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Abstract

This dissertation presents three independent essays. Chapter 1, which is joint work

with Mira Frick, studies a model of innovation adoption by a large population of long-lived

consumers who face stochastic opportunities to adopt an innovation of uncertain quality. We

study how the potential for social learning in an economy affects consumers’ informational

incentives and how these in turn shape the aggregate adoption dynamics of an innovation.

For a class of Poisson learning processes, we establish the existence and uniqueness of

equilibria. In line with empirical findings, equilibrium adoption patterns are either S-shaped

or feature successions of concave bursts. In the former case, our analysis predicts a novel

saturation effect: Due to informational free-riding, increased opportunities for social learning

necessarily lead to temporary slow-downs in learning and do not produce welfare gains.

Chapter 2, which is joint work with Drew Fudenberg and Scott D. Kominers, extends

the folk theorem of repeated games to settings in which players’ information about others’

play arrives with stochastic lags. To prove the folk theorem, we construct equilibria in

“delayed-response strategies,” which ensure that players wait long enough to respond to

signals that with high probability all relevant signals are received before players respond.

To do so, we extend past work on private monitoring to obtain folk theorems despite the

small residual amount of private information.

Finally Chapter 3 demonstrates how uncertainty over patience can generate strong

reputation effects that are weak when the long-run player’s level of patience is common

knowledge. With uncertainty over patience, these strong reputation effects are the result

of a contagion effect initiated by very patient types: the most patient types have a strict
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incentive to play the beneficial action in all equilibria which in turn incentivizes those with

smaller levels of patience to also play this action. Our main result shows that even when

very patient types are extremely small in probability, these contagion effects are very strong

so that types with intermediate levels of patience obtain high payoffs in all equilibria.
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Introduction

This dissertation presents three independent essays. Chapter 1, which is joint work with

Mira Frick, studies a model of innovation adoption by a large population of long-lived

consumers that faces stochastic opportunities to adopt an innovation of uncertain quality.

Consumers are social learners: Over time, news about the product’s quality is generated

endogenously, based on the experiences of past adopters. We analyze how the potential

for social learning in an economy affects consumers’ informational incentives and how

these in turn shape the aggregate adoption dynamics of an innovation. Our main results

highlight the importance of two features of the economy: The extent to which consumers

are forward-looking and the nature of news events through which social learning occurs.

When consumers are forward-looking social learners, the trade-off between the benefit of

adopting the innovation at any given time and the option value of waiting for endogenous

news can generate rich aggregate adoption dynamics, even in the absence of any consumer

heterogeneity. The dynamics of this trade-off and the extent to which it is affected by

increased opportunities for social learning interact in interesting ways with the news process

of the economy. For a class of Poisson learning processes, we establish the existence and

uniqueness of equilibria. In line with empirical findings, equilibrium adoption patterns are

either S-shaped or feature successions of concave bursts. In the former case, our analysis

predicts a novel saturation effect: Due to informational free-riding, increased opportunities

for social learning necessarily lead to temporary slow-downs in learning and do not produce

welfare gains.

Chapter 2, which is joint work with Drew Fudenberg and Scott D. Kominers, extends
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the folk theorem of repeated games to two settings in which players’ information about

others’ play arrives with stochastic lags. In our first model, signals are almost-perfect if

and when they do arrive, that is, each player either observes an almost-perfect signal of

period-t play with some lag or else never sees a signal of period-t play. In the second model,

the information structure corresponds to a lagged form of imperfect public monitoring,

and players are allowed to communicate via cheap-talk messages at the end of each period.

In each case, we construct equilibria in “delayed-response strategies,” which ensure that

players wait long enough to respond to signals that with high probability all relevant signals

are received before players respond. To do so, we extend past work on private monitoring

to obtain folk theorems despite the small residual amount of private information.

Finally Chapter 3 demonstrates how uncertainty over patience can generate strong

reputation effects that are unavailable when the long-run player’s level of patience is

common knowledge. With uncertainty over patience, these strong reputation effects are the

result of a contagion effect initiated by very patient types: the most patient types have a

strict incentive to play the beneficial action in all equilibria which in turn incentivizes those

with smaller levels of patience to also play this action. Our main result shows that even

when very patient types are extremely small in probability, these contagion effects are very

strong so that types with intermediate levels of patience obtain high payoffs in all equilibria.

2



Chapter 1

Innovation Adoption by

Forward-Looking Social Learners1

1.1 Introduction

Suppose an innovation of uncertain quality, such as a novel medical treatment or a new

piece of software, is released into the market. In recent years, the rise of internet-based

review sites, retail platforms, search engines, video-sharing websites, and social networking

sites (such as Yelp, Amazon, Google, YouTube, and Facebook) has greatly increased the

potential for social learning about the innovation: An individual’s treatment success story

or discovery of a bug in the software is much more likely to find its way into the public

domain; and there are more people than ever who have access to this common pool of

consumer-generated information.

We analyze how the potential for social learning in an economy affects consumers’

informational incentives and how these in turn shape the aggregate adoption dynamics of

an innovation. Our main results highlight the importance of two features of the economy:

The extent to which consumers are forward-looking and the nature of news events through

which social learning occurs. In choosing whether to adopt an innovation, forward-looking

1Co-authored with Mira Frick.
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consumers recognize the option value of waiting for more information. With social learning,

information is created endogenously, based on the consumption experiences of past adopters.

In equilibrium, adoption levels must therefore strike a balance: If too many consumers

adopt at any given time, then too much information is available in the future and all

consumers would rather wait; conversely, if too few consumers adopt, it might not be

worthwhile for anyone to wait. We show that the dynamics of this trade-off and the extent

to which it is affected by increased opportunities for social learning depend crucially on

the kind of information consumers expect to acquire by waiting. In line with numerous

empirical findings, our analysis predicts adoption patterns that are either S-shaped or feature

successions of concave bursts, suggesting novel micro-foundations for these observations.

We also make new predictions regarding the impact of increased opportunities for social

learning on consumer welfare, on equilibrium learning dynamics, and on observed adoption

behavior.

In our model, an innovation of fixed, but uncertain quality (better or worse than the

status quo) is introduced to a large population of forward-looking consumers. Consumers

are (ex ante) identical, sharing the same prior about the quality of the innovation, the same

discount rate, and the same tastes for good and bad quality. At each instant in continuous

time, consumers receive stochastic opportunities to adopt the innovation. A consumer who

receives an opportunity must choose whether to irreversibly adopt the innovation or to

delay his decision until the next opportunity. In equilibrium, consumers optimally trade off

the opportunity cost of delays against the benefit to learning more about the quality of the

innovation.

Learning about the innovation is summarized by a public signal process, representing

news that is obtained endogenously—based on the experiences of previous adopters; and

possibly also from exogenous sources, such as professional critics or government watchdog

agencies. Formally, we employ a variation of the Poisson learning models pioneered by

Keller et al. (2005), Keller and Rady (2010), and Keller and Rady (2013). As in these models,

our analysis distinguishes between bad news markets, in which signal arrivals (breakdowns)

4



indicate bad quality and the absence of signals makes consumers more optimistic about the

innovation; and good news markets, in which signal arrivals (breakthroughs) suggest good

quality and the absence of signals makes consumers more pessimistic. To capture social

learning, we assume that the informativeness of signals is increasing in the number of

previous adopters.

The automobile industry is an example of a market in which learning is predominantly

via bad news events, as evidenced by the wide-spread social media coverage of a battery fire

in a Tesla Model S electric car in October 2013 or of the 2009-2011 Toyota vehicle recalls. By

contrast, in the market for (essentially side-effect free) herbal remedies or other alternative

medical treatments, learning is mostly via good news: Occasional reports of success stories

boost consumers’ confidence in a treatment, while consumers grow more skeptical of its

effectiveness in the absence of any such reports.2

The heart of our paper, Sections 1.5 and 1.6, analyzes and contrasts equilibrium adoption

behavior in bad and good news markets. For tractability, we focus on perfect bad (respec-

tively good) news environments, in which a single signal arrival conclusively indicates bad

(respectively good) quality, so that equilibrium dynamics are non-trivial only in the absence

of signals. A key insight facilitating our analysis is that consumers’ equilibrium incentives

across time must satisfy a quasi-single crossing property (Theorem 1.4.1): Absent signals,

there can be at most one transition from strict preference for adoption to strict preference

for waiting, or vice versa, with a possible period of indifference in between. This enables

us to establish the existence of unique3 equilibria. Equilibrium adoption dynamics admit

simple closed-form descriptions which are Markovian in current beliefs and in the mass of

consumers who have not yet adopted.

Section 1.5 studies the perfect bad news case. In the absence of breakdowns, consumers

grow increasingly optimistic about the innovation over time. As a result of the single-crossing

2Cf. Board and Meyer–ter–Vehn (2013) and MacLeod (2007) for additional examples of bad news and good
news markets.

3Uniqueness is in terms of aggregate adoption behavior.
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property, the unique equilibrium is then characterized by two times 0  t⇤1  t⇤2 , which

depend on the fundamentals (Theorem 1.5.1): Until time t⇤1 , no adoption takes place and

consumers acquire information only from exogenous sources; from time t⇤2 on, all consumers

adopt immediately when given a chance, unless a breakdown occurs, in which case adoption

comes to a permanent standstill. If t⇤1 < t⇤2 , then throughout [t⇤1 , t⇤2) only some consumers

adopt whenever given a chance, with the flow of new adopters uniquely determined by an

ODE that guarantees consumers’ indifference between adopting and delaying throughout

this interval. Given that consumers are forward-looking, t⇤1 < t⇤2 occurs in economies with a

sufficiently large potential for social learning and not too optimistic consumers (by contrast,

if consumers are myopic or if there are no possibilities for social learning, then necessarily

t⇤1 = t⇤2).

We highlight two key implications for aggregate adoption dynamics and consumer

welfare:

First, provided t⇤1 < t⇤2 , the innovation’s adoption curve (which plots the percentage of

adopters in the population against time) has the characteristic S-shaped growth pattern that

has been widely observed in empirical studies:4 Up to time t⇤1 adoption is flat, on [t⇤1 , t⇤2)

adoption levels increase convexly, and from time t⇤2 there is a concave increase. Moreover, an

increase in the potential for social learning prolongs the period of convex growth and leads

to strictly lower expected adoption levels across time. The possibility of S-shaped adoption

curves in our model is notable because we assume consumers to be (ex ante) identical,

whereas most alternative explanations in the literature rely on specific distributions of

consumer heterogeneity to generate a region of convex growth. In our model, convex

growth is driven by informational incentives: As consumers grow increasingly optimistic,

their opportunity cost to delaying goes up. To maintain indifference between adopting and

delaying throughout [t⇤1 , t⇤2), this increase is offset by an increase in the flow of new adopters,

which raises the odds that waiting will produce information allowing consumers to avoid a

4See, for example, Griliches (1957), Mansfield (1961), Mansfield (1968), Davies (1979), and Gort and Klepper
(1982), among many others.
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bad innovation.

Second, we predict a saturation effect: If the potential for social learning is great enough

that t⇤1 < t⇤2 , then holding fixed other fundamentals, any additional increase in opportunities

for social learning has no impact at all on (ex ante) equilibrium welfare levels. This is in

stark contrast to the cooperative benchmark in which consumers coordinate on socially

optimal adoption levels: Here increased opportunities for social learning are always strictly

beneficial and can in fact be used to approximate first-best (complete information) payoffs

in the limit. Relative to the cooperative benchmark, equilibrium adoption behavior displays

two inefficiencies: First, adoption generally begins too late; second, once adoption begins it

initially occurs at an inefficiently low rate, because during [t⇤1 , t⇤2) consumers who do not

adopt when given a chance effectively free-ride on the information generated by consumers

who do adopt. Increased opportunities for social learning exacerbate the second inefficiency

by prolonging the period of free-riding. As a result, greater opportunities for social learning

do not translate into uniformly faster learning about the quality of the innovation, but rather

lead to strictly slower learning over some periods and faster learning over others. These two

effects balance out to produce the saturation effect. In Section 1.7, we further build on this

non-monotonicity in the speed of learning to construct an example involving consumers

with heterogeneous discount rates, where increased opportunities for social learning are not

only not beneficial, but in fact strictly hurt aggregate welfare.

In Section 1.6 we study learning via perfect good news. Here consumers grow in-

creasingly pessimistic about the innovation in the absence of breakthroughs. Hence, the

single-crossing property for equilibrium incentives implies adoption up to some time t⇤

(which depends on the fundamentals) and no adoption from t⇤ on, unless there is a break-

through, after which all consumers adopt upon their first opportunity (Theorem 1.6.1).

Interestingly, in contrast with the perfect bad news case, equilibrium adoption behavior is

all-or-nothing: Regardless of the potential for social learning, there are no periods during

which only some consumers adopt when given a chance. This highlights a fundamental

way in which the nature of information transmission in an economy affects consumers’

7



adoption incentives. During a period of time when, absent signals, a consumer is prepared

to adopt the innovation, he will be willing to delay his decision only if he expects to acquire

decision-relevant information in the meantime: Since originally he is prepared to adopt the

innovation, such information must make him strictly prefer not to adopt. When learning

is via bad news, breakdowns have this effect, since they reveal the innovation to be bad.

By contrast, breakthroughs in the perfect good news environment conclusively reveal the

innovation to be good and hence cannot be decision-relevant to a consumer who is already

willing to adopt.

The all-or-nothing nature of the good news equilibrium has the following implications

for adoption dynamics and welfare:

First, adoption occurs in concave “bursts”: Up to time t⇤ adoption levels increase

concavely, then adoption flattens out, possibly followed by another region of concave growth

if a breakthrough occurs. While less commonly observed than S-shaped growth, this pattern

is reminiscent of the “fast-break” product life cycles studied in the marketing literature5,

with movies, music, and other “leisure-enhancing” products as canonical examples.6 We

predict that increased opportunities for social learning bring forward t⇤, compressing the

initial period of concave growth, but do not affect the probability of adoption picking up

again after coming to a temporary standstill.

Second, even in economies with rich opportunities for social learning, an increase in the

potential for social learning is (essentially) always strictly beneficial and speeds up learning

at all times. Nevertheless, equilibrium behavior is generally socially inefficient: Relative

to the cooperative benchmark, adoption takes place at an optimal rate until time t⇤, but

consumers stop adopting too soon.

5Cf. Keillor (2007)

6For additional examples in the context of industrial process innovations, see Davies (1979).

8



1.1.1 Related Literature and Outline

Our paper proposes a model of innovation adoption by consumers who learn from each

other’s experiences and are forward-looking. Having a tractable model that can incorporate

these two assumptions, examine the informational externalities they give rise to, and derive

predictions for the effect of increased opportunities for social learning is desirable, as there

is considerable empirical evidence for both assumptions. For example, a growing literature

in development economics documents the effect of learning from others’ experiences on the

adoption of new agricultural technologies, as in Foster and Rosenzweig (1995) or Conley and

Udry (2010). This literature also finds evidence for forward-looking behavior: Bandiera and

Rasul (2006) analyze the decision of farmers in Mozambique to adopt a new crop, sunflower.

They find that farmers whose network of friends and family contains many adopters of the

new crop are less likely to initially adopt it themselves. Relatedly, Munshi (2004) compares

farmers’ willingness to experiment with new high-yield varieties (HYV) across rice and

wheat growing areas in India. Farmers in rice growing regions, which compared with wheat

growing regions display greater heterogeneity in growing conditions that make learning

from others’ experiences less feasible, are found to be more likely to experiment with HYV

than farmers in wheat growing areas.

At a theoretical level, the key feature of our model is that social learning and forward-

looking incentives jointly give rise to informational externalities that do not arise in the

absence of either assumption. In relation to existing models of innovation adoption, this has

at least two interesting implications.

First, many models of innovation adoption rely on consumer heterogeneity as a key

ingredient in fitting observed adoption data. Our analysis suggests that in existing learning-

based models7 heterogeneity is only crucial because of the common assumption that either

consumers are forward-looking but news is generated purely exogenously, as in Jensen

(1982), or that learning is social but consumers are myopic, as in Young (2009) or Ellison

7For comprehensive surveys of the literature, including also non-learning based explanations of innovation
adoption, such as the epidemic model and the probit model of firm characteristics, see for example Geroski
(2000) and Baptista (1999).
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and Fudenberg (1993):8 In either case, a population of identical consumers would behave

according to a simple cutoff rule, adopting the innovation at beliefs above a certain threshold

and not adopting otherwise, and this rules out convex growth in adoption levels.9 By

contrast, in our model consumers are assumed to be ex ante identical, but the combination

of forward-looking behavior and social learning allows us to provide an alternative micro-

foundation for convex growth in terms of purely informational incentives.

The literature also commonly appeals to variations in consumer heterogeneity in order to

explain qualitative differences in adoption patterns across different products. For example,

in his study of the diffusion of 22 post-war industrial process innovations in the UK,

Davies (1979) uses symmetrical logistic distributions to fit the S-shaped adoption patterns

characteristic of expensive and complex innovations, but lognormal distributions to fit the

rapid, essentially concave growth in adoption levels he observes for less expensive and

simpler innovations. Again, our analysis shows that when consumers are forward-looking

social learners, these contrasting patterns can instead be explained through differences in

the informational environment: S-shaped curves arise in bad news markets with a relatively

large potential for social learning, while concave adoption patterns are characteristic of

good news markets (or of bad news markets with little potential for social learning or with

very optimistic consumers). Our focus on the role of the market learning process in shaping

consumers’ informational incentives and generating varied aggregate adoption dynamics is

8Two exceptions are Persons and Warther (1997) and Kapur (1995), who feature a form of forward-looking
social learning, but differ substantially from our paper in terms of both setup and focus. Persons and Warther
(1997) focuses on the combination of forward-looking incentives, endogenously generated news, and firm
heterogeneity to provide rational foundations for seemingly irrational, fad-like patterns in the adoption of
financial innovations. In Kapur (1995), a finite number of firms engage in a sequence of waiting contests to
adopt a new technology, with each contest ending once a firm adopts. Restricting to MPE, he finds that if more
information is revealed when more firms adopt during a given waiting contest, then the mean duration of
waiting contests shrinks over time, suggesting a crude approximation of convex diffusion. Since both models
are set in discrete time, they are less tractable and not suited to performing comparative statics analyses with
respect to the potential for social learning in an economy. In addition, discrete time is less suited to highlighting
the role of the market learning process in shaping aggregate adoption dynamics, because when the information
process is sufficiently informative relative to the period length, adoption behavior is qualitatively similar across
many news processes. By contrast, when the period length becomes short as in our continuous time model,
differences become transparent.

9Adoption patterns can exhibit concave growth simply as a result of gradual depletion of the population of
remaining consumers.
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similar in spirit to Board and Meyer–ter–Vehn (2013), who in the context of a capital-theoretic

model of quality and reputation, highlight the dependence of firms’ reputational incentives

on the news process and contrast reputational dynamics across different markets.

Second, in addition to providing an alternative explanation for observed data, the

informational externalities that arise from the interaction between forward-looking behavior

and endogenously generated information are important because they suggest caution in

evaluating the effect of increased opportunities for social learning. In contrast to existing

models, we predict that increased opportunities for social learning need not produce welfare

gains and may lead to a temporary slowdown in learning and a strict decline in initial

adoption levels. On the other hand, if learning is modeled as purely exogenous or consumers

are assumed to be myopic, then increased opportunities for social learning necessarily speed

up learning and are unambiguously welfare-improving.

The techniques and framework of this paper are closest to those employed in the strategic

experimentation literature, e.g. Bolton and Harris (1999), Keller et al. (2005), Keller and

Rady (2010), and Keller and Rady (2013). However, our paper differs in two key respects:

First, in our model any individual consumer’s influence on the information seen by others

is negligible; second, adoption of the innovation is irreversible. The first assumption is

natural in the context of the large market applications we have in mind, and for many

new products (for example movies or books, for which consumption is usually a one-

time event, or technologies that entail large switching costs) irreversibility is also more

reasonable than the possibility of consumers continuously switching back and forth between

the innovation and the status quo as in the strategic experimentation literature.10 In the

strategic experimentation literature, consumers’ direct influence on opponents’ information

and their ability to adjust their experimentation levels as a function of beliefs produces the

so-called encouragement effect: There is an incentive to increase current experimentation in

10Moreover, if consumers could continuously switch back and forth between the two options, then under the
large market assumption, consumers’ equilibrium strategies would effectively reduce to myopic best response
with respect to beliefs.
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order to drive up beliefs and induce more future experimentation by others.11 As a result

of the encouragement effect, many comparative statics in those models differ substantially:

For example, an increase in the rate of information transmission may cause consumers

to begin to adopt earlier, whereas in our model, we observe that initially adoption rates

always weakly decrease in response to such a change. Without the encouragement effect, we

are more easily able to study comparative statics on adoption behavior, speed of learning,

and welfare with respect to changes in the social learning environment. Moreover, we

obtain equilibrium uniqueness (at the aggregate level) without any Markovian restriction

on strategies.

A number of papers, including Rosenberg et al. (2007), Chamley and Gale (1994), and

Murto and Välimäki (2011), also study the impact of informational externalities on adoption,

investment, or exit behavior, but rely on the assumption that agents hold private information.

Notably, Chamley and Gale (1994) obtain a result somewhat resembling our saturation

effect, according to which in the limit, an increase in the number of players has no effect on

the rate of investment or flow of information. In the context of a two-armed bandit problem

in which the decision to switch to the safe arm is irreversible, Rosenberg et al. (2007) obtain

a similar uniqueness result to ours in the limit as the number of players becomes large.

However, the specifics of all these models differ substantially from ours, as agents obtain

private information and make inferences about the quality of the product by observing

others’ actions, while in our model all relevant news is public and actions do not reveal

additional information.

Finally, Bergemann and Välimäki (1997) and Bergemann and Välimäki (2000) study inno-

vation adoption in the presence of pricing motives by sellers when learning is social. In these

papers, prices that dynamically adjust through time act as an additional instrument through

which the seller can affect the endogenous information generation process. Bergemann and

Välimäki (1997) study a model in which one established firm (with known technology) and

11There is no encouragement effect in the perfect good news environment of Keller et al. (2005), but consumers’
ability to influence each other’s beliefs as well as the reversibility of experimentation are once again crucial in
generating asymmetric switching equilibria, in which consumers take turns in experimenting at different beliefs.
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a new firm with a risky innovation compete through prices. They derive the Markov perfect

equilibrium pricing strategies and adoption behavior and demonstrate that adoption is too

fast (relative to the social optimum) when consumers are pessimistic and too slow when

consumers are optimistic. The main difference with our paper is that consumers in their

model best respond myopically at each point in time, so that adoption dynamics are driven

purely by sellers’ informational and pricing motives. By contrast, in our model consumers

are more sophisticated and consider the option value to waiting, producing interesting

adoption dynamics even in the absence of pricing motives.12 Bergemann and Välimäki

(2000) analyze a similar model in which consumers display forward-looking behavior. As in

Bergemann and Välimäki (1997), they find that pricing motives cause experimentation to be

excessive, which is in contrast to our finding that in the absence of pricing motives there

is too little (and, under perfect bad news, too slow) adoption. They find additionally that

when the innovation is launched in many markets simultaneously, adoption rates become

socially optimal in the limit as the number of markets grows large. Much of the focus in our

paper is on analyzing the effect of increased opportunities for social learning on consumers’

informational incentives. In order to isolate the effect on the consumer side, our baseline

model therefore abstracts away from pricing considerations.

The rest of the paper is organized as follows. Section 1.2 describes the model, defin-

ing formally the perfect bad news and perfect good news signal processes that we use

throughout the paper as well as the equilibrium concept. Section 1.3 analyzes the cooper-

ative (socially optimal) benchmark which selects an aggregate flow of adoption so as to

maximize ex ante aggregate welfare. Section 1.4 establishes a quasi-single crossing property

for equilibrium incentives that simplifies the equilibrium analysis in the following sections.

Section 1.5 establishes existence of a unique equilibrium under perfect bad news and studies

comparative statics with respect to changes in the potential for social learning. Section 1.6

performs the analogous exercise under perfect good news. Section 1.7 provides an example,

12The key distinction is again due to the assumption that adoption is irreversible in our model, so that
potentially adopting a bad product incurs a cost on consumers. On the other hand, in Bergemann and Välimäki
(1997), consumers adopt at every point in time and the adoption decision is freely reversible.
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involving consumers with heterogeneous discount rates, where an increase in the potential

for social learning strictly hurts ex ante welfare. Section 1.8 concludes. Appendix A.1 - A.9

contains proofs omitted from the main text.

1.2 Model

1.2.1 The Game

Time t 2 [0,+∞) is continuous. At time t = 0, an innovation of unknown quality θ 2 {G =

1, B = �1} and of unlimited supply is released to a continuum population of potential

consumers of mass N̄0 2 R+. Consumers are ex ante identical: They have a common prior

p0 2 (0, 1) that θ = G; they are forward-looking with common discount rate r > 0; and they

have the same actions and payoffs, as specified below.

At each time t, consumers receive stochastic opportunities to adopt the innovation.

Adoption opportunities are generated independently across consumers and across histories

according to a Poisson process with exogenous arrival rate ρ > 0.13 Upon an adoption

opportunity, a consumer must choose whether to adopt the innovation (at = 1) or to

wait (at = 0). If a consumer adopts, he receives an expected lump sum payoff of Et[θ],

conditioned on information available up to time t, and drops out of the game. If the

consumer chooses to wait or does not receive an adoption opportunity at t, he receives a

flow payoff of 0 until his next adoption opportunity, where he faces the same decision again.

1.2.2 Learning

Over time, consumers observe public signals that convey information about the quality of

the innovation. To capture the idea of social learning, the informativeness of the public

signal at time t is increasing in the flow Nt of consumers newly adopting the innovation at

t, which we define more precisely in Section 1.2.3.

13Stochasticity of adoption opportunities can be seen as capturing the natural assumption that consumers
face cognitive and time constraints, making it impossible for them to ponder the decision whether or not to
adopt the innovation at every instant in continuous time.
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Formally, we employ a variation of the Poisson learning model pioneered by Keller

et al. (2005), Keller and Rady (2010), and Keller and Rady (2013).14 Conditional on quality

θ, public signals arrive according to an inhomogeneous Poisson process with arrival rate

(εθ +λθ Nt)dt, where λθ > 0 and εθ � 0 are exogenous parameters that depend on the quality

θ of the innovation. The signal process summarizes news events that are generated from two

sources. First, the social learning term λNt represents news generated endogenously, based

on the experiences of other consumers: It captures the idea of a flow Nt of new adopters

each generating signals at rate λ dt.15 Thus, the greater the flow of consumers adopting the

innovation at t, the more likely it is for a signal to arrive at t, and hence the absence of a

signal at t is more informative the larger Nt. Second, we also allow for (but do not require)

signals to arrive at a fixed exogenous rate ε dt, which represents information generated

independently of consumers’ behavior, for example by professional critics or government

watchdog agencies.

For tractability, we focus on learning via perfect Poisson processes, where a single signal

provides conclusive evidence of the quality of the innovation. Learning is via perfect bad

news if εG = λG = 0 and εB = ε � 0, λB = λ > 0, so that the arrival of a signal (called a

breakdown) is conclusive evidence that the innovation is bad. Learning is via perfect good news

if εB = λB = 0 and εG = ε � 0, λG = λ > 0, so that a signal arrival (called a breakthrough)

is conclusive evidence for the innovation being good. As motivated in the Introduction,

the distinction between bad news and good news can be seen to reflect the nature of news

production in different markets. In addition, Λ0 := λN̄0 can be seen as a simple measure of

14Keller et al. (2005) have learning via perfect good news Poisson signals, Keller and Rady (2010) study
imperfect good news learning, and Keller and Rady (2013) study perfect and imperfect bad news learning. For
other recent work that prominently features learning via Poisson signals, see for example Che and Hörner
(2013); Board and Meyer–ter–Vehn (2013); Halac et al. (2013).

15Note that by letting the social learning component of the signal arrival rate at time t, λNt, depend only on
the flow of adopters Nt at time t itself, we are effectively assuming that each each adopter can generate a signal
only once, namely at the time of adoption. This assumption is natural for “innovations” such as new movies or
medical procedures, for which “consumption” is a one-time event and quality is revealed upon consumption.
For durable goods, such as cars or consumer electronics, it might be more natural to allow adopters to generate

signals repeatedly over time, which can be captured by replacing λNt with λ
R t

0 Ns ds. This would yield results
that are qualitatively similar to those presented in the following sections.
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the potential for social learning in an economy, summarizing both the likelihood λ with which

individual adopters’ experiences find their way into the public domain and the size N̄0 of

the population which can contribute to and access the common pool of information.

We briefly summarize the evolution of consumers’ beliefs under bad and good news:

Learning via Perfect Bad News

Under perfect bad news, consumers’ posterior on θ = G permanently jumps to 0 at the

first breakdown. Let pt denote consumers’ no-news posterior, i.e. the belief at t that θ = G

conditional on no signals having arrived on [0, t). Given a flow of adopters N, standard

Bayesian updating implies that

pt =
p0

p0 + (1 � p0)e
�
R t

0 (ε+λNs)ds
.16 (1.1)

In particular, if Nτ is continuous in an open interval (s, s + ν) for ν > 0, then pτ for

τ 2 (s, s + ν) evolves according to the ODE:

ṗτ = (ε + λNτ) pτ(1 � pτ).

Note that the no-news posterior is continuous and increasing.

Learning via Perfect Good News

Under perfect good news, consumers’ posterior on θ = G permanently jumps to 1 at the

first breakthrough. Given a flow of adopters N, Bayes’ rule now implies that consumers’

no-news posterior satisfies

pt =
p0e�

R t
0 (ε+λNs)ds

p0e�
R t

0 (ε+λNs)ds + (1 � p0)
. (1.2)

16Definition 1.2.1 imposes measurability on N, so this expression is well-defined.
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In particular, if Nτ is continuous in an open interval (s, s + ν) for ν > 0, then pτ for

τ 2 (s, s + ν) must satisfy the ODE:

ṗτ = � (ε + λNτ) pτ(1 � pτ).

In contrast to the perfect bad news case, the no-news posterior is now continuous and

decreasing.

1.2.3 Equilibrium

Since our main interest is in the aggregate adoption dynamics of the population, we take as

the primitive of our equilibrium concept the aggregate flow (Nt)t�0 of consumers newly

adopting the innovation over time and do not explicitly model individual consumers’

behavior. Given our focus on perfect news processes, consumers’ incentives are non-trivial

only in the absence of signals: Under perfect bad news, no new consumers will adopt

after a breakdown, while under perfect good news all remaining consumers will adopt

when given a chance after there has been a breakthrough. Therefore, we henceforth let

Nt denote the flow of new adopters at t conditional on no signals up to time t and define

equilibrium in terms of this quantity. Reflecting the assumption that aggregate adoption

behavior is predictable with respect to the news process of the economy, we require that Nt

be a deterministic function of time. We consider all such functions which are feasible in the

following sense:

Definition 1.2.1. A feasible flow of adopters is a right-continuous function N : [0,+∞) ! R

such that Nt := N(t) 2 [0, ρN̄t] for all t 2 [0,+∞), where N̄t := N̄0 �
R t

0 Nsds.

Here N̄t denotes the mass of consumers remaining in the game at time t. We require that

Nt  ρN̄t so that Nt is consistent with the remaining N̄t consumers independently receiving

adoption opportunities at Poisson rate ρ.

Any feasible adoption process N defines an associated no-news posterior pN
t as given by

Equation 1.1 if learning is via perfect bad news and by Equation 1.2 if learning is via perfect

good news.
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In equilibrium, we require that at each time t, Nt is consistent with optimal behavior

by the remaining N̄t forward-looking consumers: If a consumer receives an adoption

opportunity at t, he optimally trades off his expected payoff to adopting against his value to

waiting, given that he assigns probability pN
t to θ = G and that he expects the population’s

adoption behavior to evolve according to the process N. For this we must first define the

value to waiting at t.

Let Σt denote the set of all right-continuous functions σ : [t,+∞) ! {0, 1}, each of which

defines a potential set of future times at which, absent signals, a given consumer might

adopt if given an opportunity. Under the Poisson process generating adoption opportunities,

any σ 2 Σt defines a random time τσ at which, absent signals, the consumer will adopt the

innovation and drop out of the game.17

Let WN
t (σ) denote the expected payoff to waiting at t and following σ in the future,

given the aggregate adoption process N. Specifically, if learning is via perfect bad news, σ

prescribes adoption at the random time τσ if and only if there have been no breakdowns

prior to τσ, yielding

WN
t (σ) := E



e�r(τσ�t)

✓

pN
t � (1 � pN

t )e
�
R τσ

t (ε+λNs) ds

◆�

,

where the expectation is with respect to the Poisson process generating adoption opportuni-

ties.

If learning is via perfect good news, then following σ means that at any adoption

opportunity prior to τσ, adoption occurs only if there has been a breakthrough, and at τσ

adoption occurs whether or not there has been a breakthrough. For any time s � t, denote

by τs the random time at which the first adoption opportunity after s arrives. Then WN
t (σ)

17Formally, we define τσ as follows. Let (Xs)s�t denote the stochastic process representing the number
of arrivals generated on [t, s] by a Poisson process with arrival rate ρ, and let (Xs� )s>t denote the number of
arrivals on [t, s). Then,

τσ := inf{s � t : σs ⇥ (Xs � Xs� ) > 0},

where, as per convention, inf ∅ := +∞. It is well known that the hitting time of a right-continuous process
of an open set is an optional time. Therefore, the expectations in the definition of the value to waiting are
well-defined.
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is given by

E

2

4

✓

pte
�
R τσ

t (ε+λNs) ds + (1 � pt)

◆

e�r(τσ�t) (2pτσ � 1) + pt

τσ
Z

t

(ε + λNs) e�
R s

t (ε+λNk) dke�r(τs�t)ds

3

5 ,

where the expectation is again with respect to the Poisson process generating adoption

opportunities.

The value to waiting at t is the payoff to waiting and behaving optimally in the future:

Definition 1.2.2. The value to waiting given a feasible adoption process N is the function

WN
t : R+ ! R+ defined by WN

t := supσ2Σt
WN

t (σ) for all t.

We are now ready to define our equilibrium concept:

Definition 1.2.3. An equilibrium is a feasible adoption process (Nt)t�0 such that

1. WN
t � 2pN

t � 1 for all t such that ρN̄t > Nt

2. WN
t  2pN

t � 1 for all t such that 0 < Nt.

Thus, Definition 1.2.3 requires that at any time t, the aggregate flow of new adopters Nt

be consistent with the remaining N̄t consumers optimally trading off the expected payoff to

immediate adoption, 2pN
t � 1, against the value to waiting, WN

t .

Note that our definition of equilibrium is essentially Nash equilibrium, i.e. we do not

require subgame perfection. The motivation for this is that in a continuum population any

individual consumer’s behavior has a negligible impact on the aggregate adoption levels so

that any history not on the equilibrium path (in which a different number of consumers than

expected previously adopted) is more than a unilateral deviation from the equilibrium path.

Thus, off-path histories do not affect individual consumers’ incentives on the equilibrium

path and are unimportant for equilibrium analysis.

As usual, the equilibrium value to waiting WN
t admits an alternative characterization as

the solution to a functional equation, which we note here for use in future sections:
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Lemma 1.2.4. Suppose N is an equilibrium. If learning is via perfect bad news, WN
t satisfies the

functional equation

Vt =
Z ∞

t
ρe�(r+ρ)(s�t) pN

t

pN
s

max
n⇣

2pN
s � 1

⌘

, Vs

o

ds.

If learning is via perfect good news, WN
t satisfies the functional equation

Vt =
Z ∞

t
ρe�(r+ρ)(s�t)

 

pN
t

⇣

1 � e�
R s

t (ε+λNk) dk
⌘

+
pN

t e�
R s

t (ε+λNk) dk

pN
s

max
n⇣

2pN
s � 1

⌘

, Vs

o
!

ds.

Proof. The proof is standard.

1.3 Cooperative Benchmark

To establish a socially optimal benchmark, we first consider the cooperative problem: This

selects an aggregate flow N of adopters that maximizes ex ante aggregate welfare, taking

into account the effect of N on the public information process; we impose feasibility, but do

not impose the incentive compatibility requirements of the equilibrium in Definition 1.2.3.18

Clearly, under perfect good news it is optimal to require adoption at the maximal

possible rate once there has been a breakthrough. Similarly, under perfect bad news it is

optimal to terminate adoption as soon as there has been a breakdown. Thus, the objective

of the cooperative problem under perfect good news is:

sup
N

p0

∞Z

0

(εG + λG Nτ) e�
R τ

0 (εG+λG Ns)ds

0

@

τZ

0

e�rsNsds + e�rτ ρ

ρ + r

0

@N̄0 �
τZ

0

Nsds

1

A

1

A dτ

+ p0e�
R ∞

0 (εG+λG Ns)ds

∞Z

0

e�rsNs ds � (1 � p0)

∞Z

0

e�rsNs ds, 19

subject to the feasibility constraint that Nt 2 [0, ρN̄t] for all t.

18We are not concerned with implementation here, but because beliefs are publicly observed, as long as we
allow for transfers, the solution that we provide will be implementable while respecting individual rationality.

19We impose the convention that e�∞ = 0. Thus whenever εG > 0, e�
R ∞

0 (εG+λG Ns)ds = 0.
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Under perfect bad news, the objective is:

sup
N

p0

∞Z

0

e�rsNsds � (1 � p0)

∞Z

0

(εB + λBNτ) e�
R τ

0 (εB+λB Ns)ds

τZ

0

e�rsNs ds dτ

� (1 � p0)e
�
R ∞

0 (εB+λB Ns)ds

∞Z

0

e�rsNsds, 20

again subject to the feasibility constraint that Nt 2 [0, ρN̄t] for all t.

Standard techniques show that the solution to both cooperative problems has an all-or-

nothing form:21 In each problem, there is a cutoff time ts (depending on the parameters)

such that conditional on no signals, there is no (respectively maximal) adoption until time ts

under perfect bad (respectively good) news, and maximal (respectively no) adoption from ts

on:

Proposition 1.3.1. In both problems, there exists an adoption flow N that attains the maximum.

Furthermore, there exists an optimal adoption flow with the property that there exists ts such that

• Nt = ρN̄t for all t such that (λG � λB)(t
s � t) > 0;

• Nt = 0 for all t such that (λG � λB)(t
s � t) < 0.

Proof. See Appendix Section A.9.

We now solve for the cutoff time, or equivalently the cutoff belief, under both signal

structures.

1.3.1 Cooperative Benchmark under Perfect Good News

Under perfect good news, letting ε := εG and Λ0 := λG N̄0, the cutoff time ts solves

sup
ts�0

ρ

r + ρ

⇣

1 � e�(r+ρ)ts
⌘

N̄0(2p0 � 1) + e�(r+ρ)ts ρ

r + ρ
N̄0

✓

πs + (1 � πs)ps ε

ε + r

◆

(1.3)

20Again we assume that whenever εB > 0, e�
R ∞

0 (εB+λB Ns) ds = 0.

21This is due to the linearity of the signal arrival rate in Nt.
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where πs and ps denote, respectively, the probability of a breakthrough prior to time ts and

the no-news posterior at time ts; that is,

πs := p0

⇣

1 � e�εts�Λ0(1�e�ρts )
⌘

,

ps :=
p0e�εts�Λ0(1�e�ρts )

p0e�εts�Λ0(1�e�ρts ) + (1 � p0)
.

Taking the first order condition of the above, we obtain:

(r + ρ)(1 � πs)

✓✓

2 � ε

ε + r

◆

ps � 1

◆

+ ps(1 � πs)
⇣

ε + Λ0ρe�ρts
⌘ r

ε + r
= 0 (1.4)

if an interior solution exists.

If the left-hand side of Equation 1.4 is non-positive at all times, then the cooperative

cutoff satisfies ts = 0, so that there is no adoption until a breakthrough. This happens if and

only if

(r + ρ)

✓

(2p0 � 1)� p0
ε

ε + r

◆

+ p0 (ε + ρΛ0)
r

ε + r
 0. (1.5)

On the other hand, if the left-hand side of Equation 1.4 is strictly positive at all times, then

ts = +∞ and the cooperative solution calls for maximal adoption irrespective of whether or

not there has been a breakthrough. This happens if and only if ε = 0 and p0

�
1 + e�Λ0

�
� 1.

We summarize this in the following proposition:

Proposition 1.3.2. Under perfect good news, the cooperative cutoff time is as follows:

• If Inequality (1.5) holds, then ts = 0.

• If ε = 0 and p0

�
1 + e�Λ0

�
� 1, then ts = +∞.

• Otherwise, ts satisfies Equation (1.4).

Note that the cutoff posterior ps depends on the prior. This is in contrast to the strategic

experimentation literature because of our assumption that the stock of remaining consumers

is depleted as consumers drop out following adoption. In strategic experimentation, the

cooperative solution only depends on the current belief and does not depend on the initial
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conditions since experimenters remain in the game to potentially experiment further in the

future.

1.3.2 Cooperative Benchmark under Perfect Bad News

Under perfect bad news, letting ε := εB and Λ0 := λBN̄0, the cutoff time ts solves:

sup
ts�0

e�rts
N̄0

0

@p0
ρ

ρ + r
� (1 � p0)e

�εts

∞Z

0

ρe�ετ�Λ0(1�e�ρτ)e�(r+ρ)τdτ

1

A .

Taking the first order condition, we obtain:

e�εts
K(Λ0) =

r

ε + r

ρ

r + ρ

p0

1 � p0

where

K(Λ0) :=

∞Z

0

ρe�ετ�Λ0(1�e�ρτ)e�(r+ρ)τdτ <
ρ

ε + ρ + r
.

Then an easy calculation yields the cutoff posterior:

ps =
K(Λ0)

r
ε+r

ρ
ρ+r + K(Λ0)

<
ε + r

ε + 2r
.

We summarize this in the following proposition:

Proposition 1.3.3. Under perfect bad news, the cooperative solution is given by:

Nt =

8

>><

>>:

0 if pt < ps

ρN̄t if pt � ps,

where

ps =
K(Λ0)

r
ε+r

ρ
ρ+r + K(Λ0)

.

1.4 Quasi-Single Crossing Property for Equilibrium Incentives

We now proceed to equilibrium analysis. As a preliminary step, we first establish a useful

property of equilibrium incentives under both perfect bad news and perfect good news.
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Suppose that Nt�0 is an arbitrary feasible flow of adopters, with associated no-news posterior

pN
t�0 and value to waiting WN

t�0 as defined in Definition 1.2.2. In general, the dynamics of

the trade-off between immediate adoption at time t (yielding expected payoff 2pN
t � 1) and

delaying and behaving optimally in the future (yielding expected payoff WN
t ) can be quite

difficult to characterize, with (2pN
t � 1)� WN

t changing sign many times. However, when

Nt�0 is an equilibrium flow, then for any t,

2pN
t � 1 < WN

t =) Nt = 0; and

2pN
t � 1 > WN

t =) Nt = ρN̄t;

and this imposes considerable discipline on the dynamics of the trade-off. Indeed, the

following theorem establishes that 2pN
t � 1 and WN

t must satisfy a quasi-single crossing

property:

Theorem 1.4.1. Suppose that learning is either via perfect bad news (λB > 0 = λG) or via perfect

good news (λG > 0 = λB). Let Nt�0 be an equilibrium, with corresponding no-news posteriors pN
t�0

and value to waiting WN
t�0. Then WN

t�0 and 2pN
t�0 � 1 satisfy single-crossing, in the following sense:

• Whenever (λB � λG)(W
N
t � (2pN

t � 1)) < 0, then (λB � λG)(W
N
τ � (2pN

τ � 1)) < 0 for

all τ > t.

• Whenever (λB � λG)(W
N
t � (2pN

t � 1))  0, then (λB � λG)(W
N
τ � (2pN

τ � 1))  0 for

all τ > t.

Proof. See Appendix Section A.2.

The basic intuition is as follows. Consider first the case of learning via perfect bad news

and suppose that immediate adoption is strictly better than waiting today (and hence also

in the near future provided there are no breakdowns).22 Then all consumers adopt upon an

opportunity in the near future, so the no-news posterior strictly increases, while the number

of remaining consumers strictly decreases. Because information is generated endogenously,

22The latter implication follows from the continuity of the equilibrium value to waiting, which is established
in the Appendix.
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this means that the flow of information must be decreasing over time. As a result, immediate

adoption becomes even more attractive relative to waiting, and consequently immediate

adoption continues to be strictly preferable in the future.

Similarly, suppose that learning is via perfect good news and that waiting is strictly

more attractive than immediate adoption today (and hence also in the near future). Then in

the near future, no consumers adopt and information is generated purely via the exogenous

news source (or not at all if ε = 0). As a result, the no-news posterior decreases (weakly)

while the number of remaining consumers does not change. This makes waiting even more

attractive relative to adopting immediately, so that waiting continues to be strictly preferable

in the future.

0 t⇤1 t⇤2

Wait Indifference Adopt

Figure 1.1: Perfect Bad News

0

Adopt

t⇤1 = t⇤2

Wait

Figure 1.2: Perfect Good News

Theorem 1.4.1 implies that any equilibrium features two threshold times 0  t⇤1  t⇤2 

+∞ given by23

t⇤1 := inf{t : (λB � λG)
⇣

2pN
t � 1 � WN

t

⌘

� 0},

t⇤2 := inf{t : (λB � λG)
⇣

2pN
t � 1 � WN

t

⌘

> 0},

such that if there are no signal arrivals, then under perfect bad (respectively good) news,

23With the usual convention that inf ∅ = +∞.
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waiting (respectively adoption) is strictly preferable before t⇤1 , and adoption (respectively

waiting) is strictly preferable after t⇤2 , with indifference in between, as illustrated in Figures

1 and 2. In Sections 1.5 and 1.6 we will build on this observation to establish the existence

of unique equilibria under both perfect bad news and good news. The threshold times, as

well as the flow of adopters between t⇤1 and t⇤2 , are fully pinned down by the parameters.

Looking ahead to Section 1.6, we will see that under perfect good news, any equilibrium

must in fact satisfy t⇤1 = t⇤2 .24 Depending on parameters, the equilibrium takes three possible

forms: (i) 0 = t⇤1 = t⇤2 ; (ii) 0 < t⇤1 = t⇤2 < +∞; or (iii) 0 < t⇤1 = t⇤2 = +∞.25 By contrast,

under perfect bad news in Section 1.5, the equilibrium takes one of six forms depending

on parameters: (i) 0 = t⇤1 = t⇤2 < +∞; (ii) 0 = t⇤1 < t⇤2 < +∞; (iii) 0 < t⇤1 = t⇤2 < +∞; (iv)

0 < t⇤1 < t⇤2 < +∞; (v) 0 < t⇤1 = t⇤2 = +∞;26 or (vi) 0 = t⇤1 < t⇤2 = +∞.27 The possibility of a

non-empty interval (t⇤1 , t⇤2) of indifference will emerge as a key feature distinguishing bad

news markets from good news markets. Maintaining indifference at times (t⇤1 , t⇤2) requires

a form of informational free-riding, which we term partial adoption, whereby only some

consumers adopt when given the chance (i.e. Nt 2 (0, ρN̄t) at each t 2 (t⇤1 , t⇤2)). We will

see that partial adoption has important implications not just from an efficiency standpoint,

but also for the shape of equilibrium adoption curves and for the impact of increased

opportunities for social learning on welfare, learning, and adoption dynamics.

1.5 Perfect Bad News

1.5.1 Equilibrium Characterization

We now build on the analysis of the previous section to establish the existence of a unique

equilibrium when learning is via perfect bad news. Fix parameters r, ρ, N̄0 > 0, ε = εB,

24With the sole exception of ε = 0 and p0 = 1
2 , in which case it is easy to see that N ⌘ 0 and t⇤1 = 0 < t⇤2 = ∞.

25This possibility will arise iff ε = 0 and p0

⇣

1 + e�λN̄0

⌘

� 1.

26This possibility will arise iff ε = 0 and p0 <
1
2 .

27This possibility will arise iff ε = 0 and p0 = 1
2 .
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λ = λB � 0, and p0 2 (0, 1). Suppose Nt�0 is an equilibrium flow of adopters. Let pt�0 and

Wt�0 be the corresponding no-news posterior and value to waiting, and let Λt�0 := λN̄t�0

describe the evolution of the economy’s potential for social learning.28 From Theorem 1.4.1,

we know that there are times 0  t⇤1  t⇤2  +∞ given by

t⇤1 := inf{t : 2pt � 1 � Wt},

t⇤2 := inf{t : 2pt � 1 > Wt},

such that (appealing also to right-continuity) N must satisfy

8

>>>>>><

>>>>>>:

Nt = 0 if t < t⇤1 ,

2pt � 1 = Wt if t 2 [t⇤1 , t⇤2)

Nt = ρN̄t if t � t⇤2 .

In the following we will show that t⇤1 , t⇤2 , and the evolution of Nt between t⇤1 and t⇤2

are uniquely pinned down by the parameters. We first introduce some notation. For any

p 2 (0, 1) and Λ � 0, let

G(p, Λ) :=

∞Z

0

ρe�(r+ρ)τ
⇣

p � (1 � p)e�(ετ+Λ(1�e�ρτ))
⌘

dτ.

G(p, Λ) represents the payoff to adopting at the next opportunity if there have been no

breakdowns by then, given that the current belief is p, that the remaining potential for social

learning is Λ, and that absent breakdowns the remaining Λ
λ consumers adopt at their first

opportunity in the future.

Define the posteriors p, p, and p] as follows. Let p be the posterior given by 2p � 1 =

G(p, 0); that is,

p :=
(ε + r)(r + ρ)

2(ε + r)(r + ρ)� ερ
.

Thus, p is the lowest belief at which a consumer is willing to adopt given that he could also

delay, obtain more information at rate ε and reevaluate his decision at his next adoption

28Recall that N̄t := N̄0 �
R t

0 Ns ds denotes the remaining population at time t.
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opportunity which is generated at rate ρ.

Define p := limρ!∞ p, that is,

p =
ε + r

ε + 2r
;

p is the lowest belief at which a consumer would be willing to adopt given that he could

also delay and obtain more information at rate ε and given that adoption opportunities

arrive continuously in the future.

Define p] := limε!∞ p, that is,

p] =
ρ + r

ρ + 2r
.

p] is the lowest belief at which a consumer would be willing to adopt given that he could also

delay until his next opportunity, which is generated at rate ρ, and given that all uncertainty

is completely resolved by then.29

Finally, define the function Λ⇤ : (0, 1) ! R+ [ {+∞} as follows. Let Λ⇤(p) ⌘ 0 for all

p  p, Λ⇤(p) = +∞ for all p � p], and for all p 2 (p, p]), let Λ⇤(p) 2 R+ be the unique

value such that

2p � 1 = G(p, Λ⇤(p)).30

Thus, if the current posterior is p 2 [p, p]) and the current potential for social learning in

the economy is Λ⇤(p), then consumers are indifferent between adopting now or at their

next opportunity absent breakdowns, provided that all remaining
Λ⇤(p)

λ consumers also

adopt at their first opportunity in the future.

We are now ready to state the equilibrium characterization theorem:

Theorem 1.5.1. Fix r, ρ > 0, ε � 0, and p0 2 (0, 1). Let p⇤ := min{p, p]}. For every λ, N̄0 > 0,

there is a unique equilibrium. Furthermore, in the unique equilibrium, Nt is Markovian in (pt, Λt)

29Note that for all p > p], limΛ!∞ G(p, Λ) < 2p � 1 and for all p < p], limΛ!∞ G(p, Λ) > 2p � 1.

30Note that such a value must exist given that p 2 (p, p]) and is unique because Λ⇤(p) is strictly increasing
in p on this domain.
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for all t and satisfies

Nt =

8

>>>>>><

>>>>>>:

0 if pt  p⇤ and Λt > Λ⇤(pt),

r(2pt�1)
λ(1�pt)

� ε
λ 2 (0, ρN̄t) if pt > p⇤ and Λt > Λ⇤(pt)

ρN̄t if Λt  Λ⇤(pt).

(1.6)

A detailed proof of Theorem 1.5.1 is provided in Appendix Section A.3.1. Here we sketch

the basic idea. Before we proceed, however, note the following two special cases of the

theorem: First, if ρ  ε, so that p⇤ := min{p, p]} = p], then by Equation (1.6) and because

Λ⇤(p) = +∞ for all p � p], Theorem 1.5.1 asserts that regardless of the other parameters, Nt

takes an all-or-nothing form with cutoff belief p]: Nt = 0 whenever pt < p] and Nt = ρN̄t

whenever pt � p]. Second, if ε = 0 and p0  1
2 , then it is easy to see that Theorem 1.5.1

asserts that regardless of the other parameters, the unique equilibrium is given by Nt = 0

for all t.

Throughout Section 1.5, we will be particularly interested in the implications of N

featuring a partial adoption region, in which Nt 2 (0, ρN̄t) is as described by the second line

of Equation (1.6). Since the two special cases above preclude the existence of such a region

regardless of other parameters, we rule out these cases for the remainder of Section 1.5 by

imposing the following two conditions:31

Condition 1.5.2. The rate at which exogenous information arrives is small relative to the

rate at which consumers obtain adoption opportunities: ε < ρ. Thus, p⇤ = p < p].

Condition 1.5.3. Either ε > 0 or p0 2 ( 1
2 , 1).

Given these two conditions, we now sketch the derivation of Theorem 1.5.1. In order

to obtain the Markovian description of Nt in Equation (1.6), we note the following lemma,

which we prove in the Appendix. This provides an alternative characterization of the

threshold times t⇤1 and t⇤2 , relating these times to the evolution of (pt, Λt):

31In Section A.4 in the Appendix, we discuss in more detail the case where ρ  ε.
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Lemma 1.5.4. Fix r, ρ > 0, ε � 0 and p0 2 (0, 1) satisfying Conditions 1.5.2 and 1.5.3. Let Nt�0

be an equilibrium with corresponding no-news posterior pt�0 and threshold times t⇤1 and t⇤2 , and let

Λt�0 := λN̄t�0 describe the evolution of the economy’s potential for social learning. Then

1. t⇤2 = inf{t : Λt < Λ⇤(pt)}; and

2. t⇤1 = min{t⇤2 , sup{t : pt < p}}.32

Proof. See Appendix Section A.3.1.

By Lemma 1.5.4 the first line of Equation (1.6) corresponds to times t  t⇤1 , the second

line to t 2 (t⇤1 , t⇤2), and the third line to t � t⇤2 . Thus, the first and third lines are immediate

from the definition of these threshold times. We now give a heuristic argument outlining

the derivation of the second line, i.e. the equilibrium flow of adoption at times t 2 (t⇤1 , t⇤2),

where adoption is partial. At all these times, consumers must be exactly indifferent between

adopting today and waiting for more information. Maintaining consumer indifference at

these times requires that the cost and benefit of delaying be equal:

Benefit of Delay
z }| {

(ε + λNt) (1 � pt)dt
| {z }

Probability of
breakdown

(0 � (�1))
| {z }

Benefit:
Avoid Bad Product

=

Cost of Delay
z }| {

(1 � (ε + λNt) (1 � pt)dt)
| {z }

Probability of
no breakdown

(2pt+dt � 1)rdt
| {z }

Cost:
Discounting

. (1.7)

Delaying one’s decision by an instant is beneficial if a breakdown occurs at that instant,

allowing a consumer to permanently avoid the bad product. The gain in this case is

(0 � (�1)), and this possibility arises with an instantaneous probability of (ε + λNt) (1 �

pt)dt. On the other hand, if no breakdown occurs, which happens with instantaneous

probability 1 � (ε + λNt) (1 � pt)dt, then consumers incur an opportunity cost of (2pt+dt �

1)rdt, reflecting the time cost of delayed adoption.33 Ignoring terms of order dt2 and

32With the convention that if {t � 0 : pt < p} = ∅, then sup{t : pt < p} = 0.

33Note that ρ does not enter into this expression, because in the indifference region consumers obtain the
same continuation payoff regardless of whether or not they obtain an adoption opportunity in the time interval
(t, t + dt) and hence are indifferent between receiving an opportunity to adopt or not.
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rearranging yields Nt =
r(2pt�1)
λ(1�pt)

� ε
λ , as in Equation (1.6).34

Finally, Figure 1.3 illustrates how from Equation 1.6, we obtain a unique equilibrium as

a function of the parameters. Regions (2) and (3) represent values of (pt, Λt) corresponding

to the first line of Equation (1.6), so that no adoption takes place in these regions. Region

(4) corresponds to partial adoption as given by the second line of Equation (1.6). Finally,

region (1) corresponds to the third line of Equation (1.6) and thus to immediate adoption.

If (p0, Λ0) is in region (2), then initially no adoption takes place and the no-news

posterior drifts upward according to the law of motion ṗt = pt(1 � pt)ε, while Λt remains

unchanged at Λ0. This yields a unique time 0 < t⇤1 = t⇤2 at which (pt, Λt) hits the boundary

separating regions (2) and (1); from then on consumers adopt immediately upon an

opportunity so that Nt = ρe�ρ(t�t⇤2)N̄t⇤2 uniquely pins down the evolution of (pt, Λt). If

(p0, Λ0) is in region (3), then again no initial adoption occurs and the no-news posterior

drifts upward according to the law of motion ṗt = pt(1 � pt)ε, while Λt remains unchanged

at Λ0. However, now this yields a unique time 0 < t⇤1 at which (pt, Λt) hits the boundary

separating regions (3) and (4), and at this time Λt⇤1 = Λ0 > Λ(pt⇤1 ) = Λ(p), so that we

must have t⇤1 < t⇤2 . From t⇤1 on the evolution of (pt, Λt) is uniquely pinned down by the

second line of Equation (1.6).35 Thus, t⇤2 is uniquely given by the first time t at which

Λt = Λ⇤(pt), at which point (pt, Λt) enters region (1). Similar arguments show that when

(p0, Λ0) starts in region (4), we have t⇤1 = 0 and t⇤2 > t⇤1 is the first time at which (pt, Λt),

evolving according to the second line of Equation (1.6), enters region (1). Finally, if (p0, Λ0)

is in region (1), then 0 = t⇤1 = t⇤2 and absent breakdowns all consumers adopt upon their

34A bit more precisely, ignoring terms of order dt2, the right hand side of Equation 1.7 is given by (1 �
(ε + λNt) (1 � pt)dt)(2(pt + ṗtdt)� 1)rdt = r(2pt � 1)dt. Further rearrangement yields the desired expression.

35Specifically, combining the second line of Equation (1.6) with Equation (1.1) yields the ODE:

ṗt = rpt(2pt � 1),

which pins down pt uniquely given the initial value pt⇤1
= p:

pt =
pt⇤1

2pt⇤1
� er(t�t⇤1)(2pt⇤1

� 1)
.

Plugging this back into Nt =
r(2pt�1)
λ(1�pt)

� ε
λ uniquely pins down Λt = λN̄t. Note that since pt⇤1

>
1
2 , pt given

above is strictly increasing and reaches p] in finite time. Thus t⇤2 = inf{t : Λt < Λ⇤(pt)} < +∞.
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pt

Λt
Λ⇤(p)

p]

(3)

(2)

(4)

(1)

1p p

Figure 1.3: Partition of (pt, Λt) when ε < ρ

first opportunity from the beginning. This completes the description of the equilibrium.

As seen above, whether or not the equilibrium features a period of partial adoption

depends on the fundamentals. More specifically, we can show that if consumers are forward-

looking and not too optimistic, then t⇤1 < t⇤2 arises whenever the potential for social learning

in the economy is sufficiently large. To state this precisely, first note that from the Markovian

description of equilibrium dynamics, it is easy to see that Λ0 = λN̄0 is a sufficient statistic

for equilibrium when other fundamentals are fixed:

Lemma 1.5.5. Fix r, ρ > 0, p0 2 (0, 1), and ε � 0. Suppose that λ̂ ˆ̄N0 = λ0N̄0. Let N̂t and Nt

denote the unique equilibrium adoption flows under (λ̂, ˆ̄N0) and (λ, N̄0), respectively, and let p̂t, t̂⇤1 ,

t̂⇤2 and pt, t⇤1 , t⇤2 denote the corresponding equilibrium beliefs and cutoff times. Then

1. t̂⇤i = t⇤i for i = 1, 2;

2. p̂t = pt for all t
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3. and λ̂N̂t = λNt for all t.

Proof. Immediate from the proof of Theorem 1.5.1.

With this, the condition for partial adoption to arise in equilibrium can be stated as

follows:

Lemma 1.5.6. Fix ρ, ε and p0 satisfying Conditions 1.5.2 and 1.5.3. Assume p0 < p]. Then for all

r > 0, there exists Λ̄0(r) > 0 such that t⇤1(Λ0) < t⇤2(Λ0) if and only if Λ0 > Λ̄0(r).

Proof. Set Λ̄0(r) := max{Λ⇤(p0), Λ⇤(p)} and see Section A.6.1 in the Appendix.

On the other hand, if learning is purely exogenous (λ = 0 and ε > 0) or if consumers are

myopic (“r = +∞”), then there is never any partial adoption, regardless of other parameters.

In the former case, 0 = Λt < Λ⇤(p) for all p > p, so by Theorem 1.5.1 no consumers

adopt until the no-news posterior hits p (at t⇤1 = t⇤2) and from then on all consumers

adopt immediately when given a chance. The latter case corresponds to p = p = 1
2 and

Λ⇤(p) = +∞ for all p >
1
2 , so t⇤1 = t⇤2 = inf{t : pt >

1
2}. Thus, the possibility of partial

adoption in equilibrium hinges crucially both on consumers being forward-looking and on

there being opportunities for social learning.

1.5.2 Shape of Adoption Curve

With the equilibrium characterization in place, we can explore implications for the shape

of an innovation’s adoption curve, which plots the percentage of adopters in the population

against time. Conditional on no breakdowns up to time t, this is given by

At :=

tZ

0

Ns

N̄0
ds.

Conditional on the innovation being good, observed adoption levels at t will be exactly

At. If the innovation is bad, then observed adoption levels follow At until the first breakdown

(which occurs at a stochastic time), and remain constant from then on. As a result of the
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Figure 1.4: Examples of S-shaped adoption curves (Source: Narayanan and O’Connor (2010), Figure 2.1.)

equilibrium characterization in Theorem 1.5.1, we obtain the following prediction for the

shape of the adoption curve:

Corollary 1.5.7. In the unique equilibrium of Theorem 1.5.1, the adoption curve At conditional on

no breakdowns up to time t has the following shape:

• for 0  t < t⇤1 , At = 0

• for t⇤1  t < t⇤2 , At is strictly increasing and convex in t

• for t � t⇤2 , At is strictly increasing and concave in t.

In particular, if t⇤1 < t⇤2 , then Corollary 1.5.7 predicts that, possibly after an initial period

of no adoption, the adoption curve conditional on no breakdowns exhibits an S-shaped

(i.e. convex-concave) growth pattern. In the empirical literature on innovation adoption,36

S-shaped adoption patterns have been widely documented for many different innovations

over the past century, including new agricultural seed varieties, such as hybrid corn;

36See, for example, Griliches (1957), Mansfield (1961), Mansfield (1968), Davies (1979), and Gort and Klepper
(1982), among many others.
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household electronics, such as refrigerators and color television; and industrial and medical

innovations, such as the diesel locomotive and electrocardiographs. Figure 1.4 illustrates

this for a selection of household technologies. Figure 1.5 represents a typical adoption curve

generated in our model when ε = 0.
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Figure 1.5: Adoption curve conditional on no breakdowns (ε = 0)

The intuition for S-shaped adoption curves in our model is as follows: There is no

adoption before time t⇤1 , because initially consumers are pessimistic about the quality of

the innovation and strictly prefer to wait for information from the exogenous news source

rather than risk adopting a bad product. The adoption curve is concave from time t⇤2 on,

because now consumers are sufficiently optimistic to strictly prefer adopting the innovation

when given the chance, so that the flow of new adopters is depleted at the rate ρ at which

adoption opportunities are generated.

More interestingly, the period of convex growth coincides precisely with the period of infor-

mational free-riding (in the form of partial adoption). The reason for this is the fundamental

trade-off between adopting now and waiting for more information that arises when con-

sumers are forward-looking social learners. During the period (t⇤1 , t⇤2) of partial adoption,

consumers are indifferent between adopting immediately and delaying. Conditional on no

breakdowns during this period, consumers grow increasingly optimistic about the quality
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of the innovation, which increases their opportunity cost of delaying adoption. In order

to maintain indifference as captured by equation (1.7), the benefit to delaying adoption

must also increase over time: Since consumers are forward-looking, this can be achieved by

increasing the arrival rate of future breakdowns, which improves the odds that waiting will

allow consumers to avoid the bad product. Since consumers are social learners, the arrival

rate of information is increasing in the flow Nt of new adopters. Thus, whenever there is

informational free-riding, Nt is strictly increasing over time. Since Nt represents the rate of

change of the proportion At of adopters in the population, this is equivalent to At being

convex.

Once again, this result relies crucially on our two modeling assumptions that learning is

social and that consumers are forward-looking. As we pointed out following Lemma 1.5.6,

if learning is purely exogenous or if consumers are myopic, then t⇤1 = t⇤2 , in which case the

adoption curve does not feature a region of convex growth. In order to generate S-shaped

adoption patterns in the absence of either of our assumptions, alternative models appeal to

specific distributions of consumer heterogeneity, for example Jensen (1982) (in a model of

exogenous learning with forward looking consumers) or Young (2009) (in a model of myopic

social learning). The interplay of social learning and forward-looking consumers allows us

to explain convex growth in terms of purely informational incentives, thus suggesting a novel

micro-foundation for S-shaped curves that remains valid even when consumers are fully

homogeneous.

1.5.3 Welfare

We now examine ex ante consumer welfare, as captured by the time 0 equilibrium value

to waiting, W0. Fix r, ρ > 0, ε � 0, and p0 2 (0, 1) satisfying Conditions 1.5.2 and 1.5.3.

Then Lemma 1.5.5 and Lemma 1.2.4 imply that W0 = W0(Λ0) depends only on the potential

for social learning in the economy. The key finding is the possibility of a saturation

effect: For sufficiently large Λ0, additional increases in opportunities for social learning are

welfare-neutral.
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Nature of Inefficiency

We first note that, as is to be expected, the equilibrium is in general inefficient relative to the

socially optimal cooperative benchmark:

Proposition 1.5.8. Fix r, ρ > 0, ε � 0, and p0 2 (0, 1) satisfying Conditions 1.5.2 and 1.5.3. The

unique equilibrium in Theorem 1.5.1 is socially optimal if and only if Λ0 < Λ⇤(p0).

Proof. See Appendix Section A.5.1.

Note that if Λ0 < Λ⇤(p0), then in equilibrium all consumers adopt immediately upon

first opportunity, which is exactly as prescribed by the cooperative benchmark in Propo-

sition 1.3.3. Whenever Λ0 > Λ⇤(p0), then the proof of Proposition 1.5.8 demonstrates two

sources of inefficiency relative to the cooperative benchmark. First, provided we also have

p0  p (so that t⇤1 > 0), then adoption begins too late in equilibrium. Second, provided

we also have Λ0 > Λ⇤(p) (so that t⇤1 < t⇤2), then even once consumers begin to adopt, the

initial rate of adoption is too slow due to partial adoption on (t⇤1 , t⇤2). Note that both types

of inefficiency rely on a sufficiently large potential for social learning. Moreover, for any

p0 > 1/2, the first type arises only if ε is sufficiently large or r is sufficiently small (in

particular, if learning is purely social or if consumers are myopic, then t⇤1 = 0). On the other

hand, the second inefficiency relies on consumers being forward-looking, but can arise even

if ε = 0.

Saturation Effect

The fact that the equilibrium can feature inefficiencies relative to the cooperative benchmark

is to be expected. However, the second type of inefficiency discussed above, which arises

when there is free-riding in the form of partial adoption, has the following more surprising

implication:

Proposition 1.5.9. Fix r, ρ > 0, ε � 0, and p0 2 (0, 1) satisfying Conditions 1.5.2 and 1.5.3. Let

Λ0 := max{Λ⇤(p0), Λ⇤(p)}. Then in the unique equilibrium of Theorem 1.5.1, W0(Λ0) satisfies

the following:

37



1. W0(Λ0) is strictly increasing in Λ0 whenever Λ0 < Λ0;

2. W0(Λ0) = W0(Λ0) is constant in Λ0 for all Λ0 � Λ0.

Proof. See Appendix Section A.6.1.

When p0 < p] so that Λ0 is finite, Proposition 1.5.9 states that an economy’s ability to

harness its potential for social learning is subject to a saturation effect: If Λ0 is small, increases

in Λ0 are strictly beneficial; however, once Λ0 is sufficiently large, any additional increase

in Λ0 is completely welfare-neutral. This is in stark contrast to the cooperative benchmark:

There increases in Λ0 are always strictly beneficial and for any p0 >
1
2 the first-best (complete

information) payoff of
ρ

r+ρ p0 can be approximated in the limit as Λ0 ! ∞. We illustrate this

in Figure 1.6,37 which for varying levels of Λ0 plots the ratio of equilibrium and socially

optimal welfare levels.
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Figure 1.6: Ratio of equilibrium welfare to socially optimal welfare

To see the intuition for Proposition 1.5.9, suppose that p0 > p, so that t⇤1 = 0. Then as

long as Λ0 < Λ0, all consumers adopt immediately upon their first opportunity until there

is a breakdown. In this case, a slight increase in Λ0 does not change consumers’ behavior

in the absence of a breakdown; however, conditional on the innovation being bad, it does

37Parameters used to generate the figure are: ε = 0, r = 1, p0 = 0.6, and ρ = 1.
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increase the probability of a breakdown occurring prior to any given time—this is clearly

welfare-improving, as more consumers are able to avoid the bad product. On the other hand,

whenever Λ0 > Λ0, then t⇤1 < t⇤2 , so that consumers must initially be indifferent between

adopting and delaying. Then irrespective of the value of Λ0 � Λ0, equilibrium incentives

immediately imply that W0(Λ0) = 2p0 � 1. In the next section, we provide some more

intuition for the source of the saturation effect by studying the impact of increases in Λ0 on

equilibrium learning and adoption dynamics.

1.5.4 The Effect of Increased Opportunities for Social Learning

To further elucidate the saturation effect, this section examines the impact of an increase in

Λ0 on equilibrium learning dynamics and adoption levels. We find that the saturation effect

corresponds to the following two surprising implications of partial adoption: Increased

opportunities for social learning lead to strictly less learning over some periods of time and

to a strict reduction in adoption of both good and bad innovations at all times.

Throughout this section we fix r, ρ > 0, ε � 0 and p0 satisfying Conditions 1.5.2 and 1.5.3.

To isolate the role of partial adoption, which is the inefficiency driving the saturation effect,

we assume that p] > p0 > p, so that t⇤1 = 0 and Λ⇤(p0) < +∞. With these parameters fixed,

Lemma 1.5.5 implies that Λ0 is a sufficient statistic for all quantities we consider in this

section. The following preliminary observation is central to the main results of this section:

Lemma 1.5.10. Suppose that Λ̂0 = λ̂ ˆ̄N0 > Λ0 = λN̄0 > Λ⇤(p0), with corresponding equilibrium

flows of adoption N̂ and N. Then

1. 0 < t⇤2(Λ0) < t⇤2(Λ̂0).

2. For all t < t⇤2(Λ0), λNt = λ̂N̂t.

Proof. See Appendix Section A.6.2.

Point (ii) states that at all times during which there is partial adoption under both

Λ̂0 and Λ0, the rate of social learning is the same. Intuitively, this is because in order to
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maintain indifference between immediate adoption and an instantaneous delay, Equation

(1.7) uniquely pins down the instantaneous arrival rate of breakdowns in the partial adoption

region. The first bullet point states that increased opportunities for social learning prolong

the initial period of partial adoption. To see the intuition, consider Figure 1.3: For any

posterior p, Λ⇤(p), which represents the amount of future social information required to

make consumers indifferent between adopting immediately at p and delaying, is the same

under both Λ̂0 and Λ0. However, since Λ̂0 > Λ0 and since by (ii) the evolution of beliefs

in region (4) is the same under Λ̂0 and Λ0, it takes longer to reach the Λ⇤-curve from the

initial point (p0, Λ̂0).

Non-Monotonicity of Learning

In this section, we consider the effect of increased opportunities for social learning on the

evolution of equilibrium beliefs. The following proposition states a non-monotonicity result:

Increases in Λ0 do not necessarily translate into increases in pt at all times t. Specifically, if

Λ0 � Λ⇤(p0), corresponding to the cutoff for the saturation effect, then upon an increase in

Λ0 there is a period of times at which pt is strictly lower:

Proposition 1.5.11. Fix r, ρ, ε, and p0 satisfying Conditions 1.5.2 and 1.5.3 and such that p0 2

(p, p]). Consider Λ̂0 = λ̂ ˆ̄N0 and Λ0 = λN̄0 such that Λ̂0 > Λ0 � Λ⇤(p0). Then there exists some

t 2 (t⇤2(Λ0),+∞) such that

• pΛ0
t = pΛ̂0

t for all t  t⇤2(Λ0),

• pΛ0
t > pΛ̂0

t for all t 2 (t⇤2(Λ0), t),

• pΛ0
t < pΛ̂0

t for all t > t.

However, when Λ0 < Λ⇤(p0), then pΛ0
t is strictly increasing in Λ0 for all t.

Proof. See Appendix Section A.6.2.

Note that by Equation (1.1), the probability of a breakdown occurring prior to time t

conditional on the innovation being bad is given by
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1 � e�
R t

0 (ε+λNs)ds = 1 � p0 (1 � pt)

pt (1 � p0)
, (1.8)

which is increasing in pt. Thus, Proposition 1.5.11 has the surprising implication that

whenever Λ0 is large enough, any additional increase in opportunities for social learning

will result in consumers being strictly less likely to find out about a bad product over a

period of times.

The intuition for Proposition 1.5.11 is closely related to whether or not there is free-

riding in the form of partial adoption (and hence relies on consumers being forward-looking

social learners). Whenever Λ0 < Λ⇤(p0), then 0 = t⇤1 = t⇤2 , so that absent breakdowns all

consumers adopt immediately upon their first opportunity. In this case, it is easy to see

from Theorem 1.5.1 that the rate λNt at which social learning occurs is strictly increasing

in Λ0: We have λNt = ρe�ρtΛ0 for all t. Thus, by Equation (1.8) increasing Λ0 necessarily

speeds up learning at all times.

On the other hand, if Λ0 > Λ⇤(p0), then 0 = t⇤1 < t⇤2(Λ0) and the equilibrium features an

initial region of partial adoption. In this case, an increase to Λ̂0 > Λ0 has the following effect.

By Lemma 1.5.10, free-riding occurs over a longer period of time: t⇤2(Λ̂0) > t⇤2(Λ0); moreover,

at all times t  t⇤2(Λ0) where there is free-riding under both Λ0 and Λ̂0, the rate of social

learning is the same: λNt = λ̂N̂t. This explains the first bullet point in Proposition 1.5.11.

The strict slowdown in learning at times just after t⇤2(Λ0) is due to the following: The proof

of Theorem 1.5.1 shows that whenever t⇤1 < t⇤2 , then the flow of adopters Nt is continuous at

all times except at exactly t⇤2 , where there is a discontinuous increase. This is evident from

the adoption curve in Figure 1.5 where a visible non-differentiability exists at the point of

transition from partial adoption to immediate adoption. Since t⇤2(Λ0) < t⇤2(Λ̂0), this means

that at t⇤2(Λ0) the difference between λ̂N̂t and λNt jumps from 0 to a strictly negative value,

resulting in the temporary slowdown in learning stated in the second bullet point.

Finally, learning under Λ̂0 must eventually overtake learning under Λ0, because at time

0 the payoff to immediate adoption is the same under both Λ0 and Λ̂0 and in both cases

consumers are indifferent between adopting immediately and delaying. This relates back to
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the saturation effect for welfare observed in Proposition 1.5.9 as follows. By Lemma 1.2.4,

ex-ante welfare W0 under Λ0 > Λ⇤(p0) can be written as

W0(Λ0) =

∞Z

0

ρe�(r+ρ)τ p0

pΛ0
τ

⇣

2pΛ0
τ � 1

⌘

dτ = p0

∞Z

0

ρe�(r+ρ)τ

✓

2 �
⇣

pΛ0
τ

⌘�1
◆

dτ,

and similarly for Λ̂0 > Λ0. The non-monotonicity result for beliefs then has the following

implication. If a consumer obtains his first adoption opportunity prior to t⇤2(Λ0), his

expected payoff is the same under Λ0 and Λ̂0; if his first adoption opportunity is during

(t⇤2(Λ0), t), he is strictly worse off under Λ̂0, because in case the innovation is bad he is

less likely to have found out by then; finally, if his first opportunity is after t, he is strictly

better off under Λ̂0. Depending on Λ̂0, t adjusts endogenously to balance out the benefits,

which arrive at times after t, with the costs incurred at times (t⇤2(Λ0), t). This produces the

saturation effect in Proposition 1.5.9.

Even more strongly, in Section 1.7, we exploit the non-monotonicity result for beliefs to

construct an example involving consumers with heterogeneous discount rates in which an

increase in Λ0 is not only not beneficial, but in fact strictly hurts aggregate welfare.

Slowdown in Adoption

We now consider the effect of increased opportunities for social learning on observed

adoption levels, analyzing separately the case of a good innovation and of a bad innovation.

Adoption Conditional on a Good Product: Recall that At denotes the percentage of con-

sumers in the population who adopt the innovation by time t conditional on no breakdowns

before t, which is the same as the percentage of adopters at t conditional on the innovation

being good:

At(G) = At :=

tZ

0

Ns

N̄0
ds.

Note also that by Lemma 1.5.5, Λ0 is a sufficient statistic for the equilibrium levels of At

holding fixed r, ρ, p0 and ε, because Ns

N̄0
= λNs

Λ0
and Λ0 is a sufficient statistic for λNs.
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For a good innovation, we show that when the potential for social learning Λ0 is small,

additional small increases in opportunities for social learning have no effect on adoption

levels, but when Λ0 is sufficiently large, increases strictly drive down adoption levels at

all times. Once again, the cutoff is given by the level Λ⇤(p0) above which partial adoption

occurs.

Proposition 1.5.12. Fix r, ρ, ε, and p0 satisfying Conditions 1.5.2 and 1.5.3 and such that p0 � p.

Then for all t, At(Λ0, G) is constant in Λ0 for all Λ0  Λ⇤(p0) and strictly decreasing in Λ0 for all

Λ0 > Λ⇤(p0).

Proof. See Appendix Section A.6.3.

The reason why At(Λ0, G) is constant for all Λ0  Λ⇤(p0) is familiar: For all such Λ0,

consumers adopt upon their first opportunity and At = 1 � e�ρt. If Λ0 > Λ⇤(p0), then the

strict slowdown in adoption is due to increased free-riding in the form of partial adoption.

More precisely, an increase from Λ0 > Λ⇤(p0) to Λ̂0 has two effects, as summarized in

Lemma 1.5.10: First, on the extensive margin, increased opportunities for social learning push

out t⇤2 and lead to a longer period of free-riding under Λ̂0. Second, on the intensive margin,

the increase strictly drives down the growth rate of At at all times prior to t⇤2(Λ0):

Ȧt =
Nt

N̄0
=

λNt

Λ0
=

λ̂N̂t

Λ0
>

λ̂N̂t

Λ̂0

=
N̂t

ˆ̄N0

= ˙̂At.

Figure 1.7 illustrates these two effects and their implications for a strict slowdown in

adoption. Finally, from t⇤2(Λ0) adoption occurs at a maximal rate under Λ0, so that from

then on Ât must remain below At by feasibility.

Two remarks are in order. First, our prediction of a strict slowdown of adoption of

the good product in response to increased opportunities for social learning once again

relies crucially on consumers being forward-looking. If consumers are myopic, then by

the first part of Proposition 1.5.12 adoption levels at all times remain unchanged following

the increase. More interestingly, if consumers are myopic, it is not possible to generate

this prediction under perfect bad news even if we allow for an arbitrary distribution of
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Figure 1.7: Changes in adoption levels of a good product under perfect bad news (λ̂ > λ)

heterogeneity in tastes. Thus, while models of innovation adoption by myopic social

learners, such as Young (2009), can generate S-shaped adoption curves by imposing suitable

distributions of consumer heterogeneity, the prediction in our model of a strict reduction in

initial adoption of a good innovation is novel.

Second, Proposition 1.5.12 implies that conditional on a good product, increased op-

portunities for social learning are welfare-neutral at best (if Λ0 < Λ⇤(p0)) and potentially

strictly harmful (if Λ0 � Λ⇤(p0)), since adoption levels are unchanged in the former case

and in the latter case adoption is strictly delayed. Therefore any potential welfare gains due

to increased opportunities for social learning must result from more consumers being able

to avoid the bad product. We now study this point by analyzing the effect of increases in Λ0

on adoption levels of a bad product.

Adoption Conditional on a Bad Product: Conditional on a bad innovation, adoption is

stochastic, following At until the first breakdown, which occurs at a random time, and

remaining constant from then on. We therefore study the effect of increased opportunities

for social learning on the expected percentage of adopters at time t conditional on a bad
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product, which is given by:

At(B) :=

tZ

0

(ε + λNτ) e�
R τ

0 (ε+λNs)ds

0

@

τZ

0

Ns

N̄0
ds

1

A dτ + e�
R t

0 (ε+λNs)ds

tZ

0

Ns

N̄0
ds

=

tZ

0

Nτ

N̄0
e�

R τ
0 (ε+λNs)dsdτ,

where the second line is obtained by integrating the first expression by parts. Again, Λ0 is a

sufficient statistic for At(B) when r, ρ, p0, and ε are fixed. For bad innovations, increased

opportunities for social learning always produce strict decreases in the expected level of

adoption at all times, irrespective of the original level of Λ0:

Proposition 1.5.13. Fix r, ρ, ε, and p0 satisfying Conditions 1.5.2 and 1.5.3 and such that p0 � p.

Then At(Λ0, B) is strictly decreasing in Λ0 for all t > 0.

Proof. See Appendix Section A.6.3.

If Λ0 < Λ⇤(p0), this is immediate since by Proposition 1.5.11 and Proposition 1.5.12

adoption levels conditional on no breakdowns are the same, but breakdowns prior to any

time are more likely for higher values of Λ0 < Λ⇤(p0). If Λ0 � Λ⇤(p0), then there is a

tension: On the one hand, Proposition 1.5.12 implies that an increase in Λ0 leads at all

times to strictly lower adoption levels conditional on no breakdowns, but on the other

hand, the non-monotonicity result for learning implies that there are times before which a

breakdown is strictly more likely under lower Λ0. We show that the former effect always

strictly dominates.

Proposition 1.5.12 and Proposition 1.5.13 relate to the saturation effect observed in

Proposition 1.5.9 as follows: If Λ0 < Λ⇤(p0), then small increases in opportunities for

social learning do not affect adoption conditional on the good product, but strictly decrease

the number of consumers adopting the bad product by any time, leading to an overall

welfare gain. On the other hand, if Λ0 � Λ⇤(p0), then increased opportunities for social

learning strictly decrease adoption both for good products (which is harmful) and for bad

products (which is beneficial), making welfare predictions a priori ambiguous. However, the
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saturation effect illustrates that in welfare terms these two implications balance out exactly.

1.6 Perfect Good News

1.6.1 Equilibrium Characterization

We now turn to study equilibrium behavior when learning is via perfect good news. As

under perfect bad news, the unique equilibrium is Markovian in the state variables (pt, Λt).

Surprisingly, however, regardless of the potential for social learning in the economy, the

unique equilibrium under perfect good news does not exhibit any region of partial adoption

and adoption at each time is all-or-nothing:

Theorem 1.6.1. Let r, ρ, N̄0 > 0, p0 2 (0, 1), and λ, ε � 0. There exists a unique equilibrium. In

the unique equilibrium, Nt is Markovian in (pt, Λt) (or equivalently (pt, N̄t)) for all t and satisfies:

Nt =

8

>><

>>:

ρN̄t if pt > p⇤

0 if pt  p⇤.

(1.9)

where

p⇤ =
(ε + r)(ρ + r)

2(ε + ρ)(ε + r)� ερ
.

To prove Theorem 1.6.1 we again invoke the quasi-single crossing property for equi-

librium incentives established in Theorem 1.4.1. Suppose Nt�0 is an equilibrium flow of

adopters. Let pt�0 and Wt�0 be the corresponding no-news posterior and value to waiting,

and let Λt�0 := λN̄t�0 describe the evolution of the economy’s potential for social learning.

By Theorem 1.4.1, there are times38

t⇤1 := inf{t : 2pt � 1  Wt},

t⇤2 := inf{t : 2pt � 1 < Wt},

38With the usual convention that inf ∅ = +∞.
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such that (appealing also to right-continuity) N must satisfy

8

>>>>>><

>>>>>>:

Nt = ρN̄t if t < t⇤1 ,

2pt � 1 = Wt if t 2 [t⇤1 , t⇤2)

Nt = 0 if t � t⇤2 .

In the following, we build on this fact to establish the existence of a unique equilibrium as a

function of the parameter values. The following lemma establishes the all-or-nothing nature

of the perfect good news equilibrium:

Lemma 1.6.2. Suppose either ε > 0 or p0 6= 1
2 .39 Let Nt�0 be an equilibrium with associated

threshold times t⇤1 and t⇤2 . Then t⇤1 = t⇤2 =: t⇤.

Proof. See Appendix Section A.3.2.

Thus, absent breakthroughs, all consumers adopt immediately if given the chance prior

to t⇤, and after t⇤, consumers stop adopting altogether and rely solely on information

generated by exogenous sources (if ε = 0, both adoption and learning come to a permanent

standstill at this point). If a breakthrough occurs at any time (prior to or after t⇤), then from

then on all consumers adopt the innovation whenever given a chance.

To see the intuition for the all-or-nothing nature of the equilibrium, suppose we had

t⇤1 < t⇤2 . Then consumers would be indifferent between adopting and delaying at each time

t 2 (t⇤1 , t⇤2). As with perfect bad news, we can compare a consumer’s payoff to adopting at t

with the payoff to delaying his decision by an instant and decompose the difference into

two terms:

r(2pt � 1)dt + pt(λNt + ε)dt

✓

1 � ρ

r + ρ

◆

.

The first term represents the gain to immediate adoption if no breakthrough occurs

between t and t + dt, which happens with instantaneous probability 1 � pt(λNt + ε)dt. Just

as with perfect bad news, the gain to adopting immediately in this case is r(2pt+dt � 1)dt,

39If ε = 0 and p0 = 1
2 , then it is easy to see that the unique equilibrium must be N ⌘ 0, so that t⇤1 = 0 < t⇤2 =

+∞.
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representing time discounting at rate r and the fact that at t + dt the consumer remains

indifferent between adopting if given the chance and delaying. The second term represents

the gain to immediate adoption if there is a breakthrough between t and t + dt, which

happens with instantaneous probability pt(λNt + ε)dt. Now the situation is very different

from the perfect bad news setting: A breakthrough conclusively signals good quality, so

a consumer who delays his decision by an instant will adopt immediately at his next

opportunity. This results in a discounted payoff of
ρ

r+ρ , reflecting the stochasticity of

adoption opportunities. On the other hand, by adopting at t, the consumer receives a payoff

of 1 >
ρ

r+ρ immediately. Thus, regardless of whether or not there is a breakthrough between

t and t + dt, there is a strictly positive gain to adopting immediately at t, which contradicts

indifference at t.

The above argument illustrates a fundamental difference between the bad news and good

news setting. In order to maintain indifference over a period of time between immediate

adoption and waiting, it must be possible to acquire decision-relevant information by waiting:

Consumers who are prepared to adopt at t will be willing to delay their decision by an

instant only if there is a possibility that at the next instant they will no longer be willing to

adopt. In the bad news setting, this is indeed possible: If there is a breakdown between t and

t + dt, then the innovation is revealed to be bad and no one is willing to adopt from t + dt

on. On the other hand, if learning is via good news, this cannot happen: A breakthrough

between t and t + dt reveals the innovation to be good, so consumers strictly prefer to adopt

from t + dt on; if there is no breakthrough, then consumers remain indifferent at t + dt, so

in either case the information obtained is not decision-relevant.40

With Lemma 1.6.2, the derivation of Theorem 1.6.1 is straightforward. To this end, we

show that any equilibrium can be characterized in terms of a cutoff posterior that only

depends on ε, ρ, and r. Given any equilibrium Nt�0 with associated no-news posteriors

40Note that breakthroughs do of course convey decision-relevant information at beliefs where consumers
strictly prefer to delay. But during a region of indifference, this cannot be the case.
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pt�0, value to waiting Wt�0, and cutoff time t⇤, define

Ht := pt

Z ∞

0
(ε + λNt+τ) e�(ετ+

R t+τ
t λNsds) ρ

r + ρ
e�(r+ρ)τ dτ.

Thus, Ht represents a consumer’s expected value to waiting at time t given that from t on

he adopts only if there has been a breakthrough and given that the population’s flow of

adoption follows N. By optimality of Wt, we must have Ht  Wt for all t. We can define a

lower bound for Ht: For any posterior p 2 (0, 1), let

H(p, 0) := p
Z ∞

0
εe�ετ ρ

r + ρ
e�(r+ρ)τ dτ = p

ρε

(r + ρ)(ε + r + ρ)
.

H(p, 0) represents a consumer’s expected value to waiting at posterior p, given that he

adopts only once there has been a breakthrough and given that breakthroughs are only

generated exogenously. Note that for all t, we have H(pt, 0)  Ht: When breakthroughs are

generated both exogenously and at rate λNt, then the probability that a breakthrough is

generated by any given time is (weakly) greater than if learning is purely exogenous; this

benefits a consumer who only adopts once there has been a breakthrough. Moreover, for all

t � t⇤, we have Wt = H(pt, 0).

Recall the definition of p⇤ in Theorem 1.6.1, p⇤ := (ε+r)(ρ+r)
2(ε+ρ)(ε+r)�ερ

, and note that p⇤ is the

unique solution to 2p⇤ � 1 = H(p⇤, 0). By definition of p⇤, if pt  p⇤ at any time t, then

2pt � 1  H(pt, 0)  Ht  Wt,

so for all t < t⇤, we must have pt > p⇤. Conversely, if t⇤ < +∞ and t � t⇤, then

2pt � 1  Wt = H(pt, 0),

so pt  p⇤ for all t � t⇤. We summarize this in the following lemma:

Lemma 1.6.3. Let Nt�0 be an equilibrium with corresponding cutoff time t⇤ and no-news posterior

pt�0. Then

pt > p⇤ , t < t⇤.

Given Lemma 1.6.2 and Lemma 1.6.3, the equilibrium characterization under perfect
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good news follows readily. Equation (1.9) is immediate from Lemma 1.6.3. For fixed

parameters, we then obtain the unique equilibrium as follows: If p0  p⇤, then t⇤ = 0 and

Nt = 0 for all t. If p0 > p⇤, then we must have t⇤ > 0 and Nt = ρe�ρtN̄0 for all t < t⇤; if in

addition ε > 0 or p0

⇣

1 + e�λN̄0

⌘

< 1, then t⇤ < +∞ is uniquely determined as the solution

to

pt =
p0

p0 + (1 � p0) eεt+(1�e�ρt)N̄0
= p⇤. (1.10)

If instead p0 > p⇤ and ε = 0 and p0

⇣

1 + e�λN̄0

⌘

� 1, then Equation (1.10) does not admit a

solution, and we must have t⇤ = +∞: In this case, the potential for social learning in the

economy is so small that even a bad innovation is eventually adopted by all consumers,

despite the fact that no breakthroughs are ever generated.

As highlighted at the beginning of the section, the equilibrium under perfect good news

is Markovian in (pt, Λt). However, in marked contrast to the bad news case, if ε = 0, then

adoption behavior is independent of the discount rate r: Even very patient consumers

will behave entirely myopically, adopting the innovation at all posteriors above 1
2 and

not adopting otherwise. If ε > 0, then consumers’ forward-looking nature is reflected

by the fact that the cutoff posterior p⇤ below which consumers are unwilling to adopt is

(r+ρ)(r+ε)
2(r+ρ)(r+ε)�ρε

>
1
2 . In both cases, the cutoff posterior does not depend on λ or N̄0: Social

learning only affects the time t⇤ at which adoption ceases conditional on no breakthroughs.

Moreover, as under perfect bad news, it is easy to see that holding fixed other parameters,

Λ0 = λN̄0 is a sufficient statistic for equilibrium behavior:

Lemma 1.6.4. Fix r, ρ > 0, p0 2 (0, 1), and ε � 0. Suppose that λ̂ ˆ̄N0 = λ0N̄0. Let N̂t and Nt

denote the unique equilibrium adoption flows under (λ̂, ˆ̄N0) and (λ, N̄0), respectively, and let p̂t, t̂⇤

and pt, t⇤ denote the corresponding equilibrium beliefs and cutoff times. Then

1. t̂⇤ = t⇤ ;

2. p̂t = pt for all t

3. and λ̂N̂t = λNt for all t.
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Proof. Immediate from the proof of Theorem 1.6.1.

1.6.2 Shape of Adoption Curve

Theorem 1.6.1 has the following implication for the shape of adoption curves in good news

markets:

Corollary 1.6.5. In the unique equilibrium of Theorem 1.6.1, the proportion of adopters in the

population is strictly increasing and concave for all t < t⇤ and given by

At :=

tZ

0

Ns

N̄0
ds = 1 � e�ρt.

If there is a breakthrough prior to t⇤, then the proportion of adopters is given by 1 � e�ρt for all t; if

the first breakthrough occurs at s > t⇤,41 then adoption comes to a temporary standstill between t⇤

and s, and for all t � s, the proportion of adopters is strictly increasing and concave and given by

1 � e�ρ(t⇤+t�s).

Thus, as illustrated in Figure 1.8,42 adoption proceeds in concave “bursts”: Up to time

t⇤, all consumers adopt the innovation upon their first opportunity, with the flow of new

adopters declining at the rate ρ at which adoption opportunities arrive. Conditional on no

breakthroughs, adoption comes to a standstill at time t⇤, because by that point consumers are

pessimistic enough about the product to prefer to delay adoption. If ε > 0, then exogenous

news sources might generate a breakthrough after t⇤, in which case a second concave burst

in adoption occurs.

While less common than the S-shaped curves we predicted under bad news,43 this type

of adoption pattern also corresponds to recurrent empirical findings. For instance, the

41This occurs only if ε > 0.

42The parameters used to generate the figure are: ε = 1/2, r = 1, ρ = 1, λ = 0.5, and p0 = 0.7.

43Note that in our model purely concave adoption curves can also arise under bad news if the economy’s
potential for social learning is relatively limited or consumers are very optimistic (so that t⇤1 = t⇤2). The key
difference is that under perfect good news adoption curves are necessarily concave, even in economies with a
large potential for social learning or with fairly pessimistic and forward-looking consumers.
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marketing literature44 has coined the term “fast-break" product life cycle (PLC) to describe

goods with large initial sales volumes accompanied by a gradual decline in new purchases

(implying a concave adoption pattern), in contrast to S-shaped PLCs that initially feature

low sales volumes accompanied by a gradual increase in the number of new purchases. The

textbook example for fast-break PLCs is the movie industry,45 as illustrated in Figure 1.9.

Given that the movie industry is also sometimes cited as a typical example of a good news

market46 with learning occurring predominantly via positive events such as awards and

recommendations in social media, this finding appears to be in line with our model.
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Figure 1.8: Adoption Curves under Perfect Good News (blue = breakthrough before t⇤; yellow = breakthrough
after t⇤; pink = bad quality)

1.6.3 The Effect of Increased Opportunities for Social Learning

To further illustrate the distinction between good news and bad news markets, we now

study the effect of increased opportunities for social learning under good news. In contrast

44Cf. Keillor (2007) pp. 51-61.

45Additional evidence can be found in Davies (1979)’s study of the diffusion of 22 post-war process
innovations among industries in the UK. In the context of his probit model of innovation diffusion, he finds that
while S-shaped (logistic) diffusion paths are characteristic of complex and expensive innovations, they are less
suited to fitting the diffusion paths of simpler and less expensive innovations, which typically feature rapid,
essentially concave growth from the beginning and are better approximated by a lognormal model.

46Cf. Board and Meyer–ter–Vehn (2013)
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Figure 1.9: “Adoption” patterns for various blockbuster movies (Source: McLaren and DePaolo (2009))

to our results under perfect bad news, we find that increased opportunities for social

learning (essentially) always speed up learning, leave initial adoption levels unaffected, and

are strictly welfare-improving—all three results are due to the absence of partial adoption

regions under good news. Throughout this section, we fix r, ρ > 0, p0 2 (0, 1), and ε � 0,

and let p⇤ denote the equilibrium cutoff posterior:

p⇤ =
(r + ρ)(r + ε)

2(r + ρ)(r + ε)� ρε
,

which is independent of the potential for social learning. Given that all other parameters

are fixed, Lemma 1.6.4 implies that Λ0 = λN̄0 is a sufficient statistic for all the quantities we

consider in this section.

Learning Speeds Up

We first turn to the effect of increased opportunities for social learning on equilibrium beliefs.

As a result of the all-or-nothing nature of the perfect good news equilibrium, we can see that

learning necessarily speeds up—this is in contrast to the possibility of nonmonotonicities

due to partial adoption under perfect bad news. More precisely:

53



Proposition 1.6.6. Fix Λ̂0 > Λ0
47 and let t⇤(Λ̂0), pΛ̂0

t and t⇤(Λ0), pΛ0
t denote the corresponding

equilibrium cutoff times and posteriors conditional on no breakthrough.

1. If p0 > p⇤, then

• 0 < t⇤(Λ̂0) < t⇤(Λ0)

• pΛ̂0
t < pΛ0

t for all t > 0

• pΛ̂0

t⇤(Λ̂0)+k
= pΛ0

t⇤(Λ0)+k
for all k � 0.

2. If p0  p⇤, then

• t⇤(Λ̂0) = t⇤(Λ0) = 0

• pΛ̂0
t = pΛ0

t for all t.

If p0 > p⇤, then conditional on no breakthroughs, all consumers adopt immediately

upon an opportunity until the time t⇤ at which the cutoff posterior p⇤ is reached. By

Theorem 1.6.1, there is never any partial adoption, so that an increase from Λ0 to Λ̂0 directly

translates into a faster rate of social learning at all times t prior to min{t⇤(Λ̂0), t⇤(Λ0)}:

λNt = ρe�ρtΛ0 < ρe�ρtΛ̂0 = λ̂N̂t. Since the cutoff posterior p⇤ is independent of social

learning, this implies that t⇤(Λ̂0) < t⇤(Λ0) and that learning is strictly faster under Λ̂0 at

all times. However, once the cutoff posterior is reached, information is generated at the

constant exogenous rate ε, which means that conditional on t > t⇤, beliefs depend only on

t � t⇤, as summarized in the third bullet point under (i).

On the other hand, if p0  p⇤, then all consumers rely entirely on the exogenous news

source from the beginning, so the potential for social learning is irrelevant.

No Initial Slowdown of Adoption

The all-or-nothing nature of the perfect good news equilibrium also implies that increased

opportunities for social learning do not affect initial adoption levels—this is again in contrast

47If ε = 0 we assume that p0

�
1 + e�Λ0

�
< 1 so that t⇤(Λ0) < ∞.
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to the possibility of initial slowdowns due to partial adoption under perfect bad news. More

precisely:

Proposition 1.6.7. Suppose Λ̂0 > Λ0.

1. If p0 > p⇤, then:

• For all t  t⇤(Λ̂0), At(Λ̂0; θ) = At(Λ0; θ) = 1 � e�ρt for θ = B, G.

• For all t > t⇤(Λ̂0), At(Λ̂0; θ) < At(Λ0; θ) for θ = B, G.

2. If p0  p⇤, then for all t:

• At(Λ0; B) = At(Λ̂0; B) = 0;

• At(Λ0; G) = At(Λ̂0; G) =
⇣

1 � ρ
ρ�ε e�εt

⌘

+ ε
ρ�ε e�ρt.

Until t⇤(Λ̂0) all consumers adopt immediately upon an opportunity under both Λ0

and Λ̂0 regardless of the quality of the innovation. However, from t⇤(Λ̂0) on, expected

adoption levels are strictly lower under Λ̂0 than under Λ0: If the innovation is bad, this is

because adoption comes to a permanent standstill under Λ̂0 (until a further breakthrough

generated by the exogenous information ε), but continues until t⇤(Λ0) under Λ0. If the the

innovation is good, the result is again immediate for all t  t⇤(Λ0) since adoption occurs

at the maximal rate under Λ0. For t > t⇤(Λ0), there are two opposing effects: On the one

hand, the guaranteed lower bound on adoption is higher under Λ0, but on the other hand

the probability of a breakthrough occurring prior to time t is always higher under Λ̂0. We

show in the Appendix Section A.7.1 that the former effect dominates.

On the other hand, if p0  p⇤, then increased opportunities for social learning once again

have no effect at all on adoption levels, because no consumers adopt until the exogenous

news source generates a breakthrough.

No Saturation Effect

Proposition 1.6.7 showed that from time t⇤(Λ̂0) on, adoption levels for both good and bad

quality products are strictly lower under Λ̂0 > Λ0 than under Λ0. In welfare terms, the
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former effect is harmful while the latter is beneficial. This raises the question whether

welfare under perfect good news might be subject to a similar saturation effect as under

bad news. Provided p0 > p⇤ and ε > 0, the answer is negative:

Proposition 1.6.8. Suppose Λ̂0 > Λ0.

• If p0 > p⇤ and ε > 0, then W0(Λ̂0) > W0(Λ0).

• If p0  p⇤ or ε = 0, then W0(Λ̂0) = W0(Λ0) .

Thus, in contrast to the perfect bad news case, increased opportunities for social learning

are always strictly beneficial, except in two cases: If consumers rely entirely on exogenous

information (p0  p⇤), or if there is no exogenous information (ε = 0). Welfare-neutrality in

these two exceptional cases is clear: Increased opportunities for social learning can have an

effect on welfare only if there are histories at which a consumer’s decision whether to adopt

or delay is affected by information generated as a result of social learning. If p0  p⇤, then

consumers’ behavior depends only on information obtained exogenously (and no adoption

ever takes place if ε = 0). If ε = 0 and p0 > p⇤ = 1
2 , then consumers are willing to adopt at

all histories, since no matter how large Λ0, the equilibrium posterior always remains weakly

above 1
2 .

On the other hand, if p0 > p⇤ and ε > 0, then under both Λ0 and Λ̂0 consumers adopt

immediately upon first opportunity until p⇤ is reached and from then on delay adoption

until there has been a breakthrough. Moreover, the probability π⇤ of a breakthrough

occurring prior to p⇤ being reached is the same under both Λ0 and Λ̂0: π⇤ = 1�p0

1�p⇤ . And

because learning occurs at the same rate once p⇤ is reached, the continuation value W⇤

conditional on p⇤ being reached is also the same: W⇤ = p⇤
R ∞

0 εe�(ε+r)t ρ
r+ρ dt = 2p⇤ � 1.

So the only difference is that conditional on no breakthroughs, the time t⇤ at which p⇤

is reached occurs earlier under Λ̂0. To see that this is strictly beneficial, note that W0 is

composed of the following two terms:

W0(Λ0) =
⇣

1 � e�(r+ρ)t⇤(Λ0)
⌘ ρ

r + ρ
(2p0 � 1) + e�(r+ρ)t⇤(Λ0)

✓

π⇤ ρ

r + ρ
+ (1 � π⇤)W⇤

◆

,
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and similarly for Λ̂0. The first term represents the case when a consumer receives an

adoption opportunity prior to time t⇤, and the second represents the case when a consumer’s

first adoption opportunity occurs after t⇤. Conditional on either of these cases occurring,

the expected payoff is the same under both Λ0 and Λ̂0, but the time-discounted probability

e�(r+ρ)t⇤ with which the second case occurs is strictly greater under Λ̂0. This is strictly

beneficial, because the expected payoff in the second case is strictly greater:

✓

π⇤ ρ

r + ρ
+ (1 � π⇤) (2p⇤ � 1)

◆

� ρ

r + ρ
(2p0 � 1) =

r

r + ρ
(1 � π⇤) (2p⇤ � 1) > 0.

Intuitively, in the second case the consumer adopts the innovation only once it has been

revealed to be good while in the first case he adopts it regardless of its quality, and the

resulting benefit from avoiding a bad innovation outweighs the cost of possibly having to

delay adoption of a good innovation.

Nature of Inefficiency: Even though there is no saturation effect and consumers are

able to always benefit from increased opportunities for social learning, equilibrium adoption

behavior is not in general socially optimal. Let ps denote the cutoff posterior for the

cooperative benchmark derived in Proposition 1.3.2.

Proposition 1.6.9. If ε = 0, equilibrium adoption behavior is socially optimal if and only if either

p0(1 + e�Λ0) � 1 or Inequality 1.5 holds. If ε > 0, then equilibrium adoption behavior is socially

optimal if and only if ps � p0.

Consider first the case where ε = 0. Then if p0(1+ e�Λ0) � 1, we have that t⇤ = ts = +∞;

and if Inequality 1.5 holds, then t⇤ = ts = 0. For the converse and to deal with the case

when ε > 0, it then suffices to show that ps
< p⇤: This implies that whenever p0 > ps, then

conditional on no breakthroughs adoption ends too soon in equilibrium (or doesn’t take place

at all if p0  p⇤ even though the cooperative benchmark prescribes some initial adoption).

On the other hand, if p0  ps, then both the cooperative benchmark and the equilibrium

prescribe no adoption until there has been an exogenously generated breakdown. Note

that adoption ending too soon under the perfect good news equilibrium is the analog of

adoption beginning inefficiently late under perfect bad news. However, since the perfect
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good news equilibrium does not feature regions of partial adoption, there is no analog of

the second type of inefficiency that arose under perfect bad news: Whenever adoption does

occur under perfect good news, it takes place at an optimal rate.

To see that ps
< p⇤, note that

✓

2 � ε

ε + r

ρ

ρ + r

◆

p⇤ � 1 = 0.

Using the above equality and evaluating the derivative of the objective function of the

cooperative problem in Equation 1.3 at p⇤, we obtain:

(1 � π⇤)p⇤Λ0ρe�ρt⇤ r

ε + r

✓

e�(r+ρ)t⇤ ρ

ρ + r
N̄0

◆

> 0.

This shows that ts
> t⇤ and so ps

< p⇤ as the objective function of the cooperative problem

is single-peaked.

1.7 More Social Learning Can Hurt: An Example

In Proposition 1.5.9 we established the saturation effect, whereby increased opportunities

for social learning under perfect bad news are welfare-neutral when Λ0 is sufficiently large

relative to the other fundamentals. Nevertheless, under the assumption of completely

homogeneous consumers in the previous sections, increases in Λ0 never produced ex ante

welfare losses. In this section, we establish the surprising result that when consumers are

heterogeneous, increased opportunities for social learning can strictly hurt some consumers

and bring about Pareto-decreases in ex ante welfare. To illustrate this, we introduce some

heterogeneity in consumers’ patience levels.

Consider a population consisting of two types of consumers: There is a mass M
p
0 of

patient types with discount rate rp > 0 and a mass Mi
0 of impatient types with discount

rate ri > rp. To simplify the analysis we assume that ε = 0 and p0 > 1/2, although our

arguments easily extend to the case where ε > 0. Because our purpose is simply to construct

an example illustrating the possibility of welfare loss, we restrict attention to a perfect bad

news setting.
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To construct our example, we begin by examining equilibria in which only types with

discount rate rp exist in the economy. Recall from Section 1.5.1 that for any discount rate

r > 0, we can define the function Λ⇤
r implicitly for every p 2 ( 1

2 ,
ρ+r

ρ+2r ) by

2p � 1 = Gr(p, Λ⇤
r (p)) :=

∞Z

0

ρe�(r+ρ)τ
⇣

p � (1 � p)e�Λ⇤
r (p)(1�e�ρt)

⌘

dτ.

Then by Theorem 1.5.1, whenever p0 <
ρ+rp

ρ+2rp
and λ̂M

p
0 > λM

p
0 > Λ⇤

rp
(p0), then in the game

consisting solely of consumers of type rp, the two equilibria corresponding to information

structures λ and λ̂ both feature initial regions of partial adoption.

The main argument in the construction of our example is to consider heterogeneous

economies where the mass Mi
0 of impatient types is very small, holding fixed the mass of

patient types at M
p
0 . More specifically, we show that when the mass of impatient types is

sufficiently small, the equilibrium behavior of the patient types in both equilibria (under

information process λ̂ and λ) approximates the behavior in the corresponding equilibria

when only patient types are present. Then using arguments about the properties of equilibria

in the game with only patient types, in particular the non-monotonicity result for learning

established in Proposition 1.5.11, we can obtain the following result:

Theorem 1.7.1. Suppose 0 < rp < ri < +∞. Fix M
p
0 > 0 and λ̂ > λ > 0 such that λ̂M

p
0 >

λM
p
0 > Λ⇤

rp
(p0). Then there exists η > 0 such that whenever Mi

0 < η, W i
0(λ̂) < W i

0(λ) and

W
p
0 (λ̂) = W

p
0 (λ). Thus, whenever Mi

0 < η, the ex ante payoff profile in the λ-equilibrium

Pareto-dominates the ex ante payoff profile in the λ̂-equilibrium and

Mi
0W i

0(λ̂) + M
p
0 W

p
0 (λ̂) < Mi

0W i
0(λ) + M

p
0 W

p
0 (λ).

Here we sketch the main arguments of the theorem. Consider first an economy consisting

only of types with discount rate rp: Mi
0 = 0 and M

p
0 > 0. If λ̂M

p
0 > λM

p
0 > Λ⇤

rp
(p0), then

the two equilibria corresponding to information structures λ and λ̂ both feature initial

regions of partial adoption. Thus W
p
0 (λ̂) = W

p
0 (λ) = 2p0 � 1.

Now consider the payoffs that a hypothetical type ri (even though such a type does not
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exist in this economy) would obtain if he were to behave optimally when faced with the

flow of information generated in each of these equilibria. Because an optimal strategy (there

will be a continuum of optimal strategies) of a consumer of type rp is to adopt upon first

opportunity absent breakdowns, it is straightforward to show that an optimal strategy of

such a hypothetical type ri would also be to adopt upon first opportunity.

Given this, the payoffs of the hypothetical type ri in the two equilibria are given by the

following two expressions:

W i
0(λ̂) =

∞Z

0

ρe�(ri+ρ)τ p0

pλ̂
τ

⇣

2pλ̂
τ � 1

⌘

dτ

W i
0(λ) =

∞Z

0

ρe�(ri+ρ)τ p0

pλ
τ

⇣

2pλ
τ � 1

⌘

dτ.

Furthermore, patient types begin in a partial adoption phase in both equilibria:

2p0 � 1 = W
p
0 (λ̂) =

∞Z

0

ρe�(rp+ρ)τ p0

pλ̂
τ

⇣

2pλ̂
τ � 1

⌘

dτ

2p0 � 1 = W
p
0 (λ) =

∞Z

0

ρe�(rp+ρ)τ p0

pλ
τ

⇣

2pλ
τ � 1

⌘

dτ.

Recall from Proposition 1.5.11 that there exists t > t⇤ := t⇤2(λ) such that pλ̂
τ = pλ

τ for all

τ  t⇤, pλ̂
τ < pλ

τ for all τ 2 (t⇤, t) and pλ̂
τ > pλ

τ for all τ > t. We now exploit the expressions

for the value to waiting of the two types together with the deceleration of learning at

times just after t⇤ to obtain the result. Intuitively, because W
p
0 (λ̂) = W

p
0 (λ) = 2p0 � 1, the

deceleration in learning followed by a later acceleration must balance out exactly so that the

patient type rp obtains the same ex ante payoff under λ and λ̂. But then these adjustments

must strictly hurt the less patient hypothetical type ri, because relative to type rp, type ri

weights the losses due to the slow down of learning more heavily than the benefits that

arrive at later times.48

To complete the proof, we can show that even when Mi
0 > 0, as long as Mi

0 is sufficiently

48A formal argument is provided in Appendix Section A.8.
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small, we must still have W i
0(λ̂) < W i

0(λ) and W
p
0 (λ̂) = W

p
0 (λ). The first inequality is the

result of a simple continuity argument. The second equality comes from the fact that even

upon perturbing Mi
0 slightly, the patient type must continue to partially adopt initially in

both equilibria.

Note that a crucial assumption underlying the above argument is that adoption oppor-

tunities are stochastic and limited. When ρ is finite, because of a natural delay in adoption,

the impatient types may not receive any adoption opportunities for a long time. As a

result, if an impatient type obtains his first adoption opportunity late in the game, then

the information available at that point in time would be strictly lower under the equilib-

rium with information process λ̂ than λ. This decrease in information (due to increased

free-riding of the patient types) when impatient types receive adoption opportunities late in

the game is precisely the cause of the impatient type’s welfare loss. If on the other hand

consumers were able to adopt freely at any time, then the impatient types would incur

no losses as they would adopt at exactly time 0 in both the λ and λ̂-equilibria. Thus the

example here illustrates an interesting interaction between heterogeneity and delays due to

limited opportunities for adoption.

1.8 Conclusion

This paper develops a model of innovation adoption when consumers are forward-looking

and learning is social. Our analysis isolates the effect of purely informational incentives on

aggregate adoption dynamics, learning, and welfare, and highlights the way in which these

incentives vary across different informational environments. The possibility of free-riding

in the form of partial adoption is found to be particularly important, because it casts doubt

on the the received wisdom that the recent internet-driven surge in opportunities for social

learning should speed up learning and benefit consumers. Owing to the advantages of

continuous time and Poisson learning, the model is very tractable, yielding closed-form

expressions for key quantities and allowing us to compute numerous comparative statics.

We briefly discuss some questions for ongoing and future research that could build on
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the modeling framework and techniques developed in this paper. Current work in progress

relaxes the assumption of perfect Poisson learning to allow for signals that while indicative

of bad (respectively good) quality are not conclusive. Serving as a robustness check for our

results obtained under perfect Poisson learning, preliminary results suggest that many key

qualitative features are preserved, for example the possibility of partial adoption regions in

bad news markets (which once again coincide with convex growth in adoption levels) as

well as the absence of such regions under good news learning. In addition, the extension

to imperfect Poisson learning introduces interesting new questions that cannot be studied

when signals are conclusive. For example, when ε = 0, then under imperfect (but not under

perfect) bad news it is possible for good innovations to fail, because even good products

can generate strings of breakdowns that might permanently halt adoption. This suggests

investigating the “fragility” of the adoption process as a function of parameters such as

the initial market belief and the relative rates at which bad and good products generate

breakdowns.

Further work in progress relaxes the assumption that signals are public. To see the idea,

suppose that learning is social, but that signals derived from past adopters’ experiences are

observed privately and independently (at rate λNt) by each remaining consumer, instead

of publicly and simultaneously as in the model in this paper. This captures the intuition

of decentralized social learning, for example when consumers frequent different blogs and

social media platforms. Assuming that at any time consumers make inferences based only

on their own private signals and on the expected number of adopters in the population,

another interesting difference between bad news and good news markets emerges: Under

bad news, a consumer who privately observes a breakdown will never adopt the innovation

in the future and hence will never generate any signals himself; this has a dampening effect

on the production of information in the economy and reduces free-riding incentives. By

contrast, consumers who privately observe breakthroughs under good news will adopt

the innovation at their next opportunity, thus amplifying information production in the

future and increasing free-riding incentives. This difference has important implications
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for aggregate adoption dynamics and for the impact of increased opportunities for social

learning.

Finally, moving beyond our focus in this paper on the purely informational aspects of

the problem, one could explore the implications of incorporating consumer heterogeneity

and pricing motives into the model. As we saw in Section 1.7, heterogeneity can interact in

interesting ways with informational free-riding incentives, sometimes rendering increases

in the potential for social learning strictly harmful. A more general characterization of

this interaction under more complex distributions of consumer heterogeneity appears

challenging but desirable. As for pricing, assume that the innovation is sold by a forward-

looking monopolist who does not have any influence on the quality of the innovation and

has access to exactly the same public information as consumers, but can influence the

endogenous production of information via the price. As a simple first step, we could restrict

the monopolist to setting a single fixed price and compute comparative statics on this price

and on welfare under increased opportunities for social learning. More challengingly, we

could allow the monopolist to commit to a time path of prices, examining for instance how

the fact that information is generated endogenously by consumer purchases affects the

monopolist’s incentives for intertemporal price-discrimination relative to the well-known

complete information results of Stokey (1979). We leave these two topics as interesting

avenues for future research.
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Chapter 2

Delayed Response Strategies in

Repeated Games with Observation

Lags1

2.1 Introduction

Understanding when and why individuals cooperate in social dilemmas is a key issue not

just for economics but for all of the social sciences,2 and the theory of repeated games is

the workhorse model of how and when concern for the future can lead to cooperation even

if all agents care only about their own payoffs. The clearest expression of this idea comes

as players become arbitrarily patient; here various folk theorems provide conditions under

which approximately efficient payoffs can be supported by equilibrium strategies. Because

of the influence of these results, it is important to understand which of their assumptions

are critical and which are merely convenient simplifications; a large literature (discussed

below) has extended the folk theorems under successively weaker assumptions about the

1Co-authored with Drew Fudenberg and Scott D. Kominers and published in the Journal of Economic
Theory (2014).

2See e.g., Ahn et al. (2003); Gachter et al. (2004).
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“monitoring structures” that govern the signals players receive about one another’s actions.

Here we relax an assumption which is maintained throughout most of the prior repeated

games literature: the assumption that signals of the actions taken in each period (simultane-

ously) arrive immediately after players’ actions in that period. Instead, we consider repeated

games in which the players’ signals about other player’s actions arrive with stochastic and

privately observed lags. Our folk theorems for settings with lagged signals show that the

assumption that signals are observed immediately is not necessary for repeated play to

support cooperation.

To prove these folk theorems, we use the idea of “delayed-response” strategies, under

which players wait to respond to signals of a given period’s play for long enough that it is

likely (although not certain) that every player has observed the relevant signals by the time

players respond to signal information. Although the observation lags generate a form of

imperfect private monitoring, the private information here has a special form that allows

delayed-response strategies to construct the same set of limit equilibrium payoffs as if the

lags were not present.

More specifically, we suppose that players act simultaneously each period, and that

players’ actions jointly determine a probability distribution over signals, but that players

• do not observe signals immediately and

• might observe signals asynchronously.

The times at which observation occurs are private information and may be infinite, that

is, a particular signal may never arrive. Some sort of observation lags seem plausible in many

cases; for example there may be a small probability that a player is momentarily innattentive

and temporarily does not see their partner’s actions; more strongly, in some cases a player

may never learn just what happened during moments of inattention. Moreover, information

lags of multiple periods seem especially appropriate in settings for which the time period

under consideration is extremely short (Fudenberg and Levine (2007a, 2009); Sannikov and

Skrzypacz (2010)), and in continuous-time models, where the “period length” is effectively
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0 (Bergin and MacLeod (1993); Sannikov (2007); Sannikov and Skrzypacz (2007); Faingold

and Sannikov (2011)).3

To prove our folk theorems, we construct delayed-response strategies, in which the repeated

game is divided into a finite number of “threads,” with play in each thread independent of

play in the other threads. Section 2.3 examines the simplest application of this idea, which

is to the case of bounded lags, where there is a K such that every signal arrives within K

periods of play. Then, using strategies that have K + 1 threads, we can ensure that each

thread is equivalent to an instance of the original game (with the original game’s underlying

monitoring structure), a smaller discount factor, and no lag. Hence if the folk theorem holds

in a given repeated game (with any sort of contemporaneous monitoring), the associated

strategies can be used to establish a folk theorem—in delayed-response strategies—in the

corresponding game with bounded observation lags.4

The rest of the paper allows the lag distribution to have unbounded support, and also

allows for a small probability that some signals never arrive at all (corresponding to an

infinite observation lag). In these cases the use of delay strategies reduces but does not

eliminate the impact of lags, and the game played in each thread has some additional

decision-relevant private information. Section 2.4 considers the case where signals are

almost-perfect if and when they do arrive—that is, each player either observes an almost-

perfect signal of period-t play with some lag, or else never sees a signal of period-t play.5

In our second model, presented in Section 2.5, players are allowed to communicate (via

cheap talk) each period, and the underlying information structure is one of imperfect public

monitoring. 6 In each case, players do not know whether and when other players observe

3Indeed, physics suggests that the speed of light is a constraint on the speed with which signals can travel.

4The Ellison (1994) study of contagion equilibria uses threads for a rather different purpose: to substitute
for public randomization as a way to weaken the effect of a grim-trigger punishment as the discount factor
tends to 1. In Sections 2.3 and 2.4, we use threads only as a way for the players to wait for lagged signals to
arrive; in Section 2.5, we also use threading in order to weaken the effect of grim-trigger punishments.

5In the case of lagged almost-perfect monitoring, we consider only games with two players, so that we
may invoke results of Hörner and Olszewski (2006). We do not know whether the folk theorem extends to the
analogous setting with n players.

6Our analysis assumes that messages are received the instant they are sent, but the results extend to cases in
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the signals associated with each period’s play, so there is a special but natural form of

private information.

For both of our main results, we use a similar proof technique: First, we consider an

auxiliary game with “rare” lags in which each player sees a private signal immediately with

probability close to (but not equal to) 1. After proving a folk theorem for the auxiliary game

with rare lags, we relate the perturbed game with rare lags to the game with possibly long

lags by identifying the event in which the signal does not arrive immediately with the event

that the signal arrives after some large time T. We then construct equilibria in the game with

lags by using delayed-response strategies as described above. For the first main result we

prove the folk theorem for the auxiliary game by extending the bloc-strategy construction of

Hörner and Olszewski (2006) (henceforth HO2006) to treat as “erroneous” any history of

the auxiliary game in which some player observes another’s action with a strictly positive

lag; this corresponds to a “real lag” that is longer than the number of threads. The HO2006

construction does not directly apply here, as signals about past play may arrive outside

of the relevant block, but we construct equilibria that are belief free for the past T periods

provided that the probability of lagged observation is sufficiently small.

To prove the second main result, we first consider a game with private monitoring,

communication, and no observation lag. In this game, each player either observes the

true action profile or a null signal. We relate this to a game with a public signal that is

observed by all players, but where the game ends each period with a fixed small probability,

corresponding to strategies in the original game that will use reversion to static Nash

equilibrium whenever the reported signals disagree. We prove a sort of folk theorem here

using the techniques of Fudenberg et al. (1994) (henceforth FLM) and then again use threads

and delayed responses to extend this to a proof for the original game.

which messages are received much more quickly than observations. We attribute the difference in speeds to the
fact that messages are crafted to be easily processed, while processing and interpreting signals can take longer.
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2.1.1 Related Work

The repeated games literature has explored successively weaker assumptions on players’

monitoring structures, while maintaining the assumption that signals arrive immediately

after play. The first wave of repeated-games models established folk theorems under the

assumption that players observe each others’ actions without error at the end of each round

of play (Aumann and Shapley (1976), Friedman (1971), Rubinstein (1994), and Fudenberg

and Maskin (1986)). Subsequent work extended the folk theorem to cases where agents

receive imperfect signals of other agents’ actions, where these signals can either be public

(FLM) or private but accompanied by cheap-talk public messages (Compte (1998), Kandori

and Matsushima (1998), and Obara (2009)),7 or private and without communication (e.g.,

Sekiguchi (1997), Mailath and Morris (2002), Hörner and Olszewski (2006), and Hörner

and Olszewski (2009)). As one step in our argument for the case of lagged almost-perfect

monitoring (Section 4), we extend the Hörner and Olszewski (2006) construction to almost-

perfect monitoring with rare lags.8 With each type of signal structure, the key assumptions

relate to the qualitative nature of the information that signals provide: Roughly speaking,

in order for the folk theorem to obtain, signals must be informative enough to “identify

deviations” in a statistical sense.9

The papers of Fudenberg and Olszewski (2011) and Bhaskar and Obara (2011) are

the closest to the present work, as in each, the time at which signals arrive is private

information. Fudenberg and Olszewski (2011) studied the effect of short privately-known

lags in observing the position of a state variable that evolves in continuous time, so that a

player observing the state variable at slightly different times would get different readings.

7We allow public messages in Section 2.5. The role of such messages has been studied in a number of
subsequent papers, including Ben-Porath and Kahneman (2003), Fudenberg and Levine (2007b), and Escobar
and Toikka (2011). Public communication has also been used as a stepping stone to results for games where
communication is not allowed (Hörner and Olszewski (2006), Hörner and Olszewski (2009), and Sugaya (2011)).

8When the unlagged signals are imperfect, the signals in our auxiliary games are not almost common
knowledge in the sense of Mailath and Morris (2002), so the Hörner and Olszewski (2009) construction does not
apply.

9In addition, the folk theorem has been extended to recurrent stochastic games with perfectly or imperfectly
observed actions (Dutta (1995), Fudenberg and Yamamoto (2011), and Hörner et al. (2011)).
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Bhaskar and Obara (2011) studied lags that were either deterministic or stochastic with

length at most 1. Both papers considered “short lags” and also restricted to the case of a

single long-run player facing a sequence of short-run opponents; this paper allows fairly

general stochastic lags and considers the case of all long-run players.

Several papers in the stochastic games literature studied deterministic lags of perfect

signals (e.g., Lagziel and Lehrer (2012), Levy (2009), and Yao et al. (2011)); this sort of lag

does not introduce private information and so is quite different from the lags we study. In

Abreu et al. (1991) consecutive signals are grouped together and delivered at once, so the

delay does not introduce private information.

2.2 General Model

This section introduces a general model that encompasses all the settings discussed sub-

sequently. We consider a repeated game with n players i 2 I ⌘ {1, . . . , n}, each of whom

has a finite action space Ai. In each period t = 0, 1, 2, . . ., each player i chooses a possibly

mixed action αt
i ; this generates a sequence of pure action profiles {at}∞

t=0. Each player i has

a finite signal space Ωi, and there is a private signal structure π over Ω ⌘ ∏i2I Ωi; at each

time t, a private signal profile is generated by π according to the conditional probability

π(ω1, . . . , ωn | at).

Thus far, the repeated game has the structure of a standard repeated game with private

monitoring. We now relax the assumption that players receive signals of period-t play

immediately after period t by replacing it with the assumption that the monitoring structure

is private with stochastic lags. As in the usual model, upon the choice of a period-t action

profile at, a private signal profile ωt is generated according to the conditional distribution

π(ωt | at). However, the players need not immediately observe their components of

the signal profile. Instead, we assume that each player i observes his private signal of

period-t play, ωt
i , at a stochastic time t + Lt

i , where {Lt ⌘ (Lt
1, . . . , Lt

n)}t is a collection of

random variables that take values in (N [ {∞})n. We assume that the vectors {Lt} are

distributed identically and independently across t, with probability density function λ :
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(N [ {∞})n ! [0, 1]. We denote by λi the density of the marginal distribution of observation

lags of player i, Li. (The case Lt
i = ∞ is interpreted as the event in which player i never

receives any information about the period-t private signal.) We let Λi denote the cumulative

marginal distribution function of player i’s observation lags, i.e. Λi(`) = ∑
`
m=0 λi(m), for

` 2 (N [ {∞}).

Observation of ωt
i takes place in period t + Lt

i after the choice of that period’s actions.10

When player i observes ωt
i , he also observes a “timestamp” indicating that ωt

i is associated.

with play in period t. That is, for example, when a player observes that player j played “C”

in a prisoner’s dilemma, she is informed about the period to which the observation applies,

rather than just getting a signal that “player j played C sometime in the past.”11

As one concrete example, consider a repeated public goods game in which every period

two friends must decide whether or not to exert effort to provide benefits (or gifts) for each

other. The friends live far apart, so the benefits must be shared via postal mail. This induces

a lag in observation of the realized signals of the friend’s action. Furthermore the postmark

dates serve as natural timestamps.

Alternatively suppose that n coauthors who write numerous papers together and sup-

pose that the quality of the paper is determined by the sum of the authors’ efforts. Each

period they complete a paper and submit it to a journal. The editor then makes a decision

and mails a letter to each of the authors. Here the decision reveals the project’s quality and

so provides evidence about partners’ efforts; in a two-player game if the effort ! quality

! editor’s letter map is deterministic and monotone, the letter perfectly reveals partners’

efforts, but more typically letters have a stochastic component. Here the project itself serves

as a natural timestamp.

Players have perfect recall and receive no further information.

10Thus player i cannot respond to the period-(t + Lt
i ) observation information until time t + Lt

i + 1.

11The assumption of timestamps renders our model a smaller departure from the usual repeated game
monitoring structure than a model in which players observe only an aggregate measure of the frequencies with
which opponents took various actions. Note that it is not clear how players would interpret signals received
without timestamps when the expected path of play is not constant over time.
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In one part of the paper we allow for communication in every period. Thus, we include

message spaces Mi in the general model; when we want to rule out communication we

set Mi = ∅ for each i. After the realization of private signal profile ωt and after the

observation of all private information ωt0
i for which t0 + Lt0

i  t, at each time t = 0, 1, . . .,

each player i reports a message mi chosen from the message space Mi. After all of these

reports are (simultaneously) submitted, all players immediately observe the message profile

m = (m1, . . . , mn).

We let Ht denote the set of t-period histories. For a given ht 2 Ht and any t0  t, we

denote by ht,t0 the profile of information about the t0-period signal that has been observed

by each player. If player i has not yet observed the k-th component of his private signal, ωi,k

in time t0 then we specify that ht,t0
i,k = ∞.

Finally we describe the payoff structure. A sequence of action profiles {at} chosen by

the players generates a total payoff

(1 � δ)
∞

∑
t=0

δtgi(at).

In Section 2.5, we prove a Nash threat folk theorem rather than a full folk theorem. To

facilitate this, we fix a Nash equilibrium α⇤ of the stage game and normalize payoffs of

players so that gi(α
⇤) = 0 for all i. We let V denote the convex hull of the feasible set of

payoffs, and let Vα⇤ be the convex hull of the set consisting of g(α⇤) = 0 and the payoff

vectors Pareto-dominating g(α⇤) = 0: Vα⇤ ⌘ {v 2 V | v � 0}. We assume that int(Vα⇤) is

non-empty.

In contrast, the theorems of Section 2.3 and 2.4 concern full folk theorems; thus, we

define V⇤ to be the set of individually rational payoffs of V. With this notation, we are ready

to discuss our folk theorems.

We let G(δ, π, λ) be the repeated game with discount factor δ, lag distribution λ, and

monitoring structure π, and let E(δ, π, λ) denote the set of sequential equilibrium payoffs of

G(δ, π, λ). We let G(δ, π) ⌘ G(δ, π, imm), where imm is the (degenerate) distribution which

puts full weight on immediate observation, and define E(δ, π) ⌘ E(δ, π, imm) similarly.
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Finally we introduce the concept of delayed-response strategies, which are used through-

out the remainder of the paper to prove our folk theorems. We call σ a delayed-response

strategy profile in the repeated game if there exists some K such that the repeated game can

be divided into K “threads”, with the `-th thread consisting of periods `, K + `, 2K + `, . . .,

so that at any period t players condition their strategies only on messages and signal

information generated within the thread containing period t.

2.3 Bounded Lags

We first present a simple analysis of a repeated game with observation lags in which the lag

is certain to be no more than some finite bound.

Assumption 2.3.1. There exists some K < ∞ such that Pr(maxi Li  K) = 1.

With this assumption, it is common knowledge that all players will have seen the

signal generated in period t by period t + K. This restriction allows us to show that every

equilibrium payoff attainable for sufficiently large discount factors in the repeated game

without observation lags with any private monitoring structure π can also be attained in the

associated repeated game with observation lags for sufficiently patient players. We show

this using delayed-response strategies. Note that the following result does not impose any

restrictions on π; we use such conditions for our folk theorems later but they are not needed

here.

Theorem 2.3.2. Suppose Assumption 2.3.1 holds. Furthermore suppose that v 2 E(δ, π) for all

δ 2 (δ, 1) where 0 < δ < 1. Then there exists some δ⇤ 2 (0, 1) such that v 2 E(δ, π, λ) for all

δ 2 (δ⇤, 1).

Proof. We divide the periods of the repeated game into K + 1 threads, with the `-th thread

consisting of periods `, (K + 1) + `, 2(K + 1) + `, . . .. Now, we suppose that v 2 E(δ, π) is

generated by the strategy profile σ in the game without lags.

As the information lag has an upper bound of K, the signals generated in periods

`, (K + 1) + `, . . . , (j � 1)(K + 1) + ` are observed by all players by period j(K + 1) + `.
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Thus, we may define a delayed-response strategy profile σK by specifying that in period

t = j(K + 1) + ` (0  `  K), players play according to σ(ht,`, ht,(K+1)+`, . . . , ht,(j�1)(K+1)+`).

It is clear that the delayed-response strategy profile σK generates a payoff profile of v.

Moreover, it is an equilibrium for discount factor δK+1. Thus, taking δ⇤ = δK+1 gives the

result.

The proof of Theorem 2.3.2 relies heavily on Assumption 2.3.1. For example, if the

support of λ were concentrated on (0, . . . , 0), (1, . . . , 1), . . . , (K, . . . , K), and (∞, . . . , ∞), then

the proof above would not work, since each of the threads that it constructs would be

a repeated game with a private monitoring structure π̃ that is different from π. More

problematically, if λi(k) > 0 for all i and k 2 N, so that all lag lengths have positive

probability for all players, then no matter how far apart the threads are spaced, there is

always a positive probability that a realized lag will be longer than this chosen spacing, and

the threads considered in the proof above cannot be identified with a private monitoring

game at all. In the next two sections, we study and demonstrate how these issues can be

resolved when additional assumptions are placed on the monitoring structure π. Therefore

for the remainder of the paper, we dispense with Assumption 2.3.1 and allow λ to be an

arbitrary probability distribution on (N [ {∞})n.

2.4 Lagged Almost-Perfect Monitoring with Two Players

In this section, we extend an approach of HO2006 to obtain a folk theorem for two-player

games with lagged almost-perfect monitoring. We focus on the two-player case since the

techniques of HO2006 extend naturally to this setting.12

12We do not know whether our folk theorem extends to games with n players; we discuss related issues in
Section 2.6.
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2.4.1 Model

We restrict the general monitoring structure introduced above. First, we assume that there

are only two players. We assume the monitoring structure to be that of lagged ε-perfect

monitoring: We allow a general lag structure here, but restrict the private signal space of each

player i to be Ωi = Aj and furthermore assume that π is ε-perfect in the sense of HO2006.

We assume that the private signal space of Ωi = Aj so that we may extend the techniques of

HO2006.13

Definition 2.4.1. A private monitoring structure π is ε-perfect if for every action profile

a 2 A, π(a2, a1 | a1, a2) > 1 � ε.

The Folk Theorem

We now prove the following folk theorem.

Theorem 2.4.2. Suppose that v 2 int(V⇤). Then there exists some ε̄ 2 (0, 1) such that for all lag

distributions λ for which λi(∞) < ε̄ (for i = 1, 2), there exists some δ̄ such that v 2 E(δ, π, λ) for

all δ > δ̄, and all private monitoring structures π that are ε̄-perfect. 14

To prove Theorem 2.4.2, we first analyze an auxiliary repeated game with rare observation

lags, in which the probability of instantaneous observation of the private signal is very close

to 1. We show that the HO2006 approach to repeated games with almost-perfect monitoring

can be extended to lagged repeated games with almost-perfect monitoring, so long as

positive lags are sufficiently rare, and use this to obtain a folk theorem in the auxiliary game.

We then convert the associated auxiliary-game strategies to delayed-response strategies by

multithreading the game with lags. A positive lag in a particular thread corresponds to a

lag that exceeds the number of threads, so by taking the delay long enough we can shrink

13Note that the work of HO2006 does contain a section that extends the analysis to more general private
signal spaces where Ωi 6= Ai. However, as Yuichi Yamamoto pointed out to us, that argument contains an error
so we cannot use it here.

14We thank Yuichi Yamamoto for pointing out a problem with our earlier proof of this result and then
suggesting the approach we use now.
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the probability of a positive lag close to 0. We thus obtain a folk theorem in the game with

stochastic lags.

2.4.2 Auxiliary Repeated Game with Rare Observation Lags

This subsection establishes the following folk theorem for the game where λi(0) is close to 1

for all players i:

Theorem 2.4.3. Let v 2 int(V⇤). Then there exist ε̄, δ 2 (0, 1) such that if λi(0) > 1 � ε̄ (for

i = 1, 2), π is ε̄-perfect, and δ > δ, then v 2 E(δ, π, λ).

Our proof of this theorem adapts a technique of HO2006 to the environment with

small observation lags. The HO2006 construction for the case of almost-perfect monitoring

uses the same strategies as in the perfect-monitoring construction at histories that are on

the equilibrium path of that equilibrium (the “regular histories”), and then uses standard

full-rank arguments to show there are continuation payoffs (at the end of the review phase)

that preserve the belief-freeness property at the “erroneous” histories—those which are off

the path of play under perfect monitoring. When the monitoring is close to perfect, the

additional variation introduced in these continuation payoffs converges to zero. We use

a similar argument, grouping histories together by treating a delayed observation as one

that never arrives, and classifying as “erroneous” any history in which some player observes

the opponent’s action with a strictly positive lag. We then construct continuation payoffs

associated to these histories by applying full-rank arguments to the “immediate observation

structure” defined below.

Note first that because the information lag is not bounded, it is possible that information

about some past event arrives very late in the repeated game. Such possibilities cannot be

ignored—even though they happen with very low probability—since they may potentially

affect a player’s beliefs about his opponent’s continuation play. Our extension deals with

this problem by constructing equilibria that are belief-free every T periods for the repeated
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game with the probability of lagged observation sufficiently small.15 This means that only

information about the past T periods is relevant for computing best replies. Thus, we

can ensure that effects on beliefs due to observation lags lasting more than T periods are

unimportant.

Note next that lags of length less than T do affect players’ on-path beliefs, so the HO2006

arguments do not directly apply. We extend them to lags with λ(0) close to 1 by adding the

histories where observations arrive with a positive lag to the set of “erroneous” histories.

Preliminaries

We let Ht
i be the set of t-period histories in the repeated game with observation lags, with

elements denoted in the form

ht
i = (a0

i , a1
i , . . . , at�1

i , h1,o
i , h2,o

i , . . . , ht,o
i ).

Here, ht,o
i denotes all of the new information about the past play of player �i that player i

receives in period t. Furthermore denote by ST
i the set of strategies in the T-times repeated

game with information lags. Let H̃t
i be the set of t-period histories in the repeated game

without observation lags and with perfect monitoring with a typical element of H̃t
i denoted by h̃t

i .

Also denote the set of strategies in the T-times repeated game with perfect monitoring and

no observation lags by S̃T
i .

Now we partition the set of private histories in the T-times-repeated stage game into

HR
i and HE

i , the regular and erroneous histories. To do this we first define restricted strategy

sets S̃i and S̃
ρ
i for i = 1, 2 in the T-times repeated game with perfect monitoring. Partition

the set Ai into two subsets, denoted G and B. We call an instance of the T-times repeated

game with perfect monitoring a block, and say that a player i sends message M 2 {G,B} if he

picks an action in M in the first period of a block. As in HO2006, we fix a payoff vector v

to be achieved in equilibrium and pick four action profiles aX,Y for (X,Y) 2 {G,B}2 with

15A strategy is belief-free at time t if the continuation strategy at time t, si | ht�1
i , is a best response against

s�i | ht�1
�i for all pairs of histories (ht�1

i , ht�1
�i ). (Here, as we define formally below, “|” indicates the restriction

of a strategy to a given history set.)
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wX,Y
i = gi(aX,Y), X,Y 2 {G,B}, where wG,G

i > vi > wB,B
i , and

wG,B
1 > v1 > wB,G

1 , wB,G
2 > v2 > wG,B

2 .16

Choose vi < vi with v⇤i < vi < vi < vi—where v⇤i is player i’s minmax payoff—such that

[v1, v1]⇥ [v2, v2] ⇢ int(co{wG,G, wB,B, wB,G, wG,B}).

We let S̃T
i be the set of block strategies for player i, i.e. the set of strategies for the T-

period perfect monitoring repeated game. We let S̃i be the set of strategies s̃i 2 S̃T
i such

that s̃i[h̃
t
i ] = aM2,M1

i for all h̃t
i = (a, (aM2,M1

i , aM2,M1
�i ), . . . , (aM2,M1

i , aM2,M1
�i )) with a 2 {Mi}⇥ G

(t � 1). We then let

Ãi(h̃
t
i) ⌘ {ai 2 Ai : 9s̃i 2 S̃i such that s̃i[h̃

t
i ](ai) > 0},

S̃
ρ
i ⌘ {s̃i 2 S̃i : s̃i[h̃

t
i ](ai) > ρ for all h̃t

i and ai 2 Ãi(h̃
t
i)}.17

Define H̃R,t
i to be the set of period-t private histories of player i in the T-times-repeated

game with perfect monitoring that are on the equilibrium path for some (and therefore,

every) strategy profile in S̃
ρ
1 ⇥ S̃

ρ
2 . Then we identify each h̃t

i 2 H̃t
i with the unique element of

ht
i 2 Ht

i such that ht
i and h̃t

i report exactly the same observations about the play of player �i

at all times and ht
i contains no observations with a positive lag (all observations are observed

instantaneously). Define HR,t
i as the image of H̃R,t

i under this identification, and denote this

identification by h̃t
i ' ht

i for h̃t
i 2 H̃t

i and ht
i 2 Ht

i . Also define the set of erroneous histories

to be HE,t
i = Ht

i \ HR,t
i . This means that HE,t

i includes any private histories in which player i

did not immediately observe the period-t0 play of player �i for some t0 < t.

Additionally define the set of strategies Si ✓ ST
i in the repeated game with observation

16These action profiles can be assumed to be pure, either with the use of a public randomization device or by
picking a quadruple of sequences of action profiles such that the average payoff of each of the sequences satisfy
the above properties.

17As in the HO2006 constructions, given any history ht
i , the set S̃i imposes either no restrictions on si[h

t
i ] or

restricts si[h
t
i ] to a single action. In particular any strategy s̃i 2 S̃

ρ
i puts positive weight on all actions after any

erroneous history.
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lags as the set

Si ⌘ {si 2 ST
i : 9s̃i 2 S̃i such that s̃i[h̃

t
i ] = si[h

t
i ] for all h̃t

i 2 H̃t
i where h̃t

i ' ht
i}.

Additionally, define

Ai(h
t
i) ⌘ {ai 2 Ai : 9si 2 Si such that si[h

t
i ](ai) > 0},

S
ρ
i ⌘ {si 2 Si : si[h

t
i ](ai) > ρ for all ht

i 2 Ht
i and ai 2 Ai(h

t
i)}.18

Finally we define strategies sBi , sGi 2 S
ρ
i by mapping the strategies s̃Bi and s̃Gi defined by

HO2006 in a perfect monitoring repeated game to strategies in our environment with private

monitoring and observation lags in a natural way. (The details of this definition are included

in Appendix B.1.)

Proof of Theorem 2.4.3

The proof of Theorem 2.4.3 follows from three key lemmata; once these lemmata have been

established, the remainder of the proof follows exactly as in HO2006. The first lemma adapts

Lemma 1 of HO2006 to our setting of repeated games with information lags. Because the

proof requires some nontrivial modifications, we include the argument here. As we show in

the Appendix, analogous modifications can be made to the proofs of Lemmata 2 and 3 of

HO2006; Theorem 2.4.3 then follows.

We write si | Hi for the restriction of strategy si to history set Hi. We let ŨT
i be the

payoff of player i in the T-times repeated game with perfect monitoring and no observation lags.

Analogously define UT
i to be the ex-ante payoff of player i in the T-times repeated game

with private monitoring structure π and observation lags. We consider a version of the T-times

repeated game (with observation lags) which is augmented with a transfer ξ�i : HT
i ! R at

the end of the T-th period. In this auxilary scenario, the payoff of i under strategy profile s is

18Just as in the case of S̃
ρ
i in Footnote 17, s

ρ
i 2 S

ρ
i puts positive weight on all actions after any erroneous

history.
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taken to be

UA
i (s, ξi) ⌘ UT

i (s) + (1 � δ)δT
E(ξi | s).

The set of best responses of player i in the auxiliary scenario with opponent’s strategy s�i

and own transfer ξi is denoted Bi(s�i, ξi).

With these notations, we have the following lemma that defines the transfer ξBi received

after “bad” messages.

Lemma 2.4.4. For every strategy profile s̄ | HE, there exists ε̄ > 0 such that whenever λi(0) > 1� ε̄

for i = 1, 2 and π is ε̄-perfect, then there exists a nonnegative transfer ξBi : HT
�i ! R+ such that

ST
i = Bi(s̄

B

�i, ξBi ) where s̄B�i | HR
�i = sB�i | HR

�i and s̄B�i | HE
�i = s̄�i | HE

�i, and for every

si 2 Bi(s̄
B

�i, ξBi ),

lim
ε!0

UA
i (si, s̄B�i, ξBi ) = max

s̃i2S̃T
i

ŨT
i (s̃i, s̄B�i).

This generalizes Lemma 1 of HO2006 to a repeated game in which information does not

arrive instantaneously. To do so, we must contend with the fact that HT
�i contains many

more histories than in their private monitoring environment because information may arrive

with lag, so that it is not immediately clear how to construct the ξBi . We handle this issue by

partitioning the set of histories into sets which are past-observation equivalent, in the sense

that for any two time-t histories ht and ht0 in the same set, the (t � 1)-period truncations of

ht and ht0 are equal. We then identify each of the elements of this partition with a particular

history in a private monitoring repeated game with the immediate monitoring structure µ

induced by λ and π defined over the space of signal profiles (Ω1 [ {∞})⇥ (Ω2 [ {∞}):

µ(ω̂1, ω̂2 | a1, a2) =

8

>>>>>>>>>><

>>>>>>>>>>:

∑
∞
τ1=1 ∑

∞
τ2=1 λ(τ1, τ2) ω̂1, ω̂2 = ∞

(∑∞
τ=1 λ(τ, 0))

⇣

∑ω0
12A2

π(ω0
1, ω̂2 | a1, a2)

⌘

ω̂1 = ∞ and ω̂2 6= ∞

(∑∞
τ=1 λ(0, τ))

⇣

∑ω0
22A1

π(ω̂1, ω0
2 | a1, a2)

⌘

ω̂1 6= ∞ and ω̂2 = ∞

λ(0, 0)π(ω̂1, ω̂2 | a1, a2) ω̂1, ω̂2 6= ∞.

This monitoring structure represents the information about the period-t action of the

opponent that is available in period-t + 1, treating positive lags as the null signal. With this
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identification, we can extend the arguments of HO2006 to arrive at our desired conclusion.

We construct the transfers ξGi received after a “good” message in the repeated game with

rare lags in a fashion closely similar to those specified in Lemma 2.4.4.

Lemma 2.4.5. For every strategy profile s̄ | HE, there exists ε̄ > 0 such that, whenever Pr(L >

0) < ε̄ and π is ε̄-perfect, there exists a nonpositive transfer ξGi : HT
�i ! R� such that

{si 2 sT
i : si | HR

i = ŝi | HR
i for some ŝi 2 Si and si | HE

i = s̄i | HE
i } ✓ Bi(s̄

G

�i, ξGi |s̄i)

where s̄G�i | HR
�i = sG�i | HR

�i and s̄G�i | HE
�i = s̄�i | HE

�i. Furthermore ξGi : HT
�i ! R� can be

chosen so that, for every si 2 Bi

�
s̄G�i, ξGi | s̄i

�
, we have

lim
ε!0

UA
i

⇣

si, s̄G�i, ξGi

⌘

= min
s̃i2S̃i

ŨT
i (s̃i, s̄G�i),

ξGi depends continuously on s̄, and ξGi is bounded away from �∞.

We relegate the proof to the Appendix. The remainder of the proof of Theorem 2.4.3

follows along the same lines as in HO2006, defining s̄B�i | HE
�i and s̄G�i | HE

�i, ξGi and ξBi as the

fixed point of the relevant correspondence. The construction works because of Lemma 2.4.5

and the fact that play at periods T, 2T, . . ., is belief free (by Lemma 2.4.4). Thus for example

if player i receives information about the play of player �i in period T � m at some time

T + l, this does not have any effect on his best response calculation since player i’s strategy

only depends on the history of information about the events occurring after period T.

2.4.3 The Repeated Game with Frequent Observation Lags

In the previous section, we required that the probability of a positive lag be small. In this

section, we show that even if the lags are frequent and possibly very long, the folk theorem

still obtains when λi(∞) is sufficiently small for i = 1, 2.

The following lemma employs a technique similar to that used in the proof of Theo-

rem 2.3.2, using delayed-response strategies to relate the equilibrium payoffs in the game

with rare observation lags to those with possibly long lags.
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Lemma 2.4.6. Suppose v 2 E(δ, π, λ̂) for all lag distributions λ̂ such that λ̂(0) > 1 � ε̄ and all

δ 2 (δ, 1). Then for all lag distributions λ such that λi(∞) < ε̄/2 for i = 1, 2, there exists some

δ⇤ 2 (0, 1) such that v 2 E(δ, π, λ) for all δ > δ⇤.

Proof. Choose K 2 N such that (1 � Λi(K � 1)) < ε̄ for i = 1, 2. and set δ⇤ = δ
1
K . Then there

exists a positive integer K⇤ � K + 1, such that δK⇤ 2 (δ, 1) for every δ > δ⇤.

Now divide the repeated game G(δ, π, λ) into K⇤ distinct repeated game “threads,” the

`-th (1  `  K⇤) of which is played in periods `, K⇤ + `, 2K⇤ + `, . . . Because K⇤ � K + 1,

each of these separate repeated games is equivalent to G(δK⇤
, π, λ̂) for some λ̂ such that

λ̂(0) > 1 � ε̄, and each repeated game thread can be treated independently, as players

never condition their play in the `-th thread on information received about play in the `0-th

repeated games (`0 6= `). Because v 2 E(δK⇤
, π, λ̂), it is then clear that v 2 E(δ, π, λ) for all

δ > δ⇤.

Theorem 2.4.2 follows directly from Lemma 2.4.6 and Theorem 2.4.3.

Remark. Ellison (1994) used threading primarily to lower the discount factor. By contrast,

we use threading to ensure that the probability of lags being longer than the thread length

remains low, so that players (with high probability) observe signals of play within a thread

before choosing new actions within that thread. Thus the number of threads required in

our proof is independent of the discount factor, while Ellison (1994) required the number of

threads to become arbitrarily large as the discount factor approaches 1.

2.5 Lagged Public Monitoring

2.5.1 Model

In this section, we consider an n-player repeated game in which the monitoring structure of

the repeated game is public with stochastic lags: There is a set of public signals, denoted Y,

and we set Ωi = Y for all players i 2 I. Furthermore we assume that π is supported on the

set

{(y1, . . . , yn) 2 Yn : y1 = y2 = · · · = yn}.
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That is, the monitoring structure of the underlying repeated game without lags is public.

With a slight abuse of notation, we then write π(y | a) as shorthand for π((y, . . . , y) | a).

We place a mild restriction on the support of the monitoring structure π.

Assumption 2.5.1. For every pure action profile a 2 A, there exist y, y0 2 Y with y 6= y0

such that π(y | a), π(y0 | a) > 0.

Note that the argument used for the case of lagged perfect monitoring does not work here

because the analogous auxiliary game does not have almost-perfect monitoring. Moreover,

an extension of the Hörner and Olszewski (2009) construction to repeated games with rare

observation lags is not possible, because that construction assumes that each player assigns

high probability to the event that all players observe the same signal as in the setting of

Mailath and Morris (2002); this condition is possibly violated when a player observes the

low-probability “null” signal.19 The possibility of receiving an uninformative signal also

prevents the application of the folk theorem of Sugaya (2011), because the necessary full

rank condition fails. Thus, instead of invoking or adapting existing results for general

private monitoring games, we allow for the possibility of communication that is perfectly

and publicly observed at the end of every period, i.e. Mi 6= ∅. We assume that, unlike

signals, messages are observed without delay. In the context of our “joint coauthorship”

example of Section 3.2, the authors can quickly reach each other by phone or email after

the reports arrive. We show that as long as |Mi| � |Y|+ 1 for all i, a folk theorem can be

established.

19We believe that threading combined with Hörner and Olszewski (2009) yields a folk theorem when lags are
sufficiently positively correlated because the auxiliary repeated game corresponding to a thread can be treated
as an almost-public monitoring game with the possibility of an uninformative null signal. The techniques we
develop in this section are more novel.
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2.5.2 Structure of the Observation Lags

In this section, we allow for the possibility that lags may be correlated (across agents).

Define:20

Λ(T) ⌘ Pr

✓

min
i
{Li}  T

◆

and set γi ⌘ lim
T!∞


1 � Λ(T)

1 � Λi(T)

�

.

The quantity γi represents the limiting conditional probability that player i assigns to the

event that players j 6= i have not received signals about period-t play within T periods,

when he himself has also not received any signal about period-t play within T periods. Note

that if Pr({L : Li = ∞}) > 0, then γi =
λ((∞,...,∞))

λi(∞)
.

For our results in the section, we assume that λi(∞) and γi are both small for all i. It is

easy to see what kind of lags satisfy the first condition. The second condition is a bit more

subtle and so we illustrate it through some concrete examples in the Appendix.

2.5.3 The Folk Theorem

We begin our analysis with the simple observation that the repeated play of α⇤ is an

equilibrium of the game with observation lags.21 We use this fact along with techniques

from Abreu et al. (1990) and FLM to construct equilibria that generate any payoff profile

v 2 int(Vα⇤).

To use the techniques of FLM, we need to impose some additional assumptions on the

public monitoring structure π. Recall the following definition from FLM.

Definition 2.5.2. Let π be a public monitoring structure. Then a mixed action profile α has

pairwise full rank for a pair i, j 2 I if the ((|Ai|+ |Aj|)⇥ |Y|) matrix

0

B
@

(π(· | ai, α�i))ai2Ai

�
π(· | aj, α�j)

�

aj2Aj

1

C
A

20Although we assume that Λi(T) < 1 for all T 2 N, our results extend to the case in which there exists
some player i and some T⇤ such that Λi(T

⇤) = 1. In that case, we can simply take the number of threads to be
larger than T⇤, so that player i’s signal structure in the auxiliary game need not contain ∞ as one of its elements.

21Note that for such play, the communication strategies are irrelevant, so we need not specify them.
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has rank |Ai|+ |Aj|� 1.

We will maintain the following restriction on π throughout the rest of this section.

Assumption 2.5.3. For all pairs i, j, there exists a profile α that has pairwise full rank for

that pair.

We can now state our folk theorem for repeated games with public monitoring and

stochastic lags with communication.

Theorem 2.5.4. Let v 2 int(Vα⇤) and suppose that π satisfies Assumptions 2.5.1 and 2.5.3.

Furthermore suppose that |Mi| � |Y|+ 1 for all i. Then there exist some ε⇤ 2 (0, 1) such that for

every λ such that γi < ε⇤ and λi(∞) < ε⇤ for all i, there exists δ⇤ 2 (0, 1) such that v 2 E(δ, π, λ)

for all δ > δ⇤.

As a preview of our proof, it is important that both γi and λi(∞) are small for all

i. The need of the latter condition should be intuitive. For example, in a two-player

game, if it is likely that one player never observes any information, the other player would

have an incentive to play myopically. As we will see, the former condition is important

for establishing truthful communication of signals. The remainder of the section proves

Theorem 2.5.4.

2.5.4 Private Monitoring Game with Communication

Incentives for Truthful Communication

We first consider a private monitoring game with communication (in every period) and no

observation lags for which each player’s message space is Mi = Ỹ ⌘ Y [ {∞}. The results of

this section are of stand-alone interest: the case where players might sometimes not see the

signal seems plausible and it leads to a form of private monitoring that does not appear to

be covered by past results. Let us first define some notation. For a vector ỹ 2 Ỹn, define

I(ỹ) = {i : ỹi 6= ∞} and |ỹ| ⌘ |I(ỹ)|. Define the following set

Y ⌘ {(ỹ1, . . . , ỹn) 2 Ỹn : |(ỹ1, . . . , ỹn)| > 0 and ỹj = ỹk8j, k such that ỹj, ỹk 6= ∞}.

84



The monitoring structure is then supported on the set Y [ {(∞, . . . , ∞)}. For any ỹ 2 Y , we

define ~̃y 2 Y to be the y 2 Y such that ỹj = y for all j such that ỹj 6= ∞.

Now consider a private monitoring structure πpr that is supported on the set Y [

{(∞, . . . , ∞)} with the following additional features.

Assumption 2.5.5. πpr((∞, . . . , ∞) | a) is constant across all a 2 A.

Assumption 2.5.6. ∑~̃y=y πpr(ỹ | a) = (1 � πpr((∞, . . . , ∞) | a))π(y | a) for all y 2 Y.

The reasons for these restrictions become clear when we relate this game to the repeated

game with observation lags. We say that this monitoring structure is ε-close to π if πpr is

such that

πpr({ỹ : ỹ�i = (∞, . . . , ∞)} | a, ỹi) < ε (2.1)

for all a 2 A and all ỹi 2 A [ {∞}. Note that this definition of ε-closeness to a public

monitoring structure is quite different from the one used by Hörner and Olszewski (2009).

The key difference is in the conditional probability πpr((∞, . . . , ∞) | a, ỹi = ∞). Hörner and

Olszewski (2009) assumed this conditional probablity to be close to 1. Here, we assume that

it is very small.

We denote by Gpr(δ, πpr) the private monitoring game with discount factor δ and private

monitoring structure πpr (and communication) and let Epr(δ, πpr) be the set of sequential

equilibrium payoffs of Gpr(δ, πpr). We now show the following.

Theorem 2.5.7. Let v 2 int(Va⇤). Then there exist δ, δ 2 (0, 1) with δ < δ and ε̄ 2 (0, 1) such

that v 2 Epr(δ, πpr) for all δ 2 [δ, δ] and all private monitoring structures πpr that are ε̄-close to π.

To prove this theorem we construct strategies that generate a payoff profile of v, and

are public perfect in the sense of Kandori and Matsushima (1998): strategies in the non-

communication stages of the game depend only on the sequence of message profiles

reported in the history. These strategies use a form of grim-trigger reversion to static

Nash equilibrium when the messages disagree, in order to provide incentives for truthful

reporting. We prove the theorem in two parts. We first prove a lemma demonstrating that
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truth-telling is incentive compatible (i.e. that each player i should report message mi = y

upon seeing signal y 2 Y) when ε is sufficiently small given strategies with this grim-trigger

property.

Lemma 2.5.8. Let W be a convex, compact set that is a subset of int(Va⇤). Consider a collection

of public perfect strategy profiles {σδ,πpr
}, indexed by δ and πpr, for all δ 2 [δ, δ] and all private

monitoring structures πpr that are ε-close to π and have the following properties.

1. In period t, each player i (truthfully) communicates the signals ỹt
i 2 Ỹ = Mi he observes in

period t.

2. If there exists some t such that mt /2 Y , then all players i play α⇤
i .

3. Strategies are such that σδ,πpr
(m0, . . . , mt) = σδ,πpr

(m̄0, . . . , m̄t) whenever ~mτ = ~̄mτ for all

τ = 0, . . . , t.

4. Expected continuation values are always contained in W for play of σδ,πpr
in the game

Gpr(δ, πpr) whenever the message history contains only elements in the set Y .

Then there exists ε⇤  ε̄ such that for all private monitoring structures πpr that are ε⇤-public

except at infinity and all δ 2 [δ, δ], truthful communication is incentive compatible at any private

history in Gpr(δ, πpr) given continuation play determined by σδ,πpr
and truthful communication by

all other players.

Proof. We check that there are no profitable one-stage deviations in which a player misreports

once and then follows the continuation strategy prescribed by σδ,πpr

i . First note that if the

player is at a history in which there exists some t at which mt /2 Y , then all players play α⇤
i

forever from that point on. Since then continuation play does not depend on the message

being sent, all players are indifferent to the message that they send after such a history.

Thus it is incentive compatible.

So it remains to analyze incentives for truth-telling after histories in which mt 2 Y for

all t. Suppose first that player i sees the null signal. Then by reporting ∞, player i obtains
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an expected payoff of

∑
ỹ2Y

πpr(ỹ | α, ỹi = ∞)wi

�
~̃y
�

for some α 2 ∏
n
i=1 ∆(Ai) and some expected continuation value function w : Y ! W.22

If instead player i reports y0 2 Y, he obtains a payoff of

πpr((∞, . . . , ∞) | α, ỹi = ∞)wi(y
0) + ∑

~̃y=y0
πpr(ỹ | α, ỹi = ∞)wi(y

0)

Thus, to show that truth-telling is incentive compatible after all histories in which a player

observes the null signal, it suffices to show that there exists ε⇤ sufficiently small so that

∑
y2Y\{y0}

πpr({ỹ : ~̃y = y} | α, ỹi = ∞)wi (y) > πpr((∞, . . . , ∞) | α, ỹi = ∞)wi(y
0) (2.2)

for all y0 2 Y, all α 2 ∏
n
i=1 ∆(Ai), all w : Y ! W, i = 1, . . . , n, and all πpr ε⇤-close to π.

Assumptions 2.5.1 and 2.5.6 imply:

M(πpr, y0, α) ⌘ ∑
y2Y\{y0}

πpr({ỹ : ~̃y = y} | α, ỹi = ∞)

= (1 � πpr((∞, . . . , ∞) | α)) ∑
y02Y\{y0}

π(y | α)

= (1 � πpr((∞, . . . , ∞) | α))(1 � π(y0 | α))

> 0.

Note that for a fixed map, w : Y ! W and α 2 ∏
n
i=1 ∆(Ai), (2.2) holds for all i = 1, . . . , n

and all y0 2 Y if and only if

∑
y2Y\{y0}

πpr({ỹ : ~̃y = y} | α, ỹi = ∞)

M(πpr, y0, α)
wi (y) >

πpr((∞, . . . , ∞) | α, ỹi = ∞)

M(πpr, y0, α)
wi(y

0). (2.3)

Now let πpr be ε-close to π. As ε ! 0, M(πpr, y0) ! 1 � π(y | α) and thus because πpr is ε-

22Note that in any sequential equilibrium if a player observes signal ∞, he still believes that all other players
played according to their prescribed actions, i.e. that there have been no “unexpected” events.
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close to π,

πpr((∞, . . . , ∞) | α, ỹi = ∞)

M(πpr, y0, α)
<

ε

M(πpr, y0, α)
! 0

1 � π(y0 | α)
= 0.

Note that for any value of ε > 0, because W is convex, the left hand side of inequality (2.3)

is an element of W.

Therefore because W is compact and contained in the interior of Vα⇤ , there is some ε⇤

such that inequality (2.3) holds for all πpr ε⇤-close to π. Moreover ∏
n
i=1 ∆(Ai) and the set

of all maps w : Y ! W are both compact. Therefore such an ε⇤ can be taken uniformly

across all α and all maps w : Y ! W. This shows that all players will report the null signal

truthfully when πpr is ε⇤-close to π.

Now suppose that player i observes y 2 Y. By reporting truthfully, player i obtains a

payoff of wi(y) for some map w : Y ! W. However by reporting y0 2 Y with y0 6= y, player

i obtains a payoff of

πpr({ỹ : ỹ�i = (∞, . . . , ∞)} | α, ỹi = y)wi(y
0) (2.4)

while reporting ∞ yields a payoff of

(1 � πpr({ỹ : ỹ�i = (∞, . . . , ∞)} | α, ỹi = y))wi(y). (2.5)

Clearly wi(y) is at least the expression in (2.5) for any πpr since wi(y) � 0. Furthermore

we can take ε⇤ sufficiently small so that wi(y) > maxy0 6=y{εwi(y
0)} for all y 2 Y, all maps

w : Y ! W, all i = 1, . . . , n, and all ε < ε⇤. Then all players have an incentive to report

truthfully upon observing an informative signal when πpr is ε⇤-close to π since

wi(y) > max
y0 6=y

{εwi(y
0)} � max

y0 6=y

�
πpr({ỹ : ỹ�i = (∞, . . . , ∞)} | α, ỹi = y)wi(y

0)
 

and

wi(y) � (1 � πpr({ỹ : ỹ�i = (∞, . . . , ∞)} | α, ỹi = y))wi(y)

trivially. This concludes the proof.

Remark. The fact that (2.1) is small for all ỹi 2 Ai [ {∞} is crucial. Otherwise, because a
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message profile of (∞, . . . , ∞) results in reversion to the static Nash equilibrium, player i

upon observation of the null signal may have an incentive to deviate and report some signal

y 2 Y.

Remark. Because the set W in the lemma does not depend on delta, neither does ε⇤. This is

important for our folk theorem as we must establish a claim about all games with a private

monitoring structure that is ε⇤-close to π and all discount factors in an interval.

Remark. Players have no incentive to either communicate or respond to a signal that arrives

late, since in equilibrium players do not respond to such communication. This is similar to

the way in which we treat late signals in Section 2.4, where the belief-free property of the

equilibrium construction allows us to show that players do not have an incentive to respond

to late signals.

Non-Communication Stages

Lemma 2.5.8 provides a sufficient condition for truth-telling to be incentive compatible. We

now show that given truthful communication by all players at all histories, we can construct

a collection of strategies {σδ,πpr
} that satisfy the necessary properties of Lemma 2.5.8 for

truthful communication and in which all players are also playing best-responses in the

non-communication stages of the game.

To construct such strategies σδ,πpr
, we first specify that players play α⇤ whenever in the

history there exists some t such that mt /2 Y . Then it is trivial that playing α⇤
i is a best

response at such a history since opponents play α⇤
�i forever. It remains to specify play after

histories in which all messages in the history are elements of Y . We do this by considering

public strategies that only depend on the history of messages.

Given strategies that satisfy conditions 1, 2, and 3 of Lemma 2.5.8 we can simplify the

analysis to that of an auxiliary public monitoring game defined in the following discussion.

The auxiliary game is one of standard simultaneous moves in which public signals arise

according to the conditional probability distribution π every period. We then modify this

repeated game so that at the beginning of periods 1, 2, . . ., the game ends with probability ε
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and each player receives flow payoffs of 0 = gi(α
⇤) thereafter. This corresponds exactly to

the event in which all players report the null signal, triggering all players to play according

to α⇤ forever.23

In the modified game, payoffs are given by

(1 � δ)
∞

∑
t=0

δt(1 � ε)tgi(at). (2.6)

We denote this public monitoring game by Gpu(δ, ε) and let Epu(δ, ε) be the set of

sequential equilibrium payoffs of Gpu(δ, ε). Note that in this game the feasible payoff set is

not constant in δ and ε, and in particular for any fixed ε > 0, as δ ! 1, the feasible payoff

set converges to {0}, just as the payoffs to grim trigger strategies converge to those of static

Nash equilibrium as δ ! 1 in a repeated game with imperfect public monitoring. However

for any fixed δ, as ε ! 0, the feasible payoff set converges to V, the feasible payoff set of the

original public monitoring game. Our analysis takes care in addressing this issue.

In order to extend the arguments of FLM to this modified repeated game, we first

renormalize payoffs so that the feasible payoff set is indeed equal to V. We do this by

multiplying the payoffs by a factor of (1 � δ(1 � ε))/(1 � δ) to get payoff structure

(1 � δ(1 � ε))
∞

∑
t=0

δt(1 � ε)tgi(at). (2.7)

Now, our modified game corresponds to a repeated game with discount factor given

by δ(1 � ε), hence all of the conclusions of FLM can be applied to this game, with the

appropriate assumptions on the (original) public monitoring structure.

Before we proceed with the analysis of the game, recall the definition of self-generation

(Abreu et al. (1990)).

Definition 2.5.9. For W ⇢ R
n, define the sets B(W, δ, ε) and B̂(W, δ, ε) as follows. Let

B(W, δ, ε) be the set of v 2 R
n such that there exists some mixed action profile α and a map

23Because all players report truthfully at all histories, message profiles m 2 Ỹn \ {Y [ (∞, . . . , ∞)} never
occur on the equilibrium path. Thus the “grim phase” of playing α⇤ forever is only triggered in the event of
message profile m = (∞, . . . , ∞); this happens with probability ε.
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w : Y ! W such that

v = (1 � δ)g(α) + δ(1 � ε) ∑
y2Y

w(y)π(y|α), and

vi � (1 � δ)gi(ai, α�i) + δ(1 � ε) ∑
y2Y

wi(y)π(y | ai, α�i),

for all ai 2 Ai and all i. Analogously define B̂(W, δ, ε) to be the set of v 2 R
n such that there

exists some mixed action profile α and a map w : Y ! W such that

v = (1 � δ(1 � ε))g(α) + δ(1 � ε) ∑
y2Y

w(y)π(y|α), and

vi � (1 � δ(1 � ε))gi(ai, α�i) + δ(1 � ε) ∑
y2Y

wi(y)π(y | ai, α�i)

for all i. We say that W is self-generating in the repeated game with payoff structure (2.6) with

discount factor δ and absorption probability ε if W ✓ B(W, δ, ε). Similarly, W is self-generating in

the repeated game with payoff structure (2.7) with discount factor δ and absorption probability ε if

W ✓ B̂(W, δ, ε).

Because the public monitoring game Gpr(δ, ε) has a slightly different structure from

that of a standard public monitoring game, the consequences of self-generation are not

immediate from past theorems, but the same ideas apply as shown in the next lemma.

Lemma 2.5.10. Suppose W is compact and that W ✓ B(W, δ, ε). Then W ✓ Epu(δ, ε).

The proof of Lemma 2.5.10 is completely standard, so we omit it. FLM applied to the

repeated game with discount factor δ(1 � ε) yields the following lemma.

Lemma 2.5.11. Suppose that Assumption 2.5.3 holds. Let Ŵ be a smooth, compact, convex set

in the int(Va⇤). Then there exists δ̄ 2 (0, 1) and ε̄ 2 (0, 1) such that for all δ > δ̄ and all ε < ε̄,

Ŵ ✓ B̂(Ŵ, δ, ε), that is, Ŵ is self-generating in the repeated game with payoff structure (2.7) with

discount factor δ and absorption probability ε.

Next, we translate the payoff set used in Lemma 2.5.11 back into payoffs without the

renormalization. To do this, we define (for a set Ŵ) a set W under the payoff normalization
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given by (2.6):

W =
1 � δ

1 � δ(1 � ε)
Ŵ. (2.8)

Of course for any fixed ε and a fixed set Ŵ, as δ ! 1, W shrinks (setwise) towards the

point-set {0}. Thus for any choice of v 2 int(Vα⇤), v will necessarily lie outside of W for δ

close to 1, so it is not immediate from that for any discount factor δ, one can construct a

self-generating set containing v according to the B operator rather than the B̂ operator. The

next lemma shows that this can be done for a non-empty interval of discount factors.

Lemma 2.5.12. Let v 2 int(Vα⇤) and suppose that Assumption 2.5.3 holds. Consider the repeated

game with payoffs given by (2.6). Then there exist δ, δ 2 (0, 1) with δ < δ and ε̄ 2 (0, 1) such

that v 2 Epu(δ, ε) for all ε < ε̄ and all δ 2 [δ, δ]. Furthermore there exists some compact set

W ✓ int(Vα⇤) such that the equilibrium corresponding to payoff v can be taken to have continuation

values that always lie in W for all δ 2 [δ, δ] and all ε < ε̄.

Proof. Fix some v 2 int(Vα⇤). Then choose a compact, smooth, convex set Ŵ ✓ int(Vα⇤) such

that v 2 int(Ŵ). Since Ŵ is bounded away from 0 and contains v, there exists some η < 1

and compact set W such that v 2 η0Ŵ ✓ W ✓ int(Vα⇤) for all η0 2 [η, 1]. By Lemma 2.5.11,

there exists some δ and ε⇤ such that Ŵ ✓ B̂(Ŵ, δ, ε) for all δ � δ and all ε < ε̄.

Now choose δ 2 (δ, 1) arbitrarily. Then choose

ε = min

(

(1 � η)(1 � δ)

δη
, ε⇤

)

.

This then implies that for all ε < ε̄ and all δ 2 [δ, δ],

v 2 Wδ,ε ⌘
1 � δ

1 � δ(1 � ε)
Ŵ ✓ W ✓ int(Vα⇤).

Furthermore Ŵ ✓ B̂(Ŵ, δ, ε) for all ε < ε̄ and all δ 2 [δ, δ].

This observation allows us to establish the claims of the lemma. To see this, we note that

for every δ 2 [δ, δ] and all ε < ε̄, every w̌ 2 Ŵ can be written in the form

w̌i = (1 � δ(1 � ε))gi(α) + δ(1 � ε) ∑
y2Y

ŵi(y)π(y|α)
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for all i for some α and some ŵ : Y ! Ŵ so that αi is a best response given the expected

continuation payoff ŵi and opponents’ current mixed action profile α�i. Translating payoffs

into the original normalization under (2.6), yields

1 � δ

1 � δ(1 � ε)
w̌i = (1 � δ)gi(α) + δ(1 � ε) ∑

y2Y

1 � δ

1 � δ(1 � ε)
ŵi(y)π(y|α).

We then see that

1 � δ

1 � δ(1 � ε)
ŵi(y) 2 Wδ,ε

for all y 2 Y and all i. Thus v 2 Wδ,ε ✓ B(Wδ,ε, δ, ε) and Wδ,ε ✓ W for all δ 2 [δ, δ] and

all ε < ε̄. Then from Lemma 2.5.10, if v 2 W ✓ B(Wδ,ε, δ, ε) then v 2 Epu(δ, ε). Therefore

v 2 Epu(δ, ε) for all ε < ε̄ and all δ 2 [δ, δ].

Then we relate the auxiliary game Gpu(δ, ε) back to the original private monitoring game

Gpr(δ, πpr) as follows. We let ε = πpr((∞, . . . , ∞) | a).24 Furthermore when constructing

strategies that satisfy condition 3 of Lemma 2.5.8, players play as if they are observing a

public signal structure over Y [ {∞} with πpu(∞ | a) = ε and πpu(y | a) = ∑~̃y=y πpr(ỹ |

a) = (1 � ε)π(y | a) by Assumption 2.5.5. With these observations, lemmas 2.5.8 and 2.5.12

together prove Theorem 2.5.7.

2.5.5 The Repeated Game with Observation Lags

We now prove Theorem 2.5.4. To this end, let us first link the private monitoring game

with communication, Gpr(δ, πpr), to the original repeated game with public monitoring and

observation lags: For a given lag distribution λ and some T 2 N, we define the induced

private monitoring structure πpr in the following way:

πpr(ỹ | a) =

8

>>>>>><

>>>>>>:

Pr({L : Li � T 8i 2 I(ỹ), Li < T 8i /2 I(ỹ)})π(y | a) if ỹ 2 Y , ~̃y = y

Pr({L : Li � T 8i}) if ỹ = (∞, . . . , ∞)

0 otherwise.

24Here we use Assumption 2.5.5 so that ε does not depend on a 2 A.
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Note that πpr satisfies Assumptions 2.5.5 and 2.5.6. Then given this monitoring structure,

we define the game G̃(δ, λ, T) = Gpr(δ, πpr), and let Ẽ(δ, λ, T) be the set of sequential

equilibrium payoffs of G̃(δ, λ, T) for which equilibrium play depends only on the message

histories.

In constructing an equilibrium for the repeated game with observation lags, we suppose

that the message spaces in each period are Mi = Ỹ. Henceforth G(δ, λ) and E(δ, λ)

specifically refer to the repeated game with observation lag distribution λ, discount factor δ,

and message spaces Mi = Ỹ.

Lemma 2.5.13. Suppose that v 2 Ẽ(δ, λ, T) for all δ 2 [δ, δ] for some fixed λ and all T � T⇤,

where 0 < δ < δ < 1. Then there exists some δ⇤ 2 (0, 1) such that v 2 E(δ, λ) for all δ > δ⇤.

As in the proof of Lemma 2.4.6, the proof here also divides the repeated game into

threads, mapping each thread to an auxiliary game of the form described in the preceding

sections. However because the lemma here additionally allows for communication, care in

defining the communication strategies is necessary in order to appropriately construct the

map from threads to auxiliary games.

Proof. We set δ⇤ =
�
δ/δ

� 1
T⇤+1 , so that for every δ > δ⇤, there exists a positive integer multiple

of T⇤ + 1, N(δ), such that δN(δ) 2 [δ, δ].

Now we divide the repeated game G(δ, λ) into N(δ) distinct repeated game threads,

the `-th (1  `  N(δ)) of which is played in periods `, N(δ) + `, 2N(δ) + `, . . . . In our

construction, players communicate the public signal generated at the end of period (k �

1)N(δ) + m at the end of period kN(δ) + (m � 1). If they have not yet seen the signal of that

period’s play they report the null signal. Then each repeated game thread is equivalent to a

private monitoring game of the form described in the previous section.

As in the proof of Lemma 2.4.6, each repeated game can be treated independently, as

players never condition their play in the `-th repeated game on information received about

play in the `0-th repeated games (`0 6= `). Moreover, any equilibrium of G̃(δN(δ), λ, N(δ))

where play depends only on the message history can be embedded into an equilibrium of
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one of the repeated game threads. But since N(δ) > T⇤ + 1, we have v 2 Ẽ(δN(δ), λ, N(δ)),

so it is then clear that v 2 E(δ, λ) for all δ > δ⇤.

We can now finish the proof of Theorem 2.5.4.

Proof of Theorem 2.5.4. By Theorem 2.5.7, there exist δ, δ 2 (0, 1) with δ < δ and ε⇤ 2 (0, 1)

such that v 2 Epr(δ, πpr) for all δ 2 [δ, δ] and all πpr that is ε⇤-close to π.

Then choose ε̄ > 0 such that ε
1�ε < ε⇤ for all ε  ε̄. Now suppose that λi(∞) < ε̄ and

γi < ε̄ for all i. Then there exists a (finite) K⇤ such that

Pr(Li  K, Lj > K 8j 6= i)

Λi(K)
 Pr(Lj > K 8j 6= i)

Λi(K)
< ε⇤ and

1 � Λ(K)

1 � Λi(K)
< ε⇤

for all i and K � K⇤. Thus v 2 Ẽ(δ, λ, T) for all δ 2 [δ, δ] and all T � K⇤ since it is easy to

show that the πpr induced by λ and T is in fact ε⇤-close to π for all T � K⇤. This however

means—by Lemma 2.5.13—that there exists some δ⇤ 2 (0, 1) such that v 2 E(δ, λ) for all

δ > δ⇤; this concludes the proof.

Remark. Note that the proof of this theorem uses delayed-response strategies in three ways:

to ensure that in each thread there is very low probability of all players’ lags being longer

than the thread length; so that even after not observing any signal from the previous period

in a thread, players believe with high probability that others have observed an informative

signal; and to map discount factors near 1 in the game G(δ, λ) to intermediate discount

factors in the auxiliary games. The first feature is also present in the proof of Lemma 2.4.6.

The second and third features are specific to the proof here. The second, ensured by the

assumption that γi is small, is key to establishing incentives for truthful communication, so

that πpr in the auxiliary game can be shown to satisfy condition (2.1). The third feature is

closely analogous to the use of threads in the work of Ellison (1994).

Remark. Note that an important part of the proof of Theorem 2.5.4 is that messages are instan-

taneously observed. As in the literature on private monitoring games with communication,

this is important since the messages serve to make private information public.
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However, it is straightforward to extend our argument to settings in which messages

are observed with a bounded lag. To see this, suppose that lags arrive within Ǩ periods

with probability 1. We separate the game into K̂ ⌘ max{K, Ǩ}+ 1 threads, where K is as

in the proof of Theorem 2.5.4 (page 95). Each thread is further subdivided into a pair of

subthreads, respectively played in “even” and “odd” thread periods; players communicate

information observed in the even (resp. odd) subthread in periods of the odd (resp. even)

subthread. Since the gap between thread periods is at least Ǩ, all messages sent in the even

(resp. odd) subthread arrive with probability 1 before the next period of the odd (resp. even)

subthread. Thus messages about play in the odd (resp. even) subthread arrive in time for

the next round of play in that subthread. More formally, the `-th thread is separated into

two subthreads so that:

1. In periods (2k)K̂ + `, the players send messages about the signals generated in period

(2k � 1)K̂ + `, and in periods (2k + 1)K̂ + `, the players play the appropriate responses

to the messages sent in periods 2K̂ + `, 4K̂ + `, . . . , (2k)K̂ + `.

2. In periods (2k + 1)K̂ + `, the players send messages about the signals generated

in period (2k)K̂ + `, and in periods (2k + 2)K̂ + `, the players play the appropriate

responses to the messages sent in periods K̂ + `, 3K̂ + `, . . . , (2k + 1)K̂ + `.

Under this construction, with the number of threads larger than K̂ = max{K, Ǩ} + 1,

messages sent in period (2k)K̂ + ` (resp. period (2k + 1)K̂ + ` )are observed with probability

1 by the time at which players must act on them—period (2k + 1)K̂ + ` (resp. period

(2k + 2)K̂ + `). However, we do not know whether a folk theorem would obtain if lags of

message transmission are possibly unbounded.25

25In any event, as motivated in footnote 6, it seems reasonable to assume that message delays are much
shorter than signal lags.
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2.6 Discussion and Conclusion

As we argued in the introduction, the key role of the repeated games model makes it

important to understand which of its many simplifications are essential for the folk theorem.

We have extended this result to two settings in which players’ information about others’ play

arrives with stochastic lags. In both of the settings we consider, there is a special but natural

form of private information, as players do not know whether and when their opponents

observe signals.

Our proof in the case of almost-perfect monitoring (and no communication) depends on

the methods of HO2006. Unfortunately, our proof technique does not extend to repeated

games with n players. We could attempt to classify any history containing the null signal

as an erroneous history and follow the approach of HO2006 for n-player games, but this

approach is invalid because of the HO2006 n-player proof’s requirement of communication

phases. For repeated games with observation lags having finite support (possibly including

∞), it may seem that the discussion in Remark 4 of HO2006 regarding almost-perfect

monitoring private monitoring games with general signal spaces could be useful. This is

due to the fact that as long as the lag distribution has finite support, we can take the K

chosen in Lemma 2.4.6 to be sufficiently large so that each thread corresponds to a private

monitoring game.26 However the conjecture in Remark 4 of HO2006 regarding the partition

of signals contains an error and thus cannot be applied.27 Instead, we conjecture that the

set of all belief-free equilibrium payoffs in n-player games without communication can be

attained in the analogous games with lags. Using results from Yamamoto (2009), one could

then obtain a lower bound on the limit equilibrium payoff sets for n-player repeated games

with almost-perfect monitoring structures and observation lags.

26Note that this is not the case if the lag distribution’s support is not finite.

27Specifically, Remark 4 suggests that one can find a partition of the private signals to restore the invertibility
of the appropriate information matrix so that their results go through, with the elements of the partition treated
as the set of private signals. However inference about others’ private histories is different across different signals
within the same element of the partition so that it is not clear whether the appropriate incentive compatibility
conditions would hold.
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A more substantial extension of our results would be to the case in which the lag

distribution varies with the discount factor. It seems likely that our results would extend to

settings in which longer lags become somewhat more likely as players become more patient,

but we do not know how rapid an increase can be accommodated.
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Chapter 3

Contagious Commitment via

Unknown Patience

3.1 Introduction

The literature on reputation in repeated interactions demonstrates how the introduction

of a small amount of uncertainty regarding the “rationality” of the long run player can

generate large benefits.1 Specifically whenever there is some small probability that the long

run player is some behavioral Stackelbeg type who always plays the Stackelberg action,

then a sufficiently patient player can guarantee payoffs close to the Stackelberg payoff in all

equilibria of the game.2 This literature typically fixes the type space of player 1 and shows

that a sufficiently patient long run rational player can guarantee payoffs arbitrarily close to

the Stackelberg payoff in all equilibria. However when we instead fix the payoff function of

the long run player (in particular fixing the patience of the long run player), if monitoring

of the long run player’s action is noisy, then whenever the type space assigns sufficiently

small probability to the behavioral types, there typically exist equilibria in which the long

1See for example Kreps et al. (1982), Fudenberg and Levine (1989), and Mailath and Samuelson (2006).

2Recall that the Stackelberg action is the action that he would prefer to choose in the stage game if player 2
could observe player 1’s choice of action before choosing his action. The payoff in the corresponding strategy
profile is then called the Stackelberg payoff.
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run rational player obtains payoffs much lower than the Stackelberg payoff.3 In other words,

reputation effects vanish in these models when the probability of the behavioral types is

sufficiently small for a long run player with a fixed level of patience.

This paper demonstrates that if uncertainty over patience of the long run player is

introduced along with the typical uncertainty regarding the rationality of the long run

player strong reputation effects emerge even when the probability assigned to the behavioral

types is arbitrarily small. We show that in a game where the long run player must choose an

action that he must commit to for the entirety of the game, the introduction of uncertainty

regarding patience together with uncertainty about the rationality of the long run player

generates very strong reputation effects that do not depend on the probability of the

behavioral types. We show more strongly that the required amount of uncertainty regarding

the patience of the rational long run player necessary to generate these strong reputation

effects is quite small.4

With uncertainty over patience, these strong reputation effects are the result of a conta-

gion effect initiated by very patient types. Whenever there is some positive probability that

the long run player is a behavioral Stackelberg type, regardless of the size of this probability,

some positive mass of the most patient types have a strict incentive to play the Stackelberg

action in all equilibria. This then reinforces the reputation effect by effectively increasing

the probability of types that play the Stackelberg action in all equilibria. This increase in

turn incentivizes those less patient types to also play the Stackelberg action, leading to a

contagion of types who play the Stackelberg action in all equilibria. Our main result shows

that even when very patient types are extremely small in probability, this contagion effect

is very strong so that types with intermediate levels of patience (bounded away from no

discounting) obtain high payoffs in all equilibria even when the probability of the behavioral

types becomes arbitrarily small.

To prove our main theorem, we show that there must exist some x⇤ > 0 such that

3See Section 3.5 for a precise statement.

4See Assumption 3.4.1 for a precise statement of the requirements imposed on the distribution over patience.
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whenever the type space assigns positive probability to a Stackelberg commitment type, the

probability with which the long run player plays the Stackelberg action must be at least x⇤

in all equilibria.5 Consider the hypothetical scenario in which the probability that the long

run player player plays the Stackelberg action is given by x > 0. Now given such an x, using

the arguments from Fudenberg and Levine (1989), we can show that the most patient types

will strictly prefer to play the Stackelberg action. Thus there exists some lower bound X

such that at least a mass X(x) > 0 must strictly prefer to play the Stackelberg action given x.

Thus an equilibrium must be such that x � X(x). If X is such that there exists some x⇤ so

that for all x 2 (0, x⇤), x < X(x) then we have shown that any equilibrium with x > 0 must

also satisfy x > x⇤, which is the desired conclusion. Our proof technique will establish that

X must have this property under suitable conditions on the type space.

The reason why a very weak condition such as that imposed in Assumption 3.4.1 suffices

for the reputation theorem is due to the fact that the benefits of reputation erode very

slowly as x decreases. More precisely, the lower bound (derived by Gossner (2011)) to

playing the Stackelberg action for a rational type with discount factor δ takes the form

w(�(1 � δ) log(x)) for some continuous function w.6 Importantly � log(x) increases to

infinity as x ! 0 at a very slow rate and so for a rational type with discount factor δ, the

value to playing the Stackelberg action does not fall very rapidly as x approaches 0.7 This

means that even for small values of x, a large mass of rational types are still willing to play

the Stackelberg action in all equilibria, providing a strong kick-start to the contagion effect

highlighted above. In contrast, if the lower bound on the payoff to playing the Stackelberg

action took the form w(�(1 � δ)x�1), then Assumption 3.4.1 would no longer suffice for

a result in the spirit of our main theorem. Thus the fact that the lower bound takes the

particular form derived in Gossner (2011) is crucial for the main theorem.

In Section 3.6, we explicitly calculate the exact size of the contagion effect and compute

5Note importantly that x⇤ does not depend on the probability the type space assigns to the Stackelberg type.

6The fact that the lower bound can be expressed as a function of �(1 � δ) log(x) can also be derived from
Fudenberg and Levine (1992).

7In fact for any ρ > 0, there exists some x⇤ such that whenever x < x⇤, x�ρ
> � log(x).
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the payoffs that each type gets in equilibria as the size of the Stackelberg type becomes

very small. We perform these calculations in a continuous time model in which there is

one behavioral type who always plays the Stackelberg action and a uniform distribution of

patience levels of the rational types. Consistent with the predictions of Section 3.4, we show

that as the probability of the behavioral type converges to zero, the mass of types who play

the Stackelberg action converges to large masses. We show that this limit is unique and that

even moderately patient types obtain very high payoffs even in the limit.

3.1.1 Literature Review

As discussed in the introduction, this paper contributes to the literature that studies repu-

tation effects in repeated games, which began with Kreps et al. (1982) and Fudenberg and

Levine (1989). Fudenberg and Levine (1992) extended their results to settings in which the

long run player’s actions are observed imperfectly. These papers show that when some

uncertainty about the rationality of the long run player is introduced, a sufficiently patient

player can guarantee payoffs close to the Stackelberg payoff in all equilibria of the game.

In contrast, Faingold and Sannikov (2011) study reputation effects in a continuous time

model when the discount factor of the long run player is not necessarily close to one. As a

result, the players do not necessarily obtain payoffs close to the Stackelberg payoff. Their

continuous time approach allows them to analyze reputation effects of impatient long run

players through the study of ordinary differential equations. As a result their model can

study the evolution of beliefs over time in equilibrium that the standard discrete time model

cannot.

Methodologically, the techniques in this paper rely on bounds to reputation that are

developed in Gossner (2011), which improve on the payoff bounds obtained in Fudenberg

and Levine (1992). These bounds prove useful for our purposes as it allows us to obtain

sufficient estimates on the mass of types who have strict incentives to play certain actions.

Similarly Faingold (2013) illustrates the usefulness of Gossner’s bounds in studying reputa-

tion effects when the interactions between the long run and short run player become very
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frequent.

There is also a string of recent papers that model reputation effects without behavioral

commitment types. For example, Board and Meyer-ter Vehn (2013) study an alternative

reputation model where the actions of the long run player have long-lasting but transitory

effect on “quality”. As a result, the long run player has an incentive to provide effort to

improve the quality of his product, yielding reputation-like effects. Relatedly Dilmé (2012)

study a model that also generates rich reputation dynamics in a model where the long

run player faces costs to switching their actions. Additionally Bohren (2011) studies more

general stochastic games where actions have a persistent effect on an evolving state variable.

This influence of the long run player’s action on the state variable then gives rise to effects

that resemble the traditional reputation effects. Finally Weinstein and Yildiz (2012) shows

that in finitely repeated games, any arbitrary commitment type that is programmed to

play a certain strategy in the can be constructed in a standard finitely repeated game using

only incomplete information about the stage game payoffs. By introducing higher order

uncertainty about the stage game payoffs of the long run player, Weinstein and Yildiz (2012)

construct types whose unique rationalizable action in the incomplete information game is

to play the strategy that the commitment type is programmed to play.

Finally some recent papers study reputation effects in models that relax some of the

restrictive assumptions that the standard reputation models imposes. Liu and Skrzypacz

(2014) study a model in which the short run players can only observed a limit number

of observations regarding the reputation builder’s action. Liu (2011) studies a similar

reputation model where the short run player must pay a cost to acquire information about

the long run player’s past chosen actions. As a result, both of these papers exhibit reputation

dynamics where play switches between phases of reputation building and reputation

exploitation and spending. Finally Jehiel and Samuelson (2012) study reputation building

in a model with short run players who form beliefs about the long run player’s intended

course of play according to a simpler rule than that required in sequential equilibrium. As

a consequence, the long run player can guarantee payoffs that are strictly higher than the
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Stackelberg payoff.

The remainder of the paper is organized as follows. Section 3.2 describes the model.

Section 3.3 proves the existence of a Nash equilibrium of the described game so that our

results are not vacuous. Section 3.5 illustrates the necessity of both behavioral commitment

types and arbitrarily patient rational types for reputation results. Section 3.4 presents our

main reputation theorem and its proof illustrating how uncertainty about discount factors

help generate strong reputation effects even for small probabilities of the commitment types.

Section 3.6 performs some numerical computations in a continuous time modification of the

main game to illustrate the exact size of the contagion effect. Finally Section 3.7 concludes.

3.2 Model

There are two players i = 1, 2, each with a finite action space Ai. Player 1 moves only once

at time 0 and picks an action a1 2 A1.8 There is an infinite sequence of short run player

2’s who each picks an action a2 2 A2 at times t = 0, 1, 2, . . . At the end of each period, the

players observe a stochastic outcome y 2 Y which is drawn independently and identically

from a finite set Y according to the probability density function π(· | a1) 2 ∆(Y) where a1 is

the action chosen by player 1 in period 0.

Note importantly that the public signal distribution π( · | a1) potentially depends on the

action a1. This dependence is used by player 2 to make inferences about the actually chosen

action a1. We impose the following standard assumption on the public signal structure.

Assumption 3.2.1. For all y 2 Y and all a1 2 A1, π (y | a1) > 0. Furthermore (π (· | a1))a12A1

forms a matrix that has full row rank.

The first part of the assumption states that all signals are possible regardless of the action

a1. The second part assumes that the long run player’s action is statistically identifiable

so that eventually if enough observations of Y are observed, player 2 will learn the true

8This is a significant departure from the classical reputation literature where both players choose actions at
each time t = 0, 1, 2, . . . As discussed in the introduction, we want to study how uncertainty regarding patience
can alleviate the cost of influencing the short run players’ beliefs about his own action.
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action. Note that Assumption 3.2.1 holds generically if we regard the public signal structure

(π (· | a1))a12A1
as a vector in R

|A1|·|Y|.

We now introduce two sources of private information regarding player 1: uncertainty

over rationality and patience. The first is standard in the literature on reputation building but

the second is new. To model these two sources of uncertainty, we construct a type space

(Ω, µ) where each ω 2 Ω represents a type of player 1. In our model we assume that there

is no uncertainty regarding the type of player 2 and thus there are no types for player 2.

We define a type space to be a pair (Ω, µ) of a measurable space Ω together with a

probability measure µ on Ω. In this paper we consider a specific form for Ω: we partition

Ω into two sets Ωr and Ωb (so that Ω = Ωr [ Ωb) where Ωr denotes the set of all rational

types and Ωb denotes the set of all behavioral types. Each ω 2 Ωb is associated with a pure

strategy a1 2 A1 and is programmed to always play his associated strategy at time 0. Let

us denote the type ω 2 Ωb that corresponds to the action a1 as ωa1
. The set of rational

types Ωr is defined on the interval [0, 1). We interpret a type in Ωr as δ 2 [0, 1) where δ

represents the discount factor of the type. We let µr denote the conditional distribution

over Ωr and assume that this probability measure admits a density f in L1([0, 1]) with

cumulative density function F.

As a concrete example of an economic setting that we have in mind, consider a firm

servicing a group of customers that needs to decide on the hire of one of two candidates

to run its operations. The firm is able to perfectly verify the abilities of the two candidates

however this information is not available to its consumers. The better candidate is able to

produce better products attracting more demand from the consumers. However the better

candidate comes at a cost as the firm must pay him higher wages. Because information

about the ability level of the hired candidate arrives to the customers imperfectly, the firm

may not be able to convince the market immediately that he has hired the better candidate.

Having described the type space, let us define the strategies of the players. A pure

strategy for player 1 is a measurable map s1 from Ωr ! A1. Note that such a map can be

identified with a function ŝ1 in L∞
�
[0, 1]m�1

�
where each coordinate takes a value in the
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binary set {0, 1} and ŝ`1(δ) = 1 if and only if δ 2 Ωr and s1(δ) = a`1. Let S1 be the set of

pure strategies in this space. In the Appendix we show that S1 can be endowed with the

appropriate topology to make it a nonempty, compact, metric space. We then define the

set of player 1 mixed strategies Σ1 as the set of Borel probability measures over S1. With

a slight abuse of notation, given any σ1 2 Σ1, a1 2 A1, and a type space (Ω, µ), we define

σ1[a1] as the total probability that player 1 plays a1:

σ1

h

a`1

i

= µ

h

ωa`1

i

+ µ[Ωr]
Z

s12S1

Z

δ2Ωr

s`1(δ)dF(δ)dσ1[s1].

Similarly define σr
1

⇥
a`1
⇤
⌘ σ1

⇥
a`1
⇤
� µ

h

ωa`1

i

to be the total probability that a rational type

plays a`1.

To define player 2’s strategy, we first need to define histories. Let Ht be the set of t-period

public histories and define H =
S∞

t=0 Ht. Then we define player 2’s strategy to be a map

σ2 : H ! ∆(A2). Note that we restrict to strategies of player 2 that are public and do not

depend on player 2’s private history.9

Let us now specify the payoff functions of the players. Player 1 derives ex-ante utility of

V(σ1, σ2) =
Z

S1

1Z

0

Es1(δ) [U1(s1(δ), σ2, δ)] dF(δ) dσ1[s1]

from playing a mixed strategy σ1 2 Σ1 against σ2 2 Σ2 where

Ea1
U1(a1, σ2, δ) = Ea1

(1 � δ)
∞

∑
t=0

δtu1(a1, σt
2(h

t)).

Player 1’s objective is to maximize V(σ1, σ2) against σ2. This means that V(s1, σ2) � V(s01, σ2)

for all s01 2 S1 and all s1 2 S1 σ1-almost everywhere. Note that this in turn means that for

σ1-almost every s1 2 S1,

Es1(δ)U1(s1(δ), σ2, δ) = max
a012A1

Ea01
U1(a01, σ2, δ)

at F-almost every δ 2 [0, 1].

9This is without loss of generality for equilibrium since player 1’s action is only chosen in period 0 and thus
does not change based on the history.
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Player 2 simply maximizes expected payoffs at every history h 2 H conditional on

available information:

σ2(h) 2 arg max
σ0

2

Eσ1

⇥
u2(a1, σ0

2) | h
⇤

.

In other words player 2 is completely myopic and only cares about how σ2(h) performs

against his beliefs about player 1’s played action in the current period.10 The solution

concept we use is Nash equilibrium (σ1, σ2) where σ1 is an ex-ante best response against

σ2 according to the payoff function V and σ2 is a best response at every history h 2 H

according to beliefs consistent with Bayesian updating.11

Finally we impose the following mild assumptions on the stage game utility functions

u1 and u2:

Assumption 3.2.2. Given any pure strategy a1 2 A1 of player 1, player 2 has a unique strict

best response which we denote B(a1).

Assumption 3.2.3. Given any two distinct actions a1, a01 2 A1, u1(a1, a2(a1)) 6= u1(a01, a2(a01)).

Note that these assumptions hold for generic payoff functions. Let us also extend B to the

space of mixed actions α1 2 ∆(A1) by defining B(α1) as the set of best responses in the stage

game for player 2 against α1. Let m = |A1| and without loss of generality, order the actions

of player 1 so that

u1(a1
1, B(a1

1)) > u1(a2
1, B(a2

1)) > · · · > u1(am
1 , B(am

1 )).

We shorten notation further by defining ak
2 = B(ak

1) and u1(ak
1, ak

2) = vk
1. Recall in the

literature that a1
1 is commonly called the Stackelberg action of the stage game. As a final

piece of notational simplification, define ωS = ωa1
1
.

10This is without loss of generality since even if player 1 faced a single non-myopic player 2, player 2 would
have no incentive to play a non-myopic best response at any history because his actions do not influence the
signal process.

11Note that because the public signal structure has full support, Bayes’ rule pins down unique beliefs at all
public histories.
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3.3 Existence of Equilibrium

Due to the fact that the type space is a continuum, there is no pre-existing general existence

theorem that we can immediately apply here and we must explicitly prove the existence

of an equilibrium. We first find that when a1
1 is a Nash equilibrium of the stage game,

an equilibrium trivially exists if the behavioral type probability is sufficiently small. This

implies the following:

Theorem 3.3.1. Suppose that a1
1 is a Nash equilibrium of the stage game. Then there exists some

ν⇤ > 0 such that if µ[Ωb] < ν⇤, then there exists a Nash equilibrium in which all rational types play

a1
1.

Obviously there are two limitations to the statement above. First a1
1 may not be a Nash

equilibrium of the stage game and secondly we may be interested in analyzing games

in which the probability of a behavioral type is not necessarily small. Demonstrating

existence in such games requires a different proof technique as the construction of trivial

equilibria is no longer possible. For example consider the strategy profile in which all

players play a1
1 with probability one. This cannot be an equilibrium of the repeated game

if µ[Ωb] is very small and a1
1 is not a Nash equilibrium. The reason is that because almost

all types are playing a1
1 (with the exception of the behavioral types), player 2 places large

probability on player 1 playing a1
1 for a long time regardless of the history of realized public

signals. However the less patient types of player 1 would then have an incentive to cheat

because player 2’s posterior does not decrease until very late in the game even if he were

to play a non-Stackelberg action. Therefore in any equilibrium, at least a positive fraction

of the types must necessarily play an action besides aS
1 with positive probability when

µ[Ωb] is sufficiently small. Nevertheless, we can still prove an existence theorem using

non-constructive methods.

Theorem 3.3.2. Suppose µr is absolutely continuous with respect to the Lebesgue measure. Then a

Nash equilibrium exists.

Proof. See Appendix.
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3.4 Reputation and Contagion

We now show that when even a moderate amount of uncertainty regarding patience (in a

sense to be made precise) exists, a non-vanishing fraction of rational types must play a1
1

with probability 1 even when µ[ωS] vanishes to zero. Thus uncertainty regarding patience

interacts with uncertainty about the rationality of the long run player to substantially lower

the cost of convincing the short run player of his intended action, which in turn guarantees

payoffs close to what one would obtain under perfect monitoring for even a moderately

patient long run player. We will show in Section 3.5 Theorem 3.5.2 that some restrictions on

µr are necessary in order to prove such a theorem. In particular, Theorem 3.4.2 requires at

the very least that types of arbitrarily high levels of patience exist with positive probability.

The condition that we impose however is arguably slightly stronger and is summarized in

the following assumption.

Assumption 3.4.1. µr is an absolutely continuous measure with respect to the Lebesgue

measure on [0, 1) and let F be its cumulative distribution function (cdf). There exists some

δ < 1 and some k � 1 such that F is continuously k-times differentiable at all points δ � δ

and

lim
δ!1

DkF(δ) 6= 0.

In words, the assumption states that the density does not vanish too rapidly near δ = 1.

This precludes for example the distributions studied in Section 3.5 where F(δ⇤) = 1 for

some δ⇤ < 1. However note that the assumption does not require the density of arbitrarily

patient types to be non-vanishing. A trivial example of a probability measure that satisfies

this assumption is the uniform distribution over [0, 1). Similarly any distribution whose

density converges to some strictly positive number as δ ! 1 also satisfies the assumption.

Moreover any cdf that has any derivative that converges to a number other than zero as

δ ! 1 also satisfies the assumption. Thus the assumption is quite weak.12

12In fact if F can be extended to a function F̃ that is analytic on an open set H ◆ (0, 1], then if F violates
Assumption 3.4.1, F must be identically zero on H which is a contradiction of the fact that F is a cdf. Therefore
if F has an analytic extension to an open set H ◆ (0, 1], then F must satisfy Assumption 3.4.1.
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With this let us now state the main theorem. Due to our negative results from the

previous section, we must impose further restrictions on the type space: µ[ωS] > 0 and

µ[Ωr] is bounded away from zero. For a given ρ > 0, let us define the set Fρ in the following

manner:

Fρ ⌘ {(Ω, µ) : µ[ωS] > 0, µ[Ωr] > ρ}.

Note importantly that F places no restrictions on the size of µ[ωS] other than it being

positive. Finally given a cumulative distribution function F over Ωr = [0, 1), let Fρ(F) be

the set of elements of Fρ such that the conditional distribution over rational types coincides

precisely with F:

Fρ(F) ⌘ {(Ω, µ) 2 Fρ : µr = F}.

Theorem 3.4.2. Suppose that F satisfies Assumption 3.4.1 and let ρ > 0. Then under Assump-

tions 3.2.1, 3.2.2, and 3.2.3, for every ε > 0, there exists some δ⇤ such that all types with δ � δ⇤ obtain

a payoff of at least v1
1 � ε in every Nash equilibrium of G(Ω, µ) for all type spaces (Ω, µ) 2 Fρ(F).

Importantly note the order of quantifiers. The classical reputation results allow the

threshold δ⇤ to vary across type spaces (Ω, µ). What distinguishes this theorem is that δ⇤

holds uniformly across all type spaces in Fρ(F). Thus δ⇤ depends only on F and ρ and

not on the specific manner in which µ weights the elements of Ωb versus Ωr. To prove the

theorem, we show that regardless of type spaces in Fρ(F), there exists some ν⇤ such that

σ1[a
1
1] > ν⇤ in all Nash equilibria. Having established this argument, then the theorem above

is an immediate application of FL modified to the game we analyze.

3.4.1 Proof Sketch

Let us first highlight the essence of the arguments used in proving Theorem 3.4.2 in the

context of a game in which there are two rational types: one type ω1 who does not discount

payoffs and is a time-average payoff maximizer and another type ωδ with discount factor

δ 2 (0, 1). Then it is easy to show that the time-average payoff maximizer must always

choose the Stackelberg action in any Nash equilibrium as long as µ[ωS] > 0 since playing
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a1
1 results in exactly the Stackelberg payoff for this type whereas any other action yields a

strictly lower payoff.

Then the fact that ω1 plays a1
1 in all Nash equilibria reinforces reputation effects for type

ωδ of lower patience even when µ[ωS] is small since there is now a measure µ[ωS] + µ[ω1]

of types who play a1
1 in all equilibria. Regardless of the size of µ[ωS], there must always

be a measure µ[ω1] of types who play a1
1 in all equilibria as long as µ[ωS] is positive. As a

consequence if µ[ωS] > 0, ε > 0, and η > 0, there exists some δ⇤ such that if δ > δ⇤, then

type ωδ is able to guarantee himself a payoff of at least v1
1 � ε in all equilibria and all type

spaces with µ[ω1] > η.

The argument above relies on a very restrictive assumption: the type space places strictly

positive probability on a type (the ω1 type) whose uniquely rationalizable action is the

Stackelberg action in any type space in which µ[ωS] > 0. The remainder of this section will

illustrate how this simple argument can indeed be extended to quite general type spaces in

which such a type ω1 may not exist.

We illustrate heuristically how the proof can indeed be extended. The intuition can be

seen most clearly in the two action case and so suppose that A1 consists of the Stackelberg

action a1
1 and an action a2

1 6= a1
1. Consider a type space (Ω, µ) with µ[ωS] > 0 and

Ω = Ωr [ {ωS}. Let σ be a Nash equilibrium. Note that if σ1[a
1
1] > 1/2, then reputation

effects are already strong and so let us assume that σ1[a
1
1]  1/2. This then means that

σ1[a
2
1] � 1/2.

Now choose ε > 0 such that v1
1 � ε > v2

1 + ε. Then with the use of upper bounds to

payoffs obtained in Fudenberg and Levine (1992) or Gossner (2011), we can find δ⇤ < 1

such that the most that any type δ > δ⇤ can obtain from playing a2
1 is v2

1 + ε. Importantly

note that this δ⇤ holds uniformly across all σ1 with the property that σ1[a
1
1]  1/2 and is in

particular independent of the size of µ[ωS].

At the same time because σ1[a
1
1] � µ[ωS] > 0, we can also find δ0 � δ⇤ such that all

types δ > δ0 obtains at least v1 � ε = u1(a1
1, a1

2)� ε from playing a1
1.13 This then implies that

13Unlike δ⇤, note that δ0 cannot be taken to be independent of neither µ[ωS] nor σ1.
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for any type δ > δ0, σ1(δ) must assign probability one to a1
1 and therefore the probability

which σ1 assigns to a1
1 must at the very least be:

σ1[a
1
1] � X0 ⌘ µr[(δ0, 1)]µ[Ωr] + µ[ωS].

Now note that because δ0 depends on µ[ωS] (and may a priori converge to one as µ[ωS] ! 0)

the argument above is insufficient for establishing a uniform lower bound on σ1[a
1
1] across

all equilibria and all type spaces with µ[ωS] > 0.

However we can iterate this argument using the new lower bound X0 on the probability

with which a1
1 must be played. More generally, given a probability σ1[a

1
1] > 0, using the

same arguments above, we can find a decreasing function δ̂(σ1[a
1
1]) (as a function of σ1[a

1
1])

such that all types δ > δ̂(σ1[a
1
1]) must play a1

1 with probability one. This then implies that

for all σ1 such that σ1[a
1
1]  1/2,

σ1[a
1
1] � µr[(δ̂(σ1[a

1
1]), 1)]µ[Ωr] + µ[ωS] � X(σ1[a

1
1]) ⌘ µr[(δ̂(σ1[a

1
1]), 1)]µ[Ωr]. (3.1)

This function X, under fairly mild conditions on the measure µr, turns out to possess the

nice property that the derivative near zero is strictly bigger than 1.

As evidenced by Figure 3.1, this property implies that X must lie strictly above the

45-degree line in a neighborhood around zero. Furthermore because µ[ωS] > 0 and

consequently σ1[a
1
1] > 0, inequality (3.1) illustrates that any equilibrium must have the

property that σ1[a
1
1] lies strictly to the right of the point at which F crosses the 45-degree

line. This therefore shows that no matter how small µ[ωS] is, as long as it is positive, σ1[a
1
1]

is at least x⇤. At this point, one may wonder how we can conclude the particular shape of

the function X that lies at the heart of the conclusion just established. Broadly speaking,

this observation is a consequence of the fact that the value of a reputation effect emerging

from the existence of ωS erodes very slowly as µ[ωS].
14 We now shed light on this fact in

the next subsection.

14In particular see Lemmata 3.4.3 and 3.4.14 as well as Theorem 3.4.7 for the details.
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Figure 3.1: Lower Bound on σ1[a
1
1]

3.4.2 Details of the Proof

Mathematical Preliminaries

Having illustrated the main ideas of the proof technique, we proceed to the proof in more

detail. Given any ε > 0, define the function Gν : (0, 1] ! R:

Gν(x) =

✓

1 � F

✓

1 +
ν

log x

◆◆

.

Before relating our discussion to the derivation of our key lemma, we first note a purely

mathematical lemma that will prove useful for the estimates we wish to obtain.

Lemma 3.4.3. The following two statements hold.

1. Let p : R ! R be a polynomial over the reals. Then xp(log x) ! 0 as x ! 0.

2. Suppose h is some function h : (�∞, 0] ! R such that there exists k � 1 such that
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limx!0 Dkh(x) 6= 0. Let q(x) = h
⇣

(log x)�1
⌘

. Then limµ!0 Dq(µ) = +∞.

Proof. We now prove the first statement. To prove the statement, it is sufficient to show that

limx!0 x(log x)k = 0 for all k � 0. This is trivial for k = 0. Suppose that the statement holds

for k � 1. Then using L’Hospital’s rule,

lim
x!0

x(log x)k = lim
x!0

(log x)k

1/x
= lim

x!0
� k(log x)k�1x�1

x�2
= lim

x!0
�k(log x)k�1x = 0.

This proves the first claim.

Then the second claim is a consequence of the first.

Dq(x) = �Dh
�
(log x)�1

�

x(log x)2

Let k⇤ be the minimum positive integer k > 0 for which limx!0 Dkh(x) 6= 0. If k⇤ = 1, then

clearly limx!0 Dq(x) = +∞ since limx!0 x(log x)2 = 0.

To prove the result for k⇤ > 1, we show that if k⇤ � k � 1, then

lim
x!0

Dq(x) = lim
x!0

(�1)k Dkh((log x)�1)

xp(log x)

for some p : R ! R a polynomial. Clearly this holds for k = 1. Now suppose it holds for

k < k⇤. Then by L’Hospital’s rule, we have:

lim
x!0

Dq(x) = lim
x!0

(�1)k Dkh((log x)�1)

xp(log x)

= lim
x!0

(�1)k+1 Dk+1h((log x)�1)

p(log x) + Dp(log x)

1

x(log x)2

= lim
x!0

(�1)k+1 Dk+1h((log x)�1)

x(log x)2 (p(log x) + Dp(log x))

Then note that (log x)2 (p(log x) + Dp(log x)) is a polynomial in log x. Thus this completes

the induction.

As a consequence, we have:

lim
x!0

Dq(x) = lim
x!0

(�1)k⇤ Dk⇤h((log x)�1)

xp(log x)
= +∞,

where the last equality uses statement 1 of the lemma. This concludes the proof.
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Remark. The role that log x plays will become apparent once we begin to study how beliefs

are updated by the short run player. However the above lemma illustrates a remarkable

property of the function (log x)�1 near x = 0, which is essential in guaranteeing that the

contagion effect is strong enough to ensure that reputation effects persist even when the

probability of behavioral types becomes arbitrarily small.

Now with the help of Lemma 3.4.3, Assumption 3.4.1 directly translates to a useful

mathematical property regarding the function Gν, which we summarize in the following

corollary.

Corollary 3.4.4. Suppose that Assumption 3.4.1 holds and let ν > 0. Then

lim
x!0

DGν(x) = +∞.

Relating this property back to the arguments in Section 3.4.1 outlining the proof of

Theorem 3.4.2, Corollary 3.4.4 will be used to show that the lower bound function F takes

the shape illustrated in Figure 3.1. The fact that the curve F in Figure 3.1 is very steep near

0 in the figure is not a mere coincidence and rather corresponds exactly to the property

demonstrated above that the function Gξ,ε has infinite derivative at exactly zero.15

Proof of Corollary 3.4.4: The proof is a direct consequence of Lemma 3.4.3. Define the func-

tion: β(x) = 1 + νx. Then we can rewrite Gν:

Gν(x) = 1 � F(β((log x)�1)).

Now define h(x) = 1 � F(β(x)). By Lemma 3.4.3 it is sufficient to show that there exists

some k � 1 such that limx!0 Dkh(x) 6= 0.

Then note that

Dkh(x) = �νkDkF(β(x)).

15Note that an infinite slope near 0 is not necessary for the arguments. Rather it is sufficient that the slope
near 0 is strictly greatly than 1. Nevertheless the strong conclusion of Corollary 3.4.4 is the result of a very mild
assumption.
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Thus

lim
x!0

Dkh(x) 6= 0 , lim
x!0

DkF(β(x)) 6= 0.

But Assumption 3.4.1 implies that there exists k � 1 such that limx!0 DkF(β(x)) 6= 0.

A Review of Gossner (2011)

To establish that the function G defined above is indeed a lower bound on σ1[a
S] we first

review some tools developed in the classical reputation literature on upper and lower

bounds on equilibrium payoffs. To derive these upper and lower bounds we specifically use

the tools developed and studied by Gossner (2011). Recall the following definitions. Given

any two measures p, q 2 ∆(Y), the relative entropy is defined as

d(p k q) = ∑
y2Y

p(y) log

✓
p(y)

q(y)

◆

.

Note that in this paper due to Assumption 3.2.1, the measures of interest always have full

support on Y and so d(p k q) is always well-defined.

Definition 3.4.5. α2 2 S2 is an ε-entropy-confirming best response to α1 2 S1 if there exists

α0
1 such that the following conditions hold:

• α2 is a best response to α0
1.

• d(π( · | α1, α2) k π( · | α0
1, α2))  ε.

Bd
α1
(ε) denotes the set of ε-entropy-confirming best responses to α1.

We now define the following functions.

vα1
(ε) = min

α22Bd
α1
(ε)

u1(α1, α2).

Similarly define

vα1
(ε) = max

α22Bd
α1
(ε)

u1(α1, α2).
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We denote the supremum of all convex functions that lie below vα1
as wα1

and the infimum

of all concave functions above vα1
as wα1

.16

Finally recall the following facts from Gossner (2011).

• vα1
and wα1

are nonincreasing and both continuous at 0.

• wα1
and wα1

are nondecreasing and both continuous at 0.

• vα1
(0) = wα1

(0) and wα1
(0) = wα1

(0).

With these facts and statistical identifiability of player 1’s action due to Assumption 3.2.1,

we immediately obtain the following lemma.

Lemma 3.4.6. Let η > 0. Then there exists some ν⇤ > 0 such that

|wa1
(ν)� u1(a1, a2(a1))| < η,

|wa1
(ν)� u1(a1, a2(a1))| < η

for all ν  ν⇤ and all a1 2 A1.

With all of these definitions, we have the following payoff bound due to Gossner (2011)

adapted to the specific game we analyze.

Theorem 3.4.7. Let σ be any Nash equilibrium of the Bayesian game. Then given any a1 2 A1 such

that σ1[a1] > 0,

wa1
(�(1 � δ) log[σ1[a1]])  U1(a1, σ2)  wa1

(�(1 � δ) log[σ1[a1]]).

The following section will now use these payoff bounds and the property of the function Gν

illustrated in Lemma 3.4.4 to prove Theorem 3.4.2.

3.4.3 Concluding the Proof of Theorem 3.4.2

Because of Gossner (2011) and Theorem 3.4.7, the following lemma immediately implies the

main theorem and the remainder of the section will be devoted to proving it.

16Technically, Gossner (2011) did not define the function vα1 nor wα1 but the properties of these functions are
essentially the same as the function w defined there.

117



Lemma 3.4.8. Let ρ > 0 and suppose F satisfies Assumption 3.4.1. Then there exists some ν⇤ > 0

such that σ1[a
1
1] > ν⇤ for all σ 2 E(Ω, µ) and all (Ω, µ) 2 Fρ(F).

Sequence of Games

Consider a sequence of games with type spaces given by (Ω, µn) where we fix the conditional

probability measure on Ωr with corresponding cumulative distribution function F. We

assume that µn[ωS] ! 0 but that µn[ωS] > 0 for all n. We now study the properties of the

limit of equilibria of this sequence of games. More formally, denote by E(Ω, µn) to be the

set of equilibrium strategy profiles of the game G(Ω, µn). To further simplify the exposition,

we introduce the following definition.

Definition 3.4.9. Given λ 2 ∆(A1), we say that a sequence {(σn, µn)}n approximates λ if

1. (Ω, µn) 2 Fρ(F) for all n,

2. σn 2 E(Ω, µn) for all n,

3. µn[ωS] ! 0,

4. and σn
1 [a] ! λ[a] for all a 2 A1.

Then let us define the following set of distributions over A1:

Πρ(F) ⌘ {λ 2 ∆(A1) : 9 a sequence {(σn, µ
n)}n that approximates λ}.

In words, the set Πρ(F) denotes the set of distributions over actions that can be ap-

proximated by equilibrium distributions over player 1 actions of games that place small

probability on the Stackelberg commitment type ωS. Recall that when F is a point mass

distribution at some δ⇤ < 1, then λ that places probability one on a player 1 strict Nash

action is indeed approximated by some sequence (σn, µn).

To arrive at our main theorem, we study properties of the set Πρ(F). Toward the end of

proving Lemma 3.4.8, we show first that it is sufficient to demonstrate the existence of some

ν > 0 such that λ[aS] > ν for all λ 2 Πρ(F). This greatly simplifies the analysis by allowing
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us to study the limit of equilibria as the probability of the behavioral types vanish rather

than studying the sets of equilibria of all type spaces in Fρ(F), which is undoubtedly a very

large space.

Lemma 3.4.10. Suppose that there exists ν > 0 such that λ[aS] > ν for all λ 2 Πρ(F). Then there

exists ν0 > 0 such that σ1[a
S] > ν0 for all σ 2 E(Ω, µ) for all (Ω, µ) 2 Fρ(F).

Proof. Suppose such a ν0 > 0 did not exist. Then for every n, we can find some (Ω, µn) 2

Fρ(F) with σn 2 E(Ω, µn) with σn
1 [a

S] < 1
n . But then this implies that σn

1 [a
S] ! 0 as n ! ∞

and in particular µn(ωS) ! 0.

Because [0, 1]m�1 is a compact subset of R
m we can find a convergent subsequence

σn`

1 . But then note that we have found a sequence such that σn` 2 E(Ω, µn`) for all ` and

(Ω, µn`) 2 Fρ(F) such that

σn`

1 [a] ! λ[a] 8a 2 A

for some λ 2 ∆(A1) and µn`(ωS) ! 0. This then implies that λ 2 Πρ(F). But by construction

we also had λ[aS] = 0. This then of course contradicts the main assumption of the

lemma.

Properties of Πρ(F)

We now turn our attention to the study of the set Πρ(F). With the help of Lemma 3.4.10, it

is sufficient to prove that there exists some ν > 0 such that λ[aS] > ν for all λ 2 Πρ.

Lemma 3.4.11. Πρ(F) is a closed set.

Proof. The proof follows from a standard diagonalization argument.

An immediate corollary is the following observation which we will use to prove Theo-

rem 3.4.2 by way of contradiction.

Corollary 3.4.12. Suppose there exists no ν > 0 such that λ[aS] > ν for all λ 2 Πρ(F). Then there

exists λ0 2 Πρ(F) such that λ0[aS] = 0.
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Now define L(λ) as the support of actions given a distribution λ 2 Πρ(F):

L(λ) = {` = 1, . . . , m : λ[a`1] > 0}.

Using this language due to the corollary just stated, it remains to show that 1 2 L(λ) for all

λ 2 Πρ(F). We first ....

Lemma 3.4.13. Suppose that λ 2 Πρ(F) and let `⇤ = minL(λ). Suppose further that (σn, µn)

approximates λ. Then there exist n⇤ and δ⇤ such that σn
1 (δ)[a

`
1] = 0 for all n > n⇤, δ > δ⇤ and all

` 2 L(λ) such that ` > `⇤.

Proof. We use Theorem 3.4.7. Fix an ε > 0 sufficiently small so that

v`
⇤+1

1 < v`
⇤

1 � ε < v`
⇤

1 + ε < v`
⇤�1

1 .

By Lemma 3.4.6 we can choose ν⇤ > 0 such that

v`
⇤

1 + ε < wa`1
(ν) for all ` < `⇤

v`
⇤

1 � ε < wa`
⇤

1
(ν) < wa`

⇤
1
(ν) < v`

⇤
1 + ε, and

wa`1
(ν) < v`

⇤
1 � ε for all ` > `⇤

for all ν  ν⇤. Then because ζ`n ! ζ` > 0 for all ` 2 L, there exists some n⇤ and δ⇤ such that

�(1 � δ) log(ζ`n)  ν⇤ for all ` 2 L, all n � n⇤, and all δ � δ⇤.

Then by Theorem 3.4.7, we obtain the following inequalities regarding the payoff to

playing a`1 for ` 2 L in the equilibrium σn for n � n⇤ and for any type δ � δ⇤:

v`
⇤

1 � ε < U1(a`
⇤

1 , σn
2 , δ) < v`

⇤
1 + ε,

U1(a`1, σn
2 , δ) < v`

⇤
1 � ε.

This immediately implies that all types δ � δ⇤ must play a mixed strategy with support

contained in Lc [ {`⇤} in the equilibrium σn for all n � n⇤.

The lemma above is very intuitive. Given a sequence (σn, µn) that approximates λ,

because all actions ` 2 L are played with positive probability in the limit, tight payoff
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bounds for each action ` 2 L hold uniformly for all n sufficiently large and all sufficiently

patient types.17 Then from these payoff bounds, sufficiently patient players must obtain

payoffs close to v`1 for playing an action ` 2 L at all n sufficiently large. Clearly for these

sufficiently patient players and these values of n, this means that the payoff from playing `⇤

must dominate the payoff for playing any other action ` 2 L for these sufficiently patient

players, which yields our desired conclusion.

Now we can conclude the proof. We have yet to invoke Corollary 3.4.4 and we will

do so in this final step of the proof. In this final step, we study the upper tail of the

distribution of types in Ωr and the actions that these types can play in equilibria that

approximate a distribution λ 2 Πρ(F). Invoking Lemma 3.4.13, we know that the upper

tail must concentrate their play on the set {`⇤} [ Lc where Lc ⌘ {1, . . . , m} \ L. Unlike in

Lemma 3.4.13 however, payoff bounds to playing an action ` 2 Lc no longer hold uniformly

for all n sufficiently large and all sufficiently patient types. So ruling out the play of certain

actions in {`⇤} [ Lc by these types is far more difficult. We use Corollary 3.4.4 precisely to

deal with this challenge. As discussed before, Corollary 3.4.4 will establish the existence of

a strong contagion effect that rules out the possibility that σn
1 [a

1
1] vanishes to zero.

Lemma 3.4.14. Suppose F satisfies Assumption 3.4.1 and let ρ > 0. Then there exists ν > 0 such

that λ[aS] > ν for all λ 2 Πρ(F).

Proof. Suppose that the lemma is false so that by Corollary 3.4.12, we can find λ 2 Πρ(F)

such that λ[aS] = 0. With a slight abuse of notation, let L = L(λ). Note by definition that

1 /2 L since λ[a1
1] = λ[aS] = 0.

Choose some sequence (σn, µn) that approximates λ. Using Lemma 3.4.13, there exists

some δ⇤ < 1 and some n⇤ such that σn
1 (δ)[a

`
1] = 0 for all δ > δ⇤, n > n⇤, and ` 2 L \ {`⇤}.

So without loss of generality, by replacing the original sequence with the subsequence

starting at n⇤ + 1, we can assume (σn, µn) to be a sequence that approximates λ and at

the same time σn
1 (δ)[a

`
1] = 0 for all ` 2 L \ {`⇤} and all δ > δ⇤. Furthermore because

17This would not be true if instead ` /2 L, because σn
1 [a

`
1] ! 0 for ` /2 L.
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σn
1 [a

`⇤
1 ] ! λ[a`

⇤
1 ] > 0, we can replace the sequence (σn, µn) with a further subsequence such

that σn
1 [a

`⇤
1 ] > λ[a`

⇤
1 ]/2 > 0 for all n.

Fix an ε > 0 sufficiently small so that

v`
⇤+1

1 < v`
⇤

1 � ε < v`
⇤

1 + ε < v`
⇤�1

1 .

Again as in the proof of Lemma 3.4.13, due to Lemma 3.4.6, we can choose ν⇤ > 0 such that

for all ν < ν⇤,

v`
⇤

1 + ε < wa`1
(ν) for all ` < `⇤

v`
⇤

1 � ε < wa`
⇤

1
(ν) < wa`

⇤
1
(ν) < v`

⇤
1 + ε, and

wa`1
(ν) < v`

⇤
1 � ε for all ` > `⇤.

Now because σn
1 [a

`⇤
1 ] > λ[a`

⇤
1 ]/2 > 0 for all n, there exists some δ̄ � δ⇤ such that

�(1 � δ) log
⇣

σn
1 [a

`⇤
1 ]
⌘

< ν⇤

for all δ > δ̄ and all n. Of course this implies that for all δ > δ̄ and all n,

v`
⇤

1 + ε > wa`
⇤

1

⇣

�(1 � δ) log
⇣

σn
1 [a

`⇤
1 ]
⌘⌘

. (3.2)

Now by Corollary 3.4.4, we can choose ε̄ 2 (0, ε) such that

lim
ξ!0

ρ

ξ + (m � 1)ε̄
min

⇢

1 � F

✓

1 +
ν⇤

log ξ

◆

, 1 � F(δ̄)

�

> 1.

Then we can choose ε⇤ 2 (0, ε̄) such that

ρ

ξ + (m � 1)ε⇤
min

⇢

1 � F

✓

1 +
ν⇤

log ξ

◆

, 1 � F(δ̄)

�

> 1 (3.3)

for all ξ < ε⇤.

We now establish an upper bound on the discount factor of a rational type who plays an

action in L with positive probability in a Nash equilibrium. Choose any `0 < `⇤. Due to
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inequality (3.2), a rational type with discount factor δ > δ̄ such that

w
a`

0
1

⇣

�(1 � δ) log
⇣

σn
1 [a

`0
1 ]
⌘⌘

> v`
⇤

1 + ε

cannot play a`
⇤

1 with positive probability. Thus any type who plays a`
⇤

1 with positive

probability must have a discount factor δ such that either δ  δ̄ or

�(1 � δ) log
⇣

σn
1 [a

`0
1 ]
⌘

> ν⇤ , δ < 1 +
ν⇤

log
�
σn

1 [a
`0
1 ]
� .

This means that for any n, all types with discount factor δ > max

⇢

1 + ν⇤
⇣

log
⇣

σn
1 [a

`0
1 ]
⌘⌘�1

, δ̄

�

must play an action supported in Lc ⌘ {1, . . . , m} \ L, which implies that for all n,

∑
`2Lc

σn
1 [a

`
1] � µ

n(Ωr)min

(

1 � F

 

1 +
ν⇤

log
�
σn

1 [a
`0
1 ]
�

!

, 1 � F(δ̄)

)

> ρ min

(

1 � F

 

1 +
ν⇤

log
�
σn

1 [a
`0
1 ]
�

!

, 1 � F(δ̄)

)

.

Recall by the definition of L that for all ` 2 Lc, σn
1 [a

`
1] ! 0 and therefore we can choose

n⇤ such that σn
1 [a

`
1] < ε⇤ for all n > n⇤ and all ` 2 Lc. Fix some n > n⇤. We now divide the

inequality above on both sides by ∑`2Lc σn
1 [a

`
1] yielding:18

1 �
 

∑
`2Lc

σn
1 [a

`
1]

!�1

ρ min

(

1 � F

 

1 +
ν⇤

log
�
σn

1 [a
`0
1 ]
�

!

, 1 � F(δ̄)

)

� ρ

σn
1 [a

`0
1 ] + (m � 1)ε⇤

min

(

1 � F

 

1 +
ν⇤

log
�
σn

1 [a
`0
1 ]
�

!

, 1 � F(δ̄)

)

.

But this directly contradicts inequality (3.3) and concludes the proof.

Then Lemma 3.4.14 together with Lemma 3.4.10 immediately imply Lemma 3.4.8,

proving Theorem 3.4.2.

18Recall that ∑`2Lc σn
1 [a

`
1] > 0 because σn

1 [a
1
1] > 0 for all n and 1 /2 L.
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3.5 Negative Results

In this section, we present two types of negative results that arise as the consequence of

particular specifications of the type space. Unlike the theorems analyzed in the classical

reputation literature, we fix the payoff functions of all players and vary the type space of

the long run player in order to study its’ effects on the set of equilibria.

3.5.1 Necessity of Behavioral Commitment Types

First we illustrate why behavioral commitment types are generally necessary for reputation

building.

Theorem 3.5.1. Suppose that the stage game has a pure Nash equilibrium a⇤ and suppose that

µ[Ωb] = 0. Then there exists a Nash equilibrium in which all rational types play a⇤1 with probability

one.

Proof. The proof is simple. Consider the strategy profile σ in which all types in Ωr play

a⇤1 . Then a best response for player 2 is to play a⇤2 at all histories since player 2 assigns

probability one to player 1 playing a⇤1 at every history regardless of the signals observed.

But then it is clear that a⇤1 is a best response for all player 1 types.

This shows that uncertainty regarding discount factors is not sufficient by itself to

generate reputation effects. The reason is due to the fact that in the standard complete

information model when the long run player is known to be rational and his discount factor

is common knowledge, the repetition of a pure static Nash equilibrium is always a Nash

equilibrium of the repeated game regardless of the discount factor.

Note however the above theorem simply notes that µ[Ωb] must be strictly positive and

does not necessarily require µ[Ωb] to be larger than some pre-specified value ξ > 0. We now

study the structure of equilibria when µ[Ωb] is strictly positive but small. We show that

even when this is the case, the set of equilibrium payoffs of the long run player generally

includes payoffs far below the long run player’s Stackelberg payoff.
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3.5.2 Necessity of Arbitrarily Patient Rational Types

Suppose that the discount factor of the rational type is known to be at most δ⇤ < 1 i.e.

F(δ⇤) = 1. Then it is easy to show the following:

Theorem 3.5.2. Suppose F(δ⇤) = 1 for some δ⇤ < 1 and the stage game has a strict Nash

equilibrium a⇤. Then there exists some ξ⇤ such that if µ[Ωb] < ξ⇤, there exists a Nash equilibrium

in which all rational types play a⇤1 with probability one.

First note that this includes the case of the standard model in which the discount factor

of player 1 is perfectly known. The argument is intuitive. When all rational types play

a⇤1 and the probability of non-rationality is sufficiently small, by deviating to a1
1, player 1

cannot convince player 2 that he indeed played a1
1 until very late in the game. Because of

discounting, these benefits arrive too late in the game for such a deviation to be desirable.

Proof. Consider the strategy in which all rational types play a⇤1 . Then given any type space

(Ω, µ), because of Assumption 3.2.1, the beliefs of player 2 about player 1’s action at any

public history ht, which we denote µ(ht), is uniquely defined due to Bayes’ rule. Given any

type space (Ω, µ), define player 2’s strategy to be such that σ2(ht) 2 B(µ(ht)). This now

defines a strategy profile σ. We will now show that given any (Ω, µ), σ constructed in the

above manner is indeed a Nash equilibrium whenever µ[Ωb] is sufficiently small.

Let ū = maxa2A u1(a). Because a⇤ is a strict Nash equilibrium, we can find t⇤ such that

max
a1 6=a⇤1

⇣

1 � (δ⇤)t⇤
⌘

u1(a1, a⇤2) + (δ⇤)t⇤u < u1(a⇤).

Then let π̄ be the maximum possible likelihood ratio among all actions and all public signals

when comparing against a⇤1 :

π̄ ⌘ max
y,a

π(y | a)

π(y | a⇤1)
.

Note then that given any t period history of signals (y0, y1, . . . , yt�1), the probability that
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player 2 assigns to player 1 playing a⇤1 is at least:

(1 � µ[Ωb])

µ[Ωb]
maxa12A1

π(y0|a1)

π(y0|a⇤1)
· · ·

maxa12A1
π(yt�1|a1)

π(yt�1|a⇤1)
+ (1 � µ(Ωb))

� 1 � µ[Ωb]

µ[Ωb]π̄t�1 + (1 � µ[Ωb])
.

Now let ν 2 (0, 1) be such that whenever player 2 assigns probability at least ν to player 1

playing a⇤1 , player 2’s unique best response is to play a⇤2 .

Then choose there choose κ⇤ such that

1 � κ⇤

κ⇤π̄t⇤�1 + (1 � κ⇤)
> ν.

Then it is easy to see that as long as µ[Ωb]  κ⇤,

1 � µ[Ωb]

µ[Ωb]π̄t�1 + (1 � µ[Ωb])
> ν

for all t  t⇤. This then means that at any history ht with t  t⇤, player 2 must play a⇤2 with

certainty. With this an upper bound on player 1’s payoff to deviating to another action a1 is

max
a1 6=a⇤1

⇣

1 � (δ⇤)t⇤
⌘

u1(a1, a⇤2) + (δ⇤)t⇤ ū.

By definition of t⇤, the above is strictly less than u1(a⇤) and so we have indeed checked that

player 1’s actions are incentive compatible. This concludes the proof.

Bagwell (1995) proves essentially the same theorem in the context of a two-stage game.

Additionally the point here corresponds to the theorems found in Cripps et al. (2004) who

illustrate the same point in a different setting where the player can change his action every

period. Note that the above result depends importantly on the assumption that the action of

player 1 is observed imperfectly. For example, if the action was perfectly observed, then

even without any behavioral types, a sufficiently patient player 1 would always choose a1
1

in all Nash equilibria. In contrast, the imperfection in observation of the long run player’s

action (and more precisely the full support assumption of the public monitoring structure)

eliminates the possibility of large jumps in player 2’s posterior regarding the played action
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of player 1 especially when σ1[a1] is close to one. This then implies that when (a1, a2(a1)) is

a strict Nash equilibrium of the stage game, a deviation to an action a01 6= a1 is very costly

since player 2’s belief about the played action being a1 remains close to one for a long time.

Unlike in Section 3.4, we can make σ1[a1] very close to one because the highest patient types

are no longer available to rectify and reinforce reputation effects.

3.6 Numerical Simulations

3.6.1 Strictly Dominated Action: Product Choice Game

Let the stage game be given by the following two player game.

Table 3.1: Stage Game

B D

H α, x �β, 0

L χ,�y 0, 0

Player 1 chooses a technology of either H or L in period 0. Playing H incurs a cost to

player 1 (α < ξ, β > 0). However if player 1 played H and player 2 was convinced that he

did so, player 2 would prefer to play B whereas if player 2 were to become convinced that

player 1 played L, then he would play D. Let ω⇤ be the cutoff likelihood ratio above which

the short run player plays B. To simplify notation, let κ = (λH � λL)
2.

We simplify the model such that the type space of discount factors (the amount of

discounting over a unit interval of time) is given by the uniform distribution over (0, 1).

Furthermore assume that only rational types exist in the model. Because the model is

in continuous time, it is convenient to transform the discount factor into a discount rate:

r ⌘ � log δ. Furthermore conditional on the firm choosing technology θ 2 {H, L}, the

stochastic process of public signals observed by the consumers is given by:

dXt = λθdt + dZt

where λH > λL. With this simple setup, we can now perform a rich analysis of the product
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choice game described above.

Bayesian Inference

We first solve the filtering problem. Conditional on the long run player playing θ 2 {H, L},

we can calculate the process dpθ
t :

dpt,H = κpt,H(1 � pt,H)
2dt +

p
κpt,H(1 � pt,H)dZt,

dpt,L = �κp2
t,L(1 � pt,L)dt +

p
κpt,L(1 � pt,L)dZt.

It is computationally much more convenient to express all terms in terms of the likelihood

ratio:

ωH
t =

pH
t

1 � pH
t

, ωL
t =

pL
t

1 � pL
t

.

We obtain the following SDE:

dωH
t = κωH

t dt +
p

κωH
t dZt

dωL
t =

p
κωL

t dZt.

Value Functions

With the above, we can now solve for the value function of a type r that plays H whenever

ω  ω⇤:

VH(r, ωH
t ) = �rβdt + (1 � rdt)

⇣

VH(r, ωH
t ) + E[dVH(r, ωH

t )]
⌘

.

Rearranging we obtain:

r
⇣

VH(r, ωH
t ) + β

⌘

dt = E[dVH(r, ωH
t )];

We can derive a similar equation at any ω > ω⇤ which implies the following ODE for VH:

rVH(r, ω) =

8

>><

>>:

�rβ + (λH � λL)
2ω

⇣
∂VH
∂ω + ω

2
∂2VH

∂ω2

⌘

if ω < ω⇤,

rα + (λH � λL)
2ω

⇣
∂VH
∂ω + ω

2
∂2VH

∂ω2

⌘

if ω > ω⇤.
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Solving the above ODE piecewise, we obtain the following:

VH(r, ω) =

8

>><

>>:

�β + C1ω
� 1

2

⇣

1+
p

8r+κp
κ

⌘

+ C2ω
1
2

⇣

�1+
p

8r+κp
κ

⌘

if ω < ω⇤

α + C3ω
� 1

2

⇣

1+
p

8r+κp
κ

⌘

+ C4ω
1
2

⇣

�1+
p

8r+κp
κ

⌘

if ω > ω⇤.

Because of the boundary conditions, VH(r, 0) = �β and limω!+∞ VH(r, ω) = α, we have

C1 = 0 and C4 = 0. Thus the above simplifies to:

VH(r, ω) =

8

>><

>>:

�β + C2ω
� 1

2

⇣

1�
p

8r+κp
κ

⌘

if ω < ω⇤

α + C3ω
� 1

2

⇣

1+
p

8r+κp
κ

⌘

if ω > ω⇤.

We then solve for C3 and C4 explicitly by employing the smooth pasting and value matching

conditions:

lim
ω"ω⇤

VH(ω) = lim
ω#ω⇤

VH(ω)

lim
ω"ω⇤

V 0
H(ω) = lim

ω#ω⇤
V 0

H(ω).

After evaluation and algebraic manipulation, we get the following closed-form solution to

the differential equation:

VH(r, ω) =

8

>><

>>:

�β + α+β
2

⇣ p
κp

8r+κ
+ 1

⌘

(ω/ω⇤)
� 1

2

⇣

1�
p

8r+κp
κ

⌘

if ω < ω⇤

α + α+β
2

⇣ p
κp

8r+κ
� 1

⌘

(ω/ω⇤)
� 1

2

⇣

1+
p

8r+κp
κ

⌘

if ω > ω⇤.

Similarly we calculate the value functions of a type r that plays L:

rVL(r, ω) =

8

>><

>>:

rχ + κ ω2

2
∂2VL

∂ω2 if ω > ω⇤,

κ ω2

2
d2VL

dω2 if ω < ω⇤.

This then yields the following solution to the differential equation:

VL(r, ω) =

8

>><

>>:

χ
2

⇣

1 �
p

κp
8r+κ

⌘

(ω/ω⇤)
1
2

⇣

1+
p

8r+κp
κ

⌘

if ω < ω⇤,

χ � χ
2

⇣

1 +
p

κp
8r+κ

⌘

(ω/ω⇤)
1
2

⇣

1�
p

8r+κp
κ

⌘

if ω > ω⇤.
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Equilibrium

First note that for every ω, VH(r, ω)� VL(r, ω) is strictly decreasing in r whenever ω < ω⇤.

Thus there exists a function r⇤ : [0, ∞) ! [0, ∞) such that for all ω, VH(r, ω) > VL(r, ω) for

all r < r⇤(ω) and VH(r, ω) < VL(r, ω) for all r > r⇤(ω).

This then implies that every equilibrium is uniquely determined by a cutoff discount

rate r⇤ such that the equilibrium likelihood ratio is

ω̄ =
1 � e�r⇤(ω̄)

e�r⇤(ω̄)
= er⇤(ω̄) � 1

and VL(r
⇤, ω̄) = VH(r

⇤, ω̄). All of this yields the equation:

VL(r
⇤, er⇤ � 1) = VH(r

⇤, er⇤ � 1). (3.4)

Thus in any equilibrium, r⇤ is a fixed point of Equation (3.4).

Note that thus far we have not introduced any behavioral commitment types into the

game and thus r⇤ = 0 is a trivial equilibrium. However we now introduce the idea of

robustness to the introduction of the Stackelberg type ωS.

Definition 3.6.1. Let σ be an equilibrium of the continuous time game with only rational

types. Then σ is robust to the introduction of ωS if for any sequence of games (Ωr [ {ωS}, µn)

with µn[ωS] ! 0, there exist σn 2 E(Ωr [ {ωS}, µn) such that σn[a1
1] ! σ[a1

1].

It is an easy modification of the arguments in Section 3.4 to prove that the only equilib-

rium that is robust to the introduction of ωS (the Stackelberg commitment type) is when

r⇤ > 0. Furthermore r⇤ is the unique point not equal to zero at which Equation (3.4) holds.

Theorem 3.6.2. There exists a unique equilibrium that is robust to the introduction of ωS. In this

equilibrium, the cutoff discount rate r⇤ satisfies Equation (3.4) and is strictly positive.

Size of the Contagion Effect

Using this framework we can now explicitly compute the size of the contagion effect.

Consider the following specification of payoffs: α = 1, β = 1, ξ = 2, x = 1, y = 1. In this
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scenario ω⇤ = 1 so that player 2 plays B at time t if and only if pt � 1
2 . Furthermore let

κ = (λH � λL)
2 = 1.5.

Table 3.2: Stage Game

B D

H 1, 1 �1, 0

L 2,�1 0, 0

Given these parameters we can compute the mass of types playing the In the equilibrium

robust to the introduction of the Stackelberg type, δ⇤ ⌘ e�r⇤ ⇡ 0.617. Thus σ1[H] ⇡ 0.383

and so approximately 38 percent of all rational types play H in equilibrium. Given this,

in Figure 3.2, we plot the payoffs of all rational types in the equilibrium robust to the

introduction of the Stackelberg type. As a consequence this means that even when the

probability of the Stackelberg type is extremely small, there will be approximately 38 percent

of rational types who play the Stackelberg action in any equilibrium. This leads to high

payoffs even for types with moderate levels of patience. For example, a type with a discount

factor of 0.95 obtains a payoff of approximately 0.81 in the robust equilibrium.

If instead κ = 2 so that the signal structure is more informative, then δ⇤ ⇡ 0.476 and thus

over half of the population plays the Stackelberg action in the unique robust equilibrium. As

a result the payoffs of all types are at least 0.57 as illustrated in Figure 3.3. Furthermore the

same type δ = 0.95 from the previous example now obtains a payoff of approximately 0.92

in the robust equilibrium while a much less patient type δ = 0.8 also obtains a relatively

high payoff of 0.76.

3.7 Conclusion and Discussion

To conclude, the paper leaves open natural questions for further research. It is unclear

whether private information regarding discount factors can generate reputation effects

with small probability of behavioral commitment types in the standard reputation model

where the long run player can continuously change his action. This problem is substantially
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Figure 3.2: The payoff of type δ in the robust equilibrium.
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Figure 3.3: The payoff of type δ in the robust equilibrium.
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complicated by two factors. First the lack of commitment to an action means that it may

be a best response for a very patient player to pick a non-Stackelberg action at some point

in the future. Perfect commitment to an action avoids this complication and thus allows

for strong contagion effects starting with these very patient types. Secondly, the long run

player’s decision at every point in time will depend on the short run player’s posterior

about not just whether he is a rational or behavioral type but also on the short run player’s

beliefs about the long run player’s discount factor. Because this is changing over time, it is

important to understand how the short run player’s perceived distribution over the long

run player’s patience evolves in order to study whether reputation can be maintained.

Another potentially interesting open question is whether one can obtain similar results

if incomplete information concerns the monitoring structure of player 2 rather than the

patience level of player 1. Consider player 1 who has private information about the

technology πθ(· | a1) governing the mapping from intended action to public consequences

Y. Intuitvely those types that know that π(· | a1) is essentially one of perfect monitoring will

have a strict incentive to play the Stackelberg action. This may lead to a similar contagion

effect for those who have less perfect technologies. However to study this question, new

techniques must be developed to obtain bounds on how the payoff estimates depend on the

monitoring structure, which is not directly addressed in Gossner (2011).
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Appendix A

Appendix to Chapter 1

A.1 Preliminary Mathematical Tools for Equilibrium Analysis

A.1.1 General Properties of the Value to Waiting

Throughout this section N denotes an equilibrium adoption flow, with associated value to

waiting WN
t and no-news posterior pN . We we establish some basic mathematical properties

of the value to waiting WN corresponding to any equilibrium adoption flow N.

Lemma A.1.1. Let N be an equilibrium flow of adopters. Then WN
t is continuous in t.

Proof. This is immediate from Lemma 1.2.4. Note that WN
t can be written as:

WN
t =

∞Z

t

h(τ)dτ

for some h 2 L1[0, ∞) \ L∞[0, ∞). Then it is immediate that WN
t is continuous in t.

Lemma A.1.2. Suppose that N is an equilibrium and that WN
t < 2pN

t � 1 for some t > 0. Then

there exists some ν > 0 such that WN
t is continuously differentiable in t on the interval (t � ν, t + ν)

and

ẆN
t =(r + ρ + (εG + λG Nt)pN

t + (εB + λBNt)(1 � pN
t ))W

N
t

� ρ(2pN
t � 1)� pN

τ (εG + λG Nt)
ρ

ρ + r
.
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Proof. By Lemma A.1.1, WN
t must be continuous in t. Because 2pN

t � 1 is continuous in t,

there exists some ν > 0 such that WN
τ < 2pN

τ � 1 for all τ 2 (t � ν, t + ν). This means that

Nτ = ρN̄τ for all τ 2 (t � ν, t + ν) and so Nτ must be continuous at all τ 2 (t � ν, t + ν).

From Lemma 1.2.4, WN
τ can be rewritten for all τ 2 (t � ν, t + ν) as

WN
τ =

t+νZ

τ

ρe�(ρ+r)(s�τ)
⇣

pN
τ e�

R s
τ (εG+λG Nx)dx � (1 � pN

τ )e
�
R s

τ (εB+λB Nx)dx
⌘

ds

+ e�(r+ρ)(t+ν�τ)
⇣

pN
τ e�

R t+ν
τ (εG+λG Nx)dx + (1 � pN

τ )e
�
R t+ν

τ (εB+λB Nx)dx
⌘

WN
t+ν

+

t+νZ

τ

ρe�(ρ+r)(s�τ)pN
τ

⇣

1 � e�
R s

τ (εG+λG Nx)dx
⌘

ds

+ e�(r+ρ)(t+ν�τ)pN
τ

⇣

1 � e�
R t+ν

τ (εG+λG Nx)dx
⌘ ρ

ρ + r
.

From this it is easy to see that WN
τ is continuously differentiable with respect to τ for all

τ 2 (t � ν, t + ν).

The derivative can be computed using Ito’s Lemma for processes with jumps. Given

the perfect Poisson learning structure, the derivation is simple and we provide it here for

completeness.

As above, for any ∆ < t + ν � τ we can rewrite WN
τ as

WN
τ =

τ+∆Z

τ

ρe�(ρ+r)(s�τ)
⇣

pN
τ e�

R s
τ (εG+λG Nx)dx � (1 � pN

τ )e
�
R s

τ (εB+λB Nx)dx
⌘

ds

+ e�(r+ρ)∆
⇣

pN
τ e�

R τ+∆

τ (εG+λG Nx)dx + (1 � pN
τ )e

�
R τ+∆

τ (εB+λB Nx)dx
⌘

WN
τ+∆

+

τ+∆Z

τ

ρe�(r+ρ)(s�τ)pN
τ

⇣

1 � e�
R s

τ (εG+λG Nx)dx
⌘

ds

+ e�(r+ρ)∆ pN
τ

⇣

1 � e�
R τ+∆

τ (εG+λG Nx)dx
⌘ ρ

ρ + r
.

Since this is true for all ∆ 2 (0, t + ν � τ), the right hand side of this identity, which we

denote R∆, is continuously differentiable with respect to ∆ and satisfies d
d∆

R∆ ⌘ 0. Taking

the limit as ∆ ! 0 and since ẆN
τ = lim∆!0

d
d∆

WN
τ+∆ by continuous differentiability, we then
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obtain that

ẆN
τ = (r+ ρ+(εG +λG Nτ)pτ +(εB +λBNτ)(1� pτ))W

N
τ � ρ(2pτ � 1)� pτ(εG +λG Nτ)

ρ

ρ + r
,

as claimed.

We can prove a similar lemma for the case in which the equilibrium value to waiting is

strictly above the payoff to adopting today.

Lemma A.1.3. Suppose that N is an equilibrium and that WN
t > 2pN

t � 1 for some t > 0. Then

there exists some ν > 0 such that WN
t is continuously differentiable in t on the interval (t � ν, t + ν)

and

ẆN
t = (r + pN

t εG + (1 � pN
t )εB)W

N
t � pN

t εG
ρ

ρ + r
.

Proof. The proof of continuous differentiability of WN
t follows along the same lines as in the

proof of Lemma A.1.2. Lemma A.1.1 again implies that if WN
t > 2pN

t � 1, then there exists

ν > 0 such that WN
τ > 2pN

τ � 1 for all τ 2 (t � ν, t + ν). By the definition of equilibrium,

Nτ = 0 for all τ 2 (t � ν, t + ν).

Hence, WN
τ satisfies

WN
τ = e�r(t+ν�τ)

⇣

pN
τ e�εG(t+ν�τ) + (1 � pN

τ )e
�εB(t+ν�τ)

⌘

WN
t+ν

+ pN
τ

t+νZ

τ

εGe�(εG+r)s ρ

ρ + r
ds.

From this it is again immediate that WN
τ is continuously differentiable in τ.

To compute the derivative, we can proceed as above, rewriting WN
τ as

WN
τ = e�r∆

⇣

pN
τ e�εG∆ + (1 � pN

τ )e
�εB∆

⌘

WN
t+∆ + pτ

τ+∆Z

τ

εGe�(εG+r)s ρ

ρ + r
ds

for any ∆ < t + ν � τ.

Differentiating both sides of the above equality with respect to ∆ and taking the limit as

∆ ! 0, we obtain:

ẆN
τ = (r + pN

τ εG + (1 � pN
τ )εB)W

N
τ � pN

τ εG
ρ

ρ + r
,

141



as claimed.

A.1.2 Special Properties of the Value to Waiting under PBN

Here we focus on learning via perfect bad news. By Equation 1.1, an upper bound on the

no-news posterior is given by:

µ(ε, Λ0, p0) :=

8

>><

>>:

1 if ε > 0,

p0

p0+(1�p0)e
�Λ0

if ε = 0.

We now show that absent breakdowns, this posterior is attained in the limit.

Lemma A.1.4. Let N be an equilibrium under PBN. Suppose that ε > 0 or p0 > 1/2. Then

pN
t ! µ(ε, Λ0, p0) and WN

t ! ρ
ρ+r (2µ(ε, Λ0, p0)� 1) as t ! ∞.

Proof. Consider first the case in which ε > 0. Then trivially pN
t ! 1 as t ! ∞. So for any

ν > 0, there exists some t⇤ such that whenever t > t⇤, then 1 � pN
t < ν.

Then we can produce upper and lower bounds on WN
t :

ρ

ρ + r
(1 � ν)� ρ

ρ + r
ν <

ρ

ρ + r

⇣

2pN
t � 1

⌘

 WN
t  ρ

ρ + r
.

Since this is true for any ν > 0, it follows that limt!∞ WN
t = ρ

ρ+r as claimed.

Now suppose that ε = 0 and p0 > 1/2. Then note that WN
t  2pN

t � 1 for all t: Indeed,

suppose that WN
t > 2pN

t � 1 for some t. We can’t have that WN
s > 2pN

s � 1 for all s � t,

since otherwise WN
t = 0, contradicting WN

t > 2pN
t � 1 > 0. But then we can find s > t

such that WN
s = 2pN

s � 1 and WN
s0 > 2pN

s0 � 1 for all s0 2 (t, s). This implies N0
s = 0 for all s0,

and hence WN
t = e�r(s�t)WN

s = e�r(s�t)(2pN
s � 1) = e�r(s�t)(2pN

t � 1), again contradicting

WN
t > 2pN

t � 1 > 0.

Let N⇤ := limt!∞

R t
0 Nsds = supt

R t
0 Nsds  N̄0. Let p⇤ := limt!∞ pN

t = supt pN
t . For

any ν > 0 we can find t⇤ such that whenever t > t⇤, then e�λ
R t

t⇤ Ns ds
> 1 � ν. Because

142



2pN
t � 1 � WN

t for all t, we can then rewrite the value to waiting at time t as:

WN
t =

∞Z

t

ρe�(r+ρ)τ
⇣

pN
t � (1 � pN

t )e
�λ

R τ
t Nsds

⌘

dτ

 ρ

r + ρ

⇣

pN
t � (1 � pN

t )(1 � ν)
⌘

for all t > t⇤. Moreover, by optimality WN
t � ρ

ρ+r (2pN
t � 1) for all t, so combining we have

ρ

ρ + r
(2p⇤ � 1)  lim

t!∞
inf WN

t  lim
t!∞

sup WN
t  ρ

r + ρ
(p⇤ � (1 � p⇤)(1 � ν)) .

Since this is true for all ν > 0, it follows that

lim
t!∞

WN
t =

ρ

r + ρ
(2p⇤ � 1).

But the above is strictly less than 2p⇤ � 1, so for all t sufficiently large we must have

2pN
t � 1 > WN

t . Then for all t sufficiently large, we have Nt = ρN̄t. Thus, N⇤ = N̄0 and

therefore p⇤ = µ(ε, Λ0, p0).

A.2 Quasi-Single Crossing Property for Equilibrium Incentives

A.2.1 Proof of Theorem 1.4.1 under Perfect Good News

From now on we drop the superscript N from W and p.

Proof. The proof consists of two steps. In the first step, we show that whenever Wt = 2pt � 1,

then Wτ � 2pτ � 1 for all τ � t. In the second step, we show that whenever Wt > 2pt � 1,

then Wτ > 2pτ � 1 for all τ > t.

Step 1: Suppose Wt = 2pt � 1 at some time t and suppose for a contradiction that at

some time s0 > t, we have Ws0 < 2ps0 � 1. Let

s⇤ = sup{s < s0 : Ws = 2ps � 1}.

By continuity, s⇤ < s0, Ws⇤ = 2ps⇤ � 1, and Ws < 2ps � 1 for all s 2 (s⇤, s0). Then by
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Lemma A.1.2, the right hand derivative of Ws � (2ps � 1) at s⇤ exists and satisfies:

lim
s#s⇤

Ẇs � 2ṗs = r(2ps⇤ � 1) + ps⇤ (εG + λG Ns⇤)
r

ρ + r
> 0.

This implies that for some s 2 (s⇤, s0) sufficiently close to s⇤ we have Ws > 2ps � 1, which is

a contradiction.

Step 2: Assume Wt > 2pt � 1 at some t and suppose for a contradiction that there exists

s0 > t such that Ws0 = 2ps0 � 1. Let

s⇤ = inf{s > t : Ws = 2ps � 1}.

By continuity, s⇤ > t, Ws⇤ = 2ps⇤ � 1, and Ws > 2ps � 1 for all s 2 (t, s⇤). Then by

Lemma A.1.3 the left-hand derivative of Ws � (2ps � 1) at s⇤ exists and is given by:

lim
s"s⇤

Ẇs � 2ṗs = r(2ps⇤ � 1) + ps⇤
r

ρ + r
εG > 0.

This implies that for some s 2 (t, s⇤) sufficiently close to s⇤, we must have Ws < 2ps � 1,

which is a contradiction.

A.2.2 Proof of Theorem 1.4.1 under Perfect Bad News

Proof. The proof consists of two steps. In the first step, we show that whenever Wt = 2pt � 1,

then Wτ  2pτ � 1 for all τ � t. In the second step, we show that whenever Wt < 2pt � 1,

then Wτ < 2pτ � 1 for all τ > t.

Step 1: Suppose Wt = 2pt � 1 at some time t and suppose for a contradiction that at

some time s0 > t we have Ws0 > 2ps0 � 1. Then because Wt ! ρ
ρ+r (2µ(ε, Λ, p0)� 1) <

2µ(ε, Λ, p0)� 1 by Lemma A.1.4, there exists s < s such that Ws = 2ps � 1, Ws = 2ps � 1,

and Ws > 2ps � 1 for all s 2 (s, s). By Lemma A.1.3, we have the following two limits:

lim
s#s

Ẇs = (r + (1 � ps)ε)(2ps � 1).

lim
s"s

Ẇs = (r + (1 � ps)ε)(2ps � 1).
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Also, as usual

lim
s#s

d

ds
(2ps � 1) = 2ps(1 � ps)ε

lim
s"s

d

ds
(2ps � 1) = 2ps(1 � ps)ε.

In order that Ws > 2ps � 1 for all s 2 (s, s), we need:

(r + (1 � ps)ε)(2ps � 1) � 2ps(1 � ps)ε

(r + (1 � ps)ε)(2ps � 1)  2ps(1 � ps)ε.

Rearranging we get:

r(2ps � 1) � (1 � ps)ε

r(2ps � 1)  (1 � ps)ε.

But this is impossible given that ps > ps. This completes the proof of Step 1.

Step 2: Suppose that Wt < 2pt � 1 and suppose for a contradiction that there exists

some s0 > t such that Ws0 � 2ps0 � 1. Define

s = inf{s0 > t : Ws0 � 2ps0 � 1}.

By continuity, Wτ < 2pτ � 1 for all τ 2 [t, s) and Ws = 2ps � 1.

Furthermore, by Lemma A.1.4, there exists some s � s such that 2ps � 1 = Ws and

2ps � 1 > Ws for all s > s. By Lemma A.1.2, we have the following two limits:

Hs ⌘ lim
s"s

✓

Ẇs �
d

ds
(2ps � 1)

◆

= r(2ps � 1)� (ε + λρN̄s) (1 � ps)

Hs ⌘ lim
s#s

✓

Ẇs �
d

ds
(2ps � 1)

◆

= r(2ps � 1)� (ε + λρN̄s) (1 � ps).

As usual, because Ws < 2ps � 1 for all s 2 (t, s) and for all s > s, we must have Hs � 0 and

Hs  0. But since ps � ps, this is only possible if s = s =: s⇤ and Hs⇤ = Hs = Hs = 0.

Thus,

r(2ps⇤ � 1) = (ε + λρN̄s⇤) (1 � ps⇤).
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Now consider any s 2 [t, s⇤). Because ps  ps⇤ we must have

r(2ps � 1)  (ε + λρN̄s) (1 � ps).

Combining this with the fact that Ws < 2ps � 1 and Ns = ρN̄s yields

rWs < (ε + λρN̄s) (1 � ps) < (2p � Ws) (ε + λρN̄s) (1 � ps) + ρ(2ps � 1 � Ws).

Rearranging we obtain:

0 < �rWs + ρ(2ps � 1 � Ws) + (2p � Ws) (ε + λρN̄s) (1 � ps).

But by Lemma A.1.2, the right-hand side is precisely the derivative d
ds (2ps � 1)� Ẇs. This

implies that for all s 2 [t, s⇤), 2ps � 1 � Ws is strictly increasing, contradicting continuity

and the fact that 2ps⇤ � 1 = Ws⇤ . This concludes the proof of Step 2.

A.3 Equilibrium Uniqueness and Characterization

A.3.1 Equilibrium Characterization under Perfect Bad News

In this section, we do not impose Conditions 1.5.2 or 1.5.3. Recall that p⇤ := min{p, p]},

where

p :=
ε + r

ε + 2r
,

p] :=
ρ + r

ρ + 2r
.

Recall the definition of G : [0, 1]⇥ R+ ! R:

G(p, Λ) :=

∞Z

0

ρe�(r+ρ)τ
⇣

p � (1 � p)e�(ετ+Λ(1�e�ρτ))
⌘

dτ.

We extend the function to the domain [0, 1]⇥ (R+ [ {+∞}) by defining:

G(p,+∞) :=
ρ

ρ + r
p.
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Finally, recall the definition of Λ⇤ : (0, 1) ! R+ [ {+∞}:

8

>>>>>><

>>>>>>:

Λ⇤(p) = 0 if p  p,

2p � 1 = G(p, Λ⇤(p)) if p 2 (p, p])

Λ⇤(p) = +∞ p � p].

The proof of Theorem 1.5.1 proceeds in three steps. Assuming that N is an equilibrium,

we show in Lemma A.3.1 that if t⇤1 < t⇤2 , then the evolution of adoption behavior on

(t⇤1 , t⇤2) is uniquely pinned down by an ODE. We next prove Lemma 1.5.4, which provides a

characterization of t⇤1 and t⇤2 in terms of (pt, Λt). Given these two steps uniqueness is clear.

Finally, we check feasibility in Lemma A.3.4, proving equilibrium existence.

Characterization of Adoption between t⇤1 and t⇤2

Lemma A.3.1. Suppose N is an equilibrium with no-news posterior pt. Suppose that t⇤1 < t⇤2 . Then

at (almost) all times t 2 (t⇤1 , t⇤2),

Nt =
r(2pt � 1)

λ(1 � pt)
� ε

λ
.

Proof. Note that because 2pt � 1 = WN
t at all t 2 (t⇤1 , t⇤2) and pt is weakly increasing, WN

t

and pt are differentiable almost everywhere (with respect to Lebesgue measure).

Using again the fact that 2pt � 1 = WN
t at all t 2 (t⇤1 , t⇤2) we obtain for all t 2 (t⇤1 , t⇤2):

WN
t = e�r(t⇤2�t)

✓

pt + (1 � pt)e
�
R t⇤2

t (ε+λNs)ds

◆

(2pt⇤2 � 1)

= e�r(t⇤2�t)

✓

pt � (1 � pt)e
�
R t⇤2

t (ε+λNs)ds

◆

.

Then for all t at which WN
t and pt are differentiable, we obtain:

ẆN
t = (r + (ε + λNt)(1 � pt))WN

t

2ṗt = 2pt(1 � pt)(ε + λNt).

Furthermore, because WN
t = 2pt � 1 for all t 2 (t⇤1 , t⇤2), we must have for almost all
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t 2 (t⇤1 , t⇤2):

ẆN
t = 2ṗt.

This means that for almost all t 2 (t⇤1 , t⇤2):

Nt =
r(2pt � 1)

λ(1 � pt)
� ε

λ
.

A direct corollary of the above lemma is the following:

Corollary A.3.2. The posterior at all t 2 (t⇤1 , t⇤2) evolves according to the following ordinary

differential equation:

ṗt = rpt(2pt � 1).

Given some initial condition p = pt⇤1 , this ordinary differential equation admits a unique solution,

given by:

pt =
pt⇤1

2pt⇤1 � er(t�t⇤1)(2pt⇤1 � 1)
.

Proof of Lemma 1.5.4

We now prove a more general version of Lemma 1.5.4 in which we replace p in Lemma 1.5.4

with p⇤.

Lemma A.3.3. Let N be an equilibrium with corresponding no-news posterior pt�0 and threshold

times t⇤1 and t⇤2 , and let Λt�0 := λN̄t�0 describe the evolution of the economy’s potential for social

learning. Then

1. t⇤2 = inf{t : Λt < Λ⇤(pt)}; and

2. t⇤1 = min{t⇤2 , sup{t : pt < p⇤}}.1

Proof. We first prove both bullet points under the assumption that either ε > 0 or p0 >
1
2 .

Note that in this case Lemma A.1.4 implies that t⇤2 < +∞ and we must also have that pt is

strictly increasing for all t > 0.

1We impose the convention that if {t � 0 : pt < p⇤ = 1
2} = ∅, then sup{t � 0 : pt < p⇤ = 1

2} := 0.
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For the first bullet point, note that by definition of t⇤2 and by Theorem 1.4.1, we have

2pt � 1 > Wt = G(pt, Λt) for all t > t⇤2 . This implies that Λt < Λ⇤(pt) for all t > t⇤2 .

Moreover, if 0 < t⇤2 , then by continuity we must have 2pt⇤2 � 1 = Wt⇤2 = G(pt⇤2 , Λt⇤2 ) and so

Λt⇤2 = Λ⇤(pt⇤2 ). In this case, because Λs is decreasing in s and ps is strictly increasing in s

and Λ⇤(p) is increasing in p, we must have Λs � Λ⇤(ps) for all s < t⇤2 . This establishes the

first bullet point.

For the second bullet point, it suffices to prove the following three claims:

(a) If t⇤2 > 0, then pt⇤2 < p].

(b) If t⇤1 > 0, then pt⇤1  p.

(c) If t⇤1 < t⇤2 , then pt⇤1 � p.

Indeed, given (a) and (b), we have that if 0 < t⇤1 = t⇤2 , then pt⇤1  p⇤. Given (a)-(c), we have

that if 0 < t⇤1 < t⇤2 , then pt⇤1 = p = p⇤. If 0 = t⇤1 < t⇤2 , then (c) implies that p0 � p = p⇤. In

all three cases (ii) readily follows. Finally, if 0 = t⇤1 = t⇤2 , then there is nothing to prove.

For claim (a), recall from the above that if t⇤2 > 0, then Λt⇤2 = Λ⇤(pt⇤2 ), whence pt⇤2 < p]

because Λ⇤(p]) = +∞.

For claim (b), note that if t⇤1 > 0, then for all t < t⇤1 , we have Wt > 2pt � 1. Then by

Lemma A.1.3 and because Wt⇤1 = 2pt⇤1 � 1, we must have

0 � lim
τ"t⇤1

Ẇτ � 2ṗτ = (r + (1 � pt⇤1 )ε)(2pt⇤1 � 1)� 2pt⇤1 (1 � pt⇤1 )ε

= r(2pt⇤1 � 1)� ε(1 � pt⇤1 ),

which implies that

pt⇤1 
ε + r

ε + 2r
=: p.

Finally, for claim (c), note that if t⇤1 < t⇤2 , then Lemma A.3.1 implies that for all τ 2 (t⇤1 , t⇤2),

0  Nτ =
r(2pτ � 1)

λ(1 � pτ)
� ε

λ
.
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This implies that for all τ 2 (t⇤1 , t⇤2),

pτ � ε + r

ε + 2r
=: p,

and hence by continuity pt⇤1 � p as claimed. This proves the lemma when either ε > 0 or

p0 >
1
2 . Finally, if ε = 0 and p0  1

2 , then it is easy to see that pt ⌘ p0 for all t. Thus, t⇤2 =

+∞ = inf{t : Λt < Λ⇤(p0) = 0}. Also, if p0 <
1
2 , then t⇤1 = +∞ = sup{t : pt < p⇤ = 1

2}; and

if p0 = 1
2 , then t⇤1 = 0 =: sup{t � 0 : pt < p⇤ = 1

2}.

With these lemmas, it is immediate that if an equilibrium exists, then it must take the

form of the adoption flow given by Equation 1.6 in Theorem 1.5.1. Moreover, it is easy to

see that given initial parameters, Equation 1.6 uniquely pins down the times t⇤1 and t⇤2 as

well as the joint evolution of pt and Nt at all times (we elaborated on this in the main text),

and that whenever t⇤1 < t⇤2 < +∞, then 2pt � 1 = Wt for all t 2 [t⇤1 , t⇤2 ]. Provided feasibility

is satisfied, it is then easy to check that this adoption flow constitutes an equilibrium.

Feasibility

It remains to check feasibility of the adoption flow implied by Equation 1.6 in Theorem 1.5.1.

Note that feasibility is non-trivial only at times t 2 (t⇤1 , t⇤2).

Lemma A.3.4. Suppose Nt�0 is an adoption flow satisfying Equation 1.6 in Theorem 1.5.1 such

that t⇤1 < t⇤2 . Then for all t 2 (t⇤1 , t⇤2),

Nt  ρΛt.

Proof. It suffices to show that

lim
t"t⇤2

Nt  ρN̄t⇤2 .

The lemma then follows immediately since ρN̄t � Nt is strictly decreasing in t at all times in

(t⇤1 , t⇤2).
2

2This is only true if either ε > 0 or p0 >
1
2 . If ε = 0 and p0 = 1

2 , then Nt = 0 for all t and t⇤1 = 0 < t⇤2 = +∞.
But in this case feasibility is immediate.
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To see this, suppose by way of contradiction that ρN̄t⇤2 < limt"t⇤2 Nt. By continuity this

means that there exists some ν > 0 such that ρN̄t < Nt for all t 2 (t⇤2 � ν, t⇤2). Then note

that from the indifference condition at t⇤2 , we have that 2pt⇤2 � 1 = G(pt⇤2 , λN̄t⇤2 ). Furthermore

because Λ⇤(pt) is increasing in t, 2pt � 1 < G(pt, λN̄t) for all t < t⇤2 .

Since at all times t 2 (t⇤2 � ν, t⇤2) we have Nt > ρN̄t, this implies that

WN
t > G(pt, λN̄t) > 2pt � 1.

But this is a contradiction since we already checked that the described adoption flow satisfies

the condition that WN
t = 2pt � 1 for all t 2 (t⇤1 , t⇤2).

A.3.2 Equilibrium Characterization under Perfect Good News

Theorem 1.6.1 follows readily from Lemma 1.6.2 and Lemma 1.6.3. Lemma 1.6.3 was proved

in the text. It remains to prove Lemma 1.6.2.

Proof of Lemma 1.6.2: Suppose for a contradiction that t⇤1 < t⇤2 . From the definition of

these cutoffs, we must have 2pt � 1 = Wt for all t 2 [t⇤1 , t⇤2 ]. Then for all t 2 (t⇤1 , t⇤2) and

∆ 2 (0, t⇤2 � t) we have:

Wt =pt

t+∆Z

t

(ε + λNτ) e�
R τ

t (ε+λNs)dse�r(τ�t) ρ

ρ + r
dτ+

⇣

(1 � pt) + pte
�
R t+∆

t (ε+λNs)ds
⌘

e�r∆ (2pt+∆ � 1) ,

where the first term represents a breakthrough arriving at some τ 2 (t, t + ∆) in which

case consumers adopt from then on, yielding a payoff of e�r(τ�t) ρ
ρ+r ; and the second term

represents no breakthrough arriving prior to t + ∆ in which case, due to indifference,

consumers’ payoff can be written as e�r∆ (2pt+∆ � 1).

Note that we must have pt � 1
2 on (t⇤1 , t⇤2), since Wt is bounded below by 0. Given that

we assume that either ε = 0 or p0 6= 1
2 , this means that either ε > 0 or pt >

1
2 for t sufficiently
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close to t⇤1 . Then it follows that for sufficiently small ∆

Wt < pt

⇣

1 � e�
R t+∆

t (ε+λNs)ds
⌘ ρ

ρ + r
+
⇣

(1 � pt) + pte
�
R t+∆

t (ε+λNs)ds
⌘

(2pt+∆ � 1)

 pt

⇣

1 � e�
R t+∆

t (ε+λNs)ds
⌘

· 1 +
⇣

(1 � pt) + pte
�
R t+∆

t (ε+λNs)ds
⌘

(2pt+∆ � 1)

= 2pt � 1,

where the final equality comes from Bayesian updating of beliefs. This contradicts Wt =

2pt � 1. Thus, t⇤1 = t⇤2 .

A.4 Violation of Condition 1.5.2 under Perfect Bad News

pt

Λt

1

Λ⇤(p)

(2) (1)

p p]

Figure A.1: Partition of (pt, Λt) when ε � ρ

In this section, we discuss the case in which ρ � ε. We saw in Theorem 1.5.1 that the

characterization theorem holds even when Condition 1.5.2 is violated.
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In this case because Λ⇤(p) = +∞ for all p > p⇤, we have:

Nt =

8

>><

>>:

0 if Λt > Λ⇤(pt),

ρN̄t if Λt  Λ⇤(pt).

Note that now partial adoption never occurs and the unique equilibrium reduces to all-or-

nothing adoption.

As a result the saturation effect discussed in Section 1.5 is no longer present and welfare

always strictly increases in response to an increase in opportunities for social learning:

Proposition A.4.1. Fix r > 0 and p0 2 (0, 1) and suppose that ε � ρ > 0. Then W0 is strictly

increasing in Λ0.

A.5 Inefficiency of Equilibria

A.5.1 Inefficiency under PBN

Proof of Proposition 1.5.8: From Proposition 1.3.3, recall that

ps =
K(Λ0)

K(Λ0) +
ρ

r+ρ
r

r+ε

,

where

K(Λ0) =

∞Z

0

ρe�(r+ρ)τe�ετ�Λ0(1�e�ρτ)dτ.

Note also that

K(Λ0) <
ρ

r + ε + ρ

which then implies that

ps
<

(r + ρ)(r + ε)

2(ε + r)(r + ρ)� ερ
= p.

Finally observe from the proof of Lemma 1.5.4 that pt⇤1 � p.

If Λ0 > Λ⇤(p), either t⇤1 > 0 or t⇤2 > 0. In the first case, adoption begins too late since

pt⇤1 � p > ps and therefore equilibrium is inefficient. If on the other hand, t⇤1 = 0 < t⇤2 , then

again because ps
< pt⇤1 , adoption is too slow initially since consumers only partially adopt
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between t⇤1 and t⇤2 . Thus again equilibrium is inefficient.

On the other hand, if Λ0  Λ⇤(p0), then equilibrium is efficient since both the cooperative

benchmark and equilibrium prescribe that absent breakdowns all consumers adopt whenever

given an opportunity.

A.6 Comparative Statics under PBN

A.6.1 Saturation Effect: Proof of Proposition 1.5.9

Throughout Section A.6 we impose Conditions 1.5.2 (so that p⇤ = p) and 1.5.3 as in the text.

We first prove Lemma 1.5.6.

Proof of Lemma 1.5.6: Let Λ0 := max{Λ⇤(p0), Λ⇤(p)}. We show that t⇤1(Λ0) < t⇤2(Λ0) if and

only if Λ0 > Λ0.

Suppose first that Λ0 > Λ0. Then by the proof of the first part of Lemma 1.5.4, we must

have t⇤2 > 0 and Λt⇤2 = Λ⇤(pt⇤2 ). If t⇤1 = t⇤2 =: t⇤, then by claims (a) and (b) in the proof of

Lemma 1.5.4, we must have pt⇤  p. But combining these statements, we get

Λt⇤ = Λ0 > Λ⇤(p) � Λ⇤(pt⇤) = Λt⇤ ,

which is a contradiction.

Suppose conversely that t⇤1 < t⇤2 . Then by the proof of Lemma 1.5.4, we have that

Λ⇤(pt⇤1 ) < Λt⇤1 = Λ0. That proof also implies that if 0 < t⇤1 < t⇤2 , then pt⇤1 = p � p0; and if

0 = t⇤1 < t⇤2 , then pt⇤1 = p0 � p. Thus, either way Λ0 > Λ0, as claimed.

Proof of Proposition 1.5.9: For the first bullet point, consider any Λ1
0 < Λ2

0  Λ0 with cor-

responding threshold times ti
1 and ti

2, value to waiting W i
t , and no-news posteriors pi

t for

i = 1, 2. By Lemma 1.5.6, we must have ti
1 = ti

2 =: ti. Let t̂ := min{t1, t2}. Then note that

for all t  t̂, p1
t̂
= p2

t̂
and Λi

t̂
= Λi

0. By Lemma 1.5.4 this implies that either 0 = t1 = t2 or

t1
< t2. If 0 = t1 = t2, then for all t > 0, we have 2pi

t � 1 > W i
t and

pi
t =

p0

p0 + (1 � p0)e�(εt+(1�e�ρt)Λi
0)

.
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Thus, p1
t < p2

t for all t > 0. Then by Lemma 1.2.4, W1
0 < W2

0 .

If t1
< t2, then by definition of the cutoff times

W2
t1 > 2p2

t1 � 1 = 2p1
t1 � 1 � W1

t1 .

Since there is no adoption until t1, we have

W i
0 = e�rt1 pt1

p0
W i

t1 ,

which again implies that W1
0 < W2

0 . This proves the first bullet point.

To prove the second bullet point, suppose that Λ2
0 > Λ1

0 > Λ0. By Lemma 1.5.6,

we then have ti
1 < ti

2 for i = 1, 2. Moreover, by the proof of Lemma 1.5.4, we have

max{p0, p} = p1
t1
1
= p2

t2
1
. Because Ni

t = Ni
t = 0 for all t < ti

1 for both i = 1, 2, this implies

that t1
1 = t2

1 = t1. Then

W2
t1 = 2p2

t1 � 1 = 2p1
t1 � 1 = W1

t1 .

But once again,

W i
0 = e�rt1 pt1

p0
W i

t1 ,

for i = 1, 2, whence W1
0 = W2

0 .

A.6.2 Learning Dynamics

Proof of Lemma 1.5.10

Proof of Lemma 1.5.10. Suppose that Λ̂0 > Λ0 > Λ⇤(p0). Recall that we are assuming

p] > p0 > p so that t⇤1(Λ0) = t⇤1(Λ̂) = 0 and Λ0 = Λ⇤(p0). Then by Lemma 1.5.6, we have

t⇤2(Λ̂0), t⇤2(Λ0) > 0. Let t⇤2 = min{t⇤2(Λ̂0), t⇤2(Λ0)}. Then because p0 = pΛ0
0 = pΛ̂0

0 , the ODE

in Corollary A.3.2 implies that at all times t < t⇤2 , we have pΛ0
t = pΛ̂0

t = pt. By Lemma A.3.1,

this implies that for all t < t⇤2 ,

λNt = λ̂N̂t. (A.1)
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To prove the first bullet point, note that Equation A.1 implies that

Λt⇤2 = Λ0 �
Z t⇤2

0
λNt dt < Λ̂0 �

Z t⇤2

0
λ̂N̂t dt = Λ̂t⇤2 .

By Lemma 1.5.4 and because pΛ0
t⇤2

= pΛ̂0
t⇤2

, this implies that t⇤2 = t⇤2(Λ0) < t⇤2(Λ̂0).

From this and Equation A.1, it is then immediate that λNt = λ̂N̂t for all t < t⇤2 = t⇤2(Λ0),

proving the second bullet point.

Proof of Proposition 1.5.11

Proof. Clearly pΛ0
t is strictly increasing for all Λ0 2 (0, Λ⇤(p0)) since in this case t⇤2(Λ0) = 0

so that

pΛ0
t =

p0

p0 + (1 � p0)e�(εt+(1�e�ρt)Λ0)
.

Suppose next that Λ̂0 > Λ0 � Λ⇤(p0). By Lemma 1.5.10, t⇤ := t⇤2(Λ0) < t⇤2(Λ̂0),

λNt = λ̂N̂t, and pΛ0
t = pΛ̂0

t for all t  t⇤, which proves the first bullet point.

To prove the second bullet point, we claim that there exists some ν > 0 such that at all

times t 2 (t⇤, t⇤ + ν), we have pΛ0
t > pΛ̂0

t . To see this, we prove the following inequality for

the equilibrium corresponding to Λ0:

lim
t"t⇤

λNt < lim
t#t⇤

λNt. (A.2)

In other words, there is necessarily a discontinuity in the equilibrium flow of adoption at

exactly t⇤. Indeed, because Nt = ρN̄t for all t � t⇤ and by continuity of N̄t, feasibility implies

that limt"t⇤ λNt  limt#t⇤ λNt. Suppose for a contradiction that limt"t⇤ λNt = limt#t⇤ λNt :=

λNt⇤ . Then λNt⇤ = λ̂N̂t⇤ . Moreover, for all t > t⇤, we have λNt = ρΛt⇤e�ρ(t�t⇤), which is

strictly decreasing in t. On the other hand, λ̂N̂t satisfies

λ̂N̂t =

8

>><

>>:

r(2pt�1)
(1�pt)

� ε if t < t⇤2(Λ̂0)

ρΛt⇤2(Λ̂0)
e�ρ(t�t⇤2(Λ̂0)) if t � t⇤2(Λ̂0).

Thus, for t 2 [t⇤, t⇤2(Λ̂0)), λ̂N̂t is strictly increasing in t. This implies that λ̂N̂t > λNt for all
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t 2 [t⇤, t⇤2(Λ̂0)). But then by Equation 1.1,

pΛ̂0

t⇤2(Λ̂0)
> pΛ0

t⇤2(Λ̂0)
,

which by Lemma 1.5.4 implies

Λ̂t⇤2(Λ̂0)
= Λ⇤(pΛ̂0

t⇤2(Λ̂0)
) > Λ⇤(pΛ0

t⇤2(Λ̂0)
) > Λt⇤2(Λ̂0)

.

This yields that for all t � t⇤2(Λ̂0))

λ̂N̂t = ρe�ρ(t�t⇤2(Λ̂0)Λ̂t⇤2(Λ̂0)
> ρe�ρ(t�t⇤2(Λ̂0)Λt⇤2(Λ̂0)

= λNt.

Thus, λ̂N̂t > λNt for all t > t⇤ and hence pΛ̂0
t > pΛ0

t for all t > t⇤. By Lemma 1.2.4, this

implies

WΛ̂0
t⇤ > WΛ0

t⇤ .

But this is a contradiction, because we have that

WΛ̂0
t⇤ = 2pΛ̂0

t⇤ � 1 = 2pΛ0 � 1 = WΛ0
t⇤ .

This proves that limt"t⇤ λNt < limt#t⇤ λNt. But then,

lim
t#t⇤

λ̂N̂t = lim
t"t⇤

λ̂N̂t = lim
t"t⇤

λNt < lim
t#t⇤

λNt.

Therefore there must exist some ν > 0 such that λ̂N̂t < λNt for all t 2 [t⇤, t⇤ + ν). Together

with the fact that pΛ0
t⇤ = pΛ̂0

t⇤ , this implies that pΛ0
t > pΛ̂0

t for all t 2 (t⇤, t⇤ + ν), proving the

second bullet point of the proposition.

Finally, for the third bullet point, observe first that there must exist some t > t⇤ such

that pΛ0
t = pΛ̂0

t . If not, then by continuity of beliefs pΛ0
t > pΛ̂0

t for all t > t⇤, and we once

again get that WΛ̂0
t⇤ > WΛ0

t⇤ , which is false. Then t := sup{s 2 (t⇤, t) : pΛ0
s > pΛ̂0

s } exists,

with t > t⇤ by the second bullet point. Further, by continuity, pΛ0

t
= pΛ̂0

t
, which implies

R t
0 λNsds =

R t
0 λ̂N̂sds. This yields Λt < Λ̂t. But note that this implies that λ̂N̂t > λNt for all

t > t: Indeed, if t � t⇤2(Λ̂0), this is obvious. On the other hand, if t 2 (t⇤, t⇤2(Λ̂0)), then we

must have λNs < λ̂N̂s for some s < t, which implies that λNs0 < λ̂N̂s0 for all s0 2 (s, t⇤2(Λ̂0)),
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because N is strictly decreasing and N̂ is strictly increasing on this domain. This implies

that

pΛ̂0

t⇤2(Λ̂0)
> pΛ0

t⇤2(Λ̂0)
,

which as above implies that

Λ̂t⇤2(Λ̂0)
= Λ⇤(pΛ̂0

t⇤2(Λ̂0)
) > Λ⇤(pΛ0

t⇤2(Λ̂0)
) > Λt⇤2(Λ̂0)

.

Then it is again obvious thatλ̂N̂t > λNt for all t > t. Thus, in either case we get that

pΛ̂0
t > pΛ0

t for all t > t, as claimed by the third bullet point.

A.6.3 Adoption Behavior

Proof of Proposition 1.5.12: First note that because p0 � p, t⇤1(Λ0) = t⇤1(Λ̂0) = 0.

Then at all Λ0 < Λ⇤(p0), the adoption flow absent breakdowns satisfies Nt = ρN̄t for all

t. Thus, conditional on a good product we get At(Λ0, G) = At(Λ̂0, G) = 1 � e�ρt for all t

and all pairs Λ0, Λ̂0  Λ⇤(p0).

Now suppose that Λ̂0 > Λ0 > Λ⇤(p0). Note that Nt, N̂t > 0 for all t > 0 (recall

Condition 1.5.3). Let t⇤ = t⇤2(Λ0). By Lemma 1.5.10, λNt = λ̂N̂t for all t < t⇤. Then for all

t < t⇤

Nt

N̄0
=

λNt

Λ0
=

λ̂N̂t

Λ0
>

λ̂N̂t

Λ̂0

=
N̂t

ˆ̄N0

. Therefore for all t < t⇤, we have At(Λ0, G) > At(Λ̂0, G).

Finally note that for all t � t⇤, Nt = ρN̄t and so:

At(Λ0, G) = At⇤(Λ0, G) +
⇣

1 � e�ρ(t�t⇤)
⌘

(1 � At⇤(Λ0, G))

At(Λ̂0, G)  At⇤(Λ̂0, G) +
⇣

1 � e�ρ(t�t⇤)
⌘ �

1 � At⇤(Λ̂0, G)
�

where the second inequality follows from feasibility. But because At⇤(Λ0, G) > At⇤(Λ̂0, G),

At(Λ0, G) > At(Λ̂0, G) for all t > 0.

Proof of Proposition 1.5.13. We first prove the proposition when we increase the information

structure from λ to λ̂ > λ holding fixed N̄0. Given this, proving the theorem for arbitrary
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changes from Λ0 to Λ̂0 is straightforward.

Let N and N̂ be the equilibrium under λ and λ̂, respectively. Note that when p  p0,

Nt > 0 for all t > 0. Given an arbitrary strictly positive adoption flow M and t > 0, consider

the following map:

λ 7!
tZ

0

Mτe�
R τ

0 (ε+λMs)dsdτ.

Note that for any t > 0, the above is strictly decreasing in λ. This implies that for all t > 0,

tZ

0

Nτe�
R τ

0 (ε+λNs)dsdτ >

tZ

0

Nτe�
R τ

0 (ε+λ̂Ns)dsdτ. (A.3)

We now show that

tZ

0

Nτe�
R τ

0 (ε+λ̂Ns)dsdτ �
tZ

0

N̂τe�
R τ

0 (ε+λ̂N̂s)dsdτ

which together with Inequality (A.3) implies the desired conclusion that At(λ̂, N̄0, B) <

At(λ, N̄0, B) for all t > 0.

To prove this, suppose that there exists some t > 0 such that

tZ

0

Nτe�
R τ

0 (ε+λ̂Ns)dsdτ <

tZ

0

N̂τe�
R τ

0 (ε+λ̂N̂s)dsdτ. (A.4)

Note that by Proposition 1.5.12,
R τ

0 Nsds �
R τ

0 N̂sds for all τ � 0 and so

tZ

0

εe�
R τ

0 (ε+λ̂Ns)dsdτ 
tZ

0

εe�
R τ

0 (ε+λ̂N̂s)dsdτ (A.5)

for all t � 0. Inequalities (A.4) and (A.5) together imply:

tZ

0

�
ε + λ̂Nτ

�
e�

R τ
0 (ε+λ̂Ns)dsdτ <

tZ

0

�
ε + λ̂N̂τ

�
e�

R τ
0 (ε+λ̂N̂s)dsdτ.

But this is equivalent to

⇣

1 � e�
R t

0 (ε+λ̂Ns)ds
⌘

<

⇣

1 � e�
R t

0 (ε+λ̂N̂s)ds
⌘

.

This contradicts
R t

0 Nsds �
R t

0 N̂sds as found in Proposition 1.5.12.
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Having shown the above, consider any change from Λ0 = λN̄0 to Λ̂0 = λ̂ ˆ̄N0 > Λ0. Then

there exists λ⇤
> λ such that Λ̂ = λ⇤N̄0. Let N⇤ be the equilibrium associated with the pair

(λ⇤, N̄0). By Lemma 1.5.5, unique equilibrium for the pair (λ̂, ˆ̄N0) satisfies N̂t = (λ⇤/λ̂)N⇤
t .

But then the above argument implies:

At(Λ, B) = E

2

4

tZ

0

Ns

N̄0
ds

3

5 > E

2

4

tZ

0

N⇤
s

N̄0
ds

3

5 = E

2

4

tZ

0

λ⇤

λ̂ ˆ̄N0

λ̂ ˆ̄N0

λ⇤N̄0
N⇤

s ds

3

5

= E

2

4

tZ

0

N̂s

ˆ̄N0

ds

3

5 = At(Λ̂, B).

A.7 Comparative Statics under PGN

A.7.1 Adoption Behavior

The only statement that was not proved in the text is: At(Λ̂0, G) < At(Λ0, G) for all

t > t⇤(Λ̂0), as claimed in the first bullet of Proposition 1.6.7.

Proof. When ε = 0, the statement is trivial, so assume that ε > 0. The claim is also obvious

for all t  t⇤(Λ0) since adoption occurs at the maximal rate under Λ0 whereas under Λ̂0,

adoption ceases at times t 2 (t⇤(Λ̂0), t⇤(Λ0)) absent breakthroughs.

So assume that t > t⇤(Λ0). Recall that the cutoff posterior p⇤ at which adoption ceases

is unchanged upon a change from Λ0 to Λ̂0. Then expected adoption up to time t for any

Γ 2 [Λ0, Λ̂0] can be expressed in the following manner:

At(Γ, G) = π⇤ �1 � e�ρt
�
+ (1 � π⇤)

0

B
@(1 � e�ρt⇤(Γ)) + e�ρt⇤(Γ)

tZ

t⇤(Γ)

εe�ε(τ�t⇤(Γ))
⇣

1 � e�ρ(t�τ)
⌘

1

C
A

where

(1 � π⇤) =
1 � p0

1 � p⇤
.
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Now for a fixed t, consider the function:

t⇤ 7! π⇤ �1 � e�ρt
�
+ (1 � π⇤)

0

@(1 � e�ρt⇤) + e�ρt⇤
tZ

t⇤

εe�ε(τ�t⇤)
⇣

1 � e�ρ(t�τ)
⌘

1

A .

Then a straightforward computation yields that the derivative of the above map with respect

to any t⇤ < t is ρe�(ε�ρ)t⇤e�εt
> 0. Thus, the map is strictly increasing in t⇤ for all t⇤ < t.

Because t⇤(Γ) is strictly decreasing in Γ, it follows that for all t > t⇤(Γ), At(Γ, G) is strictly

decreasing for all Γ 2 [Λ0, Λ̂0]. This proves the claim.

A.8 Heterogeneous Discount Rate Example

First we show the following basic mathematical fact.

Lemma A.8.1. Let t > t⇤ and suppose that f and g are real-valued functions such that f (τ) = g(τ)

for all τ  t⇤, f (τ) < g(τ) for τ 2 (t⇤, t), and f (τ) > g(τ) for all τ > t. Suppose that

∞Z

0

e�rτ f (τ)dτ =

∞Z

0

e�rτg(τ)dτ.

Then for all r̂ > r,
∞Z

0

e�r̂τ f (τ)dτ <

∞Z

0

e�r̂τg(τ)dτ.

Proof. We have

0 =

∞Z

0

e�rτ(g(τ)� f (τ))dτ =

tZ

0

e�r̂τe(r̂�r)τ (g(τ)� f (τ)) dτ +

∞Z

t

e�r̂τe(r̂�r)τ (g(τ)� f (τ)) dτ

< e(r̂�r)t

0

@

tZ

0

e�r̂τ(g(τ)� f (τ))dτ +

∞Z

t

e�r̂τ (g(τ)� f (τ)) dτ

1

A

< e(r̂�r)t

∞Z

0

e�r̂τ (g(τ)� f (τ)) dτ.

This implies that
R ∞

0 e�r̂τ f (τ)dτ <

R ∞

0 e�r̂τg(τ)dτ, as claimed.

As in the main text, assume that λ̂M
p
0 > λM

p
0 > Λ⇤

rp
(p0) and that p0 > 1/2 and ε = 0.
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Then modifying the arguments from the proof of Theorem 1.5.1, it is easy to show that

when Mi
0 is sufficiently small, the unique equilibrium under both information processes λ,

λ̂ will be such that the impatient type adopts immediately upon opportunity at all times

absent breakdowns and the patient type only partially adopts until some time t⇤ > 0 after

which he switches to immediate adoption:3

γNi
t = ρMi

t,

γN
p
t =

8

>><

>>:

rp(2pt�1)
1�pt

� γρMi
t if t < t⇤(γ)

γρM
p
t if t � t⇤(γ)

for γ 2 {λ, λ̂}.

Then using arguments analogous to those in Lemma 1.5.10, we can show that t⇤(λ) <

t⇤(λ̂). Furthermore an analogue of Proposition 1.5.11 shows that there must exist some

t > t⇤(λ) such that

pλ
t

8

>>>>>><

>>>>>>:

= pλ̂
t if t  t⇤(λ)

> pλ̂
t if t 2 (t⇤(λ), t)

< pλ̂
t if t > t.

Then using Lemma A.8.1, the proof follows along the lines illustrated in the main text. This

proves Theorem 1.7.1.

3The full proof of the modification is available upon request. Here we use a standard argument that shows
that whenever the impatient type weakly prefers to wait, then the patient type must strictly prefer to wait.
Similarly, if the patient type weakly prefers to adopt then the impatient type must strictly prefer to adopt.
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A.9 Cooperative Benchmark

A.9.1 Perfect Bad News

To prove the all-or-nothing property of the optimal policy, we write the Hamilton-Jacobi-

Bellman (HJB) equation. Note that there are two state variables, p and N̄.

rV(p, N̄) = max
0NρN̄

(2p � 1) N +DpV(p, N̄)p(1� p)(ε+λN)�DN̄V(p, N̄)N � (1� p)(ε+λN)V(p, N̄).

Since the right hand side is linear in N, it is optimal to always choose either N = 0 or

N = ρN̄.

To see that the optimal policy must be a cutoff strategy, define

Π(p, N̄) := (2p � 1) + DpV(p, N̄)p(1 � p)λ � DN̄V(p, N̄)� λ(1 � p)V(p, N̄)

and note that whenever Π(p, N̄) < 0, then

rV(p, N̄) = DpV(p, N̄)εp(1 � p)� (1 � p)εV(p, N̄) (A.6)

so that this corresponds to the case where setting N = 0 is optimal. It then suffices to prove

that

Π(p, N̄) < 0 ) Π(p0, N̄) < 0 8p0 < p.

To prove this, note first that for every p such that Π(p, N̄) < 0, there must exist some p0 > p

such that Π(p0, N̄) = 0. (Otherwise V(p0, N̄) = 0 for all p0 > p, which is clearly false.)

So it suffices to prove that there cannot exist p < p such that Π(p, N̄) = Π(p) = 0 and

Π(p, N̄) < 0 for all p 2 (p, p). Suppose for a contradiction that such an interval (p, p) exists.

Then ordinary differential equation (A.6) implies:

V(p, N̄) =

✓
p

p̄

◆ r+ε
ε
✓

1 � p

1 � p̄

◆� r
ε

V( p̄, N̄)
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for all p 2 (p, p). Then we can rewrite the expression for Π(p, N̄) for p 2 (p, p):

Π(p, N̄) = (2p � 1) +
rλ

ε
V(p, N̄)� DN̄V(p, N̄)

= (2p � 1) +
rλ

ε
V(p, N̄)�

✓
p

p̄

◆ r+ε
ε
✓

1 � p

1 � p̄

◆� r
ε

DN̄V( p̄, N̄)

= (2p � 1) +

✓
p

p̄

◆ r+ε
ε
✓

1 � p

1 � p̄

◆� r
ε
✓

λr

ε
V( p̄, N̄)� DN̄V( p̄, N̄)

◆

,

Note that if λr
ε V( p̄, N̄) � DN̄V( p̄, N̄) � 0, the last expression is increasing in p and so

Π(p, N̄) < 0 which is a contradiction.

If instead λr
ε V( p̄, N̄)� DN̄V( p̄, N̄) < 0, then the second term in the last expression is

concave. Furthermore, the derivative of the last expression with respect to p at p must be

weakly positive: If it were strictly negative, then because Π(p, N̄) = 0, there would exist

some p 2 (p, p) close to p such that Π(p, N̄) > 0. But if the derivative of Π(p, N̄) is weakly

positive at p̄, then by concavity it must be positive throughout (p, p). But this again yields

the contradiction that Π(p, N̄) < 0. This completes the proof.

A.9.2 Perfect Good News

As in the perfect bad news case, we again write the Hamilton-Jacobi-Bellman equation:

rV(p, N̄) = max
0NρN̄

(2p � 1)N + p(ε + λN)

✓
ρ

r + ρ
N̄ � V(p, N̄)

◆

� DpV(p, N̄)p(1 � p) (ε + λN)� DN̄V(p, N̄)N.

Again the right hand side is linear in N and thus the optimal policy always chooses either

N = 0 or N = ρN̄.

The easiest way to check that an optimal policy exists in cutoff strategies is to simply

guess and check that the HJB equation is satisfied by such a strategy. This is straightforward

from the social planner policy constructed in Section 1.3.1.
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Appendix B

Appendix to Chapter 2

B.1 Definitions of sGi and sBi

We recall the following definitions of s̃Gi , s̃Bi 2 S̃
ρ
i of HO2006.

First, define s̃
g
i as some strategy such that s̃

g
i [∅] 2 ∆G and

for all h̃t
i =

⇣

a, (aM2,M1
i , aM2,M1

�i ), . . . , (aM2,M1
i , aM2,M1

�i ))
⌘

, a 2 Mi ⇥M�i, t � 1 :

s̃
g
i [h

t
i ] = aM2,M1

i ;

and define define s̃b
i such that s̃b

i [∅] 2 ∆B and

for all h̃t
i =

⇣

a, (aM2,M1
i , aM2,M1

�i ), . . . , (aM2,M1
i , aM2,M1

�i )
⌘

, a 2 Mi ⇥M�i, t � 1 :

s̃b
i [h̃

t
i ] = aM2,M1

i .

Moreover define s̃b
i [h

t
i ] = αm

i for every history h̃t
i that is a continuation of a history

h̃r
i =

⇣

a,
⇣

aM2,M1
i , aM2,M1

�i

⌘

, . . . ,
⇣

aM2,M1
i , aM2,M1

�i

⌘

, (aM2,M1
i , a0�i)

⌘

,

a 2 B⇥M�i, a0�i 6= aM2,M1
�i , t � r � 1,

where αm
i is a possibly mixed minmax action against player �i. Then s̃Gi and s̃Bi are defined

as small perturbations of s̃
g
i and s̃b

i to obtain a pair of strategies s̃Gi and s̃Bi in S̃
ρ
i . HO2006

showed that by chosing ρ sufficiently small, we may ensure that there exists some T such
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that

min
S̃i

ŨT
i (s̃i, s̃G�i) > v̄i > vi > vi > max

S̃T
i

ŨT
i (s̃i, s̃B�i)

for sufficiently patient players.

Given the above definitions, we can obtain strategies in repeated games with observation

lags and private monitoring structure π in a natural way by identifying with each h̃t
i 2 H̃t

i the

unique element of ht
i 2 Ht

i such that ht
i and h̃t

i report exactly the same observations about

the play of player �i at all times and ht
i contains no observations with a positive lag. We

denote this identification by h̃t
i ' ht

i .

Similarly we identify si 2 ST
i to a strategy s̃i 2 S̃T

i in a natural way. We say that s̃i ' si if

si[h
t
i ] = s̃i[h̃

t
i ] for all h̃t

i 2 H̃t
i and all ht

i 2 Ht
i such that h̃t

i ' ht
i . Then we simply define sGi and

sBi to be strategies such that s̃Gi ' sGi and s̃Bi ' sBi . It is easy to see that we can appropriately

define sGi and sGi at all histories ht
i 2 Ht

i that are not identified with some h̃t
i 2 H̃t

i to obtain a

pair of strategies sGi , sBi 2 S
ρ
i . Moreover when the probability of observation lag is small and

π is very close to perfect monitoring, it is clear that UT
i (si, s�i) is close to ŨT

i (s̃i, s̃�i) where

s̃i ' si and s̃�i ' s�i. Thus we have for sufficiently patient players and ρ sufficiently small,

min
Si

UT
i (si, sG�i) > v̄i > vi > vi > max

ST
i

UT
i (si, sB�i).

B.2 Details of the Proof of Theorem 2.4.3

B.2.1 Proof of Lemma 2.4.4

Proof of Lemma 2.4.4: We wish to specify transfers ξBi : HT
�i ! R� in such a way that players

are indifferent between all possible strategies in the T-period repeated game given auxiliary

transfers ξBi . To do this, we define equivalence classes over T-period histories in the following

way:

(hT�1
�i , at1

i , at2
i , . . . , atm

i , aT
i , aT

�i) ⇠ (ĥT�1
�i , ât1

i , ât2
i , . . . , âtm

i , âT
i , âT

�i)

if and only if hT�1
�i = ĥT�1

�i and aT
i = âT

i . Here, if player �i does not obtain information about

the play of player i in time T, then aT
i is taken to be ∞ (representing a null signal). Also
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notationally, at1
i , . . . , atm

i are the elements of hT,o
i that are not equal to aT

i . We may represent

this equivalence class of T period histories in the form (hT�1
�i , aT

i ); note that this indicates

that neither

1. the action played by player �i in period T, nor

2. new information gained about past actions

matter for the determination of the equivalence class.

We define equivalence classes over t-period histories similarly, and represent such an

equivalence class by (ht�1
�i , at

i). We now define a transfer function ξBi as in HO2006 for some

functions θt defined over equivalence classes of t-period histories:

ξBi (h
T
�i) =

1

δT

T

∑
t=1

δt�1θt(h
t�1
�i , at

i).

Here, ht�1
�i is the t-period truncation of hT

�i and at
i is the signal that player �i observed of

player i’s period-t action in period t. That is, at
i = ∞ if player �i does not observe i’s play

immediately and is otherwise equal to the actual period-t action of player i.1

Given any hT�1
�i , consider the matrix

✓

µ�i(· | ai, s̄B�i(h
T�1
�i ))

◆

ai2Ai

.

Note that the matrix above has full row rank when λ�i(0) is sufficiently close to 1 and π

is sufficiently close to perfect monitoring. Therefore the sub-matrix obtained by deleting

the column corresponding to the “∞” signal is invertible.2 We then set θt(h
T�1
�i , ∞) = 0 and

solve the system of equations defined by

µ�i(· | ai, s̄B�i(h
T�1
�i )) · θT(h

T�1
�i , ·) = gi(a⇤i , s̄B�i(h

T�1
�i ))� gi(ai, s̄B�i(h

T�1
�i )), (B.1)

1According to this definition, if for example the play of player 1’s period-1 action is not observed immediately
(i.e. in period 1) by player 2, then the observation of player 1’s period-1 action in a later period only has an
effect on ξBi through its effect on player �i’s play.

2In fact, this sub-matrix approaches the identity matrix as λ(0) ! 1 and π approaches perfect monitoring.

167



where a⇤i is the stage game best response to s̄B�i(h
T�1
�i ). Our preceding observations show

that system (B.1) has a unique solution when λ�i(0) is sufficiently large and π is sufficiently

close to perfect monitoring.

Then in period T � 1, player i is indifferent between all of his actions given that player

�i plays according to the strategy prescribed by s̄B�i at history hT�1
�i and transfers given by

θT(h
T�1
�i , ·), as playing any action ai generates a payoff of

(1 � δ)δT�1gi(ai, s̄B�i(h
T�1
�i )) + (1 � δ)δT�1 ∑

ωi2Ai[{∞}

µ�i(ωi | ai, s̄B�i)θT(h
T�1
�i , ωi)

=(1 � δ)δT�1gi(a⇤i , s̄B�i(h
T�1
�i )).

Suppose that all transfers θτ for τ � t have been defined so that player i is indifferent

across all of his strategies from period t + 1 on. Then define Ut+1(h
t�1
�i , ai) to be the expected

continuation payoff given the transfers at period t + 1, given that player �i’s history in

period t � 1 is ht�1
�i and player i played ai in period t.

We now define θt�1 in a similar manner. Again we consider any hT
�i 2 HT

�i and consider

the following expression:

1

δT

T

∑
s=t

δs�1θs(h
s�1
�i , as

i ).

Again define θt�1(h
t�1
�i , ∞) = 0 and consider the matrix

✓

µ�i(· | ai, s̄B�i(h
t�1
�i ))

◆

ai2Ai

.

Let us denote the sub-matrix obtained by deleting the column corresponding to the null

signal “∞” by D(ht�1
�i ). This is again invertible when λ�i(0) is sufficiently close to 1 and π

is sufficiently close to perfect monitoring. Now consider the system of equations

(1 � δ)δt�1
⇣

µ�i(· | ai, s̄B�i(h
t�1
�i )) · θt(h

t�1
�i , ·) + gi(ai, s̄B�i(h

t�1
�i )))

⌘

+ (1 � δ)Ut+1(h
t�1
�i , ai)

= (1 � δ)Ut+1(h
t�1
�i , a⇤i (h

t�1
�i )) + (1 � δ)δt�1gi(a⇤i (h

t�1
�i ), s̄B�i(h

t�1
�i )) (B.2)

where a⇤i (h
t�1
�i ) is the term that maximizes the expression on the right hand side of the

equation above.
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Because the matrix D(ht�1
�i ) is invertible, the system (B.2) has a unique solution when we

set θt(h
t�1
�i , ∞) = 0. Iterating in this manner allows us to obtain the first part of the lemma.

To achieve non-negativity of transfers, we observe that as the square matrices D(ht�1
�i )

converge to the identity matrix, the solutions θt(h
t�1
�i , ai) must be non-negative in the limit.

Thus we can make all transfers θt(h
t�1
�i , ai) non-negative by adding to all of them a positive

constant that converges to zero as λ�i(0) and π jointly converge to 1 and perfect monitoring

respectively.

Finally we define a strategy rBi 2 ST
i in the following way. Let rBi (h

t�1
i ) be the action

a⇤i (h
t�1
�i ) as defined above for all histories hT�1

�i that do not contain any null signals, where

ht�1
i is the history that corresponds to ht�1

�i . Define rBi (h
t�1
i ) arbitrarily for all other histories.

Then note that as monitoring becomes perfect, the expected value of ξBi goes to zero if players

play according to rBi and s̄B�i. By the definition of rBi , the payoff in the T-times-repeated

game without any transfers then approaches maxsi2ST
i

UT
i (si, s̄B�i); this implies that

lim
ε!0

UA
i (si, s̄B�i, ξBi ) = max

s̃i

UT
i (s̃i, s̄B�i)

for all si 2 ST
i .

B.2.2 Proof of Lemma 2.4.5

Proof. Let ε > 0 be such that π is ε-perfect and Pr(L�i > 0) < ε. For every ν > 0, observe

that there exists ε/ρ small enough such that, for any history ht�1
i 2 HR,t�1

i and conditional

on observing ht�1
i , player i assigns probability at least 1 � ν to the event that player �i

observed the corresponding history ht�1
�i . Consider for some ht�1

i 2 HR,t�1
i and any action

ai 2 Ai, the row vector consisting of the probabilities assigned by player i, conditional on

history ht�1
i and on action ai taken by player i in period t, to the different equivalence classes

of histories (ht�1
�i , ai) observed by player �i in period t. As in HO2006, we construct a matrix

Dt�1 by stacking the row vectors for all regular histories ht�1
i 2 HR,t�1

i and actions ai 2 Ai.

Note that for small enough ε/ρ, the matrix Dt�1 has full row rank for every t.

With this we can define θ(·, ·) by setting θ(ht�1
�i , ∞) = 0 for any ht�1

�i 2 Ht�1
�i . This is
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possible since the number of rows is exactly the same as in HO2006 and the number of

columns corresponding to (ht�1
�i , ai) for some ai 6= ∞ is also the same as in HO2006. This

proves the lemma.

B.3 Conditions Guaranteeing Small γi

When the measures L1, . . . , Ln are independent and identically distributed, we have

λ(∞, . . . , ∞)

λi(∞)
=

λ1(∞) · · · λn(∞)

λi(∞)
. (B.3)

Clearly when λ1(∞) = · · · = λn(∞) and λ1(∞) small, (B.3) is close to 0. Even if L1, . . . , Ln

are not identically distributed but are independent, we again have (B.3) small if (maxi λi(∞))n

mini λi(∞)

is sufficiently small, i.e. when no player i’s probability of never observing a signal is much

smaller than some other player’s probability of never observing a signal.

Consider lags for which Li is split into two components, X and Ai: Li = X + Ai. Note

that X is common across all players. We assume that Ai is independent and identically

distributed across players, and that Ai is independent of X. Let ξ be the density of X and χ

denote the density of Ai.

Then γi is small if

(1 � ξ(∞))(χ(∞))n + ξ(∞)

ξ(∞) + (1 � ξ(∞))(χ(∞))
(B.4)

is small—which is true if ξ(∞) is much smaller than χ(∞). For example, suppose that

ξ(∞) = 0 but χ(∞) > 0. Then if χ(∞) is small, (B.4) is small.3

3By contrast, consider the case in which χ(∞) = ξ(∞) = ε > 0. Then (B.4) equals

(1 � ε)εn + ε

ε + (1 � ε)ε
,

which converges to 1/2 as ε ! 0—so γi cannot be taken to be small even when ε is small.
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Appendix C

Appendix to Chapter 3

C.1 Proof of Existence

Proof. First note that due to absolute continuity of µr, there exists f 2 L1([0, 1]) that

represents the density of µr. This proof follows via Kakutani’s fixed point generalized to

locally convex topological vector spaces. The trick is to construct the appropriate topologies

on the spaces S1 and Σ2 to make compactness and continuity as easy to prove as possible.

This is done in the following manner. Note that we define Σt
2 as the set of t-period maps

σt
2 : Ht ! ∆(A1). Σt

2 is compact with respect to the following norm:

kσt
2k = sup

ht2Ht

|σt
2(h

t)|.

By Tychonoff’s theorem, Σ2 = ∏t�0 Σt
2 is compact in the product topology denoted T .

Moreoever it is easy to see that (Σ2, T ) is indeed metrizable with the following metric:1

d(σ2, α2) =
∞

∑
t=0

2�t kσt
2 � αt

2k
1 + kσt

2 � αt
2k

.

In summary we have shown that (Σ2, T ) is a compact, convex, metric space.

As we stated in Section 3.2, S1 can be identified with a subset of all measurable maps

1For a proof, see any functional analysis textbook containing a section on locally convex topological vector
spaces.
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from [0, 1] ! {0, 1}m�1. Then define the following subset of L∞([0, 1]):

Γ = { f 2 L∞([0, 1]) : | f (x)|  1 8x 2 [0, 1]}.

Note that Γ is indeed compact in the weak-star topology endowed on L∞([0, 1]) by the

Banach-Alaoglu theorem. Furthermore Γ is metrizable in the weak-star topology. Then

Γm�1 ✓ L∞([0, 1])m�1 is compact and metrizable in the product topology (generated by the

weak-star topologies on each coordinate). Call this topology S . Notice that S1 is a closed

subset of Γm�1 and thus (S1,S) is a compact metric space.

With the above observations, we need to check the continuity of the appropriate utility

functions with respect to the appropriate topologies. We consider the following two utility

functions:

V1(s1, σ2) =

1Z

0

Es1(δ)u1(s1(δ), σ2) f (δ)dδ

= ∑
a12A1

Ea1
u1(a1, σ2)

1Z

0

s1(δ)[a1] f (δ)dδ.

V2(s1, σ2) =
∞

∑
τ=0

λτ ∑
hτ2Hτ

Es1 [u2(a1, σ2(hτ)) | hτ]

|Hτ|

where λ 2 (0, 1). Note that for any two s1, s01 2 S1, if

1Z

0

s1(δ)[a1] f (δ)dδ =

1Z

0

s01(δ)[a1] f (δ)dδ

for all a1 2 A1, then V2(s1, σ2) = V2(s01, σ2) for all σ2 2 Σ2. Thus the distribution over A1

induced by σ1 is a sufficient statistic for the computation of V2(·, σ2). Therefore we write

V2(µ, σ2) for V2(s1, σ2) where µ is the distribution over A1 induced by s1.

It is easy to check the continuity of V1 in (s1, σ2). Because S1 ⇥ Σ2 is a metric space, it is

sufficient to consider sequential continuity. Thus suppose that (sn
1 , σn

2 ) ! (s1, σ2). By the

definition of the definition of the weak-star topology on L∞([0, 1]), since f 2 L1([0, 1]),

1Z

0

sn
1(δ)[a1] f (δ)dδ !

1Z

0

s1(δ)[a1] f (δ)dδ
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for all a1 2 A1. Clearly Ea1
u1(a1, σn

2 ) ! Ea1
u1(a1, σ2) for all a1 2 A1. Thus V1 is indeed

continuous.

Now let us check that V2 is indeed continuous. Suppose again that (sn
1 , σn

2 ) ! (s1, σ2).

Let µn to be the distribution over A1 induced by sn
1 and similarly let µ to be the distribution

over A1 induced by s1. By the definition of the weak-star topology, µn ! µ. With this it is

easy to see that

V2(µ
n, σn

2 ) ! V2(µ, σ2).

Then we can use Glicksberg’s existence theorem for continuous games to show that the

game with strategy spaces S1, Σ2 and payoff functions V1 and V2 has a Nash equilibrium

in mixed strategies.2 In other words, there exists (σ1, σ2) 2 Σ1 ⇥ ∆(Σ2) that is a Nash

equilibrium of the above game. But because Σ2 is already convex and V2 is already linear in

σ2, every element of ∆(Σ2) can be uniquely identified with an element of Σ2. Thus there

exists (σ1, σ2) 2 Σ1 ⇥ Σ2 that is a Nash equilibrium.

Upon careful inspection of V2, this then implies that σ2 maximizes expected payoff at all

histories (under the stage game payoffs). Therefore we have indeed shown that (σ1, σ2) is a

Nash equilibrium of the original game.

2See for example Reny (2008).
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