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ABSTRACT

ESSAYS IN CONSUMPTION, BEHAVIORAL AND APPLIED MICROECONOMICS

Christina Yiwei Zhang

Jeremy Tobacman

This dissertation consists of three self-contained chapters which broadly address issues re-

lated to individual and household decision making. The first essay investigates household

budgeting and cash flow management decisions. Specifically, I focus on household consump-

tion decisions when there is a mismatch between the frequency at which their income (pay)

arrives and the frequency for which they make their consumption decisions. Exploiting

monthly variation in income arising from bi-weekly pay schedules, I find that household ex-

penditures respond significantly to such variation with the response coming almost entirely

from durables. These responses cannot be explained by the presence of binding liquidity

constraints. I consider several behavioral explanations including time inconsistency with

sophistication, mental accounting, and a new model of budgeting heuristics in which indi-

viduals naively extrapolate their current income into the future.

The second essay, joint with Judd Kessler and Katherine Milkman, explores public recog-

nition in a charitable giving context and provides new empirical evidence on how public

recognition can increase pro-social behavior. Using observational data on alumni giving

to a large university, we find that the enactment of recognition programs for consecutive

giving increased both the probability of giving and the dollar amount donated directly to

the University. Furthermore, such recognition crowded in donations to other University

priorities. Exploiting differences in the timing of various recognition programs, we find that

while individual value public recognition generally, they value recognition more so when

such recognition can be used to convey information regarding personal traits of the donor.

Finally, the third essay, joint with Jeremy Tobacman, examines the determinants of intrinsic
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motivation. While intrinsic motivation has important applications in many areas, it is

often difficult to separate intrinsic motivation from extrinsic motivation due to potential

correlation between pecuniary and non-pecuniary incentives. Using an online word-hunting

game, we isolate the role of performance as a source of intrinsic motivation and study how

past performance affects an individual’s persistence of play. Using individual variation in

the ability to exploit the presence of prefixes and suffixes, we estimate the causal effect

of past performance on the length of a game spell (continued play) and the probability of

ending a spell. We find that higher past performance significantly increases spell length and

significantly decreases the probability of a spell ending.

vii



TABLE OF CONTENTS

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER 1 : Consumption Responses to Pay Frequency: Evidence from ‘Extra’

Paychecks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Misalignment in a Consumption-Savings Framework . . . . . . . . . . . . . 6

1.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Empirical Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Potential Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

CHAPTER 2 : Social Recognition in Charitable Giving: In Pursuit of Perfection . 50

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3 Empirical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Effect of Recognition for Consecutive Giving on Donation Behavior . . . . . 59

2.5 Do donors exhibit strategic behavior in response to recognition programs? . 62

2.6 Recognition versus Information . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

CHAPTER 3 : Play for Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 Game Background and Data . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Relationship between Performance and Game Board Features . . . . . . . . 93

3.4 Estimation Framework and Results . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

ix



LIST OF TABLES

TABLE 1 : Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

TABLE 2 : Response to Extra Paychecks by Consumption Categories . . . . . 36

TABLE 3 : Response to Extra Paychecks by Durable Consumption Categories 37

TABLE 4 : Response to Extra Paychecks by Vehicle Consumption Categories . 38

TABLE 5 : Summary Statistics for Car Purchases . . . . . . . . . . . . . . . . 39

TABLE 6 : Response to Extra Paychecks by Vehicle Financing Categories . . . 40

TABLE 7 : Response to Extra Paychecks by Vehicle Financing Categories Con-

ditional on Ever Purchasing a Car . . . . . . . . . . . . . . . . . . . 41

TABLE 8 : Response to Extra Paychecks by Pay Frequency across Consumption

Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

TABLE 9 : Response to Extra Paychecks by Consumption Categories with Time

Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

TABLE 10 : Response to Extra Paychecks by Consumption Categories by Liquid

Asset Holdings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

TABLE 11 : Response to Extra Paychecks by Consumption Categories by Total

Before-Tax Income . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

TABLE 12 : Response to Extra Paychecks by Consumption Categories by Age . 46

TABLE 13 : Response of Aggregate Consumption Measures by Committed Con-

sumption as Fraction of Monthly Wages . . . . . . . . . . . . . . . 47

TABLE 14 : Response to Extra Paychecks by Consumption Categories by Con-

sumption Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

TABLE 15 : Comparison of Vehicle Loan Characteristics by Timing of Purchase 49

TABLE 16 : Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

TABLE 17 : Categories of Support ($) by Years Since Graduation . . . . . . . . 74

TABLE 18 : Donations at Lower Bound (Bunching) . . . . . . . . . . . . . . . . 75

x



TABLE 19 : Summary Statistics by Ivy Stone Society (ISS) Eligibility . . . . . 76

TABLE 20 : Summary Statistics by Perfect Giving (PG) Eligibility . . . . . . . 77

TABLE 21 : Effects of PG Recognition Program on Giving with No Dynamics -

2002 to 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

TABLE 22 : Effects of PG Recognition Program on Giving with No Dynamics -

2004 to 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

TABLE 23 : Effects of ISS Recognition Program on Giving with No Dynamics -

2002 to 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

TABLE 24 : Effects of ISS Recognition Program on Giving with No Dynamics -

2006 to 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

TABLE 25 : Effects of ISS and PG Recognition Programs on Giving Accounting

for Dynamics - Young Alumni . . . . . . . . . . . . . . . . . . . . . 82

TABLE 26 : Effects of ISS Recognition Program on Giving Accounting for Dy-

namics - Non Young Alumni . . . . . . . . . . . . . . . . . . . . . . 83

TABLE 27 : Effects of PG Recognition Program on Bunching with No Dynamics 84

TABLE 28 : Effects of ISS Recognition Program on Bunching with No Dynamics 85

TABLE 29 : Effects of ISS and PG Recognition Programs on Bunching Account-

ing for Dynamics - Young Alumni . . . . . . . . . . . . . . . . . . . 87

TABLE 30 : Effects of ISS Recognition Program on Bunching Accounting for

Dynamics - Non Young Alumni . . . . . . . . . . . . . . . . . . . . 88

TABLE 31 : Effect of Introduction of Ivy Stone Society by Years of Consecutive

Giving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

TABLE 32 : Individual Level Summary Statistics . . . . . . . . . . . . . . . . . 110

TABLE 33 : Team Level Summary Statistics . . . . . . . . . . . . . . . . . . . . 111

TABLE 34 : Impact of Player Performance on Spell Length . . . . . . . . . . . . 112

TABLE 35 : Impact of Player Performance on Spell End . . . . . . . . . . . . . 113

TABLE 36 : Impact of Player Performance on Spell Length and Spell End Ac-

counting for “Goal” Cutoffs . . . . . . . . . . . . . . . . . . . . . . 114

xi



TABLE 37 : Impact of Team Performance on Spell Length . . . . . . . . . . . . 115

TABLE 38 : Impact of Team Performance on Spell End . . . . . . . . . . . . . . 116

TABLE 39 : Sample Restriction Details . . . . . . . . . . . . . . . . . . . . . . . 119

TABLE A.2.1 :The Timing of Three Paycheck Months from 1989-2010 . . . . . . . 125

TABLE A.3.1 :Response to Extra Paychecks by Consumption Categories Using Log

Changes in Consumption . . . . . . . . . . . . . . . . . . . . . . . . 128

TABLE A.3.2 :Response to Extra Paychecks by Consumption Categories Using

Level Changes in Income . . . . . . . . . . . . . . . . . . . . . . . . 129

TABLE A.4.1 :Response to Extra Paychecks by Consumption Categories by Marital

Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

TABLE A.4.2 :Response to Extra Paychecks by Consumption Categories by Race 131

TABLE A.4.3 :Response to Extra Paychecks by Consumption Categories by Gender 132

TABLE A.4.4 :Response to Extra Paychecks by Consumption Categories by Hous-

ing Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xii



LIST OF ILLUSTRATIONS

FIGURE 1 : Total Income Distribution by Pay Frequency . . . . . . . . . . . . 32

FIGURE 2 : Timing of Durable and Strictly Non-Durable Spending . . . . . . 33

FIGURE 3 : Distribution of Placebo Estimates of Spending Effect . . . . . . . 34

FIGURE 4 : Honor Roll Sample . . . . . . . . . . . . . . . . . . . . . . . . . . 68

FIGURE 5 : Timeline of Recognition Programs . . . . . . . . . . . . . . . . . . 69

FIGURE 6 : Donation Frequency for Amounts between $200 and $5000 . . . . 69

FIGURE 7 : Eligibility of Alumni by Recognition Programs . . . . . . . . . . . 70

FIGURE 8 : Mean Residuals for Giving over Time for Eligible and Ineligible . 71

FIGURE 9 : Effect of Introduction of Ivy Stone Society by Years of Consecutive

Giving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

FIGURE 10 : 4x4 Game Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

FIGURE 11 : Games Per Player . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

FIGURE 12 : Spells Per Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

FIGURE 13 : Length of Spell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

FIGURE 14 : Days Between Spells . . . . . . . . . . . . . . . . . . . . . . . . . . 104

FIGURE 15 : Points Per Player in First Game . . . . . . . . . . . . . . . . . . . 105

FIGURE 16 : Points Per Player in All Games . . . . . . . . . . . . . . . . . . . 106

FIGURE 17 : Linear Prediction of Spell Length on Player Points in First Game

of Spell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

FIGURE 18 : Linear Prediction of Spell End on Player Points in First Game of

Spell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

FIGURE 19 : Learning Based on Average Player Points . . . . . . . . . . . . . . 109

FIGURE A.2.1 :Simulated Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xiii



CHAPTER 1 : Consumption Responses to Pay Frequency: Evidence from ‘Extra’

Paychecks

1.1. Introduction

One of the hallmark implications of the life-cycle/permanent income hypothesis (LC-PIH)

is that household consumption should not respond to anticipated income changes (Friedman

1957; Modigliani 1988). Whether this implication of the theory holds true has generated

significant debate among economists and has given rise to an extensive empirical literature

testing for excess sensitivity to anticipated income. However, results from these empirical

studies vary substantially.1 At present, no consensus exists in the literature on the extent

to which households may respond to anticipated income changes or on the mechanisms

underlying observed responses.

This paper contributes new evidence on household consumption responses to anticipated

income by examining an important household financial problem: how to adjust the timing

of consumption to the timing of income. For many households, the frequency for which they

make their consumption decisions often differs from that at which they receive their pay.

This misalignment can result in predictable variation in the amount of income received per

consumption decision period. The LC-PIH predicts that consumption should not respond to

such variation. I empirically test this prediction by exploiting variation in monthly income

arising from the timing of bi-weekly pay schedules. Bi-weekly workers are paid on a regular

two-week schedule and receive 26 paychecks over the course of the year. Because these

26 paychecks must be disbursed over 12 months, bi-weekly workers typically receive two

paychecks per month with the exception of two months out of the year, during which they

receive three.2 As a result, the level of wage and salary income that a household receives

during these atypical months with three paychecks is higher than during typical months

with only two. The timing of bi-weekly pay schedules thus provides predictable variation in

monthly income while holding constant both total lifetime income and the environment in

which that income is received. This is in contrast to semi-monthly or monthly pay schedules

through which workers receive the same income each month.

My focus on the variation generated by bi-weekly pay schedules is motivated by two main

considerations. First, this variation in income (and the extent to which there is an “extra”

third paycheck) is simply an artifact of evaluating income on a monthly basis. For a bi-

1See Browning and Lusardi (1996), Browning and Crossley (2001), and Jappelli and Pistaferri (2010)
for surveys of the literature.

2On occasion, the calendar year is such that a bi-weekly worker will actually receive two paychecks per
month with the exception of three months out of the year, during which they receive three. This occurs
approximately once every eleven years and is accounted for in the analysis of this paper.
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weekly worker there is predictable variation in monthly income but not in twice-weekly

income. While it is not difficult to imagine bi-weekly households thinking or budgeting on a

monthly basis, the fact that whether or not a particular paycheck can be considered “extra”

is not a priori assumed makes the evidence I provide in this paper even more compelling.3

Second, in contrast to much of the existing literature, the third paychecks are not referred to

as a bonus, special payment, or in any other manner which might induce bi-weekly workers

to differentially respond following their receipt. The concern with such special designations

is that they may naturally lead households to categorize or evaluate the payments separately

from other income. In my setting, the only way in which these third paychecks are “special”

is if people choose to evaluate their income at a monthly frequency.

I test for excess sensitivity in months following three paycheck months using panel data

from the Consumer Expenditure Survey (CEX). I first identify households whose heads are

paid at a bi-weekly frequency and then determine the months during which they receive

three paychecks. The empirical strategy takes advantage of the fact that the months during

which bi-weekly workers receive three paychecks differ from year to year. For example, a bi-

weekly worker paid in the first week of January in 2008 would have received three paychecks

in February and August of that year. In 2009, that same worker would have received three

paychecks in January and July. The causal effect of these third paychecks is identified

using a difference-in-differences strategy that compares spending responses following a given

calendar month in years during which there are three paychecks distributed during that

month to responses in years during which there are only two paychecks during that month.4

Using this identification strategy, I establish two main empirical results. First, I find that

total household spending increases by approximately $262 (in 2010 dollars) on average in the

month following a three paycheck month and that this effect on spending does not persist in

subsequent months. Second, I find that this spending increase is due entirely to changes in

durable spending, and specifically new vehicle purchases, with no corresponding response in

non-durables. Conditional on purchasing a vehicle during the interview period, household

spending on vehicles increases by roughly $2205 dollars on average following three paycheck

months. This represents a fairly sizable effect given that the average gross paycheck for a

3Many recurring expenditures, such as mortgage payments and utility bills, are due monthly, so con-
sumption tends to be budgeted on a month-to-month basis (Thaler 2008). From the 2010 wave of the Survey
of Consumer Finances, over 96 percent of surveyed individuals make mortgage, rent, education loan, and
vehicle loan payments monthly (conditional on making payments).

4This empirical strategy uses variation within months but across households because the CEX only
provides income and expenditure data for at most twelve consecutive months for any given household that
is interviewed. Alternatively, I could compare responses within a household across months. Employing this
procedure, however, would not allow me to control for seasonal variation in consumption across months.
Estimates using variation within households and across months are slightly larger than those controlling
instead for seasonal variation across months.

2



bi-weekly worker in my sample is approximately $1669. These results are consistent with

several other papers in the literature on responses to anticipated income receipt which also

find large responses in durable spending (Parker 1999; Souleles 1999; Adams et al. 2009;

Parker et al. 2011; Aaronson et al. 2012). The results are robust to changes in sample

composition as well as to variants of the main specification. These findings suggest that,

contrary to the predictions of the LC-PIH, individuals do in fact respond to the variation

induced by misalignment between the timing of consumption and the timing of income.

These results rely on the identification assumption that changes in consumption expendi-

tures following a given calendar month in year in which there were three paychecks dis-

tributed during that month versus years in which there were only two would have evolved

similarly were it not for the third paycheck. To assess the validity of this assumption, I em-

ploy a difference-in-difference-in-differences (triple difference) research design using house-

holds paid at other frequencies as controls. In contrast to bi-weekly workers, I find no

corresponding effect for workers who are paid either weekly or monthly. To further evalu-

ate the robustness of my main estimates, I also conduct a series of placebo tests where I

re-estimate the main specification using randomly generated schedules of third paychecks.

These tests show that the probability of finding an effect as large as I do by chance is

extremely small.

I explore four potential explanations for why I find evidence of excess sensitivity: liquid-

ity constraints, budgeting heuristics, time inconsistency with sophistication, and mental

accounting. For each, I discuss whether the empirical findings can be reconciled with the

predictions of the proposed model of behavior.

Liquidity constraints are perhaps the most often cited explanation for observed spending

responses to anticipated income receipt. To the extent that these constraints are binding,

spending responses may be due to the third paychecks providing additional liquidity upon

receipt. Since a household’s liquidity is unobserved, I test for evidence of binding constraints

using two complementary strategies. First, I proxy for liquidity using four measures: liq-

uid assets, before-tax income, age, and committed expenditures as a fraction of monthly

wages. Using these measures, I estimate responses separately for constrained and uncon-

strained households. As a second empirical strategy, I classify households as constrained

or unconstrained by the extent to which their observed choices are consistent with binding

constraints. To do so, I focus on two types of observed behavior: consumption volatility and

vehicle loan characteristics. These tests provide evidence that is at best weakly supportive

of liquidity constraints as an explanation for the empirical findings. However, the impre-

cision of the estimates and the lack of response in non-durable spending following months

with three paychecks suggests that liquidity constraints alone cannot explain the observed
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responses.

The second explanation – budgeting heuristics – is motivated by the fact that people often

use heuristics to alleviate the cognitive burden of complicated decisions problems. Such

complexity may arise for a number of reasons, including the presence of variation in in-

come. With this in mind, I propose a specific heuristic in which households construct

monthly budgets by naively extrapolating their current monthly income into the future.

This behavior is similar in spirit to the model of projection bias developed by Loewen-

stein et al. (2003) and relates biased beliefs to the rule-of-thumb behavior of consumers in

Campbell and Mankiw (1989). When the frequency of consumption and the frequency of

income are sufficiently misaligned, this budgeting heuristic model predicts excess sensitivity

of consumption in months with atypical income. Allowing for two types of consumption,

durable and non-durable, the model also predicts that budgeting heuristics will lead some

households to increase their durable consumption in months with atypical income while

having an ambiguous effect on non-durable consumption.

The final two explanations that I consider are motivated by existing theories from behavioral

economics. First, I discuss the possibility that individuals are sophisticated with (β, δ)-

preferences (Strotz 1956; Phelps and Pollak 1968; Laibson 1997; O’Donoghue and Rabin

1999). Such individuals are time-inconsistent with present-biased preferences and exhibit

problems with self-control. As a result, they may choose to invest their third paychecks in

durable goods because the illiquid nature of these goods acts as a commitment mechanism

against overconsumption (Laibson 1997). However, although this could explain the existence

of an increase in durable spending following three paycheck months, it is difficult to reconcile

with the fact that the observed response is driven primary by debt-financed purchases. Such

purchases commit a household to a stream of installment payments which, given rational

income expectations, they may not be able to afford in the future. Second, I discuss the

possibility that individuals use a system of mental accounts to categorize and evaluate their

income (Thaler and Shefrin 1981; Shefrin and Thaler 1988; Thaler 1990, 1999, 2008). Bi-

weekly workers may choose to treat their typical income of two paychecks per month as

their regular income while viewing third paychecks as a “bonus” or windfall gain. This type

of mental accounting could explain consumption responses to third paychecks even in the

absence of any change in total lifetime income and with correct beliefs about future income.

However, given rational expectations about future income, it is still difficult to reconcile with

the empirical results indicating an increase in debt-financed vehicle purchases. A related

explanation is that bi-weekly workers with earmark third paychecks specifically for other

uses, such as the purchase of a large durable. Mentally placing that income as otherwise

off-limits would allow workers to ensure they save enough income in order to purchase a
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vehicle. Such behavior would be consistent with the observed spending responses in durable

consumption following months with three paychecks.

This research builds upon and contributes to the extensive literature using household-level

micro-data to examine consumption responses to various types of anticipated income receipt.

The breadth of the literature reflects both the general interest in understanding and cleanly

identifying consumption responses to predictable or transitory changes in income, and the

importance of estimating the causal effect of various fiscal policies that provide payments

to households. The sources of income receipt that are typically analyzed include both

changes to permanent income (Wilcox 1989; Paxson 1993; Shapiro and Slemrod 1995; Shea

1995; Lusardi 1996; Parker 1999; Souleles 2002; Stephens, Jr. 2008; Aaronson et al. 2012)

and predictable one-time payments such as tax refunds or stimulus payments (Souleles

1999; Browning and Collado 2001; Hsieh 2003; Johnson et al. 2006, 2009; Agarwal et al.

2007; Parker et al. 2011). I contribute to this literature by leveraging the variation in

income arising from misalignment, which allows me to look at consumption responses to the

timing of income flows using a source of anticipated income that is completely “designation-

free.” Using this variation, I am able to test whether households are excessively sensitive

to anticipated income receipt in an environment where the income being received is not

likely to be labeled or categorized in any special way, thus lending a high degree of external

validity to my findings.

This paper also complements a related literature examining high-frequency responses to

payments from a constant periodic income stream such as a paycheck or government trans-

fer check (Stephens, Jr. 2003; Shapiro 2005; Huffman and Barenstein 2005; Stephens, Jr.

2006; Stephens, Jr. and Unayama 2011). While this paper also examines high-frequency

responses, its focus is somewhat different. The papers in this literature are primarily con-

cerned with the path of consumption over the course of a given pay period. Specifically,

they look at whether households consumption smooth between anticipated payments and

find that consumption significantly responds immediately following receipt before then de-

clining. In contrast, I look at the path of consumption across pay periods and in response

to periods with atypical income.

Finally, I contribute to the large and growing literature on heuristics and biases (Tversky and

Kahneman 1974; Laibson 1997; Barberis et al. 1998; Rabin and Schrag 1999; Loewenstein

et al. 2003; Gabaix et al. 2006; Pope and Schweitzer 2011; Lacetera et al. 2012; Hastings and

Shapiro 2013; Kőszegi and Szeidl 2013).5 Most of the literature on household budgeting and

mental accounting has focused on the categories to which expenditures or funds are allocated

5See Gilovich et al. (2002) and DellaVigna (2009) for more examples.
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while giving relatively little attention to the frequency at which accounts are evaluated. In

contrast, I focus on the frequency of consumption decisions and specifically whether it differs

from the frequency at which income arrives (i.e. whether there is misalignment). I show that

when there is misalignment, adopting a budgeting heuristic can have important implications

for consumption. To the best of my knowledge, this is the first paper to develop a formal

model of a temporal budgeting heuristic and provide empirical evidence in its support.

The rest of the paper proceeds as follows. Section 1.2 introduces misalignment more for-

mally. Section 1.3 provides a brief description of the Consumer Expenditure Survey data

and is followed by a discussion in Section 1.4 of the empirical methodology. Section 1.5

presents the main results of the empirical analysis in this paper. Section 1.6 considers

several potential explanations and finally, Section 1.7 concludes.

1.2. Misalignment in a Consumption-Savings Framework

This section provides a more formal description of how misalignment between the timing

of consumption and the timing of income can lead to variation in income and discusses

the implications of that variation for the path of consumption in a standard consumption

and savings framework. While in later sections, I allow for additional refinements to the

standard framework based on more recent work in consumption theory, for now, I adopt a

standard model and assume perfect capital markets and no income uncertainty. This model

is commonly used in the empirical literature and provides a useful benchmark with which

to approach the empirical analysis.

To begin, consider an infinitely-lived individual, with discount factor δ, who chooses con-

sumption, ct, each period to maximize her expected total remaining lifetime utility

Ut({cs}
∞
s=t) = Et

[

∞
∑

s=t

δs−tu(cs)

]

, (1.1)

where u(c) satisfies the conditions: uc → ∞ as c → 0 and uc → 0 as c → ∞. For my

purposes, it is easiest to think of time as a continuous measure that is divisible into periods

of varying lengths. For example, if t indexes years, then we can think of a period t as being

of “length” equal to one year and of the frequency for which consumption decisions are

being made as yearly.

The individual receives income, yτ , where I allow for the possibility that income is received at

a different frequency than the frequency for which consumption decisions are made (i.e. a τ -

period need not refer to the same length of time as a t-period). In general, individual income

can be aggregated to the frequency for which consumption decisions are made with the
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simple transformation yt =
∑

τ∈[t,t+1) yτ . When income is received at the same frequency

as the frequency for which consumption decisions are made, this transformation reduces to

the expression yt = yτ .

I assume that individuals receive a fixed payment, yτ = ȳ, as income each τ -period. This

assumption reflects the fact that pay is often disbursed regularly and in fixed amounts. Using

the previously mentioned transformation, the individual’s t-period income, evaluated at the

frequency at which she makes her consumption decisions, can then always be expressed as

yt =







Y if (t− 1) mod n 6= 0

(1 + b)Y if (t− 1) mod n = 0
, (1.2)

for some n ≥ 1 and b ≥ 0. That is, in most periods, the individual receives a fixed payment

of Y (“typical” income); every n periods, however, she receives a payment of (1 + b)Y

(“atypical” income) instead.6 Under this framework, misalignment between the timing of

consumption and the timing of pay exists when b is strictly greater than zero and n is

strictly greater than one. That is, t-period income varies when the timing of consumption

and the timing of pay are misaligned even though τ -period income (pay) is constant.

In the context of this paper, an individual who is paid bi-weekly but makes her consumption

decisions monthly has misalignment between the timing of her consumption and the timing

of her income. Specifically, her period t income is given by Equation 1.2, where each period

t is a month, typical income is equal to two paychecks (Y = 2ȳ), and atypical income is

a result of the third paycheck (bY = ȳ) that is received every n = 6 months.7 The same

bi-weekly worker would have no misalignment between the timing of her consumption and

the timing of her pay if she were to instead make her consumption decisions at a bi-weekly

frequency.

1.2.1. Basic Environment with Misalignment

The standard assumptions of the LC-PIH predict that misalignment should not matter. To

illustrate this, consider once again an infinitely-lived individual with discount factor δ. The

individual has CRRA preferences and maximizes expected utility given by Equation 1.1

with income given by Equation 1.2. Following Deaton (1991), I define cash-on-hand, Xt, as

the sum of current income and assets. Let R be the gross interest rate which is assumed to

6While the above is intended to capture features of pay schedules, more generally, the income bY can
be thought of as an infrequent recurring payment. Equation 1.2 can thus be extended to include contexts
such as the receipt of a yearly bonus or tax refund.

7The frequency at which third paychecks arrive is not quite every six months, but n = 6 provides a good
approximation and simplifies the exposition of the model substantially.
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be constant over time. The present discounted value of the individual’s remaining lifetime

wealth at the beginning of time t can then be written as

Wt = Xt +

∞
∑

i=1

yt+i

Ri

= Xt +

∞
∑

i=1

Y

Ri
+

∞
∑

i=1

bY

Ri
· (✶{(t−1+i) mod n=0})

(1.3)

where the indicator ✶{(t−1+i) mod n=0} evaluates to one in periods with atypical income and

zero otherwise. Assuming the no-Ponzi condition, limt→∞
Xt+1−yt+1

Rt ≥ 0, is satisfied, the

usual Euler equation characterizing optimality is given by

uc(ct) = δRuc(ct+1).

Given the specified preferences, the above expression can be rewritten as

ct+1 = (δR)1/ρct. (1.4)

Assuming (δR)1/ρ < 1 (some minimum impatience), then there exists a well-defined solution

where, in equilibrium, consumption is proportional to lifetime wealth for all periods t.

Together with the Euler equation, this fact implies that optimal consumption is given by

ct = (1− (δR1−ρ)1/ρ)Wt. (1.5)

As is standard in such setups, consumption is independent of current income and depends

only on lifetime wealth. Furthermore, lifetime wealth does not depend on the frequency at

which income arrives or whether this frequency differs from the frequency at which con-

sumption decisions are made.8 Thus, any misalignment between the timing of consumption

and the timing of income should be irrelevant for the path of consumption under the stan-

dard consumption and savings framework. I test this prediction in the following empirical

analysis of this paper.

1.3. Data

The empirical analysis in this paper uses data between 1990 and 2010 from the quarterly

interview portion of the Consumer Expenditure Survey (CEX). The CEX is a nationally

representative rotating panel survey, conducted by the Bureau of Labor Statistics (BLS),

which provides detailed information on household spending as well as income and house-

8To see this, note that Wt = Xt +
∞∑

i=1

yt+i

Ri
= Xt +

∞∑

i=1

∑
τ∈[t+i,t+i+1) yτ

Ri
.
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hold characteristics. Households are interviewed every three months over five consecutive

quarters. The first introductory interview gathers basic information on demographics and

the stock of major durables owned by the household. During the second to fifth inter-

views, households are asked to recall their consumption expenditures over the previous

three months as well as the month in which each expenditure occurred. While households

are interviewed every quarter, the design of the survey effectively provides monthly data on

household spending.9

In addition to including extensive information on consumption expenditures, the CEX also

collects income and employment information for each household member (aged 14 or older)

during their second and fifth interview. Crucially, the survey indicates both the gross

amount of each household member’s last pay as well as the length of time this last gross

pay covers. I use this information to identify the frequency with which household members

are paid and in particular whether a member is paid bi-weekly.

For the baseline empirical analysis, I focus on five aggregated measures of consumption ex-

penditures. As a first measure, I examine household expenditures on food, which includes

both food consumed at home and food consumed away from home, as well as any con-

sumption of alcoholic beverages. Expenditures on food have been the focus of a number of

papers studying consumption behavior, in part because of the often limited information on

non-food consumption in commonly used longitudinal data sets, such as the Panel Study of

Income Dynamics.10 However, focusing on food consumption alone has obvious limitations.

For this reason, I also consider the broader category of non-durable goods and services

as a second measure of consumption expenditure. Because the empirical analysis focuses

primarily on consumption expenditures over relatively short time-horizons, I further in-

clude a subset of non-durable expenditures commonly referred to as “strictly non-durable”

(following Lusardi 1996). This is the subset of non-durable goods and services excluding

those which may be considered semi-durable in the short run, such as apparel or reading

materials. The fourth consumption category is the set of expenditures on durable goods,

which includes expenditures on major appliances, flooring, furniture, shelter, and vehicle

purchases. The final measure of consumption expenditures I consider, total expenditures,

is simply the sum of durable and non-durable goods and services. Changes in these five

measures serve as the main outcomes of interest in the baseline empirical analysis.

9Because I am interested in estimating spending responses in months following three paycheck months,
I use the information provided by households on the month of expenditure to construct expenditure data on
the household-monthly level rather than the household-quarterly level. As such, time adjustment routines
used by the BLS when constructing the CEX data have important consequences for estimation. These
routines and their implications for my analysis are discussed in detail in Section 1.5.3 of the paper.

10See Hall and Mishkin (1982), Zeldes (1989), Runkle (1991), and Shea (1995) for some examples of
papers focusing on food consumption in testing the LC-PIH.
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Appendix A.1 provides a detailed description of the sample selection procedures which

follow the existing literature closely. In addition to the standard restrictions imposed by

the rest of the literature, I make two further restrictions that bear mention. First, I restrict

the sample to only those households whose heads report working full time over the full past

year (at least 50 weeks) and whose reported gross pay has not changed between the second

and fifth interview. Because the CEX does not include direct information on job tenure,

this restriction attempts to select for households who are likely to have been employed at

the same job during all of the past year. While income information is only obtained in the

second and fifth interview, it is plausible that individuals receive the same amount of pay in

the other interview quarters during which income information is not collected. For workers

paid bi-weekly, those who have held their job for the past year are more likely to be aware

of the presence and timing of the third paychecks.

The second restriction excludes households where other employed members of the household

are paid at the same frequency as the head of household. This restriction reflects an

important limitation of the data. While the CEX provides information on the gross amount

and frequency of the last pay, I am unable to observe the actual date on which this last pay

occurred. As a result, it is not possible to distinguish which of the two possible alternate

schedules by which a bi-weekly worker can be paid applies to any given member. For

example, a bi-weekly worker paid during the first week of January in 2008 and then every

two weeks afterwards is paid on an alternate schedule to that of a bi-weekly worker paid

during the second week of January and then every two week afterwards. The first bi-

weekly worker would receive three paychecks in February and August of that year whereas

the second bi-weekly worker would receive three paychecks in May and October. Which

schedule a bi-weekly worker follows therefore determines the months of the year during

which he or she will receive three paychecks instead of two. The possibility for members of

the same household to be on alternate bi-weekly schedules introduces potential noise, and

thus I exclude such households from the main analysis.11 This limitation of the data has

further implications for the empirical strategy used in this paper. In particular, the inability

to observe which schedule a bi-weekly worker follows leads to classification error in the

designation of which months will have three paychecks for that worker. This classification

error and the appropriate adjustments made to correct for it are discussed in further detail

below in Section 1.4.

After sample restrictions, I am left with a full sample of 24,822 household-month obser-

vations for 7,776 households whose heads report being paid either weekly, bi-weekly, or

monthly.12 The main analysis sample used in estimation consists of the 4,316 households

11This restriction is later relaxed as a robustness check in Section A.3 and leads to similar results.
12In preliminary analysis, households with heads who report being paid semi-monthly were also consid-
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from the full sample whose heads of household report being paid bi-weekly. Table 32 presents

summary statistics for both the full sample of households and the main analysis sample of

only bi-weekly households. All monetary values are in 2010 dollars in this and all subse-

quent tables. Average monthly consumption expenditures for each aggregated measure of

interest are reported both in levels and in changes. Durable and non-durable expenditures

each compose about half of total monthly expenditures on average. Monthly changes in

expenditure are quite small relative to the mean level of expenditure for each aggregate

measure.

The final rows of the table summarize income and assets for the households in each sample.

The mean gross paycheck across all households in the full sample is $1,524 while the mean

annual before-tax income is $53,853. Comparing across the two sample groups, bi-weekly

households earn slightly more and hold slightly higher balances in their checking and savings

accounts than the full sample of households but do not otherwise appear to significantly

differ from the full sample across the key variables of interest. The lower income and

assets for the full sample is primarily due to the inclusion of weekly households, who earn

significantly lower wages and have significantly lower bank balances than bi-weekly and

monthly paid workers. Figure 1 plots the distribution of household income by the three pay

frequencies available in the full sample. As one might expect, the bi-weekly distribution is

shifted slightly to the left of that of monthly workers and the weekly distribution is shifted

slightly to the left of that of bi-weekly workers.

1.4. Empirical Methodology

The timing of bi-weekly pay schedules is such that the calendar months in which there are

three paychecks changes from year to year. For instance, a bi-weekly worker paid in the

first week of January in 2008 would receive three paychecks in February and August of that

year. In 2009, she would instead receive three paychecks in January and July. Appendix

Table A.2.1 lists the full schedule of months with three paychecks for each year in the

sample. Each calendar month serves as a three paycheck month at least once during the

sample period. To estimate responses to third paychecks, I compare changes in consumption

expenditures following a given calendar month in years in which there were three paychecks

distributed during that month to changes in consumption expenditures in years during

ered. Semi-monthly workers are paid twice a month, typically on the 15th and 30th of a month, and would
be the ideal control group since they receive a similar number of paychecks per years as bi-weekly workers
but do not experience variation in the number of paychecks received each month. However, the number of
households with heads who are semi-monthly is small (less than 4 percent of the households in my sample
over the time span considered) and so estimates of spending responses are not feasible. For this reason,
I include in the main sample only households whose heads report being paid either weekly, bi-weekly, or
monthly. The other excluded categories of pay frequency are quarterly, yearly, and other. These comprise
an even smaller sample of households and were thus also excluded.
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which there were only two paychecks. Spending responses are thus identified by variation

in the timing of months with three paychecks across years.

As described in the previous section, there are two possible schedules by which a bi-weekly

worker can be paid. The schedule a given worker is on then determines the set of months

with three paychecks for that worker. Let S1 be the set of three paycheck months under the

first schedule and S2 be the set of three paycheck months under the second schedule. Since

I am unable to determine which of these two possible bi-weekly schedules applies to a given

individual, I define S = S1∪S2 as the set of all three paycheck months under either schedule

and let 1{t−1∈S} be an indicator for whether the previous month is a three paycheck month

under either schedule.

The empirical strategy I use follows from the previous literature (Zeldes 1989; Lusardi 1996;

Parker 1999; Souleles 1999; Johnson et al. 2006, 2009). Specifically, I estimate variants of

the following specification

∆cit = β ∗ 1{t−1∈S} + θ′itα+ γt + ǫit, (1.6)

where cit denotes household consumption expenditures and 1{t−1∈S} is the explanatory

variable of interest. Since third paychecks are paid out in the last week of a month, I

estimate responses in months following and not during three paycheck months. The vector

θ′it is a set of taste-shifters comprised of the following variables: the age of the head of

household, changes in the number of children, and changes in the number of adults. These

are included to reflect potential preference driven changes in consumption. Finally, I include

a full set of month and year dummies, γt, to account for the possibility that changes in

household spending reflect seasonal variation in spending, aggregate trends, or supply side

movements.13

The coefficient of interest, β, is the difference-in-difference (DD) estimate of the expenditure

response to third paychecks. The manner in which the indicator, 1{t−1∈S}, is defined,

however, introduces noise into the estimate of β. In particular, for any given person there

are only two months during which they receive three paychecks, but because the CEX does

not allow me to observe which schedule a bi-weekly worker is on, the indicator is defined in

a way that assumes four. Furthermore, not only am I unable to observe which schedule a

particular bi-weekly worker follows, but I am also unable to observe the overall fraction of

households in the sample that follow one schedule versus the other. Absent any correction,

13Adams et al. (2009) note that auto loan applications and sales spike precisely at the time of tax rebates,
and that auto sales companies pay close attention to “tax rebate season.” In discussions with a large auto
company to assess whether they were likewise aware of third paychecks due to bi-weekly schedules, the
company claimed no knowledge of these third paychecks, although they did respond to tax rebate season.
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this mis-classification gives inconsistent estimates of β that are biased towards zero. To

address this classification error, I formally derive and then estimate a correction factor

using the fraction of three paycheck months in the sample that belong to S1 versus S2,

allowing the true proportion of individuals on either schedule to vary between zero and one.

The estimated correction factor ranges from 1.9 to 2.1 and is on average equal to 2.0. Using

this estimate, it is then possible to to correct for the classification error by multiplying the

estimate of β from Equation 1.6 by a correction factor of approximately 2.0. For simplicity,

I present the uncorrected estimates in the results. Additional details on the classification

correction are provided in Appendix A.2.

The central identification assumption underlying the difference-in-difference strategy out-

lined above is that changes in consumption expenditures following a given calendar month

in years in which there were three paychecks distributed during that month versus years in

which there were only two would have evolved similarly were it not for the third paycheck.

This assumption would not hold if, for example, store promotions or sales happened to

coincide with months following three paycheck months. To test the validity of the identi-

fication assumption, I employ a triple difference (DDD) research design using households

whose heads were paid either weekly or monthly as controls. The results from this analysis

are qualitatively similar, lending support to the claim that the estimates I find represent

the true causal effect of the third paychecks rather than differential trends following months

with third paychecks and months without third paychecks.

1.5. Results

1.5.1. Main Results

This section presents the main empirical findings from testing for excess sensitivity. I first

present estimates of total household consumption expenditure responses following three

paycheck months. I then decompose this response further to determine the subcategories

of expenditure that may be driving any observed responses.

1.5.1.1 Aggregate Measures of Spending

Table 2 presents the main results from estimating the baseline specification given by Equa-

tion 1.6 for each of the aggregate measures of expenditure. Each column reports estimates

from a separate OLS regression where the dependent variable is the dollar change from

month t − 1 to month t in the listed expenditure category. In these and all subsequent

specifications, standard errors are clustered at the household level. The first row presents

the estimates of the coefficient of interest, β, which measures the average spending response
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to extra paychecks. The remaining rows provide estimates for the taste-shifters included in

the regression.

Column 1 of Table 2 shows that households increase their total expenditures by $262 on

average in months following three paycheck months. This increase in total household spend-

ing is statistically significant at the 1 percent level and is quite sizable, representing roughly

15.7 percent of the average bi-weekly paycheck and 9.3 percent of average monthly spending

by households. Adjusting for classification error, this translates to a $523 or 30.4 increase

in total spending following three paycheck months. By comparison, an additional child

increases monthly spending by $317, and an additional adult increases monthly spending

by $365.

To shed further light on the types of expenditure driving the observed response to extra

paychecks, Columns 2 through 5 decompose the total spending responses into spending on

durable and non-durable goods. I find that the spending response to extra paychecks is

driven almost entirely by changes in spending on durable goods. Household spending on

durable goods increases by $257 on average in the months following three paycheck months.

By contrast, the estimates for the non-durable measures are both small and statistically

insignificant.

Because extra paychecks are a feature of the timing profile of bi-weekly pay and do not lead

to a change in lifetime income, we might expect any spending responses to extra paychecks

to decrease over time. Figure 2 plots the timing of the durable and strictly non-durable

spending responses in months relative to the three paycheck month, denoted by t = 0.

The consumption paths in this plot were generated by re-estimating Equation 1.6 with the

inclusion of leads and lags of the month following a three paycheck month. The dashed

lines represent 95 percent confidence intervals surrounding the point estimates.14

As shown in the first panel of Figure 2, durable spending spikes in the month immediately

following a three paycheck month (t = 1) before returning back to prior levels of spending

in the following month. This pattern indicates that the effect of extra paychecks does not

persist beyond the first month following receipt. Additionally, there appears to be no pre-

trend in durable spending leading up to the three paycheck month. This may reflect the

existence of constraints on the part of households who are either unable or unwilling to

borrow in anticipation of the extra paycheck. Alternatively, households may simply fail to

anticipate the existence or timing of these third paychecks. In Section 1.6, I address which

of these interpretations better explains the pre-trend behavior. The second panel of Figure 2

14Because I am unable to observe which of the two alternate bi-weekly schedules applies to a given
individual, I am able to include at most two leads and one lag of the month following a three paycheck
month.
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shows the analogous timing for spending on strictly non-durable goods. Consistent with

the results from Table 2, there is no discernible effect in strictly non-durable spending.15

Taken together, these results show that household spending responds significantly to the

extra paychecks. Moreover, they indicate that the response is primarily in durables and

does not persist beyond the first month following three paycheck months. Additionally,

the lack of any discernible pre-trend in spending responses suggests that households do

in fact attribute the income from the third paycheck to the months following rather than

during three paycheck months. In Appendix A.3, I show that the estimates in Table 2 are

robust to alternative specifications. In Appendix A.4, I also look at potential heterogeneity

in spending responses by marital status, race, gender, and home ownership. I find no

significant differences in estimated spending responses by these various measures. For the

remainder of the paper, I therefore focus on the full set of individuals when estimating

spending responses.

1.5.1.2 Durable Spending

Because the observed spending response appears primarily in durable goods, Table 3 next

decomposes durable spending into several subcategories of expenditure. Specifically, I look

at spending responses to extra paychecks for spending on vehicles, furniture, flooring, and

major appliances such as refrigerators or stoves. Spending on vehicles refers to the value

of the vehicle minus any trade-in allowance. Each column of Table 3 represents a separate

regression run with the same covariates but different dependent variables. The first row

of Column 1 presents the same estimate of durable spending responses as Column 2 of

Table 2 and is listed for reference. These results show that not only is the spending response

driven largely by spending on durables, but also this effect is concentrated almost entirely in

spending on vehicles. There is a positive but economically insignificant response in spending

on flooring. All other estimates are both statistically and economically insignificant.

I further decompose the vehicle spending response by whether the vehicle is a car or motor

vehicle and by whether the vehicle is new or used.16 The first column of Table 4 shows

the previously estimated spending response for vehicles and is identical to Column 2 of

Table 3. Column 2 shows that purchases of new cars account for nearly 80 percent of the

total spending response in vehicles, with expenditures on new cars increasing by $201 on

average following a three paycheck month. Columns 6 and 7 report estimates from a linear

15The higher precision in the estimated spending response for strictly non-durable goods than for durable
goods reflects the higher variance in durable goods spending, which is often characterized by large and
infrequent purchases.

16Cars include automobiles, trucks, and vans. Motor vehicles include motorcycles, motor scooters, and
mopeds.
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probability model and show that not only does spending on new cars increase following three

paycheck months, but the probability of making a new car purchase increases significantly

by 0.4 percentage points.17

While the preceding evidence suggests that spending on vehicles increases in response to the

extra paychecks, it refers only to the full purchase price of the vehicle and does not consider

actual out-of-pocket spending. Table 5 provides statistics on vehicle expenditures as well

as three categories related to vehicle financing: out-of-pocket expenditures, debt financing,

and down payments. Out-of-pocket expenditure refers to either the down payment amount

if the vehicle is financed or the full purchase price (minus the trade-in allowance) if the

vehicle was not financed. Statistics are presented both unconditional and conditional on

ever purchasing a vehicle during the household’s survey period.

Conditional on ever purchasing a vehicle, the mean expenditure on new and used vehicles

is $2723, while the unconditional mean is $299. This difference reflects the fact that few

households report a vehicle purchase during their survey period. However, even these statis-

tics fail to provide a complete picture of vehicle spending and financing since households

who ever purchase a vehicle do not purchase a vehicle every month. For comparison, the

average value of a vehicle purchased is approximately $12,497. The average out-of-pocket

expenditure is $3569 while the average amount of financing for vehicle purchases is $8928.

Conditional on making a down payment, households put down 21.2 percent of the purchase

price of the vehicle on average, which corresponds to a payment of $3531.

Table 6 presents estimates of the spending response on vehicles, taking into account ve-

hicle financing. Spending on cars increases by $247 on average following months with

three paychecks. The spending response for debt financing is nearly twice the size of the

spending response for out-of-pocket expenditures, with roughly 67 percent of the overall

vehicle spending response from financing and 33 percent from out-of-pocket spending. The

estimated response in down payments is smaller and imprecisely estimated.

The spending response in vehicles is driven by a small number of households. In particular,

only 407 households in the sample report purchasing cars during their interview period.

Because only a small number of households are responsible for vehicle spending, the magni-

tudes of the estimates are necessarily small. They measure the average increase in spending

for all households, most of whom did not purchase a car during their survey period and

therefore have little to no reported change in vehicle spending. Table 7 presents conditional

estimates analogous to those in Table 6. Conditional on ever purchasing a car during the

survey period, spending on cars increases by $2205 on average following a three paycheck

17For the remainder of the paper, I refer to the terms vehicles and cars interchangeably.
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month.

1.5.2. Placebo Tests

I interpret these findings as evidence that, contrary to the predictions of standard theory,

individuals respond to the variation in their monthly income induced by their bi-weekly

pay schedules. This interpretation relies on the identification assumption that changes in

consumption expenditures following a given calendar month in years in which there were

three paychecks distributed during that month versus years in which there were only two

would have evolved similarly were it not for the third paycheck. The implication of the

assumption is that there should be no corresponding response for workers paid at frequencies

that do not induce such variation. Specifically, we would expect no response for workers

paid monthly and a smaller response, if any, for workers paid weekly.18 To evaluate the

validity of the assumption, I employ a triple difference strategy to compare the estimated

spending responses in the full sample using weekly and monthly households as controls. The

results from this specification are presented in Table 8. In contrast to bi-weekly workers,

weekly and monthly households do not respond in months following three paycheck months.

The fact that the estimated spending responses for weekly and monthly households are not

statistically different from zero suggests spending responses following a given month in years

in which three paychecks were distributed during that month versus years in which there

were only two would in fact have evolved similarly were there no third paycheck.

As a final check on the findings, I run a series of placebo tests to evaluate the extent to

which the baseline estimate of β (Column 1 of Table 2) may be spurious. I first generate

1000 placebo paycheck schedules, each of which designates a subset of the months spanning

my sample period from 1990-2010 as three paycheck months. To do this, I randomly select

four different months for each year in my sample period. In doing this, I also impose

the additional restriction that none of the four months that are randomly chosen in each

representative year can be consecutive since the true set of months that have three paychecks

never follow consecutively. This procedure is repeated 1000 times to create the set of 1000

placebo schedules. I then re-estimate the regression from Equation 1.6 to obtain estimates

of β for each of these placebo schedules. Figure 3 plots the distribution of these placebo

estimates as well as the true estimate, which is marked by the vertical dashed line. As the

figure makes clear, the true estimate is to the far right of the distribution, which suggests

that the probability of finding an effect as large as mine simply by chance is extremely

18The time profile of weekly workers is such that they receive four paychecks per month with the exception
of four months out of the year during which they receive five. However, the extra paycheck is both smaller
and occurs more frequently (four times a year instead of two) for weekly workers relative to bi-weekly workers,
so we might expect consumption responses, if any, to be small.
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small.

1.5.3. Time Adjustments in the CEX

Households are interviewed in the CEX at a quarterly frequency. In these interviews, house-

holds report expenditures for the three months prior to the interview month (the reference

period), which allows for conversion of the data from a quarterly frequency to a monthly

frequency. However, households on occasion report quarterly or annual expenditures over a

reference period rather than their monthly expenditures. As a result, for a subset of expen-

ditures, the Bureau of Labor Statistics uses pre-determined time adjustment routines when

mapping expenditures to the associated month of purchase.19 The conditions for whether

a given expenditure category is time adjusted depends on both the type of expenditure and

the information source for the expenditure. Three time adjustment methods in particular

are worth noting as they may affect whether I observe household spending responses. De-

pending on the expenditure category, reported expenditures can either be divided by three

and then assigned for each of the three months in the reference period, divided by twelve

and then assigned for each of the three months in the reference period, or allocated to a

random month in the reference period.

The effect of these time adjustment routines on my estimates is ambiguous. The first two

methods described may bias towards finding evidence of consumption smoothing whereas

the last method may bias towards finding evidence against smoothing. Given that the ex-

penditures are allocated to a random month for the third time adjustment routine, there is

no reason to expect that the assigned month is correlated with the indicator variable for fol-

lowing a three paycheck month. Nonetheless, to address potential concerns stemming from

the use of these time adjustment routines, I re-estimate responses following three paycheck

months for the original bi-weekly sample but excluding expenditures which undergo one of

the three time adjustment methods.20 Table 9 reports the results of of this re-estimation

for the categories of spending. I find evidence of spending responses even after excluding

expenditure categories that undergo time adjustment. These results are of similar magni-

tude and statistical significance to the original estimates in Table 2, which suggests that

the time adjustment routines do not have a large effect on my analysis.

19See Hai et al. (2013) for additional description of the time adjustment routines used by the BLS.
20I use the parsing file provided by the Bureau of Labor Statistics which provides a list of the universal

classification codes (UCCs) for expenditures which undergo time adjustment in addition to the type of time
adjustment routine that is applied.
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1.6. Potential Explanations

Taken together, the results presented above provide substantial evidence that household

spending responds following three paycheck months. In this section, I explore several pos-

sible explanations that may account for these findings. First, households may face binding

liquidity constraints and thus respond to the extra paychecks that provide additional liq-

uidity upon arrival. Second, households may adopt budgeting heuristics where they deviate

from the assumption of fully rational expectations and instead hold incorrect beliefs about

future income. Third, individuals may be sophisticated with time-inconsistent preferences,

thus choosing to invest their third paychecks in an illiquid asset as a commitment device.

Finally, individuals may hold a system of mental accounts by which they treat third pay-

checks as a bonus or windfall gain distinct from their typical income of two paychecks each

month.

1.6.1. Liquidity Constraints

Liquidity constraints are perhaps the most often cited explanation for observed household

spending responses to predictable income changes or predictable income receipt. The intu-

ition behind why liquidity constraints might matter is straightforward. Consider the same

individual from the basic environment in Section 1.2.1, but now assume that she faces a

borrowing constraint of the form Xt − ct ≥ 0 so that current period consumption can never

exceed current cash-on-hand. The individual’s modified Euler equation is then

uc(ct) = max {uc(Xt), δRuc(ct+1)}.

Let period t+1 be an atypical income period (e.g. a month following three paychecks) and

suppose that the individual’s borrowing constraint is binding in the previous period. In

other words, suppose that

ct = Xt < (1− (δR1−ρ)1/ρ)Wt,

where (1 − (δR1−ρ)1/ρ)Wt is her optimal level of consumption under no constraints. The

additional income bY in period t+ 1 relaxes the borrowing constraint, which allows the in-

dividual to increase her spending in response. Furthermore, she spends more in the atypical

income period than she otherwise would have under the same model with no borrowing con-

straints because of the forced savings from the presence of the binding constraint. Given

that the constraint was binding in period t, the forced savings is equal to the difference

between her optimal level of consumption and her cash-on-hand in period t.

To see whether this intuition holds in the data, I evaluate the role of liquidity in the esti-
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mated spending responses to extra paychecks using two complementary strategies. I first

estimate the spending response separately for constrained and unconstrained households

using a series of proxies for the presence of liquidity constraints.21 For each proxy, I classify

households into two groups using the median value of the measure. I also implement a sec-

ond empirical strategy that uses observed behavior to classify households as constrained or

unconstrained. Specifically, I infer whether a household is constrained or unconstrained by

the extent to which the household’s choices are consistent with binding liquidity constraints.

I consider two types of observed behavior: consumption volatility and vehicle loan charac-

teristics. The first of these distinguishes households by their ability to smooth strictly non-

durable consumption in months excluding those following three paycheck months (months

with typical income). The use of vehicle loan characteristics is motivated by Attanasio et al.

(2008), who find that constrained and unconstrained households differ in their responsive-

ness to changes in certain vehicle loan characteristics, specifically loan maturity and interest

rates.

1.6.1.1 Tests of Liquidity Constraints using Proxy Measures

I first test for the presence of binding liquidity constraints using traditional methods of

asset-based sample splitting (Zeldes 1989; Runkle 1991). The proxy I consider is the total

reported balance in household checking and savings accounts, which I refer to as “liquid

assets.” While this is perhaps the most relevant way to proxy for liquidity, limitations of

the CEX make this an especially difficult proxy to measure. Information on checking and

savings account balances is collected only once over the survey period, during a household’s

final interview. Furthermore, few households report their savings and checking account

balances, which in combination with the fact that the spending response is primarily driven

by a small number of households, means that any tests of the role of liquidity constraints

using this measure are significantly underpowered.22 Nonetheless, since liquid assets are

perhaps the most appropriate measure of liquidity available, I include estimates of the

spending response for constrained and unconstrained households using liquid assets as a

proxy. Table 10 shows these estimates for each of the aggregate categories of expenditure.23

21In general, it is not possible to actually determine whether a particular household faces liquidity con-
straints given the data available, and thus the presence of binding constraints must often be proxied with
other measures. An exception to this is Agarwal et al. (2007) who use data from credit card accounts and
find that spending rose most for individuals who were most likely to be liquidity constrained, which is defined
using credit limits and credit card utilization rates. Their findings suggest that the presence of liquidity
constraints may be important.

22If we restrict the sample to households with bi-weekly heads who report savings and checking account
balances, the sample size drops to only 1479 households.

23In this and all remaining tables testing for liquidity constraints, I present estimates using the dollar
change in monthly income ∆Yit as the explanatory variable of interest rather than the indicator 1{t−1∈S}.
This is to account for the fact that unconstrained and constrained households likely have different sized third
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The first row provides estimates for the constrained households (those with liquid assets

below the sample median) while the second row provides the estimated difference in spending

response for unconstrained households relative to constrained. Contrary to the predictions

of a model with borrowing constraints, I find that households with higher levels of liquid

assets exhibit larger spending responses than those with lower levels of liquid assets, though

the difference is not statistically significant.

Because reports of liquid assets are underpopulated, I also proxy for constraints using

household (before-tax) income. While income may not reflect liquidity in the same way in

which liquid assets do, we might expect the two measures to be highly correlated. Results

are presented in Table 11 and are similar to those using liquid asset holdings as a proxy:

unconstrained households exhibit larger spending responses than constrained households,

although the difference is not statistically significant.

I next classify households as constrained and unconstrained using the age of the head of

household as a proxy measure. The relationship between age and liquidity is somewhat

ambiguous. Labor income tends to be more concentrated later in life, implying less liq-

uidity for younger households. Additionally, lenders may be reluctant to provide loans to

younger households for whom they have little credit history to rely on. At the same time,

younger households face a steep consumption profile, suggesting a smaller likelihood of being

constrained. Jappelli (1990) finds that younger households are more likely to be liquidity

constrained and suggests that the first two effects must dominate the third. Table 12 shows

that while younger households exhibit stronger spending responses to extra paychecks, the

difference is again not statistically significant.

The previous three proxies for liquidity – liquid assets, income, and age – are the standard

measures of liquidity used in the literature. As a final proxy, I create a new measure using

a household’s committed consumption as a fraction of monthly wage income. Individuals

who face large recurring expenditures that are difficult to adjust and that constitute a

large share of their available income may have less disposable income and thus may exhibit

greater sensitivity to cash-on-hand. To construct the measure of committed consumption,

I first aggregate monthly expenditures on mortgage payments, rent, car loans, and utilities

for each household and then divide the total level by the monthly wage income for that

household.24 While this measure likely understates the true level of committed consumption,

it is composed of expenditures we might reasonably think would be difficult to adjust. As

Table 13 shows, while I find larger durable spending responses for households with higher

paychecks.
24Monthly wage income here is calculated as the wages for the head of household in a two paycheck month

and is thus equal to two times the reported gross pay.
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committed consumption, the difference is not statistically significant.

1.6.1.2 Tests of Liquidity Constraints Using Observed Behavior

Liquidity constrained households have a limited ability to smooth consumption intertempo-

rally. One potential implication of this limited ability is that constrained households may

exhibit more volatile consumption patterns than unconstrained households. With this in

mind, I construct a measure of consumption volatility for each household using the stan-

dard deviation of strictly non-durable spending in months excluding those following three

paycheck months. Households are classified as liquidity constrained or unconstrained by

comparing their consumption volatility to the median value of the measure. I then es-

timate spending responses to extra paychecks allowing the response to differ by whether

the household is constrained or unconstrained. An important caveat to this approach is

that consumption volatility defined in this manner is endogenous to the measured effect.

As such, tests using consumption volatility to distinguish between constrained and uncon-

strained households are simply suggestive and are not meant to be taken as strong evidence

for or against the presence of liquidity constraints. Table 14 presents results using the

consumption volatility meaures. I find that spending responses to extra paychecks by un-

constrained households are larger than estimated responses by constrained households, but

the difference is not statistically significant.

The presence of liquidity constraints also has implications for the types of loans a household

may choose. Since the observed spending responses to extra paychecks are primarily due

to vehicle purchases, I focus on the implications of constraints for vehicle loans specifically.

Furthermore, I consider loan characteristics whose values we might expect to differ between

constrained and unconstrained households: maturity, monthly payment size, loan-to-value

ratio, and down payment. To the extent that these extra paychecks provide additional

liquidity to constrained households, we might expect loans associated with vehicles pur-

chased following three paycheck months (atypical income months) to have characteristics

more consistent with the presence of constraints relative to loans associated with vehicles

purchased in other months (typical income months). I thus compare the loan characteristics

of vehicles purchased in months following three paycheck months with the loan character-

istics of vehicles purchased in other months to gauge whether constrained households may

disproportionately be responding to extra paychecks.

Table 15 reports the results of this comparison using the subset of vehicles for which I

observe loan characteristics. The table shows that the loan characteristics of interest do

not differ significantly between vehicles purchased following three paycheck months and
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those purchased in other months. While this comparison does not necessarily imply that

third paychecks do not help relieve binding constraints for households, it suggests that

vehicles purchased following three paycheck months do not appear to be disproportionately

purchased by constrained households.

Overall, these tests for liquidity constraints at best weakly suggest the relevance of liquidity

constraints since any differences in response were not significant and several go in the

opposite of what might be expected.25 Moreover, if households were liquidity constrained,

we would expect there to be a response in non-durables spending in addition to any response

in durable spending. But as Table 2 shows, there is no corresponding response in non-

durable spending following months with three paychecks. Taken together, this suggests

that liquidity constraints alone cannot explain the findings in this paper.

Several other papers in the literature have also found that spending responses to pre-

dictable income receipts are not correlated with conventional measures of liquidity con-

straints (Parker 1999; Souleles 1999; Shapiro and Slemrod 1995; Stephens, Jr. 2008; Stephens,

Jr. and Unayama 2011). The literature is largely undecided as to the extent to which such

constraints may or may not play a role. At present, it remains unclear whether the lack of

consensus stems from the acknowledged difficulties in measuring liquidity constraints or is

due to heterogeneity in the contexts where liquidity constraints play a role.

1.6.2. The t-Budgeting Heuristic

An alternative explanation for the empirical findings is that bi-weekly workers adopt bud-

geting heuristics in response to the misalignment between the timing of income and the

timing of consumption. The variation in income generated by this misalignment introduces

additional complexity to the household financial decision problem. Empirical evidence has

shown that individuals often have difficulty fully optimizing when facing such complex-

ity.26 One way in which they may respond is by adopting rules-of-thumb or heuristics that

ease the cognitive burden associated with complex decision problems (Gilovich et al. 2002;

Bernatzi and Thaler 2007; Lacetera et al. 2012). In this section, I propose a specific heuris-

tic in which households construct monthly budgets by naively extrapolating their current

income into the future. This heuristic is motivated in part by the fact that many sources of

informal financial advice commonly suggest that households form monthly budgets based

on their current cash flow.

25As Jappelli et al. (1998) note, proxy measures for liquidity are prone to mis-classification error, which
may downward bias any estimated difference between constrained and unconstrained groups.

26For example, Choi et al. (2011) find that individuals sub-optimally invest in their 401(k) by contributing
at a rate below the threshold matched by their employer, even when doing so is dominated by contributing at
the match threshold. Abaluck and Gruber (2011) show that individuals choose Medicare Part D prescription
drug plans that are strictly worse than other available plans.
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With this motivation in mind, I develop a simple model in order to formalize the budgeting

heuristic and investigate its implications for the path of consumption. Consider once again

the individual from the standard consumption and savings framework from Section 1.2. Let

yEt,t+i denote the income the individual in period t believes will be received in period t + i

for i ≥ 1. I parameterize beliefs according to

yEt,t+i = α · yt + (1− α) · yt+i, (1.7)

where 0 ≤ α ≤ 1. This formulation of beliefs nests the rational model as individuals with

α = 0 hold fully rational beliefs about future income. More generally, the parameter α

can be thought of as a measure of the extent to which individuals extrapolate their current

income into the future. In other words, individuals with α > 0 mistakenly believe that any

deviation in income from their current period t income is a weighted average of a permanent

and a transitory income shock, where α is the weight the individual places on the deviation

yt − yt+i being a permanent income shock.

This parameterization of beliefs is similar in spirit to the model of projection bias introduced

in Loewenstein et al. (2003). With projection bias, individuals extrapolate their current

tastes, rather than income, into the future. This parameterization can also help to explain

the presence of “rule-of-thumb”consumers who consume out of current disposable income

as discussed in Hall and Mishkin (1982) and Campbell and Mankiw (1989).

I define an individual to be following a t-budgeting heuristic if she makes her consumption

decisions at a frequency t and has α > 0. In the context of this paper, an individual thus

adopts a monthly budgeting heuristic if she makes her consumption decisions at a monthly

frequency and extrapolates her current income into the future.

1.6.2.1 The t-Budgeting Heuristic with Misalignment Between the Timing of

Consumption and the Timing of Income

Section 1.2.1 demonstrates that, in the absence of a t-budgeting heuristic, misalignment

between the timing of consumption and the timing of income is irrelevant in a basic en-

vironment with no borrowing constraints and no income uncertainty. However, when an

individual does follow a t-budgeting heuristic (α > 0), misalignment between the timing of

consumption and the timing of income becomes quite important.

For an individual who follows a t-budgeting heuristic, expected remaining lifetime wealth
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at time t can be written as,

WE
t = Xt +

∞
∑

i=1

yEt,t+i

(1 + r)i
, (1.8)

where yEt,t+i is given by Equation 1.7. For this individual, the relationship between expected

wealth and true wealth depends on whether the current period is a typical income period

or an atypical income period.

Definition 1. An individual has overly optimistic beliefs about future income if her ex-

pected lifetime wealth is strictly greater than her true lifetime wealth (WE
t > Wt) and has

overly pessimistic beliefs about future income if her expected lifetime wealth is strictly less

than her true lifetime wealth (WE
t < Wt).

It is easy to show that when the timing of consumption and the timing of income are

misaligned, individuals who follow a t-budgeting heuristic have overly optimistic beliefs in

periods with atypical income and overly pessimistic beliefs in periods with typical income.27

The intuition underlying this result is straightforward. An individual who extrapolates cur-

rent income into the future places too much weight on her current income when forming her

expectations about future income. Since her current period income is less than her average

per-period income in periods with typical income, the individual will have expectations

about her wealth that are too low. Likewise, in periods with atypical income, her current

period income is higher than her average per-period income and thus her expectations about

her wealth are too high.

Since consumption is proportional to expected wealth, over-pessimism and over-optimism

in beliefs imply that consumption will be either too low in typical income periods or too

high in atypical income periods relative to the optimal consumption level under the rational

benchmark. The following proposition characterizes the marginal propensity to consume

out of additional income bY in periods with atypical income and how the measure relates

to α.

Proposition 1. In the presence of a t-budgeting heuristic and misalignment between the

timing of consumption and the timing of income, the marginal propensity to consume out of

additional income bY in atypical income periods is (1− (δR1−ρ)1/ρ) R
R−1α and is increasing

in α.

Proof. See Appendix A.5.

Proposition 1 follows directly from the intuition outlined previously for over-optimism in

periods with atypical income. As α increases, the extent to which the individual extrapolates

27This statement is formalized in Lemmas 1 and 2 in Appendix A.5.
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current income into the future, and hence the erroneously expected “permanence” of the

additional income bY , increases. Thus α determines not only whether an individual is overly

optimistic in periods with atypical income but also the degree to which she is so. As a result,

the marginal propensity to consume out of the additional income bY in an atypical income

period is increasing in α. Proposition 1 thus predicts excess sensitivity of consumption in

months following three paycheck months (i.e. in periods with atypical income) for bi-weekly

workers who follow a monthly budgeting heuristic.

Finally, it is important to recognize that the adoption of a t-budgeting heuristic is irrelevant

for consumption patterns when there is no misalignment between the timing of consumption

and the timing of income. With no misalignment, income is constant each t-period so that

yt = yt+i. In this case, the individual’s expectations about her future income are not

only independent of α, but are also equivalent to her expectations if she were rational:

yEt,t+i = yt+i.

1.6.2.2 The t-Budgeting Hueristic with Borrowing Constraints

While the results in Section 1.6.1 suggest that liquidity constraints alone cannot explain the

findings in this paper, this does not mean they do not play any role. It is therefore important

to consider how the presence of liquidity constraints might interact with the adoption of

a t-budgeting heuristic. Incorporating the simple borrowing constraint, Xt − ct ≥ 0, from

before gives the following proposition.

Proposition 2. For all α, the presence of borrowing constraints of the form Xt − ct ≥ 0

leads to weakly larger increases in consumption in periods with atypical income than in the

absence of borrowing constraints.

Proof. See Appendix A.5

As previously mentioned, the presence of binding borrowing constraints results in forced

savings which leads to greater consumption in atypical income periods when the constraint

is relaxed by the additional income bY . This amplifies any effects on consumption from

individuals extrapolating current income into the future, and thus consumption in atypical

income periods is higher than would otherwise by implied by in the absence of borrowing

constraints.
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1.6.2.3 The t-Budgeting Heuristic with Committed Consumption

The consumption model thus far has assumed a single, composite consumption good, c.

An important first generalization is to allow for both durable and non-durable goods. As

Table 32 shows, durable goods constitute nearly half of total expenditure. Furthermore,

features of durable goods often make adjustment costly in ways that are distinct from the

adjustment of non-durable goods. Following a t-budgeting heuristic may therefore have

very different implications for the consumption of non-durable versus durable goods. With

this in mind, I follow the approach taken by Chetty and Szeidl (2007) and extend the

current model to allow for two types of consumption goods: adjustable (c) and committed

(d). Committed consumption is differentiated from adjustable consumption through the

presence of a fixed cost to adjustment, ψ(d) = k · d > 0. In order for the individual

to adjust her committed consumption, she must pay this fixed cost. Expected remaining

lifetime utility is now defined as

Ut({cτ , dτ}
∞
τ=t) = Et

[

∞
∑

τ=t

δτ−tu(cτ , dτ )

]

, (1.9)

where u(c, d) satisfies the conditions: (i) limc→∞ uc(c, d) = limd→∞ ud(c, d) = 0 and (ii)

limc→0 u(c, d) = infc′,d′ u(c
′, d′) for all d. Within each period, the individual has Cobb-

Douglas preferences over adjustable and committed consumption: u(c, d) = (c1−γdγ)
1−ρ

1−ρ
with

0 < γ < 1. I assume ρ < 1 to ensure that the marginal utility of adjustable consumption is

always increasing in committed consumption (uc,d(c, d) > 0).

Individuals enter period 0 with some level of assets X0 which is distributed according to

the density f(X0). Since we are interested in the implications of following a t-budgeting

heuristic, assume that there is misalignment between the timing of consumption and the

timing of income, with period t income given by Equation 1.2. The individual’s dynamic

budget constraint is given by

Xt+1 = R(Xt − ct − dt − kdt−1 · ✶{dt−1 6= dt}) for all t, t+ 1.

For simplicity, I assume that that there is no heterogeneity in income yt. Then, individuals

can be uniquely identified by their initial level of assets, their coefficient of relative risk

aversion, and the extent to which they extrapolate current income into the future (X0, ρ, α).

Conditional on entering period 0 with assets X0 and income y0 = Y , the individual chooses

her optimal consumption path, {cτ , dτ}
∞
τ=0, in order to maximize her expected lifetime

utility. Denote the individual’s optimal consumption in period t by {ct, dt}. Since the main
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goal is to understand the choice of adjustable and committed consumption in periods with

atypical income, I focus on two periods: period 0 when individuals receive typical income

Y and chooses their initial level of committed consumption and period 1 when individuals

first receives additional income bY .

Given the preferences specified above, Chetty and Szeidl (2007) show that for each initial

level of committed consumption dt−1 in period t − 1, there exists st < St such that the

optimal policy in period t is to (i) maintain the current level of committed consumption when

WE
t ∈ (st, St) and (ii) adjust committed consumption when WE

t /∈ (st, St). In other words,

at time t, individuals with expected remaining lifetime wealth WE
t that lies outside the

band (st, St) will discretely adjust their committed consumption. The following proposition

characterizes how the probability of adjusting committed (durable) consumption depends

on α.

Proposition 3. Let wealth entering period 0 be distributed according to the CDF G(WE
0 )

and density g(WE
0 ), where the density g(·) depends on the joint distribution of (X0, α).

For a given initial level of committed consumption d0, the probability that an individual

discretely adjusts her committed consumption in period 1 (d1 6= d0) is increasing in α.

Proof. See Appendix A.5.

To understand the basic intuition for this result, recall that individuals who follow a t-

period budgeting heuristic have over-optimistic beliefs about future income in periods with

atypical income. Then for some of these individuals (those with large α), the perceived

positive shock to permanent income in periods with atypical income is sufficiently large that

it is preferable to pay the adjustment cost and modify committed (durable) consumption

rather than maintain the current level of committed consumption and allocate the additional

wealth to adjustable consumption.

For adjustable (non-durable) goods, the predicted effect is ambiguous. For those individ-

uals whose perceived positive shock to permanent income is sufficiently large, adjustable

consumption may decrease as individuals adjust upwards their levels of committed con-

sumption. However, this decrease will be offset by increases in adjustable consumption for

those individuals whose perceived positive shock was not sufficiently large to lead to discrete

adjustment of committed consumption.

Taken together, Proposition 3 makes the following predictions about durable and non-

durable consumption: assuming bi-weekly workers follow a monthly budgeting heuristic,

durable consumption will weakly increase on average in months following three paycheck

months, while the response for non-durable consumption is ambiguous. While these predic-
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tions of the monthly budgeting heuristic model are consistent with the empirical findings in

the paper, it is important to note that the ability to empirically distinguish this explanation

from the other proposed explanations is limited by the information available in the CEX.

However, the budgeting heuristic model does give rise to predictions that may be testable

with other data. For example, one such prediction is that, all else equal, we would expect

an individual paid bi-weekly to have lower levels of committed consumption expenditures

(e.g. rent, mortgage payment, etc.) than an individual paid monthly. This prediction is a

direct implication of the incorrect beliefs about future income: a bi-weekly worker will typ-

ically be overly-pessimistic about her future income relative to a monthly worker. Testing

this prediction relies crucially on the ability to observe the pay frequency at the time of

commitment (e.g. signing a rental lease), which the CEX does not allow for. However, the

increasing availability of high-frequency data holds promise for future research in this area.

1.6.3. Time Inconsistency with Sophistication

The presence of sophisticated individuals with (β, δ)-preferences could also potentially ex-

plain the empirical findings (Strotz 1956; Phelps and Pollak 1968; Laibson 1997; O’Donoghue

and Rabin 1999). These individuals are quasi-hyperbolic discounters with preferences given

by

Ut({cs}
∞
s=t) = Et

[

u(ct) + β

∞
∑

s=t+1

δs−tu(cs)

]

, (1.10)

where δ represents the standard exponential discount factor and β captures the relative

trade-off between the present and the future. When β < 1, preferences are not only time-

inconsistent but also present-biased. That is, individuals overweight the utility of present

consumption relative to future periods of consumption, preferring immediate gratification

to future gratification.

This present-bias can lead to future self-control problems. The implications of such prob-

lems for individual behavior depend on the extent to which individuals are aware of their

self-control problems (O’Donoghue and Rabin 1999). In particular, individuals who are

fully aware of their self-control problems (sophisticates) may in fact demand various forms

of commitment in anticipation of these problems. For bi-weekly workers, sophisticated

individuals with present-biased preferences may choose to invest their third paychecks in

durable goods because the illiquid nature of these goods act as a commitment mechanism

against overconsumption (Laibson 1997). Such behavior could explain the observed spend-

ing responses in durables following three paycheck months. However, the estimated durable

spending responses were primarily due to debt-financed vehicles, the purchase of which com-

mit a household to a stream of future installment payments which, with rational income
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expectations, they may not be able to afford. Moreover, time inconsistency with sophistica-

tion fails to explain why there is no effect of third paychecks on non-durable consumption.

1.6.4. Mental Accounting

An alternative explanation is that individuals engage in mental accounting behavior. Under

a mental accounting framework, individuals no longer treat money as fungible and instead

use a system of mental accounts to categorize and evaluate their income (Thaler and Shefrin

1981; Shefrin and Thaler 1988; Thaler 1990, 1999, 2008). While third paychecks are not

designated any differently from non-third paychecks, bi-weekly workers may nonetheless

choose to treat their typical income of two paychecks per month as their “regular” income

and to view third paychecks as a bonus or windfall gain distinct from regular income. Mental

accounting behavior in this manner can lead to different marginal propensities to consume

out of different mental accounts (Shefrin and Thaler 1988). In the context of bi-weekly

workers, mental accounting can predict responses to third paychecks even in the absence

of any change in total lifetime income or binding liquidity constraints and with correct

beliefs about future income. However, given rational expectations about future income, it

is once again surprising that the spending responses are driven primarily by the purchase

of debt-financed vehicles that commit a household to a stream of future payments.

Mental accounting not only captures behavior in which individuals label the source of income

but also behavior in which individuals categorize the use of the income. Rather than simply

treating third paychecks as a bonus or windfall gain, a related possibility is that bi-weekly

workers earmark third paychecks specifically for other uses, such as the purchase of large

durables. Such behavior could potentially explain the observed spending responses in debt-

financed vehicles following three paycheck months.

1.7. Conclusion

For many households, the frequency for which they make their consumption decisions often

differs from the frequency at which their income arrives. This misalignment can result in

predictable variation in the amount of income received per consumption decision period.

Under standard assumptions, such variation should not matter since its timing is fully an-

ticipated by households. I test this prediction by leveraging variation in monthly income

arising from the timing of of bi-weekly pay schedules. Bi-weekly workers typically receive

two paychecks per month with the exception of two months out of the year, during which

they receive three. I find that households with bi-weekly heads increase their spending

significantly in response to third paychecks: total household spending increases by $262

on average following three paycheck months. Furthermore, I find that this spending re-
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sponse is due entirely to spending on durables, and specifically new car purchases, with no

corresponding response in non-durables.

Contrary to standard consumption theory, the empirical findings suggest that differences

in the timing of consumption and the timing of income can in fact have large effects on

household consumption patterns. I present a number of explanations for these findings.

Specifically, I consider the standard extension of liquidity constraints as well as three be-

havioral explanations: time inconsistency with sophistication, mental accounting, and a new

model of budgeting heuristics in which individuals naively extrapolate their current income

into the future. While this paper attempts to address some of the alternative explanations

for the empirical findings, further research is warranted to fully distinguish between the al-

ternative explanations and understand the mechanisms driving the response. For instance,

while the empirical evidence suggests that binding liquidity constraints cannot fully explain

the results, the ability to determine the extent to which individuals face such constraints is

limited by the available data. As high-frequency data linking individual income, debt, and

asset balances becomes increasingly available, future research will allow for a fuller picture

of how individual behavior responds to the predictable variation induced by misalignment.

A natural extension to the results presented in this paper is to explore whether house-

holds respond to predictable variation in (committed) consumption expenditures arising

from misalignment between the timing of income and timing of consumption. Rather than

considering variation characterized by infrequent but recurring periods with increased in-

come (e.g. three paychecks instead of two), this alternative variation is characterized by

infrequent but recurring periods with increased committed expenditure and hence decreased

(disposable) income. Studying anticipated declines in income has the advantage of avoiding

the common empirical difficulty in testing for the presence of binding liquidity constraints.

Specifically, any evidence of excess sensitivity cannot be attributed to the presence of liq-

uidity constraints since households should save, not borrow, in anticipation of declines in

disposable income. I plan to explore this further in future research using individuals who

are paid monthly but make bi-weekly mortgage payments. These individuals typically make

two mortgage payments each month, with the exception of two months out of the year when

they make three. As a result, these individuals have less disposable income following three

payment months. Studying responses to this source of anticipated would complement the

findings in this paper.
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Fig. 1.—Total Income Distribution by Pay Frequency
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Note.— This figure plots the distributions of total before-tax income for households

in the full sample by three different pay frequencies for the head of household - weekly,

biweekly, and monthly. The figure was created using the interview portion of the

Consumer Expenditure Survey from 1990-2010.
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Fig. 2.—Timing of Durable and Strictly Non-Durable Spending
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Note.— Each figure plots distributed lag estimates from a regression of the dollar

change in spending on indicators for the month of expenditure relative to three pay-

check months (t=0). The estimates control for changes in taste and seasonal variation.

The dashed lines are 95 percent confidence intervals.
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Fig. 3.—Distribution of Placebo Estimates of Spending Effect
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Note.— This figure shows the distribution of 1000 placebo estimates of the total

spending effect following three paycheck months. These effects were estimated using

randomly generated placebo schedules of three paycheck months.
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TABLE 1
Summary Statistics

Full Sample Biweekly

Expenditure in Levels ($):

Durables 1,378.9 (2,788.7) 1,410.2 (2,775.9)

Non-durables 1,429.6 (824.8) 1,432.6 (830.5)

Strictly Non-durables 1,050.7 (530.3) 1,044.2 (535.6)

Food 514.0 (320.1) 510.7 (331.4)

Total 2,808.5 (3,037.2) 2,842.8 (3,020.6)

Changes in Expenditure ($):

Durables 16.9 (3,803.0) 12.9 (3,773.7)

Non-durables 26.2 (456.4) 26.3 (458.1)

Strictly Non-durables 8.1 (251.4) 7.2 (257.2)

Food 3.4 (128.3) 3.5 (127.4)

Total 43.1 (3,846.4) 39.1 (3,815.0)

Taste Shifters:

Age 39.8 (10.4) 39.9 (10.4)

∆ Children 0.0 (0.1) 0.0 (0.1)

∆ Adults 0.0 (0.1) 0.0 (0.1)

Income and Assets ($):

Paycheck 1,523.9 (1,274.0) 1,668.8 (1,035.6)

Annual Income 53,852.6 (34,582.0) 55,254.3 (35,467.8)

Liquid Assets (N = 8887) 7,639.2 (28,587.6) 8,698.4 (33,115.4)

N 24,822 13,707

Num. of Households 7776 4316

Note.—Table entries are means and standard deviations. Observations are at the household-month level.

Columns 1 and 2 are based on the full sample of households with weekly, bi-weekly, and monthly heads. These

households include both single and married heads of households but exclude households for whom other mem-

bers of the family are paid at the same frequency as the head of household. Additional details on sample

restrictions can be found in Appendix A.1. Columns 3 and 4 include only the subset of households from the

full sample whose heads are paid bi-weekly. All monetary values are in 2010 U.S. Dollars. Total expendi-

tures are composed of durable and non-durable expenditure. Strictly non-durable expenditures are a subset

of non-durables expenditures, and food expenditures are a subset of strictly non-durable expenditures. Age

refers to the head of household only. Changes in the number of children include only children younger than

18. Paycheck amounts refer to the gross amount of the head of household’s last pay. Annual income refers

total before-tax income received by the households in the past year. Liquid assets are composed of savings

and checking account balances and are only available for N=8887 household-month observations out of the

full sample of 24,822 observations.
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TABLE 2
Response to Extra Paychecks by Consumption Categories

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

1{t−1∈S} 261.641∗∗∗ 256.964∗∗∗ 4.668 -2.434 -0.955

(95.240) (93.976) (9.763) (5.505) (2.613)

Age 2.182 2.208 -0.026 -0.074 0.061

(1.565) (1.537) (0.271) (0.151) (0.077)

∆ Children 317.430 327.762 -10.337 38.742 30.751

(650.112) (612.642) (70.371) (26.738) (19.572)

∆ Adults 365.079 381.360 -16.288 17.602 51.522

(659.013) (620.910) (78.352) (57.922) (42.160)

R-squared 0.002 0.002 0.034 0.006 0.005

N 13,707 13,707 13,707 13,707 13,707

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate OLS regression run at the household-month level. Standard errors are

clustered by household and are reported in parentheses. All specifications in this table are estimated using the bi-weekly sam-

ple. The dependent variable in all specifications is the (2010) month-to-month dollar change in consumption. The category of

consumption for each specification is listed at the head of each column and includes: total, durable, non-durable, strictly non-

durable, and food. The indicator ✶{t−1∈S} equals one if the previous month was a three paycheck month (if three paychecks of

income are available in the present month t). In addition to month and year fixed effects, all four specifications include age of the

head of household, changes in the number of children, and changes in the number of adults as controls. Significance is denoted

by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE 3
Response to Extra Paychecks by Durable Consumption Categories

(1) (2) (3) (4) (5)

Durable
Vehicle

Purchases
Furniture Flooring

Major

Appliances

Dependent variable: ∆Ct

1{t−1∈S} 256.964∗∗∗ 257.101∗∗∗ -5.149 3.545∗∗∗ -3.658

(93.976) (91.984) (10.106) (1.269) (4.619)

Age 2.208 2.181 -0.186 -0.072∗ 0.045

(1.537) (1.442) (0.213) (0.043) (0.137)

∆ Children 327.762 545.596 1.869 0.403 1.378

(612.642) (494.669) (5.614) (0.905) (3.903)

∆ Adults 381.360 549.231 -15.418 0.562 -4.805

(620.910) (595.488) (22.359) (0.517) (17.788)

R-squared 0.002 0.002 0.002 0.002 0.003

N 13,707 13,707 13,707 13,707 13,707

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate OLS regression run at the household-month level. Standard errors are

clustered by household and are reported in parentheses. All specifications in this table are estimated using the bi-weekly sample.

The dependent variable in all specifications is the (2010) month-to-month dollar change in consumption. The category of con-

sumption for each specification is listed at the head of each column. Column 1 specifically uses changes in durable consumption

and presents the same estimates as Column 2 of Table 2. Columns 2-4 decompose durable consumption and include the follow-

ing sub-categories of consumption: vehicles purchases, furniture, flooring, and major appliances. The indicator ✶{t−1∈S} equals

one if the previous month was a three paycheck month (if three paychecks of income are available in the present month t). In

addition to month and year fixed effects, all four specifications include age of the head of household, changes in the number of

children, and changes in the number of adults as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE 4
Response to Extra Paychecks by Vehicle Consumption Categories

Dependent variable: ∆Ct Probability of Purchase

(1) (2) (3) (4) (5) (6) (7)

Vehicle

Purchases

New

Cars

Used

Cars

New Motor

Vehicles

Used Motor

Vehicles

New

Cars

Used

Cars

1{t−1∈S} 257.101∗∗∗ 201.398∗∗ 45.408 8.086 2.209 0.004∗∗ 0.002

(91.984) (78.243) (47.997) (7.015) (4.833) (0.002) (0.003)

Age 2.181 0.982 1.320 -0.128 0.007 0.000 0.000

(1.442) (1.039) (0.987) (0.132) (0.052) (0.000) (0.000)

∆ Children 545.596 459.922 88.801 -2.694 -0.433 0.015 -0.003

(494.669) (478.736) (111.384) (2.026) (0.794) (0.016) (0.007)

∆ Adults 549.231 573.234 -26.894 2.698 0.193 0.019 0.013

(595.488) (527.437) (264.625) (2.371) (1.229) (0.018) (0.024)

R-squared 0.002 0.003 0.001 0.002 0.001 0.003 0.004

N 13,707 13,707 13,707 13,707 13,707 13,707 13,707

Month and Year FEs Y Y Y Y Y Y Y

Note.—Each column reports estimates from a separate OLS regression run at the household-month level. Standard errors are clustered by household

and are reported in parentheses. All specifications in this table are estimated using the bi-weekly sample. The dependent variable in all specifications

is listed at the head of each column. Column 1 presents the same estimates as Column 2 of Table 3. Columns 2-5 use (2010) month-to-month dollar

changes in consumption as the dependent variable and decompose vehicle purchases into the following sub-categories of consumption: new cars, used

cars, new motor vehicles, and used motor vehicles. Columns 5 and 6 report estimates from a linear probability model with indicators for whether or

not a new car or a used car was bought as the dependent variable. The indicator ✶{t−1∈S} equals one if the previous month was a three paycheck

month (if three paychecks of income are available in the present month t). In addition to month and year fixed effects, all seven specifications include

age of the head of household, changes in the number of children, and changes in the number of adults as controls. Significance is denoted by: ***

p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE 5
Summary Statistics for Car Purchases

Full Sample
Conditional on

Ever Purchasing

Expenditure in levels ($):

New and Used Car Purchases 299.1 (2,529.1) 2,723.4 (7,187.1)

Out-of-pocket Expenditures 83.4 (1,112.9) 757.5 (3,281.9)

Financed Amount 215.8 (2,115.3) 1,965.9 (6,108.3)

Downpayment 24.0 (400.3) 217.2 (1,190.3)

Changes in expenditure ($):

New and Used Car Purchases -5.6 (3,636.2) -49.1 (10,736.8)

Out-of-pocket Expenditures 3.4 (1,635.9) 29.9 (4,830.2)

Financed Amount -9.1 (3,032.8) -79.0 (8,954.9)

Downpayment -0.3 (581.1) -2.4 (1,715.8)

N 13707 1573

Num. of Households 4316 407

Note.—Table entries are means and standard deviations. Observations are at the household-month

level. Columns 1 and 2 are based on the subset of households from the full sample whose heads are paid

bi-weekly. Columns 3 and 4 includes only the subset of households from the bi-weekly sample who ever

purchased a new or used car during the sample period (1990-2010). All monetary values are in 2010 U.S.

Dollars. Expenditure categories in levels and in changes are composed of expenditures on the following:

new and used car purchases, out-of-pocket expenditures, financed amounts, and downpayments. Here,

new and used car purchases refers to the total dollar value of the car. Downpayments are not conditional

on ever having made a downpayment.
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TABLE 6
Response to Extra Paychecks by Vehicle Financing Categories

(1) (2) (3) (4)

Car

Purchases

Out of Pocket

Expenditure
Financing

Downpayment for

Financed Purchases

Dependent variable: ∆Ct

1{t−1∈S} 246.806∗∗∗ 82.726∗ 164.080∗∗ 22.591

(91.567) (47.757) (72.758) (15.284)

Age 2.302 0.474 1.828 0.119

(1.435) (0.544) (1.241) (0.200)

∆ Children 548.723 -0.577 549.300 29.308

(494.879) (53.869) (466.521) (24.728)

∆ Adults 546.340 196.834 349.506 18.956

(595.621) (210.163) (521.810) (29.667)

R-squared 0.002 0.002 0.002 0.001

N 13,707 13,707 13,707 13,707

Month and Year FEs Y Y Y Y

Note.—Each column reports estimates from a separate OLS regression run at the household-month level. Standard errors

are clustered by household and are reported in parentheses. The category of consumption for each specification is listed at

the head of each column and includes: car purchases, out-of-pocket expenditure, financing amounts, and downpayments.

The indicator ✶{t−1∈S} equals one if the previous month was a three paycheck month (if three paychecks of income are

available in the present month t). In addition to month and year fixed effects, all seven specifications include age of the

head of household, changes in the number of children, and changes in the number of adults as controls. Significance is

denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE 7
Response to Extra Paychecks by Vehicle Financing Categories Conditional on Ever Purchasing a Car

(1) (2) (3) (4)

Car

Purchases

Out of Pocket

Expenditure
Financing

Downpayment for

Financed Purchases

Dependent variable: ∆Ct

1{t−1∈S} 2204.625 ∗∗∗ 733.266∗ 1471.358 ∗∗ 197.366

(808.612) (414.674) (653.034) (128.901)

Age 22.248 4.730 17.518 1.885

(15.306) (5.568) (13.225) (2.394)

∆ Children 1729.798 -47.820 1777.618 110.083

(1517.104) (166.779) (1428.327) (94.184)

∆ Adults 2266.511 615.268 1651.243 46.771

(1583.493) (604.529) (1396.793) (101.867)

R-squared 0.019 0.014 0.019 0.014

N 1,573 1,573 1,573 1,573

Month and Year FEs Y Y Y Y

Note.—Each column reports estimates from a separate OLS regression run at the household-month level. Standard errors

are clustered by household and are reported in parentheses. All specifications in this table are estimated using the subset

of households from the bi-weekly sample who ever purchase a car during their survey period. The category of consumption

for each specification is listed at the head of each column and includes: car purchases, out-of-pocket expenditure, financ-

ing amounts, and downpayments. The indicator ✶{t−1∈S} equals one if the previous month was a three paycheck month

(if three paychecks of income are available in the present month t). In addition to month and year fixed effects, all seven

specifications include age of the head of household, changes in the number of children, and changes in the number of adults

as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE 8
Response to Extra Paychecks by Pay Frequency across Consumption Categories

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

1{t−1∈S} 256.902∗∗∗ 248.258∗∗∗ 8.625 -0.289 -0.754

(92.034) (91.063) (9.483) (5.414) (2.601)

1{t−1∈S} ∗ 1{p=Week} -265.934 ∗∗ -276.803 ∗∗ 10.876 6.957 5.707

(134.243) (132.384) (15.514) (8.394) (4.215)

1{t−1∈S} ∗ 1{p=Month} -596.749 ∗∗ -586.945 ∗∗ -9.686 -7.315 -5.845

(240.331) (238.034) (25.639) (15.006) (8.116)

Age 2.252∗ 2.370∗ -0.118 -0.048 0.082

(1.232) (1.213) (0.195) (0.111) (0.062)

∆ Children 361.470 305.765 55.702 68.100∗∗ 42.416∗∗

(361.351) (333.372) (52.039) (27.202) (16.788)

∆ Adults 129.569 115.668 13.905 55.044 50.341∗∗

(403.367) (376.980) (52.182) (35.842) (25.315)

R-squared 0.002 0.002 0.036 0.006 0.005

N 24,822 24,822 24,822 24,822 24,822

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate OLS regression run at the household-month level. Standard errors are clustered by

household and are reported in parentheses. The dependent variable in all specifications is the (2010) month-to-month dollar change in consump-

tion. The category of consumption for each specification is listed at the head of each column and includes: total, durable, non-durable, strictly

non-durable, and food. The indicator ✶{t−1∈S} equals one if the previous month was a three paycheck month (if three paychecks of income are

available in the present month t). The estimate for this indicator represents the response to extra paychecks for households whose head is paid

bi-weekly (the omitted category). The two indicators ✶{t−1∈S}✶{p=Week} and ✶{t−1∈S}✶{p=Month} give the response to extra paychecks for

households with weekly and monthly heads relative to the response for households with heads who are paid bi-weekly. In addition to month and

year fixed effects, all four specifications include age of the head of household, changes in the number of children, and changes in the number of

adults as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE 9
Response to Extra Paychecks by Consumption Categories with Time Adjustment

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

1{t−1∈S} 250.788∗∗ 252.892∗∗ -2.104 0.001 2.743∗

(112.728) (112.024) (7.098) (2.341) (1.521)

Age -0.728 -0.682 -0.046 0.045 0.099∗

(2.117) (2.111) (0.222) (0.079) (0.058)

∆ Children 231.268 181.908 49.360 39.885 36.254∗

(162.843) (140.276) (38.194) (25.726) (20.804)

∆ Adults 189.639 90.916 98.723∗∗ 44.619 65.899∗∗

(471.797) (457.168) (43.439) (36.764) (30.756)

R-squared 0.003 0.003 0.037 0.008 0.010

N 8,466 8,466 8,466 8,466 8,466

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate OLS regression run at the household-month level. Standard errors are clustered

by household and are reported in parentheses. Measures of levels of consumption exclude any expenditures which underwent time adjust-

ment routines by the Bureau of Labor Statistics as detailed in Section 1.5.3. All specifications in this table are estimated using the bi-

weekly sample. The dependent variable in all specifications is the (2010) month-to-month dollar change in consumption. The category of

consumption for each specification is listed at the head of each column and includes: total, durable, non-durable, strictly non-durable, and

food. The indicator ✶{t−1∈S} equals one if the previous month was a three paycheck month (if three paychecks of income are available in

the present month t). In addition to month and year fixed effects, all four specifications include age of the head of household, changes in the

number of children, and changes in the number of adults as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE 10
Response to Extra Paychecks by Consumption Categories by Liquid Asset Holdings

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

∆Yt 0.136 0.142 -0.006 -0.004 -0.003

(0.116) (0.113) (0.016) (0.009) (0.004)

∆Yt ∗ 1{Unconstrained} 0.009 -0.006 0.016 0.012 0.008∗

(0.157) (0.154) (0.020) (0.011) (0.005)

Age 6.637∗∗ 6.581∗∗ 0.056 0.135 0.221∗

(3.207) (3.156) (0.504) (0.251) (0.127)

∆ Children 398.969 55.238 343.731∗∗ 54.895 37.300

(463.297) (403.844) (172.947) (86.396) (38.783)

∆ Adults -786.871 -1.0×103 241.848 -28.817 17.681

(817.497) (769.647) (188.882) (96.221) (48.714)

R-squared 0.005 0.003 0.045 0.012 0.010

N 4,863 4,863 4,863 4,863 4,863

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate 2SLS regression run at the household-month level, instrumenting for the change in in-

come ∆Yt using the indicator for the previous month being a three paycheck month. The variable ∆Yt equals the 2010 dollar amount of the head

of household’s last gross pay if the previous month was a three paycheck month (if three paychecks of income are available in the present month

t) and zero otherwise. Standard errors are clustered by household and are reported in parentheses. All specifications in this table are estimated

using the bi-weekly sample. The dependent variable in all specifications is the (2010) month-to-month dollar change in consumption. The cat-

egory of consumption for each specification is listed at the head of each column and includes: total, durable, non-durable, strictly non-durable,

and food. The estimate in the first row represents the response to extra paychecks for households who are constrained (the omitted category).

Constrained households are defined as those for whom their liquid asset holdings are less than the median level of liquid assets; likewise, un-

constrained households are those for whom liquid asset holdings of the household is greater than or equal to the median level of liquid assets.

The estimate for ∆Yt ∗✶{Unconstrained} gives the response to extra paychecks for households that are unconstrained relative to the response for

households who are constrained. In addition to month and year fixed effects, all four specifications include age of the head of household, changes

in the number of children, and changes in the number of adults as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE 11
Response to Extra Paychecks by Consumption Categories by Total Before-Tax Income

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

∆Yt 0.083 0.075 0.008 -0.002 -0.002

(0.082) (0.081) (0.009) (0.005) (0.002)

∆Yt ∗ 1{Unconstrained} 0.115 0.123 -0.008 0.001 0.002

(0.105) (0.104) (0.011) (0.006) (0.003)

Age 1.736 1.871 -0.134 -0.112 0.047

(1.570) (1.544) (0.269) (0.150) (0.077)

∆ Children 325.758 339.688 -13.936 37.461 30.398

(649.978) (612.410) (70.386) (26.667) (19.598)

∆ Adults 373.275 389.670 -16.402 17.570 51.559

(658.173) (620.983) (78.393) (57.829) (42.123)

R-squared 0.004 0.003 0.035 0.006 0.006

N 13,707 13,707 13,707 13,707 13,707

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate 2SLS regression run at the household-month level, instrumenting for the change in in-

come ∆Yt using the indicator for the previous month being a three paycheck month. The variable ∆Yt equals the 2010 dollar amount of the head

of household’s last gross pay if the previous month was a three paycheck month (if three paychecks of income are available in the present month

t) and zero otherwise. Standard errors are clustered by household and are reported in parentheses. All specifications in this table are estimated

using the bi-weekly sample. The dependent variable in all specifications is the (2010) month-to-month dollar change in consumption. The cat-

egory of consumption for each specification is listed at the head of each column and includes: total, durable, non-durable, strictly non-durable,

and food. The estimate in the first row represents the response to extra paychecks for households who are constrained (the omitted category).

Constrained households are defined as those for whom their total before-tax income is less than the median income; likewise, unconstrained

households are those for whom the total before-tax income of the household is greater than or equal to the median income. The estimate for

∆Yt ∗ ✶{Unconstrained} gives the response to extra paychecks for households that are unconstrained relative to the response for households who

are constrained. In addition to month and year fixed effects, all four specifications include age of the head of household, changes in the number

of children, and changes in the number of adults as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE 12
Response to Extra Paychecks by Consumption Categories by Age

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

∆Yt 0.191∗∗ 0.192∗∗ -0.001 0.000 0.000

(0.081) (0.081) (0.008) (0.004) (0.002)

∆Yt ∗ 1{Unconstrained} -0.063 -0.071 0.007 -0.003 -0.001

(0.108) (0.107) (0.011) (0.006) (0.003)

Age -0.269 0.321 -0.589 -0.215 0.063

(2.596) (2.513) (0.522) (0.276) (0.139)

∆ Children 324.036 334.088 -10.056 39.033 30.780

(649.934) (612.337) (70.514) (26.807) (19.548)

∆ Adults 363.103 379.121 -16.026 17.149 51.438

(654.937) (616.875) (78.283) (57.820) (42.044)

R-squared 0.003 0.003 0.034 0.006 0.005

N 13,707 13,707 13,707 13,707 13,707

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate 2SLS regression run at the household-month level, instrumenting for the change in in-

come ∆Yt using the indicator for the previous month being a three paycheck month. The variable ∆Yt equals the 2010 dollar amount of the head

of household’s last gross pay if the previous month was a three paycheck month (if three paychecks of income are available in the present month

t) and zero otherwise. Standard errors are clustered by household and are reported in parentheses. All specifications in this table are estimated

using the bi-weekly sample. The dependent variable in all specifications is the (2010) month-to-month dollar change in consumption. The cat-

egory of consumption for each specification is listed at the head of each column and includes: total, durable, non-durable, strictly non-durable,

and food. The estimate in the first row represents the response to extra paychecks for households who are constrained (the omitted category).

Constrained households are defined as those for whom the age of the household is less than the median age for households heads (age 39); like-

wise, unconstrained households are those for whom the age of the household is greater than or equal to the median age for households heads.

The estimate for ∆Yt ∗✶{Unconstrained} gives the response to extra paychecks for households that are unconstrained relative to the response for

households who are constrained. In addition to month and year fixed effects, all four specifications include age of the head of household, changes

in the number of children, and changes in the number of adults as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE 13
Response of Aggregate Consumption Measures by Committed Consumption as Fraction of Monthly Wages

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

∆Yt 0.174 0.192 -0.018 -0.009 -0.003

(0.123) (0.122) (0.012) (0.007) (0.003)

∆Yt ∗ 1{Unconstrained} -0.022 -0.056 0.034∗∗ 0.012 0.005

(0.154) (0.154) (0.014) (0.008) (0.004)

Age 1.551 1.668 -0.117 -0.058 0.051

(1.563) (1.538) (0.275) (0.155) (0.078)

∆ Children 315.134 324.361 -9.230 39.659 30.881

(647.718) (609.701) (70.487) (26.676) (19.525)

∆ Adults 370.191 386.478 -16.294 17.562 51.489

(656.543) (618.500) (78.232) (57.994) (42.137)

R-squared 0.003 0.003 0.035 0.006 0.005

N 13,707 13,707 13,707 13,707 13,707

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate 2SLS regression run at the household-month level, instrumenting for the change in in-

come ∆Yt using the indicator for the previous month being a three paycheck month. The variable ∆Yt equals the 2010 dollar amount of the

head of household’s last gross pay if the previous month was a three paycheck month (if three paychecks of income are available in the present

month t) and zero otherwise. Standard errors are clustered by household and are reported in parentheses. All specifications in this table are

estimated using the bi-weekly sample. The dependent variable in all specifications is the (2010) month-to-month dollar change in consumption.

The category of consumption for each specification is listed at the head of each column and includes: total, durable, non-durable, strictly non-

durable, and food. The estimate in the first row represents the response to extra paychecks for households who are constrained (the omitted

category). Constrained households are defined as those for whom the level of committed consumption as a fraction of monthly wages is less than

the median; likewise, unconstrained households are those for whom the level of committed consumption as a fraction of monthly wages is greater

than or equal to the median for households heads. Committed consumption is the sum of household expenditures on mortgage payments, rental

payments, vehicle loan payments, and utilities payments for a given month. Monthly wages is based on typical wage income and is constructed

using the amount of the head of household’s last gross pay. The estimate for ∆Yt ∗ ✶{Unconstrained} gives the response to extra paychecks for

households that are unconstrained relative to the response for households who are constrained. In addition to month and year fixed effects, all

four specifications include age of the head of household, changes in the number of children, and changes in the number of adults as controls.

Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE 14
Response to Extra Paychecks by Consumption Categories by Consumption Volatility

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

∆Yt 0.102 0.109 -0.007 -0.017∗∗∗ -0.007∗∗∗

(0.081) (0.080) (0.009) (0.005) (0.003)

∆Yt ∗ 1{Unconstrained} 0.132 0.110 0.022∗∗ 0.035∗∗∗ 0.015∗∗∗

(0.105) (0.104) (0.011) (0.006) (0.003)

Age 1.821 1.859 -0.037 -0.075 0.054

(1.557) (1.531) (0.270) (0.150) (0.076)

∆ Children 314.686 325.873 -11.193 37.338 30.096

(649.074) (611.445) (70.266) (27.268) (19.538)

∆ Adults 362.960 380.611 -17.658 15.243 50.448

(655.495) (617.540) (78.421) (57.750) (41.945)

R-squared 0.004 0.003 0.034 0.008 0.008

N 13,707 13,707 13,707 13,707 13,707

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate 2SLS regression run at the household-month level, instrumenting for the change in in-

come ∆Yt using the indicator for the previous month being a three paycheck month. The variable ∆Yt equals the 2010 dollar amount of the head

of household’s last gross pay if the previous month was a three paycheck month (if three paychecks of income are available in the present month t)

and zero otherwise. Standard errors are clustered by household and are reported in parentheses. All specifications in this table are estimated using

the bi-weekly sample. The dependent variable in all specifications is the (2010) month-to-month dollar change in consumption. The category of

consumption for each specification is listed at the head of each column and includes: total, durable, non-durable, strictly non-durable, and food.

The estimate in the first row represents the response to extra paychecks for households who are constrained (the omitted category). Constrained

households are defined as those for whom the level of consumption volatility is less than the median consumption volatility for households; like-

wise, unconstrained households are those for whom the level of consumption volatility is greater than or equal to the median age for households .

The estimate for ∆Yt ∗✶{Unconstrained} gives the response to extra paychecks for households that are unconstrained relative to the response for

households who are constrained. In addition to month and year fixed effects, all four specifications include age of the head of household, changes

in the number of children, and changes in the number of adults as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE 15
Comparison of Vehicle Loan Characteristics by Timing of Purchase

Cars Purchased

Following Three

Paycheck Months

Cars Purchased

Other Months

t-stat. of

Test of Equality

Maturity 48.10 49.46 -0.51

Monthly Payment 380.61 413.21 -1.42

Loan-to-Value Ratio 0.87 0.87 -0.74

(Conditional) Downpayment 2900.50 3837.55 -1.53

N 132 298

Num. Financed 67 141

Note.—The table compares vehicle loan characteristics for cars based on the timing of their purchase. The

four vehicle loan characteristics of interest are loan maturity, monthly payment, loan-to-value ratio, and

the dollar amount of downpyament (conditional on making a downpayment). The first column presents the

mean of each loan characteristic for cars purchased following three paycheck months; the second column

presents mean values for cars purchased in other months. The third column provides the t-statistic from

testing for equality of the means in Columns 1 and 2. Significance is denoted by: *** p < 0.01, ** p < 0.05,

and * p < 0.10.
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CHAPTER 2 : Social Recognition in Charitable Giving: In Pursuit of Perfection

2.1. Introduction

People care deeply about receiving public recognition for their accomplishments and good

deeds. For evidence of this in the marketplace, we can look to the prevalence of conspicuous

consumption, the sale of trophies, and the popularity of tiered donor recognition lists, which

many not-for-profit organizations display prominently on their building walls, websites, and

newsletters. Past research by psychologists and economists has empirically demonstrated

that people find public recognition appealing and motivating (see Heffetz and Frank 2011

for a review). Individuals are more likely to engage in prosocial behavior, such as exerting

effort for a charity (Ariely et al. 2009), volunteering (Linardi and McConell 2011), and

making religious offerings (Soetevent 2005), when their actions are made visible rather than

kept private.1

Charitable organizations often use various forms of public recognition as an incentive for

giving: donor lists are circulated in newsletters and annual reports, naming opportunities

are provided for new facilities or scholarships, and donor plaques are displayed on walls. The

prevalence of charitable organizations using public recognition to encourage giving and the

variety of ways in which they do so suggests that charitable organizations well understand

that prosocial behavior, and in particular charitable giving, may be motivated by a desire for

social recognition or acclaim. While many charitable organizations use public recognition

to elicit contributions, the empirical literature on social recognition and charitable giving

is relatively scarce. Past work on this topic has been primarily conducted in laboratory

settings (see for example: Andreoni and Bernheim 2009; Ariely et al. 2009; Li and Riyanto

2009; Bracha and Vesterlund 2013). Notable exceptions include Harbaugh (1998a), who

uses data on alumni giving to estimate the prestige benefits of receiving social recognition

for making charitable contributions, and Karlan and McConnell (2013), who conduct a lab

and field experiment to determine whether social image concerns or the desire to encourage

others to give is the dominant driver of giving when donors are publicly recognized.

Better understanding the motivations behind charitable giving and the role that public

recognition plays in encouraging giving is of great interest to both researchers and fundrais-

ers, especially given the considerable number of households who engage in charitable giving.

Over two-thirds of households in the United States make a charitable contribution of some

form annually. These contributions are significant, with charitable giving to not-for-profit

1There is a large empirical literature demonstrating that people engage in more pro-social behavior
when their actions are visible to an audience rather than private. See for example, Bohnet and Frey (1999),
Andreoni and Petrie (2004), Rege and Telle (2004), Soetevent (2005), Dana et al. (2006), Ariely et al. (2009),
Linardi and McConell 2011, Samak and Sheremeta (forthcoming).
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organizations in the United States totaling over $316 billion in 2012. Individual dona-

tions represent by far the largest share of this total, comprising 72 percent of charitable

contributions altogether (Giving USA 2013).

We build on past research on the power of public recognition as a motivating force for char-

itable giving and present an archival field study of how public recognition affects donations

to one large, private university in the Northeastern United States (the “University”). In

our study, we examine the effects of public recognition for consecutive giving on donation

behavior. To do so, we consider two programs that were introduced by the University

during our sample period. The first program recognized young alumni for having made

consecutive gifts since their senior year (i.e. for having a perfect giving record); the second

program recognized alumni for having made consecutive gifts for three or more years in

a row. We identify the causal effect of public recognition for consecutive giving using a

difference-in-differences strategy that exploits variation in alumni eligibility for recognition

under the two programs and the timing of when the programs were and were not in effect.

Our analysis uses panel data on alumni giving over a ten-year period from 2002 to 2011.

Higher education institutions depend heavily on alumni for charitable support. In 2012,

alumni giving totaled approximately $7.7 billion and accounted for nearly 25 percent of

contributions made to colleges and universities in the U.S. (Council for Aid to Education

2014).2 Fundraising efforts by higher education institutions can provide a particularly useful

setting for studying donation behavior. In addition to having a large and growing base of

alumni as potential donors, higher education institutions often solicit alumni on a recurring

basis after graduation, thus allowing donor behavior to be tracked over time. Accordingly, a

small but growing literature has begun to use fundraising efforts by colleges and universities

to study different motivations behind donation behavior (Harbaugh 1998a; Meer and Rosen

2008a, 2009, 2011; Holmes 2009; Meer 2011).

In the main analysis, we focus on both the probability that an individual made a donation

and the (log) dollar amount donated. Alumni donations can be made either directly to the

University’s main unrestricted giving program or indirectly to other University priorities.

While alumni receive general public recognition for donations made to either destination,

only consecutive contributions made directly to the University’s main giving program are

eligible for additional recognition under the two programs we study in this paper. As it

turns out, this distinction proves useful. One of the central limitations of many empirical

studies on charitable giving is that it is generally not possible to observe giving by the

2The Council for Aid to Education conducts an annual survey to collect data on contribu-
tions (by source) made to over 1,000 higher education institutions. See http://cae.org/fundraising-in-
education/category/home/ for additional details about the survey.
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same individuals to multiple domains, making it difficult to determine the overall effect

of a program or treatment on giving.3 While we are not able to observe overall giving in

all domains by individuals in our sample, the distinction in types of donations that are

recognized under the two recognition programs of interest allows us to not only study the

effect of recognition for consecutive giving on donations made directly to the University’s

main giving program, but also to estimate any potential crowd out effect on donations made

to other University priorities.

Using the identification strategy outlined above, we find that public recognition for consecu-

tive giving has a strong positive effect on donation behavior. The introduction of recognition

programs for consecutive giving significantly increased the probability of giving by between

15.8 to 19.3 percent of the baseline probability of giving for eligible alumni. There is a

significant corresponding increase in the dollar amount donated directly to the University’s

main giving program. Looking at donations made to other University priorities, we find that

the introduction of the recognition programs for consecutive giving has a crowd in effect

and significantly increased the probability of giving and dollar amount donated to other

University priorities. Rather than leading individuals to substitute donations away from

other University priorities toward the University’s main giving program, our results suggests

that the recognition program induced individuals to increase giving to the University as a

whole.4

We examine two additional questions of interest. First, we consider whether individuals

exhibit strategic behavior in the amount they choose to donate. As previously mentioned,

alumni in our sample are publicly recognized by name in an annual newsletter for their

donation. The newsletter lists donation amounts by discrete categories of support or tiers

(e.g. $500 to $999).5 Consistent with Harbaugh (1998a,b), Cartwright and Patel (2013),

and Barbieri and Malueg (forthcoming), we observe evidence that individuals “bunch” at

the lower ends of the categories of support. We estimate the effect of public recognition

for consecutive giving on the probability of bunching, conditional on haven made a dona-

tion in the previous year, and whether individuals are more likely to bunch by increasing,

decreasing, or keeping constant their donation relative to their donation in the previous

year. We find suggestive evidence that the recognition programs increased bunching. The

introduction of the PG programs had a significant and positive effect on the probability of

bunching for young alumni, with the response primarily coming from alumni who bunch at

3There exists a rich literature studying whether government grants crowd out private contributions. See
Steinberg (1991), Andreoni (2006), and Vesterlund (2006) for an overview of this literature. However, little
work has been done on intrapersonal crowd out effects.

4It is also possible that individuals are substituting donations over time.
5Categories of support are also sometimes referred to as giving circles.
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the same or lower support category. In contrast, the introduction of the ISS program had

a significant and positive effect on the probability for non-young alumni, with the response

primarily coming from alumni who bunch at the same or higher support category.

Finally, we look at how the effect of public recognition for consecutive giving varies by

whether the recognition does or does not convey additional information regarding the in-

dividual’s past donation history. Previous models of behavior have proposed that through

their visible actions, individuals are able to signal their personal traits to others, such as be-

ing generous or pro-social versus stingy and selfish (e.g., Bénabou and Tirole 1996; Ellingsen

and Johannesson 2008; Andreoni and Bernheim 2009). Such signaling models help explain

the propensity for social recognition opportunities to increase pro-social behavior. In a char-

itable giving setting, individuals may use their donations to signal generosity or altruism

(Hollander 1990; Cartwright and Patel 2013), wealth or status (Ireland 1994; Glazer and

Konrad 1996; Harbaugh 1998a,b), or the quality of the charitable organization receiving

their donations (Vesterlund 2003; Potters et al. 2005; Rondeau and List 2008). A signaling

motive depends on whether the public recognition the donor receives provides other indi-

viduals with information that would otherwise be unobservable. For example, an individual

whose wealth was publicly known would likely not find public recognition of his donation

to be a very useful signal of his wealth.6 Simply put, we look to see whether individuals

value recognition more when the recognition conveys information that can be used to signal

a personality trait — whether it be his generosity, wealth, or intelligence — than when the

recognition does not.

To determine whether alumni exhibit differential donation behavior depending on whether

the public recognition they receive for consecutive giving conveys additional information,

we now consider a third recognition program that was in effect during the entirety of our

sample period. This program recognized alumni for having made consecutive gifts for five

or more years in a row. We next classify alumni into two groups: the first group of alumni

received recognition under the program recognizing five or more years of consecutive giving

while the second group of alumni does not (fewer than five years of consecutive giving).

Public recognition for three or more years of consecutive giving for alumni does not convey

additional information for alumni in the first group since it is already publicly observable

that they have made consecutive donations for five or more years; however, recognition for

three or more years of consecutive giving does convey additional information for alumni in

the second group by making public information regarding their past donation history that

was previously unknown. We exploit this difference and find that while the introduction of

6This does not preclude, however, the donation from being a useful signal of other personal traits such
as generosity or altruism.
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the program recognizing three or more years of consecutive donations significantly increased

the probability of giving and dollar amount donated for both alumni groups, the effects are

much larger for alumni in the second group, for whom the recognition conveyed additional

information, than for alumni in the first group.

The remainder of this paper is organized as follows. Section 2.2 describes the data while

Section 2.3 presents the empirical framework. Section 2.4 describes the main results. Then

Section 2.5 discusses strategic bunching behavior by donors. Section 2.6 evaluates the role

of recognition versus information. Finally, Section 2.7 concludes.

2.2. Data Description

The data used in this paper is the history of undergraduate alumni donations to the Uni-

versity of Pennsylvania. All alumni names were replaced with anonymous unique identifiers

prior to being shared. Donations can be made to a variety of programs and funds within the

University but are designated more generally in the data as either “Penn Fund” or “Non-

Penn Fund” gifts. These two designations distinguish between donations made specifically

to the Penn Fund, the University’s unrestricted undergraduate alumni giving program, and

donations made to other University priorities.

While the data provides the entire history of donations, we focus on donations made between

2002 and 2011 when the changes in giving recognition were enacted and the University

considers the data to be most accurate. The year of donation refers to the University’s

fiscal year, which runs from July 1 to June 30, rather than to the calendar year. We

aggregate observed donations to the individual-year-designation level where the designation

distinguishes between Penn Fund and Non-Penn Fund donations. The donation level for an

alumnus in our final estimation sample is thus the total amount he gave in that fiscal year.

If no donation was made to a given designation in a particular year, the alumnus is included

in the data as having made a zero dollar donation. For a given year, each alumnus appears

twice in the data – once for his donation to the Penn Fund and once for his donation to

other University priorities. In addition to donation behavior, the data includes information

on gender, marital status, and the year in which the alumnus graduated from the University.

We begin with 2,795,340 individual-year-designation observations for 139,767 undergraduate

alumni. We drop any individuals who are flagged as being deceased.7 Since the recognition

programs we examine are generally only applicable to alumni and not to current students, we

further drop any observations that occur in years prior to an individual having graduated

7Several variables appear time-invariant in our data and represent the value of that variable for an
alumnus at the time the data was extracted by the University. These variables include whether an individual
is deceased and marital status.
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from the University. The number of years an alumnus appears in our sample therefore

depends on when he graduated from the University. Specifically, alumni who graduated

in or after 2002 will appear fewer times in the data than alumni who graduated prior to

2002. Finally, we exclude observations where alumni are one year out from graduation (i.e.

were seniors in the previous year). Seniors are differentially encouraged to donate by the

University, so giving behavior in the previous year for the group of first-year graduates may

differ greatly from that of non-first-year graduates (two or more years since graduation).8

We are left with 2,149,234 observations for 117,937 undergraduate alumni.

Table 32 reports summary statistics for the estimation sample. Reported monetary values

are in real 2010 dollars in this and all tables that follow unless otherwise noted. The alumni

in our sample are 57 percent male, and 49 percent are married. The average number of years

since graduation for a donation is 27.5 years. Roughly 17 percent of opportunities to give

to the Penn Fund and 9 percent of opportunities to give to other University priorities lead

to an actual donation. Conditional on giving, the mean donation amount to the Penn Fund

($1,723.64) is smaller than the mean donation to other University priorities ($11,759.74),

but the median donation amount for the two designations do not greatly differ ($108.16 for

the PennFund versus $111.48 for other University priorities).

2.2.1. Honor Roll Recognition

Donors to the University are recognized on the Honor Roll, an annual publication of the

names of all donors and their associated donation level for the year. Figure 4 provides an

example of a page in the Honor Roll recognizing alumni for their donations. Each donor

has the opportunity to be listed twice, once for any donation to the Penn Fund and once for

any donation to other University priorities. Rather than report exact dollar donations, the

Honor Roll reports donations in bins or “categories of support.” For example, an alumnus

who donates $1000 in a given year and an alumnus who donates $2000 in that same year will

both be listed in the $1000 to $2499 donation support category. While the true donation

amount between the two alumni differs, they would appear no differently in the Honor

Roll. Both Penn Fund and Non-Penn Fund donations are reported in this manner. The

categories of donation support depend on the number of years since graduation for a given

alumnus as well as the designation type of the donation and are listed in Table 17. The

dollar amounts bracketing each category of support are well-publicized and do not change

during our sample period.

8The University makes a strong effort to encourage giving during senior year by appealing to students’
upcoming graduation. For instance, students can volunteer as part of a group known as “Seniors for the
Penn Fund,” a program of Penn Traditions that encourages alumni engagement. One of the main goals of
Seniors of the Penn Fund is to secure participation in a yearlong fundraising campaign.
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Consistent with prior literature, our data shows that when donations are reported using

categories of support, individuals often “bunch” at the lower bound by donating the min-

imum dollar amount necessary to fall within a given category (Glazer and Konrad 1996;

Harbaugh 1998a, 1998b). For each category of support, Table 18 provides statistics on

the percentage of donations that were made at exactly the lower bound.9 Categories for

which the lower bound is $1 have very little bunching, reflecting the fact that conditional

on giving, few people donate only one dollar. In contrast, the top two support categories,

$10,000 to $24,999 and $25,000 and above, have between 10 and 30 percent of donations at

the lower bound. For the remaining support categories, the percent of donations made at

the lower bound ranges from 60 to as high as 85 percent.

There are two potential channels which might simultaneously explain this behavior. One

explanation is that donors are motivated by prestige and receive utility from having their

donation publicly recognized (Harbaugh 1998a, 1998b). To the extent that this is true,

strategically donating at the lower bound of a support category is the lowest cost way to

achieve the utility provided by recognition in that category. An alternative explanation is

simply that individuals tend to give at round numbers.10 However, descriptive evidence

from the data suggests that a tendency to give at round numbers cannot entirely explain

the bunching behavior we observe. Figure 6 examines the frequency of non-zero donation

amounts in our data between $200 and $5000 in increasing increments of 50 dollars. To-

gether, these donations account for over 92.7 percent of all non-zero donations made between

$200 and $500. Donation amounts that correspond to lower bounds of support categories

are assigned a different color (red) than donation amounts that do not (blue). Figure 6

illustrates that while many donors give at round numbers that do not correspond to the

lower bounds of support categories, these donations are infrequent relative to donations

made at the lower bounds. This suggests that at least some of the bunching behavior is

strategic and motivated by prestige. In later sections, we discuss the implications of these

two explanations for our results.

2.2.2. Consecutive Giving Recognition

In addition to appearing on the Honor Roll, alumni donors can receive further recognition

based on their history of donation behavior to the Penn Fund. Three programs recognizing

consecutive giving were in place during our sample period. Figure 5 shows the relative

timing of each of these recognition programs. The first program was in effect during the

entirety of our sample period from 2002 to 2011 and recognized donors for five or more

9Statistics on bunching were calculated using nominal donation amounts.
10See Pope and Simonsohn (2011) and Rosch (1975) for examples of individuals using round numbers as

goals or reference points.
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consecutive years of giving to the Penn Fund (5YCG). Eligible donations for consideration

included donations made in an alumnus’s graduation (senior) year. Thus the earliest point

at which an alumnus could be potentially be eligible for this program was beginning in the

fourth year following graduation. The recognition for this program took the form of an

asterisk placed next to the donors name in the Honor Roll.

The second program, the Ivy Stone Society (ISS), was enacted in 2007 and recognized donors

who made consecutive gifts to the Penn Fund for at least three years. For alumni who

graduated less than three years prior, the program recognized individuals with consecutive

giving since their graduation year. The ISS was meant to (and did in 2012) eventually

replace the program recognizing five or more years of consecutive giving but overlapped

with that program for several years during 2007 to 2011. The ISS recognition program

continued through to the end of our sample period and took the form of a carat placed next

to the donor’s name in the Honor Roll.11

The third program, the Perfect Giving (PG) program, recognized alumni with perfect giving

donation records to the Penn Fund. It was in effect between 2005 and 2008 and was only

applicable to young alumni who were between one and four years since graduation. Dona-

tions under consideration included donations made in the graduation year for an alumnus,

so to have a perfect giving record, an alumnus had to have given every year since his senior

year. Alumni who were recognized under this program had their name listed twice on the

Honor Roll: in addition to being listed in the appropriate donation support category, the

alumni names were also in a separate list in the Honor Roll for perfect giving.

For each of these programs, we consider an alumnus to be eligible for recognition in a

given year if making a positive donation that year would qualify for recognition under that

program. Eligibility for recognition under these programs depends only on an alumnus’s past

donation history and on the number of years since his graduation and does not depend on

his donation behavior in the current year. Figure 7 illustrates which alumni are considered

eligible for each of the three recognition programs as a function of the number of years since

graduation and the number of years of consecutive giving. Importantly, eligibility in a given

year as defined in this paper is independent of whether the recognition program is actually

in effect in that year.

For our empirical analysis, we focus on the enactment of two of the recognition programs

in particular – the Ivy Stone Society and the Perfect Giving program – which were both

11Donors who receive ISS recognition in the Honor Roll also received an ISS newsletter as well as a bumper
sticker. We consider these to be of negligible monetary value; however, to the extent that individuals value
the newsletter and bumper sticker independently of their valuation of the additional recognition by their
name in the Honor Roll, the interpretation of our results changes slightly.
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introduced in the middle of our sample period. Tables 19 and 20 provide summary statistics

for the estimation sample by ISS eligibility and by PG eligibility respectively.

2.3. Empirical Setup

We are interested in estimating whether individual donation behavior responds to changes

in the recognition of consecutive giving. We do this using a difference-in-difference strategy

that exploits two sources of variation: (i) variation in whether a recognition program was

in effect and (ii) variation in whether a potential donor would be eligible to receive the

recognition (i.e. variation in their donation history). In other words, we compare how

donation behavior changes for individuals when they are and are not eligible for a recognition

program when the program is and is not in effect. The identifying assumption underlying

this approach is that any differences in donation behavior when the program is and is not

in effect can be solely attributed to the presence of the program.

The ISS and PG programs provide additional recognition for consecutive giving specifically

to the Penn Fund. However, the literature on charitable giving and public goods in general

has long recognized the possibility that increased giving in one domain may crowd-out

giving in other domains (CITES). For this reason, we focus on both the direct effect of

these recognition programs on giving to the Penn-Fund and the indirect (crowd-out) effect

on giving to other University priorities. We look at both the extensive and intensive margin

of giving for the direct and crowd-out effects. For each of these outcomes of interest, Yit,

we estimate variants of the following model:

Yit = αi + β1,j(Eligible)ijt + β2,j(Eligible)ijt ∗ (InEffect)jt + β3Xit + ηt + ǫit (2.1)

where i indexes an alumnus, j is the recognition program, and t denotes the fiscal year.

There are two key indicators in the estimating equation: Eligibleijt equals one if a positive

gift by alumnus i in fiscal year t would receive recognition under program j; and InEffectjt

equals one if recognition program j was in effect in year t. The vector Xit represents the

fraction of years since graduation in which an alumnus donated and controls for variation

in past donation behavior. We include individual fixed effects, γi, to account for potential

time-invariant heterogeneity in preferences for giving. We also include both fiscal year and

years since graduation fixed effects, ηt, to control for any time or age trends in donation

behavior. Years since graduation fixed effects are further interacted with the control variable

Xit. The main parameter of interest, β2,j , is the difference-in-difference estimator of the

effect of recognition program j ∈ {ISS,PG} on our outcomes of interest.
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2.4. Effect of Recognition for Consecutive Giving on Donation Behavior

In this section, we identify the effects of recognition for consecutive giving on donation

behavior looking at measures of giving on the extensive and intensive margin both directly

to the Penn Fund and indirectly to other University priorities. A challenge of cleanly

identifying the causal effects of interest is the dynamic nature of our setting. In particular,

eligibility for recognition by the PG and ISS programs is a function of an alumnus’s donation

behavior in the past year. We therefore present the results in two steps. To avoid potential

feedback effects, we first restrict our sample for each program to include years through

only the first year in which the program was in effect. Thus, for all alumni, InEffectjt

will equal one for the first year of program j and zero for all years prior. Once we have

established the effects of the PG and ISS programs, we then return to the full sample from

2002-2011 and re-estimate the effects of the two programs accounting for dynamics.

2.4.1. Effect of Recognition for Consecutive Giving with No Dynamics

Table 21 reports results from estimating (2.1) for the PG program. The sample spans 2002

through 2005 and includes only young alumni four or less years out since graduation.12 Each

column reports estimates of β2,j from a separate OLS regression with the outcome of interest

listed at the head of the column. In these and all subsequent specifications, standard errors

are clustered by individual to account for potential serial correlation in errors. The first two

columns report the difference-in-difference estimates of the direct effect of the PG program

on the probability of giving and the (log) dollar amount donated to the Penn Fund. The

third and fourth column present analogous estimates for giving to other University priorities

(Non-Penn Fund).

The table shows two main results. First, the enactment of the PG program significantly

increased the probability of giving directly to the Penn Fund by 11.73 percentage points.

This estimate is quite large and represents a 15.8 percent increase in the baseline probability

of giving for PG-eligible alumni. Donations by alumni to the Penn Fund increase by 41.2

percent on average when the PG program was in place. The magnitude of this response is

due in part to the fact that these estimates include donations by individuals induced to give

on the extensive margin by the recognition programs. Second, we find that the enactment

of the PG program led to crowd in of donations made to other University priorities. The

probability of giving increased significantly by 8.17 percentage points or 81.9 percent of

the baseline probability of giving to other University priorities by PG-eligible alumni, while

donations increased on average by 40.9 percent.

12Because the PG provides recognition only to young alumni, graduates more than four years out are
ineligible by definition. We thus exclude non-young alumni from this sample.
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The sample used in Table 21 excludes all years after the first year of the PG program. We

further restrict the sample to only the first year of the program and the year prior (2004

to 2005) and re-estimate the difference-in-difference estimates as before. These results

are reported in Table 22 and are qualitatively similar to the estimates from the previous

table. The estimated effects on donation behavior directly to the Penn Fund are larger in

magnitude than the previous estimates but still highly significant and positive while the

estimated effect on giving to other University priorities is not significantly different.

We next examine the effects of recognition under the Ivy Stone Society program. Here,

the sample spans 2002 through 2007 and includes only alumni seven or more years out

since graduation. The ISS program came into effect in 2007 when the PG program was

also in effect and had been so since 2005. We exclude alumni less than seven years out

since graduation to avoid potentially confounding the effects of the ISS program with the

effects of the PG program. Table 23 presents the difference-in-difference estimates for the

ISS program. The introduction of the ISS program significantly increased direct giving to

the Penn Fund by 15.53 percentage points or by 19.3 percent of the baseline probability of

giving for ISS-eligible alumni. Donations also significantly increased by 73.0 percent. As

with the PG program, we find that recognition from the ISS program crowds in giving to

other University priorities. The probability of giving increased by 4.41 percentage points or

15.7 percent of the baseline probability of giving while donations increased by 24.3 percent.

Table 24 shows that the estimated effect remains when the sample is restricted to include

only years 2006 to 2007. The results are once again qualitatively similar to the estimates

from the previous table though they are larger in magnitude. When restricting the sample

to only first year of the program and one year prior, the enactment of the ISS program

increased the probability of giving directly to the Penn Fund by 29.2 percent of the baseline

and indirectly to other University priorities by 26.3 percent of the baseline. There was a

corresponding increase in the dollar amount donated to both the Penn Fund and to other

University priorities.

Taken together, these results suggest important benefits to charitable organizations of pro-

viding public recognition for consecutive giving. Both recognition for a perfect giving record

and for consecutive giving three or more years in a row led to increased donations to the

University as a whole.

2.4.2. Effect of Recognition for Consecutive Giving Accounting for Dynamics

We next consider the potential dynamics of the effect of the recognition programs on dona-

tion behavior. To do so, we estimate variants of the specification from 2.1, with the inclusion
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of additional indicators for eligibility in future years. Throughout our analyses, we make the

assumption that once a recognition program has been introduced, alumni believe that the

program will continue to exist indefinitely into the future.13 Thus, individuals who are not

currently eligible for recognition under the ISS program (i.e. for whom a positive donation

in the current year would not qualify for recognition) might still choose to give in the cur-

rent year in anticipation of becoming eligible for recognition under the ISS program in the

following years. Because an individual is considered ISS eligible in the current year if he has

made at least two consecutive gifts in a row as of the beginning of the current year, we can

include at most two indicators for ISS eligibility in the future: ISSEligibleInTwoYearsit

which equals to one for anyone who did not give in the previous year and therefore must give

consecutively in the next two years to become ISS eligible and ISSEligibleInOneYearit

which equals to one for anyone who gave in the previous year but not for the past two years

prior and therefore must give again in the next year to become ISS eligible. Individuals

who are not currently eligible for recognition under the PG program cannot become eligible

in future years since the program recognizes individuals with perfect giving records since

graduation. Accordingly, we do not include indicators for PG eligibility in the future.

We now include the full sample period from 2002 through 2011 during which both the PG

and ISS programs were in effect. The analysis is preformed separately for young alumni

and non-young alumni, as it is only young alumni who are eligible for recognition under

the PG program. Table 25 presents estimates for the sample of young alumni. Alumni who

are eligible for ISS recognition in two years (i.e. who did not give in the previous year)

are the omitted group, so estimated effects can be interpreted as relative to the effect for

those who did not give directly to the Penn Fund in the previous year. Our analysis here

leads to three main findings. First, consistent with our previous findings, the enactment

of the PG recognition program significantly increasing giving both directly to the Penn

Fund and indirectly to other university priorities. Second, while the introduction of the ISS

recognition program significantly increased giving for alumni who would be eligible for ISS

recognition in one year, the significant positive effect on giving for alumni currently eligible

for ISS is greater in magnitude. Third, after controlling for ISS eligibility, we find that the

ISS program has no effect for giving to other University priorities.

Focusing next on non-young alumni, Table 26 looks at the effect of the ISS program on

donation behavior, controlling for ISS eligibility in future years. Once again, the omitted

group is the set of alumni who did not give in the previous year and thus are eligible for

ISS recognition in two years. Because the PG program did not publicly recognize non-

13Alumni do not receive information regarding the introduction or conclusion of recognition programs
until the year in which these changes take place.
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young alumni, its effects are not estimated here. Consistent with previous results ignoring

dynamic effects, we find evidence that the introduction of the ISS recognition program has

a positive and significant effect on both the probability of giving and the dollar amount

donated after controlling for potential ISS eligibility in future years and that this effect

is greater in magnitude than the effect for alumni eligible for ISS recognition in one year.

Public recognition for three or more years of consecutive giving significantly increased giving

directly to the Penn Fund and indirectly to other University priorities.

2.5. Do donors exhibit strategic behavior in response to recognition programs?

Having established that recognition for consecutive giving through the ISS and the PG

programs increases giving, we next examine whether donors exhibit strategic behavior in

response to these programs. In particular, we look at whether bunching behavior increases

in response to the enactment of the ISS and PG programs, and if so, whether individuals

bunch at a higher or lower support category as their previous donation. To do so, we

estimate specifications of the form:

Yit = αi + β1,j(Eligible)ijt + β2,j(Eligible)ijt ∗ (InEffect)jt

+ β3Bunchedi,t−1 + β4Xit + ηt + ǫit
(2.2)

where i indexes an alumnus, j is the recognition program, and t denotes the fiscal year. The

covariates are defined as before in (2.1) with the addition of the indicator Bunchedi,t−1

which equals one if a donation was made at the lower bound of a support category the

previous year. We estimate (2.2) using only the sample of donations made directly to the

Penn Fund. Once again, our coefficient of interest is the difference-in-difference estimator

β2,j of the effect of recognition program j ∈ {ISS,PG}.

Once again, we proceed with our analysis in two steps. First, we restrict our sample for

each program to include years through only the first year in which the program was in

effect. This restriction is done so as to avoid potential feedback effects and thus provide the

cleanest first look for our analysis. We then return to the full sample and re-estimate the

effects of the two programs on bunching behavior accounting for dynamics.

2.5.1. Bunching with No Dynamics

We are interested in estimating the effect of the PG and ISS recognition programs on

bunching behavior, conditional on having made a positive donation to the Penn Fund in

the previous year. While both donations made to the Penn Fund and donations made to

other university priorities are listed in the honor roll using categories of support, we focus
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our analysis on donations made directly to the Penn Fund. Table 27 reports results from

estimating (2.2) for the PG program and considers four main outcomes of interest. Column

1 looks at the conditional effect of the PG program on the probability of bunching. The

last three columns decomposes the response by whether the dollar amount donated strictly

increased, strictly decreased, or did not change from the previous year. As before, the

sample is restricted to include years through only the first year in which the PG program

was in effect and spans 2002 through 2005. We include only young alumni in our sample

since the PG program does not provide recognition for non-young alumni. We find that

the enactment of the perfect giving program did not have an effect on bunching behavior,

though we note that the sample size is necessarily quite small and likely has resulted in

concerns over power.

The effects of the ISS program stand in sharp contrast to the estimated effects for the PG

program on bunching behavior. As before, the sample spans 2002 through 2007 and includes

only alumni seven or more years out since graduation. Table 28 shows that the introduction

of the ISS program significantly increased bunching behavior by 3.57 percentage points.

This effect is quite large given a baseline probability of 9.47 percent for ISS-eligible alumni.

Columns 2 through 4 show that this large response is relatively evenly distributed between

alumni who increase, decrease, and keep their donation amounts the same.

2.5.2. Bunching Accounting for Dynamics

Next, we re-estimate (2.2), this time taking into consideration the potential dynamics of

the effect of the ISS and PG programs on donation behavior. We proceed as before and

include additional indicators for eligibility in future years. Because we estimate the effects

of the two recognition programs conditional on having made a positive donation in the

previous year, we can include at most one indicator for ISS eligibility in the future: IS-

SEligibleInOneYearit which equals to one for anyone who gave in the previous year but

not for the past two years prior and therefore must give again in the next year to become

ISS eligible. Again, individuals who are not currently eligible for recognition under the PG

program cannot become eligible in future years, so we do not include indicators for PG

eligibility in the future.

The analysis is preformed separately for young alumni and non-young alumni and uses

the full sample period from 2002 through 2011 during which both programs were in effect.

Table 29 presents estimates for the sample of young alumni. Alumni who are eligible for

ISS recognition in one year (i.e. who, conditional on having given the previous year, are

ineligible for ISS recognition) are the omitted group. We find that the enactment of the PG

recognition program significantly increased the probability of bunching by 7.1 percentage
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points off of a baseline probability of 8.9 percent. Decomposing this response, we see that

much of this effect is driven by individuals bunching at a lower support category or bunching

in the same support category as their previous donation, though the effect is not statistically

significant for bunching in the same support category.

We next focus on non-young alumni and look at the effect of the ISS program on donation

behavior, controlling for ISS eligibility in future years. Once again, the omitted group is

the set of alumni who are eligible for ISS recognition in one year. In contrast to the young

alumni, Table 30 shows that the introduction of the ISS recognition program has a positive

and significant effect on the probability of bunching and that this response is driven by

individuals bunching either at the same support category as their previous donation or

bunching at a higher support category.

2.6. Recognition versus Information

Fundraising organizations often provide social recognition to donors as an incentive for giv-

ing. The value of such recognition and the motivations behind why it may or may not

encourage giving are complex. Potential donors may value social recognition simply as re-

ciprocal recognition or a “thank you” from the recipient organization. Alternatively, donors

may value social recognition as a public signal of information such as wealth, generosity,

loyalty, or other individual characteristics (citations: Frank 1985, Glazer and Konrad 1996,

Harbaugh 1998a and Millet and Dewitte 2007).

In this section, we consider the relative importance of recognition and information in do-

nation behavior. To do so, we exploit the fact that the 5YCG program recognizing donors

for five or more consecutive years of giving to the Penn Fund was in effect throughout our

sample period. For individuals eligible for recognition under the 5YCG program, the in-

troduction of the ISS program, which recognized three or more consecutive years of giving,

would result in additional recognition on the honor roll but would not convey any addi-

tional information regarding the alumnus’s past donation history. We begin by estimating

the following variant of our main equation:

Yit = αi + β1(Eligible)it

+ β2,1(Eligible)it ∗ (InEffect)t ∗ (LessThanFiveYrsConsecGiving)it

+ β2,2(Eligible)it ∗ (InEffect)t ∗ (FivePlusYrsConsecGiving)it

+ β3Xit + ηt + ǫit

(2.3)
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where i indexes an alumnus and t denotes the fiscal year. We focus on giving to the Penn

Fund and to other University priorities as our main outcomes, Yit, of interest. There are

four key indicators in the estimating equation: Eligibleit and InEffectt are defined as

before and refer respectively to alumni eligibility for ISS recognition and whether the ISS

program was in effect; LessThanFiveYrsConsecGivingit equals one if alumnus i has

made consecutive donations for less than five years as of the beginning of fiscal year t; and

FivePlusYrsConsecGivingit equals one if alumnus i has made consecutive donations for

five or more years as of the beginning of fiscal year t. The remaining covariates are defined

as before. Our coefficients of interest are the difference-in-difference estimators β2,1 and

β2,2 which tell us the differential effect of ISS recognition for alumni who were and were not

already recognized under the 5YCG program. Because LessThanFiveYrsConsecGiv-

ingit and FivePlusYrsConsecGivingit are separate indicators, the estimates should be

interpreted as the total effect of the ISS recognition program for each of the two groups of

alumni.

Table 31 reports results from estimating this specification. As before with the estimated

aggregate effect of ISS recognition in Section 2.4.1, our estimation sample spans 2002 to

2007 and includes only alumni seven or more years out since graduation. The first column

reports the difference-in-difference estimates of the direct effect of the ISS program on the

probability of giving to the Penn Fund. The second column reports analogous estimates of

the indirect effect of the program on giving to other University priorities. Row 2 reports

estimates of the effect of the ISS program on the probability to give when the recognition

from the ISS program not only provides recognition but also signals additional information

regarding the alumnus’s past donation history. Row 3 reports the estimated effect when

the ISS program does not signal additional information since these alumni already received

recognition under the 5YCG program.

The results show that the estimated effect of the ISS program on the probability of giving is

significantly higher when recognition under the ISS program signals information in addition

to providing recognition (22.82 percentage points or 31.3 percent of baseline) than when the

ISS program only provides recognition (8.37 percentage points or 9.3 percent of baseline).

In contrast, there is no significant difference in the effect of the ISS program on giving to

other University priorities for the two groups of alumni. The absence of any difference for

giving to other University priorities may be due to the fact that the ISS program provides

recognition only for giving directly to the Penn Fund and thus may induce differential giving

only for Penn Fund donations.

Figure 9 further illustrates the role of recognition versus information by showing the difference-

in-difference estimates of the effect of the ISS program by the number of years since gradu-

65



ation. Consistent with the results in Table 31, estimates of the effect for giving to the Penn

Fund are consistently significantly higher for alumni who were not already recognized under

the 5YCG program (estimates to the left of the dashed red line in the figure) than for those

who were; there is no significant difference in estimates by years out since graduation for

donations made to other University priorities. Taken together, these results suggest that

not only do alumni value social recognition but also that they value it even more when such

recognition signals additional information about the alumnus.

2.7. Discussion

This paper uses panel data on alumni giving to a major university to address whether so-

cial recognition for consecutive donations encourages charitable giving behavior. Using a

difference-in-differences identification strategy, we find that publicly recognizing individuals

for making consecutive donations has a significant positive effect on both the probability of

give and the (log) dollar amount donated. Further examination finds that the recognition

programs we study in fact crowd in donations made to other University priorities. The

magnitudes of the effects we find are quite large. Public recognition for consecutive giving

increases the probability of giving by between 15.8 to 19.3 percent of the baseline proba-

bility of giving for eligible alumni. By comparison, being solicited by a peer increases the

probability of giving by 8.5 percent of the baseline (Meer 2011). This suggests that recog-

nition for consecutive giving has meaningful implications for charitable giving solicitation

and rewarding.

There are a number of open questions that remain, which we leave to future research.

Though we demonstrate that public recognition encourages charitable giving more so when

the recognition conveys some otherwise unobservable information, we do not address the

specific motivations driving individuals desire for public recognition for consecutive giving.

This desire may stem from a wish to signal generosity, loyalty, wealth, or a combination of

such traits. We remain agnostic as to what traits individuals aim to signal by making a

publicly recognized donation.

Another question of interest relates to our finding that public recognition for consecutive

giving directly the University’s main unrestricted giving program leads to crowd in of do-

nations made to other University priorities. One possible explanation for this finding is

that the recognition programs increased feelings of loyalty or pride, leading alumni to in-

crease their giving to the University as a whole. Alternatively, there may be potential time

and effort savings from making donations to the University’s main giving program and to

other University priorities simultaneously. To the extent that the two recognition programs

increased contributions directly to the main giving program, alumni may then trade off
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making a donation to other University priorities in the future for making a donation to

other University priorities in the present. Understanding what drives the crowd in effect

has important policy implications for the provision of public goods more generally.

Finally, there is the important question of how well the results of our study extend to other

settings. Higher education institutions by definition have a prior relationship with the

alumni they solicit, which may ease their efforts in appealing to potential donors’ feelings of

loyalty, pride, or reciprocity. Additionally, the fundraising we study in this paper differs from

capital campaigns, which may be more one-shot affairs rather than a continuing campaign

for contributions. Further research exploring these questions would prove valuable.
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Fig. 4.—Honor Roll Sample

Note.— This figure provides an example of the Honor Roll for Fiscal Year 2010.

Donors are recognized in the appropriate support category and can appear at most

twice – once for any donation directly to the Penn Fund and once for any donation

indirectly to other University priorities. Recognition for consecutive giving is denoted

by a symbol next to the donor’s name.
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Fig. 5.—Timeline of Recognition Programs

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Fiscal Year

Ivy Stone Society Perfect Giving 5+ Years Consecutive Giving

Note.— This figure illustrates the relative timing of three programs recognizing consecutive

giving to the Penn Fund during our sample period (2002-2011). The program recognizing five

or more years of consecutive giving was in effect during the entirety of our sample period, while

the Ivy Stone Society and Perfect Giving programs were introduced midway through the sample

period.

Fig. 6.—Donation Frequency for Amounts between $200 and $5000
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Note.— This figure shows the frequency of non-zero donation amounts (in nominal

dollars) between $200 and $5000 in increments of 50 dollars in the data. Together, the

donations represented in the figure account for over 92.7 percent of non-zero donations

made between $200 and $5000. Donations under consideration include those made to

the Penn Fund and those made to other University priorities. Donation amounts are

assigned different colors depending on whether they correspond to the lower bound of

a support category (red) or not (blue).
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Fig. 7.—Eligibility of Alumni by Recognition Programs
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Note.— This figure illustrates which alumni were eligible for each of the three pro-

grams recognizing consecutive giving: PG, ISS, and 5YCG. The rows give the number

years of consecutive giving up until but not including the current year. The columns

give the number of years since graduation.
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Fig. 8.—Mean Residuals for Giving over Time for Eligible and Ineligible
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Note.—This figure plots the mean residuals over time from estimating giving directly

to the Penn Fund for both the PG and ISS programs by eligibility. For each recognition

program, residuals are centered at zero in the year prior to the enactment of the

program. The PG sample includes only young alumni; the ISS sample includes only

alumni 7+ years out since graduation.
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Fig. 9.—Effect of Introduction of Ivy Stone Society by Years of Consecutive Giving
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Note.—This figure reports estimates of the marginal effect of the ISS program on the probability of giving

by the number of years of consecutive giving. The estimation sample used in this figure is the set of donations

made by alumni 7 or more years out since graduation between FY02 and FY07. Alumni with 5 or more

years of consecutive giving already receive recognition under the 5YCG program.
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TABLE 16
Summary Statistics

Mean SD

Male 0.57 (0.49)

Married 0.49 (0.50)

Years Since Graduation 27.54 (17.54)

Donations Made to the PennFund†

Donation ($) 294.22 (8,176.75)

Donation Conditional on Giving ($) 1,723.64 (19,728.65)

Log(Donation) ($) 0.86 (2.01)

Log(Donation) Conditional on Giving ($) 5.04 (1.64)

Giving 0.17 (0.38)

Bunching Conditional on Giving 0.11 (0.31)

Donations Made to Other University Priorities†

Donation ($) 1,002.42 (53,794.81)

Donation Conditional on Giving ($) 11,759.74 (183,910.39)

Log(Donation) ($) 0.45 (1.60)

Log(Donation) Conditional on Giving ($) 5.31 (2.09)

Giving 0.09 (0.28)

Bunching Conditional on Giving 0.07 (0.26)

N 2,149,234

Number of Alumni 117937

Note.—Table entries are means and standard deviations. Observations are on the individual-

year-designation level where the designation distinguishes between donations made to the

PennFund and donations made to other University priorities. The estimation sample is the

set of donations made by undergraduate alumni (one or more years since graduation) during

the period 2002-2011, excluding those alumni who are deceased and excluding any donations

made by alumni prior to graduating. If no donations were made, the alumni is included as

having made a zero dollar donation. All monetary values are in 2010 U.S. dollars. Sum-

mary statistics for gender and marital status are calculated at the alumni level. All other

statistics are calculated at the observation level. Summary statistics for gender exclude 46

individuals who do not identify as either male or female. Marital status in our sample is

time-invariant and represents the marital status of that alumnus at the time the data was

extracted by the University. †For each year, alumni appear in the data twice – once for their

donation to the Penn Fund and once for their (Non-Penn Fund) donation to other Univer-

sity priorities. Accordingly, donations made to the Penn Fund are half of total observations

(N = 1, 074, 617); likewise, donations made to other University priorities are half of total

observations (N = 1, 074, 617).
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TABLE 17
Categories of Support ($) by Years Since Graduation

Penn Fund Donations Non-Penn Fund Donations

1− 4 5− 9 10+ All Years

1− 249 1− 499

250− 999 500− 999 1− 999 1− 999

1, 000− 2, 499 1, 000− 2, 499 1, 000− 2, 499 1, 000− 2, 499

2, 500− 4, 999 2, 500− 4, 999 2, 500− 4, 999 2, 500− 4, 999

5, 000− 9, 999 5, 000− 9, 999 5, 000− 9, 999 5, 000− 9, 999

10, 000− 24, 999 10, 000− 24, 999 10, 000− 24, 999 10, 000− 24, 999

≥ 25, 000 ≥ 25, 000 ≥ 25, 000† ≥ 25, 000†

Note.—Table provides the stratification levels of donation (categories of support) by designa-

tion type for recognition in the Honor Roll during 2002-2011. Columns 1-3 lists categories for

donations made to the Penn Fund. Column 1 lists categories for alumni who graduated one

to four years prior (young alumni); Column 2 lists categories for alumni who graduated five to

nine years prior; and Column 3 lists categories for alumni who graduated ten or more years ago.

Column 4 lists categories for (Non-Penn Fund) donations made to other University priorities for

all alumni regardless of years since graduation. The dollar amounts bracketing each category

of support are inclusive. †For 25th and 50th reunion years, the highest category of support is

instead stratified into two categories: $25, 000− $99, 999 and $100, 000+.
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TABLE 18
Donations at Lower Bound (Bunching)

Categories of Support ($) Percentage Bunching Observations

1− 999† 0.05 204,002

1− 249 0.23 8,802

250− 999 68.05 1,105

1− 499 0.08 13,632

500− 999 85.36 1,059

1, 000− 2, 499 62.21 19,657

2, 500− 4, 999 63.45 9,485

5, 000− 9, 999 60.31 5,876

10, 000− 24, 999 27.70 5,459

≥ 25, 000‡ 13.03 5,950

N 275,027

Note.—Table reports two statistics: (i) the percentage of donations (both

Penn Fund and Non-Penn Fund) within each category of support that were

made exactly at the category’s lower bound (percentage bunching) and (ii)

the total number of non-zero donations within each category. The total

number of non-zero donations across all categories (N = 275, 027) excludes

10 non-zero donations which were less than $1. Statistics were calculated

using nominal donation amounts. †The categories of support for donations

below $1000 depend on the number of years since graduation and the des-

ignation type of the donation (see Table 17). Statistics for Row 1 are for

Penn Fund donations made by alumni ten or more years since graduation

or for all Non-Penn Fund donations within the category bounds. Statistics

for Rows 2 and 3 are for Penn Fund donations within the category bounds

made by alumni between one and four years since graduation. Statistics

for Rows 4 and 5 are for Penn Fund donations within the category bounds

made by alumni between five and nine years since graduation. ‡For 25th

and 50th reunion years, the highest category of support is instead strat-

ified into two categories. In this table, however, we only show bunching

and the number of non-zero donations for the category 25, 000+.
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TABLE 19
Summary Statistics by Ivy Stone Society (ISS) Eligibility

Eligible Not Eligible

Mean SD Mean SD

Male 0.59 (0.49) 0.57 (0.49)

Married 0.72 (0.45) 0.46 (0.50)

Years Since Graduation 29.54 (16.03) 27.28 (17.72)

Donations Made to the PennFund

Donation ($) 1,701.07 (20,378.09) 107.46 (4,506.79)

Donation Conditional on Giving ($) 2,105.97 (22,655.22) 1,247.66 (15,309.99)

Log(Donation) ($) 4.26 (2.58) 0.41 (1.40)

Log(Donation) Conditional on Giving ($) 5.28 (1.70) 4.74 (1.52)

Giving 0.81 (0.39) 0.09 (0.28)

Bunching Conditional on Giving 0.12 (0.33) 0.08 (0.27)

Donations Made to Other University Priorities

Donation ($) 2,144.94 (55,286.02) 850.75 (53,591.93)

Donation Conditional on Giving ($) 7,796.57 (105,196.37) 14,170.63 (218,292.34)

Log(Donation) ($) 1.42 (2.53) 0.32 (1.38)

Log(Donation) Conditional on Giving ($) 5.18 (1.97) 5.38 (2.15)

Giving 0.28 (0.45) 0.06 (0.24)

Bunching Conditional on Giving 0.05 (0.23) 0.08 (0.27)

N 251,874 1,897,360

Note.—Table entries are means and standard deviations. Observations are on the individual-year-designation level. The estimation sample is

the set of donations made by undergraduate alumni (one or more years since graduation) during the period 2002-2011. If no donations were made,

the alumni is included as having made a zero dollar donation. All monetary values are in 2010 U.S. dollars. Columns 1 and 2 provide statistics

for giving opportunities where an individual was considered “ISS eligible” (N = 251, 874); and Columns 3 and 4 provide statistics for giving op-

portunities where an individual was not considered ISS eligible (N = 1, 897, 360). Summary statistics for gender and marital status are calculated

at the alumni level. All other statistics are calculated at the observation level.
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TABLE 20
Summary Statistics by Perfect Giving (PG) Eligibility

Eligible Not Eligible (YPA)† Not Eligible

Mean SD Mean SD Mean SD

Male 0.47 (0.50) 0.50 (0.50) 0.57 (0.49)

Married 0.22 (0.41) 0.15 (0.36) 0.49 (0.50)

Years Since Graduation 2.73 (0.79) 3.02 (0.82) 27.65 (17.50)

Donations Made to the PennFund

Donation ($) 79.00 (170.81) 10.78 (224.16) 295.16 (8,194.47)

Donation Conditional on Giving ($) 102.54 (188.30) 109.34 (706.49) 1,755.90 (19,922.68)

Log(Donation) ($) 3.04 (1.93) 0.38 (1.19) 0.85 (2.01)

Log(Donation) Conditional on Giving ($) 3.94 (1.13) 3.81 (1.07) 5.06 (1.64)

Giving 0.77 (0.42) 0.10 (0.30) 0.17 (0.37)

Bunching Conditional on Giving 0.12 (0.32) 0.07 (0.25) 0.11 (0.31)

Donations Made to Other University Priorities

Donation ($) 19.08 (234.80) 37.13 (1,886.31) 1,006.69 (53,911.46)

Donation Conditional on Giving ($) 191.10 (721.28) 1,262.64 (10,932.71) 11,818.64 (184,376.10)

Log(Donation) ($) 0.42 (1.31) 0.13 (0.80) 0.45 (1.60)

Log(Donation) Conditional on Giving ($) 4.17 (1.20) 4.49 (1.50) 5.31 (2.09)

Giving 0.10 (0.30) 0.03 (0.17) 0.09 (0.28)

Bunching Conditional on Giving 0.02 (0.14) 0.04 (0.19) 0.07 (0.26)

N 9,294 130,324 2,139,940

Note.—Table entries are means and standard deviations. Observations are on the individual-year-designation level. The estimation sample is the set of dona-

tions made by undergraduate alumni during the period 2002-2011. All monetary values are in 2010 U.S. dollars. Columns 1 and 2 provide statistics for giving

opportunities where an individual was considered “PG eligible” (N = 9, 294); Columns 3 and 4 provide statistics for giving opportunities where an individual was

a young penn alumnus and was not considered PG eligible (N = 130, 324); and Columns 5 and 6 provide statistics for giving opportunities where an individual (all

years) was not considered PG eligible (N = 2, 139, 940). Summary statistics for gender and marital status are calculated at the alumni level. All other statistics

are calculated at the observation level. ‡We provide statistics for both the set of giving opportunities for which all alumni are not PG eligible and the subset of

giving opportunities for which only young Penn alumni are not eligible.
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TABLE 21
Effects of PG Recognition Program on Giving with No Dynamics - 2002 to 2005

Direct Effect Crowd In Effect

Giving Log(Donation) Giving Log(Donation)

PGEligible -12.768∗∗ -0.509∗∗ -1.460 -0.084

(5.413) (0.234) (2.323) (0.096)

(PGInEffect)*(PGEligible) 11.730∗∗∗ 0.412∗∗∗ 8.172∗∗∗ 0.409∗∗∗

(3.289) (0.146) (2.506) (0.122)

R-squared 0.145 0.111 0.184 0.158

N 27,875 27,875 27,875 27,875

Percent Years Since Grad Gave Y Y Y Y

Years Since Graduation FEs Y Y Y Y

Gift Fiscal Year FEs Y Y Y Y

Individual FEs Y Y Y Y

Note.—Each column reports estimates from an OLS regression run at the individual-year-designation

level. Standard errors are reported in parentheses and are clustered by individual. The dependent variable

in each specification is listed at the head of each column. The estimation sample used in this table is the

set of donations made by young alumni between FY02 and FY05. Column 1 reports the marginal effects

of the PG recognition program on the probability of giving to the Penn Fund. Column 2 reports the same

marginal effects on the log donation amount to the Penn Fund. Columns 3 and 4 reports estimates analo-

gous to Columns 1 and 2 using instead donations to other University priorities. All specifications include

individual fixed effects as well as years since graduation and fiscal year fixed effects. “Percent years since

grad gave” is the fraction of years since graduation for which an individual has given.
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TABLE 22
Effects of PG Recognition Program on Giving with No Dynamics - 2004 to 2005

Direct Effect Crowd In Effect

Giving Log(Donation) Giving Log(Donation)

PGEligible -5.638 -0.190 4.025∗ 0.141

(7.189) (0.279) (2.350) (0.087)

(PGInEffect)*(PGEligible) 21.736∗∗∗ 0.709∗∗∗ 7.741∗∗∗ 0.346∗∗∗

(3.895) (0.166) (2.403) (0.116)

R-squared 0.292 0.213 0.285 0.214

N 13,944 13,944 13,944 13,944

Percent Years Since Grad Gave Y Y Y Y

Years Since Graduation FEs Y Y Y Y

Gift Fiscal Year FEs Y Y Y Y

Individual FEs Y Y Y Y

Note.—Each column reports estimates from an OLS regression run at the individual-year-designation

level. Standard errors are reported in parentheses and are clustered by individual. The dependent variable

in each specification is listed at the head of each column. The estimation sample used in this table is the

set of donations made by young alumni between FY04 and FY05. Column 1 reports the marginal effects

of the PG recognition program on the probability of giving to the Penn Fund. Column 2 reports the same

marginal effects on the log donation amount to the Penn Fund. Columns 3 and 4 reports estimates analo-

gous to Columns 1 and 2 using instead donations to other University priorities. All specifications include

individual fixed effects as well as years since graduation and fiscal year fixed effects. “Percent years since

grad gave” is the fraction of years since graduation for which an individual has given.
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TABLE 23
Effects of ISS Recognition Program on Giving with No Dynamics - 2002 to 2007

Direct Effect Crowd In Effect

Giving Log(Donation) Giving Log(Donation)

ISSEligible 1.909∗∗∗ 0.122∗∗∗ 1.825∗∗∗ 0.096∗∗∗

(0.357) (0.019) (0.238) (0.013)

(ISSInEffect)*(ISSEligible) 15.533∗∗∗ 0.730∗∗∗ 4.410∗∗∗ 0.243∗∗∗

(0.459) (0.025) (0.324) (0.018)

R-squared 0.054 0.048 0.046 0.035

N 546,873 546,873 546,873 546,873

Percent Years Since Grad Gave Y Y Y Y

Years Since Graduation FEs Y Y Y Y

Gift Fiscal Year FEs Y Y Y Y

Individual FEs Y Y Y Y

Note.—Each column reports estimates from an OLS regression run at the individual-year-designation

level. Standard errors are reported in parentheses and are clustered by individual. The dependent variable

in each specification is listed at the head of each column. The estimation sample used in this table is the

set of donations made by alumni 7 or more years out since graduation between FY02 and FY07. Column 1

reports the marginal effects of the ISS recognition program on the probability of giving to the Penn Fund.

Column 2 reports the same marginal effects on the log donation amount to the Penn Fund. Columns 3 and

4 reports estimates analogous to Columns 1 and 2 using instead donations to other University priorities. All

specifications include individual fixed effects as well as years since graduation and fiscal year fixed effects.

“Percent years since grad gave” is the fraction of years since graduation for which an individual has given.
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TABLE 24
Effects of ISS Recognition Program on Giving with No Dynamics - 2006 to 2007

Direct Effect Crowd In Effect

Giving Log(Donation) Giving Log(Donation)

ISSEligible -24.642∗∗∗ -1.219∗∗∗ -2.925∗∗∗ -0.124∗∗∗

(0.755) (0.041) (0.508) (0.028)

(ISSInEffect)*(ISSEligible) 30.616∗∗∗ 1.363∗∗∗ 7.379∗∗∗ 0.378∗∗∗

(0.835) (0.045) (0.352) (0.019)

R-squared 0.268 0.240 0.230 0.192

N 191,619 191,619 191,619 191,619

Percent Years Since Grad Gave Y Y Y Y

Years Since Graduation FEs Y Y Y Y

Gift Fiscal Year FEs Y Y Y Y

Individual FEs Y Y Y Y

Note.—Each column reports estimates from an OLS regression run at the individual-year-designation

level. Standard errors are reported in parentheses and are clustered by individual. The dependent variable

in each specification is listed at the head of each column. The estimation sample used in this table is the

set of donations made by alumni 7 or more years out since graduation between FY06 and FY07. Column 1

reports the marginal effects of the ISS recognition program on the probability of giving to the Penn Fund.

Column 2 reports the same marginal effects on the log donation amount to the Penn Fund. Columns 3 and

4 reports estimates analogous to Columns 1 and 2 using instead donations to other University priorities. All

specifications include individual fixed effects as well as years since graduation and fiscal year fixed effects.

“Percent years since grad gave” is the fraction of years since graduation for which an individual has given.
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TABLE 25
Effects of ISS and PG Recognition Programs on Giving Accounting for Dynamics - Young Alumni

Direct Effect Crowd In Effect

Giving Log(Donation) Giving Log(Donation)

ISSEligibleInOneYr 0.376 0.036 1.034∗ 0.049∗

(1.330) (0.056) (0.626) (0.030)

PGEligible -9.491∗∗∗ -0.419∗∗∗ -5.364∗∗∗ -0.259∗∗∗

(3.084) (0.130) (1.791) (0.077)

ISSNoPGEligible 0.091 0.075 4.430∗∗∗ 0.174∗∗∗

(2.548) (0.111) (1.334) (0.059)

(PGOrISSInEffect)*(PGEligible) 11.723∗∗∗ 0.513∗∗∗ 4.997∗∗∗ 0.222∗∗∗

(2.703) (0.116) (1.806) (0.080)

(ISSInEffect)*(ISSEligibleInOneYR) 5.759∗∗∗ 0.265∗∗∗ 0.280 0.007

(1.730) (0.071) (0.846) (0.040)

(ISSInEffect)*(ISSNoPGEligible) 7.558∗∗ 0.274∗∗ 0.564 0.043

(2.977) (0.131) (1.827) (0.088)

R-squared 0.135 0.100 0.188 0.154

N 69,809 69,809 69,809 69,809

Percent Years Since Grad Gave Y Y Y Y

Years Since Graduation FEs Y Y Y Y

Gift Fiscal Year FEs Y Y Y Y

Individual FEs Y Y Y Y

Note.—Each column reports estimates from an OLS regression run at the individual-year-designation level. Standard errors are

reported in parentheses and are clustered by individual. The dependent variable in each specification is listed at the head of each

column. The estimation sample used in this table is the set of donations made by young alumni between FY02 and FY11. Column

1 reports the marginal effects of both the PG and ISS recognition programs on the probability of giving to the Penn Fund. Esti-

mates are relative to individuals who have not given for either of the past two years. Column 2 reports the same marginal effects

on the log donation amount to the Penn Fund. Columns 3 and 4 reports estimates analogous to Columns 1 and 2 using instead

donations to other University priorities. All specifications include individual fixed effects as well as years since graduation and

fiscal year fixed effects. “Percent years since grad gave” is the fraction of years since graduation for which an individual has given.
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TABLE 26
Effects of ISS Recognition Program on Giving Accounting for Dynamics - Non Young Alumni

Direct Effect Crowd In Effect

Giving Log(Donation) Giving Log(Donation)

ISSEligibleInOneYr 9.793∗∗∗ 0.488∗∗∗ 0.371∗ -0.004

(0.298) (0.015) (0.194) (0.010)

ISSEligible 12.742∗∗∗ 0.701∗∗∗ 1.653∗∗∗ 0.058∗∗∗

(0.315) (0.017) (0.228) (0.013)

(ISSInEffect)*(ISSEligibleInOneYR) 10.910∗∗∗ 0.542∗∗∗ 3.059∗∗∗ 0.176∗∗∗

(0.410) (0.021) (0.264) (0.014)

(ISSInEffect)*(ISSNoPGEligible) 22.483∗∗∗ 1.096∗∗∗ 5.171∗∗∗ 0.281∗∗∗

(0.353) (0.019) (0.248) (0.014)

R-squared 0.067 0.068 0.015 0.011

N 1,004,808 1,004,808 1,004,808 1,004,808

Percent Years Since Grad Gave Y Y Y Y

Years Since Graduation FEs Y Y Y Y

Gift Fiscal Year FEs Y Y Y Y

Individual FEs Y Y Y Y

Note.—Each column reports estimates from an OLS regression run at the individual-year-designation level. Standard errors are

reported in parentheses and are clustered by individual. The dependent variable in each specification is listed at the head of each

column. The estimation sample used in this table is the set of donations made by alumni five or more years out since graduation

between FY02 and FY11. Column 1 reports the marginal effects of the ISS recognition program on the probability of giving to

the Penn Fund. Estimates are relative to individuals who have not given for either of the past two years. Column 2 reports the

same marginal effects on the log donation amount to the Penn Fund. Columns 3 and 4 reports estimates analogous to Columns

1 and 2 using instead donations to other University priorities. All specifications include individual fixed effects as well as years

since graduation and fiscal year fixed effects. “Percent years since grad gave” is the fraction of years since graduation for which an

individual has given.
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TABLE 27
Effects of PG Recognition Program on Bunching with No Dynamics

Bunching Bunch Same Bunch Up Bunch Down

PGEligible -2.201 1.391 -1.253 -2.339

(8.025) (6.089) (5.501) (1.603)

(PGInEffect)*(PGEligible) 6.107 2.139 2.002 1.966

(4.696) (2.936) (3.696) (1.818)

Additional Controls:

BunchedLastYear -29.938∗∗∗ 35.226∗∗∗ -57.573∗∗∗ -7.591∗

(9.576) (7.853) (8.439) (4.164)

R-squared 0.070 0.188 0.288 0.045

N 2,688 2,688 2,688 2,688

Percent Years Since Grad Gave Y Y Y Y

Years Since Graduation FEs Y Y Y Y

Gift Fiscal Year FEs Y Y Y Y

Individual FEs Y Y Y Y

Note.—Each column reports estimates from an OLS regression run at the individual-year-designation level. Standard

errors are reported in parentheses and are clustered by individual. The dependent variable in each specification is listed

at the head of each column. The estimation sample used in this table is the set of donations made directly to the Penn

Fund by young alumni between FY02 and FY05. All estimates are conditional on giving in the prior year. Column 1 re-

ports the conditional marginal effects of the PG recognition program on the probability of bunching. Column 2 reports

the conditional marginal effects of the PG program on the probability of bunching and giving the same donation as the

prior year. Columns 3 reports conditional effects on the probability of bunching and giving a strictly larger donation than

the prior year. Column 4 reports conditional effects on the probability of bunching and giving a strictly smaller donation

than the prior year. All specifications include individual fixed effects as well as years since graduation and fiscal year

fixed effects. “Percent years since grad gave” is the fraction of years since graduation for which an individual has given.
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TABLE 28
Effects of ISS Recognition Program on Bunching with No Dynamics

Bunching Bunch Same Bunch Up Bunch Down

ISSEligible -0.581∗∗ -0.018 -0.328∗ -0.235∗

(0.235) (0.161) (0.177) (0.123)

(ISSInEffect)*(ISSEligible) 3.571∗∗∗ 1.386∗∗∗ 1.010∗∗ 1.175∗∗∗

(0.616) (0.423) (0.439) (0.280)

Additional Controls:

BunchedLastYear 3.442∗∗∗ 32.714∗∗∗ -17.440∗∗∗ -11.831∗∗∗

(0.885) (0.678) (0.610) (0.585)

R-squared 0.011 0.170 0.064 0.057

N 94,035 94,035 94,035 94,035

Percent Years Since Grad Gave Y Y Y Y

Years Since Graduation FEs Y Y Y Y

Gift Fiscal Year FEs Y Y Y Y

Individual FEs Y Y Y Y

Note.—Each column reports estimates from an OLS regression run at the individual-year-designation level. Standard

errors are reported in parentheses and are clustered by individual. The dependent variable in each specification is listed

at the head of each column. The estimation sample used in this table is the set of donations made directly to the Penn

Fund by alumni 7 or more years out since graduation between FY02 and FY07. All estimates are conditional on giving

in the prior year. Column 1 reports the conditional marginal effects of the ISS recognition program on the probability of

bunching. Column 2 reports the conditional marginal effects of the ISS program on the probability of bunching and giv-

ing the same donation as the prior year. Columns 3 reports conditional effects on the probability of bunching and giving

a strictly larger donation than the prior year. Column 4 reports conditional effects on the probability of bunching and

giving a strictly smaller donation than the prior year. All specifications include individual fixed effects as well as years

since graduation and fiscal year fixed effects. “Percent years since grad gave” is the fraction of years since graduation

for which an individual has given.
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TABLE 29
Effects of ISS and PG Recognition Programs on Bunching Accounting for Dynamics - Young Alumni

Bunching Bunch Same Bunch Up Bunch Down

PGEligible 0.702 -2.143 3.955 -1.110

(6.381) (3.971) (4.354) (2.599)

ISSNoPGEligible 2.203 2.055 1.303 -1.155

(2.109) (1.755) (1.464) (0.889)

(PGOrISSInEffect)*(PGEligible) 7.037∗ 3.961 0.399 2.677∗∗

(3.847) (2.688) (2.753) (1.355)

(ISSInEffect)*(ISSNoPGEligible) -1.877 0.332 -2.700 0.491

(2.188) (1.559) (1.683) (0.930)

Additional Controls:

BunchedLastYear -19.973∗∗∗ 34.262∗∗∗ -34.534∗∗∗ -19.701∗∗∗

(3.296) (2.778) (2.870) (2.513)

R-squared 0.046 0.175 0.202 0.134

N 9,132 9,132 9,132 9,132

Percent Years Since Grad Gave Y Y Y Y

Years Since Graduation FEs Y Y Y Y

Gift Fiscal Year FEs Y Y Y Y

Individual FEs Y Y Y Y

Note.—Each column reports estimates from an OLS regression run at the individual-year-designation level. Standard errors are reported

in parentheses and are clustered by individual. The dependent variable in each specification is listed at the head of each column. The es-

timation sample used in this table is the set of donations made by young alumni directly to the Penn Fund between FY02 and FY11. All

estimates are conditional on giving in the prior year. Column 1 reports the marginal effects of both the PG and ISS recognition programs

on the probability of bunching. Estimates are relative to individuals who gave in the previous year but not two years previously. Column

2 reports the conditional marginal effects of the PG and ISS programs on the probability of bunching and giving the same donation as

the prior year. Columns 3 reports conditional effects on the probability of bunching and giving a strictly larger donation than the prior

year. Column 4 reports conditional effects on the probability of bunching and giving a strictly smaller donation than the prior year. All

specifications include individual fixed effects as well as years since graduation and fiscal year fixed effects. “Percent years since grad gave”

is the fraction of years since graduation for which an individual has given.
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TABLE 30
Effects of ISS Recognition Program on Bunching Accounting for Dynamics - Non Young Alumni

Bunching Bunch Same Bunch Up Bunch Down

ISSEligible -0.771∗∗∗ -0.159 -0.286∗ -0.326∗∗∗

(0.202) (0.141) (0.149) (0.103)

(ISSInEffect)*(ISSNoPGEligible) 1.070∗∗∗ 0.492∗∗ 0.405∗∗ 0.173

(0.281) (0.203) (0.205) (0.150)

Additional Controls:

BunchedLastYear 14.163∗∗∗ 34.282∗∗∗ -12.213∗∗∗ -7.905∗∗∗

(0.613) (0.488) (0.368) (0.363)

R-squared 0.028 0.196 0.044 0.032

N 171,742 171,742 171,742 171,742

Percent Years Since Grad Gave Y Y Y Y

Years Since Graduation FEs Y Y Y Y

Gift Fiscal Year FEs Y Y Y Y

Individual FEs Y Y Y Y

Note.—Each column reports estimates from an OLS regression run at the individual-year-designation level. Standard errors are reported

in parentheses and are clustered by individual. The dependent variable in each specification is listed at the head of each column. The

estimation sample used in this table is the set of donations made by alumni five or more years out since graduation directly to the Penn

Fund between FY02 and FY11. All estimates are conditional on giving in the prior year. Column 1 reports the marginal effect of the ISS

recognition program on the probability of bunching. Estimates are relative to individuals who gave in the previous year but not two years

previously. Column 2 reports the conditional marginal effects of the ISS program on the probability of bunching and giving the same do-

nation as the prior year. Columns 3 reports conditional effect on the probability of bunching and giving a strictly larger donation than

the prior year. Column 4 reports conditional effect on the probability of bunching and giving a strictly smaller donation than the prior

year. All specifications include individual fixed effects as well as years since graduation and fiscal year fixed effects. “Percent years since

grad gave” is the fraction of years since graduation for which an individual has given.
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TABLE 31
Effect of Introduction of Ivy Stone Society by Years of Consecutive Giving

Direct Effect Crowd In Effect

Giving Giving

ISSEligible 0.498 1.878∗∗∗

(0.369) (0.246)

(ISSInEffect)*(ISSEligible)*(<5YearsConsecGiving) 22.823∗∗∗ 4.111∗∗∗

(0.650) (0.478)

(ISSInEffect)*(ISSEligible)*(5+YearsConsecGiving) 8.374∗∗∗ 4.657∗∗∗

(0.515) (0.429)

R-squared 0.056 0.046

N 546,873 546,873

Percent Years Since Grad Gave Y Y

Years Since Graduation FEs Y Y

Gift Fiscal Year FEs Y Y

Individual FEs Y Y

Note.—Each column reports estimates from an OLS regression run at the individual-year-designation

level. Standard errors are reported in parentheses and are clustered by individual. The dependent variable

in each specification is listed at the head of each column. The estimation sample used in this table is the

set of donations made by alumni 7 or more years out since graduation between FY02 and FY07. Column

1 reports the marginal effects of the ISS recognition program on the probability of giving directly to the

Penn Fund. Column 2 reports the same marginal effect on the probability of giving indirectly to other

University priorities. We allow the marginal effects of the ISS recognition program to vary by whether an

ISS eligible individual has given consecutively for the past five years. All specifications include individual

fixed effects as well as years since graduation and fiscal year fixed effects. “Percent years since grad gave”

is the fraction of years since graduation for which an individual has given.
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CHAPTER 3 : Play for Performance

3.1. Introduction

Economists have long recognized that the provision of monetary incentives can lead to in-

creased effort. Pecuniary rewards have been used to motivate student achievement (Angrist

and Lavy 2009; Angrist et al. 2009; Fryer 2011; Bettinger 2012) and engagement in healthy

behaviors (Charness and Gneezy 2009; Volpp et al. 2009; Acland and Levy 2013). Far less

studied is the role of non-pecuniary incentives, or intrinsic motivation, in motivating effort.

Deci (1971) defines a person as intrinsically motivated if he is motivated to “...perform an

activity when he receives no apparent rewards except the activity itself.”

The economics literature on intrinsic motivation has primarily focused on the interplay be-

tween intrinsic and extrinsic motivation, with a large body of research dedicated to assessing

whether extrinsic rewards or benefits (i.e. extrinsic motivation) may undermine (crowd out)

intrinsic motivation (Ryan 1982; Frey 1992, 1997; Bnabou and Tirole 2003; Ryan and Deci

2000; Deci et al. 2001; Gneezy et al. 2011). Past research focusing on intrinsic motivation

is limited in part because of the challenges researchers face in identifying relevant settings

where possible correlation between pecuniary and non-pecuniary incentives does not exist.

In this paper, we attempt to isolate the role of past performance as a source of intrinsic

motivation using a unique setting: an online word-hunting game. Players exert effort in

the game by identifying words from grids of letters (game boards) in order to attain points.

The objective of the game is to score as many points as possible within a fixed time frame.

At the end of each game, a player must decide whether or not to continue playing. The

online word-hunting game offers three important advantages for studying the role of past

performance as a source of intrinsic motivation. First, performance is directly measurable

using the number of points scored by players in each game and is easily observable to players

in the game. Second, we are able to use an unusually rich data set of information on both

features of each game played over our sample period and player performance data, both

individually and as part of a team. In addition, players must register a unique identifier in

order to play, allowing us to observe a players pattern of play over time. Third, players are

randomly assigned game boards that vary in difficulty, allowing us to exploit quasi-random

variation in performance. This random assignment proves key in our identification strategy.

We are interested in estimating the effect of past performance on the persistence of play.

However, there are concerns over endogeneity and omitted variables. For example, suppose

that individuals with large vocabularies also enjoy playing online games. Then any esti-

mated effect on the persistence of play may be mistakenly attributed to past performance
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when in reality, it is a result of unobserved preferences. To address this issue, we take ad-

vantage of individual variation in the ability to exploit the presence of prefixes and suffixes

in game boards. Specifically, we instrument for measures of past performance using number

of possible board points that can be scored for each prefix and suffix. Because a random

game board is assigned each round, the instruments are necessarily exogenous.

Using the identification strategy outline above, we find that an increase in past performance

measures, for both individual players and teams, significantly increases the number of games

individuals play consecutively (spell length) and the probability that a spell will end. The

one exception is that an increase in the absolute number of points scored significantly

decreases spell length and increases the probability that a spell will end. We test to see

whether these effects might be explained by players engaging in satisficing behavior there

exists some satisficing level of success (e.g. a top ten ranking), attainment of which would

induce the player to quit playing. We find no evidence of players engaging in satisficing

behavior. Finally, we look at player performance over time and find suggestive evidence

that players are learning as they play additional games.

The remainder of the paper proceeds as follows. In 3.2, we provide additional background on

the online game and introduce the data. 3.3 describes the relationship between performance

and game board features. 3.4 describes our estimation strategy and estimates a relationship

between past performance and the persistence of play, using game board features as an

instrument for past performance. 3.5 discusses the implications of the results we find and

concludes.

3.2. Game Background and Data

3.2.1. Game Play

We study intrinsic motivation using data collected from Wordsplay.com, a free online im-

plementation of the word-hunting game Boggle. Each round of play (a “game”) features a

randomly generated grid of letters (see 10) and lasts for three minutes. Players score points

by finding words in sequences of adjoining letters where no letter is used more than once in

a given word and consecutive letters in the word must be adjacent on the game board. The

number of points awarded for each word is a non-linear increasing function of the length of

the word.

Players have the option to join a team, which will be scored and ranked alongside the

individual players. At the end of a round, each player and team receives a final score for the

game equal to the cumulative total of points scored for each word that was found. The same

word found by two or more players on a team cannot be counted more than once towards
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the final score for the team, though the word does contribute for the individual players’

scores. Players and teams are then ranked together so that for each game, an individual is

able to determine the number of points scored, the fraction of total possible points scored,

his or her individual ranking, and the ranking of his or her team (conditional on being part

of a team). The winner for a game is the player or team with the highest final score (number

one ranking). Once a round is complete, players must wait an additional 30 seconds before

the next round begins with a new random game board.

3.2.2. Data

Our data provides player-game level information for all games played on Wordsplay.com in

2009. For each observation, the data includes game-specific information on all possible words

and possible points for the associated game board as well as player-specific information on

the actual points scored by the player and the points scored by the players team (conditional

on being on a team). Games are indexed by a timestamp for when the round was played.

The data allow us to link games over time for a given individual using a unique identifier

that must be created by individuals in order to play. Similarly, a unique team identifier

allows us to link players in the same team.

Table 32 presents summary statistics for the 24,433 players in our sample. Players play

on average 454 games over the course of our sample period; however, as Figure 11 shows,

this distribution is highly skewed with the median number of games played being 16. The

distribution of the number of games played also differs by whether the player is participating

on a team during the given round with the mean and median number of games played as

part of a team far lower than when played individually. This difference is driven primarily

by the large fraction of players who never play on a team (i.e. play zero games as part of a

team). The degree to which players participate on a team is in general quite stark with over

82 percent of players either never playing on a team or always playing on a team during

our sample period.

Because we are able to link observations across time for players, we can observe not only

features of a particular game but also a players pattern of play over time. We define a spell

as a sequence of consecutive games where a score appears for that game. As Figure 12

shows, the distribution of the number of spells played over the course of our sample period

is highly skewed. While the mean number of spells is quite large at 89, the median is 4

spells. The mean length of a spell for players is five games with on average 1.2 days between

spells. The distribution of spell lengths and distribution of days between spells are shown

in Figures 13 and 14.
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Players score on average 30 points in a game or roughly eight percent of possible points

that can be scored. Games vary widely in the number of possible points available so that

the variance in the share of possible points scored is far greater than the variance in the

absolute number of points scored. Figures 15 and 16 show the distribution of points in

the first game every played by a player in our sample period and the distribution of points

scored in all games, respectively. Comparing across the two distributions, the number of

points players score changes as they play additional rounds. Specifically, the distribution

of points scored shifts to the right suggesting that player performance increases on average

after the first round of play. Section 4.3 discusses the extent to which we observe evidence

of learning across rounds of play.

Table 33 presents team-level summary statistics on the number of games played and points

scored. Because not all individuals play on teams or on the same team during the entire

sample period, the number of games played by teams is on average smaller than the number

of games played by individual players. The mean number of points and share of possible

points scored in a game are higher for teams than for individual players, however, reflecting

the fact that teams scores are always weakly better than the scores of the teams individual

players.

3.3. Relationship between Performance and Game Board Features

We are interested in studying the role of past performance as a determinant of intrinsic

motivation and its effect on the persistence of play. To do so, we consider four measures of

individual player and team performance absolute points scored, points scored as a fraction

of total possible points, rank, and a normalized rank. The first two measures depend

only on the points scored by the player and are independent of the performance of other

players and teams. The third measure, rank, refers to the displayed rank that players

observe and is assigned based on the scores for all players and teams in the game. Ties

are randomly broken so that players who score the same number of points are randomly

assigned a ranking within the range covered by the tie. For example, two players who both

score the highest cumulative score for the game would be randomly assigned a rank of one

and two respectively. We do not observe the actual displayed rankings in the data and

therefore construct player and team rankings based on the observed points scored by each

player and team with ties randomly broken. This introduces some measurement error in

rankings since our random assignment of players who tie may not exactly correspond to

the random assignment generated by Wordsplay.com. However, since any error in rankings

is necessarily random, this should only bias the parameter estimates down by introducing

noise. Finally, we construct the fourth measure, a normalized rank, by scaling all rankings

between zero and one.
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The objective of Wordsplay.com is to score points by constructing as many words possible

from the letters of a given game board within the allotted time. One way in which players

can search for words is by identifying and exploiting the presence of prefixes and suffixes

in the game boards. While the total number of prefixes and suffixes is quite numerous, we

focus our analysis on the presence of 35 different common prefixes and suffixes that may

appear on game boards. Appendix Table 1 lists the prefixes and suffixes used in our analysis

along with game-level descriptive statistics on the possible board points from each prefix

and suffix. The frequency with which these prefixes and suffixes appear in a game board

(column 4) is a function of both the length of prefix or suffix and the frequency with which

these prefixes and suffixes occur in the English language. For instance, the fact that s is one

of the most common suffixes and is also short in length is reflected in the relatively high

frequency (83% of all games) with which it appears in our sample. In contrast, the prefix

hyper-, which is both uncommon and long in length, appears in less than one percent of

games in our sample.

Our analysis takes advantage of individual level variation in the ability to exploit the pres-

ence of prefixes and suffixes that appear on the game board to identify the effect of past

performance on the persistence of play. Specifically, we use the number of possible board

points that can be scored for each prefix and suffix as instruments for past performance.

Appendix Table 5 shows that there is a strong first-stage relationship between the number

of possible board points for each prefix and suffix and our measures of past performance for

both players and teams. The relationship is strongest for the player points as a fraction of

possible board points and team points as a fraction of possible board points. The instru-

ments are somewhat weak for the ranking variables, particularly the normalized rankings.

This is unsurprising given that changes in difficulty due to the presence of certain prefixes

or suffixes affect all players in a given round and so are more likely to affect points scored

rather than relative ranking measures.

3.4. Estimation Framework and Results

In the preceding section, we demonstrated a relationship between the presence of prefixes

and suffixes on game boards and performance. We now focus on the effect of past perfor-

mance on persistence of play, using both spell length ( SpellLengthis) and the probability

of a spell ending (SpellEndig) as measures of persistence. Individual variation in the abil-

ity to exploit the presence of prefixes and suffixes, as captured by the possible board points

for a given game from the use of the various prefixes and suffixes (AffixPointsis), is used

to instrument for each of the four past performance measures (Performanceis) identified

in the previous section. We look at the impact of past performance on the persistence of

play by estimating variants of the following two equations using two-stage least squares
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(2SLS):

SpellLengthis = αi + β1(Performance)is + β2Xis + λt + ǫis (3.1)

and

SpellEndig = αi + β1(Performance)ig + β2Xig + λt + ǫig (3.2)

where the subscript i indexes players, s corresponds to spells, and g corresponds to games.

The outcome is either spell length or an indicator for whether a spell ends; αi are player

fixed effects; and λt are month fixed effects to capture aggregate time trends over the year.

Because we are interested in how past performance affects the persistence of play, the four

performance measures as denoted by Performanceis are based on performance in the

first game of a given spell s for player i when estimating the effect of past performance on

spell length. In some cases, an indicator, Xis or Xig, is included for whether the individual

player’s team won the round.

The remainder of this section presents our main empirical results from estimating variants of

equations (3.1) and (3.2). We first demonstrate the effect of past performance by individual

players on the persistence of play, as measured by spell length and the probability of a

spell ending. Next, we consider the effect of past performance on the persistence of play for

teams rather than individual players. Finally, we investigate whether players demonstrate

evidence of learning as they play additional rounds.

3.4.1. The Effect of Player Performance on Persistence of Play

We begin by examining the effect of past performance by individual players on spell length.

As a point of departure for the empirical analysis, Figure 17 presents the simple linear

relationship between the absolute number of points scored by players during the first game

of a spell and the length of the spell. In the figure, spell length increases with the absolute

number of points scored, indicating that past performance may motivate continued play

during the spell. We next formalize this relationship by estimating (3.1), first using OLS

and then instrumenting for Performanceis with AffixPointsis. While Figure 17 focused

on the absolute number of points scored by players, we extend our analysis to consider all

four past performance measures of interest. Table 34 reports estimates and standard errors

of β1, with each column representing a separate regression. Each pair of columns presents

OLS and IV estimates using a different measure of individual past performance. Column 1
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presents the OLS results from estimating (3.1) using the absolute number of points scored

by players as the measure of past performance. We see that the inclusion of covariates,

and in particular individual fixed effects, reverses the relationship observed in Figure 17

between the absolute number of points scored by players and spell length. Spell length

decreases significantly by 0.024 games on average for every ten-point increase in a players

score. Column 2 presents estimates after instrumenting for the absolute number of points

scored using the possible board points for a given game from exploiting various prefixes and

suffixes. The IV estimate is nearly identical to the OLS estimates from Column 1.

Columns 3 and 4 repeat the same exercise using player points scored as a fraction of total

possible points as the measure of past performance. While the OLS estimate indicates no

effect of past performance on spell length, the IV estimate reported in Column 4 indicates

a strong positive relationship between player points as a fraction of total possible points

and spell length. Specifically, moving from the 5th to the 95th percentile of the distribution

of player points as a fraction of total possible points scored increases spell length by 0.327

games on average. Columns 5 through 9 using player ranking and normalized player rankings

present a similar picture to that of player points as a fraction of total possible points. Higher

past performance by an individual player significantly increases the length of the spell that

is played.

We next consider the effect of past performance by individual players on the probability of

ending a spell. A spell ends when a player does not score any points in the following game

(i.e. stops playing). For transparency, we focus on linear probability models. Figure 18

plots the simple linear relationship between the absolute number of points scored by players

in the first game and the probability of a spell ending. The figure shows a strong negative

relationship, suggesting that increasing past performance decreases the probability of a

player ending a spell.

Table 35 presents both OLS and IV regressions estimates for each of the four measures

of past performance where once again we instrument for Performanceis using Affix-

Pointsis. Once again, each pair of columns represents a set of OLS and IV estimates using

a separate measure of past performance. We find evidence consistent with the results from

Table 34 looking at the effect of past performance on spell length. When using the absolute

number of points scored by a player, we find a positive relationship between points scored

and the probability of a spell ending. Using player points scored as a fraction of possible

points and the two ranking measures, however, we find the opposite effect higher past

performance decreases the probability of a spell ending.
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3.4.1.1 Do Players Exhibit Satisficing Behavior?

We’ve assumed so far a linear relationship between past performance and persistence of play.

Of course, this need not be true. Rather than process game-by-game whether it is optimal

to quit, players may instead adopt a simple heuristic decision strategy by which they quit

once they’ve achieved some threshold of success. Individuals who adopt such a strategy can

be thought of as exhibiting “satisficing” behavior where there exists some satisficing level of

success, attainment of which would induce the player to quit playing (Simon 1955; Caplin

et al. 2011). We consider a particular decision strategy where players may decide to quit

once they or their team has achieved some satisficing rank level. To test whether players

exhibit this form of satisficing behavior, we estimate the following equations:

SpellLengthis = αi + β11(PlayerRank)is + β12(PlayerRankAboveThresh)is

+ β2Xis + β31(TeamRank)is + β32(TeamRankAboveThresh)is

+ λt + ǫis

(3.3)

and

SpellEndig = αi + β11(PlayerRank)ig + β12(PlayerRankAboveThresh)ig + β2Xig

+ β31(TeamRank)ig + β32(TeamRankAboveThresh)ig

+ λt + ǫig

(3.4)

where we use both player rankings and team rankings as measures of past performance and

we include two indicators, PlayerRankAboveThreshis andTeamRankAboveThreshis,

which equal to one when the player or his team achieves a ranking above the specified

threshold. The remaining covariates are as in (3.1) and (3.2).

With equations (3.3) and (3.4), we next estimate the effect of past performance on persis-

tence of play, accounting for potential “goal cutoffs.” A player (or team) is considered to

have a ranking above the threshold if his (or his team’s) ranking is greater than or equal

to twenty. Table 36 reports the results of this estimation. The first two columns look at

the effect of past performance, as measure by player and team rank, on spell length while

the last two columns look at its effect on the probability of a spell ending. For each pair

of columns, the first estimates a straightforward OLS while the second column instruments
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for past performance with AffixPointsis, the possible board points for a given game from

the use of the various prefixes and suffixes. As Table 36 shows, we find no evidence that

players exhibit satisficing behavior. Using higher rank thresholds (rank above ten and rank

above five) does not significantly change the results.

3.4.2. The Effect of Team Performance on Persistence of Play

Players have the option to join a team for which they will receive a ranking in addition to

the individual player ranking. Notably, players must specify the name of team they wish to

join and thus cannot choose to simply join any team at random. Alternatively, they may

create their own team name and invite others to join. Appendix Tables 3 and 4 presents

individual level summary statistics by whether the player was or was not on a team during

the first game played. While individual players and team players perform equally as well,

players on a team play far more games on average than individual players.

We next consider how a team’s past performance affects an individual players persistence

of play. As before, we look at two different measures of persistence of play spell length

and the probability of a spell ending. We re-estimate (3.1) and (3.2), using the same four

measures of performance. Table 37 reports estimates for each performance measure on its

effect on spell length. The results are qualitatively similar to those of Table 34. When using

the absolute number of points scored by the team as a measure of performance, we find

that performance is negatively correlated with spell length. A ten-point increase in a team’s

total score decreases the number of spells played by 0.078 games on average. In contrast,

team points as a fraction of total possible points and team ranking measures exhibit the

opposite relationship with spell length increasing with performance. Table 38 considers next

the effect of team performance on the probability of a spell ending. Once again, we find

that the absolute number of points scored by a team has a positive relationship with the

probability of a spell ending. Estimates for the other three performance measures, however,

suggest that higher past performance decreases the probability that an individual will end

the spell.

3.4.3. Learning Over Time

Because we are able to observe both an individual’s pattern of play over time as well as

his performance, we can use the data to assess whether players are learning over time.

To do so, we look at how player points evolve over time to see whether performance is

increasing over time. Because game boards appear randomly and are not a function of

past performance, any trend in player points over time cannot be attributed to trends in

the difficulty of the game boards themselves. Figure 19 plots the average player points by
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game order for players who have played at least 100 games during our sample period. For

clarity, we restrict the plot to exclude games beyond a player’s hundredth game. We also

drop players’ first game to avoid potentially confounding improvement in the ability to find

words and score points with any initial learning curve from a player familiarizing himself

with the game. We restrict the sample to include only players who have played at least 100

games (roughly 29 percent of our sample of players) due to potential selection bias in who

chooses to only play a few games. Figure 19 shows a clear upward trend as players progress

in the number of games played, suggesting that players are in fact improving over time as

they play additional games.

3.5. Conclusion

Using data from an online word-hunting game, we examine the role of past performance

as a source of intrinsic motivation. We exploiting quasi-random variation in performance

to identify the casual effect of past performance, as measured by the absolute number

of points scored, points scored as a fraction of possible board points, and both rank and

normalized rank, on persistence of play. We find that an increase in the share of board points

scored or an increase in rank significantly increases the length of a spell and decreases

the probability that a spell will end. This is true of both player performance and team

performance measures. We also find suggestive evidence that players are learning over time

as they play additional games.
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Fig. 10.—4x4 Game Board
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Note.— This figure shows a sample 4x4 game board from Word-

splay.com, an online implementation of the word-hunting game

Boggle.
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Fig. 11.—Games Per Player
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Note.— This figure displays the distribution of the number of games player per player.

Games greater than 5000 are pooled in the last bin.
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Fig. 12.—Spells Per Player
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Note.— This figure displays the distribution of the number of spells per player using

the first player game. A spell is defined as a sequence of consecutive games where a

score appears for that individual, with no interruptions longer than one game. Spells

greater than 50 are pooled in the last bin.
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Fig. 13.—Length of Spell
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Note.— This figure displays the distribution of the length of a spell in terms of games

using the first player game. Spell length is calculated as the number of games between

the start and end of a spell. Consecutive games longer than 30 are pooled in the last

bin.
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Fig. 14.—Days Between Spells
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Note.— This figure displays the distribution of time elapsed between spells, in terms

of days, using the first game of a spell. Days are calculated as games played in between

spells as a function of time. Days greater than 5 are pooled in the last bin.
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Fig. 15.—Points Per Player in First Game
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Note.— This figure displays the distribution of points per player in the first game

played. Points accumulated greater than 150 are pooled in the last bin.
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Fig. 16.—Points Per Player in All Games
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Note.— This figure displays the distribution of points per player in all games played.

Points accumulated greater than 150 are pooled in the last bin.
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Fig. 17.—Linear Prediction of Spell Length on Player Points in First Game of Spell
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Note.— This figure plots the linear prediction of length of spell on player points in

the first game of the spell.
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Fig. 18.—Linear Prediction of Spell End on Player Points in First Game of Spell
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Note.— This figure plots the linear prediction of the probability of spell end on player

points.
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Fig. 19.—Learning Based on Average Player Points
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Note.— This figure displays mean player points for games 2 to 100 for players who

have played at least 100 games.
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TABLE 32
Individual Level Summary Statistics

Mean SD Median N

Number of games per player 453.79 1371.27 16 24,433

Number of points scored per player 30.45 19.92 27 24,433

Share of possible points scored 0.08 0.05 0.08 24,433

Number of games played per player on team 118.65 656.56 0 24,433

Number of spells per player 89.28 253.55 4 24,433

Length of spell per player 5.06 5.58 3 24,433

Number of days between spells 1.18 7.72 0 2,156,958

Note.—The above summary statistics are calculated using the first player game on Wordsplay.net during 2009. The data in the

table reflect the mean, standard deviation and median of the indicated statistics calculated at the individual level. A spell of play

for an individual is defined as a sequence of consecutive games where a score appears for that individual, with no interruptions

longer than one game.
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TABLE 33
Team Level Summary Statistics

Mean SD Median N

Number of games per team 295.74 4513.52 7 9803

Number of points scored per team 45.72 33.17 40.1 9803

Share of possible points scored 0.13 0.08 0.1 9803

Note.—The above summary statistics are calculated using the first player game on Wordsplay.net during 2009. The data

in the table reflect the mean, standard deviation and median of the indicated statistics calculated at the team level.
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TABLE 34
Impact of Player Performance on Spell Length

OLS IV OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)

Points per Player -0.0024∗∗∗ -0.0029 ∗∗∗

(0.0002) (0.0002)

Team Win 0.3184∗∗∗ 0.3224∗∗∗ 0.2975∗∗∗ 0.2744∗∗∗ 0.3052∗∗∗ 0.1916∗∗∗ 0.3076∗∗∗ -0.5270∗∗∗

(0.0605) (0.0608) (0.0607) (0.0613) (0.0609) (0.0637) (0.0608) (0.1465)

Share of Available Points on Board per Player -0.0108 1.2882∗∗∗

(0.0780) (0.1177)

Player Rank per Game -0.0024∗∗∗ 0.0326∗∗∗

(0.0003) (0.0031)

Normalized Player Rank -0.1376∗∗∗ 11.0512∗∗∗

(0.0283) (1.6809)

Month Indicators Y Y Y Y Y Y Y Y

Fixed Effects Y Y Y Y Y Y Y Y

N 2,173,340 2,173,340 2,173,340 2,173,340 2,173,340 2,173,340 2,173,340 2,173,340

Note.—This table presents the relationship between four performance measures and spell length using the first game of a spell. Team win indicates

whether the individual player’s team won the game. Errors are clustered at the player level.
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TABLE 35
Impact of Player Performance on Spell End

OLS IV OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)

Points per Player -0.0004∗∗∗ 0.0003 ∗∗∗

(0.00002) (0.00002)

Team Win -0.0213∗∗∗ -0.0263∗∗∗ -0.0198∗∗∗ -0.0222∗∗∗ -0.021∗∗ 0.0085∗∗∗ -0.0156∗∗ -0.3323∗∗∗

(0.0018) (0.0018) (0.0018) (0.0018) ((.0018) (0.0038) (0.0017) (0.1307)

Share of Available Points on Board per Player -0.3025∗∗∗ -0.1373∗∗∗

(0.007) (0.0088)

Player Rank per Game -0.0007∗∗∗ -0.0073∗∗∗

(0.00002) (0.0006)

Normalized Player Rank -0.1366∗∗ 4.8859∗∗∗

(0.0034 ) (2.0793 )

Month Indicators Y Y Y Y Y Y Y Y

Fixed Effects Y Y Y Y Y Y Y Y

N 11,085,064 11,085,064 11,085,064 11,085,064 11,085,064 11,085,064 11,085,064 11,085,064

Note.—This table presents the relationship between four performance measures, accounting for team win, and spell end (discontinuing play). Team win

indicates whether the individual player’s team won the game. Errors are clustered at the player level.
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TABLE 36
Impact of Player Performance on Spell Length and Spell End Accounting for “Goal” Cutoffs

Spell Length Spell End

OLS IV OLS IV

(1) (2) (3) (4)

Player Rank -0.0046∗∗∗ 0.0161 -0.0008∗∗∗ 0.0289∗∗∗

(0.0004) (0.0299) (0.00003) (0.0066)

Team Rank 0.0021∗∗∗ 0.0123 0.0003∗∗∗ -0.0229∗∗∗

(0.0005) (0.0264) (0.00002) (0.0049)

Player Rank Top 20 0.1175∗∗∗ 1.4776 -0.0086∗∗∗ 0.4456

(0.028) (3.2572) (0.0015) (0.4163)

Team Rank Top 20 0.5039∗∗∗ 4.9209 -0.054∗∗∗ 0.7204

(0.053) (4.15) (0.0019) (0.6516)

Team Win -0.0066∗∗∗ 0.315

(0.0017) (0.3175)

Month Indicators Y Y Y Y

Fixed Effects Y Y Y Y

N 2,173,340 2,173,340 11,085,064 11,085,064

Note.—This table presents the impact of overall player and team rank, top

20 rank for player and team, and whether the team won or not. Team win

was only facotred in for spell end. For these purposes, the rank displayed

to players was used in calculations.
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TABLE 37
Impact of Team Performance on Spell Length

OLS IV OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)

Points per Team 0.0046∗∗∗ -0.0078∗∗∗

(0.0004) (0.0007)

Team Win -0.1572∗∗∗ 1.0663∗∗∗ -0.2998∗∗∗ -0.801∗∗∗ 0.2526∗∗∗ -1.1329∗∗∗ 0.2976∗∗∗ 0.2983∗∗∗

(0.0517) (0.0982) (0.0512) (0.1252) (0.0601) (0.139) (0.0614) (0.0615)

Share of Available Board Points per Team 2.5665∗∗∗ 4.7199∗∗∗

(0.1725) (0.4666)

Team Rank 0.001∗∗∗ 0.0319∗∗∗

(0.0004) (0.0028)

Normalized Team Rank 0.0135∗∗ 0.729

(0.0062912) (0.814)

Month Indicators Y Y Y Y Y Y Y Y

Fixed Effects Y Y Y Y Y Y Y Y

N 2,173,340 2,173,340 2,173,340 2,173,340 2,173,340 2,173,340 2,173,340 2,173,340

Note.—This table presents the relationship between four performance measures and spell length using the first game of a spell. Team win indicates

whether the individual player’s team won the game. Errors are clustered at the player level.
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TABLE 38
Impact of Team Performance on Spell End

OLS IV OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)

Points per Team -0.0003∗∗∗ 0.0006∗∗∗

(0.00001) (0.00004)

Team Win 0.0002 -0.0733∗∗∗ 0.0121∗∗∗ 0.0603∗∗∗ -0.0162∗∗∗ 0.1367∗∗∗ -0.0241∗∗∗ -0.0255∗∗∗

(0.0017) (0.0045) (0.0019) (0.007) (0.0018) (0.0115) (0.0018) (0.0018)

Share of Available Board Points per Team -0.1767∗∗∗ -0.4114∗∗∗

(0.006) (0.0303)

Team Rank -0.0002∗∗∗ -0.0045∗∗∗

(0.00001) (0.0003)

Normalized Team Rank -0.0007∗∗∗ -0.2811∗∗∗

(0.0002) (0.0387)

Month Indicators Y Y Y Y Y Y Y Y

Fixed Effects Y Y Y Y Y Y Y Y

N 11,085,064 11,085,064 11,085,064 11,085,064 11,085,064 11,085,064 11,085,064 11,085,064

Note.—This table presents the relationship between four performance measures, accounting for team win, and spell end (discontinuing play). Team win

indicates whether the individual player’s team won the game. Errors are clustered at the player level.
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APPENDIX

A.1. Sample Restrictions

The empirical analysis in this paper uses data between 1990 and 2010 from the quarterly

interview portion of the Consumer Expenditure Survey (CEX). This appendix discusses

in detail the imposed sample restrictions and follows largely from the sample restrictions

described in much of the literature (Lusardi 1996; Souleles 1999, 2002; Hsieh 2003; Parker

1999; and Stephens, Jr. 2008). These restrictions are meant to reduce the potential influence

of measurement error or changes in circumstances unrelated to the presence of third pay-

checks on my estimates. The final sample including weekly, bi-weekly, and monthly heads

of households is composed of 24,822 household-month observations for 7776 households, of

which 4316 have heads who report working bi-weekly. Table 39 provides information on the

number of observations and households remaining after each sample restriction. Additional

details on sample restrictions are described below.

I refer to the reference individual in the CEX in this appendix and throughout the paper

as the head of household. The reference person is the first member mentioned by the

respondent when asked the name of the person or one of the persons who owns or rents

the home. The relationships of all other members of the household are defined in relation

to this reference person. More information on how the CEX defines the reference person

can be found at the CEX website that is maintained by the Bureau of Labor Statistics at

http://www.bls.gov/cex.

I first exclude from the sample any consumer units that are composed of multiple households.

With this exclusion, consumer units and households can be thought of interchangeably. I

drop any households where the head is either 1) employed in farming, forestry, or fishing, 2)

self-employed, or 3) working without pay. I further drop any households that report living

in student housing or whose head is less than 24 or greater than 64 years of age.

The next set of restrictions relates to data issues in income and expenditure reports. House-

holds are dropped if they are flagged for having an incomplete or top-coded income report or

invalid checking or savings report or if their reported income falls below the 1st percentile of

the income distribution. Households with heads whose reported gross pay is either missing,

is flagged as inconsistent or top-coded, or falls below the 1st percentile of the distribution of

reported gross pay are also excluded. I also drop households who do not report the period of

time covered by their last gross pay. I drop any households if any component of the aggre-

gate expenditure groups does not have an associated month and year of expenditure. I also

exclude households who report ever receiving meals as pay and household-quarters if they
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report zero food expenditures in any month of the quarter. Finally, I exclude households

who report large changes in non-durable expenditure (log change greater than 2) between

any two consecutive months.

The last set of restrictions excludes households if the age of any household member changes

by more than one year from quarter to quarter or if the household is missing information

on family size, age of the head of household, or number of children (defined as members of

the households younger than 18).

In addition to the preceding exclusions, I include two additional restrictions as explained

in Section 1.3: (i) households where other members work at the same pay frequency as

the head of household are not included and (ii) the sample is restricted to individuals who

report working full time over the past year (at least 50 weeks) and whose reported gross

pay has not changed between the second and fifth interview.
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TABLE 39: Sample Restriction Details

Restriction Obs Level Obs Count Hhld Count Literature

Initial Sample Hhld-Quarter 541,286 184,893 -

Multiple Hhlds in Same Consumer Unit Hhld-Quarter 517,924 173,472 Souleles 1999; Souleles 2002

Employed in Farming, Forestry, or Fishing Hhld-Quarter 510,813 171,179 Lusardi 1996; Souleles 1999; Souleles 2002

Self-Employed or Not Working Hhld-Quarter 304,037 105,668 Lusardi 1996

Live in Student Housing Hhld-Quarter 302,632 104,734 Souleles 1999; Souleles 2002; Hsieh 2003

Missing Income Information Hhld-Quarter 232,308 82,169 Lusardi 1996; Parker 1999; Stephens, Jr. 2008

Top-coded Income Flag Hhld-Quarter 219,277 78,109 Parker 1999; Stephens, Jr. 2008

Invalid Checking or Savings Report Hhld-Quarter 176,248 64,742 Lusardi 1996

No Associated Date for Expenditure Hhld-Quarter 176,248 64,742 Souleles 1999; Souleles 2002

Zero Reported Food Expenditure Hhld-Quarter 175,961 64,675 Souleles 1999; Souleles 2002; Hsieh 2003

Received Meals as Pay Hhld-Quarter 164,503 60,840 Souleles 1999; Souleles 2002

Inconsistent/Missing Gross Pay Or Pay Period Hhld-Quarter 135,369 51,979 -

Gross Pay or Income Less than 1st Pct. Hhld-Quarter 131,487 50,426 -

Top-coded Gross Pay Flag Hhld-Quarter 128,281 49,295 -

Gross Pay Changed Across Interviews Hhld-Quarter 33,599 22,330 -

Pay Frequency Changed Across Interviews Hhld-Quarter 33,305 22,233 -

Work < 50 Weeks Hhld-Quarter 25,196 16,598 -

Age Change > 1 Year Across Quarters Hhld-Quarter 25,060 16,545 Souleles 2002

Missing Information on Family Size Hhld-Quarter 25,060 16,545 Parker 1999; Hsieh 2003

Not Paid Weekly, Bi-weekly, or Monthly Hhld-Quarter 23,158 15,304 -

Other Household Members Paid Same Frequency Hhld-Quarter 16,199 10,931 -

Age of Head Less Than 24 or Greater Than 64 Hhld-Quarter 14,639 9,784 Souleles 1999; Souleles 2002

Convert Observation Level† Hhld-Month 43,917 9,784 -

Log Change in Non-Durables > 2 Hhld-Month 32,658 7,776 Lusardi 1996; Parker 1999

Final Estimation Sample (Non-missing ∆Ct) Hhld-Month 24,822 7,776 -

Note.—This table provides details on the sample restrictions taken in this paper. Table entries represent the number of observations and households remain-

ing after dropping observations with the indicated characteristic. The last column lists examples of prior literature which impose similar sample restrictions.
†Data is reshaped from the household-quarter level to the household-month level using information on the timing of expenditure.
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A.2. Classification Correction

The CEX asks individuals to report the period of time covered by their last gross pay. This

allows me to identify the pay frequency of the heads of household and, in particular, whether

the head is paid bi-weekly. In order to study spending responses following three paycheck

months, I create a variable that indicates whether the previous month was a three paycheck

month for a given bi-weekly worker’s schedule. However, one drawback of using the CEX is

that I do not observe the actual date on which the last pay occurred. Because of this, I am

unable to observe which of the two possible alternate schedules a given bi-weekly worker is

paid by. Table A.2.1 lists the three paycheck months for the two alternate schedules from

1989 to 2010.1 Each month of the year serves as a three paycheck month on one of the

schedules at least once during the sample period.

Because I am unable to observe by which schedule a given bi-weekly worker is paid, I

allow the worker to be on either schedule in the Section 1.4 regression specification. The

indicator, 1{t−1∈S}, from Equation 1.6 is set equal to one if the previous month was a three

paycheck month on either schedule. The indicator can be thought of as a noisy measure

of which months are three paycheck months based on the bi-weekly worker’s true schedule.

For ease of exposition, let x = 1{t−1∈S} denote this indicator, and let X = 1{t−1∈Sj} be an

indicator for whether the previous month is a three paycheck month based on the worker’s

true schedule j ∈ {1, 2}. Then we can write the following relation

x = X + u (A.1)

where u is an error term taking the value u = 0 when X is measured without error and

u = 1 when X is mis-measured. Again for ease of exposition, let the change in consumption

∆C be denoted by y. Equation 1.6 can then be re-expressed as the following

y = Xβ + Zγ + ǫ

= xβ + Zγ + (ǫ− uβ)
(A.2)

where γ is a [(k− 1)× 1] vector of parameters and Z is an [n× (k− 1)] matrix of the taste

shifters and time dummies. The measurement error introduces a bias in the estimation of my

parameter of interest, β. Given the binary nature of the indicator variable, the measurement

error can be thought of as classification error in the bi-weekly worker schedules. Moreover,

this classification error is non-classical in nature because the true value of the indicator

variable is necessarily negatively correlated with the error. To see this, first note that

1The table includes three paycheck months in 1989 to account for the fact that households who were
interviewed in the first quarter of 1990 may report expenditures in 1989.
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whenever x = 0, the measurement error u = 0 since these are months that do not follow

three paycheck months on either schedule. On the other hand, whenever x = 1, then either

u = 0 if the month follows a three paycheck month on the worker’s true schedule (i.e.

X = 1) or u = 1 if the month follows a three paycheck month on the other schedule (i.e.

X = 0). Thus we have that Cov(X,u) < 0.

A.2.1. Direction of bias

Classification error of this sort biases downwards the estimates of β in naive OLS regressions.

To show this, let X̃ = [x Z] so that

y = X̃b+ e. (A.3)

I make the following three assumptions

(A1) E(X ′e) = 0 and E(Z ′e) = 0

(A2) E(Z ′u) = 0

(A3) Cov(X,u) < 0.

The first assumption (A1) is a standard assumption and states that the regressors of the true

population regression are orthogonal to the error terms. The second assumption (A2) states

that the classification error from mismeasurement of X is orthogonal to the other regressors

Z. The final assumption (A3) is that the classification error is negatively correlated with the

true indicator, X. Following Aigner (1973) and Black et al. (2000), applying least squares

to Equation A.3 gives the following estimators

b̂OLS =

[

β̂

γ̂

]OLS

= (X̃ ′X̃)−1X̃ ′y

where

X̃ ′X̃ =

[

x′x x′Z

Z ′x Z ′Z

]

and X̃ ′y =

[

x′y

Z ′y

]

.

The sampling error e is then given by

e =

[

β̂

γ̂

]OLS

−

[

β

γ

]

= (X̃ ′X̃)−1X̃ ′ǫ− (X̃ ′X̃)−1X̃ ′µβ.
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Given my first assumptions, A1, I can write

plimb̂OLS =

[

β

γ

]

− βΣ−1
X̃

Cov(X̃, u) (A.4)

where ΣX̃ = plim( 1nX̃
′X̃).

To determine the direction of the bias, it is necessary to estimate both Σ−1
X̃

and Cov(X̃, u).

From assumption A2, it holds that Cov(Z, u) = 0. Thus, for my key parameter of interest,

β, Equation A.4 simplifies to

plimβ̂OLS = β − βs11Cov(x, u) (A.5)

where s11 is the first element in Σ−1
X̃

. The covariance in this expression depends on the

joint distribution of (x, u). To determine this, we need to know the probabilities of mis-

classification and the probability that the previous month is a three paycheck month. Let

P̃ ≡ Prob(x = 1) and Q̃ = 1− P̃ denote the probabilities of the previous month being and

not being a three paycheck month, respectively. Further, recall that months that are not

three paycheck months on either schedule (t−1 /∈ S) are correctly measured so that we can

define η ≡ Prob(u = 0|x = 0) = 1. For months that are three paycheck months on either

schedule (t− 1 ∈ S), the probability of misclassification depends on both the proportion of

individuals on each schedule and the probability that a given observation follows a three

paycheck month under Schedule 1 versus Schedule 2. Let λ ∈ [0, 1] be the probability an

individual is a Schedule 1 individual and p ∈ [0, 1] be the probability a given observation

follows a three paycheck month under Schedule 1 (t−1 ∈ S1) rather than Schedule 2. Then

the probability of misclassification for months that are three paycheck months under either

schedule can be defined as ν ≡ Prob(u = 1|x = 1) = λ · (1− p) + (1− λ) · p. The marginal

distribution of x is thus Bernoulli with parameter P̃ . Similarly, the marginal distribution

of u is Bernoulli with parameter νP̃ . Thus the covariance between x and u is given by

Cov(x, u) = νP̃ − P̃ (νP̃ )

= νP̃ Q̃

Note that because 0 ≤ ν, P̃ , Q̃ ≤ 1, it must be that 0 ≤ Cov(x, u) ≤ 1.

All that remains is to show that the first element, s11, of Σ
−1
X̃

is positive. Because X̃ is

full column rank, it follows that ΣX̃ is positive-definite as is its inverse Σ−1
X̃

. The upper

left determinants of positive definite matrices are positive, and so s11 > 0. Therefore,

plimβOLS = β − βs11Cov(x, u) ≤ β and the estimate is inconsistent and downward biased.

121



A.2.2. Relationship between bias and proportion of individuals on either schedule

Because I am unable to observe the proportion of individuals on either schedule, it is

important to understand how the bias due to this measurement error varies with that

proportion. Let βR =
β

βOLS
= (1 − s11Cov(x, u))

−1 be the ratio of the true value to the

estimated value of the parameter of interest. I establish two facts regarding this bias ratio

and its relationship with the proportion of individuals, λ, on Schedule 1.

Proposition A.2.1.

i. If p = (1− p), then the bias ratio is independent of λ.

ii. If p 6= (1− p), then the bias ratio is increasing in λ for p < 1
2 and decreasing in λ for

p > 1
2 .

Proof. To see why these facts hold, recall that λ only enters into the bias ratio through

Cov(x, u) = νP̃ Q̃ = [λ(1− p) + (1− λ)p]P̃ Q̃. When p = (1− p), this expression simplifies

to Cov(x, u) = 1
2 P̃ Q̃ which does not depend on λ. Hence, the bias ratio does not depend

on λ. When p 6= (1− p), then

∂βR

∂λ
= (1− s11νP̃ Q̃)−2[s11P̃ Q̃(1− 2p)]

= (βR)2[s11P̃ Q̃(1− 2p)].

(A.6)

Equation A.6 is positive if p < 1
2 and negative if p > 1

2 .

The bias ratio is thus increasing in λ for p < 1
2 and decreasing in λ for p > 1

2 . Note, however,

that because the set of three paycheck months under Schedule 1 is the same size as the set

of three paycheck months under Schedule 2 (i.e |S1| = |S2|), the value for p converges in

probability to 1
2 . Thus for an arbitrarily large sample size, the bias ratio is independent of

the proportion of individuals on either schedule.

A.2.3. Simulation

I next run a series of simulations to gauge the magnitude of the bias and the extent to which

it depends on the proportion of the sample that is on Schedule 1 as opposed to Schedule

2. To do this, I randomly assign a fraction, λ ∈ [0, 1], of the sample observations to be

Schedule 1 individuals and 1 − λ to be Schedule 2 individuals. I next create an indicator

1{t−1∈Sj} for whether the previous month is a three paycheck month according to the

worker’s assigned schedule j ∈ {1, 2}. I further assume that I know the true data generating

process for changes in consumption (i.e. the coefficients in Equation A.2 are known) which
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allows me to generate a “true” consumption path for each household. I then regress these

true consumption changes on observed taste shifters, time dummies, and the mis-measured

indicator 1{t−1∈S} for whether a given month follows a worker’s three paycheck month

and compare the estimated coefficients with the values used to generate the consumption

variable. To gauge the extent to which the bias introduced by classification error depends

on λ, I run this simulation for values of λ ranging from zero to one in increments of 0.01.

Figure A.2.1 shows the ratio of the true value of β to the estimated value β̂ using the

mismeasured indicator for different values of λ. The true value of β is on average twice the

size of the true value.
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TABLE A.2.1: The Timing of Three Paycheck Months from 1989-2010

Schedule 1 Schedule 2

Year Month 1 Month 2 Month 3 Month 1 Month 2 Month 3

1989 Mar Sept . Jun Dec .

1990 Mar Aug . Jun Nov .

1991 Mar Aug . May Nov .

1992 Jan Jul . May Oct .

1993 Jan Jul Dec Apr Oct .

1994 Jul Dec . Apr Sept .

1995 Jun Dec . Mar Sept .

1996 May Nov . Mar Aug .

1997 May Oct . Jan Aug .

1998 May Oct . Jan Jul .

1999 Apr Oct . Jan Jul Dec

2000 Mar Sept . Jun Dec .

2001 Mar Aug . Jun Nov .

2002 Mar Aug . May Nov .

2003 Jan Aug . May Oct .

2004 Jan Jul Dec Apr Oct .

2005 Jul Dec . Apr Sept .

2006 Jun Dec . Mar Sept .

2007 Jun Nov . Mar Aug .

2008 May Oct . Feb Aug .

2009 May Oct . Jan Jul .

2010 Apr Oct . Jan Jul Dec

Note.—This table lists all three paycheck months in a given year depending on

which of the two possible pay schedules a bi-weekly worker may be on. Note that

in some years, the calendar is such that bi-weekly workers receive two paychecks

each month with the exception of three not two months, during which they re-

ceive three. The calendar includes three paychecks months for 1989 since some

households interviewed in the first quarter of 1990 report expenditures from 1989.

All months of the calendar year appear at least once in this table.
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Fig. A.2.1: Simulated Bias
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Note.— This figure plots estimates of the bias ratio, βR, by the proportion, λ, of

individuals on Schedule 1 in increasing increments of 0.01. Using simulations, I estimate

the bias ratio for each λ by dividing the true value of β by the estimated value of β̂ using

the mismeasured indicator from the main specification in Equation 1.6. Additional

details regarding the simulation exercise are in Appendix A.2.3.
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A.3. Additional Robustness Checks

The empirical strategy outlined in Section 1.4 takes several steps to reduce the possibility

that the estimates I find are not spurious. In this section, I present estimates from a series

of variants to the specification in Equation 1.6. For the first alternative specification, I

estimate the following equation

∆logCit = β ∗ 1{t−1∈S} + θ′itα+ γt + ǫit (A.7)

Table A.3.1 shows the results from this specification for the different aggregate expenditure

groups. Here, the parameter of interest β measures the percentage change in expenditure

growth following a month with three paychecks. Column 1 of Table A.3.1 shows that there

is still a significant percentage increase in total spending following three paycheck months.

The results are slightly less significant than the main specification.

In the main specification, the key independent variable was an indicator, 1{t−1∈S}, for

whether a month follows a three paycheck month. While this specification lends itself to

easier interpretation, especially in light of the fact that the response is driven largely by

durables, it does not take full advantage of the variation available in the data set. For

the next specification, I leverage variation in both the timing and the size of the the third

paychecks to estimate spending responses. Specifically, I estimate the following equation

∆Cit = β ∗∆Yit + θ′itα+ γt + ǫit (A.8)

where ∆Yit is the monthly change in income. Note that when looking at months with

only two paychecks, the monthly change in income is simply zero. However, for months

following three paycheck months, there is an additional paycheck available for spending, so

the monthly change in income is equal to the size of the paycheck. As stated before, the third

paycheck arrives at the end of the last week of the month and so I consider the income from

that third paycheck available for spending in the following month. Table A.3.2 presents the

results from this specification. Column 1 shows that for every $1 from the third paycheck,

17.4 cents are spent. Given that the average paycheck size for a bi-weekly households is

around $1669, this translates to roughly $290 in increased spending following three paycheck

months. This estimate is similar to the one from our original specification in Table 2. These

estimates are slightly more precise because they can exploit the additional variation in the

size of paychecks across households. Column 3 shows a statistically significant but small

response in non-durable spending that translates roughly to a $22 increase in non-durable

spending following three paycheck months.
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TABLE A.3.1: Response to Extra Paychecks by Consumption Categories Using Log Changes in Consumption

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆log Ct

1{t−1∈S} 0.024∗∗ 0.033 0.005 -0.003 -0.002

(0.012) (0.022) (0.006) (0.004) (0.004)

Age 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

∆ Children 0.050 0.117 -0.007 0.038 0.062

(0.100) (0.163) (0.038) (0.027) (0.040)

∆ Adults 0.011 -0.038 0.011 0.017 0.107∗∗

(0.105) (0.175) (0.045) (0.047) (0.051)

R-squared 0.005 0.002 0.038 0.007 0.007

N 13,707 13,622 13,707 13,707 13,707

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate OLS regression run at the household-month level. Standard errors are clus-

tered by household and are reported in parentheses. All specifications in this table are estimated using the bi-weekly sample. The

dependent variable in all specifications is the log month-to-month dollar change in consumption. The category of consumption for

each specification is listed at the head of each column and includes: total, durable, non-durable, strictly non-durable, and food. The

indicator ✶{t−1∈S} equals one if the previous month was a three paycheck month (if three paychecks of income are available in the

present month t). In addition to month and year fixed effects, all four specifications include age of the head of household, changes in

the number of children, and changes in the number of adults as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and

* p < 0.10.
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TABLE A.3.2: Response to Extra Paychecks by Consumption Categories Using Level Changes in Income

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

∆Yt 0.160∗∗∗ 0.157∗∗∗ 0.003 -0.001 -0.001

(0.058) (0.057) (0.006) (0.003) (0.002)

Age 1.736 1.770 -0.034 -0.070 0.063

(1.568) (1.543) (0.270) (0.151) (0.077)

∆ Children 318.921 329.226 -10.310 38.728 30.745

(649.942) (612.272) (70.312) (26.734) (19.552)

∆ Adults 370.394 386.580 -16.193 17.552 51.503

(657.372) (619.442) (78.217) (57.838) (42.091)

R-squared 0.003 0.003 0.034 0.006 0.005

N 13,707 13,707 13,707 13,707 13,707

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate 2SLS regression run at the household-month level, instrumenting for

the change in income ∆Yt using the indicator for the previous month being a three paycheck month. The variable ∆Yt equals

the 2010 dollar amount of the head of household’s last gross pay if the previous month was a three paycheck month (if three

paychecks of income are available in the present month t) and zero otherwise. Standard errors are clustered by household and

are reported in parentheses. All specifications in this table are estimated using the bi-weekly sample. The dependent variable in

all specifications is the (2010) month-to-month dollar change in consumption. The main dependent variable in all specifications

is the month-to-month dollar change in wage income. The category of consumption for each specification is listed at the head

of each column and includes: total, durable, non-durable, strictly non-durable, and food. In addition to month and year fixed

effects, all four specifications include age of the head of household, changes in the number of children, and changes in the number

of adults as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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A.4. Heterogeneity in Spending Responses

TABLE A.4.1: Response to Extra Paychecks by Consumption Categories by Marital Status

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

1{t−1∈S} 124.704 113.958 10.744 -6.207 -0.268

(90.540) (89.399) (10.236) (5.902) (2.774)

1{t−1∈S} ∗ 1{Unconstrained} 351.854∗ 367.430∗ -15.595 9.698 -1.761

(200.538) (199.146) (20.355) (11.600) (5.548)

Age 2.201 2.240 -0.038 -0.077 0.058

(1.564) (1.536) (0.270) (0.151) (0.077)

∆ Children 320.608 334.519 -13.918 37.709 29.969

(649.363) (611.908) (70.704) (26.693) (19.537)

∆ Adults 371.466 386.338 -14.878 18.329 51.867

(661.909) (624.505) (78.205) (57.803) (42.059)

R-squared 0.003 0.002 0.035 0.006 0.006

N 13,707 13,707 13,707 13,707 13,707

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate OLS regression run at the household-month level. Standard errors are clustered by

household and are reported in parentheses. All specifications in this table are estimated using the bi-weekly sample. The dependent variable in

all specifications is the (2010) month-to-month dollar change in consumption. The category of consumption for each specification is listed at the

head of each column and includes: total, durable, non-durable, strictly non-durable, and food. The indicator ✶{t−1∈S} equals one if the previous

month was a three paycheck month (if three paychecks of income are available in the present month t). The estimate for this indicator represents

the response to extra paychecks for households who are constrained (the omitted category). Constrained households are defined as those whose

heads are married; likewise, unconstrained households are those whose heads are unmarried. The indicator ✶{t−1∈S}✶{Unconstrained} thus give

the response to extra paychecks for households that are unconstrained relative to the response for households who are constrained. In addition to

month and year fixed effects, all four specifications include age of the head of household, changes in the number of children, and changes in the

number of adults as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE A.4.2: Response to Extra Paychecks by Consumption Categories by Race

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

1{t−1∈S} 232.546 231.541 1.004 -18.156∗ -0.577

(155.319) (154.264) (18.382) (10.625) (4.819)

1{t−1∈S} ∗ 1{Unconstrained} 1.859 -0.904 2.753 17.787 -0.983

(186.930) (185.782) (21.029) (12.184) (5.730)

Age 2.063 2.116 -0.052 -0.146 0.045

(1.621) (1.594) (0.276) (0.151) (0.078)

∆ Children 999.758 932.869 66.889 29.049 21.719

(706.893) (710.349) (50.138) (31.638) (21.806)

∆ Adults 676.847 674.351 2.492 7.338 44.035

(779.964) (745.447) (82.971) (64.110) (47.217)

R-squared 0.003 0.002 0.035 0.006 0.005

N 13,013 13,013 13,013 13,013 13,013

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate OLS regression run at the household-month level. Standard errors are clustered by

household and are reported in parentheses. All specifications in this table are estimated using the bi-weekly sample. The dependent variable in

all specifications is the (2010) month-to-month dollar change in consumption. The category of consumption for each specification is listed at the

head of each column and includes: total, durable, non-durable, strictly non-durable, and food. The indicator ✶{t−1∈S} equals one if the previous

month was a three paycheck month (if three paychecks of income are available in the present month t). The estimate for this indicator represents

the response to extra paychecks for households who are constrained (the omitted category). Constrained households are defined as those for whom

the age of the household is less than the median age for households heads (age 39); likewise, unconstrained households are those for whom the age

of the household is greater than or equal to the median age for households heads. The indicator ✶{t−1∈S}✶{Unconstrained} thus give the response

to extra paychecks for households that are unconstrained relative to the response for households who are constrained. In addition to month and

year fixed effects, all four specifications include age of the head of household, changes in the number of children, and changes in the number of

adults as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE A.4.3: Response to Extra Paychecks by Consumption Categories by Gender

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

1{t−1∈S} 87.660 87.669 -0.010 -6.904 -2.273

(115.533) (113.971) (12.363) (6.869) (3.263)

1{t−1∈S} ∗ 1{Unconstrained} 364.112∗∗ 354.306∗∗ 9.788 9.353 2.758

(178.548) (177.315) (18.416) (10.593) (5.083)

Age 2.311 2.320 -0.008 -0.067 0.064

(1.562) (1.533) (0.272) (0.152) (0.077)

∆ Children 320.664 332.205 -11.548 38.494 30.629

(649.244) (611.975) (70.390) (26.745) (19.580)

∆ Adults 366.682 382.968 -16.292 17.631 51.529

(659.887) (622.104) (78.215) (57.892) (42.157)

R-squared 0.003 0.002 0.034 0.006 0.005

N 13,707 13,707 13,707 13,707 13,707

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate OLS regression run at the household-month level. Standard errors are clustered by house-

hold and are reported in parentheses. All specifications in this table are estimated using the bi-weekly sample. The dependent variable in all

specifications is the (2010) month-to-month dollar change in consumption. The category of consumption for each specification is listed at the head

of each column and includes: total, durable, non-durable, strictly non-durable, and food. The indicator ✶{t−1∈S} equals one if the previous month

was a three paycheck month (if three paychecks of income are available in the present month t). The estimate for this indicator represents the re-

sponse to extra paychecks for households who are constrained (the omitted category). Constrained households are defined as those whose head of

household is female; likewise, unconstrained households are those for whom the head of household is male. The indicator ✶{t−1∈S}✶{Unconstrained}

thus give the response to extra paychecks for households that are unconstrained relative to the response for households who are constrained. In ad-

dition to month and year fixed effects, all four specifications include age of the head of household, changes in the number of children, and changes

in the number of adults as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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TABLE A.4.4: Response to Extra Paychecks by Consumption Categories by Housing Ownership

(1) (2) (3) (4) (5)

Total Durable Non-durable Strictly ND Food

Dependent variable: ∆Ct

1{t−1∈S} 166.524∗ 152.753 13.769 -10.746∗ -0.408

(93.785) (92.870) (10.442) (6.171) (3.063)

1{t−1∈S} ∗ 1{Unconstrained} 204.629 224.064 -19.451 17.907∗ -1.138

(181.492) (179.973) (18.818) (10.636) (5.096)

Age 1.790 1.985 -0.195 -0.150 0.001

(1.591) (1.562) (0.282) (0.162) (0.080)

∆ Children 319.892 331.610 -11.724 38.724 30.389

(649.488) (611.858) (70.606) (26.713) (19.596)

∆ Adults 363.040 378.751 -15.717 17.500 51.647

(659.908) (622.064) (78.242) (57.985) (42.188)

R-squared 0.003 0.002 0.034 0.006 0.006

N 13,707 13,707 13,707 13,707 13,707

Month and Year FEs Y Y Y Y Y

Note.—Each column reports estimates from a separate OLS regression run at the household-month level. Standard errors are clustered by

household and are reported in parentheses. All specifications in this table are estimated using the bi-weekly sample. The dependent variable in

all specifications is the (2010) month-to-month dollar change in consumption. The category of consumption for each specification is listed at the

head of each column and includes: total, durable, non-durable, strictly non-durable, and food. The indicator ✶{t−1∈S} equals one if the previous

month was a three paycheck month (if three paychecks of income are available in the present month t). The estimate for this indicator represents

the response to extra paychecks for households who are constrained (the omitted category). Constrained households are defined as those who are

homeowners; likewise, unconstrained households are those who are renters. The indicator ✶{t−1∈S}✶{Unconstrained} thus give the response to ex-

tra paychecks for households that are unconstrained relative to the response for households who are constrained. In addition to month and year

fixed effects, all four specifications include age of the head of household, changes in the number of children, and changes in the number of adults

as controls. Significance is denoted by: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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A.5. Proofs

Lemma 1. Assume that individuals follow a t-budgeting heuristic and there is misalignment

between the timing of consumption and the timing of pay. Then,

(i) Individuals have overly optimistic beliefs in periods with atypical income.

(ii) Individuals have overly pessimistic beliefs in periods with typical income.

Proof. From Equation 1.3, true lifetime wealth is given by the expression

Wt = Xt +

∞
∑

i=1

yt+i

Ri

At time t, the individual expects her remaining lifetime wealth to be given by the expression

WE
t = Xt +

∞
∑

i=1

yEt,t+i

Ri

= Xt +
∞
∑

i=1

αyt + (1− α)yt+i

Ri

= Xt +
αyt
R− 1

+ (1− α)
∞
∑

i=1

yt+i

Ri
.

(A.9)

Note that for rational individuals (α = 0), expected wealth simply equals true wealth. For

all other individuals (α > 0), subtracting the first expression from the second then implies

that

WE
t −Wt ≷ 0 if yt ≷ (R− 1)

∞
∑

i=1

yt+i

Ri
(A.10)

where yt+i = Y + bY · ✶{(t−1+i) mod n=0}. Equation A.10 can further be rearranged in the

form

WE
t −Wt ≷ 0 if yt − Y ≷ (R− 1)

∞
∑

i=1

bY

Ri
· ✶{(t−1+i) mod n=0} (A.11)

Given that n > 1 and b > 0, we can bound the right-hand side of Equation A.11 as follows

bY > (R− 1)

∞
∑

i=1

bY

Ri
· ✶{(t−1+i) mod n=0} > 0 (A.12)
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Therefore,

WE
t −Wt > 0 if yt = (1 + b)Y, and

WE
t −Wt < 0 if yt = Y

Individuals are overly optimistic in periods with atypical income and overly pessimistic in

periods with typical income.

Lemma 2. Assume that individuals follow a t-budgeting heuristic and there is misalignment

between the timing of consumption and the timing of pay.

(i) Consumption is weakly greater than the optimal consumption level under correct beliefs

in periods with atypical income.

(ii) Consumption is weakly less than the optimal consumption level under correct beliefs

in periods with typical income.

Proof. This follows directly from Equation 1.5 and Lemma 1.

Proposition 1. In the presence of a t-budgeting heuristic and misalignment between the

timing of consumption and the timing of income, the marginal propensity to consume out of

additional income bY in atypical income periods is (1− (δR1−ρ)1/ρ) R
R−1α and is increasing

in α.

Proof. Recall from Equation A.9, the individual’s expected remaining lifetime wealth in

period t is

WE
t = Xt +

αyt
R− 1

+ (1− α)

∞
∑

i=1

yt+i

Ri
.

Looking forward one period, expected wealth in period t+ 1 is

WE
t+1 = R(Xt − ct) + yt+1 +

αyt+1

R− 1
+ (1− α)

∞
∑

i=1

yt+1+i

Ri
.

Dividing both sides by R and then rearranging gives

WE
t+1

R
= Xt − ct + α

yt+1

R
+

1

R
· α

yt+1

R− 1
+ (1− α)

∞
∑

i=1

yt+i

Ri

=WE
t − ct + α

yt+1 − yt
R− 1

.
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Multiplying both sides by R and then combining with Equation 1.5, expected remaining

lifetime wealth is

WE
t+1 = (δR)1/ρWE

t +
R

R− 1
α(yt+1 − yt)

and period t+ 1 consumption is

ct+1 = (δR)1/ρct + (1− (δR1−ρ)1/ρ)
R

R− 1
α(yt+1 − yt)

We can thus see that receiving additional income bY leads to (1 − (δR1−ρ)1/ρ) R
R−1α(bY )

in additional consumption so the marginal propensity to consume out of the additional

income is simply MPC = (1 − (δR1−ρ)1/ρ) R
R−1α. Given our assumptions about individual

impatience and the gross interest rate, it follows that ∂MPC
∂α > 0.

Proposition 2. For all α, the presence of borrowing constraints of the form Xt − ct ≥ 0

leads to weakly larger increases in consumption in periods with atypical income than in the

absence of borrowing constraints.

Proof. Recall from the proof of Proposition 1 that expected wealth in period t + 1 can be

written as
WE

t+1

R
=WE

t − ct + α
yt+1 − yt
R− 1

.

Suppose that the borrowing constraint binds so that

ct = min {Xt, (1− (δR1−ρ)1/ρ)WE
t } = Xt.

Let c∗t be the preferred consumption level under no borrowing constraints in period t, and

let st = c∗t −Xt ≥ 0 be the difference between this preferred consumption level and cash-

on-hand. Assuming the borrowing constraint binds in period t, expected wealth in period

t+ 1 can be rewritten as

WE
t+1

R
=WE

t − (c∗t − st) + α
yt+1 − yt
R− 1

.

Multiplying both sides by R and then combining with Equation 1.5, expected remaining
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lifetime wealth and consumption in period t+ 1 are

WE
t+1 = (δR)1/ρWE

t + st +
R

R− 1
α(yt+1 − yt)

ct+1 = (δR)1/ρct + (1− (δR1−ρ)1/ρ)[
st

yt+1 − yt
+

R

R− 1
α](yt+1 − yt)

Note that st = 0 in the absence of borrowing constraints. Given that st is weakly positive

and yt+1−yt = bY in months with atypical income, it follows that the presence of borrowing

constraints leads to weakly larger increase in consumption in periods with atypical income

than would otherwise be implied by α in the absence of borrowing constraints.

Proposition 3. Let wealth entering period 0 be distributed according to the CDF G(WE
0 )

and density g(WE
0 ), where the density g(·) depends on the joint distribution of (X0, α).

For a given initial level of committed consumption d0, the probability that an individual

discretely adjusts her committed consumption in period 1 (d1 6= d0) is increasing in α.

Proof. First note that within-period preferences are Cobb-Douglas between adjustable and

committed consumption. The optimal level of consumption of each type of good is propor-

tional to the individuals expected lifetime wealth in that period. Thus, in period 0, the

individual’s optimal consumption is given by

{c0, d0} =
{

(1− γ)(1− (δR1−ρ)1/ρ)WE
0 , γ(1− (δR1−ρ)1/ρ)WE

0

}

where expected lifetime wealth in period 0 is

WE
0 = X0 + y0 +

αy0
R− 1

+ (1− α)
∞
∑

i=1

yt+i

Ri
,

From Chetty and Szeidl, for a given d0, there exists s1 < S1 such that the optimal policy is

to move when WE
1 /∈ (s1, S1). Then for a given α, there exists m = S1 − (αbY − kd0) <∞

such that individuals with WE
0 > m have WE

1 = WE
0 + αbY − kd0 > S1. For individuals

with WE
0 > m, it is therefore optimal to adjust her level of committed consumption. For

a given α, the probability that an individual has wealth entering into period 1 sufficiently

high that it is optimal for her to move is then given by 1 − G(m(α)). To show that this

probability is increasing in α, we take the derivative of our expression with respect to α,

∂(1−G(m(α))

∂α
= −

dG(W )

dW
·m′(α) = −g(W )(−bY ) > 0.

Thus the probability of an individual adjusting her level of committed consumption is
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strictly increasing in α.

137



BIBLIOGRAPHY

D. Aaronson, S. Agarwal, and E. French. The spending and debt response to minimum
wage hikes. American Economic Review, 102(7):3111–39, 2012.

J. Abaluck and J. Gruber. Choice inconsistencies among the elderly: Evidence from plan
choice in the medicare part d program. American Economic Review, 101(4):1180–1210,
2011.

D. Acland and M. Levy. Naivet, projection bias, and habit formation in gym attendance,
2013. Working Paper.

W. Adams, L. Einav, and J. Levin. Liquidity constraints and imperfect information in
subprime lending. American Economic Review, 99(1):49–84, 2009.

S. Agarwal, C. Liu, and N. S. Souleles. The reaction of consumer spending and debt to
tax rebates: Evidence from consumer credit data. Journal of Political Economy, 115(6):
986–1019, 2007.

D. J. Aigner. Regression with a binary independent variable subject to errors of observation.
Journal of Econometrics, 1:49–60, 1973.

J. Andreoni. Philanthropy. In S. Kolm and J. M. Ythier, editors, Handbook of the Eco-
nomics of Giving, Altruism and Reciprocity, volume 2, pages 1201–69. North-Holland,
The Netherlands, 2006.

J. Andreoni and B. D. Bernheim. Social image and the 50 - 50 norm: A theoretical and
experimental analysis of audience effects. Econometrica, 77(5):1607–36, 2009.

J. Andreoni and R. Petrie. Public goods experiments without confidentiality: A glimpse
into fund-raising. Journal of Public Economics, 88:1605–23, 2004.

J. Angrist and V. Lavy. The effects of high stakes high school achievement awards: Evidence
from a randomized trial. American Economic Review, 99(4):1384–1414, 2009.

J. Angrist, D. Lang, and P. Oreopoulos. Incentives and services for college achievement:
Evidence from a randomized trial. American Economic Journal: Applied Economics, 1
(1):136–63, 2009.

D. Ariely, A. Bracha, and S. Meier. Doing good or doing well? image motivation and
monetary incentives in behaving prosocially. American Economic Review, 99(1):544–55,
2009.

O. Attanasio, P. K. Goldberg, and E. Kyriazidou. Credit constraints in the market for
consumer durables: Evidence from micro data on car loans. International Economic
Review, 49(2):401–36, 2008.

138



N. Barberis, A. Shleifer, and R. Vishny. A model of investor sentiment. Journal of Financial
Economics, 49(3):307–43, 1998.

S. Barbieri and D. A. Malueg. Increasing fundraising success by decreasing donor choice.
Journal of Public Economics, forthcoming.

G. S. Becker. A theory of social interactions. Journal of Political Economy, 82(6):1063–93,
1974.

R. Bénabou and J. Tirole. Incentives and prosocial behavior. American Economic Review,
96(5):1652–78, 1996.

S. Bernatzi and R. Thaler. Heuristics and biases in retirement savings behavior. Journal
of Economic Perspectives, 21(3):81–104, 2007.

E. P. Bettinger. Paying to learn: The effect of financial incentives on elementary school test
scores. Review of Economics and Statistics, 94(3):686–98, 2012.

D. A. Black, M. C. Berger, and F. A. Scott. Bounding parameter estimates with nonclassical
measurement error. Journal of the American Statistical Association, 95(451):739–48,
2000.

I. Bohnet and B. S. Frey. The sound of silence in prisoner’s dilemma and dictator games.
Journal of Economic Behavior Organization, 38(1):43–57, 1999.

A. Bracha and L. Vesterlund. How low can you go? charity reporting when donations signal
income and generosity, 2013. Working Paper.

M. Browning and D. Collado. The response of expenditures to anticipated income changes:
Panel data estimates. American Economic Review, 91(3):681–92, 2001.

M. Browning and T. F. Crossley. The life-cycle model of consumption and saving. Journal
of Economic Perspectives, 15(3):3–22, 2001.

M. Browning and A. Lusardi. Household saving: Micro theories and macro facts. Journal
of Economic Literature, 34(4):1797–1855, 1996.

R. Bnabou and J. Tirole. Intrinsic and extrinsic motivation. Review of Economic Studies,
70(3):489–520, 2003.

J. Y. Campbell and G. N. Mankiw. Consumption, income and interest rates: Reinterpreting
the time series evidence. NBER Macroeconomics Annual: 1989, pages 185–216, 1989.

J. Y. Campbell and G. N. Mankiw. The response of expenditures to anticipated income
changes: Panel data estimates. American Economic Review, 91(3):681–92, 2001.

A. Caplin, M. Dean, and D. Martin. Search and satisficing. American Economic Review,
101(7):2899–2922, 2011.

139



E. Cartwright and A. Patel. How category reporting can improve fundraising. Journal of
Economic Behavior Organization, 87:73–90, 2013.

G. Charness and U. Gneezy. Incentives to exercise. Econometrica, 77(3):909–31, 2009.

R. Chetty and A. Szeidl. Consumption commitments and risk preferences. The Quarterly
Journal of Economics, 122(2):831–77, 2007.

J. J. Choi, D. Laibson, and B. C. Madrian. $100 bills on the sidewalk: Suboptimal invest-
ment in 401(k) plans. The Review of Economics and Statistics, 93(3):748–63, 2011.

Council for Aid to Education. Voluntary support of education 2013 survey, 2014.

J. Dana, D. M. Cain, and R. M. Dawes. What you don’t know won’t hurt me: Costly (but
quiet) exit in dictator games. Organizational Behavior and Human Decision Processes,
100:193–201, 2006.

A. Deaton. Saving and liquidity constraints. Econometrica, 59(5):1221–48, 1991.

E. L. Deci. Effects of externally mediated rewards on intrinsic motivation. Journal of
Personality and Social Psychology, 18(1):105–15, 1971.

E. L. Deci, R. Koestner, and R. M. Ryan. Extrinsic rewards and intrinsic motivation in
education: Reconsidered once again. Review of Educational Research, 71(1):1–27, 2001.

S. DellaVigna. Psychology and economics: Evidence from the field. Journal of Economic
Literature, 47(2):315–72, 2009.

T. Ellingsen and M. Johannesson. Pride and prejudice: The human side of incentive theory.
American Economics Review, 98(3):990–1008, 2008.

A. J. Elliot and J. M. Harackiewicz. Goal setting, achievement orientation, and intrinsic
motivation: A meditational analysis. Journal of Personality and Social Psychology, 66
(5):968–80, 1994.

A. Filippin and J. C. van Ours. Run for fun: Intrinsic motivation and physical performance,
2012. Working Paper.

B. S. Frey. Tertium datur: Pricing, regulation and intrinsic motivation. Kyklos, 45(2):
161–84, 1992.

B. S. Frey. On the relationship between intrinsic and extrinsic work motivation. Interna-
tional Journal of Industrial Organization, 15(4):427–39, 1997.

M. Friedman. A Theory of the Consumption Function. Princeton University Press, 1957.

R. Fryer. Financial incentives and student achievement: Evidence from randomized trials.
Quarterly Journal of Economics, 126(4):1755–98, 2011.

140



X. Gabaix, D. Laibson, G. Moloche, and S. Weinberg. Costly information acquistion:
Experimental analysis of a boundedly rational model. American Economic Review, 96
(4):1043–68, 2006.

T. Gilovich, D. Griffin, and D. Kahneman, editors. Heuristics and Biases: The Psychology
of Intuitive Judgment. Cambridge University Press, 2002.

Giving USA. Giving usa 2013 report, 2013.

A. Glazer and K. A. Konrad. A signaling explanation for charity. American Economic
Review, 86(4):1019–28, 1996.

U. Gneezy and A. Rustichini. Pay enough or dont pay at all. Quarterly Journal of Eco-
nomics, 115(3):791–810, 2000.

U. Gneezy, S. Meier, and P. Rey-Biel. When and why incentives (dont) work to modify
behavior. Journal of Economic Perspectives, 25(4):191–210, 2011.

R. Hai, D. Kreuger, and A. Postlewaite. On the welfare cost of consumption fluctuations
in the presence of memorable goods. January 2013. NBER Working Paper No. 19386.

R. E. Hall and F. S. Mishkin. The sensitivity of consumption to transitory income: Esti-
mates from panel data on households. Econometrica, 50(2):461–81, 1982.

W. T. Harbaugh. The prestige motive for making charitable transfers. American Economic
Review, 88(2):277–82, 1998a.

W. T. Harbaugh. What do donations buy? a model of philanthropy based on prestige and
warm glow. Journal of Public Economics, 67(2):269–84, 1998b.

J. S. Hastings and J. M. Shapiro. Fungibility and consumer choice: Evidence from com-
modity price shocks. The Quarterly Journal of Economics, Forthcoming, 2013.

J. Hattie and H. Timperley. The power of feedback. Review of Educational Research, 77
(1):81–112, 2007.

O. Heffetz and R. H. Frank. Preferences for status: Evidence and economic implications. In
M. O. J. Jess Benhabib and A. Bisin, editors, Handbook of Social Economics, volume 1A,
page 6991. North-Holland, The Netherlands, 2011.

H. Hollander. A social exchange approach to voluntary cooperation. American Economic
Review, 80(5):1157–67, 1990.

J. Holmes. Prestige, charitable deductions and other determinants of alumni giving: Evi-
dence from a highly selective liberal arts college. Economics of Education Review, 28(1):
18–28, 2009.

141



C.-T. Hsieh. Do consumers react to anticipated income changes? evidence from the alaska
permanent fund. American Economic Review, 93(1):397–405, 2003.

D. Huffman and M. Barenstein. A monthly struggle for self-control? hyperbolic discount-
ing, mental accouting, and the fall in consumption between paydays. Working Paper,
December 2005.

N. J. Ireland. On limiting the market for status signals. Journal of Public Economics, 53
(1):91–110, 1994.

T. Jappelli. Who is credit-constrained in the us economy? Quarterly Journal of Economics,
105:219–34, 1990.

T. Jappelli and L. Pistaferri. The consumption response to income changes. Annual Review
of Economics, 2:479–506, 2010.

T. Jappelli, J.-S. Pischke, and N. S. Souleles. Testing for liquidity constraints in euler
equations with complementary data sources. The Review of Economics and Statistics,
80:251–62, 1998.

D. S. Johnson, J. A. Parker, and N. S. Souleles. Household expenditure and the income tax
rebates of 2001. American Economic Review, 96(5):1589–1610, 2006.

D. S. Johnson, J. A. Parker, and N. S. Souleles. The response of consumer spending to
rebates during the expansion: Evidence from the 2003 child tax credit. Working Paper,
April 2009.

D. Karlan and M. A. McConnell. Hey look at me: The effect of giving circles on giving,
2013. Working Paper.
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