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ABSTRACT

Essays In Empirical Asset Pricing

Sungjun Cho

This dissertation consists of two chapters, all of which attempt to shed some light

on what constitutes the time-varying risk premia in financial markets. The first chapter

demonstrates that monetary policy shocks identified from New-Keynesian dynamic stochas-

tic general equilibrium(DSGE) models explain the risk premia in stock markets. Indeed, the

implied ICAPMs explain the value and the industry premia for the periods of 1980 to 2004.

In particular, the permanent monetary policy shocks to inflation target capture the value

premium and part of industry risk premium once I account for the capital market imper-

fection endogenously in New-Keynesian models. The shocks to investment technology, as

a main determinant of the external finance premium, are also important for understanding

the value premium.

The second chapter examines determinants of stochastic relative risk aversion in con-

ditional asset pricing models by utilizing nonlinear state space model with GARCH spec-

ification. After imposing general version of the conditional CAPM or ICAPM, I develop

non-ad-hoc empirical models and search for valid specifications of relative risk aversion

along with appropriate hedging components. I discover that the surplus consumption ratio

implied by the external habit formation model is the most important determinant of time

varying relative risk aversion. The CAY of Lettau and Ludvigson (2001a) without a look-

ahead bias also captures part of relative risk aversion. The short term interest rate(RREL)

has explanatory power for hedging components. I use the implied conditional asset pric-

ing models in explaining the cross-section of average returns on either the Fama-French 25

size and book-to-market sorted portfolios alone or with 30 industry portfolios. I find that



the chosen conditional CAPM and ICAPM with time-varying relative risk aversion and a

hedging component are at least comparable to or better than the Fama-French three-factor

model for the sample periods 1957 to 2005.
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1

Chapter 1

Stock Returns and Monetary

Policy

1.1 Introduction

The stock market continuously watches and forms expectations about the Federal Reserve

Board(Fed) decisions. It seems that investors in Wall Street take it for granted that the

actions of the Fed have a considerable impact on stock market returns while there is con-

troversy on the issue among macro-economists. Two crucial monetary transmission mecha-

nisms have been suggested through which stock prices respond to monetary news. The first

is the interest rate channel, which relates to economic activity primarily through consump-

tion and investment since a cut in the borrowing cost should raise the quantity of funds

demanded for investment and promotes the current over future consumption, which leads

to an increase in economic activity. The second mechanism is the credit channel under

the capital market imperfection assumption. When credit markets are tight, unanticipated

monetary easing reduces the external finance premium which is a wedge between the ex-

ternal financing by issuing equity or debt and the internal financing by retaining earnings.
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Bernanke and Gertler (1989) argue that the effect of the capital market imperfection are

largest in recessions, when weak balance sheets lead to higher costs of external finance,

resulting in lower investment demand and reduced economic activity.

In recent empirical asset pricing studies, several researchers have confirmed that mone-

tary policy shocks affect the future risk premium. Notably, Bernanke and Kuttner (2005)

find that monetary policy shocks are important for understanding the risk premium using

Campbell and Ammer (1993) type decomposition. Specifically, they find that unantici-

pated changes in monetary policy affect stock prices not so much by influencing expected

dividends or the risk-free real interest rate, but rather by affecting the perceived riski-

ness of stocks. By employing the long-horizon regression methodology, Patelis (1997) finds

that some portion of the observed predictability in excess returns in US stock market can

be attributed to shifts in the monetary policy stance. Patelis relates his findings to the

credit channel of monetary policy transmission (Bernanke and Gertler (1995)) and to the

financial propagation mechanism (Bernanke and Gertler (1989)). By estimating a vector

autoregressive(VAR) system that includes monthly equity returns, output growth, inflation,

and the federal funds rate, Thorbecke (1997) finds that monetary policy shocks, measured

by orthogonalized innovations in the federal funds rate, have a greater impact on smaller

capitalization stocks, which is in line with the hypothesis that monetary policy affects firms’

access to credit. Jensen, Mercer, and Johnson (1996) find that predictable variation in stock

returns depends on monetary as well as business conditions, with expected stock returns

being higher in tight money periods than in easy money periods. And business conditions

could predict future stock returns only in periods of expansive monetary policy.

While there seems enough time-series evidence of the effect of monetary policy on stock

returns, none of the papers investigates directly its implications on the cross-section of

stock returns.1 Fama (1991) conjectures that we should relate the cross-sectional properties

1Some empirical asset pricing studies(e.g.Hahn and Lee (2006)) using cross section of stock returns seem
to interpret that significant risk price of the short term interest rate or term spread exists since it is a proxy
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of expected returns to the expected returns through time. In fact, since Merton (1973)’s

theoretical presentation of the ICAPM, it has been recognized that there exist state variables

that capture variations in future investment opportunities, and assets’ covariations with

such variables should be priced in the cross-section of average returns. Campbell (1996),

Brennan, Wang, and Xia (2004), and Petkova (2006) build their models based on Merton

(1973) in which only factors that forecast future investment opportunities or stock returns

are admitted. From the time-series evidence of return forecastibility of monetary policy

instruments, it seems natural to investigate the effects of monetary policy on cross-section

of stock returns.

In this paper, I examine whether monetary policy shocks extracted from New-Keynesian

dynamic stochastic general equilibrium(DSGE) models can explain the cross sectional vari-

ability of U.S. stock returns. I employ New-Keynesian models since we must carefully

identify monetary policy shocks. In fact, New-Keynesian models utilized in this paper have

become benchmarks of much of the recent monetary policy literature since they can explain

many stylized facts in monetary economics.2 In addition, these models provide many inter-

esting structural shocks. For example, a series of shocks to investment technology can be

identified as a major determinant of the external finance premium. Recently, the implica-

tion of the capital market imperfection on cross section of stock returns are investigated by

Hahn and Lee (2006). While they find that the size and the value premia are compensation

for higher exposure to the risks related to changing credit market conditions and interest

rates(monetary policy), their results should be cautiously interpreted since other hypothe-

ses might be developed consistent with their measure of risks(yield spreads). In this sense,

I can investigate directly whether the identified external finance premium shock is really a

for monetary policy.

2I summarize the stylized facts in monetary economics and the failure of models before New-Keynesian
models in appendix A
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determinant for the size or value premium.3

I develop the whole estimation procedures in Bayesian methods. After dividing the

estimation steps into three blocks based on identifying assumptions frequently used in fi-

nance literature, I sequentially estimate each block by Bayesian Markov Chain Monte Carlo

method(MCMC) and repeat those steps until every parameter converges. In the first block,

I estimate New-Keynesian models using DYNARE-Matlab package. First, I use three differ-

ent versions of linearized Rational Expectations models consisting of AS, IS and monetary

policy rule equations proposed by Cho and Moreno (2006). Their models are parsimonious

yet rich enough to capture the macro dynamics of inflation, real GDP growth and the Fed-

eral funds rate.4 Second, I use an extended version of Smets and Wouters (2005) model

proposed by Graeve (2006) to precisely uncover the importance of the external finance pre-

mium and the permanent monetary policy shock. Finally, as a robustness check for my

analysis, I use the structural shocks estimated from factor-augmented vector autoregressive

model(FAVAR) of Bernanke, Boivin, and Eliasz (2005) since results from that model could

be robust to model misspecifications and small data set problems. In the second and the

third blocks, I estimate the posterior distributions of risks and the risk prices with identified

structural shocks. I also calculate the posterior densities of several diagnostic measures for

model comparison.

Several empirical findings emerge from this analysis using New-Keynesian models and

FAVAR model. First, I find that both the permanent monetary policy shock to inflation

target and a proxy of shock to the external finance premium successfully capture major

portions of the size and the value premia. While I use more structural methods to identify

3Lee told me, during one of private conversations, that some of researchers they met argue that the capital
market imperfection should not be an asset pricing factor since it has no implication for the aggregate stock
market. My results could be interesting in this venue since more direct measure of the external finance
premium could be developed to test this hypothesis

4Cho and Moreno (2006) show that their model with serial correlation is only marginally rejected at the
5 % level against vector autoregressive(VAR) model of inflation, real GDP growth and the federal funds rate
using the small-sample likelihood ratio test statistic.
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proxies for the external finance premium and monetary policy shock, these results support

the findings of Hahn and Lee (2006) that innovations in the default and term spreads as

proxies for capturing revisions in the market’s expectation about future credit market con-

ditions and interest rates explain the size and value premium. They argue that small-sized

and high-book-to-market firms would be more vulnerable to worsening credit market con-

ditions and higher interest rates. The identified structural shocks for the external finance

premium and the monetary policy shock from my models indeed indicate that their conclu-

sions are valid with a structural investigation based on equilibrium models while additional

structural shock related to inflation seem also indispensable.

Second, the permanent monetary policy shock to inflation target can explain part of

industry risk premium once I correctly account for the capital market imperfection. In

particular, this shock is the only statistically significant variable to determine industry risk

premium after controlling for business cycle. This could reflect that while the credit channel

under the capital market imperfection is important for determining the value and the size

premia, interest rate channel would be more important for explaining industry premium.

Peersman and Smets (2005) show that there is considerable cross-industry heterogeneity in

the overall monetary policy effects. After exploring which industry characteristics can ac-

count for the cross-industry heterogeneity, they find that durability of the output produced

by the sector is an important determinant of its sensitivity to monetary policy changes.

They argue this fact as an evidence for interest rate/cost-of-capital channel since the de-

mand for durable products, such as investment goods, is known to be much more affected

by a rise in the interest rate through the cost-of-capital channel than the demand for non-

durables such as food. Recently, Gomes, Kogan, and Yogo (2007) argue that durability of

output is a risk factor since the demand for durable goods is more cyclical than that for

nondurable goods and services. Consequently, the cash flow and stock returns of durable-

good producers are exposed to higher systematic risk and thus investors request higher risk
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premium. This study indicates that monetary policy shock is one of the fundamental shocks

behind this risk premium.

Third, temporary monetary policy shock extracted from several models is not statisti-

cally significant as a determinant for any risk premium. The stock market seems to respond

only to fundamental target changes, which by definition have persistent effects on the future

economy.

Finally, selected ICAPMs using New-Keynesian models are capable of explaining the

cross-section of the Fama-French 25 size and B/M sorted portfolios significantly(R2=72%)

and a part of risk premium for 55 portfolios with their 30 industry portfolios(R2=30%).

Lewellen, Nagel, and Shanken (2006) criticize most of empirical asset pricing models because

they only explain the value premium but not any part of the risk premium of industry

portfolios. Based on empirical results, I argue that New-Keynesian models with more

appropriate firm heterogeneity could be developed to fully account for industry risk premium

with fundamental economic shocks.5

The rest of the paper is organized as follows. Section 2 presents the structural New-

Keynesian models employed in this study. Section 3 outlines the empirical methods used to

extract structural shocks from the given models. Section 4 presents the data and discusses

the cross-sectional results of my empirical models for 25 size and B/M portfolios alone or

with 30 industry portfolios. Section 5 summarizes the main findings and concludes.

5Lewellen, Nagel, and Shanken (2006) criticizes most of the cross-sectional asset pricing studies for the
choice of the Fama-French 25 portfolios.(Possible Data Snooping problem) Especially, they show that many
empirical asset pricing models could price only the Fama-French 25 portfolios(R2 is above 75 %) but not the
55 portfolios including 30 industry portfolios.(R2 is typically below 10%) Therefore I check the robustness
of the proposed ICAPMs for the value premium and for the capability to explain the industry portfolios. I
argue that monetary policy shock is indeed important across different test assets.
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1.2 Models

This section discusses the models to be estimated; the first subsection briefly explains the

discrete time asset pricing model implied by new Keynesian equilibrium models and the

second subsection presents three different Keynesian macro models to identify monetary

policy shocks implemented in this paper.

1.2.1 The Pricing Kernel implied by New-Keynesian macro models

Without imposing any theoretical structure, the fundamental existence theorem of Harrison

and Kreps (1979) states that, in the absence of arbitrage, there exists a positive stochastic

discount factor, or pricing kernel, Mt+1, such that, for any traded asset with a gross return

at time t of Ri,t+1, the following equation holds:

1 = Et[Mt+1(Ri,t+1)] (1.2.1)

where Et denotes the expectation operator conditional on information available at time t.

Standard New-Keynesian macro models employ the following external habit specification

in utility function built on Fuhrer (2000).6

Et

∞∑
s=t

ψs−tU(Cs;Fs) =Et

∞∑
s=t

ψs−t

[
FsC

1−σ
s − 1

1− σ

]

where Cs is the composite index of consumption, Fs represents an aggregate demand shifting

factor and usually denotes as HsGs where Hs is an external habit level and Gsis a prefer-

ence shock.;ψ denotes the subject discount factor and σ is the inverse of the intertemporal

elasticity of consumption.

Bekaert, Cho, and Moreno (2005) derive the following pricing kernel implied by Fuhrer

(2000) assuming standard log-normality:

6I closely follow the representation given in Bekaert, Cho, and Moreno (2005)
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mt+1 = lnψ − σyt+1 + (σ + η) yt − (gt+1 − gt)− πt+1 (1.2.2)

where mt+1 = ln(Mt+1), yt+1 is detrended log output, gt+1 = ln(Gt+1) and πt+1 is the

inflation rate.

They express (1.2.2) in terms of the structural shocks in the economy.

mt+1 = −it − 1
2
Λ′DΛ− Λ′εt+1 (1.2.3)

where Λ′ is a vector of prices of risks entirely restricted by the structural parameters of

New-Keynesian models and D is the covariance matrix of structural shocks.

1.2.2 A digestion of Risk premium and the New-Keynesian Pricing Ker-

nel

The pricing kernel (1.2.3) is a linear combination of structural shocks to the overall economy.

Following Cochrane (2001), I can interpret (1.2.3) as an example of the ICAPMs.

One major problem of (1.2.3) is that this pricing kernel assumes constant risk premium.

Bekaert, Cho, and Moreno (2005) articulate that without either heteroscedasticity of struc-

tural shocks or time-varying market price of risk, their model essentially imposes that

expectation hypothesis holds in bond market. In such a case, ICAPM implication would

be seriously challenged since time-varying risk premium implied by ICAPM is inconsistent

with this type of New-Keynesian pricing kernel.

One possible remedy is to adapt the external habit specification of Fuhrer (2000) to

that of Campbell and Cochrane (1999) and develop a pricing kernel with time-varying

risk aversion. Since time-varying risk aversion is emphasized in the finance literature, this

extension would be beneficial for explaining asset pricing facts. However, the real challenge

behind this scenario is to develop IS model consistent with this new utility function in order
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to explain the stylized facts in monetary economics before it is implemented in asset market

research.7

Another suggestion would be introducing heteroscedasticity in the pricing kernel and

structural shocks. While this specification naturally allows time-varying risk premium, typ-

ical log-linearization of New-Keynesian models is not valid anymore. At least second order

approximation of the models should be employed to estimate the models. Unfortunately,

an estimation of second-order approximated New-Keynesian models with likelihood-based

methods and particle filter have not been ripen in the literature because of computational

difficulties. Some steps in this direction have begun to be taken only recently.8 The com-

mon practice is to estimate the log-linearized economy and plug the estimates into the

second-order approximation.

The easiest but ad-hoc solution of the problem is recently implemented by Rudebusch

and Wu (2004) and Hordahl, Tristani, and Vestin (2006) when they jointly estimate macro

models and term structure of yields. They simply ignore pricing kernel implications of their

IS equations and set them exogenously.

Sometimes empirical asset pricing studies in finance seem to have somewhat convenient

approximation mechanism similar to the ad-hoc approach presented above. For example,

Campbell (1996)’s ICAPM is derived under constant risk premium. Strictly speaking,

simple pricing kernel form implied by the homoskedastic version of the model combined

with the vector autoregression(VAR) pricing model recommended by Campbell (1996) is

inconsistent since it does not have any mechanism to generate time-varying risk premium.

However, actual implementation of Campbell ICAPM is usually done in the homoskedastic

form with the usual VAR. Recently, Petkova (2006) implements this homoskedastic VAR

to extract state variables and argue that her five factor ”ICAPM” model is better than

7I defer the explanation of terminology and implications of New-Keynesian models employed in this paper
to the next section.

8Refer to An (2006) for bayesian estimation of this type of models
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Fama-French three factor model to explain the value premium.

There seems to be trade-off between developing complex models to estimate tightly

restricted models and estimating inconsistent but plausible mechanisms to extract economic

state variables. Even though it seems possible to modify the pricing framework in (1.2.3)

using one of the two approaches with time-varying price of risk or heteroscedasticity, I defer

these attempts to future work. Instead, I follow a convenient approach, for example, taken

by Rudebusch and Wu (2004) in this paper. I argue that this approximation is reasonable

in terms of obtaining appropriate monetary policy shocks since current studies in monetary

policy literature typically use models of the current study for explaining the stylized facts

in monetary economics. While it is convenient to extract state variables in this way, pricing

kernels should be interpreted as an approximation or exogenously re-specified to avoid

constant risk premium. Specifically, I extract the innovations of state variables from New-

Keynesian models and interpret (1.2.3) as an reasonable approximation of pricing kernel of

ICAPM since these New-Keynesian models imply structural VAR of the economy.

Recent research suggests that monetary policy shocks can be identified as a determinant

of market risk premium. It seems natural to check the implications of time-series relation-

ship between monetary policy shocks and stock returns for the cross-section of portfolio

returns in the spirit of ICAPM but to my knowledge, no one has investigated this issue

before. Furthermore, it seems to be critical to investigate this issue closely following recent

progress of the monetary policy literature.9 In this sense, employing New-Keynesian frame-

work is important since most successful monetary policy analysis is done with log-linearized

models considered in this paper.10 I explicitly investigate the relationship between mone-

tary policy shocks and the cross-section of portfolio returns. Therefore, my approach seems

9In this sense, it is not clear that modification of (1.2.3) with heteroscedasticity or time-varying risk
aversion would be better as macro models. To my knowledge, this type of research have not yet done much
in monetary economics

10Refer to first nine chapters in Woodford (2003) for detailed explanations.
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to capture critical but unexplored areas of empirical asset pricing.

Usual ICAPM intuition suggests that state variables should forecast the changing invest-

ment opportunity set in that economy. In this sense, reasonably identified state variables

from New-Keynesian models are natural candidates since these models capture the essen-

tial feature and satisfy the intuition of various aspects of the data. Specifically, impulse

response analysis implied by these models show that each shock explains the future course

of the economy consistent with the stylized facts in monetary economics.11

1.2.3 New-Keynesian dynamic general stochastic equilibrium models(DSGE)

1.2.3.1 A summary of three-equation New-Keynesian Macro Models

In this section, I summarize three different versions of three equation New-Keynesian models

implemented by Cho and Moreno (2006)12 These models are simple but effective since they

find that their three-equation model augmented with autocorrelation is just marginally

rejected against a usual vector autoregression(VAR) of observed data using small-sample

likelihood ratio test statistics.

These models combine the rigor of the Real Business Cycle (RBC) approach, which is

characterized by the derivation of behavioral relationships from the optimizing behavior

of agents subject to technological and budget constraints and the specification of a well-

defined equilibrium concept, with the tractable introduction of nominal rigidities in order

to accommodate nontrivial roles for monetary policy. These models can avoid the Lucas

(1976) critique by a consistent treatment of expectations formation and rigorous treatment

of micro-foundations.

The first structural model(model1) proposed by Cho and Moreno (2006) contains three

equations: The aggregate supply(AS) equation, the IS equation and the monetary policy

11Refer to appendix A for a summary of the stylized facts in monetary economics and theoretical advances
before New-Keynesian macro models.

12For detailed review of microfoundation of these models, see Woodford (2003)
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rule.

First, the AS equation is a generalization of the Calvo (1983) pricing model:

πt = δEtπt+1 + (1− δ)πt−1 + λyt + εAS,t (1.2.4)

where πt is inflation between t-1 and t and yt stands for the output gap between t-1 and t.

εAS,t can be interpreted as marginal cost push shock, which is assumed to be independently

and identically distributed with homoskedastic variance σ2
AS . Et is the rational expectations

operator conditional on the information set at time t.

To account for the observed persistence in aggregate inflation, this model assumes that

price-setting intermediate goods producers engage in multi-period, staggered price setting.

Since price-setting responds to movements in marginal costs, its persistence arises from

shocks to marginal costs if inflation is purely forward looking. In addition to that, Gali

and Gertler (1999) generate additional inertia in the Phillips curve by adding rule of thumb

price setters with backward-looking behavior. In their model, prices remain fixed in mon-

etary terms during stochastic intervals of time. But unlike the Calvo model, when prices

are adjusted, some prices are chosen optimally while others are adjusted according to a

backward-looking rule of thumb that introduces dependence upon lagged inflation.

Second, the IS equation is derived with representative agent model with the external

habit as in Fuhrer (2000):

yt = µEtyt+1 + (1− µ)yt−1 − φ(rt −Etπt+1) + εIS,t (1.2.5)

where εIS,t is the preference shock, which is assumed to be independently and identically

distributed with homoskedastic variance σ2
IS . The monetary policy channel in the IS equa-

tion is captured by the contemporaneous output gap dependence on the ex ante real rate

of interest(rt −Etπt+1).
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In this model, the effects of policy-induced changes on real interest rates directly affect

aggregate spending decisions. For example, the central bank with an inflation target in-

creases the short-term nominal interest rate if inflation is above the desired rate. Because

of price stickiness, the central bank directly influences the real interest rate through its in-

fluence on the short-term nominal interest rate. Then, by influencing the real interest rate,

aggregate demand is affected through consumption, via intertemporal substitution effects,

and investment, via the cost of capital effects.

Finally, the monetary policy equation is the forward looking rule proposed by Clarida,

Gali, and Gertler (2000):

rt = αMP + ρrt−1 + (1− ρ)[βEtπt+1 + ryt] + εMPt (1.2.6)

where αMP is a constant and εMPtt is the monetary policy shock, which is assumed to be

independently and identically distributed with homoskedastic variance σ2
MP .

The policy rule exhibits interest rate smoothing with a weight of ρ on the past interest

rate. In this specification, the Fed reacts to high expected inflation and to deviations of

output from its trend.

Cho and Moreno (2006) extend their model with ad-hoc exogenous autocorrelation(model2)

or with both auto- and cross-correlation of structural shocks(model3) to accommodate the

persistence of the macro-dynamics.

εt+1 = Fεt + ωt+1 (1.2.7)

where F is a 3x3 stationary matrix, captures the correlation of structural shocks, and

is either diagonal(model2) or full matrix(model3), ωt+1 is independently and identically

distributed with diagonal covariance matrix D.
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1.2.3.2 A summary of an extended New-Keynesian DSGE

Cho and Moreno (2006) find that adding persistence to the baseline New-Keynesian model

improves the fit of the model. This might indicate the need for producing more complex

models to provide realistic macro-dynamics. Furthermore, their models have one critical

shortcoming by maintaining the assumption of frictionless capital markets. The seminal

paper by Bernanke and Gertler (1989) and a number of subsequent calibration studies

document how relaxing this perfect capital market assumption can generate additional

features observed in macroeconomic data. Since then, considerable interest has been placed

on the role of credit rather than money in determining business cycle fluctuations.

A series of papers proposed by Smets and Wouters(e.g.Smets and Wouters (2003)) in-

corporate a number of additional frictions to capture this persistence in the macro-economic

data and they also add an exogenous mechanism to impose capital market imperfection.

Their New-Keynesian models have become an standard approach in monetary policy lit-

erature.13 This model contains three agents;Households consume, work, set wages, and

invest; firms hire labor and capital, produce goods and set the prices of those goods; and

the central bank sets the short-term interest rate in response to the deviation of inflation

from the inflation target and output gap. The model accommodates both real and nominal

frictions such as monopolistic competition in goods and labor markets with sticky nominal

prices and wages, partial indexation of prices and wages, costs of adjustment in capital

accumulation, external habit formation and variable capital utilization and fixed costs.

In order to endogenize capital market imperfection mechanism into standard New-

Keynesian models, Graeve (2006) extends the role of entrepreneurs in Smets and Wouters’s

economy by explicitly accounting for the external finance premium equation in the sense of

Bernanke, Gertler, and Gilchrist (1999). He finds that his measure of the external finance

premium is closely related to readily available proxies of the premium such as the corporate

13Refer to Smets and Wouters (2006) in order to fully understand micro-foundations of this model.
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bond spread(Baa-Aaa) and the high-yield bond spread(Bbb-Aaa).

This explicit capital market imperfection mechanism could be a significant channel for

understanding the effects of monetary policy shocks on the cross-section of stock returns.

Hahn and Lee (2006) investigate the role of yields spreads as proxies for this mechanism and

find that the size and the value premia are compensation for higher exposure to the risks

related to changing credit market conditions and interest rates(monetary policy) proxied

by changes in yield spreads. However, yield spreads can be interpreted in a number of

ways. Probably, other hypotheses could be developed consistent with these results from

their reduced form model. For example, risk aversion can be time-varying and is proxied by

two variables. In this sense, my paper can be interpreted as more structural investigation

of the roles played by the capital market imperfection and monetary policy in explaining

the cross-section of stock returns.

In Graeve’s model, nine equations are incorporated to capture the macro dynamics of

the economy. Most of the equations are just adopted from Smets and Wouters (2003) or

Smets and Wouters (2005) except for the role of entrepreneurs.

First, households’ maximization provides the aggregate consumption equation and wage

equation. In addition to the external habit specification as in Cho and Moreno (2006),

households have differentiated labor characteristics and some monopoly power over wages,

which introduce sticky nominal wages in the sense of Calvo (1983). Households act as price-

setters in the labor market and partial indexation of the wages is allowed. ”Hat” means the

steady state value.

The aggregate consumption(Ĉt) in this model is determined by:14

Ĉt =
h

1 + h
Ĉt−1 +

h

1 + h
EtĈt+1 +

σc − 1
(1 + λw)(1 + h)σc

(L̂t − EtL̂t+1)− (1− h)
(1 + h)σc

R̂t

14This is the equation (1) of Smets and Wouters (2005).
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+
(1− h)

(1 + h)σc
(ε̂B

t − Etε̂
B
t+1) (1.2.8)

where ε̂B
t is interpreted as preference shock and follows a first-order autoregressive pro-

cess with an i.i.d normal error term; L̂t stands for the labor supply included as the non-

separability of the utility function of labor and consumption; R̂t(R̂n
t −Etπ̂t+1) is the ex-ante

real interest rate, where R̂n
t is the nominal interest rate and π̂t+1) is the inflation rate; Fi-

nally, Et indicates conditional expectation given information up to time t.

Households set their wages with the following Calvo (1983) type staggered wage-setting

scheme proposed by Christopher, Henderson, and Levin (2000). In this model, the real

wage ŵt is a function of expected and past real wages and the expected, current and past

inflation rates(π̂t).15

ŵt =
β

1 + β
Etŵt+1 +

1
1 + β

ŵt−1 +
β

1 + β
(Etπ̂t+1− π̄t)− 1 + βγw

1 + β
(π̂t− π̄t)− γw

1 + β
(π̂t−1− π̄t)

− 1
1 + β

(1− βξw)(1− ξw)

(1 + (1+λw)σl

λw
)ξw

[
ŵt − σlL̂t − σc

1− h
(Ĉt − hĈt−1)− ε̂L

t

]
+ ηW

t (1.2.9)

where ηW
t is interpreted as a wage-markup disturbance. And ε̂L

t represents the shock to

the labor supply and is assumed to follow a first-order autoregressive process with an i.i.d.

normal error term.

New-Keynesian economists emphasize the role of nominal rigidities(price stickiness)

based on microfoundations of imperfect competition. However, for these rigidities to have

important implications, it is necessary that wages do not respond much to fluctuations in

demand. The fall in output also results in a fall in labor demand which, in turn, would

drive down the equilibrium wage in the labor market and the firm’s marginal cost curves.

This may increase the gain from price adjustment significantly. Thus, for the lack of price

15This is the equation (6) of Smets and Wouters (2005).
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adjustment to be a macroeconomic equilibrium, we need real rigidity in the labor market.

Staggered wage-setting equation is one of the mechanisms to generate this real rigidity in

labor market. In fact, Smets and Wouters (2003) use partial or full indexation of this kind

for both wages and prices, and find that this extension of the Calvo pricing model improves

the empirical fit of their models.

Intermediate goods firms’ optimizations in monopolistic competition markets yield the

following equations. First, Cobb-Douglas production function augmented with fixed costs

and variable capital utilization is given by:16

Ŷt = φε̂A
t + φαK̂t−1 +

φα

ψ
r̂k
t + φ(1− α)L̂t (1.2.10)

where output(Ŷt) is produced using capital (K̂t−1 ) and labor services (L̂t ). Total factor

productivity (ε̂A
t ) is assumed to follow a first-order autoregressive process.

The firm’s labor demand(L̂t) depends negatively on the real wage(ŵt) and positively on

the rental rate of capital(r̂k
t ) by equalizing marginal cost:17

L̂t = −ŵt + (1 +
1
ψ

)r̂k
t + K̂t−1 (1.2.11)

Finally, price is determined following Calvo (1983) scheme.18

π̂t − π̄t =
β

1 + β
(Etπ̂t+1 − π̄t) +

γp

1 + βγp
(π̂t−1 − π̄t)

+
1

1 + βγp

(1− βξp)(1− ξp)
ξp

[
αr̂K

t + (1− α)ŵt − ε̂A
t

]
+ ηP

t (1.2.12)

where the deviation of inflation(π̂t) from the target inflation rate (π̄t) depends on past and

16This is embedded in the equation (8) of Smets and Wouters (2005).

17This is the equation (7) of Smets and Wouters (2005).

18This is the equation (5) of Smets and Wouters (2005).



18

expected future inflation deviations and on the current marginal cost(αr̂K
t + (1− α)ŵt − ε̂A

t ).

The stochastic component ε̂A
t is assumed to follow a first-order autoregressive process and

ηP
t is an i.i.d. normal price mark-up shock.

Capital goods producers work in a perfectly competitive environment and their invest-

ment decision can be summarized as:19

Ît =
1

1 + β
Ît−1 +

β

1 + β
EtÎt−1 +

1/ϕ
1 + β

(Q̂t + ε̂I
t ) (1.2.13)

where Q̂t is the real value of installed capital and ϕ is the investment adjustment cost

parameter. A positive shock to the investment-specific technology, ε̂I
t increases investment

in the same way as an increase in the value of the existing capital stock Q̂t. This investment

shock is also assumed to follow a first-order autoregressive process with an i.i.d normal error

term.

And the capital stock evolves as:20

K̂t+1 = (1− τ)K̂t + τ Ît + τ ε̂I
t (1.2.14)

where τ is the depreciation rate, Ît stands for investment and ε̂I
t represents a shock to the

investment technology.

Unlike the forward-looking monetary policy used in Cho and Moreno (2006), the mon-

etary policy rule follows a generalized Taylor rule by gradually responding to deviations

of lagged inflation from an inflation objective and the lagged output gap. This reaction

mechanism contains two monetary policy shocks: a temporary i.i.d. normal interest rate

shock(ηR
t ) and a persistent shock for changes in inflation target(π̂t − π̄t).21

19This is the equation (2) of Smets and Wouters (2005).

20This is the equation (4) of Smets and Wouters (2005).

21This is the equation (9) of Smets and Wouters (2005)
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R̂n
t = ρR̂n

t−1 + (1− ρ)
{

π̄t + rπ (π̂t − π̄t) + rY

(
Ŷt − Ŷ P

t

)}
+ r∆π (π̂t − π̄t−1)

+ r∆Y

(
Ŷt − Ŷ P

t −
(
Ŷt−1 − Ŷ P

t−1

))
+ ηR

t (1.2.15)

where R̂n
t is the federal funds rate, π̄t is the inflation target set by the central bank and

potential output(Ŷ P
t ) is defined as the level of output that would prevail under flexible price

and wages in the absence of cost-push shocks and in frictionless credit market equilibrium.

Finally Ŷt is the actual real GDP and π̂t is the actual inflation rate.

The goods market equilibrium condition can be written as:22

Ŷt = cyĈt + τky Ît + εG
t +

(
R̄K − 1 + τ

)

ψky
r̂k
t + ky

(
R̄K − R̄

)
(1− N̄

K̄
)
(
R̂K

t + Q̂t−1 + K̂t

)

(1.2.16)

where cy and ky denotes the steady-state ratio of consumption and capital to output re-

spectively. And εG
t is interpreted as government spending shock, which follows a first-order

autoregressive process with an i.i.d. normal error term.

Finally, entrepreneurs buy the capital stock Kt+1 from capital goods producers at a

given price Qt with internal funds(net worth, Nt+1) and bank loans. And they choose

capital utilization and rent out capitals to intermediate goods firms at a rate r̂k
t .23

The aggregate expected real return to capital is given by:

EtR̂
K
t+1 =

1− τ

R̄K
EtQ̂

K
t+1 +

r̄k

R̄K
Etr̂

K
t+1 − Q̂t (1.2.17)

22This is the equation (8) of Smets and Wouters (2005)

23This is modified equation (3) of Smets and Wouters (2005) without exogenous risk premium shock.
From now on, I closely follows page 8 and 9 of Graeve (2006)



20

where R̄K denotes the steady state return to capital and r̄k stands for the steady state rental

rate. The first term in the equation states the value of remaining capital(1−τ
R̄K EtQ̂

K
t+1), the

second term indicates the return from renting out the capital(1−τ
R̄K EtQ̂

K
t+1) and the last term

indicates the paid price for the purchase of capital stock(Q̂t).

While Graeve (2006) uses set of equations adopted directly from Smets and Wouters

(2005) for the equations described up to now, Graeve (2006) extends the Smets-Wouters

model by assuming that entrepreneurs cannot borrow at the risk-less rate because of capital

market imperfection. In that case, because of the asymmetric information between the

financial intermediary and entrepreneurs, the bank should pay a state verification cost for

monitoring entrepreneurs. In equilibrium, entrepreneurs borrow up to the point where the

expected return to capital equals the cost of external finance.

At equilibrium, Graeve (2006) argues that the external finance premium is given by:

EtR̂
K
t+1 = −εEt

[
N̂t+1 − Q̂t − K̂t+1

]
+ R̄t (1.2.18)

where ε measures the elasticity of the external finance premium to variations in entrepreneurial

financial health(Et

[
N̂t+1 − Q̂t − K̂t+1

]
), measured by net worth relative to capital expen-

ditures. Following Bernanke, Gertler, and Gilchrist (1999), he assumes that the premium

over the risk-free rate required by the financial intermediary is a negative function of the

amount of collateralized net worth. When entrepreneurs have sufficient net worth to finance

the entire capital stock, Graeve (2006) explains that his model reduces to the Smets and

Wouters model.

And Graeve (2006) sets the net worth equation of entrepreneurs by:

N̂t+1 = γR̄K

[
K̄

N̄

(
R̂K

t −Et−1R̂
K
t

)
+ Et−1R̂

K
t + N̂t

]
(1.2.19)

where γ is the entrepreneurial survival rate and K̄
N̄

is the steady state ratio of capital to net
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worth.

Graeve (2006) concludes that his model with the financial accelerator(endogenous ex-

ternal finance premium) performs substantially better in matching the macro-dynamics

relative to the Smets-Wouters model without that mechanism from examining the Bayes

factor.

1.2.3.3 Factor-augmented vector autoregressions(FAVAR)

Central banks increasingly pay attention to a much larger number of time-series in their fore-

casts than is commonly assumed by academic econometricians. For example, the US Fed is

thought to keep and evaluate thousands of series. Usual criticisms of the common VAR ap-

proach to monetary policy shock identification center around that a relatively small amount

of information is used by usual VARs with at most eight variables. The New-Keynesian

models discussed in the last section are also subject to the same criticism since they use at

most eight variables. This information set is very small available to the information sets of

actual central bankers who constantly watch even hundreds of data series.

Recently, Bernanke, Boivin, and Eliasz (2005) propose a solution to deal with this

critique on limited information problem by combining the usual VAR analysis and principal

component analysis to incorporate latent factors extracted with a large panel of economic

data. They argue that those latent factors can be interpreted as state variables of the

economy such as unobserved potential output or credit conditions.

In this paper, I use a series of monetary policy shock identified from FAVAR model

in order to investigate two issues. First, since this model provides monthly estimates of

structural shocks, we can examine the relationship between monetary policy shocks and

stock returns further at a higher frequency than quarterly horizon. Second, the size of the

data set used in estimating New-Keynesian models may be too small to extract monetary

policy shocks with 8 variables and 20 years of quarterly data. Since I use almost 40 years
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of monthly data to check for the effects of monetary policy on the cross-section of stock

returns, empirical results using this model would provide another testing ground for the

effects of monetary policy.

However, there is a criticism on using this type of models. Even though structural

vector autoregresions(VARs) are widely used to show the effect of monetary policy shocks

on the economy, these models typically use simple identifying restrictions consistent with

various models.24 Following the standard structural VAR approach, FAVAR proposed by

Bernanke, Boivin, and Eliasz (2005) also focuses on specifications that identify the monetary

policy shock while remaining agnostic about the structure of the rest of the model and

the number of unobservable factors. Because this is not a true structural model based on

microfoundations, it is questionable whether the results are robust and not subject to Lucas

(1976) critique problems.

Bernanke, Boivin, and Eliasz (2005) propose the following state space model:

Transition Equation



Ft

Yt


 = Φ(L)




Ft−1

Yt−1


 + vt, vt ∼ (0, Q)

where Yt is an M×1 vector of observable economic variables assumed to drive the dynamics

of the economy and Ft is a K×1 vector of “unobserved” factors such as unobserved potential

output or credit conditions.

Measurement equation

Xt = ΛF Ft + ΛyYt + et

(N × 1) (N ×K) (N ×M) (N × 1)

24For example, Sims (1992) assumes that monetary policy only affects output with a lag.(money granger
causes output)
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where et ∼ N(0, R) and R is a diagonal matrix and et and vt are independent. Xt is N × 1

vector of economic variables useful to extract Ft

In matrix forms, measurement equation can be expressed as the following:




Xt

Yt


 =




Λf Λy

0 I







Ft

Yt


 +




et

0




Following Bernanke, Boivin, and Eliasz (2005)’s empirical specifications, I extract three

latent factors from 120 monthly macro series and use the federal funds rate as the single

observed factor. In this case, Yt = Rt and Rt is monetary policy instrument.

Even though I use several complex models to identify monetary policy shocks, the models

presented here should be viewed only as approximations to the actual monetary transmission

mechanism. A realistic quantitative model still needs to incorporate additional complexi-

ties. Nonetheless, the basic elements of the optimizing model of the monetary transmission

mechanism used in this paper are interpreted as being representative of crucial elements of

a realistic model; and indeed, Smets and Wouters (2003) argue that the illustrative mod-

els discussed here have many elements in common with rational-expectations models of

the monetary transmission mechanism that are already being used for quantitative policy

evaluation at a number of central banks.

1.3 Empirical Specification

1.3.1 Baseline Empirical Models

This section provides a simple Bayesian framework for estimating and evaluating a version

of ICAPM based on the state variables estimated from several New-Keynesian models. In

order to estimate the models explained in the previous section, I present a Markov Chain
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Monte Carlo(MCMC) algorithm to encompass all of the estimation procedures.25

1.3.1.1 Assumptions and Estimation algorithm

First, I express the joint density of all the parameters by:26

f(λ, β, σ2
ν , σ

2
e , X|R,M)

where λ denotes the risk price;β is the risk(betas);σ2
ν and σ2

e will be defined later;X is a

vector of state variables(structural shocks); R is a vector of portfolio returns;M is a vector

of macro variables.

I assume that structural shocks(X) are identified only from New-Keynesian models with

macro variables but not from stock market returns. However, this assumption might not

be innocuous. Modelling and identifying the interaction between monetary policy and the

stock market is complicated by endogeneity problem since the Federal Reserve may react

to movements in asset price returns while asset price returns are sensitive to the interest

rate set by the monetary authorities.(e.g.Rigobon and Sack (2003))

I argue why these assumption can still be valid with the following reasons. First, the

reaction of the Fed on stock market behavior might not be too big. For example, Bernanke

and Gertler (1999) augment an otherwise conventional Taylor rule with the lag of asset

price returns and find that the Fed does not react to the stock market. They argue that

the Fed with inflation target objective should respond only to inflation component of stock

25Alternative classical approach can be specified following Brennan, Wang, and Xia (2004).In their ap-
proach, they first estimate an essential affine term structure models using maximum likelihood estimation
with Kalman filter and do the usual Fama-Macbeth two-step regressions. In this setup, GMM estimation
of all parameters is impossible because of Kalman filter, which is true in estimating New-Keynesian DSGEs
since it also involves Kalman filter. In fact, since I use diffuse priors for almost all parameters, we might
be able to interpret the estimation results similar to bootstrap estimation of all parameters in classical
approach.

26I suppress structural parameters in New-Keynesian models since these parameters are not primary
concerns.
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market volatility. Since inflation rate itself is included in estimation of New-Keynesian

models, adding stock market variables would not be that much important for estimation

results. Second, none of the standard New-Keynesian models include stock market data to

identify structural shocks for macro economy. Probably one notable exception is FAVAR

model, which includes stock market returns to extract latent factors from observed vari-

ables. Therefore, robustness checks using FAVAR models might be interesting to check

whether monetary policy shock is really important for explaining the cross-section of stock

returns. Finally, empirical asset pricing studies using macro-variables typically assume that

state variables extracted from some macro-models are exogenous to the stock market. For

example, Thorbecke (1997) include stock return as most endogenous variables in his struc-

tural VAR to investigate the time-series relationship between monetary policy shock and

stock returns.

This joint density can now be decomposed as:

f(λ, β, σ2
ν , σ

2
e |X, R)f(X|M) (1.3.1)

Furthermore, I assume that prior independence of parameters in f(X|M) and those in

f(λ, β, σ2
ν , σ

2
e |X, R). Then I can estimate posterior distributions of all parameters in sep-

arate blocks. Based on the given assumptions, I use unified MCMC scheme to estimate

all parameters by repeating estimation steps given below.27 I estimate the given models in

step 1 for burn-in period.28 And after burn-in period, I start to repeat step 1 through 3

and save series of identified structural shocks and calculate posterior distributions of corre-

sponding risks and risk prices. During the repetition, I calculate and save various statistics

for the comparison of different models. However, for the Fama-French three factor model

or CAPM, I skip the step 1 since factors are all observed.

27In fact, it becomes a sequential estimation of three blocks of MCMC using assumptions.

28I use Brooks and Gelman (1998)’s convergence diagnostic to make sure actual convergence of algorithm
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Step 1. estimation of f(X|M) I estimate New-Keynesian or FAVAR models and obtain

the series of structural errors from given models after burn-in periods. In order to estimate

New-Keynesian models and FAVAR model, I utilize a Bayesian method. While maximum

likelihood estimation(MLE) is known to produce better results than generalized methods of

moments(GMM) in estimating DSGE models, several researchers(e.g.An and Schorfheide

(2005)) criticize MLE with ”dilemma of absurd parameter estimates” when applying MLE to

DSGE models and argue that Bayesian methods often produce more acceptable parameter

estimates combining prior information from micro-economic studies.

Specifically, I use the DYNARE package to estimate the Linearized DSGE models.29

The Bayesian estimation methodology in DYNARE package contains the following steps.

First, the linearized rational expectations model is solved with the generalized Schur de-

composition(QZ) method30 , which leads to results in a state equation in the predetermined

state variables. Second, the model is written in the state space form by adding a measure-

ment equation that links the observable variables to the vector of state variables. Third, the

likelihood function is derived using the Kalman filter. Finally, after the posterior density is

formed by combining the likelihood function with a prior distribution over the parameters,

a Random-Walk Metropolis(RWM) algorithm is utilized to generate draws from the pos-

terior distribution of parameters. The RWM algorithm belongs to the more general class

of Metropolis-Hastings algorithms which generate Markov chains with stationary distribu-

tions that correspond to the posterior distributions of interest.31 In order to get appropriate

starting values, DYNARE estimates the posterior mode with Sims’ ”cminwel” function and

the inverse of the Hessian is computed at that posterior mode. Since it is well known that

29To estimate New-Keynesian models I employ DYNARE version 3.5, by S. Adjemian, M. Juillard and
O.Kamenik. I appreciate for their kindness to make this phenomenal toolbox available. For FAVAR, I utilize
Matlab programs downloaded from Jean Boivin’s website. I also thank him for sharing his programs and
data

30I refer to Klein (2000) for a reference of the QZ method

31I refer to Chib and Greenberg (1995) for an excellent introduction to Metropolis-Hastings algorithms.



27

the posterior distribution of each parameter is asymptotically normal, a Gaussian approx-

imation around the posterior mode and a scaled asymptotic covariance matrix is used as

the proposal distribution. And the scale parameters are chosen to obtain approximately

35 % acceptance rate. The debugging features of DYNARE are used to determine if the

optimization routines have found the optimum and if enough draws have been executed for

the posterior distributions to be accurate.

Before developing step 2, I state the implied ICAPM in the form of the fundamental

asset pricing equation and the corresponding beta-regression.

E
(
Mt+1R

e
t+1|ψt

)
= 0 (1.3.2)

where Re
t+1is an N-vector of excess returns(test assets) to a short term risk-free from t

to t+1; Mt+1 is the asset pricing kernel(or stochastic discount factor) given in (1.2.3); ψt

denotes the information at time t. By plugging (1.2.3) into (1.3.2), implied ICAPM model

can be intuitively expressed by (expected return = risk price(λ)*risk(β)).

Since I use non-return factors implied from New-Keynesian models, I can not obtain the

risk price(λ) and risk(β) simultaneously. Therefore, I assume that we can estimate λ and

β in two steps with the Fama-MacBeth analogy. Now, I can express (1.3.1) by:

f(λ, σ2
ν |β, σ2

e ,X, R)f(β, σ2
e |X, R)f(X|M) (1.3.3)

where λ and σ2
ν are the parameters in cross-sectional regression; β and σ2

e are the parameters

in time-series regression.

Step 2. estimation of risk(β) with f(β, σ2
e |X,R) If I assume that the econometri-

cian has access to both excess returns and the historical values of the true state vari-

ables(structural shocks) given from the first step, then the second step in this estimation

scheme is a multivariate time-series regression of excess returns(ri) on the state variables
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or structural shocks from the first step(Xi):

ri = Xiβi + ei, fori = 1, 2, ..., m (1.3.4)

where ri is a T ×1 vector of the T observations of the dependent variable(portfolio returns),

Xi is a T × pi matrix of independent variables(state variables or structural shocks), βi is

a pi × 1 vector of the regression coefficients(betas), and ei is the vector of errors for the T

observations of the ith regression.

In matrix forms,

r̃ = X̃β̃ + ẽ (1.3.5)

where

r̃ =




r1

r2

. . .

rm




, X̃ =




X1 0 . 0

0 X2 . 0

. . . .

0 0 . Xm




, β̃ =




β1

β2

. . .

βm




, ẽ =




e1

e2

. . .

em




, ẽ ∼ N
(
0,

∑
⊗IT

)

As the above remarks indicate, r̃ are asset returns and the independent variables, X̃ are

factors(structural shocks) in asset pricing models, β̃ are risks of factors. Since the set of

factors is the same across all equations, i.e., (X ≡ X1 = X2 =, . . . , Xm), we can interpret

(1.3.5) as a seemingly unrelated regressions(SUR) model with the same independent vari-

ables. Typically, we assume ,in linear factor models, that
∑

is diagonal, i.e., ei = N
(
0, σ2

i

)

and cov
(
ei, ej

)
= 0 for i6= j. Since generalized least square(GLS) estimation is numerically

equal to OLS estimation in this case, we can estimate each equation in the above system

with Bayesian estimation of ordinary least squares regression.(ri = Xβi + ei for all i)

Based on the given models, I can utilize simple Bayesian regression method with non-

informative priors. If ri|βi, σ2
e , X

i ∼ N
(
Xiβi, σ2

eI
)

and p
(
βi, log σ2

e

) ∞ σ−2
e then it follows
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that the conditional posterior distribution p
(
βi|σ2

e ; X, R
)

can be written as:

p
(
βi|σ2

e ; X, R
) ∼ NMVN

((
Xi′Xi

)−1
Xi′ri, σ2

e

(
Xi′Xi

)−1
)

(1.3.6)

The posterior distribution of σ2
e can be written as:p

(
σ2

e |data
) ∼ Inv χ2(n − k, s2). Us-

ing Gibbs-sampling technique, I can estimate β with previous returns data with state

variables(X) from the step 1. However, it is well known that in this case, the following

marginal distribution of β holds: p (β|data) ∼ MVTn−k

(
βi′, s2Xi′Xi−1

)
. Therefore, I just

use modes of multivariate t distribution as estimates of β.

Step 3. estimation of risk price(λ) with f(λ, σ2
ν |β, σ2

e ,X,R) Finally, I estimate risk

prices(λ) using β as independent variables for each time. In classical approach, Fama-

MacBeth approach suggests that I should run this cross-sectional regressions each quarter,

generating time-series of estimates for risk prices(λ). Means, standard errors, and t-statistics

are then computed from these time series and inference proceeds in the usual manner, as

if the time series are independently and identically distributed. It is well known that secu-

rity returns are cross-sectionally correlated, due to common market and industry factors,

and also are heteroscedastic. As a result, the usual formulas for standard errors are not

appropriate for the OLS cross-sectional regressions(CSR). Fama-Macbeth approach is inter-

preted as a remedy for this phenomenon. Since the true variance of each quarterly estimator

depends on the covariance matrix of returns, cross-sectional correlation and heteroskedas-

ticity are reflected in the time series of quarterly estimates. Following this argument, I run

Bayesian cross-sectional regression every time using (1.3.6). However, its independent vari-

ables become (β) instead of Xi, and λ become a vector of coefficients from this regression

.

p
(
λi|σ2

ν ; data
) ∼ NMVN

((
βi′βi

)−1
βi′ri, σ2

ν

(
βi′βi

)−1
)

(1.3.7)

where β is obtained from the previous step.
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However, estimates given in step 2 provide some information about covariance matrix

for error terms in cross-sectional regressions since intercept terms in time-series regressions

are related to error terms in cross-sectional regression. In fact, Cochrane (2001) argues,

in classical sense, that while GLS is asymptotically more efficient, estimation results may

not be trustworthy for large portfolios since GLS meaning OLS on transformed portfolios

and it pays attention to uninteresting but low residual variance or near riskless portfolios.

Therefore, consistent with previous studies using OLS, I use either Bayesian Gibbs sampling

using (1.3.7) or use modes of multivariate t distribution as before.

p (λ|X, R) ∼ MVTn−k

(
λi′, s2βi′βi−1

)
. (1.3.8)

The whole procedure can be interpreted as usual integrating-out of nuisance parameters.

After simulating the posterior distribution of parameters, simulated parameters can then

be used to construct the posterior distribution of risk prices by the following form:

f [λ] =
∫∫∫∫

f(λ, β, σ2
e ,σ

2
ν , X| M,R )dσ2

νdβdσ2
edX

Any function of estimated parameters can also be constructed with same logic. For

example, I construct Jagannathan and Wang (1996)’s adjusted R2 to judge the goodness of

fit of the suggested empirical models.

R2 =
σ2

C(R̄)− σ2
C(ē)

σ2
C(R̄)

where σ2
C represents the in-sample cross-sectional variance, R̄ is a vector of average excess

returns, and ē stands for the vector of average residuals in cross-sectional regression.
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1.4 Data and Empirical Results

1.4.1 Data

In this study, I use three different macro data sets. First, in order to estimate three versions

of Cho and Moreno model, I download their data set from the website of Journal of Money,

Credit, and Banking.32 They use U.S. quarterly time series for three variables: output

gap, inflation rate using GDP deflator and the quarterly average of Federal funds rate from

1980:Q4 to 2004:Q4.33 They choose this sample period after several parameter stability tests

and report their results are robust across several output gap measures with the Consumer

Price Index(CPI) and the 3 Month T-Bill rate. I estimate their models using linearly-

detrended output gap and inflation rate using GDP deflator and the Federal funds rate.

Perhaps, this sample period explicitly shows the relationship between monetary policy and

stock returns because Fed has responded more vigorously to inflation variations since 1979.

Second, I estimate Graeve (2006)’s model using his data and DYNARE program.34.

His data set consists of real GDP, consumption, investment, real wages, hours worked,

price(GDP deflator) and the short-term interest rate of Smets and Wouters (2006) from

1947:Q1 to 2004:Q4.35 Nominal variables are deflated by the GDP-deflator and aggregate

real variables are expressed in per capita terms. All variables except for hours, inflation

and the interest rate are linearly detrended. Following Smets and Wouters (2006) and

Graeve (2006), I estimate Graeve’s model using full sample data. But for comparison,

I use extracted structural shocks only from 1980:Q4 to 2004:Q4 for explaining the cross-

32I thank Cho and Moreno for sharing their data set and JMCB for its data policy.

33They use data from 1980:Q1 to 2000:Q1 in their main estimation but extend their data set for robustness
check. Their data is annualized and in percentages. Federal funds rate data was collected from the Board of
Governors of the Federal Reserve website. Real GDP and the GDP deflator were obtained from the National
Income and Product Accounts (NIPA). I refer to Cho and Moreno (2006) for the details.

34I greatly appreciate for his sharing of his program and data

35For data description, I refer to data appendix of Smets and Wouters (2006).
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section of stock returns. Even though sample period used in estimation is different, identified

structural shocks are similar across different models. For example, any measure of monetary

policy shocks from models 1,2 and 3 of Cho and Moreno (2006) has a correlation above 80

% of temporary monetary shocks from Graeve (2006)’s model. This might indicate the

robustness of this Smets-Wouters model over simple three equations of New-Keynesian

models since parameter instability of simple models would be endogenously incorporated in

this complex model.

Finally, I download data from the website of Jean Boivin to estimate FAVAR model.36

They use Federal funds rate and other monthly macro-economic data from January 1959

through August 2001 and extract latent factors from a balanced panel of 120 monthly

macroeconomic time series, which is transformed to induce stationarity. Probably, one

characteristic of their data is noteworthy to be mentioned. Unlike New-Keynesian mod-

els using only macro variables, Bernanke, Boivin, and Eliasz (2005) include stock prices

data(NYSE and S&P stock index, dividend yield, price-earning ratio) to extract their la-

tent factors. I use structural shocks from this model to check the relationship between

monetary policy and stock returns for full sample period.

In cross-sectional analysis, I use ,as test assets, the returns on Fama-French 25 portfolios

sorted by size and book-to-market and 30 industry portfolios. Even though the 25 portfolios

have become the benchmark in testing competing asset pricing models, Lewellen, Nagel, and

Shanken (2006) show that the 55 portfolios are the more appropriate to rigorously compare

the models. All the portfolio returns and the Fama-French three-factors -the returns of the

market portfolio(Rmrf), HML, and SMB are downloaded from French’s website.

36I thank him for sharing his data and program. I refer to the data appendix of Bernanke, Boivin, and
Eliasz (2005) for the description of the data set and their detrending methods.
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1.4.2 Priors and estimation results for New-Keynesian models

The Bayesian approach facilitates the incorporation of prior information from other macro

as well as micro studies. As is well known from Bayes rule, the posterior distribution of a

parameter is proportional to the product of its prior distribution and the likelihood function

of the data. This prior distribution describes the available information prior to observing

the data used in the estimation. The observed data is then used to update the prior, via

Bayes theorem, to the posterior distribution of the parameters. However, Bayesian analysis

is often criticized for its subjectivity bias from prior selections. In this study, I employ

non-informative priors whenever possible. Especially, for the second and the third blocks of

estimation, readily available non-informative Jeffrey priors are used.(p
(
βi, log σ2

e

) ∞ σ−2
e )

In specifying the prior density, I assume that all parameters in each block are indepen-

dently distributed of other parameters in the other blocks. This assumption simplifies my

estimation since all blocks of estimation can be now separately done along with identifying

assumptions given in the previous section.

For the first block estimation of New-Keynesian models, however, informative priors

seem to be indispensable. While maximum likelihood estimation(MLE) or Bayesian esti-

mation with non-informative priors is known to produce better results than the generalized

methods of moments(GMM) in estimating DSGE models, several researchers(e.g.An and

Schorfheide (2005)) criticize MLE with ”dilemma of absurd parameter estimates” when

applying the MLE to DSGE models and argue that Bayesian methods often produce more

acceptable parameter estimates. For the estimation of Graeve (2006) and FAVAR, I exactly

follow their selections of prior distributions.37 However, I need to select prior distributions

of the parameters in Cho and Moreno (2006)’s models since they use MLE in their paper.

First, I choose distributional assumptions following Graeve (2006) in the sense that if some

parameters have positivity restrictions(e.g.Calvo parameter), I impose beta distribution

37I refer to their papers for the details on their prior selection.
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and I use usual inverted gamma distribution for variance parameters. However, in order to

minimize biases caused by the selection of prior distribution and obtain consistent results

with Cho and Moreno (2006), I choose almost non-informative priors. For example, with

DYNARE, I can check whether posterior modes are uniquely identifiable with given prior

density and likelihood function. I set the variance of prior density as large as possible if

unique mode is identified.

In Bayesian analysis, monitoring the convergence of parameters is critical since without

it, we are not sure whether estimated parameters can be considered as a valid sample from

the posterior distribution.38 Therefore, in order to ensure convergence, I do several checks.

First, I simulate samples from each New-Keynesian model at least 200,000 draws from five

different chains and after discarding 50 % of them in each chain as burn-in replications, I

calculate the convergence diagnostics of Brooks and Gelman (1998) offered in DYNARE

package. I find every parameter converged with this statistics. When I also draw one long

chain of 1,000,000 draws from each model with 500,000 as burn-in periods, I obtain similar

results.

While all of the parameter estimates are similar to those presented in Cho and Moreno

(2006) and Graeve (2006),39 I report the estimated structural shocks omitted from the tables

of Cho and Moreno (2006) and Graeve (2006). Several points deserve to be mentioned.40

First, in Table 1.1, model 2(M2) and model 3(M3) are extended versions of model 1(M1)

with autocorrelation alone or cross-correlation together. We expect that even though es-

timated shocks are similar across the models, autocorrelations of model 2 and of model 3

will be much lower than that of model 1. These facts are confirmed in the table. Correla-

38For FAVAR model, I exactly follow the suggestions given in Bernanke, Boivin, and Eliasz (2005) and
obtain similar estimates using their original programs.

39I omit results of parameter estimation and refer to the tables in each paper for the details since there is
no additional information provided from reporting the same estimates.

40I also omit results of FAVAR and just show Figure 1.3 for overall picture since these results are not
primary concerns in this paper.
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tions of estimated shocks are above 90% in every case, but autocorrelations of shocks are

significantly lower in model 2 and model 3 compared with that of model 1. This pattern

is also confirmed in Figure 1.1. Table 1.2 and Figure 1.2 reports the sample statistics and

patterns of estimated structural shocks from Graeve’s model.

Two facts deserve special attention for understanding the risk premium reported in the

next section. In Graeve’s model, there are two monetary policy shocks;permanent shock to

inflation target(GE PIE BAR) and temporary monetary policy shock(GETA R). Table 1.3

reports correlation between these two shocks and monetary policy shocks identified from

Cho and Moreno’s models. Interestingly, monetary shocks of Cho and Moreno’s models

seem to capture mostly temporary monetary shock. Correlation between Cho and Moreno’s

monetary policy shocks and Graeve’s temporary monetary policy shocks are around 75% but

with permanent shocks, correlation is just 30%. Therefore, I interpret Cho and Moreno’s

monetary policy shocks as temporary shocks. Finally, I do not report here but confirm an

important result from the table 4 of Graeve (2006). He calculates which structural shock is

important for explaining the external finance premium for several different horizons using

variance decomposition. In this estimates, the shock to investment technology corresponds

to almost 85 % of the external finance premium especially for horizons over two years.

1.4.3 Cross-sectional implications of New-Keynesian models

In this section, I examine the pricing performance of the full set of state variables from

New-Keynesian models over the period from 1980:Q1 to 2004:Q4. The full set of shocks of

the state variables consists of the price mark-up shock(AS), the preference shock(IS) and the

temporary monetary shock for models 1,2 and 3 proposed by Cho and Moreno (2006). For

Graeve’s model, I choose 4 structural shocks in order to investigate the source of risk pre-

mium more precisely. For consistent comparison with Cho and Moreno’s models, I choose

price mark-up shock(Price-Markup), permanent shock to inflation target(Monetary1) and
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temporary monetary shock(Monetary2). In addition, I select a shock to investment tech-

nology(Investment) as a main determinant for the external finance premium.41 These state

variables derived from New-Keynesian models are risk factors in the ICAPM model. The

objective is to test whether assets’ loadings with respect to these risk factors are important

determinants of its average returns.

I repeat the following estimation steps for at least 200,000 for each model. After burn-in

periods, estimated structural shocks from the first step estimation of New-Keynesian models

are saved. In the second block of Bayesian estimation, I regress the portfolio returns on these

structural shocks saved from the first block to obtain the risk prices(betas). As in Lettau

and Ludvigson (2001b), the full-sample loadings, which are the independent variables in the

second stage regressions, are computed in this multiple time-series regression using marginal

posterior density of parameters. With diffuse priors, I just can use modes of parameters in

multivariate t-distribution instead of using Gibbs sampling.42 The following regression is

specifically used.

Ri,t −Rf,t = αi + βi,1X1,t + βi,2X1,t + βi,3X3,t + εi,t

where Ri,t is portfolio returns;Rf,t is treasury bill returns; RM,t is market returns; Xi,t

for i=1,2 and 3 are structural shocks extracted from the first block of estimation. For

unconditional CAPM and the Fama-French three factor model, usual Rmrf, HML, SMB

are used as state variables.

Finally, in the third block of estimation, the posterior means of betas from the previous

regressions are subsequently used as independent variables in this cross-sectional regression

for all time period. Following Fama-Macbeth analogy, I estimate means and standard

41This shock corresponds to 85% of the external finance premium using variance decomposition reported
in the table 4 of Graeve (2006)

42Details of this Bayesian estimation methods are given in the previous section.
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deviation of risk prices(λ) for each time using risks(betas) as independent variables from

the previous step. The following forms are used in cross sectional regressions.

1. CAPM: Ri,t −Rf,t = αi + λiRmrf

2. FF3: Ri,t −Rf,t = αi + λ1Rmrf + λ2SMB + λ3HML

3. Model1,2 and 3: Ri,t −Rf,t = αi + λ1AS + λ2IS + λ3Monetary

4. GRAEVE: Ri,t − Rf,t = αi + λ1Investment + λ2Monetary1 + λ3price mark-up +

λ3Monetary2

5. FAVAR: Ri,t −Rf,t = αi + λ1latent1 + λ2latent2 + λ3latent3 + λ4Monetary2

where definition of models and variables are reported in the tables of 4,5 and 6.

After burn-in periods in the first and the second steps of MCMC estimation of models,

I save samples of the risk prices and ,using only the last 1,000 samples, I calculate means

and standard deviations of them.43 To judge the goodness of fit of the suggested empirical

models, I use the posterior modes of cross-sectional R2 measure employed first by Jagan-

nathan and Wang (1996). This R2 represents the fraction of cross-sectional variation in

average returns explained by the model. This measure is calculated as:44

R2 =
σ2

C(R̄)− σ2
C(ē)

σ2
C(R̄)

where σ2
C represents the in-sample cross-sectional variance,R̄ is a vector of average excess

returns, and ēstands for the vector of average residuals in cross-sectional regression.

I also report the root mean square of pricing errors(α) in cross-sectional regression(RMSE)

as another intuitive diagnostic to compare the models. I use

√
1
25

25∑
i=1

α2
i =

√
1
N α′α for

43Following Bernanke, Boivin, and Eliasz (2005), I also use medians of parameters to obtain qualitatively
the same results in cross-sectional implication of models.

44Usual model comparison using Bayes factors are not employed for the following reasons. First, I use
non-informative or diffuse priors on many parameters in order to minimize possible biases from selections of
prior distribution. However, with these diffuse priors, closed form of marginal densities are hard to obtain.
Furthermore, New-Keynesian models involve one more step to estimate structural shocks than unconditional
CAPM and the Fama-French three factor model. It is unclear whether usual comparison is still valid in this
case.
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all the models. Cochrane advocates this measure by arguing that even though Hansen-

Jagannathan(HJ) distance measure is invariant to portfolio formation, this simple RMSE

could be more informative if the original portfolios were primary concerns and the second

moment matrix of the test assets is quite close to singular45 since the HJ distance places

too much weight on pricing near-riskless portfolios rather than pricing the original assets.

Table 1.4 reports the posterior modes of coefficients, standard errors and the degrees

of freedom-adjusted R2 of Jagannathan and Wang (1996) and the RMSE for the cross-

sectional regressions using the excess returns on 25 portfolios sorted by book-to-market and

size. In this table, structural shocks are identified from New-Keynesian models. First, in

most cases, the market factor(Rmrf) receives a negative and statistically insignificant risk

premium consistent with the findings of Fama and French (1992).46 Even though it appears

to be a severe problem for the CAPM, the negative market risk premium has not been

understood yet. Since the issue is beyond the scope of this paper, I defer it to the future

studies. Second, there is a mixed evidence for the value premium in the data. Even though

the HML in the Fama-French three factor itself is not priced in the cross section of average

returns, inclusion of the HML tends to increase the cross-section R2 (R2 is above 80%).

Third, model 1 of Cho and Moreno is even worse than CAPM in terms of R2 and RMSE.

Their models 2 and 3 are comparable to or slightly better than CAPM. Among other things,

monetary shock(Monetary) is not statistically significant while aggregate supply shock,i.e.,

price mark-up shock(AS) and IS shock are statistically significant.

Parameter estimates of Graeve’s model will shed some lights on why Cho and Moreno

models fail to fully explain risk premium. This is mainly because Graeve’s model is a

significant extension of Cho and Moreno’s models and provides more precise description

45Lewellen, Nagel, and Shanken (2006) suggest that Fama-French 25 size and B/M sorted portfolios have
essentially three degree of freedom.

46Jagannathan and Wang (1996) and Lettau and Ludvigson (2001b) also report negative estimates for the
market risk premium, using monthly or quarterly data.
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of the structural shocks. Specifically, Graeve’s model uses two monetary policy shocks.

Only the loading with respect to permanent monetary policy shock to inflation target is an

important determinant of average returns. Since Cho and Moreno’s monetary shock can

mostly be interpreted as temporary monetary shock, we can conclude that investors in the

stock market primarily respond to the persistent shock from the Fed decision. This seems

natural since target changes, by definition, have persistent effects on the future economy.

Second, the loading on a shock to investment as the main proxy of the external finance

premium is also an important cross-sectional determinant of average returns. The value

premium has been an important yet controversial subject in the asset pricing literature.

In fact, Fama and French (1993) argue that HML and SMB represent compensations for

risk consistent with Merton (1973)’s ICAPM. While several models have been developed to

explain these premiums, Hahn and Lee (2006) find that the size and value premiums are

compensation for higher exposure to the risks related to changing credit market conditions

and interest rates(monetary policy). They argue that small-sized and high book-to-market

firms would be more vulnerable to worsening credit market conditions and higher interest

rates since small firms tend to be young, poorly collateralized, and have limited access to

external capital markets (Gertler and Gilchrist (1994)) and high book-to-market firms tend

to have high financial leverage and cash flow problems. However, there is some controversy

over the interpretation of Hahn and Lee (2006)’s findings since they use term spreads and

default spreads as proxies for the external finance premium and monetary policy. Other

hypotheses might well be developed to explain their results. My empirical results suggest

that their hypotheses are indeed valid for explaining part of the size and value premium

since my empirical proxies are obtained from equilibrium models more precisely and the

loadings on both components price Fama-French 25 portfolios significantly.

Finally, the loading on price mark-up shock is statistically significant from models of

either Cho and Moreno or Graeve. This shock determines the major component of the
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inflation rate. Even though stocks are claims on real asset, in the short run, they are not

good hedges against inflation.47 One possible hypothesis is that volatile inflation tends to

accompany with volatile levels of real output, which induces inflation risk premium in asset

markets. Using reduced form models, Brennan, Wang, and Xia (2004) also find that portion

of risk premium is related to the inflation rate.

Figure 1.4 plots the realized versus predicted returns of the models examined. The

closer a portfolio lies on the 45-degree line, the better the model can explain the returns of

the portfolio. It can be seen from the graph that the ICAPM implied from Graeve’s model

explains the value effect comparable to Fama-French three-factor model: In general, the

fitted expected returns on value portfolios (larger second digit) are higher than the fitted

expected returns on growth portfolios (smaller second digit).

Recently, Lewellen, Nagel, and Shanken (2006) argue that the proposed models for the

value premium do not seem to explain premium of industry portfolios. Typically, they

find that most of the models are even worse than the Fama-French three factor model in

explaining industry premium. Therefore, Lewellen, Nagel, and Shanken (2006) recommend

that when three factors explain nearly all of the time-series variation in returns of size-B/M

portfolios, we should augment them with 30 industry portfolios which don’t correlate with

SMB and HML as much for correct comparison of the models. Furthermore, since there are

essentially three degrees of freedom in Fama-French 25 portfolios, Cochrane (2006) suggests

that asset pricing models with more than three factors, should be carefully investigated even

though those models tend to explain Fama-French 25 portfolios.48 Following the suggestions

of Lewellen, Nagel, and Shanken (2006), I test the robustness of the proposed empirical

models by examining the ability of the competing models to price industrial portfolios. I

expect that if we have meaningful asset pricing models, my proposed models should describe

47I refer to the chapter 11 of Siegel (2002) for the details

48Brennan, Wang, and Xia (2004) also tests their model with this 55 portfolios and finds that their model
is statistically rejected. However, they don’t report any intuitive statistics.
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these asset returns better than the Fama-French model does.

Table 1.5 reports the cross-sectional regression results on the 55 portfolios returns. Now

ICAPMs implied from New-Keynesian models perform clearly better than unconditional

CAPM or the Fama-French three factor model, in explaining the test assets in terms of

the intuitive measures(both R2 and RMSE). Therefore, suggested models clearly satisfy

the robustness criteria of Lewellen, Nagel, and Shanken (2006) since they have a higher

explanatory power in terms of the 55 portfolios than all the other models. The plots of

Figure 1.5 also confirm these facts. However, while permanent monetary policy shock to

inflation target prices industry portfolios significantly, all other structural shocks fail to

explain industry risk premium. This could reflect that while the credit channel under the

capital market imperfection is important for determining the value and the size premia,

interest rate channel would be more important for explaining industry premium. Peersman

and Smets (2005) show that there is considerable cross-industry heterogeneity in monetary

policy effects and find that durability of the output produced by the sector is an important

determinant of its sensitivity to monetary policy changes. They argue these facts as evidence

for interest rate/cost-of-capital channel since the demand for durable products, such as

investment goods, is known to be much more affected by a rise in the interest rate through

the cost-of-capital channel than the demand for non-durables such as food. Recently, Gomes,

Kogan, and Yogo (2007) argue that durability of output is a risk factor since the demand for

durable goods is more cyclical than that for nondurable goods and services. Consequently,

the cash flow and stock returns of durable-good producers are exposed to higher systematic

risk and investors request higher risk premium for that. This study might indicate that

monetary policy shock is one of fundamental shocks behind this risk premium.

New-Keynesian models employed in this paper use at most eight variables in the esti-

mation. However, this information set is very small compared to the information sets which

the Fed uses for its conducts monetary policy. Since FAVAR model uses principal com-
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ponents of 120 monthly macro data including stock market variables for extracting state

variables of the economy, the result would be robust to possible omitted variable problems

in New-Keynesian models. I report the cross-sectional regression results on the 25 and 55

portfolios returns using structural shocks from FAVAR model in Table 1.6 and Figure 1.6.

In summary, identified monetary policy shock is a significant risk factor with same

negative sign for 25 and 55 portfolios of monthly returns. This indicate that monetary

policy shocks are indeed important for determining risk premium and this result is quite

robust to model misspecification. While other structural shocks can be risk factors for

explaining part of the value and the size premia, once confronted with industry portfolios,

all the factors except for monetary policy shock lose their statistical significance.

1.5 Conclusion

This study contributes to the asset pricing literature in several respects. While there seems

to be ample time-series evidence of the effects of monetary policy on stock returns, it has

not been clear whether monetary policy shocks affect the cross section of stock returns.

Even though some research(e.g.Hahn and Lee (2006)) find that connection between the

policy shocks and stock returns using indirect measure of the capital market imperfection

and monetary policy, many researchers seem to be reluctant to accept the results since they

are established from reduced form empirical models.

In this paper, I employ a more direct measure of the capital market imperfection and

monetary policy utilizing the recent advance in monetary economics literature. In fact,

the present study is the first application of New-Keynesian models to explain the cross-

section of stock returns with two monetary transmission mechanisms. I show that empirical

models suggested in this study provide more structural interpretation using direct measure

of structural shocks.

Two empirical findings emerge from this analysis using quarterly data from 1980 to 2004
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and monthly data from 1960 to 2001. First, I find that both the permanent monetary policy

shock to inflation target and the shock to the external finance premium successfully capture

major portions of the size and the value premia. These results support the findings of Hahn

and Lee (2006) that state variables reflecting revisions in the market’s expectation about

future credit market conditions and interest rates explain the size and the value premia.

They argue that small-sized and high-book-to-market firms would be more vulnerable to

worsening credit market conditions and higher interest rates.

Second, the permanent monetary policy shock to inflation target explains part of indus-

try risk premium once I correctly account for the capital market imperfection. This may

well reflect that while the credit channel with the capital market imperfection is important

for determining the value and the size premia, interest rate channel would be more impor-

tant for explaining industry premium. Peersman and Smets (2005) show that there is a

considerable amount of cross-industry heterogeneity in the overall monetary policy effects.

Specifically, they find that the durability of the outputs produced by industry sector is an

important determinant of its sensitivity to monetary policy changes. Recently, Gomes, Ko-

gan, and Yogo (2007) argue that the demand for durable goods is more cyclical than that for

nondurable goods and services. Consequently, the cash flow and stock returns of durable-

good producers are exposed to higher systematic risk and thus investors request higher

risk premium. This study shows that monetary policy shock is one of crucial fundamental

shocks behind this risk premium.

Finally, selected ICAPMs using New-Keynesian models are capable of explaining the

cross-section of the Fama-French 25 size and B/M sorted portfolios significantly(R2=72%)

and part of risk premia for 55 portfolios with their 30 industry portfolios(R2=30%). This

result satisfy the robustness criterion of Lewellen, Nagel, and Shanken (2006) that criticize

most of the empirical asset pricing models because they only explain the value premium

but not any part of the risk premia of industry portfolios.
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While the present study uses a reasonable approximation to the economy, several refine-

ments can be done in the future studies. First, the current study uses exogenous pricing

kernel to investigate risk premium since it mainly focuses on obtaining reasonable structural

shocks frequently used in monetary economics literature. It would be interesting to see how

more consistent pricing kernels using either Campbell and Cochrane (1999) type conditional

models or heteroskedasticity based models could explain both the stylized facts in monetary

economics and in finance. Second, New-Keynesian models with more extensive form of firm

heterogeneity can be developed to explain the industry risk premium since current models

seem to capture only part of it. Third, Bekaert, Cho, and Moreno (2005) extend the mod-

els of Cho and Moreno (2006) with term structure information. This extension could also

be valuable for correct inferences since term structure information links the long-term and

short-term interest rates and that link is regarded as a crucial channel for gauging the real

effects of monetary policy on aggregate demand equation. Finally, Dedola and Lippi (2005)

find sizable and significant cross-industry differences in the effects of monetary policy, using

disaggregated data on twenty-one manufacturing sectors, from five industrialized countries.

This fact indicates that the international New-Keynesian models could be developed to

explain the risk premia in international stock markets.
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This figure plots the quarterly time series of smoothed structural shocks implied by three-equation New-
Keynesian DSGE of Cho and Moreno(2006) Note: EAS or W1 is the estimated aggregate shocks(AS);EIS
or W2 is the estimated IS shocks;EMP or W3 is the estimated monetary policy shocks;M1 stands for their
baseline New-Keynesian models;M2 stands for M1 augmented with autocorrelation in structural shocks;M3
stands for M2 augmented with cross-correlation in structural shocks. Shared areas indicate NBER business
recessions.

Figure 1.1: Estimated modes of Smoothed Structural Shocks from Cho and
Moreno(2006,1980:4-2004:4)
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This figure plots the quarterly time series of smoothed structural shocks implied by the extended New-
Keynesian DSGE of Graeve(2006) Note: GE A is the estimated technology shocks;GE B is the estimated
preference shocks;GE G is the estimated government spending shocks;GE I is the estimated shocks to in-
vestment technology; GE L is the estimated labor demand shocks;GE PIE BAR is the estimated shocks
to inflation target set by the Federal reserve(permanent monetary policy shocks);GETA P is the estimated
price mark-up shocks;GETA R is the estimated temporary monetary policy shocks;GETA W is the estimated
wage mark-up shocks. Shared areas indicate NBER business recessions.

Figure 1.2: Estimated modes of Smoothed Structural Shocks from Graeve(2006)(1980:4-
2004:4)



47

-.3

-.2

-.1

.0

.1

.2

.3

1965 1970 1975 1980 1985 1990 1995 2000

FAVAR1

-.6

-.4

-.2

.0

.2

.4

1965 1970 1975 1980 1985 1990 1995 2000

FAVAR2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

1965 1970 1975 1980 1985 1990 1995 2000

FAVAR3

-4

-3

-2

-1

0

1

2

3

1965 1970 1975 1980 1985 1990 1995 2000

MONETARY

This figure plots the monthly time series of smoothed structural shocks implied by Factor-augmented VAR
of Bernanke,Boivin and Eliasz(2005) Note: FAVAR1 is the estimated shocks from the first latent factors;
FAVAR2 is the estimated shocks from the first latent factors;FAVAR3 is the estimated shocks from the first
latent factors; MONETARY is the estimated monetary policy shocks. Shared areas indicate NBER business
recessions.

Figure 1.3: Estimated modes of Smoothed Structural Shocks from FAVAR(1960:3-2001:8)
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(a) Unconditional CAPM
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(b) Model1
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(c) Model2
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(d) Model3
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(e) GRAEVE
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(f) Fama-French Three-factor model

The plot shows realized average returns (in percent) on the vertical axis and fitted expected returns (in
percent) on the horizontal axis for 25 size and book-to-market sorted portfolios. The first digit refers to the
size quintile (1 being the smallest and 5 the largest), while the second digit refers to the book-to-market
quintile (1 being the lowest and 5 the highest). For each portfolio, the realized average return is the time-
series average of the portfolio return and the fitted expected return is the fitted value for the expected return
from the corresponding model. The straight line is the 45-degree line from the origin. All models are defined
in section 1.4.3.

Figure 1.4: Fitted Expected Returns Versus Average Realized Returns for the Fama French
25 portfolios(1980:4-2004:4)
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(a) Unconditional CAPM
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(b) Model1
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(c) Model2
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(d) Model3
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(f) Fama-French Three-factor model

The plot shows realized average returns (in percent) on the vertical axis and fitted expected returns (in
percent) on the horizontal axis for 25 size and book-to-market sorted portfolios and 30 industry portfolios.
For each portfolio, the realized average return is the time-series average of the portfolio return and the fitted
expected return is the fitted value for the expected return from the corresponding model. The straight line
is the 45-degree line from the origin.All models are defined in section 1.4.3.

Figure 1.5: Fitted Expected Returns Versus Average Realized Returns for the Fama French
25 portfolios and 30 Industry portfolios(1980:4-2004:4)
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(a) Unconditional CAPM(25)
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(b) Unconditional CAPM(55)
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(c) FAVAR(25)
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(d) FAVAR(55)
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(e) Fama-French Three-factor model(25)
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(f) Fama-French Three-factor model(55)

The plot shows realized average returns (in percent) on the vertical axis and fitted expected returns (in
percent) on the horizontal axis for 25 size and book-to-market sorted portfolios and 30 industry portfolios.
For each portfolio, the realized average return is the time-series average of the portfolio return and the fitted
expected return is the fitted value for the expected return from the corresponding model. The straight line
is the 45-degree line from the origin.All models are defined in section 1.4.3.

Figure 1.6: Fitted Expected Returns Versus Average Realized Returns for the Fama French
25 portfolios and the 55 portfolios with 30 Industry portfolios(1960:3-2001:8)
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Table 1.1: Summary Statistics for Cho and Moreno(2006)

Summary statistics for structural shocks from Cho and Moreno(2006) from 1980:4 to 2004:4. The Auto(1)
give the first autocorrelation. Note: EAS or W1 is the estimated aggregate shocks(AS);EIS or W2 is the
estimated IS shocks;EMP or W3 is the estimated monetary policy shocks;M1 stands for their baseline New-
Keynesian models;M2 stands for M1 augmented with autocorrelation in structural shocks;M3 stands for M2
augmented with cross-correlation in structural shocks.

M1EAS M1EIS M1EMP M2EAS M2EIS M2EMP M3EAS M3EIS M3EMP

Panel A: Correlation Matrix

M1EAS 1.000
M1EIS -0.074 1.000

M1EMP -0.271 0.322 1.000
M2EAS 0.945 -0.108 -0.354 1.000
M2EIS -0.113 0.954 0.286 -0.153 1.000

M2EMP -0.245 0.267 0.975 -0.316 0.251 1.000
M3EAS 0.889 -0.030 -0.322 0.963 -0.036 -0.288 1.000
M3EIS -0.109 0.840 -0.042 -0.156 0.907 -0.046 -0.072 1.000

M3EMP -0.232 0.292 0.970 -0.272 0.283 0.991 -0.232 -0.032 1.000

Panel B:Univariate Summary Statistics

Mean -0.045 0.004 -0.122 -0.071 0.001 -0.095 -0.103 0.028 -0.118
Skewness -0.088 -0.181 -0.805 -0.059 -0.409 -1.360 -0.134 -0.032 -1.516
Std. Dev. 0.507 0.396 0.715 0.609 0.226 0.692 0.681 0.208 0.686
Kurtosis 2.798 4.003 6.498 2.947 4.180 9.617 3.132 3.452 10.276
Auto(1) -0.438 0.179 0.189 -0.192 -0.095 0.028 -0.097 -0.128 0.034
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Table 1.2: Summary Statistics for Graeve(2006)

Summary statistics for structural shocks from Graeve(2006) from 1980:4 to 2004:4. The Auto(1) give the
first autocorrelation. Note: GE A is the estimated technology shocks;GE B is the estimated preference
shocks;GE G is the estimated government spending shocks;GE I is the estimated shocks to investment
technology; GE L is the estimated labor demand shocks;GE PIE BAR is the estimated shocks to inflation
target set by the Federal reserve(permanent monetary policy shocks);GETA P is the estimated price mark-
up shocks;GETA R is the estimated temporary monetary policy shocks;GETA W is the estimated wage
mark-up shocks.

GE A GE B GE G GE I GE L GE PIE BAR GETA P GETA R GETA W

Panel A: Correlation Matrix

GE A 1.000
GE B -0.019 1.000
GE G 0.389 0.000 1.000
GE I -0.209 0.100 -0.055 1.000
GE L 0.242 0.006 0.301 0.196 1.000

GE PIE BAR -0.041 0.644 -0.062 0.082 -0.031 1.000
GETA P -0.067 -0.230 0.148 -0.317 -0.013 0.077 1.000
GETA R 0.185 0.409 0.327 0.307 0.658 -0.017 -0.200 1.000
GETA W 0.002 -0.109 -0.316 -0.269 0.030 0.063 -0.081 -0.273 1.000

Panel B:Univariate Summary Statistics

Mean -0.008 -0.045 -0.022 0.073 -0.529 -0.011 0.041 0.029 -0.038
Std. Dev. 0.405 0.282 0.524 0.522 1.666 0.026 0.152 0.148 0.276
Skewness -0.033 -1.402 0.168 -0.084 0.025 -1.138 0.364 0.302 0.684
Kurtosis 4.826 8.976 4.653 2.461 4.594 6.768 2.405 4.528 4.444
Auto(1) -0.127 -0.183 -0.305 -0.020 0.202 0.454 -0.023 0.084 0.018
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Table 1.3: Correlation Matrix of Identified Monetary Policy Shocks

This Table reports correlation matrix of identified monetary policy shocks from Cho and Moreno(2006)
and Graeve(2006) from 1980:4 to 2004:4. Note: M1EMP is the estimated monetary policy shocks from
model 1; M2EMP is the estimated monetary policy shocks from model 2;M3EMP is the estimated monetary
policy shocks from model 3;GE PIE BAR is the estimated shocks to inflation target set by the Federal
reserve(permanent monetary policy shocks);GETA R is the estimated temporary monetary policy shocks.

M1EMP M2EMP M3EMP GE PIE BAR GETA R

M1EMP 1.000
M2EMP 0.975 1.000
M3EMP 0.970 0.991 1.000

GE PIE BAR 0.302 0.357 0.376 1.000
GETA R 0.770 0.737 0.740 -0.017 1.000
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Table 1.4: Cross-Sectional Tests of Asset Pricing Models on Fama French 25 size-B/M
portfolios(1980:4-2004:4)

The table presents the estimated results of the second step cross-sectional regression using the excess re-
turns on 25 portfolios sorted by book-to-market and size. The full-sample factor loadings, which are the
independent variables in the regressions, are computed in one multiple time-series regression following the
suggestions of Lettau and Ludvigson (2001b). The Adjusted R2 follows the specification of Jagannathan
and Wang (1996). The standard errors are obtained from posterior distribution of estimated parameters.
The last column reports the root mean squared pricing errors of the model. Note: Rmrf, SMB, and HML
are the Fama and French (1993)’s market and size and B/M factors;Model 1, 2 and 3 are defined in section
1.2.3.1, which use aggregated supply shock(AS), IS shock and monetary policy shock from Cho and Moreno
(2006); GRAEVE use investment shock as a proxy for the external finance premium, price mark-up shock,
permanent monetary policy shock or shock to the inflation target(monetary1) and temporary monetary
policy shock(monetary2).

Models Variables Statistics

CAPM constant Rmrf Adj.R2 RMSE

0.058 -3.252 0.574 0.0063
S.E. 0.011 1.405

Fama-French constant Rmrf SMB HML Adj.R2 RMSE

0.089 -6.845 -0.029 1.233 0.795 0.0042
S.E. 0.015 1.745 0.607 0.838

Model1 constant AS IS Monetary Adj.R2 RMSE

0.035 -0.577 -0.473 -0.382 0.508 0.0065
S.E. 0.008 0.205 0.157 0.357

Model2 constant AS IS Monetary Adj.R2 RMSE

0.038 -0.691 -0.231 -0.246 0.579 0.006
S.E. 0.008 0.255 0.059 0.314

Model3 constant AS IS Monetary Adj.R2 RMSE

0.038 -0.829 -0.201 -0.266 0.644 0.0055
S.E. 0.008 0.293 0.053 0.318

Graeve constant Investment Monetary1 price-markup Monetary2 Adj.R2 RMSE

0.042 -0.619 -0.029 -0.094 -0.035 0.721 0.0048
S.E. 0.008 0.205 0.011 0.048 0.051
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Table 1.5: Cross-Sectional Tests of Asset Pricing Models on Fama French 25 size-B/M and
30 industry portfolios(1980:4-2004:4)

The table presents the estimated results of the second step cross-sectional regression using the excess returns
on 25 portfolios sorted by book-to-market and size together with 30 industry portfolios. The full-sample
factor loadings, which are the independent variables in the regressions, are computed in one multiple time-
series regression following the suggestions of Lettau and Ludvigson (2001b). The Adjusted R2 follows the
specification of Jagannathan and Wang (1996). The standard errors are obtained from posterior distribution
of estimated parameters. The last column reports the root mean squared pricing errors of the model. Note:
Rmrf, SMB, and HML are the Fama and French (1993)’s market and size and B/M factors;Model 1, 2 and 3
are defined in section 1.2.3.1, which use aggregated supply shock(AS), IS shock and monetary policy shock
from Cho and Moreno (2006); GRAEVE use investment shock as a proxy for the external finance premium,
price mark-up shock, permanent monetary policy shock or shock to the inflation target(monetary1) and
temporary monetary policy shock(monetary2).

Models Variables Statistics

CAPM constant Rmrf Adj.R2 RMSE

0.038 -1.546 0.167 0.0079
S.E. 0.009 1.298

Fama-French constant Rmrf SMB HML Adj.R2 RMSE

0.037 -1.628 -0.105 1.03 0.184 0.0076
S.E. 0.009 1.257 0.595 0.808

Model1 constant AS IS Monetary Adj.R2 RMSE

0.028 -0.119 -0.202 -0.063 0.165 0.0077
S.E. 0.008 0.109 0.121 0.241

Model2 constant AS IS Monetary Adj.R2 RMSE

0.029 -0.118 -0.094 -0.139 0.206 0.0075
S.E. 0.008 0.144 0.063 0.237

Model3 constant AS IS Monetary Adj.R2 RMSE

0.029 -0.198 -0.069 -0.154 0.253 0.0073
S.E. 0.008 0.177 0.057 0.237

Graeve constant Investment Monetary1 price-markup Monetary2 Adj.R2 RMSE

0.031 -0.173 -0.014 0.016 -0.003 0.3 0.007
S.E. 0.008 0.182 0.005 0.037 0.042
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Table 1.6: Cross-Sectional Tests of Asset Pricing Models on Fama French 25 size-B/M or
55 portfolios with 30 industry portfolios(1960:3-2001:8)

The table presents the estimated results of the second step cross-sectional regression using the excess returns
on 25 portfolios sorted by book-to-market(Panel A) or 55 portfolios with 30 industry portfolios.(Panel B)
The full-sample factor loadings, which are the independent variables in the regressions, are computed in one
multiple time-series regression following the suggestions of Lettau and Ludvigson (2001b). The Adjusted R2

follows the specification of Jagannathan and Wang (1996). The standard errors are obtained from posterior
distribution of estimated parameters. The last column reports the root mean squared pricing errors of
the model. Note: Rmrf, SMB, and HML are the Fama and French (1993)’s market and size and B/M
factors; Latent 1,2 and 3 are extracted structural shocks from FAVAR model. Monetary stands for identified
monetary shock from FAVAR.

Panel A. 25 portfolios

CAPM constant Rmrf Adj.R2 RMSE

0.014 -0.624 0.214 0.0019
S.E. 0.004 0.432

Fama-French constant Rmrf SMB HML Adj.R2 RMSE

0.013 -0.756 0.129 0.439 0.752 0.001
S.E. 0.003 0.394 0.134 0.146

FAVAR constant latent1 latent2 latent3 Monetary Adj.R2 RMSE

-0.001 -0.035 0.057 0.21 -0.539 0.508 0.0014
S.E. 0.003 0.022 0.029 0.093 0.192

Panel B. 55portfolios

CAPM constant Rmrf Adj.R2 RMSE

0.009 -0.228 0.03 0.0018
S.E. 0.003 0.349

Fama-French constant Rmrf SMB HML Adj.R2 RMSE

0.009 -0.347 0.113 0.249 0.244 0.0016
S.E. 0.003 0.335 0.147 0.137

FAVAR constant latent1 latent2 latent3 Monetary Adj.R2 RMSE

0.003 -0.007 0.004 0.051 -0.194 0.146 0.0017
S.E. 0.003 0.01 0.016 0.043 0.099
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Chapter 2

Asset Pricing Models with

Stochastic Risk Aversion

2.1 Introduction

Investors demand compensation for holding assets with uncertain payoffs. The degree of

risk aversion determines the amount of this compensation or risk premium. Since time-

varying risk premia in financial markets are a stylized fact, time-varying risk aversion is

equally emphasized in asset pricing literature. Notably, the external habit formation model

of Campbell and Cochrane (1999) uses the surplus consumption ratio to proxy for time-

varying risk aversion and their model successfully matches the historical equity premium.

Furthermore, Wachter (2006) and Verdelhan (2006) extend the Campbell and Cochrane

(1999) model to the bond market and the foreign exchange market, respectively, to ex-

plain the expectation hypotheses puzzle. The relationship between the stock and the bond

markets has also been modeled with a latent time-varying risk aversion process in Bekaert,

Engstrom, and Grenadier (2006).

While time-varying risk aversion is proxied by the surplus consumption ratio in con-
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sumption asset pricing literature, most of the empirical asset pricing studies in finance

use financial market variables as instruments for time-varying risk aversion. Although

these studies typically motivate their specifications of time-varying risk aversion using the

external habit specification of Campbell and Cochrane (1999), it seems rather arbitrary

that they choose any return forecasting variables as proxies in an attempt to improve

pricing performances of their models. Moreover, each candidate model employs one or

two variables as proxies even without any specification test;1 the surplus consumption ra-

tio(Duffee (2005)), the consumption wealth ratio(Lettau and Ludvigson (2001b)),the divi-

dend price ratio(Duffee (2005) and(Ferson and Harvey (1999)), the yield spread(Brennan,

Wang, and Xia (2004) and(Ferson and Harvey (1999)),the default spread(Jagannathan and

Wang (1996) and(Ferson and Harvey (1999)), the inflation rate(Brandt and Wang (2003)),

the real GDP growth(Hodrick and Zhang (2001)), the stochastically detrended short term

interest rate(Ferson and Harvey (1999))2

The first goal of this paper is to develop direct time series specification tests of time-

varying risk aversion under the generalized versions of conditional CAPM framework, which

allow several nonlinear features and heteroscedasticity. I examine whether empirically pro-

posed variables in previous studies are indeed significant determinants of time-varying risk

aversion and compare them with the theoretically motivated surplus consumption ratio.

In order to check the hypothesis, I construct the surplus consumption ratio data following

Duffee (2005) and Wachter (2006). Since many empirical asset pricing models motivate

time-varying risk aversion with the surplus consumption ratio, it would be illuminating

to investigate how previously proposed variables sustain their explanatory powers on risk

aversion once I include the surplus consumption ratio along with those variables.

Recently, in a closely related paper to the present study, Guo, Wang, and Yang (2006)

1Return forecastibility is the major concerns to select these proxies in empirical asset pricing studies.

2See the data appendix for the detailed explanation about construction and definition.
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use semi-parametric techniques to investigate time-varying risk aversion hypothesis. They

find that risk aversion is constant once they include CAY of Lettau and Ludvigson (2001a)

as proxy for hedging components in the ICAPM. In fact, the same variables used in the

conditional CAPMs with time-varying risk aversion are often selected as proxy variables

for hedging components in the ICAPM. In this sense, conditional CAPMs are usually in-

terpreted as alternative models for the ICAPMs. Since Merton (1973)’s theoretical presen-

tation of the ICAPM, it has been recognized that there exist state variables that capture

the variation in future investment opportunities, and assets’ covariations with such vari-

ables should be priced in the cross-section of average returns. Recently Campbell (1996),

Brennan, Wang, and Xia (2004), and Petkova (2006) build the models based on Merton

(1973), in which only the factors that forecast future investment opportunities or stock re-

turns are admitted. Therefore, the same predictive variables proposed for time-varying risk

aversion have been also included as the ICAPM factors. Without appropriate treatment of

this ICAPM intuition,i.e., the hedging components, time-varying risk aversion might be a

spurious fact indicated as in Guo, Wang, and Yang (2006).3

In this paper, I present a testing ground based on a generalized version of CAPM

and ICAPM in order to extract meaningful relative risk aversion. Specifically, I develop

econometric models which allow both the positivity of risk aversion and the conditional

heteroscedasticity. I also estimate several volatility models and risk aversion specifications

to check the robustness of my results. Furthermore, in order to elaborate on the results, I

investigate the implications of my models for the cross-section of stock returns. I examine

how selected CAPMs and ICAPMs are capable of explaining the cross-section of the Fama-

French 25 size and B/M sorted portfolios alone or with 30 industry portfolios.4

3”Could it be because of the time-varying relative risk aversion or the changing investor opportunities?”.
Cochrane (2001) criticizes most of the ICAPM studies for the ad-hoc choice of multiple factors(”fishing
license” argument). I would argue that without correct identification of time-varying risk aversion, the
ICAPM is still subject to this ”fishing license” problem.

4Lewellen, Nagel, and Shanken (2006) criticizes most of the cross-sectional asset pricing studies for the
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My empirical findings from both time series and cross-sectional investigations unequiv-

ocally suggest that time varying relative risk aversion are important for explaining the

risk-return relation in the stock market. I find, among other things, that only consumption

related variables are significant determinants for relative risk aversion while other return

forecasting variables frequently suggested in finance literature lose their statistical signifi-

cance once I include those variables along with the surplus consumption ratio. Therefore,

even though consumption CAPM model might not be useful to understand stock return

behavior, I argue that we must include these consumption variables in conditioning in-

formation sets. And these results are quite robust across six different time-series model

specifications and the two cross-sectional tests.

I summarize the main findings as follows. First, I uncover that the surplus consumption

ratio has the most explanatory power,along with correct negative sign, for time varying

relative risk aversion. Typically low surplus consumption ratio is interpreted as the indicator

of recession. Negative estimates imply that during the bad times, investors’ sensitivity to

risk increases since those are the time when investors’ marginal utility is the highest and

they are eager to increase their consumption and avoid the risky investment.

Secondly, I construct the consumption wealth ratio without a look-ahead bias(CAYA) to

re-evaluate its significance on time-varying relative risk aversion and hedging components.

While Lettau and Ludvigson (2001b) suggest that consumption wealth ratio(CAY) is a

crucial variable for time-varying risk aversion, several papers have questioned the usefulness

of CAY because it uses the whole sample data to construct the data and that information

is not available when investors try to use it. In spite of the criticisms on CAY, I find that

the consumption wealth ratio without a look- ahead bias still captures part of time-varying

choice of the Fama-French 25 portfolios.(Possible Data Snooping problem) Especially, they show that many
empirical asset pricing models could price only the Fama-French 25 portfolios(R2 is above 75 %) but not the
55 portfolios including 30 industry portfolios.(R2 is typically below 10%) Therefore I check the robustness
of the proposed CAPMs and ICAPMs for the value premium and for the capability to explain the industry
portfolios.
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relative risk aversion. My results support empirical specifications of Lettau and Ludvigson

(2001b) while they do not support the interpretation of Guo and Whitelaw (2006) that

CAY mostly explains the hedging component.

Thirdly, only the stochastically detrended short term interest rate(RREL) has some

explanatory power on hedging components. This result confirms the suggestion of Mer-

ton (1973) that the interest rate should be the main determinant of hedging components.

However, other possible candidates such as the dividend price ratio, the default spread, the

inflation and the real GDP growth do not have any incremental impact on either compo-

nents while some of the variables are critical to explaining the volatility of stock returns.

Even though some of the variables are capable of explaining one of the components alone,

they lose statistical significance in the presence of the surplus consumption ratio, CAYA,

or RREL.

Finally, I compare the proposed CAPMs and ICAPMs from the time series tests with

Fama-French three factor model on the ability to explain the cross-section of the average

returns. I find that the selected conditional ICAPM with both time-varying relative risk

aversion and hedging components is not only comparable to Fama-French three factor model

in explaining the value premium but also satisfy the robustness criteria of Lewellen, Nagel,

and Shanken (2006) since they have a higher explanatory power for the 55 portfolios than

all the other models do.

The rest of the paper is organized as follows. Section 2 presents the ICAPM framework of

this study and outlines the empirical methods used to identify time-varying risk aversion and

hedging components. Section 3 presents the data and examines the time series specification

test results of the conditional CAPM and ICAPM. Section 4 discusses the cross-sectional

implications of my empirical models for 25 size and B/M portfolios alone or with 30 industry

portfolios. Section 5 summarizes the main findings and concludes.
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2.2 Models

This section discusses how I develop empirical models; the first subsection discusses discrete

time ICAPM and CAPM frameworks and the second subsection presents the implied time

series econometric models.

2.2.1 The general ICAPM framework

The analysis in this paper assumes that asset returns are governed by a variant of pric-

ing kernels motivated by Merton (1973) to deduce the following empirical asset pricing

implications.

rt+1 = α0 + γt+1σm,t+1 + α′1zt + εt+1

γt+1 = φ0 + φ1γt + φ′2xt + νt+1

where εt+1|ψt ∼ N(0, ht+1), ht+1 = ω + β1ht + β2ε
2
t , νt+1 ∼ N(0, σ2

v), rt+1 is the market

excess return(Rm,t+1 −Rf,t+1) and σm,t+1 is the conditional variance of the market excess

return given information up to time t. (V ARt[Rm,t+1]). γt+1 stands for relative risk aversion

and zt and xt are state variables for hedging components and risk aversion respectively.

In the next section, I briefly explain how I get my empirical specifications by extending

the ICAPM proposed by Guo and Whitelaw (2006). Their ICAPM is convenient since

they specify hedging components as linear function of exogenous variables using Campbell

(1996)’s ICAPM. This simplification can avoid the complex joint estimation of multivariate

GARCH models and nonlinear state space models.5

5I am currently working on this specification for my next paper
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2.2.1.1 A simple illustration of discrete time version of Merton ICAPM

Most ICAPM papers specify their versions of discrete ICAPM without much explanation.

Probably most illustrations given in the following sections would be common sense in finance

community. However, I could not find any reference showing them step by step. So, I decide

to derive and explain each step from the basic argument.

I show how we can get a discrete version of Merton ICAPM from his original continuous

model as a basic framework to deduce my empirical models.

First, I assume that the value function associated with the investor’s problem in a

continuous-time setting is a function of wealth Wt and the state variables zt that forecast

future expected market returns or changes in the investment opportunity set. State variables

in the ICAPM arise because investors desire to hedge against adverse changes in available

investment opportunities.

The stochastic discount factor of ICAPM is given by:6

Λt = e−ρtVW (Wt, zt) (2.2.1)

where ρ is the subjective discount rate and VW is the value function with subscripts denoting

partial derivatives.

By applying Ito’s Lemma,

dΛt

Λt
= −ρdt +

WtVWW (Wt,zt)
VW (Wt, zt)

dWt

Wt
+

WtVWz (Wt, zt)
VW (Wt, zt)

dzt (2.2.2)

where the second derivative terms have been dropped since they will not affect the asset

pricing equation.

The elasticity of marginal utility with respect to wealth is the coefficient of relative risk

6I closely follow the terminology and the derivation of continuous time asset pricing formula given in
chapter 9 of Cochrane (2001). And I present a simple derivation of multi-period pricing kernel in order to
help the intuition behind it in Appendix B.
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aversion from the first order condition or the envelop theorem(UC = VW ). Because utility

function of risk averse investor implies VW > 0 and VWW < 0, the model suggests a positive

relative risk aversion.

γt ≡ −WtVWW (Wt, zt)
VW (Wt,zt)

The following continuous time asset pricing model formula is given in Cochrane (2001).

Et

[
dpi,t

pi,t

]
+

Di,t

pi,t
−Rf

t dt = −Et

[
dΛt

Λt

dpi,t

pi,t

]
, (2.2.3)

where dpi,t

pi,t
denotes the return of asset i and Di,t

pi,t
is the dividend yield of asset i. Rf

t stands for

risk free rate. Finally, Et indicate the rational expectation conditional on the information

up to time t.

By substituting (2.2.2) into (2.2.3), the price of asset i follows in continuous time,

Et

[
dpi,t

pi,t

]
+

Di,t

pi,t
−Rf

t dt = γtEt

[
dWt

Wt

dpi,t

pi,t

]
− VWz,t

VW,t
Et

[
dzt

dpi,t

pi,t

]
, (2.2.4)

Since there is no difference between second moments and covariances in continuous time

(Et = Covt), we can use the following form as an approximation of Merton’s ICAPM in

discrete time.

Et [Ri,t+1]−Rf
t+1 = γtcovt (Ri,t+1, ∆Wt+1/Wt) + λz,tcovt (Ri,t+1, ∆zt+1) (2.2.5)

Where λz,t ≡ −VWz,t

VW,t
being the risk prices for the innovations in the state variables zt.

Finally, the growth in wealth(∆Wt+1/Wt) is approximated by the stock market portfolio

return(Rm,t) as usual, and by the same reasoning, the changes in the hedging factors can

be approximated by the returns on the corresponding factor-mimicking portfolios.
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Since equation (2.2.5) must hold for any asset, the conditional excess market return(Et [Rm,t+1]−
Rf

t+1) can be written as a function of its conditional variance (vart (Rm,t+1)) and its covari-

ance with changes in state variables.

Et [Rm,t+1]−Rf
t+1 = γtvart (Rm,t+1) + λz,tcovt (Rm,t+1,∆zt+1) (2.2.6)

Under certain conditions, Merton (1980) argues that hedging component is negligible

and the conditional excess market return is proportional to its conditional variance. This

form is interpreted as the conditional CAPM because every result of the CAPM is preserved.

Et [Rm,t+1]−Rf
t+1 = γtvart (Rm,t+1) (2.2.7)

In its most general form, all of the terms in (2.2.6) of the ICAPM could be time-varying.

In this paper, however, I only assume that the coefficient of relative risk aversion is time-

varying but hedging coefficients(λz,t) are constant since the present study mainly focuses

on the source of time varying relative risk aversion and the current literature mainly use

this fact to explain various empirical puzzles in finance.

To my knowledge, none of the papers have estimated the full version of the conditional

ICAPM and CAPM with time-varying risk aversion except for Guo, Wang, and Yang (2006).

Recent empirical asset pricing studies such as Scruggs (1998) and Scruggs and Glabadanidis

(2003) use a version of (2.2.7) and elaborate only hedging components with multivariate

GARCH-M model with constant risk aversion. However, they find that extension to that

direction could be problematic for explaining the risk-return trade off in asset markets.

In order to model hedging components appropriately, I follow the approach taken by Guo

and Whitelaw (2006). They propose to model hedging component with alternative linear

specifications motivated by Campbell’s ICAPM instead of multivariate GARCH model.

In the next section, I briefly summarize how Campbell’s ICAPM motivate this alterna-
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tive specification with hedging components as a linear function of a vector of state variables

zt.

2.2.1.2 Specification of hedging components implied by Campbell ICAPM

Campbell (1996) proposes a discrete time multi-period asset pricing model in the spirit

of Merton (1973). This model uses a loglinear approximation to the budget constraint

to substitute out consumption from a standard intertemporal asset pricing model. Risk

premia are related to the covariances of asset returns with the market return and with news

about the discounted value of all future market returns. This is a discrete-time analogue

of Merton (1973) continuous-time model in which assets are priced using their covariances

with certain ”hedge portfolios” that index changes in the investment opportunity set.

Campbell uses the following recursive utility function.

Ut = ((1− β)C1−ρ
t + β[Et(U

1−γ
t+1 )]

1−ρ
1−γ )

1
1−ρ (2.2.8)

where β is the subjective discount rate and γ is the coefficient of relative risk aversion and

finally ρ is the elasticity of intertemporal substitution.

The stochastic discount factor is then defined from (2.2.8) as

Mt+1 = β(
Ct+1

Ct
)−ρ(

Ut+1

[Et(U
1−γ
t+1 )]

1/(1− γ)
)ρ−γ

By replacing the certainty equivalent utility with the value of the market portfolio,

Mt+1 = [β(
Ct+1

Ct
)−ρ]θ(

1
Rm,t+1

)1−θ

where θ = 1−γ
1−ρ

This pricing kernel implies the following Euler equations for the market portfolio(Rm,t+1)

and individual asset i’s return.(Ri,t+1)
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1 = Et[{β(
Ct+1

Ct
)−

1/σRm,t+1}θ] (2.2.9)

1 = Et[{β(
Ct+1

Ct
)−

1/σ}θ{ 1
Rm,t+1

}1−θRi,t+1] (2.2.10)

Campbell first log-linearizes (2.2.9) and (2.2.10) under the assumption of conditionally

lognormal and homoskedastic asset returns, and combines them with log linearized budget

constraint.( Wt+1 = Rm,t+1(Wt−Ct)) to get an asset pricing formula without any reference

to consumption but relating assets’ returns to their covariances with the market return and

news about future market returns.7

Etri,t+1 − rf,t+1 +
Vii

2
= γVim + (γ − 1)Vih

8 (2.2.11)

where lower case returns(ri,t+1 and rf,t+1 mean log returns and Vii ≡ Cov(ri,t+1−Etri,t+1, ri,t+1−
Etri,t+1) and Vim ≡ Cov(ri,t+1 − Etri,t+1, rm,t+1 − Etrm,t+1) and Vih ≡ Cov(ri,t+1 −
Etri,t+1, (Et+1 −Et)

∑∞
j=1 ρjrm,t+1+j) and ρ ≡ 1− exp(c− w).

In order to obtain innovations of the state variables, he suggests a vector autoregressive

factor(VAR)-pricing model. Specifically, he assumes that the return on the market can be

written as the first element of a K-element state vector zt+1 and the other elements are

variables that are known to the market by the end of period t + 1 and are relevant for

forecasting future returns on the market.

zt+1 = Azt + εt+1

This VAR pricing model for stock market returns can be used as a motivation for

7His model can be generalized to the case in which asset returns are conditionally heteroscedastic under
certain conditions.(Campbell (1996) for the details)

8In Campbell’s ICAPM, relative risk aversion is constant.
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alternative specification of hedging components since it implies hedging components might

be a linear function of return forecasting variables(zt). Following Guo and Whitelaw (2006),

I model hedge components as a linear function of a vector of state variables motivated by

Campbell’s ICAPM.

covt(Rm,t+1, ∆zt+1) = α0 + α′1zt (2.2.12)

This model has several differences from discrete time Merton’s ICAPM. First, in imple-

mentation of Campbell model, researchers typically omit volatility terms in VAR specifica-

tion. However, we can include a measure of volatility directly in (2.2.12) and interpret this

model as GARCH-in-mean combined with VAR. In addition to that, time-varying relative

risk aversion or hedging coefficients are not possible in Campbell’s framework.

Finally, Campbell derives the multi-factor asset pricing model using information from

VAR.

Etri,t+1 − rf,t+1 +
Vii

2
= γVi1 + (γ − 1)

K∑

k=1

λkVik (2.2.13)

where λ measure the importance of each state variable in forecasting future returns on the

market and Vik ≡ Cov(ri,t+1, εk,t+1) and εk,t+1 are kth residual from VAR estimation.

In this model, if some variables do not forecast returns, they will have zero risk prices

and can be omitted from the model. Therefore, Campbell ICAPM shares the intuition of

Merton ICAPM and suggests that variables correlated with changes in future investment

opportunities should be risk factors that explain the cross-section of portfolio returns.

2.2.1.3 The source of Time-Varying Relative Risk Aversion(RRA)

Merton (1973) model allows time-varying relative risk aversion without economic justifica-
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tion.9 To be worse,Campbell (1996) just assumes constant relative risk aversion.10

Many empirical asset pricing models use an external habit specification in utility function

to motivate time-varying risk aversion.11 As a reference, I summarize briefly the asset

pricing model proposed by Campbell and Cochrane (1999). They develop a version of

consumption asset pricing model in which investors’ preferences exhibit an external habit

formation. The habit feature of this model generates the time-varying RRA.

They use the following utility function.

U(Ct,Ht) =
1

1− γ
(Ct −Ht)1−γ (2.2.14)

where Ht represents the habit level of the representative investor.

And the implied pricing kernel from (2.2.14)is denoted as

Mt+1 = β(
Ct+1

Ct

St+1

St
)−γ

where β is the subjective discount factor and surplus consumption ratio(St) is defined as

St = Ct−Ht
Ct

.

In this model, the relative risk aversion can be expressed as the following.

γt ≡ −WtVWW (Wt, zt)
VW (Wt, zt)

= −∂ ln(VW (Wt, zt))
∂ ln(Wt)

= −∂ ln(UC(Ct,Ht))
∂ ln(Ct)

∂ ln(Ct))
∂ ln(Wt)

= −CtUCC(Ct,Ht)
UC(Ct, Xt)

∂ ln(Ct))
∂ ln(Wt)

With given utility function,

9Return forecasting variables are main candidates to determine time-varying RRA in the ICAPM

10In actual implementation of this model, implied conditional version is freely assumed and estimated but
in that case, simple VAR model can not be used to get state variables which are developed under constant
risk aversion.

11Since I use three different pricing kernels to motivate my empirical models, model inconsistency might
exist. However, this type of empirical models are common in the empirical asset pricing literature. It seems
that there is a tension between internally consistent but empirically problematic models and seemingly
reasonable and practical pricing models.
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γt =
γ

St

∂ ln(Ct))
∂ ln(Wt)

In various asset pricing papers, this external habit model is often credited to the rational

interpretation of the source of time varying relative risk aversion. For example, Lettau and

Ludvigson (2001b) motivate their conditional CAPM with this specification and suggest to

use the consumption wealth ratio as a proxy to capture the changing information set.

In this paper, I follow their idea and presume that main source of time-varying RRA

is motivated from the Campbell and Cochrane (1999) model. Rather than using CAY,

however, I construct the direct measure of the surplus consumption ratio following Duffee

(2005) and Wachter (2006).

Recently, several empirical studies(for example, Ferson and Harvey (1999)) just incor-

porate return forecasting variables for modeling time-varying risk aversion as the following.

γt = φ0 + φ′1xt

where xt are return forecasting variables

Since this specification is purely empirical, it would be interesting to check which vari-

ables would be the primary source of time-varying RRA under one common empirical frame-

work. In the following section, I develop an econometric tool to directly compare different

empirical models.

2.2.2 Empirical Specification

From the theoretical considerations given in the previous sections, I propose to use a specific

version of empirical ICAPMs.
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2.2.2.1 Baseline Empirical Models

rt+1 = α0 + γt+1σm,t+1 + α′1Zt + εt+1 (2.2.15)

γt+1 = φ0 + φ1γt + φ′2Xt + νt+1 (2.2.16)

where εt+1|ψt ∼ N(0, ht+1), ht+1 = ω + β1ht + β2ε
2
t , νt+1 ∼ N(0, σ2

v), rt+1 is the market

excess return(Rm,t+1 −Rf,t+1) and σm,t+1 is the conditional variance of the market excess

return given information up to time t. (V ARt[Rm,t+1]). γt+1 stands for relative risk aversion

and zt and xt are state variables for hedging components and risk aversion respectively.

I suggest six different models to check the robustness of empirical results since , at

quarterly frequency, it is not clear which model will capture heteroscedasticity or time-

varying RRA accurately.

Usually, simple versions of the models in (2.2.15) are estimated by univariate or multi-

variate GARCH-in-mean models at weekly or monthly horizon.(see Scruggs and Glabadani-

dis (2003) and references therein) GARCH models at quarterly horizon are not rare ei-

ther.(Duffee (2005)) However, at quarterly horizon , it is known that GARCH models are

not so successful to characterize conditional heteroscedasticity since GARCH effect typically

seems to vanish at that horizon.12 This phenomenon could be problematic to get correct

estimates of the relative risk aversion and hedging components. In fact, several GARCH-in-

mean studies using monthly return series even find negative relative risk aversion. Harvey

(2001) concludes that incorrect specification of volatility could be one of the main causes

behind this phenomenon.

Recent progress in time series literature introduces new models of stock return volatility.

12You can check it in several tables presented in empirical results section. In most of the case, persistence
parameter is below 0.6 and estimated parameters are marginally significant.
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Andersen and Bollerslev (1998) shows that the use of high frequency data should give us

a better and less noisy measure of volatility. This ”realized variance” approach has since

become very popular for modeling volatility. However, it is not clear how microstructure

noises such as jump characteristics of high frequency asset market data affect the estimates

of realized variance. Probably, quarterly frequency provides a reasonable balance between

efficiency and robustness of constructed realized variance to microstructure noise.13

Given the insights from the aforementioned studies, I propose to estimate a general ver-

sion of the conditional ICAPM by utilizing both GARCH and ”realized variance” approach.

Model 1 uses only realized variance and I call this ”realized variance-in-mean with time-

varying relative risk aversion” model. When I estimate the realized variance, I follow the

approach taken by Guo and Whitelaw (2006) and include all return-forecasting variables

in realized variance equation as (ut). Specifically, log volatility model is specified since I

find that the logarithms of realized variance series confirms to normality assumption better

than the level of realized variance does.

σm,t+1 = ht+1 = exp(Et(ln σ̂m,t+1)+
1
2
σ2

η), ln σ̂m,t+1 = δ0 + δ1 ln σ̂m,t + δ′2ut + ηt+1 (2.2.17)

where ηt+1 ∼ N(0, σ2
η) and σ̂m,t is the measure of realized variance defined in data appendix.

Guo and Whitelaw (2006) argue that,from the stock return predictability literature, cer-

tain variables might just explain time-varying heteroscedasticity(realized variance) but not

hedging components. By including possible variables for hedging components in realized

variance equation, they argue that they can obtain the correct hedging components.14 Same

criticism can be applied to the models of time varying risk aversion. Following their argu-

13See Andersen, Bollerslev, Diebold, and Wu (2005) and Guo and Whitelaw (2006) and references therein
for other recent applications of quarterly realized variance in the asset pricing literature.

14In actual implementation, they just include RREL and CAY without any specification test in either
realized variance or hedging components.
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ments, I project realized variance on these variables and extract all the (linear)information

about future volatility(realized variance) contained by them. The residual predictive power

that these variables have for expected returns should be due either to risk aversion or to

hedge components.

Since GARCH-in-mean models are standard in this literature, I also report results using

GARCH-in-mean model(Model2).

σm,t+1 = ht+1, ht+1 = ω + β1ht + β2ε
2
t (2.2.18)

Finally model 3 is a hybrid of realized variance-in-mean and GARCH in error terms.

Although both terms should be same in theory, this model will clarify in which dimension

GARCH fails to explain the data.

σm,t+1 = exp(Et(ln σ̂m,t+1) +
1
2
σ2

η), ht+1 = ω + β1ht + β2ε
2
t (2.2.19)

In order to guarantee that RRA has the positive sign, I suggest a nonlinear specification

for relative risk aversion in each of the models 1,2 and 3. I denote them as models 4,5 and

6 respectively.15

Usually, an ad-hoc approach is used to identify time varying relative risk aversion by

projecting it into various instruments.(see Ferson and Harvey (1999)) But this approach is

valid only if the econometrician knows the full set of state variables available to investors.

Conditional models are attractive to capture time-varying risk premiums. But, they can be

misspecified with the wrong conditioning variables.16 Therefore , I allow possible misspeci-

fication of risk aversion with an autoregressive specification.

15Model 7 with endogeneity consideration is also derived and presented in appendix C for completeness

16In a related research, Ghysels (1998) finds that conditional models are fragile and may have bigger
pricing errors than unconditional models.
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rt+1 = α0 + exp(γt)σm,t+1 + α′1zt + εt+1 (2.2.20)

In this paper, I examine whether empirically proposed variables in previous studies

are indeed significant determinants of time-varying RRA, in comparison with the theoret-

ically motivated surplus consumption ratio. I use several candidates (zt) for time-varying

risk aversion. Each candidate model employs one or two variables as proxies without any

specification test; the surplus consumption ratio(Campbell and Cochrane (1999) and Duf-

fee (2005)), the consumption wealth ratio(Lettau and Ludvigson (2001b)),the dividend

price ratio(Duffee (2005) and(Ferson and Harvey (1999)), the yield spread(Brennan, Wang,

and Xia (2004) and(Ferson and Harvey (1999)),the default spread(Jagannathan and Wang

(1996) and(Ferson and Harvey (1999)), the inflation rate(Brandt and Wang (2003)), the real

GDP growth(Hodrick and Zhang (2001)), the stochastically detrended short term interest

rate(Ferson and Harvey (1999))17

These instruments(zt) for time-varying RRA are also well known to be forecasting vari-

ables for stock or bond returns from return predictability literature. Some representa-

tive researches are as follows:a measure of the surplus consumption ratio(Li (2001)), the

consumption-wealth ratio(Lettau and Ludvigson (2001a)), the dividend-price ratio(Fama

and French (1988)), the term spread and the default spread(Fama and French (1989)), the

stochastically detrended interest rate(Campbell (1991)), the inflation(Brandt and Wang

(2003) and the real GDP growth(Ang, Piazzesi, and Wei (2006)).

Guo and Whitelaw (2006) and Guo, Wang, and Yang (2006) find that the correct spec-

ification of hedging component is crucial for estimating relative risk aversion correctly.

Especially, Guo, Wang, and Yang (2006) argue that after including CAY into hedging com-

ponents,18 they can not reject constant relative risk aversion hypothesis. In order to check

17See the data appendix for the detailed explanation about construction and definition.

18They just include CAY but not other variables
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this possibility, I include all the instruments for relative risk aversion as candidates of the

proxies hedging components.19

In particular, Merton (1973) suggests that ”one should interpret the effects of a changing

interest rate.. in the way economists have generally done in the past: namely, as a single

variable representation of shifts in the investment opportunity set.” Therefore, interest rate

variables such as short-term interest rate or yield spread would be natural instruments for

hedging components.

2.2.2.2 Nonlinear State-Space Model with GARCH

My empirical specification is characterized as the following state space formulation. For sim-

plicity, I just present an estimation method for the most complex model(model6). Therefore,

I put (σt+1=σ̂t+1) in the mean but (σt+1)=ht+1) in the variance specification respectively.

Measurement equation:

rt+1 = α0 + f(γt+1)σ̂m,t+1 + α′1zt + εt+1

where rt+1 is the market excess return(Rm,t+1−Rf,t+1) and σm,t+1 is expectation of realized

variance of the market excess return given information up to time t.(V ARt[Rm,t+1]), εt+1 ∼
N(0, ht+1), ht+1 stands for the GARCH, zt are lagged exogenous variables. And f(γt+1)

is γt+1 for models 1,2 and 3 but exp(γt+1) for models 4,5 and 6. Finally, γt+1 stands for

time-varying RRA.

Transition equation

γt+1 = φ0 + φ1γt + φ′2xt + νt+1

19I follow the ICAPM specification of Hodrick and Zhang (2001),Guo and Whitelaw (2006) and Guo, Wang,
and Yang (2006) and use contemporaneous values of the predictive variables rather than their innovations.
Recently, Petkova (2006) advocates to use innovations.
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where xt are lagged exogenous variables.

The estimation of this model is cumbersome since I have both nonlinear measurement

equation and GARCH type heteroscedasticity. Furthermore, I need to address the generated

regressors problem once if I jointly maximize this state space model and realized variance

equation for σm,t+1.

Following Kim and Nelson (2005), I combine the approximation method of Harvey, Ruiz,

and Sentana (1992) with extended Kalman filtering technique to develop a filtering method

and to construct the likelihood function.20 Finally, I explain the joint maximum likelihood

estimation techniques developed to solve generated regressor problem based on the original

ideas of Pagan (1984).

For the easy exposition, I first explain the estimation methods in case where generated

regressor problem does not exist. Then, in the following step, I describe joint maximum

likelihood function based on Pagan (1984) and the chapter five of Kim and Nelson (1999)

to account for generated regressor problem.

2.2.3 Extended Kalman Filtering with GARCH disturbances

In this section, I explain how to approximate nonlinear measurement equation with Ex-

tended Kalman filtering technique, which is a Taylor expansion of latent variables(γt+1)

around previous state variable estimates
(
γt+1|t

)
. And then I simply extend the state-space

model with ARCH disturbances proposed by Harvey, Ruiz, and Sentana (1992) to my non-

linear model.

2.2.3.1 Extended Kalman Filtering

First, I use extended Kalman filtering technique to linearize measurement equation. After

denoting exp(γt+1)σ̂m,t+1 as f(σ̂m,t+1; γt+1), I take a Taylor series expansion of the non-

20Following Kim and Nelson (2005) I also develop the most complex model specification(model 7) with
endogeneity issues, which is presented in the appendix C
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linear function(f(σ̂m,t+1 : γt+1)) around γt+1 = γt+1|t. In this expression, γt+1|t indicates

E[γt+1|Ψt] where Ψt denotes the information set available up to time t.

After linearization, I get the following measurement equation:

rt+1 = f(σ̂m,t+1 : γt+1) +
∂f(σ̂m,t+1 : γt+1)

∂γt+1
(γt+1 − γt+1|t) + α′1zt + εt+1 (2.2.21)

wheref(σ̂m,t+1 : γt+1) = exp(γt+1|t)σ̂m,t+1,
∂f(σ̂m,t+1;γt+1)

∂γt+1
≡ exp(γt+1|t)σ̂m,t+1

By redefining some of variables, I get the following linearized measurement equation

Yt+1 = X̂t+1γt+1 + α′1zt + εt+1 (2.2.22)

where Yt+1 = rt+1−exp(γt+1|t)σ̂m,t+1+exp(γt+1|t)σ̂m,t+1γt+1|t and X̂t+1 = exp(γt+1|t)σ̂m,t+1

Without heteroscedasticity, I could use the usual Kalman filtering to construct a maxi-

mum likelihood estimator. However, I must address how to estimate GARCH specification.

2.2.3.2 GARCH approximation

In order to estimate GARCH in εt+1, I include εt+1 in transition equation following Harvey,

Ruiz, and Sentana (1992).21 In matrix forms,

Yt+1 =
[
X̂t+1, 1

]



γt+1

εt+1


 + α′1zt




γt+1

εt+1


 =




φ0 + φ′2xt

0


 +




φ1 0

0 0







γt

εt


 +




νt+1

εt+1|t


 ,




νt+1

εt+1


 ∼ N







0

0


 ,




σ2
ν 0

0 ht+1







21See Kim and Nelson (1999), chapter 3 and 6 for the more detail explanation.
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I use the following compact forms to explain modified Kalman filtering algorithm.

Yt+1 = X̃t+1β̃t+1 + α′1zt

β̃t+1 = µt+1 + Fβ̃t + ṽt+1, ṽt+1|t ∼ (0, Q̃t+1)

where X̃t+1 =
[
X̂t+1, 1

]
, β̃t+1 =




γt+1

εt+1


, µt+1 =




φ0 + φ′2xt

0


, F =




φ1 0

0 0


, ṽt+1 =




νt+1

εt+1


 and Q̃t+1 =




σ2
ν 0

0 ht+1




At each iteration of the Kalman filter, I obtain a linear approximation of the model

around γt+1 = γt+1|t ,and calculate Yt+1 and X̃t+1 for the following Kalman filter.

β̃t+1|t = Fβ̃t|t + µt+1

pt+1|t = Fpt|tF ′ + Q̃t+1

ηt+1|t = Yt+1 − X̃ ′
t+1βt+1|t − α′1zt

Ht+1|t = X̃ ′
t+1pt+1|tX̃t+1

β̃t+1|t+1 = β̃t+1|t + pt+1|tX̃t+1H
−1
t+1|tηt+1|t

pt+1|t+1 = pt+1|t − pt+1|tX̃t+1H
−1
t+1|tX̃t+1pt+1|t

where Ψtis the information set up to time t, β̃t+1|t is conditional estimate of β̃t+1 on in-

formation up to t(E[β̃t+1|Ψt]), β̃t+1|t+1 is conditional estimate of β̃t+1 on information up

to t+1 (E[β̃t+1|Ψt+1]), pt+1|t is covariance matrix of β̃t+1 conditional on information up to

t(E[(β̃t+1 − β̃t+1|t)(β̃t+1 − β̃t+1|t)′]), pt+1|t+1 is covariance matrix of β̃t+1 conditional on in-

formation up to t+1(E[(β̃t+1−β̃t+1|t+1)(β̃t+1−β̃t+1|t+1)′]) and Ht+1|t is conditional variance

of prediction error(E[η2
t+1|t ])

In order to process the above Kalman filter, I need ε2
t term in order to calculate

GARCH(ht+1) in Q̃t+1 matrix. As in Harvey, Ruiz, and Sentana (1992), the term ε2
t is

approximated by E[ε2
t |Ψt], where Ψt is information up to time t.
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In order to get the form of E[ε2
t |Ψt], Harvey, Ruiz, and Sentana (1992) use the following

definition.

εt = E[εt|Ψt] + (εt −E[εt|Ψt])

After straightforward calculation, it can be shown that:

E[ε2
t |Ψt] = E[εt|Ψt]2 + E

[(
ε2
t − E[ε2

t |Ψt]
)2

]

where E [εt|Ψt] is obtained from the last element of β̃t|t and its mean squared error E
[
(εt − E [εt|Ψt])

2
]

is given by the last diagonal element of pt|t.

As by-products of the above Kalman filter, I obtain the prediction error ηt+1|t and

its variance Ht+1|t. Based on this prediction error decomposition, the approximate log

likelihood can easily be calculated as

lnL(Yt+1|σ̂m,t+1) = −1
2

T∑

t=1

ln((2π)|Ht+1|t|)−
1
2

T∑

t=1

η
′
t+1|tH

−1
t+1|tηt+1|t (2.2.23)

2.2.3.3 Generated regressor problem

In this subsection, I explain how to estimate σ̂m,t+1 and log likelihood function given in

(2.2.23) jointly.22 While previously I assume σ̂m,t+1 is given as data, only a proxy for

σ̂m,t+1 is available. In fact, I use constructed conditional expectation of realized variance.

This implies that I have classical generated regressor problem and without joint estimation,

I would get biased standard errors. Furthermore, all Kalman filter algorithm should be

revised in this case since the usual Kalman filter assumes that there is no endogeneity

issue.23 Therefore simple two step estimation with standard error correction is impossible.

22See Kim and Nelson (1999), chapter 5 for the more details.

23Refer to Kim (2006) for this issue
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Based on Pagan (1984) and Kim and Nelson (1999), I suggest the following joint maximum

likelihood estimation.

F (Yt+1, σm,t+1) = F (Yt+1|σm,t+1)F (σm,t+1)

where F stands for a density function.

After taking logs, I get

lnF (Yt+1, σm,t+1) = lnF (Yt+1|σm,t+1) + lnF (σm,t+1)

where lnF (Yt+1|σ̂m,t+1) is given in (2.2.23) and lnF (σm,t+1) has the following.

ln L = −1
2

T∑

t=2

ln((2π)|σ2
η|)−

1
2

T∑

t=2

(ηt)
′
σ−2

η (ηt), (2.2.24)

where ηt+1 = lnσ̂m,t+1 − δ0 − δ1lnσ̂m,t − δ′2ut

Then I replace σm,t+1 in (2.2.23) with Exp(Et(lnσ̂) + 0.5 ∗ V art(lnσ̂)) to correct for

Jensen’s inequality terms. Finally, I jointly maximize the sum of log likelihood values of

(2.2.23) and (2.2.24) with respect to all parameters.24

2.3 Data and Empirical Results

2.3.1 Data

In this study, I use quarterly data for the period 1957:1 to 2005:4.25 The beginning of the

period is set to 1957:1 to get the surplus consumption ratio data(SURP). In addition to

24I experiment with several starting values for each empirical model to ensure global convergence of the
parameters. I use the GAUSS 7.0 and Optmum or CML procedure to numerically maximize the joint
likelihood function with BFGS as base optimization algorithm and utilize various numerical techniques such
as transformation function techniques and penalty algorithms to limit the boundaries of parameters. I also
apply parameter rescaling techniques for numerical stability to attain fast convergence.

25See the data appendix for the details on the construction and the definition of the data
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the surplus consumption ratio, I consider the following variables; the dividend price ratio

on NYSE-AMEX-Nasdaq value-weighted stock return from CRSP(DP); the default pre-

mium(DEF), defined as the difference in yields between BAA and AAA corporate bonds;

Lettau and Ludvigson (2001a)’s CAY without a look ahead bias(CAYA); the difference

between the risk-free rate and its average in the previous 4 quarters(RREL); the term pre-

mium, denoted as the yield spread between 10-year Treasury bonds and 3-month Treasury

bills(TERM); the inflation, measured by GDP deflator(INFLA); the real GDP growth with

seasonal adjustment(REGD).

Figure 2.1 plots these return predictors, with the shaded areas denoting business reces-

sions dated by the National Bureau of Economic Research (NBER). Several facts deserve

to be noticed. First, all the variables except for REGD are quite persistent and exhibit

strong cyclical patterns. While RREL,REGD, and SURP tend to decrease during business

recessions, the other variables move countercyclically. The summary statistics presented in

Table 2.1 also confirm these facts. Most of the variables are highly serially correlated, with

the autocorrelation coefficients above 85 %. Secondly, Figure 2.1 presents the consumption

wealth ratio(CAY) of Lettau and Ludvigson (2001a) along with the similar variable without

a look ahead bias(CAYA). Two variables have a similar time series patterns and their cor-

relation is around 76 %. Thirdly, SURP and CAYA have a negative correlation. According

to Campbell and Cochrane (1999), logarithm of the surplus consumption ratio(SURP) is

defined as the following autoregressive specification.26

SURPt+1 = µ + φSURPt + λ(SURPt)εt+1

where φ is the habit persistent parameter, and λ(SURPt) is the sensitivity function, and

εt+1 is the innovation in consumption growth.

Campbell and Cochrane (1999) show that λ(SURPt) is inversely related to surplus

26Here I follow the summary of Li and Zhong (2006).
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consumption ratio and that when surplus consumption ratio falls, the sensitivity function

λ(SURPt) and expected excess returns rise. Lettau and Ludvigson (2001b) suggest that

consumption-wealth ratio may be a good proxy of λ(SURPt). So, SURP and CAYA seem

to have a negative correlation as it is confirmed in the data.

In time series analysis, my stock return measure is the standard value-weighed return of

NYSE-AMEX-NASDAQ index from CRSP. To compute excess equity returns, I subtract

the lagged 3 month continuously compounded T-Bill yield earned over the same period.

Consistent with quarterly data, I calculate the realized variance using the daily CRSP

value-weighted stock returns and the pseudo daily risk-free rate by assuming that risk-

free rate is constant within a quarter. The daily excess market return is the difference

between the daily risk-free rate and the daily market return. Realized stock market variance

(REVOL) is defined as the variance of daily excess stock market returns in a quarter. And

in order to check the robustness of my results, I construct four different measures of realized

variance series. For example, I replace the largest value in realized variance series with the

second largest value following Guo and Whitelaw (2006) and I use auto-correlation corrected

measure of the realized variance following French, Schwert, and Stambaugh (1987).

Table 2.2 summarizes descriptive statistics for this four different versions of realized

variance series. All series have similar sample statistics and their correlations are around

85%. Figure 2.2 plots 4 versions of realized variance along with the estimated GARCH(1,1)

series27 The shaded areas also denote recessions dated by the National Bureau of Economic

Research. The figure shows that volatility moves countercyclically and also tends to increase

dramatically during several crises such as the 1962 Cuban missile crisis, the 1987 stock

market crash, the 1997 East Asia crisis and the 1998 Russian bond default. For comparison

with realized variance, I also estimate simple GARCH(1,1) model using only quarterly data.

Even though all four versions have similar sample characteristics, Figure 2.2 suggests that

27Estimated models are given in Table 2.2.
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only REVOL2 and REVOL2auto have comparable magnitude with the estimated GARCH

series. It seems reasonable since GARCH models estimate current quarterly volatility with

the past information set. However, REVOL1 estimates the volatility of the current quarter

with daily data in that quarter only which might get too extreme values in crash periods.

REVOL2 removes the effects of this outlier.

In cross-sectional analysis, I use ,as test assets, the returns on Fama-French 25 portfolios

sorted by size and book-to-market and 30 industry portfolios. Even though the 25 portfolios

have become the benchmark in testing competing asset pricing models, Lewellen, Nagel, and

Shanken (2006) show that the 55 portfolios are the more appropriate to rigorously compare

the models. All the portfolio returns and the Fama-French three-factors -the returns of the

market portfolio(Rmrf), HML, and SMB are downloaded from French’s website.

2.3.2 Asset pricing models with time-varying RRA

In this section, I report estimation results for six different model specifications. Previous

research just assumed one or two variables could serve as the proxy for time-varying RRA

without time-series specification tests. However, this practice might be warned against

possible data snooping biases. I argue that the empirical results presented here are rele-

vant since I compare different specifications of time-varying RRA under a unified empirical

framework.

For models using realized variance, I report the estimation results only with one measure

of realized variance(Revol1) since all other measures provide qualitatively similar results.

All the exogenous variables are normalized to have mean of zero and standard deviation

of one to facilitate the interpretations. Finally, I don’t want to entertain a ”kitchen sink”

regression, including all of the variables in the specification and searching for the correct

form. Moreover, I find that the estimation with all the variables has a difficulty to get

convergence since many variables capture the similar recession state. Instead, using an
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educated guess from theoretical arguments from Campbell and Cochrane (1999), I take

”SURP” as the single crucial variable against which other variables are compared since the

external habit formation specification addressed with this variable is the main theoretical

motivation for conditional CAPMs.

Table 2.3 shows estimation outcomes for the realized-volatility-in model(model1). I

restate this version of conditional CAPM here as a reference.

rM,t+1 = α0 + γt+1Et(ln σ̂m,t+1 +
1
2
σ2

η) + εt+1

γt+1 = φ0 + φ1X1t + φ2X2t + vt+1

ln σ̂m,t+1 = δ0 + δ1 ln σ̂m,t + δ′2ut + ηt+1

where εt+1 ∼ N(0, Et(ln σ̂m,t+1 + 1
2σ2

η)) , vt+1 ∼ N(0, σ2
v), ηt+1 ∼ N(0, σ2

η) and ut are

entered in the following order(CAYAt,DPt,TERMt,DEFt,INFLt )

Since SURP, REGD and RREL in volatility equation(ln σ̂m,t+1) and α0 and φ0 are

not statistically significant in the preliminary estimation, I re-estimate the model and re-

port results without these variables.28First, in volatility equation, CAYA(δ21), DEF(δ24)

and INFL(δ25) have statistically significant negative signs while past market volatility(δ1),

DP(δ22) and TERM(δ23) have statistically significant positive signs. These results are quite

robust across the models that use realized volatility and also consistent with the results

of previous research. Lettau and Ludvigson (2002) show that past volatility is positively

related to future volatility and CAY is negatively related to it. And even though it is

not directly related to the stock return case, Bansal, Khatchatrian, and Yaron (2005), in

a related research, report that dividend price ratio positively affect consumption growth

volatility.

28I re-estimate and report results in this way for all models presented in this section. Furthermore, the
value of σv is too small and causes convergence problem in the models. So except for model1, I fix σv as
0.0l for identification.
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Second, after the estimating univariate specification for relative risk aversion, I re-

estimate the same model with SURP and one of other possible candidates given from uni-

variate specification tests in order to evaluate the importance of each conditioning variables.

While SURP, CAYA,TERM and RREL are statistically significant in univariate specifica-

tion tests, SURP drives out TERM and RREL in bivariate tests. Only CAYA retains

statistical significance with positive sign. The implied risk aversion is countercyclical with

positive coefficient of SURP and negative coefficient of CAYA since low surplus consump-

tion ratio and high CAYA is typically interpreted as an indicator of recession or other bad

states.

Table 2.4 reports estimation results for the hybrid model(model2) with realized-volatility-

in-mean and GARCH in error terms. In this model, I modify model1 by assuming the

conditional variance of εt+1 as ht+1.

For realized volatility parameters, the results of Table 2.3 are preserved such that the

signs and magnitudes of coefficients are quite similar. For GARCH parameters, I summarize

the results as follows. First, the estimated parameters from GARCH model are typically

less persistent than we usually obtain from estimations of monthly or weekly data. The

persistence parameter(β1) is just around 0.5. Furthermore, β2 is marginally significant with

typical t-statistics around 1.8. and these results hold in other model specifications using

GARCH. These results confirm prior assertion that GARCH-in-mean models are probably

not a good description of stock returns at quarterly horizon. For relative risk aversion

specification, I find that consistent with Table 2.3, SURP, CAYA,TERM and RREL are

statistically significant and have the same signs as before. However, with bivariate analysis,

both CAYA and TERM survive the competition with SURP for relative risk aversion.

Finally, Table 2.5 shows the estimation results for model 3. In this model, I replace

Et(ln σ̂m,t+1 + 1
2σ2

η) with hm,t+1. GARCH parameters are similar to those in Table 2.4

and in relative risk specification, SURP and RREL are the two significant variables in
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this GARCH-in-mean specification. However, these results seem unreliable since one of

the GARCH parameter(β2) is not statistically significant across all different models. Even

though the same insignificant GARCH phenomenon exists in model2, the model 3 seems to

have more severe problems. In model 2, we can think that only heteroscedasticity is badly

modeled while in model3, both the mean and the volatility terms are problematic with this

inaccurate GARCH specification.

I summarize my findings as follows. First, realized volatility specification seems better

than GARCH specification because in most estimations, all the estimated parameters in

realized volatility equations are quite significant and robust but GARCH parameters are

either marginally significant or insignificant at all. Second, the surplus consumption ratio

is always statistically significant with correct negative sign no matter which models I use.

Third, CAYA seems to capture additional explanatory power on relative risk aversion ex-

cept for unreliable GARCH-in-mean with time-varying relative risk aversion case(model3).

Several financial variables seem to forecast just volatility terms even though there is some

evidence for bond market variables such as TERM and RREL as proxies for relative risk

aversion. TERM and RREL can also be interpreted as recession state variables. In reces-

sions, premia on long-term bonds tend to be high and yields on short bonds tend to be low.

Therefore, increase in the term spread and decrease in the short term interest rate indicates

more serious recessions, implying higher sensitivity to their risk.

For models 1,2 and 3, I do not impose the positivity of relative risk aversion even though

theory clearly requires it. In order to check the robustness of the results, I augment each

version of the model with positivity restriction on relative risk aversion. I restate this

version of conditional CAPM here as a reference.

rM,t+1 = α0 + exp(γt+1)Et(ln σ̂m,t+1 +
1
2
σ2

η) + εt+1

γt+1 = φ0 + φ1X1t + φ2X2t + vt+1
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ln σ̂m,t+1 = δ0 + δ1 ln σ̂m,t + δ′2ut + ηt+1

where εt+1 ∼ N(0, Et(σ̂m,t+1)) , vt+1 ∼ N(0, σ2
v), ηt+1 ∼ N(0, σ2

η) and ut are entered in the

following order(CAYAt,DPt,TERMt,DEFt,INFLt )

Table 2.6 and 2.7 show the estimation outcomes for the realized-volatility-in model

with positivity restriction(model4). First, in volatility equation, consistent with model 1

and model 2, CAYA(δ21),DEF(δ24) and INFL(δ25) have statistically significant negative

signs while past market volatility(δ1), DP(δ22) and TERM(δ23) have statistically significant

positive signs. These results are robust across the models even with positivity restriction.

Second, for relative risk aversion, Table 2.6 indicates all the variables are significant except

for REGD. However, once these variables are included in risk aversion equation along with

SURP, only CAYA and TERM are statistically significant in Table 2.7. All three variables

have signs consistent with the results without positivity restriction such that the implied

risk aversion is countercyclical with positivity restriction.

Table 2.8 and 2.9 report the estimation results for the hybrid model(model5) with pos-

itivity restriction. In other words, I modify model4 by specifying the conditional variance

of εt+1 as ht+1. The estimation outputs for volatility equations precisely resemble those of

model2. The signs and magnitudes are quite similar with and without positivity restriction.

However, for relative risk aversion specification, almost all variables show statistical signif-

icance except for REGD. Table 2.9 indicates that CAYA and INFL are significant against

SURP while all the other variables lose statistical significance. In this estimation, inflation

has a statistically significant negative coefficient. When aggregate risk aversion is high,

consumers demand greater real returns on holding risky securities. Therefore, when real re-

turns are unexpectedly high with unexpectedly low inflation, aggregate risk aversion should

fall due to the implied good news about inflation. While the negative coefficient seems

to betray this basic understanding, I don’t investigate this issue further since coefficient

become insignificant once I put INFL with SURP and CAYA.



88

Finally, Table 2.10 shows the estimation results for model 6. In this model, I replace

Et(ln σ̂m,t+1 + 1
2σ2

η) in model 5 with hm,t+1. GARCH parameters are similar to those in

Table 2.8 and in relative risk specification, all variables except for TERM are statistically

significant while SURP is the only significant variable when I include other variables with

it. As with model 3, the estimates obtained from model 6 seem unreliable since one of

GARCH parameter(β2) is not statistically significant across all estimations.

I summarize findings with positivity restriction. First, realized volatility specification is

still better than GARCH since all the estimated parameters in realized volatility equations

are quite significant and robust while GARCH parameters are insignificant in several cases.

Second, once I impose the positivity constraint on relative risk aversion, almost all fore-

casting variables are statistically significant. Since those variables exhibit strong cyclical

patterns and it is well known that the sensitivity of risk does vary with recession, positivity

restriction seems to provide more sensible estimates of the relative risk aversion. Consistent

with the results in models without positivity restriction, the surplus consumption ratio is

always statistically significant with correct negative sign. Third, CAYA captures additional

explanatory power on relative risk aversion except for the unreliable GARCH-in-mean with

time-varying relative risk aversion case(model6). Several financial variables just forecast

volatility terms.

Several interesting points are raised for empirical asset pricing models at this point.

With direct comparison, first, only consumption related variables are important determi-

nants of relative risk aversion and financial market variables typically used in conditional

asset pricing studies do not look as primary instruments for it. Especially, the surplus con-

sumption ratio motivated from the external habit formation model is the most important

determinant for explaining the time varying nature of relative risk aversion. These results

seem to suggest a warning for asset pricing studies without consumption related variables.

For example, typical bond market research imposes that market prices of risks or relative
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risk aversion for bond market are a function of yield variables only. My estimates suggest

that the estimation of market price of risk or relative risk aversion might be difficult to be

identified if we use only yield variables since TERM and RREL are marginally significant.

2.3.3 Robustness checks with hedging components

Merton (1973) points out that in addition to the stock market variance, hedging demand

for time-varying investment opportunities is also an important determinant of the expected

stock market risk premium. In empirical investigation of that idea, Scruggs (1998) and Guo

and Whitelaw (2006) find that ignoring hedge components in the ICAPM might introduce

a downward bias in the estimated risk-return relation(or the relative risk aversion) because

the volatility and the hedge demand could be negatively correlated. This is classical omit-

ted variable bias problem in which the set of predictor variables is misspecified. Especially,

Guo, Wang, and Yang (2006) argue that relative risk aversion is constant once we correctly

model the ICAPM with CAY. In order to test this hypothesis, I include each return fore-

casting variable as a proxy for hedging component and test that relative risk aversion is

constant or not. Here I use the ICAPM specification of Hodrick and Zhang (2001),Guo

and Whitelaw (2006) and Guo, Wang, and Yang (2006) and use contemporaneous values of

the predictive variables rather than their innovations. I extend previous models with the

following specification.

For the parameters of realized volatility equation and GARCH, I don’t discuss results

further since their signs and magnitudes are quite close to the corresponding models pro-

vided in conditional CAPMs.

Table 2.11 report the estimated results for model 1 with additional hedging component.

Since SURP seems robust as a proxy for relative risk aversion, I include all the other

variables except for SURP and check the robustness of the results. In summary, the surplus

consumption ratio is always statistically significant and has a correct negative sign even after
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I include additional variables as hedging components. However, CAYA does not provide

consistent results. First, three out of seven cases are significant at 5 % but are marginally

significant for other three cases. Especially, with CAYA in hedging components, both terms

lose statistical significance.29 Finally, none of the variables has any statistical significance

as a hedging component.

For other models without positivity restrictions, two results are noteworthy. First, Table

2.12 indicates that RREL is statistically significant as the hedging component. Second,

CAYA seems to lose its significance as a proxy for relative risk aversion with any variable as

the hedging component but CAYA in model 3 again recoverers its statistical significance as

a proxy for relative risk aversion. Furthermore, it is significant even when I include CAYA

as the hedging component.

Since positivity restriction might help to identify hedging components more precisely,

I estimate models 4,5 and 6 with additional hedging components. Table 2.14 shows that

both SURP and CAYA retain statistical significance and the same signs but CAYA also

loses its significance when I put CAYA as the hedging component. Now RREL becomes

marginally significant with SURP and CAYA as proxies for relative risk aversion. In Table

2.15, only two different results strike out compared with Table 2.14. Now CAYA in relative

risk aversion specification is still significant even when CAYA is also included as a hedging

component. Finally, RREL is statistically significant at 5% with both SURP and CAYA

are included as proxies for relative risk aversion. Finally, none of the variables in a hedging

component are significant in model 6.

In summary, several points deserve to be mentioned. First, these tables strongly indicate

that relative risk aversion is indeed time-varying with or without a correct modeling of

hedging components. Among other things, the surplus consumption ratio(SURP) is almost

always statistically significant with the negative sign. Second, the consumption-wealth ratio

29In unreported tables, if I put just SURP in relative risk aversion specification, then CAYA in a hedging
component becomes marginally significant.



91

without a look ahead bias,(CAYA) captures only relative risk aversion and not hedging

components. Often CAY is used as proxy for relative risk aversion(Lettau and Ludvigson

(2001b)) but hedging components interpretation is also utilized(Guo and Whitelaw (2006)).

The estimated results in this paper support strongly relative risk aversion interpretation.

Third, RREL has some explanatory power as a proxy for hedging components. Guo and

Whitelaw (2006) also include RREL as a proxy for investment opportunities. Fourth, TERM

is insignificant in most cases even though it is widely used either a conditioning variable

or a proxy for a hedging component. In fact, several recent studies find that the yield

spread(TERM) is not a very good predictor of economic activity after 1985. Notably, Ang,

Piazzesi, and Wei (2006) after imposing no arbitrage restrictions, find that the short term

interest rate, not the term spread is the main forecasting instrument to future economic

activity. Also, Ang and Bekaert (2006) confirms that after extensive statistical analysis, only

the short term interest rate or RREL strongly negatively predicts excess returns among

chosen predictability variables. Since Merton (1980), it has been well known that the

interest rate accurately describes the changing investor opportunity set. Finally, other

return forecasting variables do not have any statistical power to explain both relative risk

aversion or hedging components while some of the variables forecast market volatility.30

2.3.4 The filtered estimates of Relative Risk Aversion

In this section, I report the filtered estimates of the relative risk aversion from the two models

with positivity restriction since qualitative implications are similar across the models with

slight difference in magnitudes.31

Since relative risk aversion relates to SURP and CAYA, both of which are strong cyclical

30Without time-varying relative risk aversion, some of variables are statistically significant in unreported
results. This seems natural since these are return forecasting variables by definition.

31Since I am using complex nonlinear state space model with GARCH, I can not use simple Kalman
smoothing algorithm. So, I just report filtered estimates of relative risk aversion
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indicators of economic conditions, it is reasonable to suspect a business cycle pattern in risk

aversion. Figure 2.3 plots estimates of relative risk aversion from the conditional CAPM

with SURP and from the conditional ICAPM with SURP and CAYA as instruments for risk

aversion and RREL as a proxy for hedging components along with shade indicating NBER

business cycle contraction. I find that the relative risk aversions implied by both models are

mostly countercyclical even though they miss the short recessions around 1970 and 1974.

Intuitively, we expect periods of strong economic conditions to be associated with low or

falling risk aversion, while recessions are associated with high or rising risk aversion. Table

2.17 presents that the filtered relative risk aversion is around 2 on average with a standard

deviation of 3, which is consistent with sensible estimates that many economists are willing

to accept. It appears to capture the turbulent financial markets during 1990s in which the

relative risk aversion could be high not because of the recession but because of extremely

volatile movements in international financial markets.32

2.3.5 Cross-sectional comparison of the conditional Asset pricing models

I have shown that the relative risk aversion identified with the surplus consumption ratio and

the consumption wealth ratio moves countercyclically and such a relation is still statistically

significant even after I control for the hedging component and time-varying market volatility.

These results appear to be robust because I reach the same conclusion using several different

specifications. However, in time series asset pricing analysis, I extract all the implications

from just one variable, excess returns estimation. Without further verification, it looks

premature to conclude that time-varying relative risk aversion is really important for asset

pricing applications.

To further elaborate on the results, in this section, I follow Lettau and Wachter (2006)’s

32Recently Chue (2005) shows that the time-varying relative risk aversion with surplus consumption ratio
could be important to understand the financial crises or contagion.
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suggestion and investigate the models’ implications for the cross-section of stock returns.33

Fama (1991) conjectures that we should relate the cross-section properties of expected

returns to the variation of expected returns through time. Usually, two different approaches

have been suggested. We can use conditional versions of unconditional single factor models,

such as conditional CAPM or conditional consumption CAPM while unconditional multi-

factor models are also frequently used. From my time-series specification tests, I find

that probably we need both terms to fully understand the risk premium in stock market.

Consumption-related variables are significant determinants for relative risk aversion but the

short term interest rate has some explanatory power as the hedging component.

Conditional models are appealing because unconditional models may not capture time-

varying risk premiums appropriately. Theoretically, Hansen and Richard (1987) show that,

even if the unconditional versions of some models fail, the corresponding conditional models

with correctly specified information sets could be perfectly valid for capturing the dynam-

ics of risk premiums and they will outperform the unconditional versions of the models.

However, as Ghysels (1998) argues, if the model’s implied time-varying risk premiums are

misspecified due to the wrong conditioning variable without any specification test, then these

conditional models may have bigger pricing errors than their counterparts in unconditional

specification. In this sense, current risk-return trade-off research seems to have problems

since they just focus on time-series information. Therefore, cross-sectional verifications of

my time-series models should be implemented.

In this paper, as test assets, I use Fama-French 25 portfolios. It has become standard

practice in the cross-sectional asset-pricing literature to evaluate models based on how well

they explain average returns on size- and book-to-market-sorted portfolios. In addition to

that, I use 55 portfolios with Fama-French 25 portfolios and 30 industry portfolios. As

Lewellen, Nagel, and Shanken (2006) suggest, many models are proposed to capture the

33I follow precisely the testing methods suggested in Petkova (2006) to compare empirical models.
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value premium but they typically fails to match the risk premium implied by 55 portfolios.

Here I show that my empirically chosen models are comparable to the Fama-French three

factor model in explaining the value premium and furthermore seem to capture part of this

industry premium better than the Fama-French three factor model does.

I compare the conditional asset pricing models proposed in the present study directly

with the purely empirical Fama-French three-factor model. Fama and French (1993) ar-

gue that HML and SMB represent compensations for risk consistent with Merton (1973)’s

ICAPM. However, it is still not clear whether the HML and SMB factors have specific eco-

nomic interpretations. Cochrane (2001) argues that asset pricing models that use portfolio

returns as factors may be successful in describing asset returns, but those models will never

be able to explain portfolio returns in economic sense since these models leave unanswered

the question of what explains the return-based factors themselves. Therefore, I expect

that the conditional ICAPM suggested in this paper might shed some lights on this issue

since part of premium could be attributed to time-varying relative risk aversion or hedging

components.

Here I interpret the results in this section with a caution. Lewellen, Nagel, and Shanken

(2006) show that all the comparison measures utilized in this paper can be misleading in

some cases. However, I follow several remedies proposed by them and report my empirical

results with several diagnostics to minimize those problems.34

In order to determine whether the suggested empirical models can account for the cross

section of returns on the 25 Fama-French size and B/M sorted portfolios for the period

from 1957:1 to 2005:4, I utilize the Fama and MacBeth (1973) procedure.35 I use this

Fama-Macbeth type beta pricing approach for the following reasons. The excess returns

34See their Table 1 for the details. Almost all recently suggested models are not better than Fama-French
three factor model after extensive simulations and various robustness checks.

35See chapter 12 of Cochrane (2001) for the detailed explanation. Alternative GMM approaches are nicely
explained in chapter 11.
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on the test assets commonly chosen in empirical work often exhibit high contemporaneous

correlations. This can make some of the numerical calculations of the standard GMM

approach unstable for a large cross-section of assets typically with small span of data set.

This instability has been a main concern of many recent papers on conditional pricing

models that use versions of the beta pricing approach.(Lettau and Ludvigson (2001b)

In the first stage time series regression, I regress the portfolio returns on the market

excess return, and several additional variables specified from the model to obtain the betas.

As in Lettau and Ludvigson (2001b), the full-sample loadings, which are the independent

variables in the second stage regressions, are computed in one multiple time-series regression.

The most general form of the conditional ICAPM in this paper is as follows.36

Ri,t −Rf,t = αi + βiM (RM,t −Rf,t) + βi2SURPt−1 ∗ (RM,t −Rf,t)

+βi3CAYAt−1 ∗ (RM,t −Rf,t) + βi4CAYAt−1 + βi5RRELt−1 + εit (2.3.1)

where Ri,t is portfolio returns;Rf,t is treasury bill returns; RM,t is market returns;

(2.3.1) needs to be estimated from GLS since portfolio returns typically have at least

heteroscedasticity. However, we can interpret (2.3.1) as an seemingly unrelated regression

system with same independent variables. In this case, it is well known that ordinary least

squares results are the same as more efficient general least squares estimates with general

covariance structure of errors.

Estimated betas from the first-stage regressions are subsequently used as independent

variables in the second-stage cross-sectional regression for all time periods. Hence, the risk

premium estimates in the second-stage regression are subject to an errors-in-variables bias.

To correct for this problem, I adjust the standard errors from the second stage regressions

36I use the usual market excess return as the market factor rather than the lagged realized variance
employed by Guo, Wang, and Yang (2006) in order to do direct comparison with the results of other asset
pricing studies. I need to use estimated expected value of realized variance instead of the lagged realized
variance. This might cause another source of errors in variable problem.
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as proposed in Shanken (1992). However, I also report the Fama-MacBeth standard errors

since Jagannathan and Wang (1998) show that with conditional heteroscedasticity, the

standard errors produced by the Fama-MacBeth procedure do not necessarily overstate

the precision of the risk premium estimates.37 The second-stage regression for (2.3.1) is

presented as follows.

Ri,t −Rf,t = λ0 + λM β̂iM + λ2β̂i2 + λ3β̂i3 + λ4β̂i4 + λ5β̂i5 + ui,t i = 1, ...., 25, (2.3.2)

where λ stands for the risk price.

Following Fama and MacBeth, I run this cross-sectional regressions each quarter, gener-

ating time-series of estimates for risk prices(λ). Means, standard errors, and t-statistics are

then computed from these time series and inferences proceed in the usual manner, as if the

time series are independently and identically distributed. It is well known that security re-

turns are cross-sectionally correlated, due to the common market and industry factors, and

also heteroscedastic. As a result, the usual formulas for standard errors are not appropriate

for the OLS cross-sectional regressions(CSR). Fama-Macbeth approach can be interpreted

as a remedy for this phenomenon. Since the true variance of each quarterly estimator de-

pends on the covariance matrix of returns, cross-sectional correlation and heteroskedasticity

are reflected in the time series of quarterly estimates.

My empirical asset pricing models are based on the time series analysis in previous

section and the first-stage regression for each model is presented.38

1. CCAPM1: Ri,t −Rf,t = αi + βiM (RM,t −Rf,t) + βi2SURPt−1 ∗ (RM,t −Rf,t)

2. CCAPM2: CCAPM1 + βi3CAYAt−1 ∗ (RM,t −Rf,t)

3. CCAPM3: CCAPM2 + βi4CAYAt−1

4. CICAPM1: CCAPM1 + βi4CAYAt−1

37I find only weak evidence of remaining GARCH effect for the quarterly excess returns in the first-stage
regression(unreported)

38I omit SURP since this variable does not seem to add any expansibility on cross-sectional regressions.
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5. CICAPM2: CCAPM1 + βi5RRELt−1

6. CICAPM3: CCAPM2 + βi4RRELt−1

7. CICAPM4: CCAPM2 + βi4CAYAt−1 + βi5RRELt−1

where CCAPM denotes the conditional CAPM; CICAPM denotes the conditional

ICAPM.

To better evaluate the performances of the conditional CAPMs and ICAPMs, I also estimate

and report results for the simple unconditional CAPM, the unconditional ICAPM, and the

Fama-French three-factor model.

1. CAPM: Ri,t −Rf,t = αi + βiM (RM,t −Rf,t)

2. ICAPM: CAPM + βi2CAY At−1 + βi3RRELt−1 + βi4TERMt−1

3. Fama-French three factor model: CAPM + βi2SMBt + βi3HMLt

To judge the goodness of fit of the suggested empirical models, I use the cross-sectional

R2 measure employed first by Jagannathan and Wang (1996). This R2 shows the fraction

of cross-sectional variation in average returns that is explained by the model. This measure

is calculated as

R2 =
σ2

C(R̄)− σ2
C(ē)

σ2
C(R̄)

where σ2
C represents the in-sample cross-sectional variance,R̄ is a vector of average excess

returns, and ē stands for the vector of average residuals in cross-sectional regression.

I also report the root mean square of pricing errors(α) in cross-sectional regression(RMSE)

as another intuitive diagnostic to compare the models. I use

√
1
25

25∑
i=1

α2
i =

√
1
N α′α for

all the models. Cochrane advocates this measure by arguing that even though Hansen-

Jagannathan(HJ) distance measure is invariant to portfolio formation, this simple RMSE

could be more informative if the original portfolios were primary concerns and the second
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moment matrix of the test assets is quite close to singular39 since the HJ distance places

too much weight on pricing near-riskless portfolios rather than pricing the original assets.

Finally, Lewellen, Nagel, and Shanken (2006) suggest to report Shanken (1985)’s Hotelling

T 2 statistics since the cross-sectional R2 is not invariant to portfolio formation. Following

Petkova (2006), I compute and report the transformed Hotelling T 2 statistic which is ad-

justed for the errors-in variables problem and has an approximate F-distribution in small

samples. The transformed test statistic is computed as

Q =
T ē′Σ̄−1ē

(1 + c)

where T is the number of time-series observations, ē stands for the average residual vector in

the cross section, and Σ̂ is the estimated covariance matrix of the residuals in the first-stage

time series regression and c is the Shanken correction term.

Table 2.18 reports the estimated coefficients, Fama-MacBeth(FM) and Shanken-corrected

standard errors and the degrees of freedom-adjusted R2 and the RMSE and F-statistics for

the cross-sectional regressions using the excess returns on 25 portfolios sorted by book-to-

market and size.

First, in most cases, the market factor receives a negative and statistically insignificant

risk premium consistent with the findings of Fama and French (1992).40 While it appears

to be a severe problem for the CAPM, the negative market risk premium has not been

understood yet. Since that issue is beyond the scope of this paper, I defer it for future

studies, for that issue is beyond the scope of this paper.

Second, the proposed conditional CAPMs(CCAPM1, CCAPM2 and CCAPM3) seem

to indicate clear improvements over CAPM. CCAPM1 and CCAPM2 deliver much higher

39Lewellen, Nagel, and Shanken (2006) suggest that Fama-French 25 size and B/M sorted portfolios have
essentially three degree of freedom.

40Jagannathan and Wang (1996) and Lettau and Ludvigson (2001b) also report negative estimates for the
market risk premium, using monthly or quarterly data.
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cross-sectional R2 of 40 % and 60%, respectively and smaller RMSE than CAPM does.

Especially, CCAPM3 provides remarkable improvement(R2 is 70%). These results show

that it is likely for CAPM to hold conditionally since as Lettau and Ludvigson (2001b)

argue, if the CAPM holds conditionally, but not unconditionally, better performance may

obtain if the CAPM is scaled by variables that capture relevant conditioning information.

However, the take-away point is that a large number of macroeconomic variables can be

added to ad-hoc linear factor models(Mt+1 = a − bft+1) in this way to price the Fama-

French 25 portfolios. Here I want to emphasize the difference of my conditional CAPM from

the models proposed by Lettau and Ludvigson (2001b) or Ferson and Harvey (1999). In

this paper, I get conditioning variables with non-ad-hoc time-series specification tests with

several robustness checks while Lettau and Ludvigson (2001b) use just simple intuition

to use CAY and Ferson and Harvey (1999) do not try differentiate hedging components

with risk aversion components or volatility components. Therefore, while my unconditional

model still might be subject to this data snooping issue, I argue that my models are subject

to it clearly in a lesser degree than other models do.

Third, the results from the conditional ICAPM(CICAPM4 and CICAPM5) show that

the cross-sectional R2 is around 70% and RMSE is around 0.0036. These performances are

a little bit lower than or comparable to those from the Fama-French model, while these

ICAPM models offer comparable performance over the conditional CAPM.

Fourth, unconditional ICAPM with CAYA,TERM, and RREL is not bad for this ap-

plication. It has comparable R2 of 68% and RMSE(0.0036). Finally, with Shanken (1985),

all models are statistically rejected at 1% level even though Figure 2.4 shows some success

to capture the variations across the portfolios. This rejection is largely from the smallest

growth portfolio(11) as usual. It is unclear that this portfolio should be interpreted as an

outlier.

Figure 2.4 plots the realized versus predicted returns of the models examined of the
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selected models. The numbers on the x-axis are the portfolios’ names. The first digit

number in a portfolio name is the size group it belongs to, and the second digit is the B/m

group it belongs to. Both the size groups and the B/M groups are in ascending order.

The closer a portfolio lies to the 45-degree line, the better the model explains the returns

of that portfolio. It can be seen from the graph that the conditional ICAPM(CICAPM5)

explains the value effect comparable to Fama-French three-factor model: In general, the

fitted expected returns on value portfolios (larger second digit) are higher than the fitted

expected returns on growth portfolios (smaller second digit).

The value premium has been an important but controversial subject in the asset pricing

literature. Consistent with Fama and French’s ICAPM conjecture, Liew and Vassalou (2000)

find that the value premium forecasts output growth. Brennan, Wang, and Xia (2004) and

Petkova (2006) also show that the value premium is correlated with their measures of

investment opportunities. However, there are alternative explanations in the conditional

CAPM literature for the value premium. In particular, Lettau and Ludvigson (2001b) find

that the conditional CAPM with CAY helps explain the value premium and argue that the

Fama-French factors are mimicking portfolios for risk factors associated with time-variation

in market price of risk(or risk aversion).41

The estimation results in Table 2.18 shed light on the on-going debate about the value

premium since I develop the cross-sectional asset pricing models based on more thorough

time-series specification tests. First, the selected conditional CAPM with SURP and CAYA

indeed explains the strong value premium for 1957 to 2005. Likewise, once augmented

with proxies for hedging components, the proposed models also seem to capture the value

premium comparable to the Fama-French three-factor model. Therefore, just for explaining

the value premium, either conditional CAPM or conditional ICAPM looks good. In fact,

many models have been successfully developed to explain this value premium.

41Zhang (2005) also develops equilibrium model with adjustment costs for investment to explain the value
premium when relative risk aversion is high
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Recently, Lewellen, Nagel, and Shanken (2006) argue that the proposed models for the

value premium do not seem to explain premium of industry portfolios. Typically, they

find that most of the models are even worse than the Fama-French three factor model in

explaining industry premium. Therefore, Lewellen, Nagel, and Shanken (2006) recommend

that when three factors explain nearly all of the time-series variation in returns of size-B/M

portfolios, we should augment them with 30 industry portfolios which don’t correlate with

SMB and HML as much for correct comparison of the models. Furthermore, since there are

essentially three degrees of freedom in Fama-French 25 portfolios, Cochrane (2006) suggests

that asset pricing models with more than three factors, should be carefully investigated even

though those models tend to explain Fama-French 25 portfolios.42 Following the suggestions

of Lewellen, Nagel, and Shanken (2006), I test the robustness of the proposed empirical

models by examining the ability of the competing models to price industrial portfolios. I

expect that if we have meaningful asset pricing models, my proposed models should describe

these asset returns better than the Fama-French model does.

Table 2.19 reports the cross-sectional regression results on the 55 portfolios returns.

Now the conditional CAPM(CCAPM3) and ICAPM(CICAPM4) appear to perform strictly

better than all the models, including the conditional CAPM, the Fama-French three factor

model and unconditional ICAPM, in explaining the test assets in terms of the intuitive

measures(both R2 and RMSE). The plots of Figure 2.5 also confirm these facts.

In summery, the carefully selected conditional CAPMs and ICAPMs with time-varying

relative risk aversion and hedging components are not only comparable to Fama-French

three factor model in explaining the value premium but also clearly satisfy the robustness

criteria of Lewellen, Nagel, and Shanken (2006) since they have a higher explanatory power

in terms of the 55 portfolios than all the other models. However, none of the models seems to

price industry portfolios even though my models are clearly better than the Fama-French

42Brennan, Wang, and Xia (2004) also tests their model with this 55 portfolios and finds that their model
is statistically rejected. However, they don’t report any intuitive statistics.
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three factor models. Several researches(for example, Lettau and Wachter (2006) argues

that the external habit formation model need an extra hedging component(cash flow state

variables) to explain asset returns. In this paper, while I include RREL as a candidate

for that, it seems not clear whether we have any incremental explanatory power with this

specification. My paper can be interpreted as a first step to find the complete empirical

models since I obtain the determinants of relative risk aversion with extensive empirical

analysis. In my future study, I will try to incorporate other variables for explaining hedging

components more accurately.

2.4 Conclusion

This paper contributes to the asset pricing literature in several respects. Recent applications

of the ICAPM try to avoid ”fishing license problem” by employing return forecasting vari-

ables. However, without understanding the nature of the forecastibility, it seems possible

to use either the conditional CAPM or the ICAPM. I develop novel time series methods of

identifying the determinants of stochastic risk aversion and hedging components separately

under the unified framework of Merton (1973) ICAPM.

First, I find that only consumption related macroeconomic variables are needed to ex-

plain the time-varying relative risk aversion. Both the surplus consumption ratio and the

consumption wealth ratio without a look ahead bias motivated from the external habit

formation model have the most successful explanatory power, with correct signs, on time

varying relative risk aversion. Other return forecasting variables including dividend price

ratio, default spread, term spread, short term interest rate, inflation and real GDP growth

lose their statistical significance especially in the presence of the surplus consumption ratio.

Consistent with Lettau and Ludvigson (2001b) CAY seems to capture only part of rela-

tive risk aversion but not the hedging component suggested by Guo and Whitelaw (2006).

Without careful decomposition of volatility, relative risk aversion and hedging components,
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we can’t determine whether certain variables are a proxy for relative risk aversion, volatil-

ity or hedging components. Second, only RREL captures part of the changing investment

opportunities argued by Merton (1973). Other return forecasting variables only explain the

time-varying volatility and become statistically insignificant in the presence of consumption

related variables(SURP and CAYA) if I put those variables into relative risk aversion or

hedging components specification.

In addition, I also compare the cross-sectional implication of the selected conditional

CAPMs and ICAPMs with several bench mark asset pricing models including Fama-French

three-factor model. The models are compared on a common set of returns: either the Fama-

French 25 size and B/M sorted portfolios alone or with 30 industry portfolios. I find that the

carefully selected conditional CAPMs and ICAPMs with time-varying relative risk aversion

and hedging components are not only comparable to Fama-French three factor model in

explaining the value premium but also meet the robustness criteria of Lewellen, Nagel, and

Shanken (2006) since they have a higher explanatory power in terms of the 55 portfolios than

all other models do. However, I find that stochastic risk aversion and a hedging component

with RREL is not enough to explain industry risk premium. Results reported in this paper

suggest several implications to develop models to price industry premium. Among other

things, correct identification of relative risk aversion by consumption variables is crucial for

the success of that model.

Recently, Guo (2006) employs a simpler version of Guo, Wang, and Yang (2006) to check

the risk-return trade off in the international stock markets. The time-varying relative risk

aversion identified in the present study is expected to clarify some of the issues in that area.

In fact, the cross-sectional implication of the changing risk aversion or hedging components

would be more interesting. Since Fama and French (1998) present the value premium in the

international stock markets and cast the doubt on the validity of the traditional international

asset pricing models, several conditional and unconditional models have been suggested and
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estimated to explain it without thorough specification tests. Notably, Zhang (2006) finds

that the world CAPM augmented with both exchange rate risk and the conditioning variable

for describing world business cycle(industry production) is the best performing model. I

am currently working on the extension of the empirical models employed in this paper to

this context and expects that those models could illuminate the precise nature of the risk

premium in the international stock market.
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Note: CAY is the consumption-wealth ratio; CAYA is the consumption-wealth ratio without a look ahead
bias; DEF is the yield spread between Baa- and Aaa-rated corporate bonds; DP is the deseasonalized
dividend over price ratio; INFL is the quarterly inflation rate measured by GDP deflator; REGD is the
quarterly real GDP growth;RREL is the difference between the 3 month treasury bill rate and its average
in the previous 4 quarters; SURP is the surplus consumption ratio; and TERM is the yield spread between
10-year treasury bonds and 3-month treasury bills. Shared areas indicate NBER business recessions.

Figure 2.1: Exogenous Variables and Business Cycles(1957:2-2005:4)
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Note: Realized volatility(REVOL1) is defined in the data appendix; REVOL2 replaces a data point(1987:4)
in REVOL1 with the second largest one; REVOL1auto is the autocorrelation-corrected measure of REVOL1;
REVOL2auto replaces a data point(1987:4) in REVOL1auto with the second largest one; rM,t+1 is the
CRSP value-weighted stock return minus lagged 3-month treasure bill rate. GARCH1 is estimated with
simple GARCH(1,1) model of the market excess return(Model1); GARCH2 is estimated with the conditional
ICAPM model with surplus consumption ratio(SURP) and RREL(Model2). All exogenous variables(SURP,
RREL, and ut) are normalized to have means of zero and standard deviations of one. Shared areas indicate
NBER business recessions.

Model1 : rM,t+1 = γ1ht+1 + εt+1,

Model2 : rM,t+1 = exp(γt+1) exp(Et(ln σ̂m,t+1) + 1
2
σ2

η) + α1(RREL)t + εt+1,

γt+1 = φ1(SURP)t + vt+1,
ln σ̂m,t+1 = δ0 + δ1 ln σ̂m,t + δ′2ut + ηt+1

where εt+1|ψt ∼ N(0, ht+1), vt+1 ∼ N(0, 0.01),ηt+1 ∼ N(0, σ2
η) , ht+1 = ω + β1ht + β2ε

2
t

Figure 2.2: Realized Volatility and GARCH(1957:2-2005:4)
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This figure plots the quarterly time series of relative risk aversion series(exp(γt+1)) implied by conditional
CAPM with the surplus consumption ratio(Model1) and conditional ICAPM with the surplus consumption
ratio and the consumption-wealth ratio as instruments for relative risk aversion and RREL as a proxy for the
hedging component(Model2). All exogenous variables(SURP,RREL, and ut) are normalized to have means
of zero and standard deviations of one. Shared areas indicate NBER business recessions.

Model1 : rM,t+1 = exp(γt+1) exp(Et(ln σ̂m,t+1) + 1
2
σ2

η) + εt+1,

Model2 : rM,t+1 = exp(γt+1) exp(Et(ln σ̂m,t+1) + 1
2
σ2

η) + α1(RREL)t + εt+1,

γt+1 = φ1(SURP)t + vt+1,
ln σ̂m,t+1 = δ0 + δ1 ln σ̂m,t + δ′2ut + ηt+1

where εt+1|ψt ∼ N(0, ht+1), vt+1 ∼ N(0, 0.01),ηt+1 ∼ N(0, σ2
η) , ht+1 = ω + β1ht + β2ε

2
t

Figure 2.3: Time-series of relative risk aversion.(1957:2-2005:4)
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(a) Unconditional CAPM
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(b) CCAPM2
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(c) CICAPM1
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(d) CICAPM4
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(e) ICAPM
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(f) Fama-French Three-factor model

The plot shows realized average returns (in percent) on the vertical axis and fitted expected returns (in
percent) on the horizontal axis for 25 size and book-to-market sorted portfolios. The first digit refers to the
size quintile (1 being the smallest and 5 the largest), while the second digit refers to the book-to-market
quintile (1 being the lowest and 5 the highest). For each portfolio, the realized average return is the time-
series average of the portfolio return and the fitted expected return is the fitted value for the expected return
from the corresponding model. The straight line is the 45-degree line from the origin. All models are defined
in section 2.3.5.

Figure 2.4: Fitted Expected Returns Versus Average Realized Returns for the Fama French
25 portfolios(1957:2-2005:4)
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(a) Unconditional CAPM
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(b) CCAPM2
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(c) CICAPM1
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(d) CICAPM4
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(e) ICAPM
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(f) Fama-French Three-factor model

The plot shows realized average returns (in percent) on the vertical axis and fitted expected returns (in
percent) on the horizontal axis for 25 size and book-to-market sorted portfolios and 30 industry portfolios.
For each portfolio, the realized average return is the time-series average of the portfolio return and the fitted
expected return is the fitted value for the expected return from the corresponding model. The straight line
is the 45-degree line from the origin.All models are defined in section 2.3.5.

Figure 2.5: Fitted Expected Returns Versus Average Realized Returns for the Fama French
25 portfolios and 30 Industry portfolios(1957:2-2005:4)
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Table 2.1: Summary Statistics

Summary statistics for data used in the paper. Data is sampled quarterly from 1957:2 to 2005:4. The
Auto(1) give the first autocorrelation. Note: EXCESS is the CRSP value-weighted stock return minus
lagged 3-month treasury bill rate;CAYA is the consumption-wealth ratio without a look ahead bias; DEF
is the yield spread between Baa- and Aaa-rated corporate bonds; DP is the deseasonalized dividend price
ratio; INFL is the quarterly inflation rate measured by GDP deflator; REGD is the quarterly real GDP
growth;RREL is the difference between the 3 month treasury bill rate and its average in the previous 4
quarters; SURP is the surplus consumption ratio; and TERM is the yield spread between 10-year treasury
bonds and 3-month treasury bills.

EXCESS CAYA DEF DP INFL REGD RREL SURP TERM

Panel A: Correlation Matrix

EXCESS 1.000
CAYA -0.140 1.000

DEF 0.120 0.171 1.000
DP 0.061 0.641 0.527 1.000

INFL -0.126 0.194 0.435 0.563 1.000
REGD 0.026 -0.088 -0.238 -0.097 -0.227 1.000
RREL -0.179 -0.091 -0.358 -0.002 0.162 0.289 1.000
SURP -0.154 -0.038 -0.138 -0.152 0.303 0.084 0.193 1.000

TERM 0.167 0.141 0.260 -0.081 -0.300 0.117 -0.441 -0.196 1.000

Panel B:Univariate Summary Statistics

Mean 0.011 -0.004 0.975 0.008 0.036 0.032 0.000 0.006 1.421
Std. Dev. 0.085 0.019 0.411 0.003 0.024 0.036 0.003 0.001 1.185
Skewness -0.850 -0.863 1.367 -0.115 1.161 -0.390 -0.342 0.109 -0.074
Kurtosis 4.412 3.823 4.948 2.404 3.910 4.555 6.013 2.161 2.382
Auto(1) 0.030 0.909 0.921 0.985 0.865 0.293 0.530 0.975 0.874
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Table 2.2: Summary Statistics for Realized Variance and GARCH

Summary statistics for the Realized variance and the estimated GARCH. Data is sampled quarterly from
1957:2 to 2005:4. Note: rM,t+1 is the CRSP value-weighted stock return minus lagged 3-month treasury bill
rate;Realized volatility(REVOL1) is defined in the data appendix; REVOL2 replaces a data point(1987:4) in
REVOL1 with the second largest one; REVOL1auto is the autocorrelation-corrected measure of REVOL1;
REVOL2auto replaces a data point(1987:4) in REVOL1auto with the second largest one; GARCH1 is
estimated with simple GARCH(1,1) model of the market excess return(Model1); GARCH2 is estimated with
the conditional ICAPM model with surplus consumption ratio(SURP) and RREL(Model2). All exogenous
variables(SURP,RREL,and ut) are normalized to have means of zero and standard deviations of one.

Model1 : rM,t+1 = γ1ht+1 + εt+1,

Model2 : rM,t+1 = exp(γt+1) exp(Et(ln σ̂m,t+1) + 1
2
σ2

η) + α1(RREL)t + εt+1,

γt+1 = φ1(SURP)t + vt+1,
ln σ̂m,t+1 = δ0 + δ1 ln σ̂m,t + δ′2ut + ηt+1

where εt+1|ψt ∼ N(0, ht+1), vt+1 ∼ N(0, 0.01),ηt+1 ∼ N(0, σ2
η) , ht+1 = ω + β1ht + β2ε

2
t

REVOL1 REVOL2 REVOL1auto REVOL2auto GARCH1 GARCH2

Panel A : Correlation Matrix

REVOL1 1.000
REVOL2 0.896 1.000

REVOL1auto 0.963 0.841 1.000
REVOL2auto 0.836 0.927 0.884 1.000

GARCH1 0.224 0.319 0.236 0.342 1.000
GARCH2 0.239 0.340 0.253 0.366 0.977 1.000

Panel B : Univariate Summary Statistics

Mean 0.005 0.004 0.006 0.006 0.007 0.007
Std. Dev. 0.006 0.004 0.008 0.005 0.002 0.002
Skewness 6.408 2.657 6.505 2.564 2.185 2.293
Kurtosis 61.443 11.346 63.255 11.073 8.940 9.424
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Table 2.5: Time-series specification test: time-varying RRA(Model3)

The Table shows the estimation results of several different specifications of Conditional CAPM without
positivity restriction. Note: rM,t+1 is the CRSP value-weighted stock return minus lagged 3-month treasury
bill rate; CAYA is the consumption-wealth ratio without a look ahead bias; DEF is the yield spread between
Baa- and Aaa-rated corporate bonds; DP is the deseasonalized dividend price ratio; INFL is the quarterly
inflation rate measured by GDP deflator; REGD is the quarterly real GDP growth;RREL is the difference
between the 3 month treasury bill rate and its average in the previous 4 quarters; SURP is the surplus
consumption ratio; and TERM is the yield spread between 10-year treasury bonds and 3-month treasury
bills. All exogenous variables(X1t,X2t, and ut) are normalized to have means of zero and standard deviations
of one to facilitate the interpretation.

Model : rM,t+1 = γt+1ht+1 + εt+1, γt+1 = φ0 + φ1X1t + φ2X2t + vt+1

where εt+1|ψt ∼ N(0, ht+1), vt+1 ∼ N(0, 0.01), ht+1 = ω + β1ht + β2ε
2
t

X1t φ0 φ1 ω β1 β2

SURP 2.271 -2.026 0.002 0.571 0.143
tstats 2.589 -2.230 2.093 3.551 1.652

CAYA 2.183 1.109 0.002 0.600 0.155
tstats 2.571 1.344 2.160 4.397 1.697

DP 2.275 0.828 0.002 0.583 0.172
tstats 2.664 1.005 2.251 4.349 1.801

TERM 2.133 1.178 0.002 0.562 0.141
tstats 2.422 1.256 2.119 3.577 1.552

DEF 2.211 0.675 0.002 0.579 0.166
tstats 2.566 0.818 2.248 4.213 1.739

INFL 2.355 -0.854 0.002 0.558 0.172
tstats 2.725 -1.077 2.228 3.872 1.843

REGD 2.281 -0.307 0.002 0.576 0.180
tstats 2.692 -0.410 2.283 4.340 1.901

RREL 2.070 -1.976 0.002 0.593 0.132
tstats 2.372 -2.177 2.162 3.989 1.572

X1t, X2t φ0 φ1 φ2 ω β1 β2

SURP,RREL 2.089 -1.898 -1.825 0.002 0.586 0.116
tstats 2.349 -2.075 -2.019 2.003 3.439 1.495
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Table 2.6: Time-series specification test: time-varying RRA(Model4)-I

The Table shows the estimation results of several different specifications of conditional CAPM with positivity
restriction. Note: rM,t+1 is the CRSP value-weighted stock return minus lagged 3-month treasury bill
rate; Realized volatility(σ̂m,t+1) is defined in the data appendix; CAYA is the consumption-wealth ratio
without a look ahead bias; DEF is the yield spread between Baa- and Aaa-rated corporate bonds; DP is
the deseasonalized dividend price ratio; INFL is the quarterly inflation rate measured by GDP deflator;
REGD is the quarterly real GDP growth;RREL is the difference between the 3 month treasury bill rate
and its average in the previous 4 quarters; SURP is the surplus consumption ratio; and TERM is the yield
spread between 10-year treasury bonds and 3-month treasury bills. All exogenous variables( xt and ut) are
normalized to have means of zero and standard deviations of one to facilitate the interpretation.

Model : rM,t+1 = exp(γt+1)(Et(ln σ̂m,t+1) + 1
2
σ2

η) + εt+1,

γt+1 = φ1xt + vt+1, ln σ̂m,t+1 = δ0 + δ1 ln σ̂m,t + δ′2ut + ηt+1,

where εt+1|ψt ∼ N(0, Et(σ̂m,t+1)) , vt+1 ∼ N(0, 0.01),ηt+1 ∼ N(0, σ2
η)

xt φ1 δ0 δ1 δ21 δ22 δ23 δ24 δ25 ση

SURP -1.461 -3.594 0.339 0.195 -0.475 -0.171 0.324 0.188 -0.608
tstats -7.877 -10.235 5.324 3.385 -5.924 -3.378 4.862 3.359 -19.461

CAYA 1.218 -3.592 0.338 0.174 -0.451 -0.172 0.331 0.171 -0.610
tstats 4.654 -10.171 5.283 2.994 -5.600 -3.361 4.913 3.079 -19.386

DP 1.052 -3.578 0.341 0.191 -0.466 -0.172 0.327 0.175 -0.610
tstats 4.088 -10.128 5.319 3.309 -5.807 -3.378 4.870 3.132 -19.370

TERM 0.864 -3.576 0.341 0.187 -0.458 -0.178 0.333 0.175 -0.611
tstats 2.231 -10.099 5.304 3.234 -5.704 -3.469 4.942 3.120 -19.328

DEF 0.600 -3.569 0.342 0.189 -0.460 -0.172 0.323 0.176 -0.611
tstats 3.226 -10.072 5.325 3.270 -5.731 -3.370 4.763 3.150 -19.344

INFL -1.686 -3.603 0.336 0.188 -0.461 -0.172 0.334 0.184 -0.609
tstats -4.969 -10.207 5.256 3.272 -5.753 -3.369 4.968 3.288 -19.398

REGD -0.446 -3.580 0.340 0.186 -0.459 -0.174 0.333 0.175 -0.611
tstats -0.949 -10.082 5.277 3.225 -5.706 -3.395 4.937 3.120 -19.309

RREL -0.749 -3.558 0.345 0.195 -0.466 -0.178 0.317 0.177 -0.610
tstats -7.237 -10.049 5.367 3.367 -5.794 -3.489 4.680 3.165 -19.384
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Table 2.7: Time-series specification test: time-varying RRA(Model4)-II

The Table shows the estimation results of several different specifications of conditional CAPM with positivity
restriction. Note: rM,t+1 is the CRSP value-weighted stock return minus lagged 3-month treasury bill
rate; Realized volatility(σ̂m,t+1) is defined in the data appendix; CAYA is the consumption-wealth ratio
without a look ahead bias; DEF is the yield spread between Baa- and Aaa-rated corporate bonds; DP is the
deseasonalized dividend price ratio; INFL is the quarterly inflation rate measured by GDP deflator; REGD
is the quarterly real GDP growth;RREL is the difference between the 3 month treasury bill rate and its
average in the previous 4 quarters; SURP is the surplus consumption ratio; and TERM is the yield spread
between 10-year treasury bonds and 3-month treasury bills. All exogenous variables(xt,SURPt, and ut) are
normalized to have means of zero and standard deviations of one to facilitate the interpretation.

Model : rM,t+1 = exp(γt+1)(Et(ln σ̂m,t+1) + 1
2
σ2

η) + εt+1,

γt+1 = φ1(SURP)t + φ2xt + vt+1, ln σ̂m,t+1 = δ0 + δ1 ln σ̂m,t + δ′2ut + ηt+1,

where εt+1|ψt ∼ N(0, Et(σ̂m,t+1)) , vt+1 ∼ N(0, 0.01),ηt+1 ∼ N(0, σ2
η)

xt φ1 φ2 δ0 δ1 δ21 δ22 δ23 δ24 δ25 ση

SURP, CAYA -1.205 1.009 -3.680 0.324 0.180 -0.476 -0.171 0.337 0.194 -0.607
tstats -3.883 2.171 -10.445 5.072 3.101 -5.926 -3.362 5.053 3.471 -19.514

SURP, DP -1.629 -0.309 -3.604 0.337 0.192 -0.470 -0.172 0.331 0.188 -0.607
tstats -8.411 -1.264 -10.287 5.315 3.342 -5.873 -3.393 4.959 3.367 -19.497

SURP, TERM -1.390 0.404 -3.579 0.342 0.199 -0.479 -0.178 0.317 0.188 -0.608
tstats -6.486 1.497 -10.174 5.361 3.455 -5.956 -3.491 4.730 3.359 -19.474

SURP, DEF -1.597 -0.269 -3.620 0.334 0.189 -0.474 -0.172 0.337 0.190 -0.607
tstats -8.917 -1.096 -10.329 5.266 3.302 -5.931 -3.395 5.027 3.400 -19.498

SURP, INFL -1.427 -0.614 -3.639 0.331 0.190 -0.479 -0.170 0.337 0.200 -0.606
tstats -6.400 -1.971 -10.403 5.230 3.325 -6.011 -3.364 5.055 3.564 -19.547

SURP, RREL -1.285 -0.221 -3.583 0.341 0.199 -0.478 -0.176 0.317 0.187 -0.608
tstats -4.624 -1.324 -10.183 5.345 3.452 -5.960 -3.456 4.723 3.344 -19.455
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Table 2.8: Time-series specification test: time-varying RRA(Model5)-I

The Table shows the estimation results of several different specifications of Conditional CAPM with positivity
restriction. Note: rM,t+1 is the CRSP value-weighted stock return minus lagged 3-month treasury bill
rate; Realized volatility(σ̂m,t+1) is defined in the data appendix; CAYA is the consumption-wealth ratio
without a look ahead bias; DEF is the yield spread between Baa- and Aaa-rated corporate bonds; DP is
the deseasonalized dividend price ratio; INFL is the quarterly inflation rate measured by GDP deflator;
REGD is the quarterly real GDP growth;RREL is the difference between the 3 month treasury bill rate
and its average in the previous 4 quarters; SURP is the surplus consumption ratio; and TERM is the yield
spread between 10-year treasury bonds and 3-month treasury bills. All exogenous variables( xt and ut) are
normalized to have means of zero and standard deviations of one to facilitate the interpretation.

Model : rM,t+1 = exp(γt+1)(Et(ln σ̂m,t+1) + 1
2
σ2

η) + εt+1,

γt+1 = φ1xt + vt+1, ln σ̂m,t+1 = δ0 + δ1 ln σ̂m,t + δ′2ut + ηt+1,

where εt+1|ψt ∼ N(0, ht+1)) , vt+1 ∼ N(0, 0.01),ηt+1 ∼ N(0, σ2
η), ht+1 = ω + β1ht + β2ε

2
t

xt φ1 δ0 δ1 δ21 δ22 δ23 δ24 δ25 ση ω β1 β2

SURP -1.464 -3.533 0.355 0.177 -0.455 -0.152 0.319 0.179 -0.598 0.002 0.525 0.183
tstats -6.682 -9.375 5.205 2.807 -5.168 -2.819 4.453 2.983 -19.660 2.194 3.061 1.562

CAYA 1.278 -3.550 0.353 0.158 -0.438 -0.154 0.342 0.170 -0.597 0.002 0.630 0.019
tstats 5.225 -9.436 5.169 2.501 -4.967 -2.844 4.708 2.852 -19.680 0.738 1.297 0.210

DP 1.043 -3.529 0.357 0.175 -0.449 -0.147 0.327 0.177 -0.597 0.002 0.584 0.117
tstats 4.067 -9.331 5.201 2.760 -5.126 -2.739 4.551 2.942 -19.691 1.909 3.258 1.246

TERM 0.846 -3.599 0.343 0.168 -0.448 -0.164 0.339 0.180 -0.598 0.002 0.581 0.132
tstats 1.928 -9.515 5.006 2.661 -5.083 -3.005 4.657 2.977 -19.661 2.000 3.458 1.515

DEF 0.584 -3.545 0.354 0.172 -0.446 -0.148 0.325 0.179 -0.597 0.002 0.568 0.137
tstats 3.361 -9.368 5.154 2.731 -5.097 -2.748 4.481 2.980 -19.686 2.005 3.311 1.411

INFL -1.699 -3.576 0.348 0.174 -0.442 -0.158 0.326 0.182 -0.598 0.002 0.569 0.156
tstats -3.798 -9.461 5.071 2.770 -5.057 -2.910 4.474 3.009 -19.671 2.081 3.503 1.677

REGD -0.526 -3.567 0.349 0.172 -0.448 -0.154 0.333 0.180 -0.597 0.002 0.594 0.127
tstats -1.701 -9.434 5.097 2.720 -5.104 -2.841 4.582 2.979 -19.687 1.976 3.587 1.453

RREL -0.718 -3.570 0.349 0.173 -0.448 -0.162 0.335 0.175 -0.597 0.002 0.605 0.112
tstats -6.528 -9.406 5.071 2.744 -5.103 -2.980 4.607 2.900 -19.680 1.928 3.540 1.320
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Table 2.10: Time-series specification test: time-varying RRA(Model6)

The Table shows the estimation results of several different specifications of conditional CAPM with positivity
restriction. Note: rM,t+1 is the CRSP value-weighted stock return minus lagged 3-month treasury bill rate;
CAYA is the consumption-wealth ratio without a look ahead bias; DEF is the yield spread between Baa- and
Aaa-rated corporate bonds; DP is the deseasonalized dividend price ratio; INFL is the quarterly inflation
rate measured by GDP deflator; REGD is the quarterly real GDP growth;RREL is the difference between the
3 month treasury bill rate and its average in the previous 4 quarters; SURP is the surplus consumption ratio;
and TERM is the yield spread between 10-year treasury bonds and 3-month treasury bills. All exogenous
variables(X1t and X2t) are normalized to have means of zero and standard deviations of one to facilitate
the interpretation.

Model : rM,t+1 = exp(γt+1)ht+1 + εt+1, γt+1 = φ1X1t + φ2X2t + vt+1,

where εt+1|ψt ∼ N(0, ht+1), vt+1 ∼ N(0, 0.01), ht+1 = ω + β1ht + β2ε
2
t

Panel A X1t Panel B X1t X2t

φ1 ω β1 β2 φ1 φ2 ω β1 β2

SURP -1.216 0.002 0.585 0.139
tstats -5.822 2.120 3.771 1.705

CAYA 1.074 0.002 0.619 0.127 SURP, CAYA -0.996 0.733 0.002 0.632 0.111
tstats 3.783 2.004 4.204 1.498 tstats -1.806 0.865 1.911 3.898 1.409

DP 1.018 0.002 0.599 0.146 SURP, DP -1.400 -0.361 0.002 0.574 0.161
tstats 4.104 2.127 4.182 1.650 tstats -6.027 -1.005 2.178 3.857 1.834

TERM 0.670 0.002 0.573 0.143 SURP, TERM -1.144 0.423 0.002 0.580 0.137
tstats 1.617 2.087 3.601 1.621 tstats -5.035 1.450 2.087 3.621 1.713

DEF 0.653 0.002 0.592 0.140 SURP, DEF -1.269 -0.079 0.002 0.582 0.145
tstats 4.402 2.077 3.919 1.607 tstats -5.398 -0.363 2.149 3.801 1.738

INFL -1.347 0.002 0.555 0.156 SURP, INFL -1.186 -0.329 0.002 0.580 0.145
tstats -3.796 2.146 3.448 1.777 tstats -4.474 -0.944 2.147 3.798 1.831

REGD -0.618 0.002 0.588 0.157 SURP, REGD -1.259 0.063 0.002 0.583 0.143
tstats -2.798 2.138 4.058 1.771 tstats -5.256 0.312 2.136 3.789 1.710

RREL -0.705 0.002 0.591 0.137 SURP, RREL -0.973 -0.300 0.002 0.576 0.134
tstats -7.033 2.036 3.768 1.611 tstats -2.909 -1.626 2.017 3.411 1.648
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Table 2.13: Time-series specification test: time-varying RRA(Model3) and a hedging com-
ponent

The Table shows the estimation results of several different specifications of conditional ICAPM without
positivity restriction. Note: rM,t+1 is the CRSP value-weighted stock return minus lagged 3-month treasury
bill rate; CAYA is the consumption-wealth ratio without a look ahead bias; DEF is the yield spread between
Baa- and Aaa-rated corporate bonds; DP is the deseasonalized dividend price ratio; INFL is the quarterly
inflation rate measured by GDP deflator; REGD is the quarterly real GDP growth;RREL is the difference
between the 3 month treasury bill rate and its average in the previous 4 quarters; SURP is the surplus
consumption ratio; and TERM is the yield spread between 10-year treasury bonds and 3-month treasury
bills. All exogenous variables(SURPt,CAYAt, and zt) are normalized to have means of zero and standard
deviations of one to facilitate the interpretation.

Model : rM,t+1 = γt+1ht+1 + α1zt + εt+1, γt+1 = φ0 + φ1(SURP)t + φ2(CAYA)t + vt+1,

where εt+1|ψt ∼ N(0, ht+1), vt+1 ∼ N(0, 0.01), ht+1 = ω + β1ht + β2ε
2
t+1

zt φ0 φ1 φ2 α1 ω β1 β2

CAYA 2.029 -1.906 -1.852 -0.006 0.002 0.599 0.090
tstats 2.243 -2.059 -2.032 -0.890 1.811 3.136 1.151

DP 2.051 -1.818 -1.873 -0.004 0.002 0.585 0.106
tstats 2.292 -1.964 -2.056 -0.608 1.924 3.240 1.377

TERM 2.068 -1.847 -1.561 -0.005 0.002 0.580 0.114
tstats 2.321 -2.005 -1.612 -0.747 1.978 3.311 1.487

DEF 2.094 -1.925 -1.926 0.002 0.002 0.588 0.122
tstats 2.362 -2.093 -2.021 0.332 2.022 3.581 1.509

INFL 2.115 -1.602 -1.709 0.007 0.002 0.580 0.136
tstats 2.391 -1.667 -1.896 1.044 2.142 3.744 1.621

REGD 2.065 -1.991 -2.086 -0.005 0.002 0.584 0.115
tstats 2.320 -2.150 -2.171 -0.821 2.010 3.428 1.509

RREL 1.591 -2.216 -8.456 -0.043 0.002 0.600 0.082
tstats 1.563 -2.295 -0.828 -0.655 1.916 3.471 1.079
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Table 2.14: Time-series specification test: time-varying RRA(Model4) and a hedging com-
ponent

The Table shows the estimation results of several different specifications of conditional ICAPM with positivity
restriction. Note: rM,t+1 is the CRSP value-weighted stock return minus lagged 3-month treasury bill
rate; Realized volatility(σ̂m,t+1) is defined in the data appendix; CAYA is the consumption-wealth ratio
without a look ahead bias; DEF is the yield spread between Baa- and Aaa-rated corporate bonds; DP is the
deseasonalized dividend price ratio; INFL is the quarterly inflation rate measured by GDP deflator; REGD
is the quarterly real GDP growth;RREL is the difference between the 3 month treasury bill rate and its
average in the previous 4 quarters; SURP is the surplus consumption ratio; and TERM is the yield spread
between 10-year treasury bonds and 3-month treasury bills. All exogenous variables(zt,SURPt,CAYAt, and
ut) are normalized to have means of zero and standard deviations of one to facilitate the interpretation.

Model : rM,t+1 = exp(γt+1)(Et(ln σ̂m,t+1) + 1
2
σ2

η) + α1zt + εt+1,

γt+1 = φ1(SURP)t + φ2(CAYA)t + vt+1, ln σ̂m,t+1 = δ0 + δ1 ln σ̂m,t + δ′2ut + ηt+1,

where εt+1|ψt ∼ N(0, Et(σ̂m,t+1)) , vt+1 ∼ N(0, 0.01),ηt+1 ∼ N(0, σ2
η)

zt φ1 φ2 α1 δ0 δ1 δ21 δ22 δ23 δ24 δ25 ση

CAYA -1.289 0.802 -0.004 -3.671 0.325 0.183 -0.479 -0.172 0.335 0.195 -0.607
tstats -3.826 1.192 -0.498 -10.375 5.075 3.146 -5.957 -3.377 4.993 3.481 -19.519

DP -1.203 1.001 -0.001 -3.680 0.324 0.180 -0.477 -0.171 0.336 0.194 -0.607
tstats -3.874 2.129 -0.136 -10.444 5.073 3.107 -5.926 -3.366 5.050 3.469 -19.514

TERM -1.202 0.994 -0.009 -3.667 0.327 0.178 -0.473 -0.171 0.332 0.193 -0.606
tstats -3.827 2.086 -1.677 -10.412 5.120 3.059 -5.883 -3.351 4.963 3.455 -19.560

DEF -1.205 1.007 0.000 -3.680 0.324 0.180 -0.476 -0.171 0.337 0.194 -0.607
tstats -3.862 2.156 0.035 -10.447 5.072 3.100 -5.926 -3.360 5.029 3.470 -19.514

INFL -1.023 1.165 0.010 -3.668 0.326 0.172 -0.467 -0.167 0.337 0.198 -0.606
tstats -2.741 2.678 1.720 -10.386 5.101 2.961 -5.787 -3.287 5.064 3.527 -19.561

REGD -1.237 1.005 -0.004 -3.690 0.322 0.182 -0.479 -0.171 0.339 0.194 -0.607
tstats -4.033 2.174 -0.769 -10.482 5.049 3.126 -5.950 -3.366 5.078 3.483 -19.525

RREL -1.100 1.068 0.010 -3.666 0.327 0.180 -0.475 -0.170 0.325 0.197 -0.606
tstats -3.501 2.515 1.829 -10.379 5.107 3.114 -5.922 -3.350 4.829 3.512 -19.549
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Table 2.16: Time-series specification test: time-varying RRA(Model6) and a hedging com-
ponent

The Table shows the estimation results of several different specifications of conditional ICAPM with positivity
restriction. Note: rM,t+1 is the CRSP value-weighted stock return minus lagged 3-month treasury bill rate;
CAYA is the consumption-wealth ratio without a look ahead bias; DEF is the yield spread between Baa- and
Aaa-rated corporate bonds; DP is the deseasonalized dividend price ratio; INFL is the quarterly inflation
rate measured by GDP deflator; REGD is the quarterly real GDP growth;RREL is the difference between the
3 month treasury bill rate and its average in the previous 4 quarters; SURP is the surplus consumption ratio;
and TERM is the yield spread between 10-year treasury bonds and 3-month treasury bills. All exogenous
variables(zt and SURPt) are normalized to have means of zero and standard deviations of one to facilitate
the interpretation.

Model : rM,t+1 = exp(γt+1)ht+1 + α1zt + εt+1, γt+1 = φ1(SURP)txt + vt+1,

where εt+1|ψt ∼ N(0, ht+1), vt+1 ∼ N(0, 0.01),ηt+1 ∼ N(0, σ2
η) , ht+1 = ω + β1ht + β2ε

2
t

zt φ1 α1 ω β1 β2

CAYA -1.215 -0.006 0.002 0.594 0.116
tstats -5.581 -0.906 1.983 3.532 1.393

DP -1.201 -0.002 0.002 0.584 0.135
tstats -5.403 -0.244 2.082 3.688 1.630

TERM -1.217 -0.010 0.002 0.574 0.125
tstats -5.636 -1.725 2.003 3.330 1.603

DEF -1.203 -0.001 0.002 0.584 0.134
tstats -5.445 -0.216 2.061 3.667 1.588

INFL -1.188 0.009 0.002 0.568 0.162
tstats -5.092 1.399 2.216 3.834 1.833

REGD -1.237 -0.002 0.002 0.583 0.141
tstats -5.834 -0.356 2.132 3.773 1.715

RREL -1.136 0.010 0.002 0.594 0.110
tstats -4.613 1.691 1.944 3.379 1.412
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Table 2.17: Summary Statistics for the estimated Time-varying Risk Aversion

Summary statistics for the estimated risk aversion from 1957:2 to 2005:4. The Auto(1) give the first au-
tocorrelation. This table shows descriptive statistics of the estimated risk aversion series(exp(γt+1)) from
conditional CAPM with the surplus consumption ratio(Model1) and conditional ICAPM with the surplus
consumption ratio and the consumption-wealth ration as instruments for relative risk aversion and RREL
as a proxy for hedging component(Model2). Note: rM,t+1 is the CRSP value-weighted stock return minus
lagged 3-month treasury bill rate;Realized volatility(REVOL1) is defined in the data appendix; All exogenous
variables(SURPt,RRELt,and ut) are normalized to have means of zero and standard deviations of one.

Model1 : rM,t+1 = exp(γt+1) exp(Et(ln σ̂m,t+1) + 1
2
σ2

η) + εt+1,

Model2 : rM,t+1 = exp(γt+1) exp(Et(ln σ̂m,t+1) + 1
2
σ2

η) + α1(RREL)t + εt+1,

γt+1 = φ1 ∗ (SURP)t + vt+1,
ln σ̂m,t+1 = δ0 + δ1 ln σ̂m,t + δ′2ut + ηt+1

where εt+1|ψt ∼ N(0, ht+1), vt+1 ∼ N(0, 0.01),ηt+1 ∼ N(0, σ2
η) , ht+1 = ω + β1ht + β2ε

2
t

Risk Aversion(C-CAPM) Risk Aversion(C-ICAPM)

Mean 2.388 2.070
Median 0.771 0.850

Maximum 15.994 16.801
Minimum 0.035 0.055
Std. Dev. 3.020 2.580
Skewness 1.835 2.342
Kurtosis 6.544 10.271
Auto(1) 0.906 0.852

Corr 0.964



127

T
ab

le
2.

18
:

C
ro

ss
-S

ec
ti

on
al

T
es

ts
of

A
ss

et
P

ri
ci

ng
M

od
el

s
on

Fa
m

a
Fr

en
ch

25
po

rt
fo

lio
s(

19
57

:2
-2

00
5:

4)

T
h
e

ta
b
le

p
re

se
n
ts

th
e

es
ti

m
a
te

d
re

su
lt

s
o
f
F
a
m

a
a
n
d

M
a
cB

et
h

(1
9
7
3
)

cr
o
ss

-s
ec

ti
o
n
a
l
re

g
re

ss
io

n
u
si

n
g

th
e

ex
ce

ss
re

tu
rn

s
o
n

2
5

p
o
rt

fo
li
o
s

so
rt

ed
b
y

b
o
o
k
-t

o
-m

a
rk

et
a
n
d

si
ze

.
T

h
e

fu
ll
-s

a
m

p
le

fa
ct

o
r
lo

a
d
in

g
s,

w
h
ic

h
a
re

th
e

in
d
ep

en
d
en

t
va

ri
a
b
le

s
in

th
e

re
g
re

ss
io

n
s,

a
re

co
m

p
u
te

d
in

o
n
e

m
u
lt

ip
le

ti
m

e-
se

ri
es

re
g
re

ss
io

n
fo

ll
ow

in
g

L
et

ta
u

a
n
d

L
u
d
v
ig

so
n

(2
0
0
1
b
).

T
h
e

A
d
ju

st
ed

R
2

fo
ll
ow

s
th

e
sp

ec
ifi

ca
ti

o
n

o
f

J
a
g
a
n
n
a
th

a
n

a
n
d

W
a
n
g

(1
9
9
6
).

T
h
e

fi
rs

t
se

t
o
f
st

a
n
d
a
rd

er
ro

rs
,
in

d
ic

a
te

d
b
y

F
M

,
st

a
n
d
s

fo
r

th
e

F
a
m

a
-M

a
cB

et
h

es
ti

m
a
te

s.
T

h
e

se
co

n
d

se
t,

in
d
ic

a
te

d
b
y

S
h
a
n
k
en

,
a
d
ju

st
s

fo
r

er
ro

s-
in

-v
a
ri

a
b
le

s
a
n
d

fo
ll
ow

s
S
h
a
n
k
en

(1
9
9
2
).

A
p
p
ro

x
im

a
te

F
-s

ta
ti

st
ic

s
is

th
e

tr
a
n
sf

o
rm

ed
H

o
te

ll
in

g
T

2
-s

ta
ti

st
ic

s
fo

r
th

e
sm

a
ll

sa
m

p
le

te
st

th
a
t

th
e

p
ri

ci
n
g

er
ro

rs
in

th
e

m
o
d
el

a
re

jo
in

tl
y

ze
ro

b
y

S
h
a
n
k
en

(1
9
8
5
)

a
n
d

1
p
er

ce
n
t

cr
it

ic
a
l
va

lu
e

is
g
iv

en
b
el

ow
th

e
F
-s

ta
ti

st
ic

s.
T

h
e

la
st

co
lu

m
n

re
p
o
rt

s
th

e
ro

o
t

m
ea

n
sq

u
a
re

d
p
ri

ci
n
g

er
ro

rs
o
f
th

e
m

o
d
el

.
N

o
te

:
R

m
rf

,
S
M

B
,
a
n
d

H
M

L
a
re

th
e

F
a
m

a
a
n
d

F
re

n
ch

(1
9
9
3
)’

s
m

a
rk

et
a
n
d

si
ze

a
n
d

B
/
M

fa
ct

o
rs

;C
A

Y
A

is
th

e
co

n
su

m
p
ti

o
n
-w

ea
lt

h
ra

ti
o

w
it

h
o
u
t

a
lo

o
k

a
h
ea

d
b
ia

s;
R

R
E

L
is

th
e

d
iff

er
en

ce
b
et

w
ee

n
th

e
3

m
o
n
th

tr
ea

su
ry

b
il
l
ra

te
a
n
d

it
s

av
er

a
g
e

in
th

e
p
re

v
io

u
s

4
q
u
a
rt

er
s;

S
U

R
P

is
th

e
su

rp
lu

s
co

n
su

m
p
ti

o
n

ra
ti

o
;

a
n
d

T
E

R
M

is
th

e
y
ie

ld
sp

re
a
d

b
et

w
ee

n
1
0
-y

ea
r

T
re

a
su

ry
b
o
n
d
s

a
n
d

3
-m

o
n
th

tr
ea

su
re

b
il
ls

.
A

ll
ex

o
g
en

o
u
s

va
ri

a
b
le

s(
S
U

R
P
,C

A
Y

A
,
R

R
E

L
,
a
n
d

T
E

R
M

)
a
re

n
o
rm

a
li
ze

d
to

h
av

e
m

ea
n
s

o
f
ze

ro
a
n
d

st
a
n
d
a
rd

d
ev

ia
ti

o
n
s

o
f
o
n
e.

A
ll

m
o
d
el

s
a
re

d
efi

n
ed

in
se

ct
io

n
2
.3

.5
.

C
A

P
M

co
n
st

R
m

rf
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.1

7
8
1

2
.9

6
0
.0

0
6
4

0
.0

4
0
1

-0
.0

1
6
3

C
ri

ti
ca

l(
1
%

)
F
M

0
.0

0
8
3

0
.0

1
0
4

1
.9

2
S
h
a
n
k
en

0
.0

0
8
4

0
.0

1
0
5

C
C

A
P

M
1

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.3

9
6
2

3
.0

3
0
.0

0
5
4

0
.0

6
4
7

-0
.0

4
8

0
.0

9
2

C
ri

ti
ca

l(
1
%

)
F
M

0
.0

1
1
2

0
.0

1
2
7

0
.0

2
8
3

1
.9

4
S
h
a
n
k
en

0
.0

1
8
5

0
.0

1
9
4

0
.0

4
6

C
C

A
P

M
2

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
C

A
Y

A
.*

R
m

rf
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.5

9
7

3
.1

8
0
.0

0
4
3

0
.0

2
6
7

-0
.0

1
1
2

0
.0

4
8
3

0
.0

7
7
2

C
ri

ti
ca

l(
1
%

)
F
M

0
.0

0
7
2

0
.0

0
9
5

0
.0

2
1
2

0
.0

2
0
7

1
.9

6
S
h
a
n
k
en

0
.0

1
0
2

0
.0

1
2

0
.0

2
9
3

0
.0

2
8
5

C
C

A
P

M
3

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
C

A
Y

A
.*

R
m

rf
C

A
Y

A
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.6

9
2
9

2
.7

8
0
.0

0
3
7

0
.0

2
4
1

-0
.0

0
8

0
.0

2
4
2

0
.0

6
1
5

-0
.8

6
2
2

F
M

0
.0

0
7
4

0
.0

0
9
7

0
.0

1
7
1

0
.0

1
8
9

0
.2

9
8
2

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

1
1
1

0
.0

1
2
8

0
.0

2
4
7

0
.0

2
7
3

0
.4

3
9
7

1
.9

9



128

C
IC

A
P

M
1

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
C

A
Y

A
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.5

6
6
4

2
.6

5
0
.0

0
4
5

0
.0

5
2
2

-0
.0

3
4
8

0
.0

5
0
2

-1
.1

4
6
4

C
ri

ti
ca

l(
1
%

)
F
M

0
.0

1
0
2

0
.0

1
1
7

0
.0

2
0
7

0
.3

2
5
1

1
.9

6
S
h
a
n
k
en

0
.0

1
7
1

0
.0

1
7
9

0
.0

3
3
8

0
.5

3
9
1

C
IC

A
P

M
2

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
R

R
E

L
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.4

7
1
8

2
.9

3
0
.0

0
4
9

0
.0

5
9
2

-0
.0

3
6
6

0
.0

3
6
7

-0
.9

6
1
1

F
M

0
.0

1
1
1

0
.0

1
2
8

0
.0

2
3
9

0
.4

1
1
5

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

1
8
4

0
.0

1
9
6

0
.0

3
8
6

0
.6

7
2
7

1
.9

6

C
IC

A
P

M
3

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
C

A
Y

A
.*

R
m

rf
R

R
E

L
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.6

9
7
6

3
.0

6
0
.0

0
3
6

0
.0

1
9
9

0
.0

0
1
6

-0
.0

1
0
9

0
.0

7
6
2

-1
.2

0
4
1

F
M

0
.0

0
7
9

0
.0

1
0
7

0
.0

1
7
9

0
.0

2
0
6

0
.4

2
5
4

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

1
4

0
.0

1
6
8

0
.0

3
0
6

0
.0

3
5
4

0
.7

4
8
6

1
.9

9

C
IC

A
P

M
4

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
C

A
Y

A
.*

R
m

rf
C

A
Y

A
R

R
E

L
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.7

0
1
8

2
.9

7
0
.0

0
3
5

0
.0

2
1
1

-0
.0

0
1
5

-0
.0

0
1
8

0
.0

6
7
7

-0
.4

4
1
6

-0
.7

1
1
6

F
M

0
.0

0
7
7

0
.0

1
0
4

0
.0

1
9

0
.0

1
8
7

0
.3

0
3

0
.4

1
8
6

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

1
1
7

0
.0

1
4
1

0
.0

2
7
8

0
.0

2
7
3

0
.4

5
0
7

0
.6

2
7
4

2
.0

1

IC
A

P
M

co
n
st

R
m

rf
C

A
Y

A
T

E
R

M
R

R
E

L
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.6

8
8
7

2
.0

2
0
.0

0
3
7

0
.0

1
5
6

0
.0

1
2
4

-1
.2

2
3
6

1
.5

5
9
8

-0
.3

2
9
1

F
M

0
.0

0
7
2

0
.0

1
0
5

0
.3

8
1
1

0
.3

2
8
6

0
.3

7
6
3

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

1
7
2

0
.0

2
1
2

0
.8

9
6
7

0
.7

6
9
3

0
.8

8
5
2

1
.9

9

F
a
m

a
-F

re
n
ch

co
n
st

R
m

rf
S
M

B
H

M
L

A
d
j.
R

2
F
-t

es
t

R
M

S
E

0
.7

3
6
9

2
.5

2
0
.0

0
3
5

0
.0

4
5
9

-0
.0

2
9
6

0
.0

0
3
4

0
.0

1
5

F
M

0
.0

0
9
9

0
.0

1
1
9

0
.0

0
4
3

0
.0

0
4
7

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

1
0
8

0
.0

1
2
7

0
.0

0
4
3

0
.0

0
4
7

1
.9

6



129

T
ab

le
2.

19
:

C
ro

ss
-S

ec
ti

on
al

T
es

ts
of

A
ss

et
P

ri
ci

ng
M

od
el

s
on

Fa
m

a
Fr

en
ch

25
si

ze
-B

/M
an

d
30

in
du

st
ry

po
rt

fo
lio

s(
19

57
:2

-
20

05
:4

)

T
h
e

ta
b
le

p
re

se
n
ts

th
e

es
ti

m
a
te

d
re

su
lt

s
o
f

F
a
m

a
a
n
d

M
a
cB

et
h

(1
9
7
3
)

cr
o
ss

-s
ec

ti
o
n
a
l

re
g
re

ss
io

n
u
si

n
g

th
e

ex
ce

ss
re

tu
rn

s
o
n

2
5

p
o
rt

fo
li
o
s

so
rt

ed
b
y

b
o
o
k
-t

o
-m

a
rk

et
a
n
d

si
ze

to
g
et

h
er

w
it

h
3
0

in
d
u
st

ry
p
o
rt

fo
li
o
s.

T
h
e

fu
ll
-s

a
m

p
le

fa
ct

o
r

lo
a
d
in

g
s,

w
h
ic

h
a
re

th
e

in
d
ep

en
d
en

t
va

ri
a
b
le

s
in

th
e

re
g
re

ss
io

n
s,

a
re

co
m

p
u
te

d
in

o
n
e

m
u
lt

ip
le

ti
m

e-
se

ri
es

re
g
re

ss
io

n
fo

ll
ow

in
g

L
et

ta
u

a
n
d

L
u
d
v
ig

so
n

(2
0
0
1
b
).

T
h
e

A
d
ju

st
ed

R
2

fo
ll
ow

s
th

e
sp

ec
ifi

ca
ti

o
n

o
f

J
a
g
a
n
n
a
th

a
n

a
n
d

W
a
n
g

(1
9
9
6
).

T
h
e

fi
rs

t
se

t
o
f

st
a
n
d
a
rd

er
ro

rs
,

in
d
ic

a
te

d
b
y

F
M

,
st

a
n
d
s

fo
r

th
e

F
a
m

a
-M

a
cB

et
h

es
ti

m
a
te

s.
T

h
e

se
co

n
d

se
t,

in
d
ic

a
te

d
b
y

S
h
a
n
k
en

,
a
d
ju

st
s

fo
r

er
ro

s-
in

-v
a
ri

a
b
le

s
a
n
d

fo
ll
ow

s
S
h
a
n
k
en

(1
9
9
2
).

A
p
p
ro

x
im

a
te

F
-s

ta
ti

st
ic

s
is

th
e

tr
a
n
sf

o
rm

ed
H

o
te

ll
in

g
T

2
-s

ta
ti

st
ic

s
fo

r
th

e
sm

a
ll

sa
m

p
le

te
st

th
a
t

th
e

p
ri

ci
n
g

er
ro

rs
in

th
e

m
o
d
el

a
re

jo
in

tl
y

ze
ro

b
y

S
h
a
n
k
en

(1
9
8
5
)

a
n
d

1
p
er

ce
n
t

cr
it

ic
a
l

va
lu

e
is

g
iv

en
b
el

ow
th

e
F
-s

ta
ti

st
ic

s.
T

h
e

la
st

co
lu

m
n

re
p
o
rt

s
th

e
ro

o
t

m
ea

n
sq

u
a
re

d
p
ri

ci
n
g

er
ro

rs
o
f
th

e
m

o
d
el

.
N

o
te

:
R

m
rf

,
S
M

B
,
a
n
d

H
M

L
a
re

th
e

F
a
m

a
a
n
d

F
re

n
ch

(1
9
9
3
)’

s
m

a
rk

et
a
n
d

si
ze

a
n
d

B
/
M

fa
ct

o
rs

;C
A

Y
A

is
th

e
co

n
su

m
p
ti

o
n
-w

ea
lt

h
ra

ti
o

w
it

h
o
u
t

a
lo

o
k

a
h
ea

d
b
ia

s;
R

R
E

L
is

th
e

d
iff

er
en

ce
b
et

w
ee

n
th

e
3

m
o
n
th

tr
ea

su
ry

b
il
l

ra
te

a
n
d

it
s

av
er

a
g
e

in
th

e
p
re

v
io

u
s

4
q
u
a
rt

er
s;

S
U

R
P

is
th

e
su

rp
lu

s
co

n
su

m
p
ti

o
n

ra
ti

o
;

a
n
d

T
E

R
M

is
th

e
y
ie

ld
sp

re
a
d

b
et

w
ee

n
1
0
-y

ea
r

T
re

a
su

ry
b
o
n
d
s

a
n
d

3
-m

o
n
th

tr
ea

su
re

b
il
ls

.
A

ll
ex

o
g
en

o
u
s

va
ri

a
b
le

s(
S
U

R
P
,C

A
Y

A
,
R

R
E

L
,
a
n
d

T
E

R
M

)
a
re

n
o
rm

a
li
ze

d
to

h
av

e
m

ea
n
s

o
f
ze

ro
a
n
d

st
a
n
d
a
rd

d
ev

ia
ti

o
n
s

o
f
o
n
e.

A
ll

m
o
d
el

s
a
re

d
efi

n
ed

in
se

ct
io

n
2
.3

.5
.

M
o
d
el

s
V

a
ri

a
b
le

s
S
ta

ti
st

ic
s

C
A

P
M

co
n
st

R
m

rf
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.0

3
7
2

2
.7

2
0
.0

0
6

0
.0

2
7
5

-0
.0

0
6
8

F
M

0
.0

0
7

0
.0

0
9
4

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

0
7

0
.0

0
9
5

1
.6

6

C
C

A
P

M
1

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.0

9
6
9

3
.3

8
0
.0

0
5
7

0
.0

3
2
9

-0
.0

1
3
9

0
.0

2
0
3

F
M

0
.0

0
7
7

0
.0

0
9
9

0
.0

1
4
3

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

0
8

0
.0

1
0
2

0
.0

1
4
8

1
.6

6

C
C

A
P

M
2

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
C

A
Y

A
.*

R
m

rf
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.1

7
2
2

3
.1

8
0
.0

0
5
4

0
.0

2
1
4

-0
.0

0
3
1

0
.0

0
7
3

0
.0

2
5
9

F
M

0
.0

0
6
9

0
.0

0
9
7

0
.0

1
3
1

0
.0

1
3
8

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

0
7
2

0
.0

1
0
.0

1
3
6

0
.0

1
4
3

1
.6

7

C
C

A
P

M
3

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
C

A
Y

A
.*

R
m

rf
C

A
Y

A
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.3

6
3

2
.1

4
0
.0

0
4
7

0
.0

2
8
7

-0
.0

1
2
1

0
.0

2
3
4

0
.0

2
7
7

-0
.6

5
F
M

0
.0

0
6
7

0
.0

0
9
3

0
.0

1
3
1

0
.0

1
3
8

0
.2

4
8
2

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

0
8
4

0
.0

1
0
8

0
.0

1
5
8

0
.0

1
6
7

0
.3

0
8
3

1
.6

7



130

C
IC

A
P

M
1

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
C

A
Y

A
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.2

8
7
7

2
.0

8
0
.0

0
5
1

0
.0

3
9
9

-0
.0

2
2
6

0
.0

3
6
3

-0
.6

7
0
3

F
M

0
.0

0
7
5

0
.0

0
9
6

0
.0

1
4
3

0
.2

4
8
3

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

0
9
8

0
.0

1
1
5

0
.0

1
8

0
.3

1
9
4

1
.6

7

C
IC

A
P

M
2

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
R

R
E

L
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.0

8
4

2
.6

2
0
.0

0
5
7

0
.0

3
3
4

-0
.0

1
4

0
.0

1
7
5

-0
.0

4
4

F
M

0
.0

0
7
7

0
.0

0
9
9

0
.0

1
4
1

0
.2

2
2

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

0
8
1

0
.0

1
0
2

0
.0

1
4
7

0
.2

3
1

1
.6

7

C
IC

A
P

M
3

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
C

A
Y

A
.*

R
m

rf
R

R
E

L
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.1

5
5
6

2
.6

6
0
.0

0
5
4

0
.0

2
1
5

-0
.0

0
3
2

0
.0

0
7
1

0
.0

2
5
8

-0
.0

0
0
9

F
M

0
.0

0
6
6

0
.0

0
9
5

0
.0

1
3
6

0
.0

1
3
6

0
.2

1
9
9

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

0
6
9

0
.0

0
9
7

0
.0

1
4

0
.0

1
4
1

0
.2

2
8
1

1
.6

7

C
IC

A
P

M
4

co
n
st

R
m

rf
S
U

R
P
.*

R
m

rf
C

A
Y

A
.*

R
m

rf
C

A
Y

A
R

R
E

L
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.3

5
8

2
.1

3
0
.0

0
4
7

0
.0

2
8
3

-0
.0

1
1
9

0
.0

2
4
1

0
.0

2
8
1

-0
.6

5
3
5

0
.1

1
7
8

F
M

0
.0

0
6
5

0
.0

0
9
2

0
.0

1
3
2

0
.0

1
3
6

0
.2

4
6
7

0
.2

1
5
9

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

0
8
3

0
.0

1
0
6

0
.0

1
6
1

0
.0

1
6
5

0
.3

0
7
7

0
.2

6
7
9

1
.6

8

IC
A

P
M

co
n
st

R
m

rf
C

A
Y

A
T

E
R

M
R

R
E

L
A

d
j.
R

2
F
-t

es
t

R
M

S
E

0
.1

0
6

2
.0

8
0
.0

0
5
6

0
.0

3
1

-0
.0

0
9
7

-0
.3

9
9
6

0
.1

2
3
5

-0
.1

9
7
8

F
M

0
.0

0
7
2

0
.0

0
9
4

0
.2

4
4
4

0
.1

9
7
6

0
.2

2
5
9

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

0
8

0
.0

1
0
1

0
.2

6
9
6

0
.2

1
7

0
.2

4
8
8

1
.6

7

F
a
m

a
-F

re
n
ch

co
n
st

R
m

rf
S
M

B
H

M
L

A
d
j.
R

2
F
-t

es
t

R
M

S
E

0
.2

5
8
3

2
.5

7
0
.0

0
5
2

0
.0

3
2
5

-0
.0

1
5
3

0
.0

0
2
9

0
.0

0
8
7

F
M

0
.0

0
8
2

0
.0

1
0
4

0
.0

0
4
4

0
.0

0
4
8

C
ri

ti
ca

l(
1
%

)
S
h
a
n
k
en

0
.0

0
8
5

0
.0

1
0
6

0
.0

0
4
4

0
.0

0
4
8

1
.6

7



131

Appendices

A Alternative approaches in monetary economics

In this section, I briefly summarize stylized facts and alternative models proposed in mon-

etary economics before new Keynesian dynamic general stochastic equilibrium models em-

ployed in this paper are developed.

A.1 Stylized facts from time-series analysis

Simple time-series analysis such as vector autoregression(VAR) or structural vector autore-

gressions(SVAR) have provided the following stylized facts which must be explained with

well-suited monetary economic models.43

• Monetary policy shocks have a delayed yet persistent effect on real output. Especially

positive monetary shocks lead to a hump-shaped positive response of output in USA

economy.(Walsh (2001))

• Both anticipated and unanticipated shocks affect real economic activity(Mishkin (1982)).

• An increase in the money supply can reduce the real interest rate(liquidity effect)

since more liquidity tends to lower the price of money which is equivalent to lowering

the interest rate.

43Refer to chapter 1 of Walsh (2001) for a detailed explanation on time series evidence.
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A.2 Various monetary equilibrium models with micro-foundation

From the general equilibrium models built on the joint foundations of individual opti-

mization and flexible prices to the class of general equilibrium models built on optimizing

behavior and nominal rigidities are employed in most discussions of monetary policy issues.

Lucas (1976) argue that traditional policy evaluation exercises using macroeconometric

models were flawed by a failure to recognize that the relations typically estimated were

reduced-form rather than truly structural relations. This problem can be addressed by

making use of structural relations that explicitly represent the dependence of economic

decisions upon expectations regarding future endogenous variables. The inclusion of signif-

icant forward-looking terms in key structural relations have substantial consequences for an

analysis of the character of optimal policy.

1. Flexible price approaches

• Lucas (1973) islands model with rational expectation and imperfect information

and competitive markets is the first general equilibrium model based on the mi-

crofoundation to explain monetary facts. But in this model, only unanticipated

shocks matter and it does not generate any persistence change in output.

• Cash in advance(CIA) model or monetary real business cycle(RBC) models of

Lucas (1982) and Svensson (1985)) generally share same problem with islands

model because they essentially keep the same structure of the real economy

as RBC models but superimpose a monetary sector. Whilst they are able to

generate real-nominal interactions, the effect is not very persistent and output

quickly returns to baseline. 44 Furthermore, the CIA models suffer from the same

problems that generate the equity premium puzzle and these basic CIA models

44Money in the utility function model has similar problems. It is well known that under certain conditions
there exists an equivalence between putting money in the utility function or specifying cash in advance
constraint.
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are also not very successful in generating plausible asset price and interest rate

data.(Giovannini and Labadie (1991))

• CIA augmented with limited participation mechanism proposed by Fuerst (1992)

explains the liquidity effect successfully but it is too complicated by altering

the structure of CIA models with limited participation only for explaining the

liquidity effect. It is criticized since the appropriate model will have to involve

greater complexity than simply assuming certain prices are fixed.

2. RBC with sticky prices alone fails to solve the persistence problem.(V. V. Chari and

McGrattan (2000)) They argue that real rigidity in labor market should be added

since the wage rate and prices react too strongly in their model to money supply

shocks to have persistent output effects.

3. Empirical results and other ideas

• Hodrick, Kocherlakota, and Lucas (1991) find that classical CIA models fail to

explain the variability of velocity with reasonable assumptions on the levels of

risk aversion.

• Cooley and Hansen (1989) introduce the concept of inflation tax :when infla-

tion is high, the real value of money declines sharply so that agents will hold

less money. Since cash is required to finance consumption purchases, this high

inflation causes lower consumption and so a nominal variables will affect a real

variable. Therefore, inflation acts as a tax on goods which require money to be

purchased and as a subsidy on credit goods which do not require cash. How-

ever, this mechanism of non-neutrality is not enough to explain the interaction

between real and nominal variables in the data.

• The nominal interest rates is often viewed through the Fisher hypothesis; The

nominal interest rate equals the real interest rate plus the expected inflation
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rate. Therefore, an increase in the money supply can have two effects: it can

reduce the real interest rate(liquidity effect) and it forecasts higher future in-

flation. Therefore to generate a falling nominal interest rate in response to a

positive money supply shock, the liquidity effect should outweigh the fisher ef-

fect. However, in neoclassical models money does not influence real variables(the

real interest rate), increases in the money supply just forecast higher inflation

and so the nominal interest rates rises as there is no liquidity effect but only a

Fisher effect.

4. New-Keynesian approaches with microfoundation45

In order to explain a large degree of inflation inertia and persistent impact on output

of monetary policy shocks, the New-Keynesian framework assumes that firms oper-

ate in monopolistic competitive markets and production is constrained by aggregate

demand. Prices are assumed to be sticky and consequently do not move instanta-

neously to movements in marginal costs. Due to the price stickiness, the central bank

affects aggregate demand through its influence on real interest rates. By lowering

real interest rates, the central bank induces higher aggregate demand, marginal costs

and prices than would otherwise materialize.For example, Rotemberg and Woodford

(1999) use a dynamic IS curve based on intertemporal maximization and an aggregate

supply curve based on the sticky prices in the New Keynesian Phillips curve. Rather

than assuming a cash-in-advance constraint and facing the problems of generating

substantial liquidity effects, they jump directly to a formulation in which the instru-

ment of monetary policy is the interest rate itself.(Monetary policy rule) Following

this approach, many New-Keynesian models are developed as they are summarized in

this paper.

45I refer to Woodford (2003) for details
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B Pricing Kernel example

Without imposing any theoretical structure, the fundamental existence theorem of Harrison

and Kreps (1979) states that, in the absence of arbitrage, there exists a positive stochastic

discount factor, or pricing kernel, mt+1, such that, for any traded asset with a net return

at time t of Ri,t+1, the following equation holds:

1 = Et[mt+1(1 + Ri,t+1)] (B-1)

where Et denotes the mathematical expectation operator conditional on information avail-

able at time t.

In order to get some intuition behind this fundamental asset pricing formula, I present

an example of multi-period consumption asset pricing kernel.46

Consider a representative agent who maximizes:

maxE0

[ ∞∑

t=0

ρtU (ct)

]
, 0 < ρ < 1 (B-2)

s.t.Wt+1 = Rt+1 (Wt − ct) (B-3)

where ct is consumption of an agent at time t, Wt is wealth valued in units of the consump-

tion good, ρ is the subjective discount rate, and Rt+1 is the real gross rate of return on the

asset between dates t and t+1.

The implied dynamic program after plugging the budget constraint is given by:

V (Wt, Rt) = max
ut

{U (Wt − ut) + ρEtV (utRt+1, Rt+1)} (B-4)

where the control is ut = (Wt − ct)

46I follow the explanation given in chapter 1 of Cochrane (2001)
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The first order condition with respect to the optimal control is

− U ′ (ct) + ρEt [∂V (utRt+1, Rt+1) /∂ut] Rt+1 = 0 (B-5)

And the Benveniste-Scheinkman differentiability condition is ∂V (utRt+1, Rt+1) /∂ut = U ′ (ct+1)

Therefore, the Euler condition can be summarized as

U ′ (ct) = ρEt

[
Rt+1U

′ (ct+1)
]

(B-6)

or 1 = Et [mt+1Rt+1]

where mt+1 ≡ ρU ′ (ct+1) /U ′ (ct) is called the stochastic discount factor or the pricing kernel.

C Non-linear state-space model with endogeneity and GARCH

In this section, I present the state space model and computing algorithms for my empirical

models(Model 7) by adapting empirical models of Kim and Nelson (2005) and Kim (2006)

to my specification. Generally, endogeneity issue can exist once I allow misspecification

in Et ln σ̂m,t+1. Guo and Whitelaw (2006) argue for this case. Slight different version of

realized variance model is implemented for simplicity but Engle et al(1987, Econometrica)

advocates this form.

C.1 Empirical model

rt = exp(γt)Et−1(ln σ̂m,t) + α′1Zt−1 + εt (C-1)

where rt is excess market return(Rm,t−Rf
t ),(ln σ̂m,t) is a measure of realized variance,Zt−1

are proxy variables for the hedging components, and exp(γt) stands for the time-varying

RRA.
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γt = φ0 + φ1γt−1 + φ′2Xt−1 + νt (C-2)

where Xt−1 are proxy variables to capture the time-varying RRA.

By substituting observed realized variance ln σ̂m,t into (C-1) , I get

rt = exp(γt) ln σ̂m,t + α′1Zt−1 + ε∗t (C-3)

where ε∗t = exp(γt) [Et−1 ln σ̂m,t − ln σ̂m,t] +εt

Following Kim and Nelson (2005) and Kim (2006), I approximate distribution of ε∗t as

N(0, pt) and pt = θ0 + θ1pt−1 + θ2ε
∗2
t−1.

Incidently, endogeneity becomes an important issue because cov((ln σ̂m,t), ε∗t ) 6= 0. In

fact, Brandt and Qiang (2004) suggest that there might be correlation between these two

components using latent vector autoregressive regression model.

My specifications for ln σ̂m,t is :

ln σ̂m,t = δ0,t + δ1,t ln σ̂m,t−1 + δ′2,tut−1 + ηt (C-4)

δi,t = δi,t−1 + ξt (C-5)

where ut−1 are exogenous variables which affect the time-varying volatility, ξt ∼ N(0, σ2
ξ ),

and ηt ∼ N(0, σ2
η) and i=0 or 1.

Guo and Whitelaw (2006) show the evidence of instability of parameters in realized

variance equation.

In general forms, I can express (C-4) as follows:

ln σ̂m,t = Et−1[ln σ̂m,t] + ςt|t−1 (C-6)
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where ςt|t−1 = Ω
1
2

t|t−1u
∗
t and u∗t ∼ i.i.d.N(0, 1)

Ωt|t−1 can be obtained as the time-varying conditional variance covariance matrix for

prediction error(ςt|t−1) from the Kalman filter applied to models given (C-6).

Following Kim (2006), I assume the following specific structure for error terms in (C-3)

and (C-6):


 u∗t

ε∗t


 ∼ N





 0

0


 ,


 1 ρ · p

1
2
t

ρ · p
1
2
t pt







After the Cholesky decomposition, I get:


 u∗t

ε∗t


 ∼ N


 1 0

ρp
1
2
t

√
(1− ρ2)pt





 u∗t

wt


 ,


 u∗t

wt


 ∼ i.i.d.N





 0

0





 1 0

0 1







With this specific assumption, I can decompose ε∗t into two distinct components to

address the correlation explicitly:

ε∗t = ρp
1
2
t u∗t + wt

where wt ∼ N(0, (1− ρ2)pt)

Finally, I rewrite (C-3) as:

rt = exp(γt)(ln σ̂m,t) + α′1Zt−1 + ρp
1
2
t · u∗t + wt, (B.1.6) (C-7)

Kim (2006) show that once we get (u∗t ), his modified Kalman filter can be utilized to

estimate the empirical model given here. In next section, I construct modified Kalman filter

and estimation method following his approach.
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C.2 Estimation method

In this section, I develop two-step maximum likelihood estimation(MLE) based on Kalman

filter using straightforward application of Kim (2006).

In the first step estimation, I have usual state space model with measurement equa-

tion(C-6) and transition equation(C-5). I estimate model using MLE with Kalman filter

and obtain standardized residuals.(u∗t ) After incorporating u∗t into (C-7), I need to estimate

a nonlinear state space model with GARCH with a couple of approximations.47

First, I use extended Kalman filtering technique to linearize measurement equation(C-

7). After denoting exp(γt) ln σ̂m,t as f(σ̂m,t; γt), I take a Taylor series expansion of the

nonlinear function(f(σ̂m,t : γt)) around γt = γt|t−1. In this expression, γt|t−1 indicates

E[γt|Ψt−1] where Ψt−1 denotes the information set available up to t-1.

After linearization, I get the following measurement equation:

rt = f(σ̂m,t : γt) +
∂f(σ̂m,t : γt)

∂γt
(γt − γt|t−1) + α′1Zt−1 + ρp

1
2
t · u∗t + wt

wheref(σ̂m,t : γt) = exp(γt|t−1) ln σ̂m,t
∂f(σ̂m,t;γt)

∂γt
≡ exp(γt|t−1) ln σ̂m,t

By redefining some of variables, I get the following linearized measurement equation

Yt = X̂tγt + α′1Zt−1 + ρp
1
2
t u∗t + wt (C-8)

where Yt = rt − exp(γt|t−1) ln σ̂m,t + exp(γt|t−1) ln σ̂m,tγt|t−1 and X̂t = exp(γt|t−1) ln σ̂m,t

In order to estimate GARCH in wt, I include wt into transition equation following

Harvey, Ruiz, and Sentana (1992). In matrix forms,

Yt =
[
X̂t, 1

]

 γt

wt


 + α′1qt−1 + eh

1
2
t u∗t

47I closely follow the approach taken by Kim and Nelson (2005)
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 γt

wt


 =


 φ0 + φ′2Xt−1

0


 +


 φ1 0

0 0





 γt−1

wt−1


 +


 vt

wt


 ,


 vt

wt


 ∼ N





 0

0


 ,


 σ2

v 0

0 (1− ρ2)pt







I use the following compact forms to explain modified Kalman filtering algorithm.

Yt = X̃tβ̃t + α′1qt−1 + ρh
1
2
t u∗t

β̃t = µt + Fβ̃t−1 + ṽt, ṽt ∼ (0, Q̃t)

where X̃t =
[
X̃t, 1

]
, β̃t =


 γt

wt


, µt =


 φ0 + φ1′2Xt−1

0


, F =


 γ1 0

0 0


, ṽt =


 vt

wt




and Q̃t =


 σ2

v 0

0 (1− ρ2)pt




At each iteration of the Kalman filter, I obtain a linear approximation of the model

around γt = γt|t−1 ,and calculate Yt and X̃t for the following Kalman filter.

β̃t|t−1 = Fβ̃t−1|t−1 + µt

pt|t−1 = Fpt−1|t−1F
′ + Q̃t

ηt|t−1 = Yt − X̃ ′
tβt|t−1 − ρp

1
2
t (u∗t )− α′1Zt−1

Ht|t−1 = X̃ ′
tpt|t−1X̃t

β̃t|t = β̃t|t−1 + pt|t−1X̃tH
−1
t|t−1ηt|t−1

pt|t−1 = pt|t−1 − pt|t−1X̃tH
−1
t|t−1X̃tpt|t−1

where Ψt−1is the information set up to time t-1, β̃t|t−1 is conditional estimate of β̃t on

information up to t-1(E[β̃t|Ψt−1]), β̃t|t is conditional estimate of β̃t on information up to

t (E[β̃t|Ψt]), pt|t−1 is covariance matrix of β̃t conditional on information up to t-1(E[(β̃t −
β̃t|t−1)(β̃t−β̃t|t−1)′]), pt|t is covariance matrix of β̃t conditional on information up to t(E[(β̃t−
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β̃t|t)(β̃t − β̃t|t)′]) and Ht|t−1 is conditional variance of prediction error(E[η2
t|t−1

])

In order to process the above Kalman filter, I need ε∗2t−1 term in order to calculate

GARCH(pt) in Q̃t matrix. As in Harvey, Ruiz, and Sentana (1992), the term ε∗2t−1 is

approximated by E[ε∗2t−1|Ψt−1], where Ψt−1 is information up to time t-1.

In order to get the form of E[ε∗2t−1|Ψt−1], Harvey, Ruiz, and Sentana (1992) use the

following definition.

ε∗t−1 = E[ε∗t−1|Ψt−1] +
(
ε∗t−1 − E[ε∗t−1|Ψt−1]

)

After straightforward calculation, it can be shown that:

E[ε∗2t−1|Ψt−1] = E[ε∗2t−1|Ψt−1]2 + E
[(

ε∗2t−1 − E[ε∗2t−1|Ψt−1]
)2

]

By using ε∗t = ρp
1
2
t u∗t + wt, I get the following form.

E[ε∗2t−1|Ψt−1] =
(

u∗t ρp
1
2
t + E [wt−1|Ψt−1]

)2

+ E
[
(wt−1 −E [wt−1|Ψt−1])

2
]

where E [wt−1|Ψt−1] is obtained from the last element of β̃t−1|t−1 and its mean squared error

E
[
(wt−1 − E [wt−1|Ψt−1])

2
]

is given by the last diagonal element of pt−1|t−1.

In order to correct for the endogeneity bias in Kalman filtering caused by including

estimated residuals in second step measurement equation, Kim (2006) suggests the following

modifications.

H∗
t|t−1 = X̃ ′

tpt|t−1X̃t + ρ2p2
t

p∗t|t = pt|t−1 − pt|t−1X̃tH
∗−1
t|t−1X̃

′
tpt|t−1

p∗t−1|t = Fp∗t|tF
′ + Q̃t+1
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D Data Appendix

In this section, I list all the variables used in the article and describe how they were computed

from original data sources. I measure all variables at the quarterly frequency and my base

sample period extends from 1957:1 to 2005:4.

D.1 CAY without a Look-ahead bias(CAYA)

CAY is suggested in Lettau and Ludvigson (2001a). Data for its construction is available

from Lettau’s website at quarterly frequency.48 To estimate the parameters in cointegrating

equation, they employ a dynamic least squares(DLS) technique proposed by Stocks and

Watson (1993). The DLS specification adds leads and lags of the first difference of the

right-hand side variables to a standard OLS regression and can eliminate the effects of

regressor endogeneity on the distribution of the lease squares estimator. Specifically they

estimate the following forms:

ct = α + βα · at + βy · yt +
k∑

i=−k

ba,i∆at−i +
k∑

i=−k

by,i∆yt−i + εt, t = k + 1, ..., T − k

where c is the aggregate consumption, a is the aggregate wealth, and y is the aggregate

income.

Using estimated coefficients from the above equation provides

cay ≡ ĉayt = ct − β̂α · at − β̂y · y, t = 1, ..., T

Since Lettau-Ludvigson measure of cay is constructed using look -ahead(in sample)estimation

regression coefficients. CAY is often criticized with possible look ahead bias. Recently, Goyal

and Welch (2006) modified CAY with only prevailing data. They estimated a version of

48I am grateful to Martin Lettau for making his series publicly available
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CAY using only the data up to the current period(s) by estimating parameters with rolling

regressions such that their measure of CAY(CAYA) does not use look-ahead estimation

regression coefficients.

ct = α + βs
wwt + βs

yyt +
8∑

t=−8

bs
w,i∆wt−i+

8∑

t=−8

bs
y,i∆yt−i+εt, t = 9, . . . , s− 8

where c is the aggregate consumption, w is the aggregate wealth, and y is the aggregate

income. The superscript on the betas indicates that these are rolling estimates.

I downloaded basic data(1951:4-2005:4) from Ludvigson’s website and constructed CAYA

following Goyal and Welch’s method to avoid the look-ahead bias and CAYA is defined as

̂CAY At = ct−βs
wwt−βs

yyt, t = 1 . . . T. Figure 2.1 shows that CAY and CAYA have similar

patterns. However, their correlation is not perfect(0.76) in my sample.

D.2 Surplus consumption ratio

Campbell and Cochrane (1999) defines surplus consumption ratio as

SURPt =
Ct −Xt

Ct

where Ct is consumption and Xt is the habit level.

I followed Duffee (2005) and Wachter (2006)’s specification precisely and define a proxy

for surplus consumption ratio at the quarterly frequency as

SURPt =
1−Ψ

1−Ψ40

39∑

j=0

Ψj∆c(t− j)

where Ψ=0.96 and ∆c refers to the log change in real per capita quarterly consumption on

nondurables and services.

I downloaded all consumption and population data from Bureau of Economic Analysis

from 1947:1 and constructed surplus consumption ratio series starting from 1957:1 since I
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needed 40 quarters of data to construct the first observation. And I checked and verified

my data with Duffee (2005)’s surplus consumption data for common periods.49

D.3 Equity Market variables

I downloaded and used the CRSP daily and quarterly data files from 1956 to 2005 in order

to create stock market variables.

Excess returns My stock return measure is the standard value-weighed return of NYSE-

AMEX-NASDAQ index from CRSP. To compute excess equity returns, I subtracted the

lagged 3month continuously compounded T-Bill yield earned over the same period from

CRSP.

Dividend Price Ratio For the dividend price ratio, I follow Bekaert, Engstrom, and

Xing (2006) by first calculating quarterly dividend yield series as,

DPt+1 =
(

Pt+1

Pt

)−1

(
Pt+1 + Dt+1

Pt
− Pt+1

Pt
)

where Pt+1+Dt+1

Pt
and Pt+1

Pt
are available directly from the CRSP as the value weighted stock

return series including and excluding dividends respectively.

And I use the four-period moving average as dividend price ratio,

dpf
t =

1
4
[ln(1 + DPt) + ln(1 + DPt−1) + ln(1 + DPt−2) + ln(1 + DPt−3)].

Realized variance series I use the daily CRSP value-weighted stock returns as a proxy

for aggregate stock market returns consistent with my quarterly excess stock return measure.

The quarterly risk-free rate is the lagged yield on 3 month T-bills and I constructed the daily

risk-free rate by assuming that it is constant within a quarter. The excess stock market

49I am grateful to G. Duffee for making his series publicly available
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return is defined as the difference between the stock market return and the risk-free rate as

usual.

Similar to Merton (1980), realized variance(REVOL1) is defined as the variance of the

daily excess stock market returns in a quarter.

σ2
m,t =

1
Nt

Nt∑

J=1

[rt,J −mean(rt,J)]2

where rt,J : daily excess return , Nt: the number of trading days in a quarter

To check the robustness of my results, I constructed four different measures of realized

variance series.

• REVOL1 : The usual realized variance series defined above

• REVOL2 : The 1987 stock market crash has a confounding effect on my variance

measure; following Guo and Whitelaw (2006), I replace REVOL1 for 1987:4 with

the second-largest observation in my sample. Guo and Whitelaw (2006) argue that

REVOL2 is more appropriate since the variable(REVOL1) rose dramatically during

this crash period but reverted to the normal level shortly after.

Non-synchronous trading of securities causes daily portfolio returns to be autocorrelated,

particularly at lag one. Because of this autocorrelation, I estimate the variance of the

quarterly excess market return as the sum of the squared daily excess returns plus twice

the sum of the products of adjacent returns.(REVOL1auto) Following previous discussion,

I also construct REVOL2auto by replacing REVOL1auto for 1987:4 with the second-largest

observation in my sample.

σ2
m,t =

Nt∑

i=1

r2
i,t+

Nt−1∑

i=1

ri,tri+1,t

where there are Nt daily returns, ri,t, in quarter t.
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Table 2.2 summarizes descriptive statistics for the four different versions of realized

variance series. For the comparison, I also estimate simple GARCH(1,1) model.(estimated

models are given below the Table 2.2) Even though all four versions have similar sample

characteristics, Figure 2.2 suggests that only REVOL2 and REVOL2auto have comparable

magnitude with the estimated GARCH series. It seems reasonable since GARCH models

estimate current quarterly volatility with the past information set. However, REVOL1

estimates volatility of the current quarter with daily data in that quarter only which might

get too extreme values in crash period. REVOL2 removes effects of this outlier.

Fama French Factors and Portfolios data

• Fama French Factors : Quarterly data on Rmrf, HML, and SMB, are obtained from

Kenneth French’s Web site.50

• Fama French 25 size and B/M sorted portfolios and 30 industry portfolios : All

portfolios are also obtained from Kenneth French’s Web site. The original returns

on the portfolios are monthly. So, I computed quarterly returns by compounding the

three monthly returns of each quarter. I denote the 25 size and B/M sorted portfolios

as 11, 12, 13, ..., 55, where the first digit indicates the portfolio’s size group and the

second digit the portfolio’s B/M ratio group. The number 1 refers to the smallest size

(lowest B/M ratio) and the number 5 to the biggest size (highest B/M ratio).

D.4 Other forecasting variables

• Term spread(TERM): This is the difference between long-term and short-term gov-

ernment bond yields. The long-term government bond yield data are from the Federal

Reserve Economic Database(FRED) and are based on a maturity of 10 years. The

short-term yield is the 3-month Treasury bill rate (secondary market) and is also

50I am thankful to Kenneth French for making the data available.
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from the FRED. The original data are monthly. I obtained quarterly observations by

averaging over the three months comprising a quarter.

• Default spread(DEF): This is the difference between the Moody’s seasoned Baa cor-

porate bond yield and the Moody’s seasoned Aaa corporate bond yield. The cor-

porate bond yield data are from the FRED. The original corporate bond yield data

are monthly. I obtained quarterly observations by averaging over the three months

comprising a quarter.

• Stochastically detrended short term interest rate(RREL): I computed RREL as the

quarterly short-term interest rate in deviations from a four-quarter moving average

consisting of the four previous quarters from the CRSP.

• Real GDP growth(REGD): I computed real GDP growth using the seasonally adjusted

data on real GDP in billions of chained 2000 dollars. Quarterly real GDP is from the

FRED.

• Inflation(INFL): I computed inflation series using GDP deflator with quarterly nom-

inal and real GDP series from the FRED.
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