly similar magnitude as their

empirical counterparts reported in Table 2.4.

The real SDF in the economy is given by:

Mt,t+1 = β

(
Ct+1

Ct

)−1/ψ (1− ξNη
t+1

1− ξNη
t

)1−1/ψ






Ut+1
(

EtU
1−γ
t+1

) 1
1−γ






1/ψ−γ

. (2.49)
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Expression (2.49) shows that under early resolution of uncertainty (γ > 1
ψ , ψ > 1), the SDF,

Mt−1,t, falls under three scenarios: (i) Consumption Ct rises; (ii) The continuation utility

(which includes today’s consumption as well) Ut rises; (iii) Labor Nt rises. Quantitatively,

channels (i) and (ii) dominate fluctuations in channel (iii). Consequently, I analyze below

the impact of sectoral shocks on the SDF through their immediate impact on consumption,

and their impact on the continuation utility.

Upon a positive consumption TFP innovation, consumption increases by definition. The

continuation utility also rises due to the positive impact on today’s consumption. Both

channels operate to drop the SDF, and thus, yield a positive market price for consumption

TFP innovations in the benchmark model, consistently with the data.

When investment TFP rises, in absence of labor frictions, labor flows to the investment

sector, as it is becomes more productive. As a result, the immediate impact on consumption

is negative. If preferences excluded the impact of the continuation utility (i.e., power utility),

this would imply a negative market price for investment TFP innovations. However, since

labor and capital are shifted to the investment sector, the economy builds-up more capital

goods. This is translated into a large consumption overshoot in the future, and to an

increase in the continuation utility. In addition, a positive investment TFP innovation

triggers more working hours.48 The rise in the continuation utility (along with the rise

in total working hours) is sufficiently strong to compensate for the immediate decline in

consumption. Consequently, investment TFP innovations drop the SDF, and are priced

positively in the benchmark model. This is in-line with the results of the empirical analysis.

Panel B of Table 2.18 shows the market-prices of risk in the simplified model, in which

firms are perfectly competitive, and that excludes the volatility feedback. The signs of the

market-prices of consumption TFP and investment TFP are still positive.

The market-price of risk of consumption TFP-volatility is negative, both in the benchmark

48Under King et al. (1988) preferences, total hours moves in an opposite direction to consumption-sector’s
hours. Since investment TFP increases labor in the investment sector, total hours worked also rises.
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model (Panel A), and in a perfect-competition model (Panel B). A negative market-price is

consistent with the data. When consumption TFP-volatility rises, in the case of monopo-

listic competition and nominal rigidities, consumption drops both contemporaneously and

predictively (see explanation in Sections 2.5.3 and 2.6.3). In addition, future consumption

profile becomes more volatile. Under early resolution of uncertainty, the agent dislikes a

rise in consumption’s volatility, and the continuation utility drops. Both effects generate an

increase in the SDF, and yield a negative market price for consumption TFP-volatility.49

By contrast, investment TFP-volatility has two opposite impacts on the SDF: (a) Higher

investment TFP-volatility drops immediate consumption, and generates a more volatile

consumption profile in the future (investment TFP-volatility shocks are capital-embodied

shocks, that affect the volatility of capital allocations in the consumption sector). This

lowers the continuation utility; (b) Higher investment TFP-volatility increases future con-

sumption, due to capital build-up in the present (see Panel D of Figure 2.4). Higher future

consumption can operate to raise the continuation utility. Under a reasonable calibration for

aggregate macroeconomic moments, and in the absence of a volatility feedback, I find that

channel (a) dominates. As a result, the market-price of risk of investment TFP-volatility

in Panel B is counterfactually negative.

Once the empirically-borne volatility feedback is added to the model (τ > 0), Panel A of Ta-

ble 2.18 shows that in the benchmark model the market-price of investment TFP-volatility

turns positive. This is in-line with the empirical findings, and implies that investment

TFP-volatility is welfare improving. Intuitively, a positive feedback from investment TFP-

volatility to future consumption TFP, strengthens quantitatively channel (b) above. When

channel (b) dominates, investment TFP-volatility is positively priced.

Economically, in the benchmark model investment TFP-volatility has a prolonged multi-

49Without sticky prices, consumption TFP-volatility raises consumption today and in the near future.
Under CRRA preferences this implies a counterfactual positive market-price of risk. Under Epstein and Zin
(1989) preferences, the market-price is negative through the impact of higher uncertainty on the continuation
utility. Yet, it is not as negative as in the benchmark case (with sticky prices).
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period effect on the economy, through capital build-up. The capital build-up consequently

leads to an overshoot in future consumption, and to improved welfare in the economy. This

capital build-up happens because of two reasons. The first is that when investment TFP-

volatility rises, it induces precautionary savings. The second reason for capital build-up is

the volatility feedback. In a reduced form manner, this feedback could be interpreted as

slightly delayed culmination of successful growth options (see discussion in Section 2.3.6).

2.6.5. Monte-Carlo Experiment: Using the Model to Rule-Out Mechanical Empirical Results

A general concern regarding the empirical results presented in Section 2.3 can be that the

results are mechanically driven by the methodology in which the volatilities are constructed,

as discussed in Section 2.3.2. Specifically, if the conditional mean of the TFP growth

rates is not fully removed from the time-series, then the constructed realized variances are

contaminated by the impact of first-moment shocks.

To try to alleviate such a concern, I solve the model presented in section 2.4, yet with

two modifications: (1) No volatility feedback from investment TFP-volatility to future

consumption TFP growth; (2) No stochastic-volatility: the conditional volatilities of sectoral

TFP growth rates are constant, set at their unconditional values.

I simulate the economy, and construct from the simulated data first- and second- moment

sectoral TFP shocks, in an exact fashion to the empirical construction. I then repeat the

various data projections, as outlined in sections 2.3.3 - 2.3.4. I perform the projections using

a a small sample of 272 quarters (same length as data observations), and in a population

sample (half-million observations). The results for the volatilities’ loadings are reported

in Table 2.19. Under the Null conjecture of this model, one should not find a positive

(negative) feedback from investment (consumption) TFP-volatility to future growth.

The Table shows that in finite-samples, the sectoral volatility loadings are indeed insignif-

icant for the macroeconomic projections. In the population sample, the Table shows that

in almost all cases, the slope coefficients on consumption TFP-volatility are positive, while
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the slope coefficients on investment TFP-volatility are negative. This is the opposite of

what I find in the data. Moreover, for the market portfolio, the betas for both consumption

TFP-volatility and investment TFP-volatility are negative, while in the data, investment

TFP-volatility exposure is positive.

2.7. Conclusion

In this paper I empirically document a novel empirical puzzle: consumption-sector’s techno-

logical volatility and investment-sector’s technological volatility oppositely impact economic

growth, aggregate asset-prices, and the cross-section of returns. I further develop a general-

equilibrium two-sector model, that explains the opposite roles of the sectoral volatilities,

and also studies the implications of sectoral first-moment technological innovations.

On the macroeconomic front, the paper sheds new light on the on-going debate regarding the

impact of volatility shocks on investment. I find that consumption TFP-volatility inhibits

investment, consumption, output and wages. Investment TFP-volatility, on the other hand,

stimulates investment and output. It also raises welfare inside the model. Thus, economic

policies that are designed to curb uncertainty, may not yield a desired result if the volatility

stems from the investment sector. The positive impact of investment TFP-volatility on in-

vestment is explained via precautionary-saving channel in equilibrium. The contractionary

impact of consumption TFP-volatility on investment hinges on the preferences of the agent.

Under early resolution of uncertainty, the agent hedges against consumption sector’s volatil-

ity by shifting her consumption profile to the present, and investing less. In fact, higher

consumption TFP-volatility is equivalent to a demand shock (or a time-preference shock),

that makes the agent more impatient, thus discouraging investment.

On the asset-pricing front, I find that a production SDF that excludes the sectoral volatili-

ties is misspecified. The misspecification is important, as first-moment sectoral innovations

are not able to fully explain certain return spreads (e.g. momentum), while TFP-volatility

shocks improve the factor-model’s fit to the data. The sectoral volatility risks have market-
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prices of risk of opposite signs. Moreover, sectoral volatilities have an opposite impact

on stock prices. Investment TFP-volatility increases equity valuations, empirically and in

the model, as it increases the demand for capital-goods, appreciating the marginal value

of installed capital. Consumption TFP-volatility lowers equity valuations, for the oppo-

site reason. From a corporate finance perspective, I document that investment-sector’s

TFP-volatility lowers the default spread, while consumption TFP-volatility raises it. This

differential impact can affect firms’ incentive to take leverage oppositely.

In all, the theoretical and empirical evidence show the importance of separate movements

in sectoral TFP-volatilities for economic growth and asset prices, beyond first-moment in-

novations. Future research can explicitly model debt in a two-sector model, to explore the

sectoral volatility implications for leverage taking and defaults in equilibrium. Another

research direction, which I currently explore, is to endogenize the heterogeneity of risk

exposures to investment TFP-volatility in the cross-section, in relation to the momentum

spread.
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Table 2.1: Sectoral Shocks and Aggregate Cash-Flow (Macroeconomic) Growth

Offset βC-TFP βI-TFP βC-TFP-VOL βI-TFP-VOL Adj −R2

Consumption growth:
0Q Ahead 0.27 [2.96] 0.08 [0.96] -0.01 [-1.14] 0.02 [1.45] 0.085
1Q Ahead 0.27 [3.29] 0.05 [0.62] -0.04 [-3.78] 0.06 [4.68] 0.067
4Q Ahead 0.28 [3.35] -0.14 [-2.10] -0.02 [-2.72] 0.03 [2.49] 0.089
12Q Ahead 0.21 [2.79] -0.14 [-2.72] -0.02 [-2.23] 0.02 [2.06] 0.086
20Q Ahead 0.17 [1.77] -0.11 [-1.64] -0.01 [-1.71] 0.02 [1.67] 0.086

GDP growth:
0Q Ahead 0.72 [7.66] 0.31 [2.67] -0.01 [-0.48] 0.02 [1.09] 0.485
1Q Ahead 0.50 [4.05] 0.16 [1.49] -0.09 [-4.09] 0.12 [4.45] 0.148
4Q Ahead 0.48 [2.88] -0.21 [-1.62] -0.04 [-2.21] 0.04 [2.06] 0.109
12Q Ahead 0.27 [2.32] -0.18 [-2.17] -0.02 [-1.99] 0.02 [1.74] 0.071
20Q Ahead 0.18 [1.53] -0.14 [-1.62] -0.01 [-1.36] 0.01 [1.22] 0.057

Sales growth:
0Q Ahead -0.45 [-0.46] 1.88 [2.57] -0.13 [-1.47] 0.11 [1.36] 0.004
1Q Ahead 0.27 [0.40] 0.66 [1.08] -0.14 [-1.63] 0.15 [1.37] 0.014
4Q Ahead 1.21 [2.76] -0.21 [-0.59] -0.14 [-3.29] 0.17 [3.32] 0.110
12Q Ahead 0.95 [2.37] -0.37 [-1.43] -0.09 [-2.23] 0.10 [2.28] 0.116
20Q Ahead 0.80 [1.97] -0.44 [-1.66] -0.06 [-1.67] 0.07 [1.64] 0.115

Net earnings growth:
0Q Ahead 3.58 [1.45] 1.98 [1.22] -0.42 [-1.72] 0.59 [1.90] 0.061
1Q Ahead 4.02 [1.67] 1.06 [0.85] -0.58 [-1.93] 0.69 [2.28] 0.062
4Q Ahead 3.19 [1.56] -0.62 [-0.40] -0.26 [-1.59] 0.32 [1.66] 0.028
12Q Ahead 1.77 [1.24] -1.00 [-0.84] -0.10 [-0.93] 0.12 [0.89] 0.004
20Q Ahead 0.70 [1.11] -0.45 [-0.73] -0.03 [-0.66] 0.04 [0.91] 0.000

The Table shows the evidence from the projection of contemporaneous and future aggregate cash-
flow growth rates on the current sectoral shocks: consumption TFP innovation, ∆C-TFP, invest-
ment TFP innovation, ∆I-TFP, consumption TFP-volatility shock, ∆C-TFP-VOL, and investment
TFP-volatility shock, ∆I-TFP-VOL. The predictive projection (h > 1) is: 1

h

∑h
j=1 ∆yt+j = β0 +

β′
h[∆C-TFPt,∆I-TFPt,∆C-TFP-VOLt,∆I-TFP-VOLt] + error. The contemporaneous projection (h = 0)

is the same, but the dependent variable is ∆yt. The Table reports the slope coefficients βh, t−statistics, and
the adjusted R2s for the contemporaneous projection (h = 0), and the predictive horizons of h = 1, 4, 12 and
20 quarters, for the corresponding aggregate growth series ∆y. Standard errors are Newey-West adjusted.
The data on consumption and GDP are quarterly from 1947Q1-2014Q4. Data on sales and earnings are
from 1964Q1-2014Q4.
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Table 2.2: Sectoral Shocks and Aggregate Inputs Growth

Offset βC-TFP βI-TFP βC-TFP-VOL βI-TFP-VOL Adj −R2

Panel A: Aggregate growth of investment measures

Capital investment growth:
0Q Ahead 1.23 [4.03] 1.03 [3.70] -0.12 [-3.17] 0.19 [3.91] 0.362
1Q Ahead 1.10 [3.53] 0.66 [2.50] -0.15 [-3.21] 0.21 [4.09] 0.223
4Q Ahead 1.09 [2.41] -0.28 [-0.85] -0.09 [-1.93] 0.11 [1.93] 0.109
12Q Ahead 0.63 [1.61] -0.41 [-1.37] -0.05 [-1.45] 0.05 [1.33] 0.052
20Q Ahead 0.41 [1.46] -0.36 [-1.48] -0.03 [-1.25] 0.03 [1.10] 0.055

Capital expenditures growth:
0Q Ahead 0.10 [0.03] 4.66 [1.88] -1.49 [-2.37] 1.30 [1.64] 0.087
1Q Ahead -3.93 [-1.24] 5.05 [1.96] -1.15 [-2.00] 1.09 [1.52] 0.077
4Q Ahead 0.73 [0.56] 0.78 [0.77] -0.20 [-1.88] 0.24 [1.84] 0.078
12Q Ahead 0.75 [1.29] 0.17 [0.25] -0.10 [-2.59] 0.13 [2.80] 0.050
20Q Ahead 0.08 [0.15] 0.20 [0.35] -0.03 [-0.54] 0.03 [0.63] -0.012

Relative investment-price growth:
0Q Ahead 0.78 [4.50] -0.93 [-5.04] -0.01 [-1.01] 0.01 [0.71] 0.152
1Q Ahead 0.61 [4.09] -0.63 [-3.76] -0.04 [-1.45] 0.04 [1.39] 0.059
4Q Ahead 0.36 [1.97] -0.43 [-3.24] -0.02 [-1.00] 0.01 [0.74] 0.111
12Q Ahead 0.34 [1.92] -0.36 [-2.61] -0.02 [-1.23] 0.02 [1.02] 0.105
20Q Ahead 0.38 [2.19] -0.35 [-2.40] -0.03 [-1.96] 0.03 [1.93] 0.149

Panel B: Aggregate growth of labor measures

Hours growth:
0Q Ahead 0.33 [2.57] 0.22 [2.05] -0.02 [-1.67] 0.04 [1.15] 0.066
1Q Ahead 0.20 [1.64] 0.08 [0.68] -0.03 [-1.39] 0.02 [1.93] 0.049
4Q Ahead 0.12 [1.06] -0.16 [-1.75] -0.00 [-0.31] -0.00 [-0.19] 0.037
12Q Ahead 0.02 [0.45] -0.07 [-1.67] 0.00 [0.51] -0.00 [-1.14] 0.045
20Q Ahead 0.03 [0.54] -0.09 [-1.50] 0.00 [0.52] -0.01 [-0.99] 0.031

Wage growth:
0Q Ahead 0.51 [4.46] -0.21 [-1.92] -0.00 [-0.17] 0.01 [0.70] 0.057
1Q Ahead 0.35 [2.90] -0.10 [-0.91] -0.05 [-2.62] 0.06 [2.69] 0.020
4Q Ahead 0.31 [3.37] -0.23 [-2.71] -0.03 [-2.65] 0.03 [2.69] 0.060
12Q Ahead 0.26 [2.67] -0.21 [-2.64] -0.02 [-2.00] 0.02 [1.92] 0.074
20Q Ahead 0.24 [1.93] -0.16 [-1.58] -0.02 [-1.92] 0.02 [2.03] 0.078

The Table shows the evidence from the projection of contemporaneous and future aggregate investment
growth rate measures (Panel A), and labor growth rate measures (Panel B) on the current sectoral shocks:
consumption TFP innovation, ∆C-TFP, investment TFP innovation, ∆I-TFP, consumption TFP-volatility
shock, ∆C-TFP-VOL, and investment TFP-volatility shock, ∆I-TFP-VOL. The predictive projection
(h > 1) is: 1

h

∑h
j=1 ∆yt+j = β0 + β′

h[∆C-TFPt,∆I-TFPt,∆C-TFP-VOLt,∆I-TFP-VOLt] + error. The
contemporaneous projection (h = 0) is the same, but the dependent variable is ∆yt. The Table reports the
slope coefficients βh, t−statistics, and the adjusted R2s for the contemporaneous projection (h = 0), and
the predictive horizons of h = 1, 4, 12 and 20 quarters, for the corresponding aggregate growth series ∆y.
Standard errors are Newey-West adjusted. The data are quarterly from 1947Q1-2014Q4.
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Table 2.3: Sectoral Shocks and Detrended Macroeconomic Variables

Offset βC-TFP βI-TFP βC-TFP-VOL βI-TFP-VOL Adj −R2

Detrended consumption:
0Q Ahead 0.21 [0.33] 1.33 [2.05] -0.08 [-1.19] 0.14 [1.62] 0.060
1Q Ahead 0.51 [0.70] 1.39 [2.15] -0.16 [-2.22] 0.22 [1.47] 0.098
4Q Ahead 1.09 [1.26] 0.59 [0.94] -0.17 [-1.97] 0.21 [1.98] 0.093
12Q Ahead 1.08 [1.13] -0.25 [-0.37] -0.11 [-1.39] 0.13 [1.34] 0.034
20Q Ahead 0.53 [0.62] -0.42 [-0.63] -0.04 [-0.67] 0.04 [0.56] -0.001

Detrended GDP:
0Q Ahead 0.79 [1.38] 1.41 [2.20] -0.14 [-2.55] 0.22 [3.27] 0.160
1Q Ahead 1.14 [2.03] 1.38 [2.51] -0.23 [-3.52] 0.32 [4.06] 0.214
4Q Ahead 1.56 [2.30] 0.54 [1.10] -0.20 [-2.81] 0.26 [2.94] 0.177
12Q Ahead 0.98 [1.41] -0.27 [-0.53] -0.09 [-1.52] 0.10 [1.44] 0.038
20Q Ahead 0.22 [0.43] -0.25 [-0.63] -0.01 [-0.28] 0.00 [0.11] -0.009

Detrended capital investment:
0Q Ahead 0.33 [0.13] 4.12 [1.80] -0.29 [-1.35] 0.48 [1.89] 0.063
1Q Ahead 1.92 [0.77] 4.03 [1.84] -0.53 [-2.26] 0.76 [2.70] 0.111
4Q Ahead 4.21 [1.54] 1.65 [0.82] -0.62 [-2.35] 0.80 [2.55] 0.113
12Q Ahead 4.37 [1.64] -1.89 [-0.95] -0.41 [-1.88] 0.47 [1.84] 0.051
20Q Ahead 2.04 [1.37] -2.17 [-1.54] -0.10 [-1.03] 0.08 [0.78] 0.036

Detrended relative-price of investment:
0Q Ahead 1.25 [2.00] -1.11 [-2.36] -0.09 [-1.50] 0.08 [1.28] 0.112
1Q Ahead 1.11 [1.69] -1.15 [-2.12] -0.05 [-0.92] 0.04 [0.75] 0.102
4Q Ahead 0.98 [1.54] -1.05 [-1.89] -0.04 [-0.79] 0.03 [0.64] 0.087
12Q Ahead 0.59 [1.08] -0.79 [-1.51] -0.00 [-0.04] 0.01 [0.24] 0.057
20Q Ahead -0.37 [-1.19] 0.10 [0.31] 0.05 [2.09] -0.06 [-2.14] 0.023

Detrended hours:
0Q Ahead 0.24 [1.11] 0.41 [1.99] -0.04 [-2.01] 0.07 [2.90] 0.132
1Q Ahead 0.27 [1.33] 0.43 [2.50] -0.05 [-2.39] 0.07 [2.64] 0.182
4Q Ahead 0.31 [1.67] 0.30 [1.96] -0.05 [-2.60] 0.06 [2.81] 0.174
12Q Ahead 0.24 [1.15] 0.11 [0.74] -0.03 [-1.21] 0.03 [1.20] 0.082
20Q Ahead 0.04 [0.22] 0.03 [0.21] 0.00 [0.01] -0.00 [-0.06] -0.003

The Table shows the results from the projection of contemporaneous and future business-cycle component
of selected macroeconomic variables, averaged over h periods, on the current sectoral shocks: consump-
tion TFP innovation, ∆C-TFP, investment TFP innovation, ∆I-TFP, consumption TFP-volatility shock,
∆C-TFP-VOL, and investment TFP-volatility shock, ∆I-TFP-VOL. The predictive projection (h > 1) is:
1
h

∑h
j=1 y

cycle
t+j = β0 + β′

h[∆C-TFPt,∆I-TFPt,∆C-TFP-VOLt,∆I-TFP-VOLt] + error. The contemporane-

ous projection (h = 0) is the same, but the dependent variable is ∆ycyclet . The cyclical component ycycle

of a variable y is obtained from one-sided HP-filtering the trending level-series of y with a smoothing pa-
rameter of 1600. The Table reports the slope coefficients βh, t−statistics, and the adjusted R2s for the
contemporaneous projection (h = 0), and the predictive horizons of h = 1, 4, 12 and 20 quarters, for the cor-
responding business-cycle variable ycycle. Standard errors are Newey-West adjusted. The data are quarterly
from 1947Q1-2014Q4.
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Table 2.4: Sectoral Shocks and the Cross-section of Returns

Panel A: Market-prices of risk (Λ)
λC-TFP λI-TFP λC-TFP-VOL λI-TFP-VOL

λ 2.39 1.36 -0.43 0.70
[2.30] [1.37] [-3.49] [4.75]

Panel B: Exposures to risks (β)
βC-TFP βI-TFP βC-TFP-VOL βI-TFP-VOL

Market 2.80 -0.94 -0.06 0.08

bm1 3.04 -0.78 -0.01 0.03
bm2 2.48 -1.06 -0.04 0.04
bm3 2.35 -1.23 -0.04 0.05
bm4 2.43 -0.85 -0.13 0.16
bm5 2.60 -1.17 -0.04 0.03
bm6 2.88 -0.90 -0.13 0.16
bm7 2.42 -0.75 -0.07 0.09
bm8 3.27 -0.58 -0.19 0.25
bm9 2.76 -0.53 -0.07 0.10
bm10 3.13 0.08 -0.07 0.09

mom1 5.41 -2.44 -0.06 0.04
mom2 4.07 -1.58 0.01 -0.01
mom3 3.19 -1.39 -0.12 0.12
mom4 2.73 -0.77 -0.03 0.05
mom5 2.78 -0.97 -0.11 0.16
mom6 2.51 -0.95 -0.09 0.11
mom7 2.25 -0.94 -0.14 0.18
mom8 2.43 -0.83 -0.07 0.09
mom9 2.71 -0.76 -0.07 0.11
mom10 3.15 -0.64 -0.04 0.16

size1 3.58 -0.31 0.08 -0.07
size2 3.37 -0.83 0.08 -0.08
size3 3.05 -0.70 0.07 -0.06
size4 3.39 -1.06 0.01 0.00
size5 3.06 -1.01 0.05 -0.06
size6 2.96 -1.10 0.01 0.00
size7 2.87 -0.97 -0.04 0.04
size8 2.52 -0.85 -0.01 0.02
size9 2.42 -0.75 -0.08 0.09
size10 2.78 -0.90 -0.08 0.11

The Table shows the estimates of the market-prices of risks (Panel A) and the exposures (Panel B) to con-
sumption TFP, C-TFP, investment TFP, I-TFP, consumption TFP-volatility, C-TFP-VOL, and investment
TFP-volatility, I-TFP-VOL, risks for the cross-section of equity returns. The cross-section includes the
market, ten portfolios sorted on book-to-market (bm), ten portfolios sorted on momentum (mom), and ten
portfolios sorted on size (size). The reported market prices of risks are divided by 10. T-statistics are in
brackets, and are based on Newey-West standard errors from GMM estimation. For brevity, the significance
of exposures is omitted. The data are quarterly from 1947Q1-2014Q4.
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Table 2.5: Sectoral (Industry) Exposures to Sectoral Shocks

Sector βC-TFP βI-TFP βC-TFP-VOL βI-TFP-VOL

All 2.80 [9.72] -0.94 [-3.62] -0.06 [-1.69] 0.08 [1.86]

Services 2.17 [4.24] -0.98 [-2.18] -0.13 [-2.95] 0.17 [3.34]

Nondurables 2.33 [5.58] -1.18 [-3.56] -0.05 [-0.75] 0.05 [1.67]

Durables 4.56 [6.42] -1.50 [-3.05] -0.25 [-2.49] 0.28 [2.13]

Investment 4.07 [8.85] -1.01 [-2.13] -0.02 [-0.32] 0.04 [1.35]

The Table shows the exposures of sectoral (industry) portfolios, to consumption TFP, C-TFP, investment
TFP, I-TFP, consumption TFP-volatility, C-TFP-VOL, and investment TFP-volatility, I-TFP-VOL risks.
Each portfolio is comprised of value-weighted returns from CRSP. Sorting firms into industry portfolios is
made each June, based on Gomes et al. (2009) SIC classifications for sectors. T-statistics are in brackets,
and are Newey-West adjusted. The data are quarterly from 1947Q1-2014Q4.
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Table 2.6: Summary of Pricing Statistics from a Four-Factor Model

Panel A: Adjusted R2 of Fama-Macbeth second-stage projection
Adj-R2 0.73

Panel B: Cross-sectional spreads
Spread Data Model SprC-TFP SprI-TFP SprC-TFP-VOL SprI-TFP-VOL

MOM -2.65 -0.83 1.15 -0.95 1.39 -2.43
BM -1.00 -0.69 -0.08 -0.32 1.31 -1.60
SIZE 0.46 0.27 0.50 0.22 5.25 -5.70
Q 0.98 1.28 0.12 0.35 -0.70 1.52
OP -0.79 -1.03 0.27 -0.20 -0.20 -0.90

RVAR 1.55 0.88 -2.84 1.18 -8.18 10.72

Panel C: Market risk premium decomposition
Data Model PrmC-TFP PrmI-TFP PrmC-TFP-VOL PrmI-TFP-VOL

Market 1.64 1.63 1.88 -0.67 -1.91 2.34
Premium

The Table shows summary asset-pricing results of a four-factor model: consumption TFP, C-TFP, invest-
ment TFP, I-TFP, consumption TFP-volatility, C-TFP-VOL, and investment TFP-volatility, I-TFP-VOL,
risk factors. Panel A reports the adjusted R2 of the second-stage regression (mean-excess returns projected
on risk-exposures) from a Fama-Macbeth procedure, using a cross-section of ten book-to-market sorted port-
folios, ten momentum sorted portfolios, ten size sorted portfolios, and the market portfolio. Panel B reports
data and model counterpart quarterly spreads of quantile sorted portfolios, along the momentum dimension
(MOM), book-to-market dimension (BM), size dimension (SIZE), Tobin’s Q dimension (Q), operating prof-
itability dimension (OP), and residual (idiosyncratic) variance of return (RVAR) dimension. The operating
profitability is measured via operating profits divided by book equity value. Residual variance refers to the
variance of the residuals from the Fama-French three-factor model using 60 days of lagged returns. Each
spread is computed by subtracting the return of portfolios 5 (the portfolio of stocks with the highest char-
acteristic), from the return of portfolio 1 (the portfolio of stocks with the lowest characteristic). Panel C
reports the market risk-premium in the data versus the model. Panels B and C also show the decomposition
of the model-implied spreads (Spr), and model-implied risk premia (Prm), into the compensations for the
four risk factors. The data for OP and RVAR sorted portfolios are from 1964Q1-2014Q4. All other data are
quarterly from 1947Q1-2014Q4.
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Table 2.7: Summary of Pricing Statistics from a Two-Factor Model

Panel A: Adjusted R2 of Fama-Macbeth second-stage projection
Adj-R2 0.52

Panel B: Cross-sectional spreads
Spread Data Model SprC-TFP SprI-TFP

MOM -2.65 0.50 1.87 -1.37
BM -1.00 -0.55 0.05 -0.59
SIZE 0.46 1.29 1.36 -0.07
Q 0.98 0.41 0.07 0.34
OP -0.79 0.51 0.43 0.08

RVOL 1.55 -3.12 -5.26 2.14

Panel C: Market risk premium decomposition
Data Model PrmC-TFP PrmI-TFP

Market Premium 1.64 1.39 2.47 -1.08

The Table shows summary asset-pricing results of a two-factor model: consumption TFP, C-TFP, and
investment TFP, I-TFP. Panel A reports the adjusted R2 of the second-stage regression (mean-excess
returns projected on risk-exposures) from a Fama-Macbeth procedure, using a cross-section of ten book-
to-market sorted portfolios, ten momentum sorted portfolios, ten size sorted portfolios, and the market
portfolio. Panel B reports data and model counterpart quarterly spreads of quantile sorted portfolios,
along the momentum dimension (MOM), book-to-market dimension (BM), size dimension (SIZE), Tobin’s
Q dimension (Q), operating profitability dimension (OP), and residual (idiosyncratic) variance of return
(RVAR) dimension. The operating profitability is measured via operating profits divided by book equity
value. Residual variance refers to the variance of the residuals from the Fama-French three-factor model
using 60 days of lagged returns. Each spread is computed by subtracting the return of portfolios 5 (the
portfolio of stocks with the highest characteristic), from the return of portfolio 1 (the portfolio of stocks
with the lowest characteristic). Panel C reports the market risk-premium in the data versus the model.
Panels B and C also show the decomposition of the model-implied spreads (Spr), and model-implied risk
premia (Prm), into the compensations for the four risk factors. The data for OP and RVAR sorted portfolios
are from 1964Q1-2014Q4. All other data are quarterly from 1947Q1-2014Q4.
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Table 2.8: Sectoral Volatilities and Debt Measures

Offset βC-TFP βI-TFP βC-TFP-VOL βI-TFP-VOL Adj −R2

Panel A: Sectoral volatilities and the default Spread
0Q Ahead -3.32 [-1.52] -1.57 [-0.69] 0.57 [1.89] -0.60 [-1.71] 0.065
1Q Ahead -3.81 [-2.15] -1.06 [-0.62] 0.48 [1.97] -0.58 [-1.97] 0.017
4Q Ahead -3.96 [-1.96] 2.58 [1.61] 0.26 [1.23] -0.28 [-1.12] 0.035
12Q Ahead -2.71 [-2.00] 2.74 [2.23] 0.13 [1.11] -0.12 [-0.90] 0.055
20Q Ahead -0.26 [-0.62] 0.92 [2.20] -0.02 [-0.57] 0.05 [1.10] 0.048

Panel B: Sectoral volatilities and real debt growth
0Q Ahead 4.70 [1.39] -2.70 [-1.19] -1.13 [-2.26] 1.28 [2.00] 0.011
1Q Ahead 7.61 [2.22] -4.32 [-1.68] -0.36 [-0.55] 0.55 [0.71] 0.015
4Q Ahead 3.82 [2.02] -2.27 [-1.53] -0.24 [-1.62] 0.28 [1.63] 0.048
12Q Ahead 1.87 [1.58] -1.63 [-1.50] -0.10 [-0.97] 0.11 [0.94] 0.020
20Q Ahead 1.54 [1.26] -1.12 [-1.19] -0.10 [-1.01] 0.11 [1.01] 0.017

The Table shows the results of projecting contemporaneous and future default-spread growth rates (Panel
A) and real-debt growth rates (Panel B) on the current sectoral shocks: consumption TFP innovation,
∆C-TFP, investment TFP innovation, ∆I-TFP, consumption TFP-volatility shock, ∆C-TFP-VOL, and
investment TFP-volatility shock, ∆I-TFP-VOL. The predictive projection (h > 1) is: 1

h

∑h
j=1 ∆yt+j = β0+

β′
h[∆C-TFPt,∆I-TFPt,∆C-TFP-VOLt,∆I-TFP-VOLt]+error. The contemporaneous projection (h = 0) is

the same, but the dependent variable is ∆yt. The default-spread is computed as the difference between the
yield of BAA and AAA rated corporate bonds. Total debt for publicly traded firms is computed as debt in
current liabilities (dlcq) plus long term debt (dlttq). The Table reports the slope coefficients βh, t−statistics,
and the adjusted R2s for the contemporaneous projection (h = 0), and for the predictive horizons of 1 up
to 20 quarters. Standard errors are Newey-West adjusted. Data on the default spread are quarterly from
1947Q1-2014Q4. Data on real debt growth span from 1966Q1-2014Q4.

Table 2.9: Sectoral Volatility Feedback to Future Technological Growth

βC-TFP βI-TFP βC-TFP-VOL βI-TFP-VOL Adj −R2

1Q Ahead C-TFP:
0.46 [3.69] -0.23 [-1.77] -0.78 [-1.06] 0.82 [2.20] 0.047

1Q Ahead I-TFP:
-0.10 [-0.67] 0.38 [3.32] -0.32 [-0.67] 0.42 [0.88] 0.056

The Table shows the volatility feedback evidence from projections of one-quarter ahead sectoral TFP growth
rates, on the current sectoral shocks: consumption TFP innovation, ∆C-TFP, investment TFP innova-
tion, ∆I-TFP, consumption TFP-volatility shock, ∆C-TFP-VOL, and investment TFP-volatility shock,
∆I-TFP-VOL: ∆j − TFP t+1 = β0+β

′
h[∆C-TFPt,∆I-TFPt,∆C-TFP-VOLt,∆I-TFP-VOLt]+error, j ∈

{C, I}. The Table reports the slope coefficients βh, t−statistics, and the adjusted R2s. Standard errors are
Newey-West adjusted. The data are quarterly from 1947Q1-2014Q4.
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Table 2.10: Summary Results Based on Total Ex-Ante Volatilities as Factors

Offset βC-TFP βI-TFP βC-TFP-VOL βI-TFP-VOL R2

Panel A: Macroeconomic growth rate predictability
Consumption growth 0.32 [0.66] -0.24 [-0.51] -21.89 [-1.29] 19.95 [3.22] 0.256
GDP growth 1.00 [1.58] -0.91 [-1.45] -49.75 [-2.11] 30.88 [3.43] 0.214
Capital investment 3.09 [3.42] -2.80 [-3.16] -136.13 [-3.76] 75.92 [4.37] 0.181

growth
Capex growth 4.56 [1.35] -3.85 [-1.06] -256.49 [-1.31] 158.59 [0.92] 0.096
Relative price growth -0.28 [-0.55] 0.30 [0.61] -12.95 [-0.77] 30.88 [3.56] 0.357
Wage growth -0.11 [-0.24] 0.15 [0.34] -7.45 [-0.43] 16.21 [1.64] 0.183
Hours growth 0.27 [1.51] -0.28 [-1.56] -12.83 [-1.93] 6.97 [2.14] 0.061

Panel B: Macroeconomic business-cycle predictability
Detrended consumption 3.58 [1.47] -2.76 [-1.16] -218.44 [-2.10] 159.15 [2.02] 0.148
Detrended GDP 5.00 [2.75] -4.21 [-2.28] -264.34 [-3.40] 171.11 [2.95] 0.225
Detrended capital 24.40 [4.01] -21.82 [-3.72] -969.05 [-4.20] 457.18 [3.66] 0.129

investment
Detrended capex 14.10 [0.94] -9.58 [-0.58] -933.08 [-1.14] 761.00 [1.13] 0.119
Detrended relative price -1.88 [-1.77] 1.71 [1.66] 57.65 [1.22] -13.31 [-0.58] 0.032
Detrended wage 1.39 [1.43] -1.46 [-1.45] -57.48 [-1.56] 20.54 [1.08] 0.005
Detrended hours 0.32 [0.59] -0.24 [-0.42] -26.29 [-1.38] 24.00 [2.55] 0.115

Panel C: Asset-pricing implications
Market prices of risk 13.72 [4.72] -12.50 [-4.23] -720.05 [-6.65] 435.18 [6.70]
Market betas 4.60 [3.53] -2.90 [-2.61] -88.92 [-1.93] 38.20 [2.51]

The Table presents the summary of the macroeconomic and asset-pricing implications of sectoral factors, us-
ing the (total) ex-ante sectoral TFP volatilities as risk-factors, as opposed to their shocks (first differences) as
in the benchmark case. Panel A documents the slope coefficients, t−statistics and the R2 in the projections of
12-quarters ahead macroeconomic growth rates on consumption TFP innovation, ∆C-TFP, investment TFP
innovation, ∆I-TFP, consumption TFP-volatility, C-TFP-VOL, and investment TFP-volatility, I-TFP-VOL.
Panel B shows the evidence from projecting 12-quarters ahead average business-cycle component of macroe-
conomic variables on the sectoral innovations and ex-ante volatilities. Panel C shows the estimates of the
market-prices of risks and the market return exposures to the four risk factors, constructed and reported as
in Table 2.4. The data are quarterly from 1947Q1-2014Q4.
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Table 2.11: Summary Results Based on Sale-Dispersion as Sectoral Volatility Factors

Offset βC-TFP βI-TFP βC-DISP βI-DISP R2

Panel A: Macroeconomic growth rate predictability
Consumption growth 0.09 [1.49] -0.04 [-0.74] -0.04 [-1.21] 0.01 [1.63] 0.014
GDP growth 0.16 [1.89] -0.09 [-1.10] -0.06 [-1.43] 0.01 [1.75] 0.031
Capital investment growth 0.72 [2.05] -0.44 [-1.43] -0.08 [-0.76] 0.03 [1.70] 0.063
Capex growth 0.37 [0.96] 0.13 [0.29] -0.31 [-2.25] 0.14 [2.44] 0.015
Relative price growth 0.33 [2.57] -0.53 [-3.41] 0.10 [1.17] 0.01 [0.10] 0.122
Wage growth 0.03 [0.34] -0.02 [-0.29] 0.01 [0.39] 0.01 [1.68] -0.019
Hours growth 0.03 [0.97] -0.08 [-2.27] -0.02 [-1.99] -0.01 [-0.35] 0.096

Panel B: Macroeconomic business-cycle predictability
Detrended consumption 0.43 [0.89] 0.08 [0.20] -0.24 [-1.40] 0.02 [1.33] 0.030
Detrended GDP 0.61 [1.48] -0.10 [-0.28] -0.33 [-1.76] 0.02 [1.38] 0.044
Detrended capital investment 3.67 [2.24] -1.44 [-1.04] -0.74 [-1.26] 0.17 [1.80] 0.072
Detrended capex 6.51 [2.11] -0.62 [-0.18] -0.65 [-0.64] 0.58 [1.85] 0.074
Detrended relative price 0.94 [2.24] -0.95 [-2.40] -0.16 [-1.47] 0.06 [1.31] 0.126
Detrended wage 0.03 [0.14] -0.12 [-0.60] -0.13 [-1.76] 0.01 [1.37] 0.007
Detrended hours 0.13 [1.01] -0.06 [-0.52] -0.06 [-1.28] 0.00 [1.07] 0.005

Panel C: Asset-pricing implications
Market prices of Risk 0.84 [1.04] 0.38 [0.45] -0.20 [-10.81] 0.12 [6.70]
Market betas 3.85 [1.79] -0.89 [-0.79] -0.02 [-1.12] 0.06 [1.60]

The Table presents the summary of the macroeconomic and asset-pricing implications of sectoral factors,
using an alternative measure of sectoral volatilities: sales growth dispersion in the consumption sector as
a substitute for consumption TFP-volatility, and sales growth dispersion in the investment sector as a
substitute for investment TFP-volatility. Panel A documents the slope coefficients, t−statistics and the
R2 in the projections of 12-quarters ahead macroeconomic growth rates on consumption TFP innovation,
∆C-TFP, investment TFP innovation, ∆I-TFP, consumption sales dispersion, C-DISP, and investment
sales dispersion, I-DISP. Panel B shows the evidence from projecting 12-quarters ahead average business-
cycle component of macroeconomic variables on the sectoral innovations and sale dispersions. The slope
coefficients on I-TFP-VOL and C-TFP-VOL are multiplied by 10. Panel C shows the estimates of the
market-prices of risks and the market return exposures to the four risk factors, constructed and reported as
in Table 2.4. The data are quarterly from 1964Q1-2014Q4.
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Table 2.12: Summary Results Based on Different Predictors of Future Volatility

Offset βC-TFP βI-TFP βC-TFP-VOL βI-TFP-VOL R2

Panel A: Macroeconomic growth rate predictability
Consumption growth 0.18 [2.70] -0.13 [-2.55] -0.01 [-2.17] 0.01 [1.78] 0.070
GDP growth 0.23 [2.21] -0.17 [-2.05] -0.01 [-2.42] 0.01 [1.85] 0.060
Capital investment growth 0.52 [1.51] -0.38 [-1.28] -0.02 [-1.60] 0.01 [1.17] 0.043
Capex growth 0.33 [0.60] 0.25 [0.37] -0.01 [-0.30] 0.00 [0.11] 0.029
Relative price growth 0.35 [2.29] -0.37 [-2.75] -0.01 [-2.29] 0.01 [2.44] 0.111
Wage growth 0.23 [2.65] -0.20 [-2.59] -0.01 [-1.87] 0.01 [1.80] 0.067
Hours growth 0.03 [0.63] -0.07 [-1.64] -0.00 [-1.92] 0.00 [0.69] 0.043

Panel B: Macroeconomic business-cycle predictability
Detrended consumption 0.71 [0.85] -0.14 [-0.22] -0.02 [-0.72] 0.01 [1.64] 0.022
Detrended GDP 0.72 [1.17] -0.19 [-0.38] -0.02 [-0.89] 0.02 [0.75] 0.028
Detrended capital investment 3.33 [1.41] -1.62 [-0.82] -0.10 [-1.29] 0.09 [1.15] 0.035
Detrended capex 3.50 [1.93] -0.77 [-0.31] -0.09 [-0.77] 0.12 [1.37] 0.045
Detrended relative price 0.65 [1.28] -0.80 [-1.54] -0.01 [-0.75] 0.01 [1.62] 0.055
Detrended wage 0.00 [0.00] -0.11 [-0.39] -0.01 [-0.63] -0.01 [-0.21] -0.004
Detrended hours 0.01 [0.08] 0.05 [0.32] -0.00 [-0.04] -0.00 [-0.49] 0.002

Panel C: Asset-pricing implications
Market prices of risk 7.21 [0.70] 6.59 [8.20] -0.26 [-4.07] 0.21 [3.38]
Market betas 0.00 [1.10] 0.05 [0.19] -0.31 [-4.26] 0.08 [2.84]

The Table presents the summary of the macroeconomic and asset-pricing implications of sectoral shocks,
using alternative construction of ex-ante TFP volatilities, in which the set of predictive variables Γt includes
the benchmark predictors, as well as the risk-free rate and the market price-dividend ratio. Panel A docu-
ments the slope coefficients, t−statistics and the R2 in the projections of 12-quarters ahead macroeconomic
growth rates on consumption TFP innovation, ∆C-TFP, investment TFP innovation, ∆I-TFP, consump-
tion TFP-volatility shock, ∆C-TFP-VOL, and investment TFP-volatility shock, ∆I-TFP-VOL. Panel B
shows the evidence from projecting 12-quarters ahead average business-cycle component of macroeconomic
variables on the sectoral innovations and volatility shocks. Panel C shows the estimates of the market-prices
of risks and the market return exposures to the four risk factors, constructed and reported as in Table 2.4.
The data are quarterly from 1947Q1-2014Q4.
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Table 2.13: Summary Results Based on Different Window in Construction of Realized
Variances

Offset βC-TFP βI-TFP βC-TFP-VOL βI-TFP-VOL R2

Panel A: Macroeconomic growth rate predictability
Consumption growth 0.21 [2.86] -0.14 [-2.60] -0.03 [-2.07] 0.03 [1.96] 0.082
GDP Growth 0.27 [2.44] -0.16 [-1.96] -0.04 [-2.03] 0.05 [1.89] 0.070
Capital investment growth 0.64 [1.66] -0.43 [-1.34] -0.09 [-1.49] 0.10 [1.40] 0.054
Capex growth 0.71 [1.24] 0.21 [0.32] -0.24 [-2.45] 0.30 [2.38] 0.054
Relative price growth 0.33 [1.87] -0.36 [-2.42] -0.02 [-0.85] 0.02 [0.70] 0.096
Wage growth 0.25 [2.60] -0.19 [-2.32] -0.03 [-1.86] 0.03 [1.81] 0.063
Hours growth 0.04 [0.84] -0.06 [-1.56] -0.00 [-0.33] 0.00 [0.05] 0.023

Panel B: Macroeconomic business-cycle predictability
Detrended consumption 0.89 [0.93] -0.14 [-0.20] -0.15 [-1.91] 0.18 [1.89] 0.025
Detrended GDP 0.84 [1.13] -0.15 [-0.27] -0.14 [-1.04] 0.17 [1.01] 0.029
Detrended capital investment 4.44 [1.51] -2.09 [-0.91] -0.65 [-1.35] 0.75 [1.30] 0.043
Detrended capex 5.79 [1.88] 0.14 [0.04] -1.53 [-2.13] 1.95 [2.11] 0.111
Detrended relative price 0.08 [0.20] -0.32 [-0.74] 0.04 [0.77] -0.06 [-0.84] 0.016
Detrended wage 0.15 [0.38] -0.11 [-0.32] -0.01 [-0.09] 0.00 [0.01] -0.011
Detrended hours 0.22 [1.07] 0.14 [0.84] -0.03 [-0.71] 0.04 [0.70] 0.085

Panel C: Asset-pricing implications
Market prices of risk 4.81 [3.25] -1.41 [-1.03] -1.58 [-5.05] 2.12 [5.43]
Market betas 2.75 [11.12] -1.11 [-3.24] -0.04 [-1.51] 0.04 [1.85]

The Table presents the summary of the macroeconomic and asset-pricing implications of sectoral shocks,
using alternative construction of ex-ante volatilities, in which the sectoral TFP realized variances are com-
puted over a window of 12 quarters, as opposed to 8 quarter in the benchmark case. Panel A documents
the slope coefficients, t−statistics and the R2 in the projections of 12-quarters ahead macroeconomic growth
rates on consumption TFP innovation, ∆C-TFP, investment TFP innovation, ∆I-TFP, consumption TFP-
volatility shock, ∆C-TFP-VOL, and investment TFP-volatility shock, ∆I-TFP-VOL. Panel B shows the
evidence from projecting 12-quarters ahead average business-cycle component of macroeconomic variables
on the sectoral innovations and volatility shocks. Panel C shows the estimates of the market-prices of risks
and the market return exposures to the four risk factors, constructed and reported as in Table 2.4. The data
are quarterly from 1947Q1-2014Q4.
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Table 2.14: Summary Results Based on Realized Volatilities as Factors

Offset βC-TFP βI-TFP βC-TFP-RV βI-TFP-RV R2

Panel A: Macroeconomic growth rate predictability
Consumption growth 0.12 [2.21] 0.02 [0.87] -2.80 [-1.89] 1.61 [2.29] 0.117
GDP growth 0.13 [1.43] 0.03 [0.96] -1.98 [-1.48] 2.64 [2.64] 0.142
Capital investment 0.36 [1.39] 0.07 [0.72] -0.18 [-0.01] 2.84 [0.77] 0.051

growth
Capex growth -0.32 [-0.72] 0.37 [1.26] -27.84 [-0.58] 34.75 [4.14] 0.193
Relative price growth 0.06 [0.57] -0.07 [-1.78] 23.66 [3.80] 0.41 [0.48] 0.366
Wage growth 0.08 [1.24] -0.00 [-0.11] -6.99 [-1.24] 1.56 [1.34] 0.196
Hours growth 0.00 [0.08] -0.02 [-2.07] -1.65 [-0.76] 1.13 [2.59] 0.095

Panel B: Macroeconomic business-cycle predictability
Detrended consumption 0.52 [0.90] 0.47 [2.04] -79.06 [-1.74] 22.89 [2.21] 0.130
Detrended GDP 0.50 [1.06] 0.41 [2.24] -51.19 [-1.23] 16.31 [1.65] 0.100
Detrended capital 2.77 [1.58] 1.04 [1.58] -66.28 [-0.55] 18.36 [0.69] 0.037

investment
Detrended capex 1.42 [0.65] 2.43 [1.39] -101.58 [-0.38] 104.61 [2.24] 0.126
Detrended relative price -0.02 [-0.08] -0.20 [-1.41] 34.64 [1.22] -4.94 [-0.96] 0.062
Detrended wage 0.21 [0.59] 0.03 [0.23] -29.77 [-1.28] 5.81 [1.57] 0.031
Detrended hours 0.03 [0.27] 0.08 [1.48] -4.65 [-0.46] 1.50 [0.54] 0.005

Panel C: Asset-pricing implications
Market prices of risk -0.11 [-0.20] 1.29 [2.34] -37.44 [-4.12] 304.14 [5.19]
Market betas 2.25 [5.48] -0.76 [-2.89] -12.13 [-1.62] 15.33 [4.28]

The Table presents the summary of the macroeconomic and asset-pricing implications of sectoral factors,
using the realized variances of sectoral TFP growth rates as the volatility risk-factors. Panel A documents
the slope coefficients, t−statistics and the R2 in the projections of 12-quarters ahead macroeconomic growth
rates on consumption TFP innovation, ∆C-TFP, investment TFP innovation, ∆I-TFP, consumption TFP
realized variance, C-TFP-RV, and investment TFP realized variance, I-TFP-RV. Panel B shows the evidence
from projecting 12-quarters ahead average business-cycle component of macroeconomic variables on the
sectoral innovations and realized variances. Panel C shows the estimates of the market-prices of risks and
the market return exposures to the four risk factors, constructed and reported as in Table 2.4. The data are
quarterly from 1947Q1-2014Q4.

131



Table 2.15: Calibration of the Benchmark Model

Symbol Value Parameter
γ 25 Relative risk aversion
ψ 1.7 Intertemporal Elasticity of Substitution
β 0.997 Time discount factor
ξ 3 Disutility from labor
η 1.4 Sensitivity of disutility to working hours
αc = αi 0.33 Share of capital in output
δ 0.015 depreciation rate
µzc 1.0024 Drift of consumption sector TFP
µzi 1.0050 Drift of investment sector TFP
σzc,0 0.01 Unconditional volatility of consumption TFP shock
σzi,0 0.02 Unconditional volatility of investment TFP shock
ρσ 0.95 Persistence of volatilities
µc 4 Markup of 25% in the consumption sector
µi 4 Markup of 25% in the investment sector
φP 250 Nominal price rigidity (Rotemberg)
πss 0.005 Steady state inflation
ρπ 1.5 Weight on inflation gap in Taylor rule
ρy 0.5 Weight on output gap in Taylor rule
τ 1.5 Feedback from investment TFP-volatility to future

consumption TFP

The Table presents parameter choice of the model parameters in the Benchmark case.

Table 2.16: Model-Implied Macroeconomic Moments against Data Counterparts

Model (Annualized) Data (1947-2014)
Mean Std.dev. Ac(1) Mean Std.dev. Ac(1)

∆C 1.92 [0.99,2.84] 2.17 [1.70,2.67] 0.54 [0.33,0.70] 1.92 1.52 0.49

∆Y 1.93 [0.98,2.81] 3.01 [2.49,3.52] 0.43 [0.23,0.59] 1.98 2.53 0.18

∆I 1.88 [0.89,2.99] 6.64 [5.54,7.90] 0.30 [0.10,0.48] 1.67 6.75 0.18

∆PI -0.95 [-2.08,0.24] 3.48 [2.89,4.08] 0.30 [0.07,0.47] -0.97 3.62 0.45

The Table presents model-implied mean, standard deviation, and auto-correlation for key macroeconomic
growth rates, against their empirical counterparts. The macroeconomic growth rates reported include (log-
real growth rates of) consumption growth ∆C, output growth ∆Y , investment-expenditures growth ∆I, and
relative-price of investment growth ∆PI . The model-implied macroeconomic moments are computed from
simulated data. I simulate the model at a quarterly frequency and then time-aggregate the data to annual
observations. I report median moments along with the 5% and 95% percentiles, across 10,000 simulations,
each with a length of 272 quarters, similarly to the length of the data time-series. The data moments are
computed using annual data from 1947-2014.
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Table 2.17: Model-Implied Pricing Moments against Data Counterparts

Model (Annualized) Data (1947-2014)
Mean Std.dev. Ac(1) Mean Std.dev. Ac(1)

Re
m 6.64 [6.16,7.20] 8.01 [7.06,9.03] -0.00 [-0.19,0.14] 6.20 17.63 -0.03
Rf 1.37 [0.75,2.02] 2.27 [2.02,2.59] 0.79 [0.69,0.87] 0.89 2.24 0.73

The Table presents model-implied mean, standard deviation, and auto-correlation for the real market excess
return, Rem, and the real risk-free rate, Rf , against their empirical counterparts. In the model, the market
excess return is levered-up using a factor of 5/3. The model-implied macroeconomic moments are computed
from simulated data. I simulate the model at a quarterly frequency and then time-aggregate the data
to annual observations. I report median moments along with the 5% and 95% percentiles, across 10,000
simulations, each with a length of 272 quarters, similarly to the length of the data time-series. The data
moments are computed using annual data from 1947-2014.

Table 2.18: Model-Implied Market-Prices of Risk and Risk Exposures

C-TFP I-TFP C-TFP-VOL I-TFP-VOL
Panel A: Benchmark
Market prices of risk 2.452 0.974 -0.194 0.611
Market betas 0.595 -0.016 -0.030 0.064
C-Sector betas 0.597 -0.061 -0.029 0.061
I-Sector betas 0.587 -0.001 -0.031 0.074

Panel B: No monopolistic competition and no volatility feedback (τ = 0)
Market prices of risk 2.499 0.969 -0.140 -0.127
Market betas 1.000 -0.638 -0.012 0.097
C-Sector betas 1.000 -0.697 -0.010 0.088
I-Sector betas 1.000 -0.516 -0.016 0.117

The Table presents model-implied market-prices of risk (λ) and risk exposures (β) to consumption TFP
innovation risk (C-TFP shock εc,t), investment TFP innovation risk (I-TFP shock εi,t), consumption TFP-
volatility risk (C-TFP-VOL shock εσ,c,t) and investment TFP-volatility risk (I-TFP-VOL shock εσ,i,t). The
exposures (betas) to the risk factors are reported for consumption firms (Vc), investment firms (Vi), and the
market (Vm = Vc + Vi). Panel A reports model implied market-prices and betas for the benchmark model.
Panel B shows the results for a model with no volatility feedback (τ = 0) and no monopolistic competition.
The reported market prices of risks are divided by 10. The construction of market-prices of risk and betas
is described in section 2.6.4.
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Figure 2.1: Residual Investment TFP-Volatility
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The figure shows the time series plot of the residual investment TFP-volatility which is orthogonal to
consumption TFP-volatility. The sectoral TFP-volatilities are constructed from the predictive regressions
of future sectoral TFP realized variances. The residual investment TFP-volatility is computed from the
projection of investment TFP-volatility onto consumption TFP-volatility. The shaded areas represent NBER
recessions.
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Figure 2.3: Model Scheme
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The figure outlines the structure of the benchmark two-sector economy.
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CHAPTER 3 : From Private-Belief Formation to Aggregate-Vol Oscillation

3.1. Introduction

What are the quantitative implications for aggregate and cross sectional volatility fluctu-

ations, that are induced by Bayesian learning and informational asymmetry? This study

provides a micro-founded model that endogenously generates time-varying volatility for

aggregate growth rates, via imperfect information channels, while generating realistic un-

conditional real business-cycle moments. Macroeconomic volatility in this paper is built in

a bottom-up approach. The model suggests that endogenous oscillations in the correlation

between firms’ policies are an important source for aggregate volatility fluctuations. In

recessionary periods, correlations rise as a result of stronger reliance on public information.

Higher between-firm correlation is translated into higher aggregate volatility. Both learning

and asymmetric information are crucial to generate economically significant fluctuations in

aggregate volatility. Empirically, correlations do rise at bad times, in spite of an increase

in cross-sectional variation of real variables (dispersion), since the average between-firm

covariance rises in recessions more than dispersion does.

The importance of this study lies in the growing body of literature in macroeconomics and

finance, which stresses the pivotal role of higher volatility in hindering economic recovery,

growth, and asset-prices. Specifically, consider the following stylized facts regarding the

time-varying behavior of volatility, and its implications:

Fact (I): Aggregate and cross-sectional volatilities are stochastic:

a. The conditional volatility of real aggregate macroeconomic variables, such

as output and investment growth, rises in economic downturns. Quarterly

GDP growth has about 35% more conditional volatility in NBER recessions

(Bloom (2014)); Consumption growth’s volatility increases by 30% in bad

times (This paper).
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b. The cross-sectional dispersion of real quantities produced by firms is coun-

tercyclical. Firms’ output growth, and employment growth, are negatively

correlated with detrended GDP (see e.g. Bachmann and Bayer (2013)).

c. The average correlation between firm-level real-variables (e.g. output, in-

vestment), increases in economic slowdowns (This paper). This fact com-

plements the more established notion that the average correlation amongst

stock-returns significantly increases in recessions (see e.g. Moskowitz (2003),

Krishnan et al. (2009)).

Fact (II): An increase in the volatility of macroeconomic fundamentals has an adverse

effect on the real and financial economy; in particular -

a. Volatility reduces investment and economic activity due to a real-option

effect (see e.g. Dixit and Pindyck (1994); Bloom (2009)), or due to a rise in

the cost of capital (see e.g. Christiano et al. (2014); Arellano et al. (2012);

and Gilchrist et al. (2014)).

b. Volatility lowers asset valuations, raises risk premia and increases return

volatility (see e.g. Bansal et al. (2005b); Drechsler and Yaron (2011);

Bansal et al. (2014)).

The studies that examine the impacts of macro-volatility on the economy, that is, explore

fact (II) above, treat the shocks to volatility, detailed in fact (I), as exogenous and in-

dependent of other fundamentals. Differently put, the evolution of stochastic volatility is

traditionally modeled using an exogenous process. Yet, as illustrated in this study, a perfect-

information neo-classical growth model without exogenous stochastic volatility, generates

only a negligible increase in the conditional volatility during downturns. This raises a gap,

to uncover the economic forces that lead the volatility of aggregate fundamentals to fluctuate

and rise in recessions.
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This study proposes a theory for the endogenous emergence of stochastic macro volatility, in

an environment of only homoscedastic first-moment shocks. It is thus aimed at quantitatively

explaining facts (I.a) - (I.c), while generating realistic business-cycle unconditional moments.

By doing so, the work helps to bridge the gap between the econometric findings of fact (I),

and the macroeconomic and financial literature of fact (II). I demonstrate that learning is

quantitatively important to understand the dynamics of volatility and correlations over the

business-cycle1.

The model presented in this paper relies on five main ingredients: (1) Existence of a mass

of atomistic firms; (2) The aggregate TFP shock is latent, but can be fully recovered with

a continuum of signals; (3) Firms use Bayesian learning to update their belief about the

current TFP level, and by doing so they rely on both public and private information; (4)

Higher economic activity at the firm level, helps the firm to learn about the unobserved

TFP, by endowing it with more signals; and (5) It takes a lag of one period to publish any

macroeconomic quantity, including any public information about the aggregate TFP.

In a nutshell, the economic narrative of the paper is as follows. Each period, the firm

receives two signals regarding the aggregate latent TFP shock. The first is the firm’s own

privately observed output, and the second is the lagged aggregate TFP, which serves as

a public signal. On one hand, firms produce using capital and labor. The productivity

of each hour of labor is subject to an unobserved, homoscedastic, and idiosyncratic labor

efficiency shock, that captures the effect of time-varying tiredness, motivation, and focus

on human capital. Consequentially, every hired hour of labor provides an idiosyncratic

signal, with fixed precision on the aggregate state. Thus, firms that hire more labor, have

a better ratio of signal to noise. In bad times, firms choose to reduce their rented working-

hours, due to decreased profitability. Reducing the amount of labor drops the precision

of the firm’s private idiosyncratic signal (output) in recessionary periods. On the other

1Notably, more than one explanation is plausible for the observed behavior of volatility. The economic
forces described in this work should be viewed as a significant source of macro volatility fluctuations, among
possible others.
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hand, as all firms are atomistic, a central-household that observes all firms’ outputs can

become perfectly informed about the underlying TFP by the end of the period. Publishing

this recovered aggregate TFP in a lag, is equivalent to a signal on today’s TFP with fixed

precision, as all shocks are homoscedastic. As a result, in bad times, firms place more weight

on public information, and less on their idiosyncratic information, when constructing their

beliefs on the current state of the economy. This generates a greater comovement in the

beliefs of firms in economic slowdowns, and hence, a larger comovement in their investment

and labor policies. The higher degree of correlation amongst firms in bad times increases

the volatility of aggregate quantities, such as output and consumption.

When calibrated at quarterly frequency to match the unconditional moments of consump-

tion and output growth rates, the learning model amplifies the oscillations in the conditional

volatility of aggregate growth rates, while a no-learning model, similar to the neo-classical

firm problem, produces only minuscule changes in the conditional volatility. In the learning

environment, consumption growth’s volatility rises in bad periods (when TFP growth is low)

by 29% in the model versus 32% in the data, while it falls in good times (when TFP growth

is high) by 20% and 14% in the model and in the data, respectively. For comparison, in the

no-learning environment, the volatility of aggregate consumption fluctuates by merely 3%

in bad times. Similar results are obtained for other macro growth rates. Capital’s growth

volatility increases in bad times by 57% and by 56%, in the model and in the data.

I further establish that the movements in the conditional volatility of aggregates, capture

shifts in the average conditional covariation between firms, as all firm-specific volatility is

effectively diversified away at the aggregate level. While this claim holds exactly in the

model in which firms are atomistic, I show that it roughly holds in the data as well, in spite

of the fact that empirically some firms are non-atomistic (see e.g. Gabaix (2011)).

Since aggregate volatility amounts to the average covariation between firms, I can then

decompose aggregate volatility. The fluctuation in aggregate volatility between bad and

normal periods is equal to the fluctuation in firm-level volatility multiplied by the fluctuation
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in the average between-firm correlation. In the no-learning model, the small fluctuations

in the conditional volatility of aggregates, are shown to be driven by small changes in the

conditional firm-level volatility, while the average correlation between firms is approximately

constant. By contrast, in the learning model, the fluctuations in the conditional volatility

of aggregates, are largely due to shifts in the conditional correlation between firms, that

rises in bad times. The average correlation between firms’ outputs increases by 32% in bad

times, and drops by 29% in good times. For all aggregate growth variables, about 80% to

90% of the increase in the conditional aggregate volatility in bad times is attributed to an

increase in the conditional correlations.

The endogenous fluctuations in the average correlation in the learning model stem from two

main model ingredients: (1) Bayesian leaning, with time varying gains, and (2) Informa-

tional asymmetry. To show this, I shut down each of those channels separately. Namely, I

solve a modified learning model in which the labor noise shocks are aggregate rather than

idiosyncratic, thus eliminating informational asymmetries between firms. In addition, I

solve an alternative model in which the weights that firms place on the public and private

signals are fixed, and do not vary with the actual gain (non-Bayesian learning). Both of

the modified models lack the ability to produce significant volatility fluctuations. Thus, a

rise in (belief) uncertainty in bad times, as some earlier works feature, is not sufficient to

produce enough realized volatility at the aggregate level.

Lastly, I show that the cross-sectional variation in the model, or dispersion, is also counter-

cyclical, as is also the case empirically. The correlation of output growth dispersion with

TFP is negative in the model and in the data. This is a result of a rise not only in aggregate

volatility, but also in firm-level volatility in bad times, in the model. Ostensibly, an increase

in dispersion seems to contradict a rise in the expected correlation between firms. I recon-

cile the two by showing that if the average between-firm covariation, increases in magnitude

more than dispersion does in downturns, the average correlation increases as well. In the

data, the rise in the average covariation in bad times ranges between 19% to 55%, while
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dispersion rises by less.

The rest of the paper is organized as follows. Section 2 offers a discussion of related lit-

erature. In section 3, I provide the economic model. Section 4 presents the data and the

econometric methodology used to construct the conditional volatilities and correlations. In

Section 5, I report the model calibration and its implications for unconditional business-

cycle moments. Section 6 discusses the main results of this paper: the implications of

learning for the fluctuations in the aggregate conditional volatility, both in the model and

empirically, and its decomposition into firm-level volatility and average correlation. The

section also presents the implications of the learning model for cross-sectional volatility,

and establishes the robustness of the results. Section 7 provides concluding remarks.

3.2. Related Literature

This study relates to several strands of literature. The closest studies that my work is

relates to, are theoretical macroeconomic models that aim at explaining why objects like

uncertainty, volatility and dispersion vary over time, both at the firm-level, and at the

macro level. A growing number of recent papers attempt to endogenize uncertainty, mainly

in centralized economies, over the business cycle (that is, why the volatility of agents’ beliefs

over the state of the economy increases in recessions). In Van Nieuwerburgh and Veldkamp

(2006), procyclical learning about productivity generates countercyclicality in firm-level

uncertainty that may relate to countercyclical movements in asset prices.2 Fajgelbaum

et al. (2015) also endogenize uncertainty level, and link it to economic activity via learning:

higher uncertainty about the fundamental discourages investment, which in turn results in

fewer signals about the fundamental, thus keeping uncertainty levels high, which discourages

investment further. Similarly, Orlik and Veldkamp (2013) show that a Bayesian forecaster

who revises model parameters in real-time, experiences countercyclical uncertainty shocks,

2Related work to Van Nieuwerburgh and Veldkamp (2006) includes Ordoñez (2013). Ordoñez (2013)
argues that the speed of boom and busts depends on the financial system of the country. In his work
however, beliefs are only public and the state of the economy is the volatility of productivity. Thus, volatility
is exogenously stochastic, while this work features homoscedastic volatility.
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even if the underlying process is homoscedastic. This occurs as the agent is more confident in

predicting the future when growth is normal, while sudden “unfamiliar” events in recessions

make it harder for the forecaster to make predictions. A key difference between this paper

and the former works, is that I focus on volatility, or in other words, the time-varying

predictable variation of realized quantities, while the former discuss uncertainty levels, that

is, the forecasting error squared is time-varying. The former works do not predict that firms’

actual policies are necessarily becoming more volatile, or that the correlation between firms’

policies is fluctuating.

Other recent works endogenize firm-level volatility, or dispersion, in good versus bad periods.

Bachmann and Moscarini (2011) show that downturns offer the opportunity for firms to

drastically alter their pricing policy, or to “experiment”, allowing them to better learn their

firm-specific demand function. This experimentation, mainly performed to decide whether

to exit the market, is the driver of cross-sectional dispersion in the prices of firms. In

Decker et al. (2013), first moment TFP shocks enable firms to expand to more markets

and expose firms to an increased number of market-specific shocks, which reduces firm-level

volatility by diversification. Related, Tian (2015) also endogenizes productivity dispersion

over the business-cycle. These works focus on (micro) cross-sectional volatility. They do

not explicitly examine whether this micro volatility feeds into higher aggregate quantities.

In contrast, this work propagates the notion that an important source of aggregate volatility

is not merely an increase in individual firms’ idiosyncratic volatility, but rather an increase

in the correlation between individual firms’ policies.

Some related papers explicitly discuss aggregate volatility, which is the main focus of this

work. One contributor to aggregate volatility may come from Governments and Central

Banks. Pastor and Veronesi (2012) argue that policy becomes more volatile during reces-

sions because policy makers wish to experiment. In economic downturns, politicians are

drawn to experiment as they attempt to boost growth. While this explanation directly

feeds to macro volatility, it differs from the bottom-up approach of the decentralized econ-
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omy, taken in this paper. Gabaix (2011) shows that idiosyncratic firm-level fluctuations

can explain a significant portion of aggregate shocks, when some firms are non-atomistic

or “granular”. His study however, focuses on unconditional aggregate volatility, not on

its cyclical behavior. Herskovic et al. (2015) endogenize firm level volatility (dispersion)

using a different framework than mine: consumer-supplier business networks, with some

implications for aggregate volatility. More related, Ilut et al. (2013) show that when hiring

decisions respond more to bad signals, due to ambiguity about the level of noise, both ag-

gregate conditional volatility and dispersion of labor growth are countercyclical. A similar

idea is used in the context of stock return correlations, in the works of Ribeiro and Veronesi

(2002), and Ozsoy (2013). As opposed to my quantitative study, that embeds learning in

a real business cycle environment, the work of Ilut et al. (2013) is mostly qualitative. My

work also employs a different learning mechanism. The papers of Thesmar and Thoenig

(2004), Comin and Philippon (2006), and Comin and Mulani (2006), also target aggregate

volatility by trying to explain the so-called “great moderation” in the volatility of aggre-

gate returns and output (see Stock and Watson (2003)). However, these works target the

ostensible trend in aggregate volatility, while they do not generate fluctuations of aggregate

volatility over the business cycle.

The second body of works related to this paper are studies discussing the social value of

public information, starting with the influential work of Morris and Shin (2002). The work

of Amador and Weill (2012), shows that increasing public information slows down learning

in the long run, and may reduce welfare. While aggregate volatility fluctuates in their model,

their stylized framework exhibits a hump shape for volatility over time, that converges to

zero in the long run, and does not explain why volatility increases in recessionary periods.

Related, Angeletos and La’O (2013) show that even without aggregate TFP shocks, sunspot

public shocks that purely affect agents’ belief about the state of the economy, without

altering the underlying technology or preferences, termed “sentiments”, create aggregate

fluctuations. While their framework highlights that public information can serve as an
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important source of aggregate fluctuations, it produces fixed volatility for aggregate output.

A closer work of Angeletos et al. (2016) demonstrates, in a comparative static manner,

that more precise public information reduces dispersion, but can increase the volatility of

aggregate output. In contrast, in my work the precisions of the signals is time-varying,

allowing to obtain stochastic volatility. In addition, my work is quantitative in nature, and

targets objects that are absent from the former works, such as investment rate and capital

growth. My work complements these works in that my focal point is different. I harness the

use of time-varying weights on public and private information to obtain aggregate volatility

that varies over the business cycle.

The third branch of studies my paper is related to, are econometric papers that document

that macro volatility, micro volatility (or cross-sectional volatility), and also correlations,

rise in recessions. Bloom (2014) documents that industrial production growth, based on

GARCH models, has about 35% more conditional volatility in recessions. In the context

of stock returns, Bloom (2014) and Bekaert et al. (2013), report that the VIX level is

countercyclical, and increases by 58% in recessions. Other meaures of macro uncertainty

also increase in bad times. Jurado et al. (2013) use monthly economic series in a system

of forecasting equations and look at the implied forecasting errors. They find a sharp in-

crease in recessionary periods, and in particular, in the Great Recession. The works of

Higson et al. (2002), Jorgensen et al. (2012), Kehrig (2011), Bloom et al. (2012), and Bach-

mann and Bayer (2013), provide extensive evidence that cross-sectional variance, or disper-

sion, is also highly countercyclical, for various economic outcomes including output growth,

sales growth, employment growth, earnings growth, and Solow residuals. Investment-rate

dispersion however, seems to be procyclical, as pointed by Bachmann and Bayer (2014).

Moskowitz (2003), in the context of stock returns, uses a multivariate-GARCH approach to

show that conditional correlations exhibit significant time variation, increase during reces-

sions, and were extremely large during the 1987 stock market crash. Similarly, Krishnan

et al. (2009) use average realized correlations of stock returns, and show that it signifi-

cantly rises in recessions. My work contributes to these findings by empirically showing
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that the correlation of fundamentals, such as investment-rate and output growth, increases

in recessionary periods, and explains fluctuations in aggregate volatility of fundamentals.

The last strand of papers my work relates to are macroeconomics and asset-pricing works

that stress the importance of aggregate volatility in explaining business-cycle fluctuations,

economic growth and risk premia. Bloom (2009) shows that increased volatility, measured

via VIX, leads to an immediate drop in output and investment growth rates as firms de-

lay their investment decisions. The work of Fernandez-Villaverde et al. (2011) discusses

uncertainty in an open-economy context, showing that higher volatility lowers domestic

investment. Other works argue that higher volatility increases the cost of capital, or credit

spreads, hence makes investment more costly (see e.g. Christiano et al. (2014); Arellano

et al. (2012); and Gilchrist et al. (2014)). Basu and Bundick (2012) rely on nominal rigidities

to show that both consumption and investment can drop in response to volatility shocks.

Other works rely on alternative economic forces which can yield a positive relationship

between volatility and investment. These channels include precautionary savings, time-to-

build, or investment irreversibility (see e.g. Abel and Eberly (1996); Bar-Ilan and Strange

(1996); Gilchrist and Williams (2005); Jones et al. (2005); Malkhozov (2014); and Kung

and Schmid (2014)). Importantly, these papers treat volatility shocks as exogenous, while

in this paper I treat volatility as an endogenous object.

3.3. Model

This section describes the theoretical framework that generates stochastic aggregate volatil-

ity in a homoscedastic world. The economy is comprised of a mass of firms, indexed by

i ∈ [0, 1], and one representative household, who owns all firms and consume their divi-

dends. Below I describe the problem faced by firms, the household, and a definition of an

equilibrium in this setup.
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3.3.1. Aggregate Productivity

Aggregate productivity, denoted by Gt, evolves as geometric random walk with time varying

drift. Specifically, Gt+1 = Gt · gt, where

gt = (1− ρg)g0 + ρggt−1 + σgεg,t,

and where εg,t ∼ N(0, 1)3. Notice that the conditional volatility of aggregate productivity

growth is constant. Further, note that gt is the gross-growth rate of productivity, and I

assume that the mean growth rate g0 > 1 is sufficiently large, in comparison to the volatility

of the shock σg such that gt is always positive.

It is assumed that aggregate productivity is a latent variable. This is also the case in

the real world: total factor productivity is unobserved, but can be recovered by observing

real aggregate macroeconomic growth rates. Both firms and the household learn about

the current and past levels of productivity from publicly and privately observed signals.

All information regarding the productivity shock is obtained from real (noisy) economic

outcomes. As explained later, all agents become perfectly informed about any lagged level of

aggregate productivity, but there is uncertainty regarding the current period’s productivity

growth gt.

3.3.2. Firms

Each firm is operated by a manager. The firm operates on an island. As a result, all

aggregate quantities, including aggregate productivity level, become observable to the firm

in a lag of one period. This assumption parallels to the real world, in the sense that aggregate

quantities are usually published in some lag. Specifically, at the beginning of every period

t, the manager of the firm gets an input from its owner (the household): last period’s

aggregate productivity growth gt−1
4. This assumption is consistent with the availability

3Notice that Gt is predetermined.
4Alternatively, the firm’s input is the aggregate productivity level of period t− 1. This is an equivalent

assumption, as the productivity level of time t − 2 is already in the information set of the firm at time t.
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of data in reality: the San-Fransisco Federal Reserve Bank, for instance, publishes a TFP

time-series, in a lag of one-quarter5. In return, the firm ships back to the owner its current

period dividend after producing and investing.

Firms produce output using capital and labor. Firm i has a stock of capital ki,t, and rented

labor inputs (measured in time-units, or hours) li,t.

Capital evolves according to:

ki,t+1 = (1− δ)ki,t + Λ(
Ii,t
ki,t

),

where δ is the depreciation rate, and Ii,t is the investment level at period t. The capital

adjustment cost function Λ is specified as in Jermann (1998): Λ(
Ii,t
ki,t

) = α1

1− 1
ζ

(
Ii,t
ki,t

)
1− 1

ζ + α2.

The parameter ζ represents the elasticity of the investment rate with ζ → ∞ representing

infinitely costly adjustments. The parameters α1 and α2 are set such that there are no

adjustment costs in the deterministic steady state.

Labor to be used in period t is rented in the period t − 1 for a wage wt per unit of time

(hour). The wage exogenously grows at the same rate as aggregate productivity, and is

given by wt = w · Gt−1
6. Adjusting the labor force, requires a non-pecuniary adjustment

cost, and is given by ΦL(li,t, li,t+1) = Gt ·
κ
2 · (lt+1 − lt)

2. These adjustment costs capture,

in a reduced form manner, the costs induced by the friction of search. In the absence of

consumption smoothing in a risk-neutral setting, this adjustment cost is vital to make labor

growth, and hence output and consumption growths, sufficiently persistent.

Firms also face two idiosyncratic shocks. First, firms revenue is affected by an observed

Dividing aggregate productivity level of time t− 1 with that of time t− 2 yields gt−1.
5The quarterly TFP data relies on Basu et al. (2006) and Fernald (2012).
6As labor is hired in period t − 1, I specify a wage that incorporates only time t − 1 information. The

reason that labor is pre-hired in my setting is that otherwise, one could potentially learn with certainty
the current level of productivity growth gt simply by observing the current labor wage. By making labor
predetermined, the current wage reflects merely gt−1, which is already known to the firm at time t.
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demand shock zi,t, that evolves according to an AR(1) process:

zi,t = (1− ρz)z0 + ρzzt + σzεi,z,t,

where the innovation is conditionally homoscedastic, and εi,z,t ∼ N(0, 1). The second id-

iosyncratic shock, εi,l,t, is a shock to the efficiency of labor. It is assumed to be a latent i.i.d.

shock across time and across firms, with εi,l,t ∼ N(0, 1). This conditionally homoscedastic

shock captures disturbances to the efficiency of the labor force, that are unobserved to the

firm, such as time-varying levels of focus, tiredness and motivation that may affect a human

resource.

The production technology of firm i at time t is therefore given by:

yi,t = G1−α
t zi,tk

α
i,t(gtli,t + σlεi,l,t)

ν−α, (3.1)

where ν ∈ (0, 1) is the the total returns to scale. This specification is similar to that used

in Van Nieuwerburgh and Veldkamp (2006), but augmented to support labor and growth.

It is a reduced-form production function that captures a very basic notion: bigger firms

who acquire more labor, and have a higher economic activity, have a higher loading on the

aggregate TFP growth gt, and enjoy a preferable signal to noise ratio, as illustrated next.

This assumption can be motivated explicitly by breaking the total labor time stock li,t into

operating time-units (hours), each of which provides another signal on the aggregate TFP

shock. Below I outline briefly a microfounded explanation for the emergence of such a

production function.

Suppose that each firm operates by hiring its labor force to work for li,t hours. For moti-

vational purposes think of li,t as discrete. The productivity of the labor force, per hours

ℓ ∈ [1..li,t], varies. As mentioned earlier, this assumption captures the effect of time-varying

tiredness, or motivation. Specifically, in every hour ℓ, the labor force productivity, in labor

efficiency units, is gt + σlηi,ℓ,t, where gt is the aggregate shock of the labor augmenting
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technology, and ηi,ℓ,t is an idiosyncratic efficiency shock, independent over firms and hours,

and distributed N(0, 1). All ηi,ℓ,t shocks are latent, and so is gt.

By integrating over all hours, the firm’s total labor input, in efficiency units can be written

as: gtli,t + σl
√
li,tεi,l,t, where εi,l,t ∼ N(0, 1). To make sure that all shocks are explicitly

homoscedastic, I choose to solve a version of the model in which the labor efficiency is

simply gtli,t + σlεi,l,t, as specified in equation (3.1)7.

It is assumed that neither the current aggregate productivity growth gt, nor the additive

idiosyncratic productivity shock to labor εi,l,t is observed by the firm. Firms learn about

the state of the economy, that is on gt, by receiving two types of signals. The first signal,

is the firm’s own privately observed idiosyncratic output. Rewriting the firm’s output as a

signal on gt, one obtains:

si,t =
1

li,t

(

yi,t

G1−α
t ztkαi,t

)( 1
ν−α)

= gt +
σl
li,t
εi,l,t. (3.2)

Thus, the precision of the private signal is l2i,tσ
−2
l , which is time varying and increases with

the amount of labor the firm rents. This assumption makes some intuitive sense: bigger

firms have better access to information due to more operating branches, and access to

different segments of the market. The firm’s output can be written in terms of the observed

signal: yi,t = G1−α
t zi,tk

α
i,t(si,tli,t)

ν−α.

The second signal, which is analyzed next, is the publicly observed level of lagged aggregate

productivity growth gt−1. It is assumed that as the firm lives on an island, the only infor-

mation its manager observes is what is shipped by its owner. In other words, each firm can

observe aggregate productivity, sent from its owner to the island, and all other aggregate

quantities or prices without restriction, in a lag of one period.

7Solving a version of the model in which εi,l,t is pre-multiplied by σl
√

li,t yields quantitatively very
similar results.
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With a mass of firms, the assumption that aggregate consumption growth, or output growth

are fully observed by the firm in a one-period lag, is equivalent to assuming that gt−1 is

observed in a lag with certainty. The intuition is that at the aggregate level, all idiosyn-

cratic shocks are diversified, thus fully revealing aggregate productivity growth. Aggregate

consumption growth at time t, for instance, would be a function of gt and the distribution of

capital and labor. Assuming that the distribution of capital becomes known to the manager

in a lag, once the distribution of resources is fixed, consumption is monotonically increas-

ing with gt. Hence, one can find a one-to-one mapping between aggregate consumption

growth level, and gt, conditioning on the distribution of capital and labor. The conclusion

is therefore that observing aggregate real quantities in a lag does not provide any further

information on today’s gt, beyond observing gt−1 directly, which is sent to the firm at the

beginning of period t.

By equation (3.3.1), gt−1 can be perceived as a public signal on gt with fixed precision, where

the mean of the signal is (1− ρg)g0 + ρgt−1 and the precision is σ−2
g , by the assumption of

homoscedastic shocks. As firms cannot obtain any information on the current level of gt

that is not contained in gt−1, this public signal determines the common prior for all firms

on gt, at the beginning of the period.

At the beginning of each period, the firm first produces using its capital and labor stocks

that are predetermined in the last period. Then, using the public signal gt−1, and using

its own private idiosyncratic signal (its output, or alternatively si,t), it forms a posterior

belief on what today’s level of gt is. Using this belief, the firm picks its level of next period

capital ki,t+1, that is, the firm chooses its investment level, and also hires its next period

labor force, li,t+1.

The private and the public signals the firm obtains can be collapsed into one posterior

belief, that weights the private and the public information with their respective relative

precisions. By Bayes rule, the weight the firm will put on the private signal si,t, and on the

public signal, are given by:
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wprivate,i,t =
l2i,tσ

−2
l

l2i,tσ
−2
l + σ−2

g
; wpublic,i,t = 1− wprivate,i,t. (3.3)

In bad times, when aggregate TFP growth is smaller, li,t is on average smaller as firms

optimally choose to scale down, invest less, and hire less labor. Consequentially, expression

(3.3) demonstrates that the firm puts more weight on the public information in recessions,

and less on its own idiosyncratic signal. Thus, posterior beliefs are becoming more correlated

among firms in recessions, triggering a higher correlation between the policies of firms, and

contributing to a higher aggregate volatility.

The manager is trying to maximize the firm’s value, given his own public and private

information. The information set of the manager at the beginning of the period t, right

after producing, is given by: ki,t, the firm’s capital, li,t, the firm’s labor, si,t, the productivity

signal obtained from the firm’s private output, gt−1, the public signal, and lagged level of

aggregate productivity Gt−1. Given this information set, the manager solves the following

maximization problem:
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Vi,t(ki,t, li,t, Gt−1, gt−1, si,t, zi,t) = maxki,t+1,li,t+1
G1−α

t zi,tk
α
i,t(si,tli,t)

ν−α − wtli,t − Ii,t

−ΦL(li,t, li,t+1)

+βEt[Vi,t+1(ki,t+1, li,t+1, Gt, ĝt, si,t+1, zi,t+1)]

s.t.

ki,t+1 = (1− δ)ki,t + Λ(
It
kt
)

Λ(i) =
α1

1− 1
ζ

(i)1−
1
ζ + α2

ΦL(li,t, li,t+1) = Gt

κ

2
(li,t+1 − li,t)

2

wt = Gt−1w

Vi,g,t = [
1

σ2
g

+
l2i,t
σ2
l

]−1

µi,g,t = Vi,g,t[
1

σ2
g

((1− ρg)g0 + ρggt−1) +
l2i,t
σ2
l

(si,t)]

ĝt = µi,g,t +
√

Vi,g,tεi,µ,t; Gt = Gt−1gt−1

si,t+1 = [(1− ρg)g0 + ρg ĝt + σgεg,t+1] +
σl

li,t+1
εl,t+1

εi,µ,t = (gt − µi,g,t)/Vi,g,t ∼ N(0, 1), (3.4)

where µi,g,t and Vi,g,t are the posterior mean and variance (uncertainty) of the belief on gt.

ĝt, the stochastic belief on gt, is defined as ĝt = µi,g,t + (gt − µi,g,t) = µi,g,t +
√
Vi,g,tεµ,i,t,

where εµ,i,t ∼ N(0, 1). When computing the continuation value, the manager uses his

belief ĝt to project the evolution of all variables that are contingent on gt, including future

aggregate and private signals.

3.3.3. Household

There is one infinitely lived representative household in the economy, that holds all firms,

and exerts utility from a consumption stream of Ct. It is assumed that the household is

risk neutral. The time discount rate of the household is β. The household derives income

from dividend payments from its diversified portfolio of corporate stocks.
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After firms produce, and ship back their dividend to the household, the representative

household gets to observe the output of all firms, comprising together a mass of signals

{si,t|i ∈ [0, 1]} on gt with finite precisions. As a result, the household becomes perfectly

informed about aggregate productivity growth by the end of period t, and consequentially,

she sends the recovered gt to the managers at the beginning of period t + 1. In other

words, fully learning the value of gt by the household occurs at the end of the period. This

assumption captures the notion that collecting the data from a mass of individual firms, and

analyzing it to extract productivity growth requires some time and effort. This assumption

also ensures that the household information regarding the fundamentals, at the beginning

of period t when prices are set, is not better than that of the managers who operate on the

islands. The information set of the household, at the beginning of period t is therefore any

aggregate real quantity shipped back from the firms, including aggregate output, capital,

and labor growth rates, and lagged aggregate productivity.

3.3.4. Equilibrium

An equilibrium is comprised of capital and labor policies for each firm i ∈ [0, 1], k∗i,t+1 and

l∗i,t+1, and firm valuations Vi,t, such that:

1. Given the information set of the manager, the policies k∗t+1 and l∗t+1 solve the firm

problem in (3.4).

2. Markets clear: aggregate consumption satisfies, Ct =
∫

i∈[0,1] yi,t − I∗i,t.

3. The valuation of a firm i is given by Vi,t.

3.4. Data and Volatility Measures

3.4.1. Data

I collect both annual and quarterly data on real macroeconomic aggregate growth rates,

from 1946 to 2013. Annual time-series are used for calibration purposes, while the higher
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frequency quarterly time-series are used for the construction of aggregate volatility mea-

sures. While some aggregate time-series span longer into pre-war era, I use only postwar

data to ensure that all aggregate time-series correspond to the same time span, given the

availability of the data. Consumption and output data come from the Bureau of Economic

Analysis (BEA) NIPA tables. Consumption corresponds to the real per capita expenditures

on non-durable goods and services and output is real per capita gross domestic product.

Quarterly time-series are seasonally adjusted. Data on capital and investment are taken

from the Flow of Funds for all private non-financial corporate businesses. Capital corre-

sponds to total assets, and investment corresponds to total capital expenditures8. CPI

data are taken from the Federal Reserve Bank of St. Louis. The real per-capita growth

rate of capital, is computed by dividing capital by the mid-point population estimate from

NIPA tables, and subtracting inflation obtained from CPI data. Annual and quarterly Data

on Average Weekly Hours of Production per worker are taken from the Bureau of Labor

Statistics (BLS). Data on TFP growth are obtained from the San-Fransisco Federal Reserve

Bank. All aggregate growth time-series, including investment to capital ratio, are in log

form.

To obtain cross-sectional data, for the purposes of constructing cross-sectional volatility and

between-firm correlation measures, I use quarterly Compustat data. To construct a cross-

sectional menu of assets, I group Compustat firms into industry portfolios. I choose to work

with industry portfolios, instead of firm-specific data, as this reduces the amount of noise

and measurement error in each individual asset time-series, and mitigates biases that may

result from entry and exit of firms. Notice further, that there are no shifts of individual firms

between portfolios over time. Industry portfolios are formed using the SIC code definitions

as in Fama-French Data Library, for 38 industry portfolios. I exclude financial and utility

industry firms from the sample, and hence, left with 31 industry portfolios. I use sales,

capital expenditures, and total assets as proxies for firms’ output, investment and capital.

8Though there are other suitable variables to measure investment, the use of capital expenditures allows
better comparison to Compustat data in which capex is also available.
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Industry levels of output, investment, and capital are therefore defined as the sum of the

total sales, capex, and assets levels, for all firms within the industry at time t. Industry

sales, total assets, and capital expenditures time-series begin at 1966-Q1, 1975-Q1, and

1985-Q1, respectively. Prior to these starting dates, some portfolios, or all, have missing

observations. All industry time-series end at 2013-Q4. As data are quarterly, they exhibits

strong seasonality. I remove seasonality from industry level time-series, by using X-12-

ARIMA filter at the quarterly frequency. The real growth rates of the seasonally adjusted

time-series are then computed by subtracting the quarterly inflation rate.

3.4.2. Measurement of Aggregate and Cross-Sectional Conditional Volatilities

To measure the conditional volatility of an aggregate time-series, in the data or in the model,

we first need to specify the information set of the econometrician at time t. To ensure

the construction of the conditional volatility in the data is identical to the construction

procedure within the model, I assume that the information available to the econometrician

is the same as the information set available to the household at time t. Differently put, our

household, who collects the data from individual firms, and publishes aggregate quantities,

is the econometrician.

Let ∆Xt be the log growth of some aggregate time-series (∆Xt = log( Xt
Xt−1

)). To compute

the conditional volatility Vt(∆Xt+1), I follow two steps. First, I remove the conditional

mean of the time-series by projecting future ∆Xt+1 on a set of time t predictors Zt:

∆Xt+1 = b0 + b′xZt + εx,t+1, (3.5)

where εx,t+1 captures the conditionally demeaned, or innovation time-series of ∆Xt. Second,

I project future squared innovations on their own lag, and the same set of time t predictors

Zt:

ε2x,t+1 = ν0 + ν ′x[ε
2
x,t, Zt] + error, (3.6)

and take the fitted value of the projection above as the ex-ante conditional volatility of

161



∆Xt+1, that is, Vt(∆Xt+1) = ν0 + ν ′x[ε
2
x,t, Zt]. In the benchmark implementation of the

above procedure, both in the model and in the data, the set of the benchmark predictors Zt

includes real aggregate log output growth ∆Yt, real aggregate log capital growth ∆Kt, real

aggregate log labor growth ∆Lt, real aggregate log investment to capital ratio I/Kt, and

the log lagged productivity growth rate. This information set is equivalent to all aggregate

variables that are observed by the household at the beginning of period t. Although this

information set is log-linear in the underlying state variables, I find that it maximizes the

Akaike Information Criterion of projection (3.5), and the results are robust to the inclusion

of higher order powers of the underlying aggregate state variables.

Similarly, let ∆xi,t be the log growth of some single-firm (indexed by i ∈ [1, ..., N ]) time-

series (or alternatively, some single-industry portfolio i time-series in the data), where N

is the number of individual assets in the sample. To measure the conditional volatility

of a one-firm i time-series, I follow a similar procedure. At the firm stage, I remove the

conditional mean of the one-firm time-series by projecting future one-firm growth rates on

their own lag and the set of predictors Zt:

∆xi,t+1 = bi,0 + b′i,x[∆xi,t, Zt] + εi,x,t+1. (3.7)

Next, the ex-ante conditional one-firm i volatility V one−firm
t (xi,t+1) is the fitted value of

the predictive projection:

ε2i,x,t+1 = νi,0 + ν ′i,x[ε
2
i,x,t, Zt] + error. (3.8)

Measuring the conditional covariation between two firms’ time-series, ∆xi,t and ∆xj,t (i, j ∈

[1, .., N ]), involves a two-stage procedure, consistently with the conditional volatility mea-

surements. First, the conditional mean is removed from ∆xi,t and ∆xj,t, by applying the

projection (3.7) twice: once for firm i, and once for firm j. The first stage provides two

demeaned (innovation) time-series εi,x,t and εj,x,t. Second, I project the interaction of future
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firm i and firm j shocks, εi,x,t+1εj,x,t+1, on its own lagged value, and the set of predictors

Zt:

εi,x,t+1εj,x,t+1 = c0 + c′x[εi,x,tεj,x,t, Zt] + error, (3.9)

The ex-ante conditional covariation, is obtained from the fitted value of the above projection:

COVt(∆xi,t+1,∆xj,t+1) = c0 + c′x[εi,x,tεj,x,t, Zt].

Lastly, the dispersion of a growth variable ∆x, at time t, is directly computed as the cross-

sectional variance of {∆xi,t|i = 1..N}, that is: DISPt(∆xt) = Vn(∆xi,t). The residual

(or ex-post) dispersion of a growth variable is defined as the cross-sectional variance of the

innovations {εi,x,t|i = 1..N} at time t, or: DISPt(εx,t) = Vn(εi,x,t).

3.5. Calibration and Unconditional Moments

3.5.1. Parameter Choice

Table 3.1 reports the parameters that I use for the benchmark calibration of the model,

under risk neutrality. The model is calibrated at a quarterly frequency. Some choices of

the production parameters are dictated by standard choices in macroeconomics. I set the

degree of returns to scale to η = 0.9 consistent with Basu and Fernald (1997) and Gomes

et al. (2009). The elasticity of capital input is α = 0.22, generating a capital share of

output α
ν of approximately 25%, and a share of labor of 75%. I select a depreciation rate

of capital to be a conservatively standard value of δ = 2%, or an effective rate of 8.2% at

an annual frequency, consistently with the annual depreciation rate of capital in the data.

This depreciation rate yields an annual investement-to-capital ratio of about 10%, which is

comparable with the data.

The key parameters that affect the learning ability are the standard deviations of aggre-

gate productivity and noise shocks. The standard deviation of aggregate productivity shock

determines the amount of prior uncertainty a manager has regarding today’s level of produc-

tivity growth gt. I set the standard deviation of aggregate productivity shock at a relatively
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high value for quarterly frequency, of σg = 0.02. Calibrating this parameter at lower, more

conservative value, reduces the ability of the model to amplify conditional volatilities via

learning, as the prior uncertainty becomes too small to provoke a significant impact.

The standard deviation of aggregate productivity is given by
√

σ2g/(1− ρ2g), where ρg is the

autocorrelation parameter of aggregate productivity. To ensure this standard deviation is

not too high (in the presence of high σg), I then need to pick a relatively small value for ρg.

I set ρg = 0.5, which then implies a standard deviation of 2.3% for aggregate productivity.

While this standard deviation is still high, setting ρg at significantly lower values then

implies uncrealistically low autocorrelations for real growth rates in the model.

Since the autocorrelation parameter is now relatively low, while the standard deviation

of aggregate productivity is large, I smooth consumption and output growth using the

adjustment costs parameters. I set the adjustment cost parameter of capital to ζ = 1.2,

comparably with ζ = 0.8 in Kung and Schmid (2014). The adjustment cost of labor is

set to κ = 7. These adjustment costs facilitate targeting the standard deviation of output

growth, and the autocorrelation of consumption and output growth rates. Notably, the

adjustment costs for labor are quite large. I introduce this adjustment cost, to target the

autocorrelation of consumption. It is crucial in the absence of consumption smoothing in a

risk neutral setup.

The standard deviation of the labor efficiency (noise) shock σl, governs the posterior un-

certainty a manager has regarding today’s level of productivity growth gt. Consequentially,

this parameter governs the amplification of the conditional volatility of real quantities in

bad times. Naturally, a choice of noise close to zero yields no amplification at all, as we are

back in a perfect information case. I pick σl = 0.265, to target the increase in consumption’s

conditional volatility in bad times.

I set the (gross) growth of aggregate productivity g0 to 1.005, ensuring that annual con-

sumption growth is approximately 2%. In a risk neutral setup, the discount rate parameter
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β must satisfy βg0 < 1, to ensure that the detrended value function is a contraction. I

therefore pick a value of β = 0.994. This implies an annual real risk free rate of slightly

above 2%.

As wages are exogenously specified, I set the (detrended) wage for labor as a numéraire,

with w = 1. Lastly, the idiosyncratic demand shock parameters σz = 0.01 and ρz = 0.9 are

set to approximately match the correlation between output and investment-rate dispersions

with the business cycle (that is, with TFP growth).

3.5.2. Model Numerical Solution and Implications for Unconditional Aggregates

I solve the model using a second order perturbation method, as in Judd (1998)9. To solve

the model, I detrend the growing model variables by the lagged value of the stochastic

productivity trend. Details regarding detrending the firm problem, are provided in the

Appendix. I simulate the model at the quarterly frequency for 100,000 quarters, after

truncation to remove dependence on initial values. I simulate a cross section of 10,000

firms, to ensure that all idiosyncratic shocks are diversified at the aggregate level. Aggregate

model-implied level time-series, of capital, labor, output, consumption and investment, are

obtained by averaging the respective firm-level quantities over all firms.

To facilitate the comparison between the benchmark model (with Bayesian learning) and

the data, I also solve a version of the model without any learning. This no-learning model

specification is identical to the learning model. Namely, the production function including

the labor efficiency shock, the evolution of capital, and the adjustment costs are the same,

except for the fact that the firm knows every period the true value of gt (zero prior and

posterior uncertainty). The calibration used for the no-learning model is identical to that

used for the benchmark learning model, and is specified in Table 3.1.

I report the model-implied unconditional moments of aggregate consumption, output, labor,

and capital log-growth rates and the log aggregate investment-to-capital rate, versus their

9Solving the model using third-order perturbation method yields similar results.
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empirical counterparts in Table 3.2. The simulated quarterly model-implied time-series is

time-aggregated to form annual observations, to be compared with the annual data.

For the most part, the moments implied from the model with learning, are close to or match

their empirical estimates. The growth rates of aggregate consumption, capital, and output

are all roughly 2% in the model and in the data. Log investment-rate is slightly higher

in the model than in the data (-2.31 in the model versus -2.91 in the data). The model-

implied volatilities align generally well with the data. The volatility of output growth is

about 3% in the model and in the data. The volatilities of labor growth and investment-rate

and close to their empirical counterparts. Consumption growth has excess volatility in the

model (3.1% and 1.4% in the model and data, respectively). However, in the long same of

1930-2012, consumption growth’s volatility is 2.2%, and the upper-bound of its volatility

90%-confidence interval of 2.6%, which is much closer to the model. Capital growth is less

volatile in the model than the data, due to the effect of adjustment costs, that compensate

for the lack of consumption smoothing.

The learning model implied autocorrelations of consumption, output and labor growth fall

into the data 90%-confidence intervals. Labor growth is much more persistent in the model

at the annual frequency, yet at the quarterly frequency this problem vanishes. In the model,

the quarterly auto-correlation of labor is 0.11, and in the data the quarterly auto-correlation

of labor growth is 0.23 with a confidence interval of [0.048, 0.419]. Likewise, capital growth

is overly persistent in the model. However, the upper-bound of the 90%-confidence interval

for quarterly capital growth autocorrelation is 0.75, which is closer to the model quarterly

autocorrelation of 0.94. In all, the model is capable of producing reasonable unconditional

aggregate moments, in-light of the absense of risk-aversion.

While I do not target any moment implied by the no-learning model (this model bears

the same calibration as the learning model for comparative reasons), the no-learning model

produces similar moments to the learning model. The volatilities in the no-learning model

are slightly higher. This makes intuitive sense: in the no-learning model, all firms share
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the same belief on the state of the economy, or aggregate TFP growth. As “beliefs” in

the no-learning model are perfectly correlated, this increases the correlation between firms

policies, in-comparison to the learning model in which beliefs are heterogeneous. As a result

of a higher unconditional correlation between firms, aggregate volatilities are higher.

3.6. Results

This section illustrates the implications of the learning model for aggregate and cross-

sectional volatilities, in a risk-neutral environment. In section 3.6.1, I show how the learning

model is capable of amplifying fluctuations in the conditional volatility of aggregate growth

rates, while the no-learning model, produces minute changes in the conditional volatility,

which is the main result of this study. Sections 3.6.2 and 3.6.3 are dedicated to decompose

the aggregate volatility movements into firm-level volatility and cross-sectional correlation

fluctuations. I demonstrate the importance of the endogenous, time-varying correlation

channel to produce endogenous shifts in aggregate volatility. Next, section 3.6.4 provides

evidence that it is the combination of Bayesian learning, along with asymmetric information,

that is responsible for the countercyclical correlation between the growth rates of firms, in-

line with the model’s economic narrative. Section 3.6.5 explains how non-linearities in

the measurement of volatility, can produce small fluctuations in the measured conditional

volatility under a homoscedastic environment. This section illustrates that the no-learning

model is isomorphic to a constant conditional volatility world. Section 3.6.6 demonstrates

that dispersion in the learning model is by large countercyclical, in spite of an increase in

the conditional correlations in bad times, and reconciles the two. Finally, section 3.6.7 deals

with the robustness of the results.

3.6.1. Implications of Learning for Aggregate Conditional Volatility

The learning model is capable of generating fluctuations in the conditional volatility of ag-

gregates, that are much larger than those produced by a no-learning model, and are also

comparably close to the magnitude of fluctuations observed in the data. Table 3.3 demon-
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strates this claim. The table shows by how much the conditional volatility of macroeconomic

variables of interest, increases or decreases, in bad times compared to normal periods. Like-

wise, the table shows the fluctuations in the conditional volatility in good times compared

to normal ones. Bad, normal and good times refer to periods is which the aggregate TFP

growth is between its 0-25th, 25-75-th, and 75-100th percentiles, respectively. The table

presents the volatility fluctuations induced by quarterly data from the learning benchmark

model, as well as from a no-learning model, and empirical estimates of the fluctuations in

the data.

In the data, the conditional volatility of real macroeconomic variables is clearly counter-

cyclical. For all variables, including output and consumption growth, the volatility is higher

(lower) in bad (good) times, in comparison to normal times. For all variables, except for the

investment rate, the rise (drop) in the conditional volatility in bad (good) times is signifi-

cantly above (below) zero, as can be seen from the confidence intervals. The magnitude of

the positive (and significant) fluctuations in volatility in bad times ranges from an increase

of 30% to 56%. Specifically, the estimated increase in output’s (GDP) conditional volatility

in bad times is about 30%. This figure aligns well with Bloom (2014), who finds that quar-

terly GDP and industrial production growth, has about 35% more conditional volatility in

NBER recessions.

In the learning model, almost all of the oscillations in the conditional volatility in good

and bad times for the variables of interest, fall into the empirical 90% confidence intervals.

For some variables the fluctuations induced by the model are very close to the data point-

estimates. For example, capital’s growth volatility rises in bad times by 57% and 56% in

the model and in the data, while it drops in good times by 41% and 47% in the model

and the data. Consumption growth’s volatility increases in bad times by 29% in the model

versus 32% in the data, and it falls in good times by 20% and 14% in the model and the

data, respectively. For the investment rate, the model tends to overstate the fluctuations

in volatility, compared to the data. In the learning model, the magnitude of the positive
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fluctuations in volatility in bad times ranges from an increase of 29% to 58% 10.

By contrast, the no-learning model-implied volatility oscillations are muted, not only in

comparison to the learning model, but also in comparison to the data. The positive fluc-

tuations in volatility during bad times range from an increase of 1.8% to 4.3%, outside the

data confidence intervals. Similarly, the fluctuations in good times are mixed in sign, and

range from -1.5% to 0.76%.

Two questions arise. First, and most importantly, what triggers the large volatility fluctu-

ations in the learning model? This questions is addressed in the following sections 3.6.2 -

3.6.4. Second, why are the volatility fluctuations in the no-learning model very small, and

yet, non-zero? I provide an answer in section 3.6.5.

3.6.2. Implications of Learning for Average Between-Firm Conditional Covariation

The fluctuations in the conditional volatility of aggregates in the model, reported in Table

3.3, capture movements in the average conditional covariation between firms.

To see this, notice that if X is an aggregate variable, xi is a firm level (single-firm indexed

by i) variable, and N is the number of firms in the cross-section, then:

Vt(Xt+1) = Vt(
1

N

N∑

i=1

xi,t+1)

=
1

N2





N∑

i=1

Vt(xi,t+1) + 2
N∑

i=1

N∑

j=i+1

COVt(xi,t+1, xj,t+1).



 (3.10)

Denote the average conditional one-firm volatility as V one−firm
t (xi,t+1) = σ2ii,t (all firms are

ex-ante identical), and the average conditional covariation as COVt(xi,t+1, xj,t+1) = σij,t.

10The learning model is also capable of generating fluctuations in the conditional volatility of aggregate
labor growth. For example, the conditional volatility of aggregate labor growth rises by 63% in the model,
and by 75% in the data.
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Then, the expression in (3.10) can be written as:

Vt(Xt+1) =
1

N2

(
Nσii,t

2 +N(N − 1)σij,t
)
. (3.11)

With a mass of atomistic firms, N → ∞ and Vt(Xt+1) → σij,t
11. That is, the aggregate

volatility equals the average between-firm covariation. This claim therefore implies that the

aggregate volatility oscillations in Table 3.3, are driven by fluctuations in the conditional

covariation.

While this claim is straightforward algebraically, I provide direct evidence that this claim

holds in the model. I construct a measure of the changes in the (average) conditional pair-

wise covariation between firms in the model (and data). The methodology of constructing

the pairwise covariation is described in section 3.4.2.

Table 3.4 shows by how much the conditional between-firm pairwise covariation of variables

of interest, increases or decreases, in bad times, and in good times, compared to normal

periods. As in the previous section, bad, normal and good times refer to periods is which the

aggregate TFP growth is between its 0-25th, 25-75-th, and 75-100th percentiles, respectively.

The table presents the covariation fluctuations from the learning model, and empirical

counterparts.

In the model, the changes in the covariation as reported in Table 3.4, coincide with the

fluctuations in aggregate volatility reported in Table 3.3. All oscillations are identical, up

to the units digit. Notice that the fluctuations in Table 3.3 are based on aggregate time-

series only, while fluctuations in Table 3.4 are computed using firm-level data only. This

11Equation (3.10) is an approximation when the aggregate variable X is a growth rate, not a level. The
exact decomposition for growth rates is as follows:

Vt(∆Xt+1) = Vt(

N
∑

i=1

wi,t∆xi,t+1),

where wi,t =
xi,t

∑
N
j=1

xj,t
. Hence, the aggregate volatility of a growth rate converges to the average “value-

weighted” covariation between-firms. When firms are atomistic, this equals approximately to the “equal-
weighted” covariation between-firms.
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exercise demonstrates that the methodology used in this study to measure the unobserved

ex-ante conditional volatility and covariation satisfy equation 3.11. In unreported results,

I verify that the conditional aggregate volatility fluctuations in the no-learning model, are

also identical to the oscillations in covariations.

In the data, the fluctuations in the conditional covariations are countercyclical: covariation

rises in bad times, and drops in good times. Perhaps surprisingly, the fluctuations in

the empirical pairwise covariations, are very close in magnitude to the fluctuations in the

empirical aggregate volatility. For example, the conditional volatility of aggregate output in

the data rises by 29.8% in bad times, while the increase in the average covariation between

firms’ outputs in those periods is 28.9%. Similarly, the empirical conditional volatility of

aggregate capital growth, and the conditional covariation of capital growth rates, rise by

56.2% and 55.8%, respectively. Given that in the data some firms are non-atomistic, as

illustrated in Gabaix (2011), the similarity of the figures is non-trivial.

What causes the conditional covariation to rise in bad times, and drop in good times? The

next section provides an answer.

3.6.3. Aggregate Volatility Decomposition: Implications for Average Conditional Correla-

tions

Sections 3.6.1 and 3.6.2 show that the conditional aggregate volatility is countercyclical in

the learning model, due to an increase in the conditional covariation between firms in bad

times. In this section, the aggregate volatility (or average covariation) is decomposed into

firm-level volatility and average between-firm correlation. This decomposition yields that:

A. In the model without learning, the fluctuations in the conditional volatility of aggre-

gates (or alternatively, in the conditional between-firm covariation), are purely due to

small changes in the conditional one-firm volatility. The average correlation between

firms is fixed.
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B. In the model with learning, the fluctuations in the conditional volatility of aggregates

(or alternatively, in the conditional between-firm covariation), are largely due to shifts

in the conditional correlation between firms, that rises in bad times.

Let xi be a firm-level variable. Denote, as before, the average conditional one-firm volatility

as V one−firm
t (xi,t+1), and the average conditional correlation between firms as

CORRt(xi,t+1, xj,t+1). Using equation (3.11), the volatility of the aggregate variable X can

be decomposed as:

V agg
t (Xt+1) ≈ COVt(xi,t+1, xj,t+1) = V one−firm

t (xi,t+1) · CORRt(xi,t+1, xj,t+1).

As a consequence, the oscillation in aggregate volatility between bad and normal times is

equal to the fluctuation in firm level volatility multiplied by the fluctuation in the average

between-firm correlation, between bad and normal times:

Vt(·|Bad)

Vt(·|Normal)
≈

V one−firm
t (·|Bad)

V one−firm
t (·|Normal)

·
CORRt(·|Bad)

CORRt(·|Normal)
. (3.12)

A similar decomposition can be made for good versus normal period oscillations. Thus, if

the fluctuations in the aggregate volatility are very close to those in the one-firm volatility,

there are no fluctuations in the conditional correlation. However, if the fluctuations in

aggregate volatility differ from the one-firm volatility movements, this indicates shifts in

the conditional correlation between firms.

Tables 3.5 and 3.6 respectively show by how much the average one-firm conditional volatility,

and the average between-firm correlation of variables of interest, fluctuate in bad times and

in good times compared to normal periods. As before, bad, normal and good times refer to

periods is which the aggregate TFP growth is between its 0-25th, 25-75-th, and 75-100th

percentiles, respectively. The tables present oscillations induced by model-implied quarterly

data from the learning benchmark model, and from a no-learning model.
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Comparing the figures of Table 3.3 and Table 3.5 in the no-learning case, reveals that the

fluctuations in the aggregate and one-firm volatility are small and roughly the same. As a

result, the fluctuations in the average conditional between-firm correlations are minuscule,

as illustrated in Table 3.6.

In contrast, comparing Tables 3.3, 3.5 and 3.6 in the learning case, demonstrates that

the one-firm volatility fluctuations are amplified by a counter-cyclical movement in the

conditional correlation between firms. The conditional correlation between firms’ outputs

rises by 32% in bad times, and drops by 29% in good times. For investment rate, the

conditional correlation increases (drops) by 27.5% (28.8%) in bad (good) times. In fact,

for output growth, about 90% of the increase in the conditional aggregate volatility in bad

times is attributed to an increase in the conditional correlations. For capital growth and

the investment rate, the oscillation in the conditional correlation explains about 80% of

the contemporaneous increase in the aggregate volatility. These numbers are comparable

to the findings of Veldkamp and Wolfers (2007), who decompose (unconditional) aggregate

volatility into sector specific volatility, and comovement of sectors, and attribute about 80%

of aggregate volatility to the comovement term.

3.6.4. The Role of Bayesian Learning and Asymmetric Information for Correlation Fluc-

tuations

The fluctuations in the conditional correlations between firms, that drive the conditional ag-

gregate volatility in the learning model, are a result of the Bayesian learning and Asymmet-

ric information: in the bad states, firms put more weight on public (common) information,

and less on private (idiosyncratic) information. An increase in the correlation between the

posterior belief of firms, triggers policies that comove more, and making aggregate growth

rates more volatile. The Tables in this section provide evidence in support of these claims.

First, I solve a modified learning model, having the same calibration as the benchmark

learning model, but in which the (noise) shocks to labor efficiency, εi,l,t are aggregate shocks.
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In other words, the shocks εi,l,t are i.i.d over time, but the same over all firms, and hence

can be denoted by omitting the i index as εl,t. Now, privately observed signals si,t, obtained

from firms’ output, all have the same ex-port bias (per unit of labor), driven by the aggregate

shock εl,t. Thus, in this model, both the lagged value of productivity growth gt−1, and the

signal si,t obtained from firms’ output, are driven by public-common information shocks.

Importantly, there is still learning: the ex-ante and ex-post uncertainties about gt are

positive, and the weights on the private and public signals are still time-varying with the

amount of rented labor. Yet, as no signal is idiosyncratic, shifts in the weights placed

on the public and the private signals should not trigger significant changes in the average

correlation between firms’ posterior (or policies), as there are no effective informational

asymmetries.

The results of the no-informational asymmetries model, for aggregate volatility and average

correlation fluctuations in bad and good times compared to normal periods, are shown in

Table 3.7. As conjectured, the correlation fluctuations are all close to zero. As a result,

the fluctuations in aggregate volatility are small, and all range between 0.3% to 0.6% in

absolute value. Notice that the speed of learning in this model is procyclical, in a similar

fashion to the model of Van Nieuwerburgh and Veldkamp (2006), yet without asymmetric

information, the model is not capable of producing significant fluctuations in volatility.

Second, suppose the learning model is altered such that there are both public signals (gt−1)

and private signals (si,t, driven by idiosyncratic shocks), but learning is not Bayesian. That

is, I fix the gains (the weights) on the public and private signals at their steady state values.

The posterior mean µi,g,t and variance Vi,g,t on gt satisfy:

µi,g,t = wpublic((1− ρg)g0 + ρggt−1) + wprivate (si,t) ,

Vi,g,t =
{
σ−2
g + l2ssσ

−2
l

}−1
,
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where:

wpublic =
σ−2
g

σ−2
g + l2ssσ

−2
l

, wprivate = 1− wpublic,

and where lss is the steady-state level of labor (ex-ante, it is identical for all firms). In this

model, there is still learning (posterior uncertainty is positive), and there is still asymmetric

information, hence belief heterogeneity. However, since the weight on public common infor-

mation is fixed, in bad times firms do not place, by construction, more weight on common

information. Consequentially, the correlation between firms should not fluctuate. Table 3.8

demonstrates that this is indeed the case. The correlation oscillations between good and

bad times versus normal periods are minuscule, and thus, aggregate volatility fluctuations

are small. The fluctuations in the conditional aggregate volatility are quite close to the no-

learning case, as reported in Table 3.3. For instance, aggregate output volatility increases

in bad times by 4.4% and 4.3% in the Non-Bayesian learning and No-learning models, re-

spectively, while the volatility drops by 1.5% and 2.1% in good times in these two models,

respectively.

Importantly, the oscillations in aggregate volatility in the No-Information Asymmetry model

or in the Non-Bayesian learning models, should not coincide precisely with the no-learning

model results: in both cases there is still some posterior uncertainty that can deviate the

results from the exact full-information case. These two alternated learning model illustrate

the importance of two separate model ingredients: (1) Bayesian leaning, with time varying

gains, and (2) Informational asymmetry.

Next, I solve the benchmark learning model (with Bayesian learning and Asymmetric in-

formation), but calibrated with different standard deviation for the noise labor efficiency

shock (changing σl). All other model parameters are calibrated as in the benchmark cali-

bration outlined in Table 3.1. Panel A of Table 3.9 presents the results for four noise levels:

σl ∈ {0.3, 0.265 “benchmark-level”, 0.2, 0}. Intuitively, the less noise (smaller σl), the closer
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the model is to the no-learning case, and the amplification effect on aggregate volatility in-

duced by average correlation fluctuations become smaller. Aggregate volatility and average

correlation fluctuations, in good and bad times, monotonically decrease in absolute value

with the noise level. In the case where σl = 0, the private signal is perfectly revealing of

the fundamental. As a consequence, the results for the learning and no-learning models

coincide, despite different model first-order-conditions in the two cases, as shown in Panel

B of Table 3.9.

3.6.5. Volatility Fluctuations in the No-Learning Model: Falsification Tests

Table 3.3 shows that the oscillations in the conditional volatility of aggregates between

good and bad states, in the no-learning model are very small, yet non-zero. This section

demonstrates that the small changes in the aggregate conditional volatility in the no-learning

model, are a result of some non-linearities in the econometric construction of the conditional

volatility, mainly the usage log-growth rates, and the usage of squared residuals in realized-

volatility construction. The conclusion is that the no-learning model results do not differ

from results that one would expect to find in a homoscedastic world.

It is hard to isolate a single source of non-linearity that generates small fluctuations in

the aggregate volatility in a no-learning environment. To deal with this issue, I use a

“falsification” test. I verify that constant conditional volatility processes, having the same

unconditional moments as model-implied aggregate variables, yield the same minuscule

fluctuations in the conditional volatility, when using the econometric methodology for the

construction of volatility, as described in section 3.4.2.

Specifically, let log(Xt) be some log aggregate time-series induced from the model. I cali-

brate a process X̃t of the form:

X̃t = (1− ρx)x0 + ρxX̃t−1 + βg(gt−1 − g0) + βg,2(gt−1 − g0)
2 + σxεg,t + σx,2(ε

2
g,t − 1),

where gt−1 is the lagged value of productivity growth, and εg,t are the shocks to productivity
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used in the model simulation. The process X̃t is calibrated such that the process has the

same mean, same standard deviation, same skewness, same correlation with TFP growth,

and same correlation with TFP growth squared, as the original model-implied exponentiated

(level) time-series Xt process
12. Then, I construct the conditional volatility fluctuations for

log(X̃t) time-series, under the econometric methodology of section 3.4.2, while including

the lag of log(X̃) as a predictor.

Notice that: (1) the process X̃t has, by construction, constant conditional volatility; (2)

the shocks to X̃ depend on the shocks to the aggregate TFP only, and are taken from the

model simulation (the only aggregate shock in the model is εg); (3) the process can depend

on the state g in a linear, and non-linear fashion.

The results for aggregate volatility fluctuations, against the no-learning model, are reported

in Panel A of Table 3.10. Two main features arise. First, the fluctuations in the volatility for

the no-learning model time-series and for the matched homoscedastic processes are quite

similar. Second, the fluctuations reported for the matched homoscedastic processes are

small yet non-zero. Non-zero results can arise as I apply the log function on the Gaussian

process X̃, and as the residuals of log(X̃) are squared in the volatility construction. Both

of these are non-linear operations, that introduce some small skewness, which is manifested

in small volatility movements. In unreported results, I notice that when I do not use log-

growth rates, or use absolute residuals (as opposed to squared residuals) in the volatility

construction, the oscillations in the conditional volatility are even smaller.

Next, I repeat the same “falsification” test for the learning model. For each log aggregate

time-series log(Xt) given by the learning model, I calibrate a matched process X̃t, that

has the same unconditional moments as Xt, but constant conditional volatility. Panel B

of Table 3.10 shows that in this case, the fluctuations in the volatility of log(X̃t) are tiny

in comparison to the learning model-implied volatility changes. This fact provides further

evidence that the learning model results are not spurious.

12If log(Xt) is a log aggregate growth time-series, Xt is a gross-growth time-series.
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Finally, I consider another source of non-linearity that stems from within the model: the

decreasing returns to scale technology (ν < 1). Intuitively, a higher ν implies a closer to

linear production function, which then attenuates the non-linearity and the fluctuations in

the conditional volatility, both in a learning and a no-learning environments. In unreported

results, I find that increasing (decreasing) ν reduces (amplifies) the reported conditional

volatility movements.

3.6.6. Implications for Cross-Sectional Dispersion

The volatility implications discussed in the previous sections referred to the conditional

volatility, which is the predictable variation of future shocks. Another concept of volatility

is the cross-sectional variance, or dispersion. This section shows that dispersion in the model

is counter-cyclical, in spite of an increase aggregate volatility and between-firm correlations.

While ostensibly, an increase in dispersion seems to contradict a rise in expected correlation

between firms, I reconcile the two in the data. When the average between-firm covariation

increases more than dispersion does, correlations increase too, as is also the case empirically.

It is a well-known established fact, that the dispersion of real economic outcomes, such as

output growth and earnings growth, is countercyclical (see among others Bachmann and

Bayer (2013), Bloom et al. (2012), and Bachmann and Bayer (2014)). There are a few

exceptions in the data. Recently, the work of Bachmann and Bayer (2014) showed that the

dispersion of investment rate is procyclical.

I construct a time-series of dispersion for log output and capital growth, and investment-

rate in the model using the methodology detailed in section 3.4.2. To measure the amount

of cyclicality of dispersions, I correlate each dispersion time-series with the business-cycle,

namely, productivity growth. A negative correlation indicated counter-cyclical dispersion.

The results for the learning and for the no-learning models, along with empirical counter-

parts are reported in table 3.11.

Empirically, output growth and investment-rate dispersions exhibit a small amount of coun-
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tercyclicality (their dispersion correlates with productivity by -0.03 and -0.05, respectively).

Capital growth dispersion is procyclical, as this is consistent with the finding of Bachmann

and Bayer (2014).

In the learning model, all real growth rates exhibit almost the same amount of slight coun-

tercyclicality. The correlation of investment-rate dispersion with TFP growth is -0.04 in

the model and in the data. Output growth’s dispersion is slightly more countercyclical in

the model than in the data.

The evidence presented for the countercyclicality of dispersion, coincides with the fluctua-

tions in the one-firm volatility in the model. Dispersion, as discussed below, is a measure of

the idiosyncratic one-firm volatility (in the limit, and under certain assumptions, the two

are the same). Since one-firm volatility in the learning model rises in bad times, and drops

in good times, (see Table 3.5) it explains the model-implied dispersion behavior.

The claim that the between-firm correlations rise in bad times, seems to be, at first glance, at

odds with a simultaneous increase in cross-sectional dispersion. The two can be reconciled.

Let {xi,t}i be a cross-section of some variable x time-series. Denote by {εi,x,t}i the cross-

section of demeaned times-series of x, or equivalently, the shocks to xi. In the model, the

average predictable correlation of {εi,x,t+1}i at time t increases in bad periods. Does this

contradict a greater cross-sectional dispersion?

To put some structure into the answer, suppose further that one can find some factor

structure for the demeaned (shocks) time-series. In other words, assume:

εi,x,t = βiFt + ei,t,

where ei,t and ej,t are independent for i 6= j. Assume that V ARt(ei,t+1) = σ2e,t ∀i, and that

V ARt(Ft+1) = σ2F,t. Here, for simplicity, I assume a single common-factor, Ft, in explaining

the residuals of x.
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One can write the conditional correlation between the innovations of firms i and j, as

follows:

CORRt(εi,t+1, εj,t+1) =
βiβjV ARt(Ft+1)

√

β2
i V ARt(Ft+1) + V ARt(ei,t+1)

√

β2
jV ARt(Ft+1) + V ARt(ej,t+1)

=
1

√

1 +
σ2
e,t

β2
i
σ2
F,t

1
√

1 +
σ2
e,t

β2
j
σ2
F,t

As an approximation (or by ignoring β heterogeneity, and denoting the average β as β),

the average pairwise correlation can be expressed as:

CORRt(εi,t+1, εj,t+1) =
1

1 +
σ2
e,t

β
2
σ2
F,t

,

=
1

1 +
σ2
e,t

COVt(εi,t+1,εj,t+1)

.

Using a result from Garcia et al. (2011), the dispersion of the residuals DISP (εx,t) =

V ARn(εi,x,t), is a consistent measure of the idiosyncratic volatility σ2e,t = V ARt(ei,t+1),

assuming that a factor structure that satisfies the standard arbitrage pricing-theory (APT)

assumptions exists. The dispersion provides a consistent measure of idiosyncratic volatility,

without a need to know the actual underlying factor structure.

Suppose that dispersion rises in recessions. The above decomposition reveals that if the

average pairwise between-firm covariation, COVt, which equals to the variation of the un-

derlying factors, (β
2
σ2F,t), increases more than residual-dispersion, (DISP (εx,t) = σ2e,t) does

in bad times, the average correlation increases too in bad times.

The last claim holds in the data, as shown in Table 3.12. The rise in average covariation in

bad times, ranges between 19% to 55%, while dispersion rises by no more than 26%. For all

variables, dispersion’s increase is always less than the point estimate increase of covariation.
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Moreover, dispersion even drops in bad times for some variables.

3.6.7. Robustness

The main result of this study is the ability of the learning model to yield oscillations in

the conditional aggregate volatility that are comparably close to the magnitude of volatility

fluctuations in the data, and are of a much larger scale than those induced from a no-

learning model. I show in this section that this main result is robust to altering some of

the benchmark implementation choices.

Throughout the previous sections, I defined the business cycle (namely, good, normal, and

bad times) using the TFP growth variable percentiles. I consider other economic outcomes

(that vary procyclically) for the business-cycle definition. Table 3.13 reports the aggregate

volatility fluctuations, for the learning model, the no-learning model, and empirically, when

bad, normal and good times are defined as the 0-25th, 25-75th, and 75-100th percentiles of

aggregate output growth. Both in the learning model and empirically, the implied fluctua-

tions in the conditional volatility are quite close to the benchmark result of Table 3.3. The

magnitude of the positive (negative) fluctuations in the conditional volatility in bad (good)

times tend to be larger (smaller) in absolute value when output growth is used to define

the cycle, compared to TFP growth. For the no-learning model, the volatility fluctuations

are still far less pronounced in comparison to the learning model.

Another modification to the definition of good and bad periods are the percentile break-

points. In Table 3.14, I still define the business-cycle using TFP growth, but I use more

extreme definitions for good and bad times. Good (bad) times, are periods in which TFP

growth is between its 90-100th (0-10th) percentiles. Normal times, are periods in which

TFP lies between the 10-90th percentiles. The Table shows that, as expected, this modi-

fication amplifies, in absolute terms, the changes in the conditional volatility both in the

model and in the data. The no-learning model results are largely unchanged. Most of

the learning model-implied volatility oscillations still fall into the empirical 90%-confidence
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intervals.

Lastly, the results are also robust to the predictors used to demean aggregate and firm-level

times series, and obtain the ex-ante volatility time-series. In the benchmark specification,

I use a log-linear set of predictors Z. I show in Table 3.15, that when the squared-values

of the variables in Z are also added as additional predictors, the model-implied results

are almost identical. In the data, adding the non-linear predictors tend to increase the

volatility fluctuations in bad times. Empirically, it also causes volatility to increase by a

small amount in good times (though volatility in general is still counter-cyclical, not U-

shaped). In unreported results, I verify that no-single predictor in the set of predictors Z

is responsible for producing the observed behavior, by dropping a different single predictor

each time, and confirming that there are no significant changes in the results.

3.7. Conclusion

The volatility of aggregate fundamentals, such as output and consumption growth, is time-

varying and increases in recessions. Recent work in macroeconomics and finance has shown

that this volatility is important for recession duration and asset-pricing: it inhibits invest-

ment and recovery, and depresses assets’ valuation-ratios. Traditional models that examine

the impact of volatility on the real and financial economy treat aggregate volatility as an

exogenous object. This paper attempts to fill the gap in our understanding of macroe-

conomic volatility, by proposing a theory of how aggregate volatility arises endogenously

in a decentralized economy. The theory suggests that the correlation structure between

firms is an important source of macro volatility. When firms do not observe the state of

the economy, they learn about it from public information, whose precision is constant over

time, and from private idiosyncratic information - their own output, that become more

noisy in recessions as firms scale down and produce less information. Consequentially, the

correlation in the beliefs of firms about the state of the economy rises in recessions, as firms

scale down and put more weight on public information. As a result, the policies of firms

become more correlated, contributing to a rise in aggregate volatility.
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The study produces some important quantitative results. In the learning model, the con-

ditional volatility of aggregate output rises when TFP growth is low (bad times) by 43%,

and it drops when TFP growth is high (good times) by 32%. These numbers fall into the

90%-confidence intervals for volatility fluctuations in the data. Likewise, aggregate con-

sumption’s volatility increases by 30% in bad times, in the model and also empirically. The

main economic force behind these fluctuations are endogenous shifts in the average between-

firm correlations. The average correlation between firms’ outputs and investment-rates rises

(drops) by about 30%, in absolute value, in bad (good) times. Consquentially, about 80%

of the increase in the conditional aggregate volatility of total output growth, and other

macro-quantities, during slowdowns is attributed to an increase in the conditional correla-

tions. Without Bayesian learning, or when all information is symmetric between firms, the

oscillations in the correlations over time are minute, and are therefore translated to very

small fluctuations in the conditional volatility of aggregates.

183



Table 3.1: Benchmark Calibration

Parameter Symbol Value
Depreciation rate of capital δ 2%
Discount factor β 0.994
Aggregate Productivity:

Growth rate g0 1.005
Autocorrelation of aggregate productivity ρg 0.5
Standard deviation of shock σg 0.02

Idiosyncratic Demand Shock:
Mean of shock z0 1
Autocorrelation of idiosyncratic component ρg 0.9
Standard deviation of shock σz 0.01

Production:
Returns to scale ν 0.9
Elasticity of capital input α 0.22
Adjustment cost for capital ζ 1.2
Adjustment cost for labor κ 7
(Detrended) wage w 1
Standard deviation of labor efficiency shock σl 0.265

The Table presents the benchmark calibration of the learning model, at the quarterly frequency.
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Table 3.9: Fluctuations in the Conditional Volatility of Aggregates and in Average-
Conditional Correlation with the Business-Cycle: Comparison Between Different Noise
Levels

Panel A: Results for A Learning Model - Different Noise Levels
σl = 0.3

Aggregate Volatility Fluctuations Average Correlation Fluctuations
V aggt (·|Bad)

V aggt (·|Normal)
− 1

V aggt (·|Good)

V aggt (·|Normal)
− 1 CORRt(·|Bad)

CORRt(·|Normal)
− 1 CORRt(·|Good)

CORRt(·|Normal) − 1

∆Y 46.25% -37.80% 37.14% -35.26%
∆K 90.41% -76.05% 36.74% -64.09%
I/K 91.83% -77.22% 36.46% -65.17%

σl = 0.2
Aggregate Volatility Fluctuations Average Correlation Fluctuations
V aggt (·|Bad)

V aggt (·|Normal)
− 1

V aggt (·|Good)

V aggt (·|Normal)
− 1 CORRt(·|Bad)

CORRt(·|Normal)
− 1 CORRt(·|Good)

CORRt(·|Normal) − 1

∆Y 12.08% -3.74% 8.33% -2.86%
∆K 39.65% -10.82% 24.02% -4.23%
I/K 40.01% -12.95% 22.80% -4.89%

σl = 0
Aggregate Volatility Fluctuations Average Correlation Fluctuations
V aggt (·|Bad)

V aggt (·|Normal)
− 1

V aggt (·|Good)

V aggt (·|Normal)
− 1 CORRt(·|Bad)

CORRt(·|Normal)
− 1 CORRt(·|Good)

CORRt(·|Normal) − 1

∆Y 4.13% -1.22% 1.61% 0.51%
∆K 1.78% 0.78% 0.02% 0.10%
I/K 3.43% -1.09% 0.04% 0.08%

Panel B: Results for A No-Learning Model - No-Noise Model
σl = 0

Aggregate Volatility Fluctuations Average Correlation Fluctuations
V aggt (·|Bad)

V aggt (·|Normal)
− 1

V aggt (·|Good)

V aggt (·|Normal)
− 1 CORRt(·|Bad)

CORRt(·|Normal)
− 1 CORRt(·|Good)

CORRt(·|Normal) − 1

∆Y 4.13% -1.22% 1.61% 0.51%
∆K 1.78% 0.78% 0.02% 0.10%
I/K 3.43% -1.09% 0.04% 0.08%

The sub-panels in Panel A present a summary of results implied from learning models, identical to the
benchmark learning model, but calibrated with different standard deviation for the noise labor efficiency
shock. All other parameters in the model are calibrated as in the benchmark calibration outlined in Table
3.1. Panel B shows a summary of results implied from a no-learning, but calibrated with zero standard
deviation for the labor efficiency shock. In each sub-panel the two-left (right) most columns show by how
much, in percentages, the conditional volatility of aggregate variables (the average correlation between-
firms) fluctuates in bad and in good times, in comparison to normal periods, for the following variables:
log output growth ∆Y , log capital growth ∆K, and log investment-to-capital ratio I/K. Bad, normal,
and good times refer to periods is which the TFP growth is between its 0-25-th, 25-75th, and 75-100th
percentiles, respectively. The notation V aggt(·|Period) refers to the average conditional aggregate volatility
V aggt (·) of an aggregate variable specified in the left-most column, over all times t belonging to a certain
Period ∈ {Bad,Good,Normal}. Likewise, the notation CORRt(·|Period) refers to the between-firm (pair-
wise) correlation at time t of a firm-level variable specified in the left-most column, {CORRt(·i, ·j)}i,j ,
averaged between all firm tuples (i, j) in the cross-sectional sample, and then time-averaged over all times t
belonging to a certain Period ∈ {Bad,Good,Normal}.
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APPENDIX

A.1. Appendix for Chapter 1

A.1.1. Realized variance asymptotics

Consider a jump-diffusion process yt:

yt =

∫ t

0
µsds+

∫ t

0
σsdWs + Jt, (A.1)

where µs is a locally bounded predictable drift process, σs is a strictly positive càdlàg

volatility process, Jt is a finite activity jump process, and µs, σs, and Jt are adapted to

some common filtration F t.

The realized semivarainces are defined as follows:

RVp,t+1 =
∑N

i=1 I(∆yt+ i
N

≥ 0)∆y2
t+ i

N

,

RVn,t+1 =
∑N

i=1 I(∆yt+ i
N
< 0)∆y2

t+ i
N

.

Barndorff-Nielsen, Kinnebrock, and Shephard (2010) derive the behaviour of this statistic

under in-fill asymptotics, and in particular, they show that:

RVp,t+1
p
→

1

2

∫ t+1

t
σ2sds+

∑

t≤s≤t+1

I(∆Js ≥ 0)∆J2
s ,

RVn,t+1
p
→

1

2

∫ t+1

t
σ2sds+

∑

t≤s≤t+1

I(∆Js < 0)∆J2
s .

Intuitively, the positive (negative) semivariances are informative about positive (negative)

squared jumps.

While the above theory considers jump-diffusion processes, Diop et al. (2013) provide

asymptotic convergence results and Central Limit theorems for the quadratic variations
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of pure jump Itô semimartingales.

A.1.2. Benchmark model solution

In case when ǫi,t+1, i = {g, b}, follows a compensated compound Poisson distribution with

time-varying intensity lt, its log moment-generating function is given by,

logEte
uǫi,t+1 = lt(α(u)− uα′(0)− 1), (A.2)

where α(u) = Ete
uJi,t+1 denotes the moment-generating function of the underlying positive

jumps. The conditional variance of the compound Poisson is given by Vi,t = V artǫi,t+1 =

ltα
′′(0), which implies that its log moment-generating function is linear in its variance,

logEte
uǫi,t+1 = Vtf(u), for f(u) =

α(u)− uα′(0)− 1

α′′(0)
. (A.3)

Because the underlying Poisson jumps are positive, (Ji,t+1 > 0), f(u) is positive, convex,

and asymmetric, so that f(u) > f(−u) for u > 0.1

In case when ǫi,t+1, i = {g, b}, follows a demeaned Gamma distribution with a unit scale and

time-varying shape parameter Vt, Bekaert and Engstrom (2009) show that its log moment-

generating function satisfies

logEte
uǫi,t+1 = Vtf(u), (A.4)

for f(u) = −(log(1 − u) + u). The function f(u) is positive, convex, and asymmetric, so

that f(u) > f(−u) for u > 0.

The solution of the model relies on a standard log-linearization of returns,

rc,t+1 ≈ κ0 + κ1pct+1 − pct +∆ct+1. (A.5)

1To prove asymmetry, note that because jump distribution is positively skewed, f ′′′(u) > 0. This implies
that f(u)− f(−u) is increasing in u, so that f(u)− f(−u) > 0 for u > 0.
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In equilibrium, the price-consumption ratio is linear in the expected growth and uncertainty

factors, as shown by Eq. (1.10). The log-linearization parameter κ1 satisfies the equation,

log κ1 = log δ + (1−
1

ψ
)µc +Agv(1− κ1νg)Vg0

+Abv(1− κ1νb)Vb0

+ θκ21

[
1

2
A2
gvσ

2
gw +

1

2
A2
bvσ

2
bw + αAgvAbvσgwσbw

]

. (A.6)

The real stochastic discount factor is equal to:

mt+1 = m0 +mxxt +mgvVgt +mbvVbt

− λxσx(εg,t+1 − εb,t+1)− λgvσgwwg,t+1

− λbvσbwwb,t+1, (A.7)

where the market prices of risk are specified in Eqs. (1.14)–(1.16), and the loadings on the

state variables are given by,

mx = −γ + (1− θ)(1− κ1ρ)Ax = −
1

ψ
,

mgv = (1− θ)(Agv(1− κ1νg)− κ1Axτg)

=
1− θ

θ
f(θ((1−

1

ψ
)σc + κ1Axσx)),

mbv = (1− θ)(Abv(1− κ1νb) + κ1Axτb)

=
1− θ

θ
f(θ(−(1−

1

ψ
)σc − κ1Axσx)).

Note that we can alternatively rewrite the stochastic discount factor in terms of Vgt + Vbt

201



and Vgt − Vbt, which capture the total variance and skewness of consumption dynamics:

mt+1 = m0 +mxxt +
mgv +mbv

2
(Vgt + Vbt)

+
mgv −mbv

2
(Vgt − Vbt)

− λxσx(εg,t+1 − εb,t+1)

−
λgv + λbv

2
(σgwwg,t+1 + σbwwb,t+1)

−
λgv − λbv

2
(σgwwg,t+1 − σbwwb,t+1). (A.8)

The last two shocks are equal to the innovations into the total variance and skewness of

consumption. As λgv > 0 and λbv < 0, the market price of risk of skewness is positive:

agents dislike the states with low (negative) skewness.

The bond loadings satisfy the recursive equations:

Bx,n = ρBx,n−1 −mx, (A.9)

Bgv,n = νgBgv,n−1 −mgv

− f(−σx(λx +Bx,n−1)) + τgBx,n−1, (A.10)

Bbv,n = νbBbv,n−1 −mbv

− f(σx(λx +Bx,n−1))− τbBx,n−1, (A.11)

for Bx,0 = Bgv,0 = Bbv,0 = 0.

Similarly, the return of the dividend-paying asset can be expressed by:

rd,t+1 ≈ κ0,d + κ1,dpdt+1 − pdt +∆dt+1, (A.12)
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where κ0,d and κ1,d are the log-linearization parameters, and κ1,d satisfies:

logκ1,d = m0 + µd +Hgv(1− κ1,dνg)Vg0

+Hbv(1− κ1,dνb)Vb0

+ κ21,d

[
1

2
H2
gvσ

2
gw +

1

2
H2
bvσ

2
bw + αHgvHbvσgwσbw

]

. (A.13)

The return dynamics can be expressed in the following way:

rd,t+1 = Et[rd,t+1] + βxσx(εg,t+1 − εb,t+1)

+ βgvσgwwg,t+1 + βbvσbwwb,t+1 + σdud,t+1, (A.14)

where the equity betas are given by,

βx = κ1,dHx, βgv = κ1,dHgv, and βbv = κ1,dHbv. (A.15)

Hx, Hgv, and Hbv are the equilibrium loadings of the price-dividend ratio on predictable

consumption growth, good uncertainty, and bad uncertainty, respectively, and are given by:

Hx =
φx +mx

1− κ1,dρ
, (A.16)

Hgv =
f(κ1,dHxσx − λxσx) + κ1,dHxτg +mgv

1− κ1,dνg
, (A.17)

Hbv =
f(−κ1,dHxσx + λxσx)− κ1,dHxτb +mbv

1− κ1,dνb
. (A.18)

Note that we can alternatively rewrite the return dynamics in terms of Vgt+Vbt and Vgt−Vbt,
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which capture the total variance and skewness of consumption dynamics:

rd,t+1 = Et[rd,t+1] + βxσx(εg,t+1 − εb,t+1)

+
βgv + βbv

2
σgw(wg,t+1 + wb,t+1)

+
βgv − βbv

2
σbw(wg,t+1 − wb,t+1) + σdud,t+1. (A.19)

As βgv > 0 and βbv < 0, equity exposure to skewness risk is positive: equities fall at times

of low (negative) skewness.

It follows that the conditional variance of returns is time varying and driven by good and

bad uncertainties:

V artrd,t+1 = β2gvσ
2
gw + β2bvσ

2
bw + σ2d + β2xσ

2
x(Vgt + Vbt). (A.20)

In particular, the variance of returns increases at times of high good or bad uncertainty.

In levels, the equity risk premium satisfies,

EtRd,t+1 −Rf,t ≈ log Ere
rd,t+1−rf,t

= [f(−λxσx)− f((βx − λx)σx) + f(βxσx)]Vgt

+ [f(λxσx)− f((λx − βx)σx) + f(−βxσx)]Vbt

+ βgvλgvσ
2
gw + βgvλbvσ

2
bw

+ ασbwσgw(βgvλbv + βbvλgv).

(A.21)

Under standard parameter configuration, the equity premium loadings on good and bad

volatility are positive. Indeed, notice that these loadings can be written as, f(a) + f(b) −

f(a + b). As λx > 0 and βx > 0, a and b have opposite signs. Without loss of generality,

let a > 0 and b < 0. Suppose a+ b > 0. Then, as f(u) is positive and increasing for u > 0,

a > a+ b > 0 ⇒ f(a) + f(b) > f(a) > f(a+ b). Alternatively, suppose a+ b < 0. Then, as
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f(u) is positive and decreasing for u < 0, 0 > a + b > b ⇒ f(a) + f(b) > f(b) > f(a + b).

In both cases, f(a) + f(b)− f(a+ b) > 0.

A.1.3. Long-run risks model specification

In a standard long-run risks model, consumption dynamics satisfies

∆ct+1 = µ+ xt + σtηt+1, (A.22)

xt+1 = ρxt + ϕeσtǫt+1, (A.23)

σ2t+1 = σ2c + ν(σ2t − σ2c ) + σwwt+1, (A.24)

∆dt+1 = µd + φxt + πσtηt+1 + ϕdσtud,t+1, (A.25)

where ρ governs the persistence of expected consumption growth xt, and ν determines

the persistence of the conditional aggregate volatility σ2t . ηt is a short-run consumption

shock, ǫt is the shock to the expected consumption growth, and wt+1 is the shock to the

conditional volatility of consumption growth; for parsimony, these three shocks are assumed

to be independent and identically distributed (i.i.d.) Normal. The parameter configuration

for consumption and dividend dynamics used in our model simulation is identical to Bansal,

Kiku, and Yaron (2012), and is given in Table A.1.
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Table A.1: Long-Run Risk Model calibration

Preferences δ γ ψ

0.9987 10 2

Consumption µ ρ ϕe

0.0015 0.975 0.038

Volatility σc ν σw

0.0072 0.999 2.8e-06

Dividend µd φ ϕd π

0.0015 2.5 5.96 2.6

The table shows the calibrated parameters of the long-run risks model at monthly fre-
quency. The parameter δ is the subjective discount factor, γ is the coefficient of relative
risk aversion, and ψ is the intertemporal elasticity of substitution. µ is the unconditional
expectation of consumption growth, ρ captures the persistence of expected consumption,
and φe governs the scale of expected consumption shocks. The parameters σc, ν, and σw
represent the level, persistence, and the standard deviation of volatility shocks, respectively.
µd is the unconditional growth rate of dividends, φ captures the exposure of dividends to
expected consumption shocks, and π reflects the exposure of dividends to realized con-
sumption shocks. The parameter φd governs the volatility of the idiosyncratic dividend
shock.

206



A.2. Appendix for Chapter 2

A.2.1. Consumption TFP as a Preference Shock

In this appendix I show that the maximization programs (2.31) and (2.38) are equivalent.

For notational ease, I denote the budget constraint of program (2.31), with the exclu-

sion of consumption production (that is, equations (2.33)-(2.37)), as {Ii,t, Ic,t, nc,t, ni,t} ∈

B(kit, kct, zit).

Define Ĉt =
Ct
zct−1

and V̂t =
Vt

zct−1
. It is straightforward to show using first-order condition

equivalence, that the solution to the program (2.31) solves the partially detrended value-

function given by:

V̂t(kct, kit, zit,
zct
zct−1

) = max
Ii,t,Ic,t,nc,t,ni,t

{

(1− β)Ĉ
1−1/ψ
t

+β

(
zct
zct−1

)1− 1
ψ
(

EtV̂t+1(kct+1, kit+1, zit+1,
zct+1

zct
)1−γ

) 1−1/ψ
1−γ







1
1−1/ψ

(A.26)

s.t.

Ĉt =
zct
zct−1

kαctn
1−α
ct

{Ii,t, Ic,t, nc,t, ni,t} ∈ B(kit, kct, zit)

zct+1

zct
= µzc + σzc,tεzc,t+1,

and where B(kit, kct, zit) is the same budget constraint as of program (2.31).

The detrended value function V̂ of program (A.26) is homogeneous of degree one in zct
zct−1

.
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To see this, plug the expression for Ĉt in the objective function to obtain:

V̂t(kct, kit, zit,
zct
zct−1

) = max
Ii,t,Ic,t,nc,t,ni,t

{

(1− β)

(
zct
zct−1

kαctn
1−α
ct

)1−1/ψ

+β

(
zct
zct−1

)1− 1
ψ
(

EtV̂t+1(kct+1, kit+1, zit+1,
zct+1

zct
)1−γ

) 1−1/ψ
1−γ







1
1−1/ψ

s.t.

{Ii,t, Ic,t, nc,t, ni,t} ∈ B(kit, kct, zit)

zct+1

zct
= µzc + σzc,tεzc,t+1.

Notice, that zct
zct−1

1−1/ψ multiplies both terms inside the maximand {·}
1

1−1/ψ expression.

Thus, one can re-write the program as follows:

V̂t(kct, kit, zit,
zct
zct−1

) = max
Ii,t,Ic,t,nc,t,ni,t

(
zct
zct−1

){

(1− β)
(
kαctn

1−α
ct

)1−1/ψ

+β

(

EtV̂t+1(kct+1, kit+1, zit+1,
zct+1

zct
)1−γ

) 1−1/ψ
1−γ







1
1−1/ψ

(A.27)

s.t.

{Ii,t, Ic,t, nc,t, ni,t} ∈ B(kit, kct, zit)

zct+1

zct
= µzc + σzc,tεzc,t+1
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For any scalar λ > 0, specification (A.27) permits the following identity:

V̂t(kct, kit, zit, λ
zct
zct−1

) = max
Ii,t,Ic,t,nc,t,ni,t

λ

(
zct
zct−1

){

(1− β)
(
kαctn

1−α
ct

)1−1/ψ

+β

(

EtV̂t+1(kct+1, kit+1, zit+1,
zct+1

zct
)1−γ

) 1−1/ψ
1−γ







1
1−1/ψ

s.t.

{Ii,t, Ic,t, nc,t, ni,t} ∈ B(kit, kct, zit)

zct+1

zct
= µzc + σzc,tεzc,t+1

=λ max
Ii,t,Ic,t,nc,t,ni,t

(
zct
zct−1

){

(1− β)
(

k̂αctn
1−α
ct

)1−1/ψ

+β

(

EtV̂t+1(kct+1, kit+1, zit+1,
zct+1

zct
)1−γ

) 1−1/ψ
1−γ







1
1−1/ψ

s.t.

{Ii,t, Ic,t, nc,t, ni,t} ∈ B(kit, kct, zit)

zct+1

zct
= µzc + σzc,tεzc,t+1

=λV̂t(kct, kit, zit,
zct
zct−1

). (A.28)

The second equality of equation (A.28) stems from the fact that λ is only a multiplicative

constant that rescales the objective function, but does not affect the budget constraints,

or the continuation value’s state variables (as the growth in zct is independent over time).

The third equality establishes homogeneity of degree one in consumption TFP growth. As

a corollary, it is possible to write:

V̂t(kct, kit, zit,
zct
zct−1

) =

(
zct
zct−1

)

Ṽt(kct, kit, zit). (A.29)

Lastly, the ex-ante expectation of zct+1

zct
behaves like a preference shock in the problem

(A.27). To see this, divide both hands of (A.27) by zct
zct−1

, and use the corollary (A.29), to
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obtain:

Ṽt(kct, kit, zit) = max
Ii,t,Ic,t,nc,t,ni,t

{

(1− β)
(
kαctn

1−α
ct

)1−1/ψ

+β

(

Et

(
zct+1

zct

)1−γ

Ṽt+1(kct+1, kit+1, zit+1)
1−γ

) 1−1/ψ
1−γ







1
1−1/ψ

(A.30)

{Ii,t, Ic,t, nc,t, ni,t} ∈ B(kit, kct, zit)

zct+1

zct
= µzc + σzc,tεzc,t+1

As Ṽt+1 is independent of zct+1

zct
, we can separate the expectation in the objective function

of (A.30) to obtain:

Ṽt(kct, kit, zit) = max
Ii,t,Ic,t,nc,t,ni,t

{

(1− β)
(
kαctn

1−α
ct

)1−1/ψ

+β

(

Et

(
zct+1

zct

)1−γ
) 1−1/ψ

1−γ

︸ ︷︷ ︸

β̃t

(

EtṼt+1(kct+1, kit+1, zit+1)
1−γ
) 1−1/ψ

1−γ







1
1−1/ψ

{Ii,t, Ic,t, nc,t, ni,t} ∈ B(kit, kct, zit)

zct+1

zct
= µzc + σzc,tεzc,t+1.

This program is identical to that specified in (2.38). Thus, the solution of program (2.38),

is identical to the solution of (A.26), which is equal to the solution of (2.31). When zct is a

random walk, the expression β̃t behaves like a preference shock, that depends only on the

conditional volatility σzc,t.
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A.2.2. Characterization of Model’s Solution

A.2.2.1. Equilibrium Conditions

This section describes the equilibrium first-order conditions of the model described in section

2.4. The first-order condition of firm n ∈ [0, 1] in sector j ∈ {c, i}:

0 = qj,t − PitΦ
′
k(ij,t(n)) (A.31)

0 =Wtnj,t(n)− (1− αj)θj,tZj,tkj,t(n)
αjnj,t(n)

1−αj (A.32)

0 = −qj,t + Et

[

M$
t+1 {−Pi,t+1Φk(ij,t+1) + qj,t+1(1− δ + ij,t+1(n))

+θj,t+1Zj,t+1αjkj,t+1(n)
αj−1nj,t+1(n)

1−αj
}]

(A.33)

0 = (1− µj)

[
pj,t(n)

Pj,t

]−µj

+ θj,tµj

[
pj,t(n)

Pj,t

]−µj−1 1

Pj,t
− φP

[
pj,t(n)

Πjpj,t−1(n)
− 1

]
1

Πj

+ φPEt

[

M$
t+1

(
Yj,t+1

Yj,t

){[
pj,t+1(n)

Πjpj,t(n)
− 1

]
pj,t+1(n)

Πjpj,t(n)
−

1

2

[
pj,t+1(n)

Πjpj,t(n)
− 1

]2
}]

(A.34)

0 = kj,t+1(n)− (1− δ + ij,t(n))kj,t(n) (A.35)

0 = yj,t(n)− Zj,tkj,t(n)
αjnj,t(n)

1−αj (A.36)

where qj,t be the price of a marginal unit of installed capital in sector j (the Lagrange

multiplier of constraint (2.13)), and θj,t is the marginal cost of producing an additional unit

of intermediate good in sector j ∈ {c, i} (the Lagrange multiplier of constraint (2.17)).

The first-order condition of the household:

0 =
Wt

Pc,t
−

Ct
1− ξNη

t

ξηNη−1
t (A.37)

The nominal SDF, nominal interest rate, as well as the household utility, are given in

equations (2.25), (2.26) and (2.23), respectively. The last equilibrium conditions include

four market clearing conditions (labor, investment-goods, consumption-goods, and bond

market) specified in equations (2.27), (2.28), (2.29), and (2.30), respectively. We are looking
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for a symmetric equilibrium in which Pj,t(n) = Pj,t, nj,t(n) = nj,t, and kj,t(n) = kj,t, for

all n ∈ [0, 1] and j ∈ {c, i}. Thus, the above equations can be rewritten in terms of only

aggregate quantities. There are 20 endogenous variables: Ct, Nt, Yc,t, Yi,t, Nc,t, Ni,t, Kc,t,

Ki,t, ic,t, ii,t, qc,t, qi,t, θc,t, θi,t, Pi,t, Pc,t, Wt, R
$
t , Ut, M

$
t . In turn, there are 20 equations:

13 equations for household’s and firms’ first-order conditions (in both sectors), 4 market

clearing conditions, and 3 definitions of SDF, utility and Taylor-rule). Other quantities, such

as the real SDF, and firm-valuations, are derived from the endogenous decision variables

(see e.g. equation (2.16)).

A.2.2.2. Detrended Problem

Covariance-stationary first-order conditions can be achieved by rescaling the non-stationary

variables of the problem as follows:

- Divide kc,t, ki,t, Yi,t by Z
1

1−αi
i,t−1 .

- Divide Ct, Yc,t, Ut by Zc,t−1Z
αc

1−αi
i,t−1 .

- Divide Wt by Pc,tZc,t−1Z
αc

1−αi
i,t−1 .

- Divide θc,t by Pc,t.

- Divide θi,t, qi,t, qc,t, Pi,t by Pc,tZc,t−1Z
αc−1
1−αi
i,t−1 .

After plugging the rescaled variables in the first-order equations, the equilibrium conditions

can be written using stationary variables (in particular, using the rescaled variables, and

using the growth rates of Zc,t, Zi,t and of Pc,t).
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A.3. Appendix for Chapter 3

To detrend the firm problem in 3.4, I divide the following quantities by the lagged trend

level:

k̃i,t =
ki,t
Gt−1

; Ĩi,t =
Ii,t
Gt−1

; Φ̃i,t =
Φi,t
Gt−1

; Ṽt =
Vt
Gt−1

.

This allows re-writing the firm problem in a stationary form, as follows:

Ṽ (k̃i,t, li,t, gt−1, si,t, zi,t) = maxk̃t+1,lt+1
g1−αt−1 zi,tk̃

α
i,t(si,tli,t)

ν−α − w · li,t − Ĩi,t

−Φ̃L(li,t, li,t+1)

+βgt−1E[Ṽ (ki,t+1, li,t+1, Gt, ĝt, si,t+1, zi,t+1)]

gt−1k̃i,t+1 = (1− δ)k̃i,t + Λ(
Ĩt

k̃t
)

Λ(i) =
α1

1− 1
ζ

(i)
1− 1

ζ + α2

Φ̃L(li,t, li,t+1) = gt−1
κ

2
(li,t+1 − li,t)

2

Vi,g,t = [
1

σ2g
+
l2i,t
σ2l

]−1

µi,g,t = Vi,g,t[
1

σ2g
((1− ρg)g0 + ρggt−1) +

l2i,t
σ2l

(si,t)]

ĝt = µi,g,t +
√

Vi,g,tεi,µ,t

si,t+1 = [(1− ρg)g0 + ρg ĝt + σgεg,t+1] +
σl
li,t+1

εl,t+1

εi,µ,t = (gt − µi,g,t)/Vi,g,t ∼ N(0, 1) (A.38)
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