
Essays in Financial Economics

by

Kai Li

Department of Economics
Duke University

Date:
Approved:

Ravi Bansal, Supervisor

Hengjie Ai

Tim Bollerslev

Jia Li

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Economics

in the Graduate School of Duke University
2013



Abstract

Essays in Financial Economics

by

Kai Li

Department of Economics
Duke University

Date:
Approved:

Ravi Bansal, Supervisor

Hengjie Ai

Tim Bollerslev

Jia Li

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Economics

in the Graduate School of Duke University
2013



Copyright c© 2013 by Kai Li
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/


Abstract

My dissertation, consisting of three related essays, aims to understand the role of

macroeconomic risks in the stock and bond markets. In the first chapter, I build

a financial intermediary sector with a leverage constraint à la Gertler and Kiyotaki

(2010) into an endowment economy with an independently and identically distributed

consumption growth process and recursive preferences. I use a global method to

solve the model, and show that accounting for occasionally binding constraint is

important for quantifying the asset pricing implications. Quantitatively, the model

generates a procyclical and persistent variation of price-dividend ratio, and a high

and countercyclical equity premium. As a distinct prediction from the model, in

the credit crunch, high TED spread, due to a liquidity premium, coincides with low

stock price and high stock market volatility, a pattern I confirm in the data.

In the second chapter, which is coauthored with Hengjie Ai and Mariano Croce,

we model investment options as intangible capital in a production economy in which

younger vintages of assets in place have lower exposure to aggregate productivity

risk. In equilibrium, physical capital requires a substantially higher expected return

than intangible capital. Quantitatively, our model rationalizes a significant share

of the observed difference in the average return of book-to-market-sorted portfolios

(value premium). Our economy also produces (1) a high premium of the aggregate
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stock market over the risk-free interest rate, (2) a low and smooth risk-free interest

rate, and (3) key features of the consumption and investment dynamics in the U.S.

data.

In the third chapter, I study the joint determinants of stock and bond returns in

Bansal and Yaron (2004) long-run risks model framework with regime shifts in con-

sumption and inflation dynamics – in particular, the means, volatilities, and the cor-

relation structure between consumption growth and inflation are regime-dependent.

This general equilibrium framework can (1) generate time-varying and switching

signs of stock and bond correlations, as well as switching signs of bond risk pre-

mium; (2) quantitatively reproduce various other salient empirical features in stock

and bond markets, including time-varying equity and bond return premia, regime

shifts in real and nominal yield curve, the violation of expectations hypothesis of

bond returns. The model shows that term structure of interest rates and stock-bond

correlation are intimately related to business cycles, while long-run risks play a more

important role to account for high equity premium than business cycle risks.
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1

Asset Pricing with a Financial Sector

1.1 Introduction

This paper studies the quantitative asset pricing implications of financial intermedi-

ary1. I embed a financial intermediary sector with an endogenous leverage constraint

à la Gertler and Kiyotaki (2010) into an endowment economy. The model features

a calibrated financial sector, recursive preferences, and an independently and iden-

tically distributed consumption growth process. The leverage constraint makes in-

termediary equity capital (net worth) to be an important state variable that affects

asset prices and helps to understand a wide variety of dynamic asset pricing phe-

nomena. Rather than a log-linear approximation method, I use a global method that

allows for occasionally binding constraint to solve the model, and show the global

1 In this paper, the financial intermediary sector is meant to capture the entire banking sector,
including commercial banks, investment banks as well as hedge funds. Thus, I use “financial
intermediary sector” and “banking sector”, “financial intermediaries” and “banks”, interchangeably.
For the composition of aggregate financial intermediary sector, see Table A.1 in Appendix A.3.
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method is critical for quantifying asset pricing implications.

Quantitatively, an i.i.d. consumption growth shock, calibrated to match the stan-

dard deviation of the aggregate consumption growth, is amplified and accumulated

through the propagation mechanism of the leverage constraint, and has large and

long-lasting effects on asset prices, which are absent in the model without frictions.

In particular, the model produces a high equity premium (in log units) of 4.1%, a

significant share (78%) of the equity premium observed in the data, a low interbank

interest rate volatility of 0.58%, consistent with the data (0.55%), and a persistent

and procyclical variation of price-dividend ratio, with first order autocorrelation of

65%, relatively lower than that in the data (89%). The equity premium is strongly

countercyclical in the model, and predictable with the leverage ratio of aggregate

financial intermediary sector, a pattern I confirm in the data. The model also pro-

duces an average stock market volatility of 16.5%, only slightly lower than a volatility

of 19.8% in the data.

The leverage constraint effectively introduces a wedge between interest rates on

interbank and household loans. As a distinct implication from the model, the loan

spread widens significantly in the credit crunch which features a large drop in in-

termediary net worth. This patten is consistent with the evidence that high TED

spread2 coincides with low price-dividend ratio and high stock market volatility, as

shown in Fig. 1.1.

I emphasize the importance of using a global method that accounts for occa-

sionally binding constraint to solve the model. In the benchmark calibration with

2 TED spread is measured by the spread between 3-month LIBOR rate in U.S. dollars and 3-month
U.S. government treasury bill rate.
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a moderate risk aversion of 10 and a calibrated financial sector, the global solution

suggests the constraint only binds for about 15% of the time. A third order local

approximation method, imposing the assumption that the constraint is always bind-

ing around the steady state, greatly exaggerates the volatilities of asset prices and

equity premium.

There are two main ingredients in the model. First, I build a stylized leverage

constraint faced by financial intermediary into an otherwise standard endowment

economy. As in Gertler and Kiyotaki (2010), a limited enforcement argument that

financial intermediary can divert a fraction of bank assets and default on deposits pro-

vides a microfoundation for the leverage constraint. In particular, the debt financing

capacity to an intermediary is proportional to the equity capital of the intermediary

times a leverage multiple. In this setup, the intermediary net worth strongly affects

asset prices through an adverse dynamic feedback effect: a negative consumption

shock lowers the intermediary net worth, increases the probability that constraint

becomes binding in the future, and therefore reduces the borrowing capacity of the

intermediary sector today and in the future. Lower borrowing capacity results in

lower demand for risky assets. In the equilibrium, the intermediary sector still holds

all the risky assets. To clear the market, the asset price has to fall, and risk premium

has to rise. The resulting fall in asset price further lowers the net worth. An initial

small i.i.d. consumption shock is endogenously amplified through this propagation

mechanism.

The leverage constraint also opens up an endogenous channel of countercycli-

cal equity premium and stock market volatility, even though consumption growth

is homoscedastic. The equilibrium asset prices are more sensitive to the fundamen-

3



tal shocks when the intermediary net worth is low. As the financial intermediary

sector becomes more financially constrained, both the exposure of market return

to consumption shock (i.e. return beta) and the market price of the consumption

shock increase, and thus contribute to a higher equity premium. In the model,

price-dividend ratio and leverage ratio of the aggregate intermediary sector predict

long-horizon equity returns. Both the slope coefficients and R2 line up with the data

relatively well at all horizons. And the model also captures the volatility feedback

effect; that is, a consumption shock, as a negative innovation to market return, is a

positive innovation to return volatility.

As a distinct feature of the model, the leverage constraint introduces a wedge

between interest rates on interbank and household loans. This spread, as a measure

of the tightness of leverage constraint, is countercyclical and widens significantly

in bad times when the intermediary sector is extremely financially constrained. I

posit a retail interbank market where the banks can trade Arrow-Debreu securities

(in zero net supply) that pay one unit of net worth given a certain state among

themselves frictionlessly (i.e. the bank cannot default on them), assuming the banks

have monitoring technology in evaluating and monitoring their borrowers. Under

this asset market structure, the banks are unconstrained in choosing risky assets and

interbank loans, though they are constrained agents to obtain debt from the house-

hold. The augmented stochastic discount factor suggested by the bank’s portfolio

choice problem price risky assets and interbank risk-free debt. It depends not only on

household consumption, but also on intermediary equity capital. The banker dislikes

assets with low return when aggregate consumption is low, and when his financial

intermediary has low net worth. However, the interest rate on household loans is

4



priced by a different stochastic discount factor, which is suggested by the household

optimization problem. In a credit crunch, modeled as a large drop in intermediary

net worth so that the constraint binds, the banks are strongly liquidity constrained

to lend net worth to others, and therefore the market clearing condition drives up

the interbank interest rate.

The second ingredient of the model is that quantitatively I rely on recursive

preferences (Kreps and Porteus, 1978; Epstein and Zin, 1989) which allow for a

separation between the intertemporal elasticity of substitution (IES, hereafter) and

risk aversion, and consequently permit both parameters to be simultaneously larger

than 1. I calibrate the recursive preference with a moderate risk aversion of 10 and

an IES of 1.5, consistent with Bansal and Yaron (2004). In this economy, when the

IES is larger than 1, the level of interest rate on household loans is low, consistent

with the data. Furthermore, a high IES (larger than 1) is also critical to produce

high equity premium. In the CRRA utility case, as the risk aversion increases, the

IES, which is the reciprocal of risk aversion, decreases simultaneously, and leads the

average leverage ratio of the financial intermediary sector to decrease very rapidly.

This significantly lowers the volatility of the stochastic discount factor, due to lower

volatility of shadow price of net worth. In contrast, when the IES is larger than 1,

the average leverage ratio of the financial sector only decreases slowly with the risk

aversion, therefore, maintains a volatile stochastic discount factor, and thus a high

equity premium.

Computationally, I use a recursive method to construct a global solution which

accounts for occasional binding constraint. The theoretical underpinnings of the

recursive method are developed in a companion paper (Ai, Bansal and Li, 2012),

5



while this paper focuses on the economics and quantitative analysis of the model. In

the paper, I emphasize the importance of allowing for occasional binding constraint

on quantifying the asset pricing implications. In the macroeconomics literature,

equilibrium is often derived by log-linearizing around the steady state and assuming

the constraint is always binding, for instance, Gertler and Kiyotaki (2010), Gertler

and Karadi (2011), Gertler, Kiyotaki and Queralto (2011), among others. As a

result, this method does not allow me to study the model nonlinearity and off-steady-

state dynamics, which are the key to internally generate the time-varying equity

premium and stock volatility. Furthermore, even a higher order local approximation

method imposing the assumption that the constraint is always binding around the

steady state is still problematic. In the parameter configuration with which the

probability of a binding constraint is low, for instance, the benchmark calibration,

a third order local approximation method that forces the constraint to be always

binding around the steady state greatly exaggerates the volatilities of asset prices

and equity premium. I use Den Haan and Marcet simulation accuracy test (1994)

to confirm the advantage of the global method over a local approximation method.

My analysis contributes to several strands of literature. First, existing consump-

tion based asset pricing models have been successful in specifying preferences and

cash flow dynamics to explain a high and countercyclical equity premium in an en-

dowment economy (Campbell and Cochrane, 1999; Bansal and Yaron, 2004; Barro,

2006). However, these models allow no roles for financial intermediary, but assume

that a representative household is marginal in pricing all the assets, therefore, they

cannot speak to the close relationship between financial intermediary equity capital

and aggregate stock market. They also shed no light on interest rate spread between

6



interbank and household loans. In this paper, I show the single channel of a leverage

constraint not only links asset prices to intermediary net worth, but also provides an

additional important channel to understand a wide variety of asset market phenom-

ena, even with an i.i.d. consumption growth process. The success of the model does

not rely on a very high effective risk aversion as in habit model, or on consumption

risks beyond the business cycle frequency, for instance, long-run risks or rare diasters,

which are hard to detect empirically in the data.

Second, this paper is directly related to Maggiori (2012) and He and Krishna-

murthy (2012b) on financial intermediary and asset pricing. As a continuous time

adaptation of Gertler and Kiyotaki (2010) type of leverage constraint into an en-

dowment economy, Maggiori (2012) is a special case of the model in this paper, in

which the constraint never binds in the equilibrium. Thus, it has neither implica-

tions for interest rate spread, nor implications of occasionally binding constraint on

asset pricing. In He and Krishnamurthy (2012b), the financial intermediary faces an

equity financing constraint, rather than a debt financing constraint. The specialist

who manages the intermediary has a separate utility function different from that

of representative household, and is the unconstrained marginal investors who prices

all the assets, therefore, there is no household and interbank loan spread in their

framework. There are several important differences between my paper with He and

Krishnamurthy (2012b). First, in my model, the stochastic discount factor depends

both on the aggregate consumption growth and the marginal value of net worth,

the variations of which are also driven by the aggregate consumption growth shock.

However, in their model, the marginal investor’s consumption process is not based

on the aggregate consumption, rather it is endogenously determined by his portfolio
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choice problem. Their model predicts significantly negative risk-free interest rate in

the crisis, which suggest that model implied consumption volatility of marginal in-

vestor in the crisis state is very high, and thus induces a large precautionary saving

effect to lower the risk-free rate. Second, in my model, the amplification effect is

quantitatively large around the steady state where the constraint is not binding, due

to the fact that the concern about potential future losses in net worth depresses the

stock market today. However, He and Krishamurthy (2012b) framework is only to

capture the risk premium behavior in crises, but features no amplification effect in

the unconstrained region.

Third, the paper also relates to the theoretical literature on intermediary fric-

tions. There are two broad classes of theories: leverage-constraints theories and

equity risk-capital constraints. Both theories start with the assumption that inter-

mediaries are constrained in raising more equity. They share two common predic-

tions: First, intermediary equity (or net worth) is the key state variable that affects

asset prices. Second, the effect of intermediary equity on asset prices is nonlinear,

with a larger effect when the intermediary equity is low. The leverage-constraints

models include Geanakoplos and Fostel (2008), Adrian and Shin (2010) and Brun-

nermeier and Pedersen (2009), Danielsson et al. (2011), Geanakoplos (2012), and

Adrian and Boyarchenko (2012). Gertler and Kiyotaki (2010) type of frictions lies in

the first category. He and Krishnamurthy (2012a) and Brunnemeier and Sannikov

(2012) are examples of equity risk-capital models. The goal of this paper is different

from the theoretical literature to propose alternative microfoundations for financial

frictions, rather I focus on the quantitative asset pricing implications of a stylized

type of leverage constraint as in Gertler and Kiyotaki (2010), which has been widely
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studied in the macroeconomic and policy related literature.

More broadly, this paper is related to the literature in macroeconomics studying

the effects of financial frictions on aggregate activity, including Kiyotaki and Moore

(1997), Calstrom and Fuerst (1997) and Bernanke, Gertler and Gilchrsit (1999),

among others. These papers focus on the credit frictions faced by non-financial bor-

rowers. Gertler and Kiyotaki (2010) introduces a leverage constraint between house-

hold and financial intermediary, also see Gertler and Karadi (2011), Gertler, Kiyotaki

and Queralto (2011), Gertler and Karadi (2012), among others. The equilibrium in

these works is derived by log-linearizing around the steady state and assuming the

constraint is always binding. Instead, I use a global method to solve the model,

and emphasize that accounting for occasionally binding constraint is very important

for quantifying asset pricing implications of the model. My work contributes to the

literature by arguing that quantitative analysis on macroeconomic effects and policy

evaluations of financial frictions should take into account the importance of occa-

sionally binding constraint on asset price dynamics, which lie in the center of the

propagation mechanism of financial frictions.

The remainder of the paper is organized as follows: I present the model setup

and define the competitive equilibrium in Section 1.2. In Section 1.3, I outline

model solution, computation and discuss some analytical results in asset pricing.

Section 1.4 presents benchmark model’s performance in various aspects. Section 1.5

provides some additional asset pricing implications, and Section 1.6 concludes and

lays down several extensions on my research agenda. Model derivations, data sources

and computation details are provided in the Appendix A.
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1.2 The Model Setup

I embed a financial intermediary sector with a leverage constraint à la Gertler and

Kiyotaki (2010) into a standard Lucas (1978) endowment economy .

There are three sectors in the economy, namely, households, financial intermedi-

aries (banks), and non-financial firms. I assume households cannot invest directly

in the risky asset market by holding the equity of non-financial firms. There is a

limited market participation, also see Mankiw and Zeldes (1991), Basak and Cuoco

(1998), or Vissing-Jorgensen (2002). Instead, households can only save through a

risk-free deposit account with banks. Each household owns a unit mass of banks

coming in overlapping generations. Banks borrow short-term debt from households3,

and invest in the equity of the firms. In addition to assisting in channeling funds

from households to non-financial firms, banks engage in maturity transformation.

They hold long term assets and fund these assets with short term liabilities (beyond

their own equity capital). In addition, the banking sector in this model is meant to

capture the entire banking sector, including commercial banks, investment banks as

well as hedge funds.

Time is discrete and infinite, t = 0, 1, 2,···. The non-financial firms in this econ-

omy are modeled as in a Lucas (1978) tree economy which pays aggregate output

every period. The aggregate output is denoted by Y0, Y1, Y2,···. The log growth rate

of the output process is given by

log

(
Yt+1

Yt

)
= µy + σεy,t+1,

3 To motivate a limited enforcement argument later, it is best to think of banks only obtaining
deposits from households who do not own them.
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in which εy,t+1 is an i.i.d. random variable with mean zero and unit variance, modeled

as a finite-state Markov chain. The parameter σ captures the aggregate consumption

volatility.

I use Qt to denote the price of the Lucas tree at period t, and thus the total

return on the Lucas tree, Ry,t+1, is defined as

Ry,t+1 =
Qt+1 + Yt+1

Qt

.

1.2.1 Households

There is a unit mass of identical households who makes intertemporal consumption

and saving decisions. I collapse all households into a single representative household.

He is infinitely lived and maximizes the objective function,

max
{Ct,Bt}

∞
t=0

E0

[
∞∑

t=0

βtu (Ct)

]
, (1.1)

where Ct is the period t consumption. I consider a constant relative risk aversion

(CRRA, hereafter) instantaneous utility function with risk aversion parameter γ,

u (Ct) =
1

1−γ
C1−γ
t . In the subsequent quantitative analysis (Section 1.4), I use more

general recursive preferences (Kreps and Porteus, 1978; Epstein and Zin, 1989),

which disentangle the risk aversion with IES. This is quantitatively important for

asset pricing implications as discussed in Section 1.4.1 and Section 1.4.5. More details

about recursive preferences are provided in Appendix A.1.

The household can only save through a risk-free deposit account with banks. Let

{πt}
∞
t=0 denote the stream of (stochastic) income that the household receives, and
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Rf,t denote the one-period risk-free interest rate for a loan (made by the household to

the banks) that pays off on date t+1. A set of budget constraints (1.2) is described

as the following:

C0 +B0 = π0, (1.2)

Ct +Bt = Bt−1Rf,t−1 + πt, t ≥ 1.

In the above formulation, the household receives a stream of income, {πt}
∞
t=0 and

makes his consumption and saving decisions. Ct is the period t consumption choice,

and Bt is the amount he deposits in the one-period risk-free bond, which pays a

gross interest rate Rf,t in the next period. I will show later on, πt is the amount of

wealth transferred from the banking sector to the household at period t. That is, his

ownership of the banks pays off over time as an income stream {πt}
∞
t=0. Technically,

the {πt}
∞
t=0 sequence is constructed so that it can be easily verified that Ct = Yt

satisfies the budget constraint.

1.2.2 Financial Intermediaries

The banks come in overlapping generations. Denote ntt+j to be the total amount of

net worth held by all generation t banks at period t+ j, and stt+j, the total number

of shares in the Lucas tree held by all generation t banks at period t + j. I use

Λt to denote the Arrow-Debreu price of one unit of consumption good at period t

denominated in terms of time 0 consumption goods. Under this notation, the price

of a unit of consumption good at period t + j denominated in terms of period t

consumption good is
Λt+j
Λt

. Given the price system {Λt}
∞
t=0, a generation t bank
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maximizes the present value of its future cash flow by choose:

max
{stt+j ,ntt+j+1}

∞

j=0

Et

[
∞∑

j=1

Λt+j
Λt

(1− λ)j−1 λntt+j

]
. (1.3)

In each period, a fraction λ of the bank is forced to liquidate, in which case, their

net worth is paid off as dividend. The remaining fraction (1− λ) will survive to the

next period. The liquidation fraction/probability is i.i.d. across banks and time. As

a result, the total fraction of a generation t survived until period t+ j is (1− λ)j−1,

and a fraction λ is paid out as dividend. Note that the bank and household share the

same stochastic discount factor, Gertler and Kiyotaki (2010) provide an “insurance

story” to justify this.

Equation (1.4) is the initial condition of banks’ net worth. The initial generation

starts with initial net worth N0. After that, in each period, the household uses a

fraction δ of the Lucas tree to set up new banks, as assumed in Gertler and Kiyotaki

(2010). Therefore, δ [Qt + Yt] is the initial net worth of the generation t bank at

period t.

ntt = δ [Qt + Yt] if t ≥ 1, n0
0 = N0. (1.4)

Equation (1.5) is the law of motion of net worth. At period t + j, the bank

started with net worth ntt+j and chooses hold stt+j shares of the stock. Each share

pays Qt+j+1 + Yt+j+1 in the next period, which is the first term on the right hand

side of (1.5). However, the bank has to borrow stt+jQt+j−n
t
t+j from the household in

order to finance the purchase of the stock. The second term on the right hand side
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of (1.5) is the amount of loan repayment the bank has to deliver to the household in

period t+ j + 1.

ntt+j+1 = stt+j [Qt+j+1 + Yt+j+1]−
[
stt+jQt+j − ntt+j

]
Rf,t+j, for all j ≥ 0. (1.5)

Equation (1.6) is the participation constraint, motivated by a limited enforcement

argument in Gertler and Kiyotaki (2010). At period t+ k in the future, the banker

has an opportunity to divert a θ fraction of bank assets at its market price and default

on its debt. And the depositors can only recover (1−θ) fraction of bank asset, due to

limited enforcement. Because the depositors recognize the bank’s incentive to divert

funds, they will restrict the amount they lend. In this way a participation constraint

arises: we need to make sure that the value of the bank must exceed the banker’s

outside option in all future periods. Note that there are infinitely many participation

constraints from period t on into the future.

Et+k

[
∞∑

j=1

Λt+k+j (1− λ)j−1 λntt+j

]
≥ θstt+kQt+k, for all k ≥ 0. (1.6)

1.2.3 Competitive Equilibrium

A competitive equilibrium is a collection of prices, {Qt, Rf,t,Λt, πt}
∞
t=0, and quantities

{{
stt+j, n

t
t+j

}∞
j=0

, Nt

}∞

t=0
that satisfy 1) household utility maximization; 2) banks of

each generation maximize profit; 3) market clearing conditions; 4) a set of consistency

conditions.

The market clearing conditions include:

Ct = Yt, (1.7)
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t∑

j=0

st−jt = 1, (1.8)

t∑

j=0

nt−jt = Nt, (1.9)

Nt = (1− λ) [Qt + Yt − (Qt−1 −Nt−1)Rf,t−1] + δ [Qt + Yt] , (1.10)

Qt = Nt +Bt, (1.11)

π0 = Q0 + Y0 −N0, (1.12)

πt = λ [Qt + Yt − (Qt−1 −Nt−1)Rf,t−1]− δ [Qt + Yt] , for t ≥ 1. (1.13)

Here (1.8) says all shares owned by existing generations of banks must sum up to 1,

and (1.9) says the total net worth of banks of all generations must sum up to Nt.

Equation (1.10) is the accounting identity. In equation (1.10), I use Nt to denote

the total net worth of the banking sector (the total amount of wealth held by all the

banks). The first part of the right-hand side of equation (1.10) is the total amount of

net worth of all banks at date t that comes from existing banks (banks of generation

t−1 and older): At period t-1 all existing banks together own one share of the Lucas

tree, which pays off Qt + Yt. They have net worth Nt−1, and borrowed Qt−1 −Nt−1

to buy the tree. Consequently, (Qt−1 −Nt−1)Rf,t−1 is the amount of interest they

have to return to the household. The second part of the right-hand side of equation

(1.10), δ [Qt + Yt], is the amount of net worth that is newly injected into the banking

sector at period t. Recall that each period the household use δ fraction of the Lucas

tree to set up a new generation of banks.

The market clearing condition also include (1.12) and (1.13). Equation (1.12)

implies the household and the bankers together own the Lucas tree. In particular,
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the household owns part of the Lucas tree directly, through π0, and owns part of

the Lucas tree indirectly, through the banks, which is N0. Equation (1.13) has the

following interpretation: in period t, a λ fraction of all existing banks are forced

to liquidate, and their net worth flows into the household. At the same time, the

household also used δ fraction of the value of the Lucas tree to set up new banks.

This completes the discussion of the market clearing conditions. Of course, given

the budget constraint and market clearing conditions, one of (in each period) is

redundant according to Walras’ law.

I also need certain consistency condition:

Λt =
βtu′ (Ct)

u′ (C0)
,

which captures the “insurance story” that Gertler and Kiyotaki (2010) tells.

1.3 Model Solution

In this section, I outline the main steps in deriving the solution, highlighting the eco-

nomic mechanism linking intermediary equity capital and the asset prices. Detailed

derivations are provided in the Appendix A.2.

1.3.1 State Variable and its Dynamics

In this economy, financial intermediary equity capital is an important state variable

that affects asset prices. As I comment below, in the discrete time setup, it turns

out to be more convenient to use normalized debt, instead of net worth, as the

state variable. Both debt and net worth measure the capitalization of financial
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intermediary sector, and therefore, I may use them interchangeably in explaining the

model intuitions.

I define normalized debt level as,

bt =
Bt−1Rf,t−1

Yt
,

as the state variable of the economy, where

Bt−1 = Qt−1 −Nt−1,

is the total amount of debt that the banks borrow from the household sector in

period t− 1. Because this is a growth economy, I normalize quantities and prices by

total output, and denote:

q (bt) =
Q (bt)

Yt
;
Yt+1

Yt
= gt+1; n̂t =

Nt

Yt
, (1.14)

The law of motion for the state variable is therefore,

bt+1 =
Rf,t

gt+1

{(1− λ)bt + (λ− δ) q (bt)− (1− λ+ δ)} . (1.15)

One advantage of using bt as the state variable is that: given today’s bt and an initial

guess of the price functional q (·), the law of motion (1.15) determines bt+1 in close

form. This property facilitates an iterative procedure to compute the equilibrium,

as discussed in Section 1.3.4. However, if I use normalized net worth n̂t as the state

variable, a choice in Maggiori (2012) and He and Krishnamurthy (2012), I find that

the law of motion of normalized net worth n̂t in this discrete time context is not in

closed form.
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I can now express the current period net worth, n̂t, as a function of the state

variable bt:

n̂t = q (bt)−
bt+1gt+1

Rf,t

, (1.16)

= (1− λ+ δ) q (bt)− [(1− λ)bt − (1− λ+ δ)] .

1.3.2 Recursive Formulation of Bank’s Problem

I first set up some notations. I useMt+1 to denote the one-period stochastic discount

factor implied by household problem, as standard in the asset pricing literature. That

is,

Mt+1 =
Λt+1

Λt
= β

u′ (Ct+1)

u′ (Ct)
.

Euler equation implies:

E (Mt+1)Rf,t = 1.

Both Mt+1 and Rf,t do not depend on bt, rather, they are determined by aggregate

consumption growth process in the equilibrium. Note that with i.i.d. consumption

growth, Rf,t is a constant, which I denoted as Rf .

The bank’s optimization problem has a recursive representation:

V (bt, nt) = max
{st,nt+1}

Et [Mt+1 {λnt+1 + (1− λ)V (bt+1, nt+1)}] (1.17)

subject to : nt+1 = st [Q (bt+1) + Yt+1]− [stQ (bt)− nt]Rf , (1.18)

Et [Mt+1 {λnt+1 + (1− λ)V (bt+1, nt+1)}] ≥ θstQ (bt) . (1.19)

Given initial wealth nt and the current state bt, the bank chooses control variables

(st, nt+1), subject to the constraints. The constraint (1.18) essentially determines
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nt+1 given the choice st and the realization of the random variables exogenous to the

maximization problem. I do not substitute out nt+1 just to save notation. Since nt+1

depends on st, constraint (1.19) restricts the choice of st.

I conjecture that V (bt+1, nt+1) is of the form4:

V (bt+1, nt+1) = µ (bt+1)nt+1, (1.20)

in which µ (bt+1) is the shadow price of net worth at time t + 1. In this case, the

maximization problem can be written as:

V (bt, nt) = max
{st,nt+1}

Et [Mt+1 {λ+ (1− λ)µ (bt+1)}nt+1] (1.21)

subject to : nt+1 = st [Q (bt+1) + Yt+1]− [stQ (bt)− nt]Rf ,

Et [Mt+1 {λ+ (1− λ)µ (bt+1)}nt+1] ≥ θstQ (bt) .

Given {µ (bt+1) , Q (bt+1)}, I define

v (bt) = λ+ (1− λ)Et [Mt+1µ (bt+1)]Rf , (1.22)

in which v (bt) is the shadow price of net worth at date t if the participation constraint

is not binding for any bank. Also, I define

P (bt) =
Et [Mt+1 {λ+ (1− λ)µ (bt+1)} (Q (bt+1) + Yt+1)]

v (bt)
. (1.23)

in which P (bt) is the equilibrium price of the Lucas tree in the case where the

participation constraint does not bind for any bank. Note that v (bt) and P (bt) is

completely determined once the functional form of {µ (bt+1) , Q (bt+1)} is known.

4 Note this is not saying that the equilibrium solution is nonlinear. It says, given equilibrium
prices, the bank’s value function is linear. The equilibrium prices are highly nonlinear, and are
determined by some nonlinear method.
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As shown in the Appendix A.2, I can summarize the equilibrium conditions with

a compact notation.

Q (bt) =
v (bt)Pt (bt) + v (bt)Nt (bt) ∧ θPt (bt)

v (bt) + θ
. (1.24)

Also,

µ (bt) = v (bt) ∨
θQ (bt)

Nt

. (1.25)

in which P (bt) and v (bt) are given by (1.22) and (1.23). Here I used the short-hand

notation x ∧ y ≡ min {x, y} and x ∨ y = max {x, y}. Obviously, Q (bt) ≤ P (bt) and

µ (bt) ≥ ν (bt), and strict inequality holds if and only if the participation constraint

is binding.

1.3.3 Parameter Requirement

Parameter Assumption: I focus on the parameter that the lowest possible real-

ization of consumption growth, gL, is bounded by:

(1− λ)Rf < gL <
(1− λ)Rf

(1− λ+ δ)
.

The first part of the inequality implies that the minimum consumption growth

rate of the economy cannot be too low. The intuition is that if the shocks are

too low, a long enough sequence of bad shocks will send the total debt level in

the banking sector to infinity, which cannot be consistent with any equilibrium.

This observation has important consequences. For example, it implies that it would

be inappropriate to consider a discrete time model with normal shocks, because
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the shocks are unbounded. The log-linearization method ignores this equilibrium

restriction.5

In this economy, a λ fraction of net worth exits the banking sector and a δ fraction

of the market value of the Lucas tree is injected back into the banking sector in each

period. If λ is small enough, or δ is large enough, the bank will eventually get out

of the constraint. The second part of the inequality makes sure that we focus on the

interesting case that λ is large enough and δ is small enough, so that the economy

will not grow out of the constraint with probability one.

The theoretical results on the parameter assumptions are provided in Ai, Bansal

and Li (2012).

1.3.4 Computation

The literature6 usually uses a local approximation method to solve the model with

Gertler and Kiyotaki (2010) type of participation constraint, imposing the assump-

tion that the constraint is always binding around the steady state. One exception is

Maggiori (2012), which features a analytical global solution up to a system of ordi-

nary differential equations (ODEs) in a continuous time setting with log utility. In

this paper, I use a global method to solve the model with recursive preferences in a

discrete time context, allowing for occasionally binding constraint. In Section 1.4.1,

I use quantitative experiments to show that the global method allowing for occasion-

ally binding constraint is critical to quantify the asset pricing implications in such a

5 This is not an issue in continuous time given Maggiori(2012)’s experiment, as in continuous time,
as time interval shrinks, so does the size of the shocks.

6 An incomplete list includes Gertler and Kiyotaki (2010), Gertler and Karadi (2011), Gertler,
Kiyotaki and Queralto (2011), Gertler and Karadi (2012), among others.
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model.

There are several reasons which make the model computation special. First,

this model features an incomplete market, and thus the competitive equilibrium de-

fined in Section 1.2.3 does not correspond to a social planner’s solution. Instead, we

need to solve the competitive equilibrium directly. Second, because of the occasion-

ally binding constraint (1.19), standard local approximation methods, for instance,

perturbation method, cannot be used, unless we impose the assumption that the

constraint always binds around the steady state. As such, I use a recursive method,

the theoretical underpinnings of which are developed in Ai, Bansal and Li (2012), to

construct the global solution. Third, because of the nonlinearity of the model and

my focus on nonlinearity-sensitivity of asset prices with the state variable, I solve

the model on a large number of grid points to ensure accuracy.

To summarize the intuition of an iterative procedure to solve the model, the fol-

lowing system (1.26), (1.27), (1.28), and (1.29) defines a mapping {µ (b′) , q (b′)} =⇒

{µ (b) , q (b)}, in which I use the convention that “′” denotes next period quantities.

This system is normalized version of the system (1.22)-(1.25).

v (b) = λ+ (1− λ)E [M ′µ (b′)]Rf , (1.26)

p (b) =
E [M ′ {λ+ (1− λ)µ (b′)} {q (b′) + 1} g′]

v (b)
, (1.27)

q (b) =
ν (b) p (b) + v (b)n (b) ∧ θp (b)

v (b) + θ
, (1.28)

µ (b) = v (b) ∨
θq (b)

n̂
. (1.29)
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in which n̂ is determined by equation (1.16), and the law of motion of the state

variable, b, is given by equation (1.14).

If we find pricing functions {µ (b) , q (b)} that satisfy the above ”functional equa-

tions”, and under the equilibrium pricing functions, n̂t stays strictly positive for all

t starting from any initial condition7, then we can use these pricing functions to

construct equilibrium. The basic intuition for an iterative procedure is the following:

Given b, I conjecture the pricing functions {µ (b) , q (b)}, and solve b′ in close form

from the law of motion (1.15) and hence {µ (b′) , q (b′)}. I then use the equilibrium

conditions summarized in the above system (1.26), (1.27), (1.28), and (1.29) to solve

a new set of market clearing prices. Start with the new prices, and do iterations. The

equilibrium prices are the fixed points suggested by this iteration procedure. Some

additional details of the computation procedure are provided in the Appendix A.4.

1.3.5 Asset Pricing

In this section, I discuss the asset pricing implications of the model from the equi-

librium conditions. To save notations, I do not explicitly express asset prices as

functions of the state variable b when there is not confusion, instead I summarize

this dependence in the time subscript “t”, as standard in the literature.

The Microfoundation of a Leverage Constraint

At the equilibrium, by the property of value function (1.20), the participation con-

straint can be expressed as

µtnt ≥ θQtst.

7 As shown in Lemma 4 of Appendix refA3:sec8.1, only strictly positive n̂t can be supported by
the equilibrium.
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Therefore, the participation constraint provides a microfoundation for a leverage

constraint:

Qtst
nt

≤
µt
θ
,

in which a bank’s leverage ratio is defined as its total assets over net worth. First,

the bank’s maximum leverage ratio, µt
θ
, does not depend on bank-specific factors.

This nice property allows me to sum across individual banks to obtain the relation

for the demand for total bank assets as a function of total net worth,

Qt ≤
µt
θ
Nt.

Note that the demand for total bank assets is equal to Qt, because all the firm equity

is concentrated in the banking sector, and the total number of shares of equity is

normalized to 1.

Second, the maximum leverage ratio depends on the aggregate state variable bt,

and is countercyclical, as the shadow price of net worth µt is high in bad times when

net worth is scarce. This model feature is consistent with the empirical evidence on

the leverage ratio of the aggregate intermediary sector, as shown in Fig. 1.2.

Expecting that a bank will be able to abscond with stocks purchased with loans

from household, household will require a collateral posted against the loans. There-

fore, the participation constraint can be also rewritten/reinterpreted and aggregated

as a collateral constraint, as follows:

Bt ≤
(µt

θ
− 1
)
Nt. (1.30)

On the left hand side of (1.30), the aggregate loans from household sector, Bt, is

equal to Qt −Nt, as one of the market clearing conditions (1.11). The right hand of
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(1.30) is equal to aggregate net worth of the banking sector with a multiplier. It can

be considered as the collateral required by the household to post against the loans.

Setup of the Asset Market

I posit a retail interbank market where the banks can trade Arrow-Debreu securities

(in zero net supply) that pay one unit of net worth given a certain state among

themselves. Suppose that the banks have a better enforcement/monitoring technol-

ogy than households, therefore, the Arrow-Debreu securities are traded frictionless,

i.e. no banks can default on them. Due to zero net supply, the market clearing

condition pins down the Arrow-Debreu prices. In this sense, the stochastic discount

factor suggested by the banks’ portfolio choice problem (defined in equation (1.32))

can price all the assets traded frictionlessly among banks, with their payoffs being

replicated by the Arrow-Debreu securities. Two classes of such assets of my interest

are discussed in order.

First, risky assets. I distinguish between the unobservable return on a claim to

aggregation output (consumption), Ry,t+1, and the observable return on the market

portfolio, Rm,t+1; the latter is the return on the aggregate dividend claim. As in

Campbell and Cochrane (1999) and Bansal and Yaron (2004), I model aggregate

consumption and aggregate dividend as two separate processes. In particular, the

log growth rate of aggregate dividend is specified as:

log

(
Dt+1

Dt

)
= µd + ϕσεy,t+1 + ϕdσεd,t+1.

in which εy,t+1 is the consumption shock specified as an i.i.d. random variable with

finite state Markov chain as before, and εd,t+1 is standard Normally distributed, and
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captures the dividend growth shock that is uncorrelated with consumption growth

shock. Two additional parameters ϕ > 1 and ϕd > 1 allow me the calibrate the

overall volatility of dividends (which is larger than that of consumption in the data)

and its correlation with consumption. I use Qd,t to denote the price of the dividend

claim, and the market return is thus defined as,

Rm,t+1 =
Qd,t+1 +Dt+1

Qd,t

.

Second, the interbank loans that lend one unit of net worth today and return

(pay back) RL
f,t units in the next period, which RL

f,t denotes the gross interest rate.

Asset Pricing

In this section, I discuss the equilibrium conditions that determines the returns of

three kinds of assets, namely, interest rates on household and interbank loans, and

the returns for risky assets.

The interest rate on household loans is determined by the Euler equation of

household problem, unaffected by frictions and has the standard interpretation of

the optimal trade-off between consumption and savings.

Lemma 1. The interest rate for the loans from the household sector, Rf,t, must

satisfy

E [Mt+1]Rf,t = 1.

Under the asset market structure in the interbank market discussed in last sec-

tion, although the banks re constrained in obtaining household deposits, they are

unconstrained in choosing risky assets and interbank loans. The stochastic discount
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factor suggested by the bank’s portfolio choice problem price the risky assets and

the interbank loans.

Lemma 2. The returns, Rt+1, for any assets that financial intermediary can trade

frictionlessly among themselves (i.e. ”frictionless” means that bank cannot default

on them), including Rm,t+1, Ry,t+1 and RL
f,t, must satisfy

E [Mt+1 {λ+ (1− λ)µt+1}Rt+1] = Ωt, (1.31)

in which

Ωt = νt
Pt
Qt

,

= νt + θ

(
1−

νt
µt

)
.

I use M̃t+1 to denote the “augmented stochastic discount factor” implied by bank’s

optimization problem,

M̃t+1 =Mt+1
λ+ (1− λ)µt+1

Ωt

, (1.32)

which can price all the assets traded frictionlessly among banks. Beside Mt+1, the

intertemporal marginal rate of substitution of consumption, M̃t+1 also depends on

an additional component, Φt+1, which I define as:

Φt+1 =
λ+ (1− λ)µt+1

Ωt

. (1.33)

The term, λ + (1− λ)µt+1, is a measure of shadow price of net worth at the next

period, which is a weighted average of marginal value of net worth given the bank
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is forced to liquidate or not. Based on the equation (1.31), Ωt can be interpreted as

the (risk adjusted) present value (in term of consumption good) of investing one unit

of net worth for one period, which is a measure of the marginal value of net worth

at current period. Thus, we can think of the second component, Φt+1,as the shadow

price appreciation from period t to t + 1. And the augmented stochastic discount

factor has the interpretation of the intertemporal marginal rate of substitution with

respect to additional unit of net worth. M̃t+1 depends not only on household con-

sumption, but also on intermediary equity capital. The banker dislikes assets with

low return when aggregate consumption is low, and when his financial intermediary

has low net worth/high debt.

Up to a log-normal approximation8, I use m, π and r denote the logarithm terms,

and derive a two-factor model for risk premium for all assets:

Et
(
rt+1 − rLf,t

)
+

1

2
vart (rt+1) = −covt (mt+1, rt+1)− covt (φt+1, rt+1) . (1.34)

One the right hand side of equation (1.34), the first term, −covt (mt+1, rt+1), is

standard as in the economy without frictions. The second term, −covt (φt+1, rt+1),

is responsible for asset pricing impacts for the additional channel of a leverage con-

straint. As shown in Section 1.4.3, the non-linear sensitivity of the marginal value of

net worth, µt+1, with respect to a fundamental shock, translates into countercyclical

exposure of φt+1 to the shock, and therefore, generates countercyclical market price

of risk.

8 The log-normality assumption may not be a good approximation here, as the model endogenously
generates negative skewness and excess kurtosis to asset prices. This assumption facilitates to
obtain a two-factor asset pricing equation for expressional purpose. The model computation and
qualitative results in the paper do not rely on this assumption.
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Note that two interest rates are priced by different stochastic discount factors,

therefore, there is an interest rate spread, as stated in the following lemma:

Lemma 3. The interest rate spread, defined as the difference between interest rate on

interbank loans, RL
f,t, and interest rate on household, Rf,t, is equal to zero when par-

ticipation constraint is not binding, but becomes strictly positive when the constraint

binds.

First, we have Rf,t = RL
f,t whenever the constraint is not binding, because in

this case, the leverage constraint is slack and both loans act as a perfect substitute.

Second, we have Rf,t ≤ RL
f,t when the intermediary sector is constrained. From the

demand perspective, interbank borrowing is very attractive. It allows banks to invest

in the stock without affecting their debt capacity with the household. As a result,

all banks want to borrow from each other on the interbank market. Market clearing

requires interest rate to go up to clear the market. I will provide more intuitions on

the interest rate spread in Section 1.4.3 through quantitative results.

1.4 Quantitative Results

In this section, I calibrate the model at an annual frequency and evaluate its ability

to replicate key moments of both cash flow dynamics and asset returns. I focus on

a long sample of U.S. annual data (1930− 2011), including pre-war data, whenever

the data is available. I begin with evaluating the model performance with CRRA

utility, and compare the simulation accuracy between the global method and a third

order local approximation method. Then, I focus on the benchmark model with

recursive preferences, based on calibrated parameters reported in Table 1.1, and
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extensively discuss its quantitative asset pricing implications. Appendix A.3 provides

more details on the data sources.

1.4.1 Quantitative Evaluation the Solution Method

I begin with the model with CRRA utility and compare the performance of the global

method used in this paper with a third order local approximation method. I argue

that using a global method which allows for occasionally binding constraint is critical

to quantify the asset pricing implications of financial frictions.

First, I focus on CRRA utility case at different levels of risk aversion, namely,

γ = 1 (log utility), γ = 2 and γ = 5, which are commonly used in the macroeco-

nomics literature. For each calibration experiment, I keep all the other parameters

the same as in the benchmark calibration, summarized in Table 1.1, and I com-

pare the same model with the global method and a third order local approximation

method implemented by the Dynare++ package. For each experiment, the moments

from different solution methods are listed in two adjacent columns. The results are

reported in Table 1.2.

I make the following observations. First, even with CRRA utility at low levels of

risk aversion, for instance, γ = 1 (log utility), or γ = 2, the probability of constrained

region is still low, around 20 − 30%. When risk aversion increases, the probability

of constrained region rapidly decreases. Second, it is surprising but interesting to

see that the model’s implied equity premium decreases with risk aversion, and this

pattern behaves in the opposite direction as compared with the standard Lucas

economy without frictions. In CRRA utility case, the IES, as the reciprocal of

the risk aversion, decreases with risk aversion, and leads the average leverage ratio
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to decrease dramatically, and in turn makes the volatility of shadow price of net

worth to decrease rapidly. Since the dampening effect from the volatility of shadow

price of net worth dominates the marginal rate of substitution of consumption, the

first component in M̃t+1 as defined in equation (1.32), the augmented stochastic

discount factor becomes less volatile and equity premium decreases. This experiment

conveys the message that with CRRA utility, the financial frictions are not likely to

have large asset pricing implications, because there is a strong trade-off between

the contributions of two components in the augmented stochastic discount factor

to the market price of risk. In Section 1.4.5, I will come back to this point and

argue that when we incorporate recursive preferences with an IES larger than 1,

the dampening effect discussed here is much weaker, and financial frictions generate

significant impacts on asset prices.

It is also noteworthy that as the probability of constrained region decreases with

risk aversion, the model’s simulated moments suggested by the local approximation

method have larger discrepancies with those of the global method. To further illus-

trate this point, in Table 1.3, I fix the risk aversion at γ = 2, and compare the model

results for different bank asset divertible fractions θ = 0.2, 0.4, and 0.8. As above,

for each experiment, I keep all the other parameters the same as in the benchmark

calibration, summarized in Table 1.1. Since the parameter θ directly affects the in-

centive for banks to divert by increasing its outside option value, the probability of

constrained region is monotonically increasing with θ. As suggested by the global

solution, in the high θ case (θ = 0.8), the constraint is almost always binding, while

in the low θ case (θ = 0.2), the prob(binding) is as low as 0.03. Clearly, in the high

θ case, the third order local approximation solution performs very well, and reports

31



very close moments to the global solution. However, in the low θ case in which the

constraint rarely binds, the local approximation solution which imposes the assump-

tion that the constraint always binds around steady state, greatly exaggerate the

asset price volatilities, and therefore overstate the equity premium. In particular, in

the low theta case (θ = 0.2), the volatilities of price-dividend ratio and interbank

interest rate are overestimated by more than twice and 10 times, respectively. And

the equity premium is overestimated by more than 5 times.

I use the Den Haan and Marcet simulation accuracy test (1994) to compare the

computation accuracy of the two solution methods. The basic idea is to construct

the test statistic to measure the distance of simulated Euler equation error from

zero. Under null hypothesis of exact numerical solution, the test statistic follows

a χ2 distribution. Additional details on constructing the test statistic are provided

in Appendix A.5. Fig. 1.3 and Fig. 1.4 report the results for high θ case. In par-

ticular, they plot the empirical cumulative distribution of test statistic (based on

500 simulations of 1000 annual observations) versus its true χ2 distribution under

the null hypothesis for the global method and the local approximation method re-

spectively. Both figures show that the empirical cumulative distributions are close

to the true distribution under the null hypothesis. This implies that a third order

local approximation method works well when prob(binding) is high. Fig. 1.5 and

Fig. 1.6 compare the results for low θ case. Fig. 1.5 shows that the global method

still works well, however, the local approximation method fails in the sense that the

empirical cumulative distribution of simulation accuracy test statistic is far from its

true distribution under the null hypothesis.

In sum, in order to quantify the asset pricing implications of financial intermedi-
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ary, we need to go to recursive preferences that which allow for a separation between

the IES and risk aversion, and consequently permit both parameters to be simultane-

ously larger than 1, and use a global solution method which accounts for occasionally

binding constraint.

1.4.2 Parameter Values

In this section, I discuss the parameter values in the benchmark calibration, which

are summarized in Table 1.1.

Following Bansal and Yaron (2004), I set the relative rate of risk aversion, γ, to

be 10, and the elasticity of intertemporal substitution, ψ, to be 1.5. I set the discount

factor, β, to be 0.994 to match the level of risk-free interest rate for the household

loans in the data.

In the log output growth process, the parameters µy and σ are calibrated to

match the mean and volatility of the consumption growth in the data. Similarly,

µd matches the average log dividend growth rate. Two additional parameters in

the log dividend growth process, ϕ > 1 and ϕd > 1 allow me to match the overall

volatility of dividends (which is larger than that of consumption in the data) and

its correlation with consumption. The parameter ϕ, captures the loading of the log

dividend growth process on the consumption growth shock. As in Abel (1999), ϕ

can be interpreted as the leverage ratio on consumption growth.

There are three parameters for the financial sector: the annual liquidation/exit

probability of banks, λ ; the transfer parameter for new banks, δ, and the fraction of

bank asset divertible, θ . I set λ = 0.12, implying that banks survive for 8.33 years

on average, similar to the number used in Gertler and Kiyotaki (2010).
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There are no direct empirical counterparts in the data to pin down the rest

two parameters, δ and θ. I choose these two parameters indirectly to match the

following two targets: an average leverage ratio of 4 for economy-wide financial

intermediary sector, and a standard deviation of interest rate spread of 0.55% per

annum, consistent with that of TED spread.

Several considerations are noteworthy. First, as in Gerlter and Kiyotaki (2010),

the model treats the entire intermediary sector as a group of identical institutions.

Note that in the model the capital structure of the intermediary plays a central role

in asset prices determination. It is important to match the leverage ratio because

it affects how consumption shocks get magnified and the probability of being in the

constrained versus unconstrained region. I follow the composition of the financial

intermediary sector defined in Adrian, Moench and Shin (2011) to compute the

leverage ratio of the aggregate financial intermediary from the Flow of Funds Table

9. The average leverage ratio over the sample period 1945− 2011 is 3.67. I calibrate

the parameters so that the model produces an average leverage ratio of 4.

Second, I calibrate the parameters based on the second moment, instead of the

mean, of the TED spread. In the model, when the constraint is not binding, the

interest rate spread is equal to zero, however, in the data, the TED spread is largely

positive but smooth when the financial intermediary is well capitalized. Therefore,

I match the volatility of TED spread. In the model, the volatility of interest rate

spread is closely related to the probability of being in the constrained region. This

moment provides a strong discipline on how much chance that the constraint is

9 Publicly available at the online data library of Federal Reserve Board,
http://www.federalreserve.gov/releases/z1/.
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binding.

1.4.3 Basic Properties of the Model’s Solution

In this section, I show the basic properties of the model’s solution. In particular,

I present the equilibrium prices, conditional volatilities of the market return and

stochastic discount factor, and the equilibrium market return and risk-free interest

rates, as functions of the state variable in this economy, i.e. the normalized debt

level, b.

Equilibrium Prices

Fig. 1.7 shows the equilibrium price-dividend ratio and marginal value of net worth

as functions of normalized debt, b, of the banking sector.

I make the following observations: First, I assume the realized consumption

growth is bounded and satisfies the parameter restrictions as discussed in Section 1.3.3.

This is important, otherwise, the equilibrium may not exist as shown in Ai, Bansal

and Li (2012). In other words, if we assume that shocks are conditionally (log)

Normal as in typical RBC models, there will be no equilibrium although the log-

linearization method in Gertler and Kiyotaki (2010) still produces a solution. As

a result of that assumption, the equilibrium level of debt will always be bounded

between bMIN and bMAX .

Second, the top panel shows that the equilibrium price-dividend ratio is monoton-

ically decreasing in b. As a comparison, the price-dividend ratio is a constant in the

Lucas economy without frictions. The intermediary normalized debt level strongly

affects asset prices through an adverse dynamic feedback: a negative fundamental
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shock causes the losses of net worth and the accumulation of more debt, lowers the

borrowing capacity of the intermediary today and into the future, and thus lowers the

investment in risky asset market and depresses the stock prices, which further lowers

the net worth. Importantly, note that the price-dividend ratio is low even when the

constraint is not binding. The possibility of a binding constraint in the future lower

the bank’s capacity to invest in the stock today, and consequently lowers the market

price of the stock. This implies that the amplification effect on risk premium is in

action even in the unconstrained region, although the magnitude is smaller than in

the constrained region.

With similar intuitions, the bottom panel shows that the marginal value of net

worth is monotonically increasing in b. Note that in the standard Lucas economy it

is a constant, and equal to 1.

Furthermore, the dashed line in bold in Fig. 1.7 depicts the the equilibrium

prices in the constrained region. In the region where the constraint is binding, the

price-dividend ratio decreases sharply and the marginal value of net worth increases

sharply. This implies that the effects of intermediary debt on asset prices are non-

linear and are especially large in bad times when the intermediary debt is high.

That is, when the intermediary sector is extremely financially constrained, a negative

fundamental shock is amplified to have large effects.

Conditional Volatility of Returns

Fig. 1.9 presents the conditional standard deviation of the market return (in log

units) as a function of normalized debt level b. As the banking sector becomes more

financially constrained, the conditional volatility of market return increases. Due to
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the nonlinear sensitivity of price-dividend ratio with respect to the intermediary debt

level as shown in the top panel of Fig. 1.7, the conditional volatility of market return

increases more sharply when the banking sector is more levered. The increasing

conditional volatility with the adversity of the state implies that the exposure of

market return on the consumption shock (i.e. return beta) is increasing in bad

times, which is one of the important channels to generate higher equity premium in

bad times. As a comparison, the conditional variance of the return is constant in the

Lucas economy without frictions since the price-dividend ratio is a constant.

The model endogenously produces several effects that have been emphasized in

the empirical literature. First, the conditional variance in stock returns is persistent.

The state variable, b, is persistent, and it translates into a persistent conditional

variance of stock returns. Second, the model endogenously generates a ”leverage

effect”, that is, a consumption shock, as a negative innovation to market return, is

a positive innovation to return volatility. Third, the conditional volatility of stock

returns is countercyclical, and is higher when the intermediary net worth is low.

Conditional Volatility of Stochastic Discount Factor

Fig. 1.8 presents the conditional standard deviation of stochastic discount factor (in

log units) as a function of normalized debt level b. The conditional volatility of

the stochastic discount factor determines the maximal Sharpe ratio. As the banking

sector becomes more financially constrained, the conditional variance of stochastic

discount factor increases. As discussed in Section 1.3.5, the stochastic discount factor

depends not only on the aggregate consumption, but also on the shadow price of net

worth. The second component increases more sharply when the leverage of the
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intermediary sector is high as shown in the bottom panel of Fig. 1.7 and translates

into higher volatility of the stochastic discount factor. The increasing conditional

volatility of the stochastic discount factor with the adversity of the state implies

that the market price of consumption shock is increasing in bad times. This is an

important channel for generating countercyclical equity premium. As a comparison,

the conditional volatility of the stochastic discount factor is constant in the Lucas

economy without frictions since the shadow price of net worth is a constant at 1, and

the consumption growth is homoscedastic.

Equity Premium

Fig. 1.10 presents the expected market return on levered dividend claim and two risk-

free interest rates, i.e. the interbank interest rate, and the interest rate on household

loans, as functions of the normalized debt level.

I define the equity premium as the spread between expected market return and

interbank interest rate, Et
(
rm,t+1 − rLf,t

)
, as it is determined by the covariance of the

augmented stochastic discount factor m̃t+1 and the market return rm,t+1. I make the

following two observations. First, the equity premium increases with intermediary

sector’s normalized debt level, b. Second, the behavior of increases in the equity

premium is asymmetric, namely, it increases much faster in the constrained region

than in the unconstrained region. Both observations are explained by the fact that

the equilibrium asset prices are more sensitive to the fundamental shocks when the

intermediary net worth is low. As the financial intermediary sector becomes more

financially constrained, both the exposure of market return to consumption shock

(i.e. return beta) and the market price of the shock increase, and thus contribute to a
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higher equity premium. And the equity premium increases faster when intermediary

is extremely under-capitalized.

Interest Rate Spread

Fig. 1.10 shows two interest rates as functions of the normalized debt level, b. The

interest rate on household loans, rf,t, is a constant, and does not depend on the state

variable b, as stated in Lemma 1. The interest rate on interbank loans rLf,t is identical

to rf,t when the constraint does not bind. However, when the constraint binds, the

interest rate spread, denoted as
(
rLf,t − rf,t

)
, becomes strictly positive, and increases

with the state variable b. This pattern is consistent with the empirical evidence that

in bad times when the banking sector is under-capitalized, the TED spread spikes.

In order to understand the response of interbank interest rate rLf,t, it is important

to focus on the conditional mean of stochastic discount factor (in log units), i.e.

logEt [exp (mt+1 + φt+1)], which is equal to −rLf,t (up to a log-normal approximation).

logEt [exp (mt+1 + φt+1)] (1.35)

= Et (mt+1) +
1

2
vart (mt+1)

+Et (φt+1) +
1

2
vart (φt+1) + covt (mt+1, φt+1) .

In the i.i.d. consumption growth case, the first term Et (mt+1) +
1
2
vart (mt+1) is

constant. Fig. 1.11 plots a decomposition of the rest two terms in the conditional

mean of stochastic discount factor, i.e. Et (φt+1) and
1
2
vart (φt+1)+covt (mt+1, φt+1) .

Clearly, there are two forces determining the response of the interbank interest rate.
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First, the top panel shows that Et (φt+1) is decreasing in b. In the bad state with

a negative shock which leads to a higher debt level, the net worth becomes more

valuable today than the next period. Thus, the banks are very reluctant to lend

net worth to others, instead they have strong incentive to borrow net worth and

invest. Due to zero net supply, the market clearing condition drives up the inter-

bank interest rate. Second, the bottom panel shows the second moment component

1
2
vart (φt+1) + covt (mt+1, φt+1) increases in b. The precautionary savings effect de-

creases the interbank interest rate. As shown by the magnitude of two panels, the

first effect dominates the precautionary savings effect, and thus overall the interest

rate on interbank loans increases in response to a negative fundamental shock, when

the constraint is binding.

1.4.4 The Performance of Benchmark Model

I repeatedly simulate 1000 artificial samples from the model, each with 81 annual

observations. For each data moment, I report the median value, 2.5, 5, 95, and 97.5

percentiles, as well as the population value from a very long simulation (a long

simulation of 10000 annual observations). The results are summarized in Table 1.4.

Designed by the calibration procedure, the model matches the aggregate con-

sumption and dividend dynamics very well. It is noteworthy that by choosing two

parameters, ϕ and ϕd, i.e. the loadings of aggregate dividend growth on consumption

growth shock and its own shock, the model roughly matches the correlation between

consumption and dividend growth, and the overall volatility of dividend process.

I use two asset pricing moments, namely, the leverage ratio and the volatility

of interest rate spread to calibrate the model. Not surprisingly, the model matches
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these two moments very well.

The model also performs very well in matching other asset pricing moments which

are not targeted in the calibration. First, the model internally generates a persistent

fluctuations of price-dividend ratio with first autocorrelation of 65%, even though

the driving consumption growth process is i.i.d. Note that in the Lucas economy

without frictions, price-dividend ratio is a constant. In this economy, intermediary’s

debt level is a state variable that affects asset prices, and thus price-dividend ratio

inherits its positive serial correlation.

Second, the model produces a high equity premium (in log units) of 4.1%, a

significant share (78%) of the equity premium observed in the data, and a stock

market volatility of 16.5%, only slightly lower than a volatility of 19.8% in the data.

However, we also notice that there are some discrepancies between the model

implied moments with the data. The model implied average interest rate spread

is 0.15%, lower than 0.64% in the data. As I argued in Section 1.4.2, the model

predicts zero interest rate spread when constraint does not bind, however, in the

data, the TED spread is largely always positive even when the banking sector is

well-capitalized. What’s more, we only have TED spread for a short sample (1986−

2011), therefore, the average spread may be driven high due to the inclusion of the

recent financial crisis period when the TED spread was enormously high. Another

discrepancy is that the model understates the volatility of the log price-dividend

ratio. In the model, the standard deviation of the log price-dividend ratio is 0.12, as

compared with 0.45 in the annual data. Historical stock prices display low-frequency

variation relative to cash flow, which is not captured in the model. The historical

standard deviation of log price-dividend ratio is this high in part because stock prices
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were persistently high at the end of the sample period. In Bansal and Yaron (2004),

the sample period ends at 1998, they obtain a lower standard deviation of 0.29 in

the data, but still somewhat higher than in the model here.

Overall speaking, Table 1.4 suggests that the model performs relatively well to

match both cash flow dynamics and asset pricing moments for U.S. data, given the

driving force is an i.i.d. process. I could introduce a predictable component in

expected consumption and dividend growth to further improve the persistence and

standard volatility of price-dividend ratio.

1.4.5 Comparative Statics

To shed more light on the economic mechanisms in the model, Table 1.6 conducts

five comparative statics by varying the key parameters: (1) risk aversion decreased

from 10 in the benchmark calibration to 5; (2) the volatility of consumption growth,

changed from 2.20% to 1.56% per annum to match the post-World War II aggregate

consumption data; (3) IES ψ changed from 1.5 to 0.5; (4) the fraction of banks

forced to liquidate in each period, λ, from 0.12 to 0.16; (5) the fraction of bank

asset divertible, θ, from 0.4 to 0.6. In each experiment, except for the parameter

being perturbed, all the other parameters are kept the same as in the benchmark

calibration. In Table 1.6, all moments are reported from a very long simulation of

data from the model at the annual frequency. The first column corresponding to the

benchmark calibration as reported in Table 1.6.
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Different Risk Aversion γ and Consumption Volatility σ

The first two variations consider changes in the risk aversion γ and the consumption

volatility σ, the moments of which are reported in the second and third column,

respectively.

Relative to the benchmark calibration of γ = 10, setting γ = 5 decreases the

equity premium and the probability of entering the constrained region. When lower

risk aversion, the intermediary sector is less conservative, and is willing to take a

more risky portfolio, i.e. it has a higher average leverage ratio. Hence, the same

consumption volatility is translated into a greater volatility of net worth, and the

economy is more likely to hit a binding constraint state. This is a risk-taking effect.

There is also a general equilibrium effect reinforcing the risk-taking effect. Due to a

lower risk aversion, the market price of risk falls and causes the intermediary to be

compensated less per unit of risk, and therefore, the intermediary sector on average

retains less earnings, and has a lower average net worth level, which in turns leads the

constraint to bind more often. Furthermore, we also observe that lower risk aversion

increases the interest rate spread due to the dampening of the precautionary saving

effect.

When lowering the consumption volatility to post-World War II level, it is in-

tuitive to observe that the equity premium, the volatility of net worth and stock

return all decreases. However, a surprising result in the case is the probability of

constrained region increases with a lower level of fundamental shock. The reason is

that the increasing price-consumption ratio (i.e. increasing the right hand side of

the constraint) makes the intermediary has more incentive to divert bank assets.
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Different IES ψ

Relative to an IES = 1.5, setting IES = 0.5 has important asset pricing impli-

cations. The moments of this experiment are presented in the fourth column of

Table 1.6. First, lower IES leads to a higher risk-free interest rate for the loans

from the household sector. Second, an IES smaller than 1 implies a much lower

average leverage ratio, meaning that the banking sector holds a less risky portfolio.

As expected, the same fundamental volatility is translated to a smaller volatility of

net worth and a lower equity premium. Surprisingly, the probability of constrained

region is increasing. This is because the general equilibrium effect dominates the

risk-taking effect: the price of risk falls and the banking sector is compensated less

per unit of risk, and hence it has a lower average net worth level, which in turn leads

to the constraint to bind more frequently.

Different Liquidation/Exit Probability λ

In the fifth column of Table 1.6, I increase λ, the fraction of banks forced to liquidate

each period, from 0.12 to 0.16. This implies that the average survival duration de-

creases from 8.33 years to 6.25 years. As we can see from the Table 1.6, since every

period there is a larger fraction of net worth paid back to the household sector, the

banking sector tends to be more financially constrained, and have a higher average

leverage ratio. Following the same “risk taking” story as stated above, higher risky

position is translated into a higher volatility of the net worth and a higher equity

premium. Higher volatility of the net worth leads the economy to enter the con-

strained region more often. This effect is also reinforced by the lower average net

worth of the banking sector.
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It is noteworthy that this experiment also reflects a amplification and persistence

trade-off. With a higher λ, that is, a larger fraction of aggregation net worth paid

back to the household sector each period, the equilibrium premium increases, how-

ever, the price-dividend ratio is less persistence, translated by a less persistent net

worth process. This case is expected to feature a less return predictability.

Different Bank Asset Divertible Fraction θ

In the experiment shown in the last column, I increase the parameter θ, which

dictates the fraction of bank asset divertible, from 0.4 to 0.6. This mainly affects the

average leverage ratio of the banking sector. As the banking sector can divert a larger

fraction of bank assets, the leverage constraint allows a much lower average leverage

ratio. As a result, the volatilities of net worth and of shadow price of net worth

decrease, which leads to a decrease in equity premium and stock market volatility.

Despite of lower average leverage, the probability of constrained region is still larger

than in the benchmark case. This is because the right hand side threshold of the

constraint increases, which makes it to bind more frequently.

Conditional Moments

Table 1.5 shows the model implied moments conditional on the leverage constraint

being binding or not. Each panel of the table corresponds to a comparative statics

experiment discussed above. As shown in the table, for all cases, the leverage ratio,

Sharpe ratio and interest rate spread conditional on the constraint being binding is

higher than those moments in the unconstrained region.
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1.5 Additional Asset Pricing Implications

1.5.1 Variance Decomposition of Price-Dividend Ratio

In this section, I replicate the variance decomposition of price-dividend ratio as

in Cochrane (1992) and Campbell and Cochrane (1999). Table 1.7 presents the

estimation results. Consistent with previous research, the estimates in the data

find that more than 100 percent of the price-dividend ratio variance is attributed to

expected return variation. A high price-dividend ratio signals a decline in subsequent

real dividends, so it must signal a large decline in expected returns. The model is

consistent with this feature in the data. Almost all (over 90%) the variation in

price-dividend ratio is due to changing expected returns. This evidence repeats the

intuition discussed above: the expected dividend growth is our model is constant over

time, however, a negative fundamental shock, which causes the loss of net worth (or

the accumulation of net debt), provides an endogenous channel of a discount rate

shock, that greatly and persistently lowers the expected return.

An interesting point of comparison for my result is to the habit model in Cochrane

and Campbell (1999). In that model, they modify the utility function of a repre-

sentative investor to exhibit time-varying risk aversion, and therefore a negative

fundamental shock is a discount rate shock by construction. Differently, I work on

CRRA utility and recursive preferences as a more general utility function to disen-

tangle risk aversion with IES, but generate an endogenous channel of time-varying

equity premium as a function of the frictions in the economy.
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1.5.2 Return Predictability

In this section, I provide the valuation on model’s ability to endogenously generate

return predictability. The left panel of Table 1.8 reports the results on predictability

of mutli-period excess returns by the log price-dividend ratio. Consistent with evi-

dence in earlier papers, In the data, the R2 rises with maturity, from 4% at one year

horizon to about 31% at the five year horizon. The model-implied predictability of

equity return is somewhat lower. The slope coefficients in the multi-horizon return

projections implied by the model are of the right sign and magnitude compared to

those in the data.

The right panel of Table 1.8 shows evidence on predictability of multi-period

excess returns by the log leverage ratio of the aggregate financial intermediary sector.

In the data, the R2 rises with maturity, from 9% at one year horizon to about

28% at the five year horizon. The model-implied predictability of equity return is

comparable to those in the data, and the slope coefficients in the multi-horizon return

projections implied by the model are of the right sign as those in the data. In sum,

the empirical evidence presented in this section shows that the leverage constraint

channel endogenously generates significant variation in equity premium.

1.5.3 Correlation Structure of Leverage Ratio

The economic mechanism in the model has strong implications for the correlation

of leverage ratio with various asset market moments. In Table 1.9, I reports the

correlations of leverage growth with price-dividend ratio, excess stock return, stock

market integrated volatility and financial asset growth of the intermediary sector.

In the literature, there are some discussions about the cyclicality of leverage ra-
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tio. In particular, Adrian and Shin (2010) documents that the leverage ratio of

security broker-dealers is highly procyclical, by showing that leverage ratio of this

particular type of financial intermediary, constructed from Flows and Fund Table in

U.S., is positively correlated with its asset growth. He, Khang and Krishnamurthy

(2010) shows that there is large heterogeneity among different types of financial in-

termediary. In particular, they document that in the period of 2007q1 to 2009q1,

the broker-dealers shed assets, consistent with Adrian and Shin (2010)′s evidence,

however, the commercial banking sector increased asset holdings over this period

significantly, and therefore, increased its leverage ratio. In this paper, the model in-

termediary sector is meant to capture the entire financial intermediary sector. Thus,

I follow the definition in Adrian Moench and Shin (2011) to construct the leverage

ratio of aggregate intermediary sector, with a coverage consistent with the model.

The details about data construction are shown in the Appendix A.3. I find, in the

data, the leverage growth of aggregate intermediary sector is negatively correlated

with its asset growth, which suggests the leverage ratio is countercyclical. This is

consistent with the model.

The data also suggests that in bad times when leverage ratio increases, stock

price is low, the stock return decreases in the contemporaneous period, and stock

market volatility increases. The benchmark model fits these correlation patterns in

the data well.

1.5.4 Correlation Structure of Interest Rate Spread

As a distinct prediction, the model draws strong implications for the correlation of

interest rate spread between interbank and household loans with price-dividend ratio,
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price-earnings ratio and the stock market volatility. Fig. 1.1 shows the periods of

significant widening of TED spread coincide with those of dramatic increases in stock

market volatility, and large decreases in price-dividend and price-earning ratios. In

Table 1.10, I confirm these correlations. As I discussed in Section 1.4.3, the model is

consistent with the correlation patterns in the data well. In the model, the interest

rate spread, as a measure of the tightness of the credit constraint, spikes when the

intermediary sector are extremely financial constrained. The banks are constrained,

and do not have liquidity to lend out to others, thus, the market clearing drives

up the interest rate. On the other hand, low intermediary net worth depresses the

stock market, and increases the stock market volatility, as we discussed above. These

model predictions explain the empirical evidence very well.

1.5.5 Backward Looking Regression

In this section, I follow Bansal, Kiku and Yaron (2012) to evaluate the model by

examining the link between price-dividend ratio and consumption growth. I replicate

their empirical procedure and run the following regression:

pt+1 − dt+1 = α0 +
L∑

j=1

αj∆ct+1−j + ut+1.

In the actual data and in the simulated data, I regress the log of price dividend

ratio on L lags (L = 1, 2, ..., 5) of consumption growth. In the data, at all lag-

lengths, predictability of the price dividend ratio by lagged consumption growth is

close to zero. However, in the model, price dividend ratio predictability by lagged

consumption has an R2 of 42%, see Fig. . This is not surprising as prices in this

model are driven primarily by the net worth, and hence, by movements in the lagged
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consumption, and a reduction in growth rates causes the loss in net worth, and

thus increases the equity premium, and provide an endogenous positive discount

shock, leading to a fall in current price-dividend ratio. This feature of the model

is similar to the habit model in Campbell and Cochrane (1999). Both models are

backward looking, in the sense that backward consumption plays an important role in

determining current prices. The empirical evidence presented in this section proposes

a challenge for asset pricing models with financial intermediary.

1.6 Conclusion

In this study, I show financial frictions are important for understanding a wide va-

riety of dynamic asset pricing phenomena. I build a financial intermediary sector

with a leverage constraint à la Gertler and Kiyotaki (2010) into a standard en-

dowment economy with recursive preferences and an independently and identically

distributed consumption growth process. Quantitatively, the model generates a high

and countercyclical equity premium, a low and smooth risk-free interest rate and a

procyclical and persistent variation of price-dividend ratio. As a distinct prediction

from the model, when the intermediary sector is financially constrained, the interest

rate spread between interbank and household loans spikes, stock market valuation

ratio falls and the market volatility rises dramatically. This pattern is consistent

with the empirical evidence that high TED spread coincides with low stock price

and high stock market volatility, which I document in the paper.

I use a recursive method to construct the global solution, and argue that ac-

counting for occasionally binding constraint is important for quantifying the asset

pricing implications through a careful quantitative evaluation. A local approximation
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method assuming the constraint always binds around steady state tend to greatly

exaggerate the asset price volatilities and equity premium.

Several extensions are on my research agenda. First, I can introduce a predictable

component of expected growth into the consumption dynamics, i.e. long-run risk

(Bansal and Yaron, 2004). In this context, the long-run risk is both a growth rate

shock and a discount rate shock, because it causes the loss of intermediary capital and

therefore endogenously affects the expected return. Second, it is interesting to study

the asset pricing implications of financial intermediary in a production economy,

in which consumption and investment decisions are endogenous. In this framework,

financial frictions affect not only asset prices, but also real activities, and the leverage

constraint is potentially an endogenous channel to generate long-run risks and rare

disasters in consumption growth, and thus provides some interesting insights in the

context of a production based asset pricing model.
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Table 1.1: Parameter Values in the Benchmark Calibration at the Annual Frequency

Notation Parameters Value

Recursive preferences

β Time discount factor 0.994
γ Relative risk aversion 10
ψ The elasticity of intertemporal substitution 1.5

Financial Sector

λ Liquidation/exit probability of banks 0.12
θ Fraction of bank assets divertible 0.40
δ Transfer to entering banks 0.02

Consumption and Dividend Dynamics

µc Unconditional mean of consumption growth 0.18
σ Unconditional volatility of consumption growth 0.022
µd Unconditional mean of dividend growth 0.105
ϕ Dividend growth’s loading on consumption growth shock 3
ϕd Dividend growth’s loading on dividend growth shock 4

This table reports the parameter values used for benchmark calibration at the annual
frequency.
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Table 1.2: CRRA Utility: Different RRA γ

Data Model

γ = 1 γ = 2 γ = 5
Global Local Global Local Global Local

Avg.Leverage 3.67 4.38 2.72 3.76 3.72 2.51 2.60
E[log(n̂)] - 2.49 2.70 2.02 2.02 1.61 1.58
E(rm − rLf ) 4.58 1.75 1.92 1.09 1.40 0.99 1.57
E(rLf − rf ) 0.64 0.44 -0.05 0.56 0.37 0.12 -0.48

σ[log(n̂)] - 0.30 0.44 0.23 0.26 0.114 0.16
σ(p− d)] 0.45 0.07 0.07 0.05 0.06 0.02 0.05
σ(rm) 19.79 17.34 17.55 16.15 16.82 14.06 15.24
σ(rLf ) 0.55 0.98 2.51 1.09 1.86 0.49 1.49

prob(binding) 0.28 0.35 0.11

This table presents selected moments implied by the model with CRRA utility at differ-
ent risk aversion parameters. Other parameters are kept the same as in the benchmark
calibration in Table 1.1. All the moments reported are computed from a very long sample
of simulated data. In columns “global”, the moments are based on the global solution.
In columns “Local”, the moments are based on a third order local approximation method
implemented using dynare++ package. Means and volatilities of returns and growth rates
are expressed in percentage terms.
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Table 1.3: CRRA Utility: Different Bank Assets Divertible Fraction θ

Data Model

γ = 2 θ = 0.2 θ = 0.4 θ = 0.8
Global Local Global Local Global Local

E[log(n̂)] - 1.96 3.16 2.02 2.02 2.08 2.08
E(rm − rLf ) 4.58 0.96 5.54 1.09 1.40 0.44 0.35
E(rLf − rf ) 0.64 0.05 -3.85 0.56 0.37 2.30 2.32

σ[log(n̂)] - 0.31 1.39 0.23 0.26 0.11 0.11
σ(p− d) 0.45 0.06 0.12 0.05 0.06 0.03 0.03
σ(rm) 19.79 16.21 23.65 16.15 16.82 14.67 14.55
σ(rLf ) 0.55 0.36 5.77 1.09 1.86 0.71 0.71

prob(binding) 0.03 0.35 1.00

This table presents selected moments implied by the model with CRRA utility of risk
aversion parameter of 2, at different fractions of bank assets divertible, θ. Other parameters
are kept the same as in the benchmark calibration in Table 1.1. All the moments reported
are computed from a very long sample of simulated data. In columns “global”, the moments
are based on the global solution. In columns “Local”, the moments are based on a third
order local approximation method implemented using dynare++ package. Means and
volatilities of returns and growth rates are expressed in percentage terms.
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Table 1.4: Dynamics of Growth Rates and Prices Based on Benchmark Calibration

Data Benchmark Model

Estimate Median 2.50% 5% 95% 97.50% Pop

E(∆c) 1.83 1.78 1.30 1.39 2.18 2.30 1.80
σ(∆c) 2.19 2.18 1.92 1.96 2.41 2.44 2.22
E(∆d) 1.08 1.09 -1.22 -0.80 3.02 3.39 1.27
σ(∆d) 10.98 10.90 9.27 9.69 12.35 12.54 10.93

corr(∆c,∆d) 0.56 0.60 0.45 0.47 0.71 0.72 0.59
avg.leverage 3.67 4.00 3.61 3.66 4.51 4.69 4.02
σ(leverage) 1.65 0.93 0.50 0.54 2.32 2.78 1.22
E(rm − rf ) 5.22 4.04 1.25 1.60 6.62 7.06 4.07
E(rm − rLf ) 4.58 3.86 1.01 1.31 6.57 6.96 3.90
σ(rm) 19.79 16.54 14.00 14.42 18.75 19.41 16.69

E(p− d) 3.38 3.12 2.88 2.92 3.32 3.36 3.12
σ(p− d) 0.45 0.12 0.08 0.08 0.15 0.16 0.12

AC1(p− d) 0.86 0.62 0.43 0.47 0.75 0.77 0.65
E(rLf − rf ) 0.64 0.15 0.03 0.03 0.40 0.45 0.17
σ(rLf ) 0.55 0.52 0.13 0.18 0.94 1.09 0.58

This table presents descriptive statistics for aggregate consumption growth, dividends,
prices, the interest rate spread (i.e. the spread between interest rates for interbank and
household loans). The data are real, sampled at an annual frequency and cover the sample
period from 1930 to 2011, whenever the data are available. The sample period for leverage
ratio is from 1945 to 2011. The sample period for interbank interest rate is from 1986
to 2011. The “Model” panel presents the corresponding moments implied by the model.
The first five columns in the right panel represent percentiles of finite sample Monte-Carlo
distributions. Population values (Pop) are computed from a very long sample of simulated
data. Means and volatilities of returns and growth rates are expressed in percentage terms.
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Table 1.5: Model Implied Conditional Moments

Unconstrained Constrained

Panel A: Benchmark
Probability 0.86 0.14
Leverage Ratio 3.69 6.02
Sharpe Ratio 0.21 0.46
Interest Rate Spread 0.00 1.21

Panel B: γ = 5
Probability 0.77 0.23
Leverage Ratio 3.78 6.04
Sharpe Ratio 0.12 0.35
Interest Rate Spread 0.00 1.47

Panel C: σ = 0.0156
Probability 0.58 0.42
Leverage Ratio 3.76 4.86
Sharpe Ratio 0.16 0.32
Interest Rate Spread 0.00 1.25

Panel D: λ = 0.16
Probability 0.72 0.28
Leverage Ratio 4.22 6.34
Sharpe Ratio 0.23 0.45
Interest Rate Spread 0.00 1.55

Panel E: θ = 0.6
Probability 0.33 0.67
Leverage Ratio 2.92 3.65
Sharpe Ratio 0.19 0.31
Interest Rate Spread 0.00 1.34

This table presents selected moments implied by the model conditional on being in the
unconstrained versus constrained regions. Each panel corresponds to a comparative statics
experiment in Table 1.6. All the moments reported are computed from a very long sample
of simulated data. Means and volatilities of returns and growth rates are expressed in
percentage terms.
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Table 1.6: Comparative Statics

Benchmark γ = 5 σ = 0.0156 IES = 0.5 λ = 0.16 θ = 0.6

avg.leverage 4.02 4.30 4.23 3.49 4.81 3.41
E[log(n̂)] 2.86 2.82 2.88 2.15 2.38 2.69
σ[log(n̂)] 0.25 0.28 0.19 0.20 0.26 0.19
AC1(p− d) 0.65 0.65 0.63 0.70 0.55 0.67

σ(µ) 0.47 0.53 0.29 0.23 0.56 0.33
σ(φ) 0.14 0.16 0.11 0.10 0.17 0.10

E(rm − rf ) 4.07 2.96 2.64 3.33 4.83 4.19
E(rm − rLf ) 3.90 2.62 2.11 3.03 4.39 3.29
σ(rm) 16.69 16.96 11.56 15.67 16.47 15.78

E(rLf − rf ) 0.17 0.34 0.53 0.30 0.43 0.90
σ(rLf ) 0.58 0.87 0.93 0.78 0.98 1.01

prob(binding) 0.14 0.23 0.42 0.23 0.28 0.67
amp.eff. 2.68 3.61 2.89 2.09 3.03 2.26

This table presents selected moments implied by the model for comparative statics exper-
iments. The first column reports the moments based on benchmark calibration. Each of
the rest 5 columns report the moments by changing one parameter, while keeping all the
other parameters the same as in the benchmark calibration. All the moments reported are
computed from a very long sample of simulated data. Means and volatilities of returns
and growth rates are expressed in percentage terms. σ(µ) denotes the volatility of shadow
value of net worth. σ(φ) denotes the volatility of log(Φ), defined in equation (1.33).
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Table 1.7: Variance Decomposition of Price-Dividend Ratio

Source Data S.E. Model

Dividends -6% (31%) 2%
Returns 108% (42%) 90.45%

This table reports the percentage of var(p − d) accounted for by returns and dividend
growth rates:

100
15∑

j=1

Ωj
covt (pt − dt, xt+j)

vart (pt − dt)

x = −r and ∆d, respectively, and Ω = 1
1+E(r) . The “model” column is based on a very

long simulation of annual observations from the model with benchmark calibration.
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Table 1.8: Return Predictability

Predictor p-d log leverage

Data (S.E.) Model Data (S.E.) Model
B(1) -0.09 (0.07) -0.27 0.09 (0.05) 0.05
B(3) -0.27 (0.16) -0.43 0.22 (0.09) 0.09
B(5) -0.43 (0.21) -0.66 0.28 (0.11) 0.10

R2(1) 0.04 (0.04) 0.05 0.02 (0.02) 0.06
R2(3) 0.19 (0.13) 0.09 0.09 (0.04) 0.10
R2(5) 0.31 (0.15) 0.15 0.11 (0.05) 0.16

This table provides evidence on predictability of future excess return by log price-dividend
ratio, and log leverage ratio of the aggregate intermediary sector. The entries correspond
to regressing

ret+1 + ret+2 + ...+ ret+j = α(j) +B(j)xt + vt+j

where ret+1 is the excess return, j denotes the forecast horizon in years. xt denotes log
price-dividend ratio for the left panel, and denotes log leverage ratio for the right panel.
The entries for the model are based on 1000 simulations each with 81 annual observations.
Standard errors are Newey-West corrected using 10 lags.
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Table 1.9: Correlations of Aggregate Leverage Ratio and Asset Prices

Data S.E. Model

corr(∆lev, p− d) -0.71 0.20 -0.44
corr(∆lev, rm − rLf ) -0.75 0.19 -0.93
corr(∆lev, IV ) 0.38 0.16 -
corr(∆lev, asset− growth) -0.60 0.16 -

This table shows the correlations between log leverage growth of aggregate intermediary
sector with asset market moments, including price-dividend ratio, stock excess return,
stock market integrated volatility and financial asset growth in the aggregate intermediary
sector. The data are sampled at the annual frequency, ranging from 1945 to 2011. Data
constructions are described in the Appendix A.3. The numbers reported in “S.E.” col-
umn are based on GMM Newey-West standard errors. The corresponding model implied
correlations are reported whenever applicable, based on a very long sample of simulated
data.

Table 1.10: Correlations of Interest Rate Spread and Asset Prices

Data S.E. Model

corr(rLf − rf ,∆lev) 0.11 0.06 0.46
corr(rLf − rf , p− d) -0.42 0.20 -0.77
corr(rLf − rf , IV ) 0.32 0.15 0.40

This table shows the correlations between TED spread with asset market moments, in-
cluding log leverage growth of the intermediary sector, log price-dividend ratio, log price-
earnings ratio and stock market integrated volatility. The data are sampled at the annual
frequency, ranging from 1986 to 2011. Data constructions are described in the Appendix
A.3. The numbers reported in “S.E.” column are based on GMM Newey-West standard
errors. The corresponding model implied correlations are reported whenever applicable,
based on a very long sample of simulated data.
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Figure 1.1: TED Spread, p-d ratio, p-e ratio and Integrated Volatility

This figure plots TED spread, log p-d ratio, log p-e ratio and integrated volatility over
the sample period 1986 to 2011. TED spread and integrated volatility are in annualized
percentage. Shaded areas refer to NBER dated recessions. Data constructions are described
in Appendix A.3.
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Figure 1.2: Leverage Ratio of Aggregate Financial Intermediary Sector

This figure shows scatter plots of the growth rate of financial assets (horizontal axis) versus
the growth rate of leverage ratio (vertical axis) of the aggregate financial intermediary
sector. The sample is at quarterly frequency, ranging from 1952q2 to 2011q4. Both axes
are measured in percentage. The constructions of the total financial assets and leverage
ratio of the aggregate financial intermediary sector are described in Appendix A.3.
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Figure 1.3: Accuracy of Global Method (High θ Case)

This figure shows the cumulative distribution function of the simulation accuracy test
statistics suggested by Den Haan and Marcet (1994) and the corresponding χ2 distribution
under the null hypothesis. The realizations of the test statistics are based on 500 simulation
paths, each with 1000 annual observations. The simulations are based on the global solution
with high θ case (θ = 0.8).
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Figure 1.4: Accuracy of Local Approximation Method (High θ Case)

This figure shows the cumulative distribution function of the simulation accuracy test
statistics suggested by Den Haan and Marcet (1994) and the corresponding χ2 distribution
under the null hypothesis. The realizations of the test statistics are based on 500 simulation
paths, each with 1000 annual observations. The simulations are based on the third order
local approximation solution with high θ case (θ = 0.8).
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Figure 1.5: Accuracy of Global Method (Low θ Case)

This figure shows the cumulative distribution function of the simulation accuracy test
statistics suggested by Den Haan and Marcet (1994) and the corresponding χ2 distribution
under the null hypothesis. The realizations of the test statistics are based on 500 simulation
paths, each with 1000 annual observations. The simulations are based on the global solution
with low θ case (θ = 0.2).
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Figure 1.6: Accuracy of Local Approximation Method (Low θ Case)

This figure shows the cumulative distribution function of the simulation accuracy test
statistic suggested by Den Haan and Marcet (1994) and the corresponding χ2 distribution
under the null hypothesis. The realizations of the test statistics are based on 500 simulation
paths, each with 1000 annual observations. The simulations are based on the third order
local approximation solution with low θ case (θ = 0.2).
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Figure 1.7: Equilibrium Prices as Functions of Normalized Debt Level, b

This figure shows the p-d ratio on aggregate dividend claim and the shadow price of net
worth as functions of the state variable b. bMIN and bMAX denote the boundaries of the
equilibrium debt level. bss denotes the average debt level in this economy, suggested by a
long simulation from the model. The part of curves highlighted in bold denotes the region
at which the constraint is binding. The parameters are based on the benchmark calibration
summarized in Table 1.1.
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Figure 1.8: Conditional Volatility of Log SDF as a Function of Normalized Debt
Level, b

This figure shows conditional volatilities of stochastic discount factor with and without
frictions as functions of the state variable b. bss denotes the average debt level in this
economy, suggested by a long simulation from the model. The part of curves highlighted
in bold denotes the region at which the constraint is binding. The vertical axis is mea-
sured in annualized percentage. The parameters are based on the benchmark calibration
summarized in Table 1.1.
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Figure 1.9: Conditional Volatility of Return as a Function of Normalized Debt
Level, b

This figure shows conditional volatilities of market return with and without frictions as
functions of the state variable b. bss denotes the average debt level in this economy, sug-
gested by a long simulation from the model. The part of curves highlighted in bold denote
the region at which the constraint is binding. The vertical axis is measured in annualized
percentage. The parameters are based on the benchmark calibration summarized in Table
1.1.
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Figure 1.10: Expected Returns as Functions of Normalized Debt Level, b

This figure shows the expected market return, interbank interest rate, and the interest
rate on household loans as functions of the state variable b. bss denotes the average debt
level in this economy, suggested by a long simulation from the model. The part of curves
highlighted in bold denotes the region at which the constraint is binding. The vertical
axis is measured in annualized percentage. The parameters are based on the benchmark
calibration summarized in Table 1.1.
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Figure 1.11: Decomposition of Stochastic Discount Factor

This figure shows the Et (φt+1) and
1
2vart (φt+1)+covt (mt+1, φt+1), two components in the

decomposition of the conditional mean of augmented stochastic discount factor, as shown
in equation (1.35). bss denotes the average debt level in this economy, suggested by a long
simulation from the model. The part of curves highlighted in bold denotes the region at
which the constraint is binding. The vertical axis is measured in annualized percentage.
The parameters are based on the benchmark calibration summarized in Table 1.1.
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Figure 1.12: Price-dividend Ratio and Backward Consumption Growth

This figure plots the R2 for regressing future log price-dividend ratio onto distributed lags
of consumption growth:

pt+1 − dt+1 = α0 +
L∑

j=1

αj∆ct+1−j + ut+1

where L, the number of lags, is depicted on the horizontal-axis. The shaded area in
the figure corresponds to the 95% confidence band in which data-based standard errors
are constructed using a block-bootstrap. The data employed in the estimation are real,
compounded continuously, sampled on an annual frequency and cover the period from 1930
to 2011. The “model” panel presents the predictability evidence implied by the model,
based on a very long path of simulated data and the benchmark calibration.
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2

Toward a Quantitative General Equilibrium Asset

Pricing Model with Intangible Capital

2.1 Introduction

Historically, stocks with high book-to-market ratios, that is, value stocks, earn a

higher average return than those with low book-to-market ratios, that is, growth

stocks (Fama and French 1992, 1995). The difference in log units is approximately

4.3% per year and is known as the value premium. The market-to-book ratio of a

firm is often viewed as a measure of the intensity of future growth options relative

to assets currently in place. Interpreted this way, the empirical evidence on value

premium suggests that the average spread between the return on physical assets

in place and growth options is comparable to the aggregate stock market equity

premium.

In this article we propose a quantitative general equilibrium model in which
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growth options form intangible capital. When calibrated to standard statistics of the

dynamics of macroeconomic quantities, our model is able to reproduce key features of

asset returns data, including the difference in the average return on installed physical

capital and future growth opportunities. Our model generates a high equity premium

(5.66% per year for the market return, in log units) with a risk aversion of ten and a

low and smooth risk-free interest rate. Our results are comparable to those obtained

by the standard real business cycle (RBC) models in terms of the second moments of

aggregate consumption, investment, and hours worked. Furthermore, the expected

annual log return on growth options is 4.08% lower than that on installed physical

capital, a significant share of the observed value premium in the data.

We follow Ai (2009) and model growth options as intangible capital in an oth-

erwise standard neoclassical production economy. In contrast to assets in place,

growth options do not produce consumption goods, and hence their payoff is not di-

rectly linked to aggregate productivity shocks. Rather, they represent an investment

opportunity that allows their owner to build new production units using physical

investment goods. Higher aggregate investment enables a greater fraction of growth

options to be implemented and yield a higher payoff. Thus, in our model, the re-

turns of growth options and physical capital depend on different risk factors and

hence feature different risk premiums in equilibrium.

We make two major modifications to the Ai (2009) model. First, we adopt recur-

sive preferences and an aggregate productivity process with long-run risk as in Croce

(2008). This allows us to generate a highly volatile pricing kernel. More importantly,

we show that in our model physical capital endogenously has a much higher exposure

to long-run risk than intangible capital. Our production-based model thus rational-
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izes the empirical findings on the cross-section of equity returns in Bansal, Dittmar,

and Lundblad (2005), Hansen, Heaton, and Li (2008), and Kiku (2006).

Second, focusing on U.S. microeconomic data we document that the productivity

of new vintages of capital is less sensitive to aggregate productivity shocks than that

of older vintages. Based on this novel empirical finding, our model features hetero-

geneous productivity of vintage capital, with young vintages having lower exposure

to aggregate shocks, as in the data. As a result, in our economy the response of

physical investment with respect to unexpected fluctuations in aggregate productiv-

ity (short-run shocks) is positive, as in standard RBC models, but it is negative with

respect to news about future productivity shocks (long-run shocks). These findings

provide a crucial explanation of the high equity premium, large spread between the

return on growth options and assets in place, and significant investment volatility

observed in the data.

In our setup, the elasticity of substitution between tangible investment and in-

tangible capital is high, implying that the adjustment of tangible capital is not

costly. Consequently, investment responds strongly to contemporaneous productivity

shocks, as it does in standard RBC models. The response of investment to long-run

shocks, however, is sluggish for two reasons. First, news shocks predict future produc-

tivity growth but do not affect current output. Because of consumption-smoothing

motives, the agent tends to avoid dramatic changes in investment, as they cause fluc-

tuations in consumption in the opposite direction. Second, because new investments

are less exposed to aggregate shocks because of their young age, their productivity is

affected by news shocks only with a delay. The agent, therefore, finds it optimal to

postpone the adjustment of investment with respect to such shocks. In equilibrium,
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after a long-run productivity shock, the price of physical capital responds immedi-

ately and sharply, whereas physical investment and the return on growth options

do not. This feature of our model is novel and allows us to reproduce both the

equity premium and the value premium observed in the data, while maintaining the

appealing features of the traditional RBC models on the quantity side.

Our analysis contributes to several strands of literature. We follow Hansen,

Heaton, and Li (2005) and Li (2009) and interpret the spread in the return on

book-to-market-sorted portfolios as evidence for the difference in the risk premiums

of tangible and intangible capital. Hansen, Heaton, and Li (2005) believe that this

observation “has potentially important ramifications for how to build explicit eco-

nomic models to use in constructing measures of the intangible capital stock.” The

purpose of our article is to develop such a model and provide a unified framework to

both measure and price intangible assets.

Our article is related to the literature on real options and the cross-section of

equity returns (see, e.g., Berk, Green, and Naik 1999; Gomes, Kogan, and Zhang

2003; Carlson, Fisher, and Giammarino 2004; Cooper 2006) and the literature on

adjustment costs and value premium (Zhang 2005; Gala 2005). However, our study

differs from the above literature along several dimensions. First, in our economy,

growth options are less risky than assets in place, whereas in previous real options–

based models the opposite is true. The real options–based literature, by and large,

explains the observed value premium by postulating that value firms are option

intensive, while growth firms are assets in place intensive. Empirical evidence, how-

ever, suggests that growth firms are option intensive. Typically, growth firms have

higher R&D investment (Li and Liu 2010) and a higher capital-expenditure-to-sales
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ratio (Da, Guo, and Jagannathan 2012), two commonly used empirical proxies for

firms’ growth opportunities. Growth firms also feature longer cash-flow duration

than value firms (see, e.g., Dechow, Sloan, and Soliman 2004, Da 2006, and San-

tos and Veronesi 2010), consistent with the interpretation that their assets consist

mainly of options rather than installed physical capital. More recently, Kogan and

Papanikolaou (2009, 2010) provide direct empirical evidence for the lower average

return of growth options relative to assets in place. Our framework is consistent

with the above empirical findings, because in our economy assets in place have both

higher returns and shorter duration than growth options.

Second, we work in general equilibrium and study the quantitative implications of

our model for asset prices as well as the joint dynamics of consumption, investment,

and hours worked. Many of the above-mentioned articles, however, present partial

equilibrium models. Although Gomes et al. (2003) and Gala (2005) adopt a general

equilibrium approach, they do not focus on standard RBC moments. In contrast, we

use the empirical evidence on the quantity side of the economy to discipline our model

of production technology and, therefore, its asset pricing implications. Our unified

neoclassical framework combines the success of the RBC models on the quantity side

with the success of long-run risk–based models on the cross-section of equity returns

obtained in endowment economies.

Third, our model assumes a long-run component in productivity and endoge-

nously generates a long-run component in consumption growth. We show that value

stocks are more exposed to long-run shocks than are growth assets. This feature of

our model is consistent with the empirical evidence presented in Bansal, Dittmar,

and Lundblad (2005), Hansen, Heaton, and Li (2008), and Kiku (2006).
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Similarly to our approach, Ai and Kiku (2012) also explore conditions under

which growth options are less risky than assets in place because of lower exposure

to long-run risk. Their analysis differs from ours, however, in that in their model

the creation of intangible assets is exogenous, and they do not confront the model

with empirical evidence on macroeconomic quantities, such as investment or hours

worked.

Our article builds on the literature on asset pricing in production economies,

which was recently surveyed by Kogan and Papanikolaou (2011). Our work differs

from previous articles in two significant respects. First, our model addresses the eq-

uity premium puzzle, as does the rest of the literature, but more importantly we also

study the spread between the returns on tangible and intangible capital. Second, this

literature typically relies on capital adjustment costs or other frictions in investments

to generate variations in the price of physical capital. However, strong adjustment

costs, although necessary to generate a sizeable equity premium, are often associated

with either a counterfactually low volatility of investment or a counterfactually high

volatility of the risk-free interest rate. Our model simultaneously produces a low

volatility of the risk-free interest rate, a significant volatility of stock market returns,

and a high volatility of investment, as in the data.

In a recent study, Borovička et al. (2011) develop methods to analyze the sensi-

tivity of quantities and asset prices with respect to macroeconomic shocks in dynamic

stochastic general equilibrium models. Borovička and Hansen (2011) focus on the

discrete-time case and examine the shock-exposure and shock-price elasticities of

tangible and intangible capital generated by our model. They reinterpret the differ-

ence in the productivity of old and young capital vintages as an investment-specific
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shock, in the spirit of Papanikolaou (2011). In contrast to Papanikolaou, we abstract

away from independent productivity shocks in the investment sector and provide a

microfoundation for the adjustments in the relative price of capital vintages. We

show that these adjustments arise endogenously when capital vintages have differ-

ent exposure to conventional total factor productivity shocks, consistent with our

empirical findings.

Finally, our article also relates to the literature that emphasizes the importance

of intangible capital in understanding macroeconomic quantity dynamics and asset

prices. Hall (2001) infers the quantity of intangible capital in the U.S. economy from

a capital adjustment cost model. McGrattan and Prescott (2010a, 2010b) emphasize

the importance of intangible capital in understanding economic fluctuations. Jo-

vanovic (2008) models intangible capital as investment options and investigates its

implications on aggregate Tobin’s Q. Gourio and Rudanko (2010) focus on the rela-

tionship between customer capital, investment, and aggregate Tobin’s Q. Lin (2010)

studies intangible capital and stock returns in a partial equilibrium model with cap-

ital adjustment cost. Eisfeldt and Papanikolaou (2012) analyze organization capital

and the cross-section of expected returns. Although providing insights on intangible

capital, these articles do not study the difference in the expected return of value and

growth stocks.1

The remainder of the article is organized as follows. We present the model and

some analytical results in Sections 2.2 and 2.3. In Section 2.4, we provide empirical

1 We do not intend to claim that all forms of intangible capital are less risky than physical capital.
In fact, several of the above-mentioned papers suggest that certain forms of intangible capital
may be riskier than physical capital. Same as Hansen et al. (2006), we believe that the historical
difference in the average return of value and growth stocks calls for a theory in which intangible
capital can be less risky than physical capital.
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evidence on the lower risk exposure of new investments relative to physical capital

of older vintages. We discuss the quantitative implications of our benchmark model

in Section 2.5 and consider relevant extensions in Section 2.6. Section 2.7 concludes.

Proofs of the theorems and the robustness analysis of the empirical results can be

found in the Appendix B.

2.2 Model Setup

2.2.1 Preferences

Time is discrete and infinite, t = 1, 2, 3, · · · . The representative agent has Kreps and

Porteus (1978) preferences, as in Epstein and Zin (1989):

Vt =

{
(1− β) u (Ct, Nt)

1− 1

ψ + β
(
Et
[
V 1−γ
t+1

]) 1−1/ψ
1−γ

} 1

1−1/ψ

,

where Ct and Nt denote, respectively, the total consumption and total hours worked

at time t. For simplicity, we assume an inelastic labor supply and set u (Ct, Nt) = Ct.

We relax this assumption in Appendix B.3

2.2.2 Production technology

Production units. Consumption goods are produced by production units of overlap-

ping generations. Production units created at time τ are called generation-τ pro-

duction units and begin operation at time τ + 1. Each generation-τ production unit

uses labor, nτt , as the only input of production and pays a competitive real wage wt.

For t ≥ τ + 1, let Aτt denote the time t labor productivity level common to all the

production units belonging to generation τ . The output of a generation-τ production
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unit at time t, yτt , is given by

yτt = (Aτt n
τ
t )

1−α , ∀t ≥ τ + 1.

At the equilibrium, the cash flow of a generation-τ production unit at time t is given

by

πτt = max
n

{
(Aτt n)

1−α − wtn
}
.

In our setup, labor productivity, Aτt , is generation-specific and captures the het-

erogenous exposure of production units of different vintages to aggregate productivity

shocks. The productivity processes are specified as follows. First, we assume that the

log growth rate of the productivity process for the initial generation of production

units, ∆at+1, is given by

log
At+1

At
≡ ∆at+1 = µ+ xt + σaεa,t+1, (2.1)

xt+1 = ρxt + σxεx,t+1,

[
εa,t+1

εx,t+1

]
∼ i.i.d.N

([
0
0

]
,

[
1 0
0 1

])
, t = 0, 1, 2, · · · .

This specification follows Croce (2008) and captures long-run productivity risks.

Second, we impose that the growth rate of the productivity of production units

of age j = 0, 1, ..., t− 1 is given by

At−jt+1

At−jt

= eµ+φj(∆at+1−µ). (2.2)

Under the above specification, production units of all generations have the same

unconditional expected growth rate. We also set Att = At to ensure that new pro-
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duction units are on average as productive as older ones.2 Heterogeneity hence is

driven solely by differences in exposure to aggregate productivity risk, φj. Our em-

pirical investigation in Section 2.4 suggests that φj is increasing in j, that is, older

production units are more exposed to aggregate productivity shocks than younger

ones.3 To capture this empirical fact, we adopt a parsimonious specification of the

φj function as follows:

φj =

{
0 j = 0
1 j = 1, 2, · · · .

That is, new production units are not exposed to aggregate productivity shocks in

the initial period of their life, and afterwards their exposure to aggregate productivity

shocks is identical to that of all other existing generations.

We discuss the empirical evidence on heterogeneous exposure in Section 2.4, and

we consider more general specifications of the φj function in Section 2.6. Providing

a microeconomic foundation for this feature of the model is beyond the scope of this

study. However, we note that both our empirical evidence and the specification of

φj are consistent with the learning model of Pastor and Veronesi (2009). In their

economy, young firms are subject to substantial idiosyncratic risks but have very

little exposure to aggregate shocks. The reason is that young firms are embedded

with new technologies, which are highly uncertain. It is not optimal to operate these

new technologies on a large scale until the uncertainty is reduced with learning. As

2 Generation-t production units are not active until period t + 1; therefore, the level of At

t
does

not affect the total production of the economy in period t.

3 In the data, the productivity process of young firms has a higher idiosyncratic volatility than that
of older firms. To capture this fact, generation-specific shocks should be included in Equation (2.2).
After solving the model with these additional shocks, however, we find only negligible differences
in our results. We therefore choose not to include this additional source of shocks for parsimony.
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a result, shocks to young firms have little impact on aggregate quantities. Over

time, as young firms age, their productivity becomes more correlated with aggregate

output because their technologies are adopted on a larger scale.

In our economy, it is convenient to measure production units of all generations in

terms of their generation-0 equivalents. As we show in Appendix B.1, our spec-

ification of the productivity process implies that the output and cash flow of a

generation-t production unit are ̟t+1 times greater than those of a generation-0,

where

̟t+1 =

(
Att+1

At+1

) 1−α
α

= e−
1−α
α

(xt+σaεa,t+1) ∀t. (2.3)

We use pK,t+1 to denote the cum-dividend value of a generation-0 production unit

at time t + 1. Because the cash flow of generation-t production units is ̟t+1 times

that of a generation-0 production unit, the value of a new production unit created

at time t measured in time-t consumption numeraire is Et [Λt,t+1̟t+1pK,t+1], where

Λt,t+1 denotes the stochastic discount factor. We also assume that a production unit

dies with probability δK at the end of each period, and death shocks are i.i.d. across

production units and over time.

Blueprints. The only way to construct a new production unit in this economy is to

implement a blueprint. Implementing a blueprint at time t costs 1
θt

units of physical

investment goods. We call θ the quality of a blueprint, because blueprints with high

θ are more efficient in constructing production units. We allow θt to differ across

blueprints and evolve stochastically over time to capture idiosyncratic shocks to the

profitability of blueprints. At the beginning of each period t, first the value of θt is
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revealed, and then the owner of the blueprint makes the decision of whether or not

to implement it. A blueprint can only be implemented once, and implementation is

irreversible. If not implemented immediately, a blueprint dies with probability δS at

the end of the period, and death shocks are i.i.d. across blueprints and over time.

In our setup, at any time t, the owner of a blueprint faces an optimal stopping

problem. She can choose to build a production unit immediately at cost 1
θt
. Alterna-

tively, she may delay the implementation decision into the future. If we denote the

value of a blueprint with quality θt at time t as pS,t (θt), then the following recursive

relation holds:

pS,t (θt) = max

{
Et [Λt,t+1̟t+1pK,t+1]−

1

θt
, (1− δS)Et [Λt,t+1pS,t+1 (θt+1)]

}
. (2.4)

The first term in the brackets is the payoff of immediate option exercise: Implement-

ing a blueprint with quality θt at time t costs 1
θt

of the amount of general output

and creates a generation-t production unit whose value is Et [Λt,t+1̟t+1pK,t+1]. The

second term is the payoff associated with delaying option exercise: With probability

1− δS the blueprint survives to the next period and obtains another draw of θt+1.

In our economy, the supply of blueprints is endogenous. At time t, a total measure

Jt of new blueprints can be produced by investing Jt units of output. Blueprints

created at time t can be used to build production units starting from period t+ 1.

Interpretation. Production units are the building blocks of assets in place. Their

creation requires physical output and their value is reflected in the accounting books.

They produce final goods directly and generate payoffs immediately.

Blueprints are growth options. They capture key features of innovations and
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new investment opportunities. They are subject to substantial idiosyncratic risk

(θ) and are implemented only if their quality becomes high enough. Blueprints do

not produce any consumption goods immediately; they only start to do so after

being implemented. They are intangible in the sense that they are claims to future

output and lack physical embodiment. According to U.S. accounting rules, the cost

of developing new blueprints, such as innovations and new investment opportunities,

is typically expensed rather than capitalized. For this reason, we think of Jt as an

intangible investment. In the rest of the article, we use the terms blueprints and

growth options, and the terms production units and assets in place, interchangeably.

Both production units and blueprints constitute a form of capital because they

can be stored and thus allow investors to trade off current-period consumption

against future consumption. Specifically, production units are tangible capital, and

blueprints are intangible capital. We are interested in understanding how the dif-

ferent roles played by tangibles and intangibles in aggregate production determine

their expected returns.

In our setup, stocks feature high book-to-market ratios (value stocks) if they

consist mainly of claims to tangible capital. Conversely, low book-to-market ratio

stocks (growth stocks) are intangible capital intensive. At the equilibrium, the value

premium reflects the difference in the expected returns on tangible and intangible

capital.

Our notions of value and growth are also consistent with the empirical evidence

on the negative relation between cash-flow duration and book-to-market value (see,

e.g., Dechow, Sloan, and Soliman 2004 and Da 2006). Our value stocks feature short

cash-flow duration because they are mainly claims to assets in place that pay off
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immediately. Growth stocks, in our model, are long-duration assets, because they

load heavily on growth options, which generate cash flows only in the distant future

after they are implemented and become production units.

2.2.3 Aggregation

Tangible capital. We use Mt to denote the total measure of production units created

at time t and use Kt to denote the productivity-adjusted total measure of production

units expressed in generation-0 equivalents. The advantage of using Kt as a state

variable is that the aggregate production function is of the Cobb-Douglas form despite

the heterogeneity across vintages. If we let Yt denote aggregate output, then the

following holds:

Yt =
t−1∑

τ=0

(1− δK)
t−τ−1Mτy

τ
t = Kα

t (AtNt)
1−α , (2.5)

where At is the labor productivity of generation-0 production units. In Appendix

B.1, we show that the law of motion of the productivity-adjusted measure of tangible

capital, Kt, takes the following simple form:

K1 =M0, Kt+1 = (1− δK)Kt +̟t+1Mt, t = 1, 2, · · · .

Our specification of productivity has two advantages. First, it provides a parsi-

monious way to incorporate the empirical fact that new investments are less exposed

to aggregate productivity shocks than capital of older vintages. Second, it maintains

tractability at the aggregate level.
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Intangible capital. To avoid having to keep track of the distribution of θt as an

infinite dimensional state variable, we assume that θt is i.i.d. among blueprints and

over time. For simplicity, we also assume that the distribution of θt has a continuous

density, denoted as f . As shown in Ai (2009), in this case the mass of newly created

production units,Mt, depends only on the total measure of all available blueprints at

time t, denoted as St, and the total amount of tangible investment goods, It, through

the following relation:

Mt = G (It, St) = max
θ∗t

{
St ×

∫ ∞

θ∗t

f (θ) dθ

}
, subject to (2.6)

St ×

∫ ∞

θ∗t

1

θ
f (θ) dθ ≤ It,

where the function G is defined as the value function of the optimization problem

(2.6).

Intuitively, optimal option exercise follows a simple cutoff rule: Blueprints are

implemented in period t if and only if their quality exceeds θ∗t . Ai (2009) provides a

formal proof of this claim and shows that

θ∗t = GI(It, St). (2.7)

In each period, the agent chooses tangible investment, It, and exercises top-quality

options until the exhaustion of all physical investment goods. Therefore, given the

resource constraint in Equations (2.6) and (2.7), bothMt and θ
∗
t are fully determined

by It and St.

Note that one blueprint transforms into exactly one production unit after im-

plementation. Therefore, G(It, St) is the total measure of both the newly created
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production units and the blueprints implemented. Taking into account the amount

of new blueprints created, Jt, the dynamics of the intangible stock, St, is

St+1 = [St −G (It, St)] (1− δS) + Jt. (2.8)

Using Equation (2.6), the law of motion of Kt can be written as

Kt+1 = (1− δK)Kt +̟t+1G (It, St) . (2.9)

Finally, we assume that general output can be transformed frictionlessly into

consumption, Ct, tangible investment, It, and intangible investment goods, Jt, so

that the implied aggregate resource constraint is given by

Ct + It + Jt ≤ Kα
t (AtNt)

1−α . (2.10)

2.2.4 Relation to the literature

Our model of growth options follows the general equilibrium setup in Ai (2009) and

differs from existing studies in several respects. First, unexercised growth options can

be stored and potentially implemented in the future. The storability of unexercised

growth options makes them a type of capital distinct from physical assets in place.

In contrast, Berk, Green, and Naik (1999) and Gomes, Kogan, and Zhang (2003)

assume that options disappear if not immediately exercised.

Second, the creation of new growth options in our model is endogenously deter-

mined by the optimal choice of the agent. This allows not only the price but also

the quantity of intangible capital to adjust to productivity shocks in general equilib-

rium. The endogenous quantity channel increases the representative agent’s ability

to smooth consumption and allows options to be less risky than assets in place. In
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contrast, partial equilibrium–based real-option models (e.g., Berk, Green, and Naik

1999; Gomes, Kogan, and Zhang 2003; and Carlson, Fisher, and Giammarino 2004)

typically assume exogenous arrival of growth options and abstract from the quantity

adjustment channel. As a result, options are more risky than assets in place in these

models.

Third, our intangible capital is the stock of growth options and does not immedi-

ately produce output, as does tangible capital. This feature links the cross-sectional

differences in both stock returns and their cash-flow duration to production tech-

nology. The macroeconomic literature that focuses on the quantity dynamics of

intangible capital, in contrast, typically assumes that both intangible and tangible

capital affect output directly. For example, the aggregate production function in

McGrattan and Prescott (2010a, 2010b) and Corrado, Hulten, and Sichel (2006) are

of the form Yt = F (At, Kt, St, Nt), where Kt and St denote tangible and intangible

capital, respectively. This specification implies that the payments to tangible and

intangible capital have similar duration and are both perfectly conditionally corre-

lated with aggregate productivity shocks, thus allowing little room for differences in

expected returns.

Finally, the incorporation of intangible capital presents additional challenges to

general equilibrium asset pricing models with production. Because of the well-known

difficulty in generating a high equity premium in production economies, one might

be tempted to assume that intangible capital is much riskier than physical capital

and propose this as a resolution of the equity premium puzzle. However, as argued

by Hansen, Heaton, and Li (2005), the empirical evidence on the value premium

suggests the exact opposite. In the United States, the portfolios of firms with low
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book-to-market ratios pay substantially lower returns than those of firms with high

book-to-market ratios. This suggests that intangible capital earns a much lower risk

premium than tangible capital, making it even harder to account for the overall

market equity premium. We turn now to the solution of the model and discuss a

mechanism that simultaneously generates a high equity premium and a high value

premium.

2.3 Model Solution

2.3.1 The social planner’s problem

We consider a competitive equilibrium with complete markets in which claims to

production units and blueprints are traded. The equilibrium allocation and prices

can be constructed from the solution to the social planner’s problem that maximizes

the representative agent’s utility:

V (Kt, St, xt, At) = max
Ct,It,Jt≥0

{
(1− β)C

1− 1

ψ
t + β

(
E

[
V (Kt+1, St+1, xt+1, At+1)

1−γ
∣∣∣xt, At

]) 1−1/ψ
1−γ

} 1

1−1/ψ

,

subject to the evolution of productivity (Equations (2.1) and (2.2)), the resource

constraint (Equation (2.10)), and the laws of motion of St and Kt (Equations (2.8)

and (2.9)). We refer the reader to Ai (2009) for a formal proof of the equivalence

between the competitive equilibrium allocation and Pareto optimality.

Despite the heterogeneity in productivity of production units and quality of

blueprints, our formulation of the social planner’s problem does not use cross-sectional

distributions. Our model hence maintains the tractability of standard RBC models—

relevant to study macroeconomic quantity dynamics—and simultaneously allows us

to study both option-exercise and the cross-section of physical and intangible capital
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returns in general equilibrium.

2.3.2 Asset prices

Given equilibrium allocations, the stochastic discount factor of the economy, Λt,t+1,

can be represented by the ratio of marginal utilities at time t and t+ 1:

Λt,t+1 = β

(
Ct+1

Ct

)− 1

ψ


 Vt+1

(
Et
[
V 1−γ
t+1

]) 1

1−γ




1

ψ
−γ

. (2.11)

Let pK,t and qK,t denote the time-t cum- and ex-dividend price of a generation-0

production unit, respectively. Let pS,t(θ) denote the value of a blueprint with quality

θ at time t before the option exercise decision is made. Because shocks to θ are i.i.d.

over time, the time-t price of an ex ante identical blueprint before the revelation of

θt, denoted pS,t, is

pS,t =

∫ ∞

0

pS,t (θ) f (θ) dθ,

and can be interpreted as the per-unit value of the perfectly diversified aggregate

stock of blueprints. We also use qS,t to denote the price of a newly created blueprint

at time t.

We use the first-order and envelope conditions of the social planner’s problem to

characterize the price of growth options and assets in place, as stated in the following

proposition.

Proposition 1. (Equilibrium Conditions) Assets in place are priced as follows:

pK,t = αKα−1
t (AtNt)

1−α + (1− δK) qK,t, (2.12)

qK,t = Et [Λt,t+1pK,t+1] .
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A blueprint with quality θ is implemented at time t if and only if θ ≥ θ∗t , where θ
∗
t

satisfies

Et [Λt,t+1̟t+1pK,t+1]−
1

θ∗ (t)
= (1− δS)Et [Λt,t+1pS,t+1] . (2.13)

The price of growth options is determined as follows:

pS,t =
GS (It+1, St+1)

GI (It+1, St+1)
+ (1− δS) qS,t (2.14)

qS,t = Et [Λt,t+1pS,t+1 (θt+1)] = 1.

Proof. See Ai (2009).

Together, the two equations in (2.12) constitute a recursive relation that can

be used to solve for pK,t given equilibrium quantities. The interpretation is that

the value of a unit of tangible capital is equal to the present value of its marginal

product.

Because a blueprint is implemented at time t if and only if its quality exceeds the

threshold level, θ∗t , Equation (2.13) implies that the owner of a marginal blueprint

with quality θ∗t must be indifferent between immediate option exercise and delaying

implementation into the future.

Equation (2.14) provides a decomposition of option value into in-the-money and

out-of-the-money payoff components. The value of an unexercised option is (1− δS) qS,t

after accounting for the death shock. The term GS(It,St)
GI(It,St)

can be interpreted as the

expected payoff of an in-the-money option and is an increasing function of I
S
by the

homogeneity and the concavity of G. Intuitively, a rise in I
S
increases the probabil-

ity of growth options to be exercised and therefore their payoff rises as well. From
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the social planner’s perspective, GS(I,S)
GI(I,S)

can be interpreted as the marginal product

of intangible capital: GS (I, S) is the number of new production units that can be

produced by an additional growth option, and GI (I, S)
−1 = 1

θ∗
is the price of a

marginal production unit measured in current-period consumption goods. The value

of an unexercised growth option, qS, is always one because one unit of general output

can always be transformed into one unit of new blueprints at time t.

Finally, note that Equations (2.7)–(2.14) completely characterize both aggregate

quantities and prices in the economy. Given aggregate quantities, Equation (2.7) can

be used to solve for the optimal option-exercise threshold for blueprints.

The returns of tangible and intangible capital can be therefore written as

rK,t+1 =
pK,t+1

qK,t
=
αKα−1

t+1 (At+1Nt+1)
1−α + (1− δK) qK,t+1

qK,t
, (2.15)

and

rS,t+1 =
pS,t+1

qS,t
=
GS (It+1, St+1)

GI (It+1, St+1)
+ (1− δS) , (2.16)

respectively. Equations (2.15) and (2.16) are the key to understanding the expected

returns on tangible and intangible capital. Equation (2.15) implies, as is common in

standard RBC models, that the return on assets in place is monotonic in aggregate

productivity shocks. In contrast, the return on growth options does not depend

directly on productivity shocks, and in fact it is a function only of the It+1/St+1

ratio. The return on intangibles is high in states in which the demand for options

is large, that is, when I is large relative to the total supply of growth options,

S. Our choice to model intangibles as growth options thus allows the return on
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physical and intangible capital to depend on different risk factors and, consequently,

to command different risk premiums in equilibrium. In Section 2.5, we show that

physical investment I is not responsive to long-run productivity shocks. As a result,

the return on intangible capital has little exposure to long-run risk, whereas physical

capital is highly risky.

2.4 Firms’ Exposure to Aggregate Risks

In this section we provide empirical evidence supporting the claim that new produc-

tion units are less sensitive to aggregate productivity shocks than are older vintages

of physical capital. A production unit in our model should be interpreted as any

investment project generating cash flows. Because it is difficult to identify both pro-

ductivity and age of individual projects within firms, we adopt an indirect approach

and work with firm-level data. Specifically, for each firm in our data set we estimate

the time series of its productivity growth rate and compute two alternative measures

of the age of its assets in place. We find that the correlation between firm-level and

aggregate productivity growth is statistically smaller for firms with younger vintages

of physical capital.

2.4.1 Data and firm-level productivity estimation

Data description. We consider publicly traded companies on U.S. stock exchanges

listed in both the Compustat and the Center for Research in Security Prices (CRSP)

databases for the period 1950–2008. In what follows, we report Compustat items in

parentheses and define industry at the level of two-digit SIC codes. The output, or

value added, of firm i in industry j at time t, yi,j,t, is calculated as sales (sales) minus
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the cost of goods sold (cogs) and is deflated by the aggregate gross domestic product

(GDP) deflator from the U.S. National Income and Product Accounts (NIPA). We

measure the capital stock of the firm, ki,j,t, as the total book value of assets (at)

minus current assets (act). This allows us to exclude cash and other liquid assets

that may not be appropriate components of physical capital. We use the number of

employees in a firm (emp) to proxy for its labor input, ni,j,t, because data for total

hours worked are not available.

We construct two measures of the age of assets in place of firm i at time t. Our

first measure is simply the age of firms, calculated using founding years from Ritter

and Loughran (2004) and Jovanovic and Rousseau (2001). This procedure enables

us to form a large data set with 8,084 different firms and 83,089 observations.

Our second measure is capital age, KAgei,t, which we compute as follows:

KAgei,t =

∑T
l=1(1− δi)

l · Ii,t−l · l∑T
l=1(1− δi)l · Ii,t−l

, (2.17)

where Ii,t measures capital expenditures (capx), and δi is the firm-specific deprecia-

tion rate (depreciation expenses (xdp) divided by book value of property, plant, and

equipment (ppent)) averaged over time. When data on depreciation expenses are

not available, we measure depreciation by Compustat depreciation (dp) minus amor-

tization of intangibles (am). According to the above definition, the capital age of a

firm is the weighted average age of its capital vintage if we set T = ∞. Empirically,

we can only choose a finite T and face the following trade-off: A large T provides a

better approximation of the age of capital vintage, but it considerably reduces the

number of observations in our data set.
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In Table 2.1, we sort all observations in our panel into four firm-age quantiles and

present summary statistics. For each quantile, we report median firm age (Column

2) and median capital age calculated using T = 5, T = 8, and T = 15 (Column 3-5,

respectively). All measures of capital age are increasing in firm age, indicating that

they are consistent with each other. Across all our measures, the average age in the

first quartile is statistically different from that in the fourth quartile. Therefore, our

age quartiles capture a significant amount of the dispersion in both capital and firm

age.

Table 2.1 explicitly shows the trade-off related to the choice of T . If we use the

average annual depreciation rate from Compustat of 15%, setting T = 15 implies

that we account for roughly 92% of the firms’ total capital stock. This choice of T

provides a fairly good approximation of the true capital vintage of the firms, but it

only allows us to compute capital age for 36% of the 8, 084 firms for which firm age

is available. On the other hand, setting T = 5 permits us to retain all our firms, but

this captures only 62% of firms’ most recent capital stock. To keep our discussion

focused, we present our empirical evidence using firm age as the main proxy for the

age of firms’ production units. In Appendix B.2, we show that our empirical results

are robust to different measures of capital age.

Estimation of firm-level productivity. We assume that the production function at the

firm level is Cobb-Douglas and allow the parameters of the production function to

be industry-specific:

yi,j,t = Ai,j,tk
α1,j

i,j,t n
α2,j

i,j,t , (2.18)
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where Ai,j,t is the firm-specific productivity level at time t. This is consistent with our

original specification because the observed physical capital stock, ki,j,t, corresponds

to the mass of production units owned by the firm.

We estimate the industry-specific capital share, α1,j, and labor share, α2,j, using

the dynamic error component model adopted in Blundell and Bond (2000) to correct

for endogeneity. Details are provided in Appendix B.2. Given the industry-level

estimates for α̂1,j and α̂2,j, the estimated log productivity of firm i is computed as

follows:

ln Âi,j,t = ln yi,j,t − α̂1,j · ln ki,j,t − α̂2,j · lnni,j,t.

We allow for α1,j + α2,j 6= 1, but our results hold also when we impose constant

returns to scale in the estimation, that is, α1,j + α2,j = 1.

We use the multifactor productivity index for the private nonfarm business sector

from the Bureau of Labor Statistics (BLS) as the measure of aggregate productivity.

2.4.2 Empirical results

Here, we present our estimates on the link between firm exposure to aggregate pro-

ductivity and firm age. We provide additional robustness analyses of our results in

Appendix B.2. We consider the following baseline regression:

∆ lnAi,j,t = ξ0i+ξ1∆ lnAt+ξ2AGEi,j,t+ξ3AGEi,j,t·∆ lnAt+ξ4B/Mi,j,t+εi,j,t, (2.19)

where ξ0i is a firm-specific fixed effect, ∆ lnAt is the growth rate of aggregate produc-

tivity as measured by the BLS, and B/Mi,j,t measures firm book-to-market ratio. We

introduce the book-to-market ratio to control for the difference in the composition

of tangible and intangible assets across firms. The key parameter of interest here
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is the coefficient ξ3, which captures the age effect on firm sensitivity to aggregate

productivity growth. If the average age of investment projects is increasing in firm

age, then under the null of our model ξ3 is positive.

We find strong empirical evidence in favor of our specification of firm productivity

(Table 2.2). In our baseline estimation (regression (1)), the estimated coefficient ξ3 is

both positive and statistically significant. Furthermore, we obtain very similar point

estimates in regressions (2) and (3), where we correct for possible sample selection

bias induced by firm exits.

If exits caused by exposure to negative aggregate productivity shocks are cor-

related with firm age, they could induce an upward bias in our estimate of ξ3 in

regression (1). Consider a hypothetical scenario in which young firms are more ex-

posed to negative aggregate productivity shocks than are older firms. In such a case,

the estimate of ξ3 obtained from regression (1) would be biased upwards, because

young firms would be more likely to exit our database in years with large negative

aggregate productivity shocks.

In regression (2) we correct for sample-selection bias by adopting the Heckman

(1979) two-stage sample-selection estimator. In regression (3), we instead estimate

Equation (2.19), excluding all the observations from years with negative aggregate

productivity shocks. The details of these robustness analyses can be found in Ap-

pendix B.2, where we also adopt an additional estimation procedure for the coef-

ficients of the production function. Across all these specifications, our estimates

of ξ3 are very robust: They are consistently positive, statistically significant, and

comparable in magnitude.

Note also that the estimate of ξ4 is consistently negative across all specifications,
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implying that the productivity growth rate of growth firms is always higher than

that of value firms. This is consistent with the view that growth firms have a longer

cash-flow duration than value firms, a fact that our model replicates and that we

address in Section 2.5.

Our specification of firms’ productivity processes is not only qualitatively con-

sistent with the pattern in the data, but also quantitatively plausible. In fact, our

calibration matches well the magnitude of firms’ transition from low to high exposure

to aggregate productivity shocks. We denote by φY (φO) the regression coefficient of

the productivity growth of the young (old) capital vintages on aggregate productiv-

ity growth rates. In our model, φY = 0 and φO = 1.12. To see why φO = 1.12, note

that the aggregate productivity growth rate is a weighted average of that of the new

capital vintage, Att+1/A
t
t = eµ, and the common growth rate of all older vintages,

At+1/At:

∆ ln Āt+1 = (1− λt)∆ lnAt+1 + λtµ, 1 > λt > 0.

The regression coefficient of ∆ lnAt+1 on aggregate productivity growth ∆ lnAt+1 is

therefore 1
1−λ

. Assuming an annual death rate of 11% in the spirit of our calibration,

λ = 11% in steady state, and 1
1−λ

= 1.12.

In the data, we estimate φY and φO using the following regressions:

∆ lnAi,j,t =

{
ξ0i + φY∆ lnAt + ξ1iB/Mi,j,t + ε̃i,j,t i ∈ Young
ξ0i + φO∆ lnAt + ξ1iB/Mi,j,t + ε̃i,j,t otherwise.

(2.20)

In each period a firm is classified as Young if it belongs to the set of the 25% youngest

firms in our sample. We report our estimation results in Table 2.3. Overall, our

estimate of φY is not statistically different from zero, and that of φO is positive and
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significant. The difference in productivity exposure, OMY = φO − φY , is positive

and statistically significant, and the point estimate is close to its model counterpart,

1.12.

Our choice of the φj process is likely to understate the duration of the transition

from low to high exposure. Our model assumes that production units have full

exposure to aggregate productivity shocks after one period, whereas the median

capital age of the young firms for T = 15 is 4.47 years, which suggests that the

transition from low exposure to high exposure takes an average of 3.47 years. In

Section 2.6, we extend our model to allow for more general specifications of the

φj process and show that longer transitions further enhance the equity and value

premiums generated by our model. Our current specification for the φj process

reflects a conservative calibration.

2.5 Quantitative Implications of the Model

In this section, we calibrate our model at an annual frequency and evaluate its ability

to replicate key moments of both macroeconomic quantities and asset returns. We

focus on a long sample of U.S. annual data, including pre-World War II data. All

macroeconomic variables are real and per capita. Consumption and physical invest-

ment data are from the Bureau of Economic Analysis (BEA), whereas intangible

investment (Jt) is measured as in Corrado, Hulten, and Sichel (2006) by aggregating

expenses in brand equity, firm-specific resources, R&D, and computerized informa-

tion. As in the U.S. NIPA, we treat intangible investment as an expense and define

measured output, YM,t, as Ct+ It. Annual data on asset returns are from the Fama-

French data set. We use the Fama-French HML factor as a measure of the spread
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between tangible and intangible capital. Appendix B.2 provides more details on our

data sources.

2.5.1 Parameter values

Our model has three major components: heterogeneous productivity of vintage cap-

ital, long-run productivity risk, and intangible capital. To determine the importance

of each component, we compare four different calibrations. The benchmark model

comprises all three components and is our preferred calibration. Model 1 lacks het-

erogeneous productivity of vintage capital (we set φ0 = 1) but retains the other

features of the benchmark model, namely, long-run productivity risk and intangible

capital. In model 2, we further exclude fluctuations in long-run productivity growth

(by setting σx = 0). Finally, we consider the case without intangible capital in model

3. Essentially, model 3 is the neoclassical growth model with recursive preferences

and i.i.d. productivity growth rates. The details of the four models are summarized

in Table 2.4.

The parameters of the models can be divided into three groups. The first group

includes risk aversion, γ; intertemporal elasticity of substitution, ψ; capital share,

α; depreciation rates, δK and δS; average growth rate of the economy, µ; and the

first-order autocorrelation of the predictable component in productivity growth, ρ.

These parameters are identical across all four calibrations. We choose the parameters

for risk aversion, γ = 10, and intertemporal elasticity of substitution, ψ = 2, in line

with the long-run risk literature. We set the capital share α = 0.3 and the annual

depreciation rate of physical capital δK = 11%, consistent with the RBC literature

(Kydland and Prescott 1982). We choose the same rate of depreciation for intangible
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capital, δS = 11%. The measured depreciation of intangible capital in our model

also includes implemented blueprints, G (It, St), and ranges from 40% to 60% per

year across the calibrations. Although the empirical evidence on depreciation of

intangibles is sparse (Hand and Lev 2003), these numbers are consistent with the

empirical estimate in Corrado, Hulten, and Sichel (2006). Our sensitivity analysis

suggests that δS only modestly affects our asset pricing results. We calibrate µ = 2%

per year, consistent with the average annual real growth rate of the U.S. economy.

We set ρ = 0.93, which is the point estimate obtained in Croce (2008).

The second group of parameters includes the discount factor, β; the standard

deviation of the persistent component of productivity growth, σx; and the short-run

shock volatility, σa. In all calibrations, we set the discount factor β to match the

level of the risk-free interest rate in the data if possible. An exception is model 3,

which lacks sufficient parameters to match both the level of the risk-free rate and the

consumption–tangible investment ratio. We therefore choose β in model 3 to match

the consumption–tangible investment ratio but not the level of the risk-free rate. We

set σa and σx in both the benchmark model and model 1 to approximately match

the standard deviation and the first-order autocorrelation of the annual growth rate

of measured output. In both models 2 and 3, we impose σx = 0 and set σa to match

the standard deviation of the annual growth rate of measured output.

The third group of parameters describes the functional form of the aggregator

G (It, St) function. As shown in Ai (2009), for any smooth G function that is concave

and homogeneous of degree 1, there is a unique density function f (θ) such that G

is the aggregator of the option-exercise problem described in Equations (2.4) and

(2.6). We focus our attention on density functions that generate the following CES

100



aggregator:

G (I, S) =
(
νI1−

1

η + (1− ν)S1− 1

η

) 1

1−1/η
. (2.21)

We choose the two parameters ν and η to approximately match the steady-state

consumption–tangible investment ratio and also the consumption–intangible invest-

ment ratio across all models, insofar as possible.4 In Appendix B.3, we derive the

associated density function, f , and the implied cross-sectional distribution of the

book-to-market ratio of newly implemented blueprints. We show that our aggre-

gator G, although calibrated to match aggregate moments, conforms well with the

microeconomic evidence on the distribution of the book-to-market ratios of new IPO

firms in the United States.

The calibrated parameter values are summarized in Table 2.5, and the steady-

state moments used to calibrate the parameters are reported in Table 2.6. We solve

the model using a second-order local approximation computed using the dynare++

package. Our results are consistent with those of Borovička and Hansen (2011) , who

adopt alternative numerical procedures to analyze shock-price and shock-exposure

elasticities generated by our model. We also solve our models numerically using a

finite element–based global approximation method to check the accuracy of the local

approximation method. Overall, the two numerical solutions produce very similar

results.

4 Model 3 does not have intangible capital, so E[I/J ] is not defined. In model 2, the parameter
η has only minor effects on the stochastic steady state; therefore, it is not possible to match both
E[C/I] and E[I/J ] simultaneously. In model 2, we follow the RBC literature and set ν to match
the consumption–physical investment ratio observed in the data.
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2.5.2 Quantity dynamics

In this section, we show that all four models produce largely similar macroeconomic

quantity dynamics and that our benchmark model improves slightly upon the RBC

model (model 3) along several dimensions. In this sense, our model inherits the

success of the RBC models on the quantity side of the economy.

The quantity dynamics produced by our calibrations are shown in the top panel of

Table 2.7. All four calibrations produce a small volatility of consumption growth and

a high volatility of tangible investment growth, consistent with the data. Recall that

model 3 is essentially the standard RBC model with recursive preferences. We know

from Tallarini (2000) that the risk aversion parameter of the recursive preference

has little effect on the quantity dynamics. Therefore, on the quantity side, the

model behaves just like the standard RBC model with CRRA preferences, where

γ = 1
ψ
= 0.5. The second moments generated by model 3 are consistent with those

in Kydland and Prescott (1982). In particular, this model produces a small standard

deviation of consumption (2.14% per year) and a standard deviation of investment

about six times larger (15.33% per year).

Comparing models 2 and 3, we see that the addition of intangible capital to the

standard RBC model reduces the volatility of physical investment growth. This is

because the concavity of the aggregator G implies decreasing marginal production

of physical investment and affects the volatility of physical investment similarly to

adjustment cost functions in neoclassical models. Therefore, to generate a high

volatility of tangible investment, therefore, the curvature of G (I, S) needs to be

low, or, equivalently, the elasticity of substitution between I and S, η, needs to

102



be sufficiently high. All of our calibrated models with intangible capital have this

feature. Adding long-run shocks and heterogenous productivity of capital vintages

increases the volatility of investment. In model 2, investment growth volatility is

almost 11%, and in the benchmark model it reaches a level of 14.18%, consistent

with the data.

The persistence of the growth rates of macroeconomic quantities produced by

our model is similar to that in the data. In models 2 and 3, both output and

consumption are autocorrelated, even if productivity growth is not. This result is

generated by the persistent fluctuations of our endogenous state variables, K and

S (as in Kaltenbrunner and Lochstoer 2010). The persistence generated in these

two models, however, is smaller than that in the data. The addition of long-run

productivity risk increases the autocorrelation of consumption and output growth

rates (Croce 2008). Because both the benchmark model and model 1 feature long-run

productivity shocks, they produce a higher autocorrelation in output growth (Table

2.6) and consumption growth (Table 2.7) than models 2 and 3. The introduction of

long-run productivity shocks, therefore, brings our model closer to the data.

The correlation between consumption and physical investment growth rates in

our benchmark calibration is consistent with its empirical pattern, that is, it is mod-

erate at an annual frequency and high over the long horizon. This is an improvement

with respect to standard RBC models, which are notorious for producing large cor-

relations of consumption and investment growth even over short horizons. Standard

RBC models have only one source of shocks, the short-run productivity shocks. Be-

cause both consumption and investment comove with this shock, the correlation of

their growth rates is quite high. In contrast, our model also features news about
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future productivity shocks that have no effect on current total output. Because of

the resource constraint, consumption and total investment must move in opposite

directions in response to these shocks, reducing their unconditional correlation.

In Section 2.6 and Appendix B.3, we show that extensions of our model are capa-

ble of matching a broader set of moments, including intangible investment volatility

and the dynamics of hours worked.

2.5.3 Asset price dynamics

In this section we examine the asset pricing implications of our model. Although

the quantity dynamics of the benchmark model inherits the basic features of the

standard RBC model, thanks to the lagged risk exposure of new vintage capital, asset

returns in our model respond to long-run risks similarly to endowment-based long-

run risk models, for example, that of Bansal and Yaron (2004). More importantly,

our model is able to produce a large spread between the expected return on tangible

and intangible capital.

Campbell (2000) summarizes the challenge to general equilibrium asset pricing

models as three puzzles: the equity premium puzzle (Mehra and Prescott 1985), the

stock market volatility puzzle (Campbell 1999), and the risk-free rate puzzle (Weil

1989). These puzzles are even more difficult to solve in production economies, as

models must (1) not only generate a pricing kernel that is sufficiently volatile but

also endogenously produce a high risk exposure of the stock market returns, and

(2) be consistent with the empirical evidence from the quantity side of the economy.

The literature has relied primarily on adjustment cost or other forms of rigidity in

investment to generate the variation in the price of physical capital. In the next
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sections we show that it is difficult to reconcile the high risk exposure of the market

returns and the high volatility of tangible investment when relying on rigidity in

investment as the only means by which to generate variations in the price of physical

capital. In our benchmark model, however, thanks to heterogeneous productivity

of capital of different vintages, we can simultaneously produce volatile stock market

returns and aggregate physical investment. The adoption of recursive preferences

with high intertemporal elasticity of substitution also allows us to solve the risk-free

rate puzzle.

The empirical evidence on the value premium imposes a strong discipline on

general equilibrium asset pricing models with intangible capital. Stocks with high

book-to-market ratios earn higher returns than stocks with low book-to-market ra-

tios, and the difference between market value and book value can be attributed to

the value of intangible capital owned by the firm. This evidence suggests that intan-

gible capital earns a lower average return than physical capital. Qualitatively, the

benchmark model and models 1 and 2 are consistent with intangible capital being

less risky than physical capital (Ai 2009). Quantitatively, however, only the bench-

mark model is capable of producing a significant value premium. The interaction

between lagged risk exposure of new vintage capital and long-run productivity risk

is the main driver of this result.

In the following subsections, we first discuss the common features of all four

calibrations and then examine the models’ implications for the returns on physical

capital rK . Finally, we study the models’ implications for the value premium. The

asset pricing implications of all four calibrations are summarized in Table 2.7.
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Common features. All calibrations, except model 1, are able to generate a low and

relatively smooth, risk-free interest rate.5 The volatilities of the risk-free interest

rates are low because we adopt an intertemporal elasticity of substitution greater

than one: Because agents are very willing to substitute consumption across time,

fluctuations in the expected consumption growth rate produce only small variations

in the equilibrium interest rate.

All four models produce a fairly high volatility of the stochastic discount factor.

Because the representative agent is endowed with recursive preferences, fluctuations

in expected consumption growth (long-run risk, in the language of Bansal and Yaron

2004) strongly affect marginal utility. Models 2 and 3 feature predictability in con-

sumption growth because of the endogenous fluctuations in K and S. The intro-

duction of long-run productivity shocks in both the benchmark model and model 1

almost doubles the volatility of the stochastic discount factor.

Investment dynamics and physical capital returns. As shown in Kaltenbrunner and

Lochstoer (2010) and Croce (2008), an important challenge for the long-run risk–

based asset pricing model with production is to account for the high volatility of

investment and stock returns simultaneously. Although recursive preferences gener-

ate a high volatility of the stochastic discount factor, the return to physical capital is

typically very smooth, unless one is willing to assume a large adjustment cost. High

levels of adjustment cost, however, are typically associated with counterfactually low

levels of volatility in investment growth.

5 In standard RBC models, there is always a tension between simultaneously producing a high
consumption–physical investment ratio and a low level of the risk-free rate through the subjective
discount factor β. This explains why in model 3 we are not able to match the level of the risk-free
rate, because we set β to reproduce the consumption-investment ratio observed in the data.
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This tension is present in models 1, 2, and 3, but it is resolved in our benchmark

model, where the annual volatility of the unlevered returns on physical capital is

2.00% and investment is as volatile as in an RBC model. To explain our results, we

plot in Fig. 2.1 and Fig. 2.2 the impulse response functions of quantities and prices,

respectively, generated by both short-run and long-run shocks in the benchmark

model and model 1.

The left panels of Fig. 2.1 and Fig. 2.2 show that the introduction of heterogeneous

productivity of vintage capitals does not significantly alter the model’s response to

short-run shocks. This result has two important implications. First, because the

quantity dynamics in the benchmark model are mostly driven by short-run shocks,

they inherit the success of standard RBC models with i.i.d. productivity growth

(model 3). Second, the risk premiums associated with short-run shocks are small

in both models. Therefore, to understand the success of our benchmark model in

accounting for both equity and value premiums, we must focus on the interaction

between long-run shocks and the heterogeneous productivity of vintage capitals.

As shown in the right-hand panels of Fig. 2.1 and Fig. 2.2, the impulse responses

to long-run shocks are significantly different across model 1 and the benchmark

model. With a one-standard-deviation change in the long-run productivity shock,

the return on physical capital, rK , in the benchmark model increases by about 1.5%,

whereas the change in rK in model 1 is barely visible. This implies that the exposure

to the long-run productivity risk of physical capital is very small in model 1, whereas

in the benchmark model it is larger by several orders of magnitude.

To explain the different behavior of rK across the benchmark model and model 1,

we focus our attention on the ex-dividend price of physical capital, qK,t (see Fig. 2.2,
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fourth panel, right column). Iterating Equation (2.12) forward, we can express qK,t

as the present value of the infinite sum of all future payoffs:

qK,t =
∞∑

j=1

(1− δK)
j Et

[
Λt,t+jαK

α−1
t+j (At+j)

1−α] , (2.22)

Equation (2.22) implies that the price of physical capital, qK,t, is the present value

of the marginal product of physical capital in all future periods. This equation holds

in model 1 as well. A positive innovation in the long-run productivity component

xt has two effects on the future marginal product of physical capital. The first is a

direct effect: Keeping everything else constant, an increase in xt raises the marginal

product of physical capital by increasing all future At+j for j = 1, 2, · · · . The second

effect comes from the general equilibrium. An increase in the marginal productivity

of capital also triggers more investment, which augments Kt+j in all future periods.

Because of the decreasing returns to scale (α < 1), an increase in Kt+j mitigates the

direct effect.

In model 1, the elasticity of substitution between physical investment and intan-

gible capital, η, is set to 1.4. This implies that the supply of physical investment

is quite elastic. Consequently, the return on physical capital responds very little to

long-run shocks. To see this point more clearly, note that without overlapping gen-

erations of vintage capital, we have ̟t = 1 ∀t, and Equation (2.13) can be written

as

qK,t − (1− δS) =
1

GI (It, St)
=

1

ν

(
It

G (It, St)

) 1

η

. (2.23)

By Equation (2.23), as η increases, It becomes more sensitive to changes in qK,t.

Equation (2.22) implies that if investment adjusts elastically to productivity shocks,
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then the effect of the long-run productivity shock on qK,t is small, due to decreasing

return to scale of physical capital. This intuition is confirmed by our impulse response

functions. Innovations in the long-run productivity component are accompanied by a

nearly permanent increase in the I/S ratio (Fig. 2.1, third panel, right column, solid

line). As a result, the changes in qK after a long-run productivity shock are almost

negligible (Fig. 2.2, fourth panel, right column). To summarize, in model 1 the return

on physical capital responds little to long-run productivity shocks because the direct

effect on the price of physical capital is mostly offset by movements in investment

(the general equilibrium effect). As with standard adjustment cost models, it is

difficult to simultaneously produce a high volatility of both investment growth and

returns on physical capital in model 1.

In the benchmark model, however, after a long-run productivity shock, invest-

ment rises, but after a substantial delay, whereas the return on physical capital

increases immediately and sharply. The I/S ratio initially drops and then starts to

rise, always staying below the level obtained in model 1 (Fig. 2.1, fourth panel, right

column). The last panel in the right column of Figure 1 plots the impulse response

of physical capital stock normalized by productivity (kt = Kt/At) after a long-run

shock. Because of the lagged response of investment, the level of physical capital

in the benchmark model stays nearly permanently behind that obtained in model

1. Because the marginal product of capital, αk
−(1−α)
t , is a decreasing function of

normalized capital stock, in the benchmark model the marginal product of physical

capital remains almost permanently above that observed in model 1, producing a

strong increase in qK,t.

In this case, the direct and general equilibrium effects of long-run productivity
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shocks affect qK,t in the same way, thereby reinforcing each other. The marginal

product of capital increases both because a positive shock in xt increases At+j in all

future periods and because the sluggish response of investment to long-run shocks

results in a nearly permanent reduction of physical capital stock relative to that in

model 1.

To understand the lagged response of investment to long-run news in the bench-

mark model, note that a long-run shock increases the productivity of all existing

vintages of capital almost permanently but affects the productivity of the new pro-

duction units only after a delay. This generates an incentive to postpone the exercise

of new growth options. As a result, a long-run productivity shock immediately

produces a strong income effect (the agent anticipates a persistent increase in the

productivity of all existing vintages of capital and prefers to consume more) without

generating a significant substitution effect (the return on new physical investment

is unaffected by long-run productivity shocks for an extended period of time). At

time 1, when a positive long-run shock materializes, the net effect is an immediate

increase in consumption and a decrease in investment, exactly the opposite of what

happens in model 1, in which the substitution effect dominates the income effect and

investment increases. This feature of the model is consistent with recent empirical

findings of Barsky and Sims (2011) and Kurmann and Otrok (2010).

In the benchmark model, positive long-run shocks, although small, have quite

significant and prolonged negative effects on physical investment. This sluggish re-

sponse of investment is generated by the persistence of the long-run shocks: After

positive long-run news, the relative productivity of new investment remains behind

that of existing vintages for an extended period of time, thereby discouraging a fast
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and full recovery of investment.

Value premium. We report the value premium in the data and the model in the

last row of Table 2.7. In the data, HML is calculated as the average return of the

HML factor as constructed by Fama and French (1995). The model counterpart of

HML is calculated as the difference in the leveraged return on tangible and intangible

capital.6

To understand the difference in the expected returns of tangible and intangible

capital, we can use the functional form of G (I, S) in Equation (2.21) and write the

returns of intangible capital in Equation (2.16) as

rS,t+1 =
1− ν

ν

(
It+1

St+1

) 1

η

+ (1− δS) . (2.24)

As explained in Section 2.3.2, the term 1−ν
ν

(
It+1

St+1

) 1

η
can be interpreted as the ex-

pected payoff of in-the-money options in period t+1. Because St+1 is determined in

period t, innovations in the return on intangible capital respond positively to inno-

vations in It+1. The intuition for this result is that an increase in the I
S
ratio lowers

the option-exercise threshold θ∗t = GI (It, St) and raises the probability of option-

exercise, thereby enhancing the payoff of growth options. As shown in Fig. 2.1 and

2.2, in our benchmark model, I
S
responds negatively to long-run productivity shocks.

Therefore, our model is able to account for the empirical fact that growth stocks

6 In our analysis, we abstract away from both financial and operative leverage. Garca-Feijo and
Jorgensen’s (2010) estimates suggest a degree of total leverage of four; we set leverage to three to
be conservative.
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are less exposed to long-run economic risks, as documented in Bansal, Dittmar, and

Lundblad (2005), Hansen, Heaton, and Li (2008), and Kiku (2006).

To understand the lower exposure of growth options with respect to long-run

productivity shocks compared to assets in place, note that the payoff of growth

options can be replicated by long positions in assets in place and short positions in the

cost of the strike asset. Exercising growth options at time t costs 1
θ
unit of investment

goods and produces a generation-t production unit, which is equivalent to ̟t+1

generation-0 production units. Because installed physical capital in this economy is

measured in terms of generation-0 production unit equivalents, the expected cost of

creating an additional unit of Kt on date t is Et
[
̟−1
t+1

1
θ

]
= 1

θ
e

1−α
α (xt+ 1

2
σ2
a), 0 < α < 1.

Growth options have low exposure to long-run risk, xt, because the cost of exercising

them, Et
[
̟−1
t+1

1
θ

]
, covaries positively with xt and acts as a hedge. Good news for the

productivity of existing productions units is bad news for unimplemented blueprints

because it is more expensive to create new production units as productive as those

of old vintages. As a result, both physical investment and option returns respond

negatively to long-run productivity shocks.

The implications of our model for the value premium are summarized in the

bottom panel of Table 2.7. We make the following observations. First, all models with

intangible capital yield a higher return for physical capital than for intangible capital.

Second, despite the introduction of long-run risk, model 1 produces a lower spread

between physical and intangible capital than does model 2. In model 1, intangible

capital is more exposed to long-run risk than is tangible capital. Specifically, without

heterogeneous productivity of vintage capital, after a positive long-run productivity

shock, physical investment increases sharply but qK,t remains almost flat (Fig. 2.2).
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At the same time, the increase in the I/S ratio is associated with a drop in the

option exercise threshold, θ∗ (t), and a positive innovation in the return on intangible

capital. As a result, as shown in Table 7, simply adding long-run productivity shocks

to model 2 increases the market risk premium only slightly and eliminates most of

the spread in the expected return on physical and intangible capital.

Third, compared with model 1, our benchmark model produces both a larger risk

premium on physical capital and a smaller one on intangible capital, thus improving

on equity and value premiums simultaneously. The heterogeneous productivity of

vintage capital is responsible for both improvements because it causes the I/S ratio

to drop after good long-run news. This feature of the model produces a sharp increase

in the return on tangible capital, rK , and a drop in the intangible capital return, rS.

It increases the riskiness of physical capital and makes growth options an insurance

device against long-run risk. Overall, the benchmark model produces a market risk

premium more than two times larger than that of model 1 and a spread between

tangible and intangible capital returns larger by an order of magnitude.

We conclude our discussion on value premium by exploring the implications of

our model for the cash-flow duration of book-to-market-sorted portfolios. We define

the Macaulay duration, MDt, of a stochastic cash flow process, CFt, as:

MDt =

∑∞
s=1 s · Et [Λt,t+sCFt+s]∑∞
s=1Et [Λt,t+sCFt+s]

. (2.25)

We provide the details of the calculation of the duration of growth options and

assets in place in Appendix B.3. Here, we point out that options typically have

longer duration than assets in place because they start paying cash flows only after

being exercised and becoming assets in place. Under our benchmark calibration, the
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Macaulay duration of assets in place (seventeen years) is about half of that of growth

options (thirty years).

Because in our model value stocks are intensive in assets in place and growth

stocks are intensive in options, our framework is consistent with the inverse relation-

ship between cash-flow duration and book-to-market characteristics documented by

Dechow, Sloan, and Soliman (2004). This feature of our model stands in contrast with

previous results in the real-option literature. In Gomes, Kogan, and Zhang (2003),

for example, value stocks are option intensive and therefore have longer cash-flow

duration than low book-to-market stocks.

2.5.4 Additional testable implications of the model

In this section, we conduct econometric analyses on model predictions that directly

link asset prices to macroeconomic fundamentals. First, we provide supporting ev-

idence on the response of both investment growth and the spread between tangible

and intangible capital returns to productivity news shocks. Second, we study the

correlation of investment leads and lags with aggregate stock market returns as well

as the spread between tangible and intangible capital returns.

Response to news shocks. The key asset pricing implications of our model rely on the

exposure of asset returns to long-run risk, that is, news about future productivity

shocks. Our production-based general equilibrium framework links risk exposure to

the response of macroeconomic quantities to these shocks. As we discuss in Section

2.5.3, a positive news shock is accompanied by a sharp increase in the spread of

the returns of tangible and intangible capital. On the quantity side, it leads to an
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immediate decrease in aggregate investment and a corresponding rise in aggregate

consumption without affecting total output. We test these conditional responses in

the data by jointly estimating Equation (2.1) and the following system of equations

through a GMM procedure:

xt = βdarf · rf,t−1 + βdapd · pdt−1 (2.26)

HMLt = βHML
SR · εa,t + βHML

LR · εx,t + εHML
t (2.27)

CYt = β
C/Y
SR · εa,t + β

C/YM
LR · εx,t + β

C/YM
(−1) · CYt−1 + ε

C/YM
t , (2.28)

where CYt =
Ct

Ct+It
is the consumption-output ratio, or consumption share. In Equa-

tion (2.26), we follow Bansal, Kiku, and Yaron (2007a) and use the risk-free rate and

the log price-dividend ratio to identify news shocks. Equation (2.27) is also consis-

tent with our model: The spread between the value and growth portfolios, HMLt,

depends on the realization of short-run and long-run productivity shocks, as well

as an error term, εHML
t . In Equation (2.28), we use β

C/Y
SR and β

C/Y
LR to denote the

sensitivity of the consumption-output ratio with respect to short-run and long-run

productivity shocks, respectively. Consistent with our model, the consumption share

process is very persistent in the data. Instead of estimating a full-blown DSGE model

with Kt and St as state variables, we use the lagged value, CYt−1, to control for the

history dependence of the consumption share process.7

In Table 2.8, we report our results for three different measures of aggregate pro-

ductivity. In the first row, we compute aggregate productivity according to Equation

7 We have also estimated a version of Equation (2.28) that includes investment-specific shocks,
an alternative determinant of the consumption-output ratio discussed in the literature. Our results
are robust to this extension. We thank Dimitris Papanikolaou for sharing his data on investment-
specific shocks.
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(2.5). We set α = 0.3 and assume an inelastic labor supply, Nt = 1, as in our bench-

mark model. In the second regression, we allow for changes in aggregate labor.

Data on labor and physical capital are from the NIPA tables and are described in

Appendix B.2. In our third specification, we use a multifactor-adjusted measure of

productivity directly provided by the BLS. The first two measures of productivity

can be computed starting from 1930, but the BLS productivity data are available

only for the post–World War II period. Across all specifications, the identification of

the long-run predictable component in productivity growth is statistically significant,

as shown by the small p-value of the Wald statistics. In addition, both HML and

the consumption share respond positively to the identified news shocks, as predicted

by our model. The response of HML is positive and statistically significant across

all specifications. The response of consumption share, in contrast, is statistically

significant in regressions (1) and (2) when longer samples of the productivity data

are available.

In addition, we test the implications of our model for the responses of returns

and quantities to news about the differences in productivity of young and old firms.

We construct the productivity difference as the ratio of the average productivity of

all firms in the second to fourth age quartiles and that of the youngest 25% of firms

in our data set (see Section 2.4). We estimate equations (2.1) and (2.26)–(2.28),

with ∆at replaced by the log difference of productivity. Because the productivity

difference is not perfectly correlated with aggregate productivity in the data, this

estimation exercise provides yet another way to empirically test the model.

We report the results of our estimation in row (4) of Table 2.8, where firm-

level productivity is computed as in Equation (2.18) but assuming an inelastic labor
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supply. In row (5) of the same table, we allow for variations in firm-level labor as

in Section 2.4. Consistent with our model, both HML and the consumption share

drop upon the arrival of good news for the relative productivity of young and old

firms.

Leads and lags. The economic mechanism in the benchmark model has strong im-

plications for the correlation of tangible investment with the market return and the

spread between tangible and intangible capital returns. We plot these correlations in

Fig. 2.3 for both our benchmark model and model 1 and show that our benchmark

model fits the correlation patterns in the data well.

The left panel of Fig. 2.3 plots the cross-correlations between the market excess

returns, rexm,t+1, and leads (j > 0) and lags (j < 0) of tangible investment growth

rates, ∆It+1. Consistent with the data, in our benchmark model the contemporane-

ous correlation between investment growth and excess returns is close to zero. This

is the result of two offsetting effects. On the one hand, just like in the standard RBC

model, a positive short-run productivity shock triggers a positive comovement of the

market return and investment growth. On the other hand, a positive long-run pro-

ductivity shock boosts the market return but discourages current-period investment.

In contrast, in model 1 long-run productivity shocks induce positive comovements

between investment growth and market returns and reinforce the effect originated

from short-run shocks. As a result, model 1 produces a counterfactually large con-

temporaneous correlation of investment and market return.

In addition, similarly to the data, in our benchmark model the correlation reaches

a peak for one-period-ahead investment and dies off at longer horizons. The correla-
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tion’s surge at j = 1 is generated by two effects that reinforce each other. First, upon

the realization of a positive short-run shock at time t, both intangible investment, Jt,

and therefore St+1, rise. At time t + 1, because tangible investment and intangible

capital are complements, it is optimal to increase further tangible investment, It+1.

Hence, a positive excess return at time t predicts a rise in investment at time t+ 1.

Second, upon the realization of a positive long-run shock at time t, there is an imme-

diate spike in the market excess return and a fall in physical investment followed by

sluggish investment growth. Long-run shocks reinforce the fact that positive market

excess returns at time t predict future positive investment growth starting from time

t+1. Because these quantity dynamics die off over time, their effects on long-horizon

correlations taper as well. In contrast, in model 1 the correlation between current

excess returns and future investment growth is too high when j = 1, and it quickly

becomes negative at longer horizons.

In the right panel of Fig. 2.3, we plot the cross-correlations between the return

on the value-minus-growth portfolio, HML, and leads and lags of investment growth.

Consistent with the data, the correlation between investment growth and HML is

low for j = 0 and increases gradually over longer horizons. Note that the returns on

tangible and intangible capital move in the same direction after short-run shocks, but

in opposite directions following long-run shocks; therefore, the HML return mainly

reflects realizations of long-run productivity shocks in our model. As already noted,

positive long-run shocks induce a small contemporaneous drop in physical invest-

ment followed by prolonged investment growth. Therefore, HML predicts future

investment growth even though it has a negative contemporaneous correlation with

investment.
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In contrast, in model 1, the correlation between investment and HML return is

too high for j = 0, 1 and quickly becomes negative at longer horizons. Overall, in

our benchmark model, the correlations are consistently within the 95% confidence

interval bands estimated from the data. We view the empirical evidence presented

in this section as strongly supporting the economic mechanism emphasized by our

model.

2.6 Adjustment Costs of Intangibles

As shown in Fig. 2.4, the impulse responses of both tangible and intangible invest-

ment in the benchmark model contain a periodic component. As a result, in our

benchmark model the volatility of intangible investment is about two times that of

tangible investment, whereas this number is about one-half in the data (Table 2.9).

Here, we introduce adjustment costs on the accumulation of intangible capital.

This modification eliminates the periodic component in both tangible and intangible

investments and makes their volatility consistent with the data. Specifically, we

replace the law of motion of intangible capital in Equation (2.8) by the following

expression,

St+1 = (1− δS)(St −G(It, St)) +H(Jt, Kt), (2.29)

and parameterize H in the spirit of Jermann (1998),

H(J,K) =

[
a1

1− 1/ξ

(
J

K

)1−1/ξ

+ a2

]
K.

We calibrate the parameter ξ to match the volatility of intangible investment. Once ξ

is chosen, the parameters {a1, a2} are pinned down by the following two steady-state
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conditions: H(J,K) = J and HJ(J,K) = 1, where J and K denote the steady-state

levels of intangible investment and tangible capital stock, respectively. In Appendix

B.3, we provide a microeconomic foundation for our specification of the adjustment

cost function and prove that it arises as the result of a concave production function

of new blueprints.

Given this modification of the model, the equilibrium conditions (2.14)–(2.16)

are replaced by

qS,t = 1/HJ,t

pK,t = αKα−1
t (AtNt)

1−α +HK,tqS,t + (1− δK) qK,t

rK,t+1 =
αKα−1

t+1 (At+1Nt+1)
1−α +HK,tqs,t + (1− δK) qK,t+1

qK,t,

rS,t+1 =
GS (It+1, St+1)

GI (It+1, St+1)
+ (1− δS) qS,t,

where HJ and HK denote the partial derivative of H with respect to J and K,

respectively.

We highlight three main results. First, the impulse response functions of tangible

and intangible investment in the model with adjustment costs are smooth (Fig. 2.4).

Second, the incorporation of adjustment costs raises the volatility of physical in-

vestment and lowers that of intangible investment, consistent with the data (Table

2.9). Third, in the model with adjustment costs the behavior of consumption growth

and returns on both tangible and intangible capital remains similar to that in the

benchmark model. As a result, the implications of benchmark model for the equity

premium, the value premium and the volatility of consumption growth are largely

unaffected by this extension.
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Not surprisingly, the conditional CAPM fails in our model because the true

stochastic discount factor is a linear combination of both long-run and short-run

shocks and is imperfectly correlated with the market return. Indeed, the stochastic

discount factor in our benchmark model has a higher loading on long-run productivity

shocks than the market return. As a result, assets with higher loadings on long-run

risk yield higher alphas in our CAPM regressions. As shown in Table 2.9, physical

capital not only has a higher unconditional average return than intangible capital

but also a higher CAPM alpha. This pattern is more pronounced in the model with

adjustment cost, where the market return is driven even more by short-run shocks

and represents a worse proxy for the true stochastic discount factor.

We conclude this section with a brief explanation of the origin of the periodic

component and the reason it disappears with adjustment costs. Because of the

complementarity between intangible capital and physical investment, GIS(It, St) >

0, the agent has a strong incentive to substantially increase physical investment

only after more intangible capital is built up. At time t, however, the stock of

intangible capital, St, is one-period predetermined and cannot simultaneously adjust

with tangible investment, It. For this reason, the agent finds it optimal to proceed

in alternating steps.

For the sake of simplicity, let us focus on a positive short-run productivity shock

at time t = 1 (Fig. 2.4, left column). Upon the realization of the shock, physical

investment is partially delayed and intangible investment, J1, is immediately adjusted

in order to reach a higher level of intangible stock, S2. At time t = 2, physical

investment is efficiently increased and intangible capital is partially depleted. At

time t = 3, more intangible investment is needed to replenish the stock of blueprints.
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As a result, in the third period physical investment is dampened, and intangible

investment surges again. This pattern continues until it converges back to the steady

state.

Note that the above investment policy requires large adjustments in intangible

investment, J , and produces an intangible investment growth volatility of 35% per

year. Even in the presence of mild adjustment costs, such large changes in intangible

capital become very costly. For this reason, with adjustment costs the increase in

intangible investment becomes gradual and persistent, whereas physical investment

immediately spikes upon the realization of the productivity shock.

In Appendix B.3, we consider two other extensions of our model. First, we add

an endogenous labor supply. Second, we consider more general specifications of the

φj process that governs the heterogeneity of firms’ exposure to aggregate shocks. We

show that our main results are preserved and often enhanced in these more general

settings. Because the incorporation of adjustment costs significantly improves our

results, we keep this feature in the other two extensions as well.

2.7 Conclusion

In this study, we present a general equilibrium asset pricing model with long-run

productivity shocks as in Croce (2008) and intangible capital modeled as storable

investment options as in Ai (2009). We document that in the data, new investment

is less exposed to aggregate productivity shocks than is capital of older vintages.

We incorporate this feature in our model and show that the lower exposure of new

investment is quantitatively important in accounting for (1) the high equity premium,

(2) the high volatility of the stock market return, and (3) the large spread in both
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expected returns and cash-flow duration across book-to-market-sorted portfolios in

the data.

Several remarks are in order. First, as in Ai (2009), we have allowed idiosyncratic

shocks to the quality of investment options. In our setting, we have assumed that

these shocks are i.i.d. Although unrealistic, this assumption simplifies our aggrega-

tion results, making our model very tractable and enabling us to avoid the need to

keep track of the cross-sectional distribution of option quality. Allowing for more

general processes of the quality of the options is a fruitful extension that we leave

for future research.

Second, considering a more general setting with heterogeneous firms will allow

us to implement portfolio sorting exercises in the context of our current model, to

study firms’ transition among value and growth portfolios, and to confront the model

with a wider set of empirical evidence at the portfolio level, as done by Ai and Kiku

(2012). Based on their insights, we are optimistic that the basic intuition in this

article will remain valid even with heterogeneous firms.

Finally, we believe that our model provides a valuable general equilibrium frame-

work for the measurement of intangible capital by exploring the information from

both the quantity and pricing sides of the economy. Specifically, a structural es-

timation of our DSGE model employing both time-series data on macroeconomic

aggregates and cross-section data on equity returns may shed new light on the accu-

mulation of intangibles in the United States.
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Table 2.1: Summary statistics by firm age quantiles

Firm Median Median Median Median
age quantile firm age capital age (T=5) capital age (T=8) capital age (T=15)

1 8 2.55 3.37 4.47
2 16 2.61 3.54 4.84
3 29 2.66 3.63 5.06
4 91 2.71 3.76 5.41

All Firms 24 2.64 3.60 5.01
p-Valueaa 0.00 0.00 0.00 0.00
No. Firms 8,084 8084 6,014 2,937
No. obs.ai 83,089 88,283 64,871 32,239

This table reports the summary statistics of our panel. The sample ranges from 1950 to
2008 and includes approximately 8,084 different firms, for a total of 83,089 observations
grouped into four firm-age quantiles. Firm age is expressed in years and is computed using
founding dates from Ritter and Loughran (2004) and Jovanovic and Rousseau (2001).
Capital age is computed according to Equation (2.17). We report the p-value for the null
hypothesis that the average age in the fourth quartile is equal to the average age in the first
quartile. The null is rejected across all of our measures at the 1% confidence level. The
last two rows report the number of firms and observations available for different measures
of age.
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Table 2.2: Exposure to aggregate risk by firm age

Regression ∆ lnA AGE AGE ∗∆ lnA B/M Obs. Firms
(1) -0.042 -0.002*** 0.012*** -0.005 70,909 7,335

(0.216) (0.000) (0.003) (0.004)
(2) 0.880* -0.003*** 0.018*** -0.046*** 22,432 4,023

(0.533) (0.001) (0.007) (0.007)
(3) 0.383 -0.002*** 0.011** -0.006 59,395 7,226

(0.319) (0.000) (0.004) (0.005)

This table reports firms’ risk exposure by age. All estimates are based on the following
second-stage regression: ∆ lnAi,j,t = ξ0i + ξ1∆ lnAt + ξ2AGEi,j,t + ξ3AGEi,j,t · ∆ lnAt +
B/Mi,j,t+εi,j,t. Regression (1) is obtained using the whole sample. To control for exit bias,
in regression (2) we use the inverse Mills ratio (IMR) as an additional explanatory variable.
In regression (3) we exclude the years with negative aggregate productivity growth. All
the estimation details are reported in Appendix B.2. Numbers in parentheses are standard
errors. We use ∗, ∗∗, and ∗ ∗ ∗ to indicate p-values smaller than 0.10, 0.05, and 0.01,
respectively.
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Table 2.3: Exposure to aggregate risk of young versus other firms

φ Obs.
Regression Young Other OMY Young Other

(1) -0.484 0.963*** 1.447*** 15,030 55,879
(0.373) (0.100) (0.361)

(2) -0.325 1.202*** 1.527* 5,015 17,417
(0.837) (0.416) (0.908)

(3) -0.727 1.501*** 2.228*** 12,721 46,674
(0.618) (0.177) (0.597)

Notes - This table reports risk exposure of Young and Other firms. In each sample period,
a firm is classified as Young if it belongs to the set of the 25% youngest firms; otherwise
it is classified in the group Other. All estimates are based on the following second-stage
regression (equation (2.20)):

∆ lnAijt =

{
ξ0i + φY∆ lnAt + ξ1iB/Mi,j,t + ε̃i,j,t i ∈ Young

ξ0i + φO∆ lnAt + ξ1iB/Mi,j,t + ε̃i,j,t otherwise.

OMY refers to φO − φY . Regression (1) is obtained using the whole sample. To control
for exit bias, in regression (2) we add the inverse Mills ratio (IMR). In regression (3) we
exclude the years with negative aggregate productivity growth. All the estimation details
are reported in Appendix B.2. Numbers in parentheses are standard errors. We use ∗, ∗∗,
and ∗ ∗ ∗ to indicate p-values smaller than 0.10, 0.05, and 0.01, respectively.
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Table 2.4: Main components of our economy

Benchmark Model 1 Model 2 Model 3
Vintage capital Yes (φ0 = 0) No (φ0 = 1) No (φ0 = 1) No (φ0 = 1)
Long-run productivity risk Yes (σx 6= 0) Yes (σx 6= 0) No (σx = 0) No (σx = 0)
Intangible capital Yes Yes Yes No
Recursive preferences Yes Yes Yes Yes

This table summarizes the main components active in each of our four models. All param-
eter values are reported in Table 2.5.
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Table 2.5: Calibrated parameter values

Model: Benchmark Model 1 Model 2 Model 3
Preference parameters

Discount factor β 0.97 0.97 0.98 0.89
Risk aversion γ 10 10 10 10
Intertemporal elasticity of substitution ψ 2.0 2.0 2.0 2.0

Production function/Aggregator parameters
Capital share α 0.3 0.3 0.3 0.3
Depreciation rate of physical capital δK 11% 11% 11% 11%
Depreciation rate of intangible capital δS 11% 11% 11% –
Weight on physical investment ν 0.84 0.79 0.815 –
Elasticity of substitution η 1.40 1.40 1.75 –

Total factor productivity parameters
Average growth rate µ 2.0% 2.0% 2.0% 2.0%
Volatility of short-run risk σa 5.08% 6.30% 7.30% 5.00%
Volatility of long-run risk σx 0.86% 0.80% – –
Autocorrelation of expected growth ρ 0.925 0.925 – –
Risk exposure of new investment φ0 0 1 1 1

This table reports the parameter values used for our calibrations. The following parameters
are common across all models: risk aversion, γ; intertemporal elasticity of substitution, ψ;
capital share, α; depreciation rates, δK and δS ; average productivity growth rate, µ. We
choose the rest of the parameters to match the moments reported in Table 2.6 whenever
possible. All models are calibrated at an annual frequency.

128



Table 2.6: Moments used for model calibration
Data Benchmark Model 1 Model 2 Model 3

E [C/I] 5.62 5.60 5.54 5.63 5.69
E [I/J ] 1.00 1.01 0.95 (0.77) —
σ [∆ lnYM ] 3.49 3.49 3.49 3.49 3.52
AC1 [∆ lnYM ] 0.45 0.25 (0.60) 0.46 0.13
E [rf ] 0.86 0.80 0.87 0.86 (12.65)

This table reports the moments used to calibrate the parameters of the models evaluated
in this paper. Our database refers to U.S. annual data from 1930 to 2003 (see Appendix
B in the Supplementary Data). All moments that cannot be matched are in parentheses.
In Model 1, the autocorrelation of measured output, YM ≡ C + I, is too high. In Model 2,
the parameter ν is set to match the C/I ratio, even though the implied I/J ratio is lower
than in the data. In Model 3, the discount factor β is chosen to match the steady-state
consumption-investment ratio, even though this choice makes the risk-free interest rate too
high.

129



Table 2.7: Quantities and prices

Moments Data Benchmark Model 1 Model 2 Model 3
σ (∆ lnC) 02.53 (00.56) 02.60 02.85 02.69 02.14
σ (∆ ln I) 16.40 (03.24) 14.18 10.90 08.85 15.33
AC1 (∆ lnC) 00.49 (00.15) 00.48 00.68 00.48 00.59
ρ (∆ lnC,∆ ln I) 00.39 (00.29) 00.17 00.56 00.77 00.59
ρ (∆ lnC10,∆ ln I10) 00.62 (00.24) 00.73 00.82 00.83 00.72
σ [SDF ] 87.98 90.94 73.50 43.21
E[rK − rf ] 01.95 00.80 00.82 00.31
σ[rK ] 01.99 01.26 01.27 00.92
E[rS − rf ] 00.54 00.74 00.47 –
σ[rS] 00.88 00.88 00.79 –
σ[rf ] 00.97 (00.31) 01.00 00.96 00.70 00.65
E[rLM − rf ] 05.71 (02.25) 05.20 02.37 02.31 00.83
E[rLK − rLS ] 04.32 (01.39) 04.20 00.17 01.05 –

All figures are multiplied by 100, except contemporaneous correlations (denoted by ρ) and
first-order autocorrelations (denoted by AC1). Empirical moments are computed using U.S.
annual data from 1930 to 2003. Numbers in parentheses are GMM Newey-West adjusted
standard errors. ∆ logC10 and ∆ log I10 denote the ten-year growth rate of consumption
and investment, respectively. E

[
rLK − rLS

]
measures the average difference between the

levered returns of tangible and intangible capital. We use the HML Fama-French factor
as an empirical counterpart of rLK − rLS . r

L
M indicates levered market returns. Returns are

in log units, and the leverage is three (Feijo and Jorgensen 2010). All of the parameters
are calibrated as in Table 2.5. The entries for the models are obtained by repetitions of
small-sample simulations.
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Table 2.8: Conditional responses of consumption and HML

Productivity Sample
Sign implied by the model Wald Test

β
C/Y
SR < 0 β

C/Y
LR > 0 βHML

SR > 0 βHML
LR > 0 p−value

(1) Capital adjusted (BEA) 1930–2006 0.000∗∗∗ 0.034∗∗∗ 0.414∗∗∗ 0.001∗∗∗ 0.000∗∗∗

(2) Capital and labor adjusted (BEA) 1930–2006 0.999∗∗∗ 0.017∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(3) Multifactor adjusted (BLS) 1949–2006 0.000∗∗∗ 0.487∗∗∗ 0.101∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(4) O-Y capital adjusted 1951–2006 0.850∗∗∗ 0.000∗∗∗ 0.565∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(5) O-Y capital and labor adjusted 1951–2006 0.261∗∗∗ 0.261∗∗∗ 0.355∗∗∗ 0.000∗∗∗ 0.000∗∗∗

We jointly estimate Equations (2.1) and (2.26)–(2.28) and study the sign of β
C/Y
SR , β

C/Y
LR , βHML

SR , and βHML
LR , that

is, the contemporaneous sensitivity of consumption share and HML to both short- and long-run productivity shocks.
We test the null that the sign of each coefficient is opposite that suggested by our model and report the associated
p-value. For example, because the model suggests that βHML

LR > 0, we test H0 : βHML
LR < 0. Small p-values indicate

a sign consistent with our model. In the last column, we report the p-value of the Wald statistics that tests the null
of no predictability in productivity growth. We use ∗, ∗∗, and ∗∗∗ to indicate p-values smaller than 0.10, 0.05, and
0.01, respectively. All p-values are based on GMM standard errors. The first three regressions are based on aggregate
measures of productivity. The last two regressions are based on the productivity differential between Young and
Other firms as defined in Section 2.5.4 to proxy for −̟t.
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Table 2.9: Adjustment costs on intangible capital

σ∆C σ∆I/σ∆C σ∆J/σ∆I E[rLM − rf ] E[rLK − rLS ] αK − αS
Data 02.53 05.29 00.50 05.71 04.32 04.01

(00.56) (00.50) (00.07) (02.25) (01.39) (01.77)
Bench. 02.60 05.40 02.50 05.20 04.20 00.40
Ext. 1 02.53 06.40 00.40 04.55 04.16 04.91

All figures are multiplied by 100. Empirical moments are computed using U.S. annual data
in log units. Numbers in parentheses are GMM Newey-West adjusted standard errors.
E
[
rLK − rLS

]
and E

[
rLM − rf

]
measure the levered spread between tangible and intangible

capital returns, and the market premium, respectively. The leverage coefficient is three
(Feijo and Jorgensen 2010). The difference in the intercept of the CAPM regression for
tangible and intangible returns is denoted by αK − αS . The entries for the models are
obtained by repetitions of small-sample simulations. Extension 1 features adjustment costs
on intangible investment. All the parameters for Extension 1 are reported in Table 2A,
Appendix B.3.
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Figure 2.1: Impulse response functions for quantities

This figure shows annual log-deviations from the steady state. All the parameters are
calibrated to the values reported in Table 2.5. The dashed lines refer to model 1; the solid
lines refer to the benchmark model.
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Figure 2.2: Impulse response functions for prices

This figure shows annual log-deviations from the steady state. All the parameters are
calibrated to the values reported in Table 2.5. Returns are not levered. The dashed lines
refer to model 1; the solid lines refer to the benchmark model.
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Figure 2.3: Returns and investment growth leads and lags

This figure shows the correlation of market excess returns (left) and the spread between
the returns of tangible and intangible capital (right) with investment growth leads (j > 0)
and lags (j < 0). The thin solid line represents the point estimate of the correlations
computed using U.S. data from 1930 to 2003. The spread between tangible and intangible
capital is proxied by the HML factor. The dotted lines mark the 95% confidence interval
for the correlations. The solid line with circles represents the correlations obtained in the
benchmark model. The diamond-shaped markers refer to model 1. All the parameters are
calibrated to the values reported in Table 2.5. The entries from the models are obtained
through repetitions of small-sample simulations.
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Figure 2.4: The Role of adjustment costs on intangible capital

This figure shows annual log-deviations from the steady state. Returns are not levered. For
the model with adjustment costs, all the parameters are calibrated to the values reported
in Table 2A, Appendix B.3.
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3

Regime Shifts in a Long-Run Risks Model of U.S.

Stock and Treasury Bond Markets

3.1 Introduction

Stocks and nominal bonds are two primary asset classes on investors’ portfolio menu.

It is important to have a general equilibrium model to provide a coherent explanation

of the risks and returns of these two markets simultaneously. The absence of arbi-

trage opportunities implies that cross-market restrictions should be respected in any

such models. Viceira (2010) and Campbell, Sunderam and Viceira (2010) document

the empirical evidence on stochastic correlation between stock and bond returns.

Fig. 3.1 plots the time-varying correlation between stock and 10-year nominal bond

returns, which is calculated based on a 3-year centered moving window of monthly

real returns. As in the figure, the correlation displays tremendous fluctuations, and

also occasionally switches sign. Specifically, the correlation is usually positive, how-
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ever, in periods like 1930’s great depression and 2000’s global financial crisis, the

Treasury bond performed as hedges for stock returns. Based on the CAPM, these

movements are significant enough to cause substantial changes (even switching signs)

in the risk premium on Treasury bond. It has important implications for investors

since the nominal bond risks are changing, rather than being constant as often as-

sumed in traditional portfolio choice theory. Despite tremendous progress in the

general equilibrium to model risks and returns for bond or stock market separately,

very few has taken into account of the joint behaviors of these two asset classes.

This paper studies the joint determinants of stock and bond returns in Bansal

and Yaron (2004) type of long-run risks (LRR) model framework. This frame-

work features a recursive preference for early resolution of uncertainty, low frequency

movements in both expected consumption and expected inflation, and time-varying

consumption and inflation volatilities. Beyond these, an additional novel feature is

that I allow for regime shifts in consumption and inflation dynamics – in particular,

the means, volatilities, and the correlation structure of consumption and inflation

dynamics are regime-dependent.

This rational expectations general equilibrium model framework can (1) jointly

match the dynamics of consumption, inflation and cash flow; (2) generate time-

varying and switching sign of stock and bond correlations, as well as switching signs of

bond risk premium; (3) quantitatively reproduce another long list of salient empirical

features in stock and bond markets, including time-varying equity and bond return

premia, regime shifts in real and nominal yield curve across business cycles, the

violation of expectations hypothesis of bond returns.

This paper broadly classifies the economy into three regimes: expansion, contrac-
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tion and deep-recession. The expansion regime features a high consumption growth,

a medium level of inflation, and low uncertainty (which is measured by consumption

and inflation volatilities). In the contraction regime, the growth rate is lower, the

uncertainty and the inflation level are both higher. One can think this regime as a

stagflation regime, in which low growth and high inflation coexist. A typical sample

episode is the period of late 1970’s and early 1980’s. The deep-recession regime fea-

tures the lowest growth level and the highest uncertainty level. As opposed to the

regular contraction, this regime has very low inflation, since deflation rather than

inflation is more of a concern at this time. A key ingredient that is different across

three regimes is the nominal-real correlation, in particular, it refers to the cor-

relation between shocks to expected growth and expected inflation factors. In the

first two regimes, positive news to expected inflation factor indicates a lower future

expected growth; however, in the deep recession regime, the relationship is just the

opposite. I provide empirical evidence to support this channel in Section 3.2. This

ingredient is critical to generate tremendous movements (and potentially switching

signs) of nominal bond risk premium as well as a stock-bond correlation.

I use a regime switching dynamic correlation (RSDC) model by Pelletier (2006)

to specify the correlation structure between expected growth and inflation shocks, in

particular, the correlation is constant within each regime, however, it becomes differ-

ent and even switches sign across different regimes (i.e. switching signs of nominal-

real correlation). This setup leads to switching sign of market price of long-run

inflation risks, the magnitude of which is magnified by high persistence of expected

growth and expected inflation factors. This feature, therefore, quantitatively gener-

ates switching sign of nominal bond risk premium. In the meantime, this correlation
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structure also generates time-varying and switching sign of stock and bond correla-

tion, consistent with the empirical evidence. Campell, Sunderam and Viceira (2010)

and Vieslak and Vedolin (2010) set up a reduced form term structure model to

model time-varying nominal-real correlations. Hasseltoft (2009) is closely related to

my paper, which models time-varying covariance between expected consumption and

expected inflation factor as an AR(1) process in a long-run risks model. It can gen-

erate time-varying and switching sign of stock-bond correlation, but quantitatively

not enough. Another drawback of Hasseltoft (2009)′s setup is that it’s hard to main-

tain the multivariate variance-covariance matrix to be positive-definite under such a

specification. The RSDC setup is a good direction to achieve a valid time-varying

variance-covariance structure and a closed-form solution simultaneously. And the

model is also able to explain various other salient empirical features, which are not

pursued in Hasseltoft (2009) . As in the RSDC model, I model the macroeco-

nomic volatility as an autoregressive Gamma process, with regime specific means

and volatility levels. Following the similar argument as in Bansal and Shaliastovich

(2010) , this channel is very important to generate significant time-varying bond risk

premium, and can quantitatively reproduce the violations of expectations hypothesis

and Cochrane and Piazzesi (2005) single factor regressions.

Beyond the regime-specific correlation structure, I also allow for the mean levels of

consumption growth and inflation to be different across regimes. In the equilibrium,

the mean level acts as a ”level” factor, driving the regime-shifts in levels of both real

and nominal yield curves, consistent with the findings of Bansal and Zhou (2002) ,

which features a reduced form statistical model with regime switching.

The rest of the paper is organized as follows. In the next section I document
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the empirical evidence on changing inflation risks and nominal-real correlation. In

Section 3.3 I set up a long-run risks model with regime shifts. I present the solution to

the model and discuss its theoretical implications in the Section 3.4. In Section 3.5,

I describe the data and calibration of the model parameters. Model’s implications

for bond and stock markets are presented in the same section. In the last section, I

conclude and discuss some further research agenda in this paper.

3.2 Empirical Evidence

In this section, I provide more empirical evidence which motivates the ”nominal-

real correlation” channel. Fig. 3.2 summarizes the CAPM beta of inflation, which

captures the comovement of inflation shocks with stock returns. I estimate a VAR(1)

model for inflation, stock returns (real), and the three-month treasury bill returns

over a rolling window of 5-years’ quarterly data, and then compute the CAPM beta

of inflation. The figure shows that the beta of realized inflation moves tremendously

and occasionally switches sign. By comparing with Fig. 3.1 one can find that the

periods of positive CAPM beta of inflation lie up quite well with negative stock-bond

relationship. This is intuitive since inflation is associated with high bond yields and

low bond returns. This figure clearly implies that the time-varying and switching

signs of stock-bond correlation is closely related to the changing inflation risks.

Fig. 3.3 provides direct evidence of the stochastic nature of nominal-real corre-

lations. I follow a similar moving window quarterly VAR approach to compute the

industrial production growth beta of inflation over the long sample (first panel), and

consumption beta of inflation over post-war sample (second panel). And the last

panel uses GDP and inflation expectations from the Survey of Professional Forecast-
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ers for the period 1968Q3− 2009Q4 to proxy for the correlation of expected growth

and expected inflation factors. All three panels display quite similar patterns, and

show that the nominal-real correlation does move significantly, and is an important

channel to pursue.

3.3 A Long-run Risks Model with Regime-Shifts

3.3.1 Preferences

I consider a discrete-time endowment economy. The investor’s preferences over the

uncertain consumption stream Ct can be described by the Kreps-Porteus, Epstein-

Zin recursive utility function, (see Epstein and Zin (1989) ; Kreps and Porteus (1978)

):

Ut =
[
(1− δ)C

1−γ
θ

t + δ
(
EtU

1−γ
t+1

) 1

θ

] θ
1−γ

, (3.1)

where δ ∈ (0, 1) is the time discount factor, γ is the risk aversion parameter, and ψ is

the intertemporal elasticity of substitution (IES). Parameter θ is defined by θ = 1−γ

1− 1

ψ

.

Its sign is determined by the magnitudes of the risk aversion and the elasticity of

substitution, so that if ψ > 1 and γ > 1, then θ will be negative. Note that when

θ = 1, that is, γ = 1
ψ
, the above recursive preference collapses to the standard

expected utility. As is pointed out by Epstein and Zin (1989) , in this case the agent

is indifferent to the timing of the resolution of uncertainty of the consumption path.

When risk aversion exceeds (is less than) the reciprocal of IES the agent prefers early

(late) resolution of uncertainty of consumption path. In the long-run risks model,

agents prefer early resolution of uncertainty of the consumption path.

As shown in Epstein and Zin (1989) , the logarithm of the intertemporal marginal
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rate of substitution (IMRS) is given by

mt+1 = θ log δ −
θ

ψ
∆ct+1 + (θ − 1) rc,t+1, (3.2)

where ∆ct+1 = log(Ct+1/Ct) is the log growth rate of aggregate consumption and

rc,t+1 is the log of the return (i.e. continuous return) on an asset which delivers

aggregate consumption as its dividends each time period. This return is not observed

in the data. It is different from the observed return on the market portfolio as the

levels of market dividends and consumption are not equal: aggregate consumption

is much larger than aggregate dividends. Therefore, I assume an exogenous process

for consumption growth and use a standard asset-pricing restriction

Et [exp (mt+1 + rt+1)] = 1, (3.3)

which holds for any continuous return rt+1 = log(Rt+1), including the one on the

wealth portfolio, to solve for the unobserved wealth-to-consumption ratio in the

model.

3.3.2 Consumption and Inflation Dynamics

The key model novelty of this paper is that the consumption and inflation dynamics

are subject to regime shifts. For notational brevity and expositional ease, I specify the

dynamics of consumption and inflation dynamics in a rather general VAR structure

with regime shifts. However, I then immediately provide a specific version of the

dynamics that is my focus.

I assume there are S regimes that govern the dynamic properties of the n-

dimensional state vector Yt ∈ Rn . The regime variable st is a S-state Markov process,
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with the probability of switching from regime st = j to st = k given by a constant

πjk, 0 ≤ j, k ≤ (S − 1) ,with
S−1∑
k=0

πjk = 1, for all j. Agents are presumed to know the

current and past histories of both the state vector and the regime which the economy

is in. Thus, the expectation Et [·] is conditioned on the information set It, generated

by {Yt−l,st−l : l ≥ 0} . I use the notation E(j) [·] to denote the unconditional mean of

a random variable under the assumption of a single-regime economy governed by the

parameters of regime j.

The Markov process governing regime changes is assumed to be conditionally

independent of the Y process. In addition, f (Yt+1|Yt−l : l ≥ 0, st = j, st+1 = k) =

f (Yt+1|Yt−l : l ≥ 0, st = j).

Given st = j, The state vector of the economy Yt+1 follows a VAR that is driven

by both Gaussian and demeaned Gamma-distributed shocks:

Yt+1 = µ(j) + F (j)Yt +Gt(j)εt+1 + ωjt+1. (3.4)

Here εt+1 ∼ N(0, I ) is the vector of Gaussian shocks, and ωjt+1 is the vector of

demeaned Gamma-distributed shocks. The detailed parameterization of Gamma

distribution will be provided later. To put the dynamics into an affine class, I impose

an affine structure on Gj
t :

Gt(j)G
′
t(j) = h(j) +

∑

i

Hi(j)Yt,i, (3.5)

where h(j) ∈ Rn×n, Hi(j) ∈ Rn×n, the i denotes the ith component of state vector

Yt.

In the calibration section of the paper and some of the discussions that follow, I

focus on a particular specification of (3.4). This specification is a generalized LRR
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model that incorporates regime shifts and non-neutrality of expected inflation factor.

Here I give an overview of this generalized LRR model and map it into the general

framework in (3.4). Further details are also provided in the calibration section.

I specify:

Yt+1 =




∆ct+1

πt+1

xt+1

zt+1

σ2
t+1

∆dt+1



, µ(j) =




µjc
µjπ
0
0

(σjc)
2
(1− νσ)

µjd



, F (j) =




0 0 1 τz 0 0
0 0 τx 1 0 0
0 0 νx 0 0 0
0 0 0 νz 0 0
0 0 0 0 νσ 0
0 0 φ φτz 0 0



.

The vector of Gaussian shocks εt+1 = (εc,t+1, επt+1, εx,t+1, εz,t+1, 0, εd,t+1)
′ ∼ N(0, I )

and ωjt+1 =
(
0, 0, 0, 0, ωjσ,t+1, 0

)′
, in which ωjσ,t+1 follows demeaned Gamma distribu-

tion, i.e. ωjσ,t+1 = ω̃jσ,t+1 − E
(
ω̃jσ,t+1

)
. The Gamma distribution of ω̃jσ,t+1 is char-

acterized by two parameters, so we specify the mean and volatility of the volatility

shocks as

E
(
ω̃jσ,t+1

)
=

(
σjc
)2

(1− νσ) ,

V ar
(
ω̃jσ,t+1

)
=

(
σjcω
)2
.

Therefore, we have E
(
ωjσ,t+1

)
= 0, and V ar

(
ωjσ,t+1

)
= (σjcω)

2
.

The first two components ∆ct+1 and πt+1 denote the consumption growth and

inflation. xt+1 and zt+1 are long-run expected growth and expected inflation factors.

The term (µc + xt + τzzt) is the conditional expectation of consumption growth where

xt is a small but persistent expected consumption factor that captures long run risks

in consumption and dividend growth, as in standard LRR model. Similarly, the term
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zt is a small but persistent expected inflation factor that captures long-run risks in

inflation. 1

The parameter τz 6= 0 leads to a non-neutral LRR model, that is, the expected

inflation factor feeds back to the real economy, i.e. the consumption process. For a

typical parameter of τz < 0, it means that a positive expected inflation factor will

lower the future expected consumption growth. In this case, the long-run inflation

risk is priced and risk compensation for this risk factor is embodied in risk premium

even for real assets. In Bansal and Shaliastovich (2010) , τz = 0, that is, the inflation

process does not feed back to the real economy.

The term ∆dt+1 is logarithm dividend growth, which is defined as a leveraged

process of ∆ct+1, with a leverage parameter φ > 1. Thus, the dividend growth is

more sensitive to xt and zt than is consumption growth.

The volatility process σ2
t+1 follows an autoregressive Gamma process. I assume

that the innovations in volatility process ωjσ,t+1 follows demeaned Gamma distribu-

tion, following Barndorff-Nielson and Shephard (2001) and Bansal and Shaliastovich

(2010) , in order to guarantee that the variances always stay positive. As noted in

Bansal and Shaliastovich (2010) , this specification will generate very similar asset

pricing results as a Gaussian volatility shock.

I set the conditional variance-covariance matrix of the Gaussian shocks to be

1 Note that xt and zt are only part of the stochastic expected consumption and inflation, respec-
tively, which is different with the standard LRR model. We call xt and zt expected growth and
inflation factors, respectively, throughout this paper.
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Gt (j)Gt (j)
′ = Hσ (j) σ

2
t , in which

Hσ(j) =




1 0 0 0 0 0
0 ϕπ 0 0 0 0
0 0 ϕx ρjxzϕz 0 0
0 0 0 ϕz 0 0
0 0 0 0 0 0
ρdc 0 0 0 0 0



.

The terms ϕπ, ϕx, ϕz are regime-independent constants and denote the relative

magnitudes of inflation volatility shock, long-run consumption shock and long-run

inflation shock with respect to short-run consumption shock. This is a simplification

assumption tying the dynamics of four Gaussian shocks to the same factor. It is

straightforward to extend the model by allowing for multiple factors to derive dif-

ferent volatility shocks, though, I do not pursue this additional complication in this

paper.

The parameters ρjxz is regime specific and captures the different correlations be-

tween long-run consumption and inflation shocks in different economic regimes. This

specification closely follows the regime switching dynamic correlation (RSDC) model

in Pelletier (2006) . As a summary, I decompose the covariance into standard devia-

tion and correlation. The standard deviation follows a continuous stochastic volatility

process. And the correlation is dynamic, in particular, it follows a regime switching

model; it is constant within a regime, but different across regimes. This setup can be

seen as a midpoint of the constant conditional correlation (CCC) model of Bollerslev

(1990) and the dynamic conditional correlation (DCC) model of Engle (2002) . An

important advantage of RSDC specification is that it allows for tractability of the

general equilibrium model within the affine framework (after some log-linearization
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approximation), while being able to generate time-varying correlation of risk factors.

3.4 Model Solutions and Intuitions

3.4.1 Within Regime Intuitions

Before going through the solution to the above full blown LRR model with regime

switching, I lay down some within regime intuitions, i.e. I solve the model by as-

suming a single-regime economy governed by the parameters of regime j, for j =

0, ...S − 1.

To get an analytical solution of the model, I log-linearize the return on con-

sumption claim to solve for the equilibrium discount factor and asset prices. In

equilibrium, the wealth-to-consumption ratio, vt, is linear in states,

vt = A0 + Axxt + Azzt + Aσσ
2
t

Using the Euler equation (3.3) and the assumed dynamics of consumption growth

and inflation, I derive the solutions coefficients Ax, Az and Aσ :

Ax =
1− 1

ψ

1− κ1ρx
,

Az =

(
1− 1

ψ

)
τz

1− κ1ρx
,

Aσ =

(1− γ)
(
1− 1

ψ

)[
1 + κ21

{(
1

1−κ1νx
+ τzρxz

1−κ1νz

)2
ϕ2
x +

(
ρxz

1−κ1νx
+ 1

1−κ1νz

)2
ϕ2
z

}]

2(1− κ1νσ)
.

The details for the model solution and the expression for the endogenous log-

linearization coefficients are provided in Appendix C.2.
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It follows that Ax is positive if the IES, ψ, is greater than one. In this case

the intertemporal substitution effect dominates the wealth effect. In response to

higher expected growth, agents buy more assets, and consequently the wealth-to-

consumption ratio rises. In the standard power utility model with risk aversion

larger than one, the IES is less than one, and hence Ax is negative – a rise in expected

growth potentially lowers asset valuations. That is, the wealth effect dominates the

substitution effect.

The coefficient Az measures the sensitivity of wealth-to-consumption ratio to

fluctuations of expected inflation factor. Consider the case that IES, ψ, is greater

than one, the sign of Az is determined by τz, which captures the response of expected

growth factor on expected inflation. When typically τz < 0, that is, a high expected

inflation factor leads to a low expected consumption growth, the wealth-to-coumption

ratio responds negatively (Az < 0). In previous LRR literature, for instance, Bansal

and Yaron (2004) and Bansal and Shaliastovich (2010) , τz is set to zero. In their

setup, the fluctuations of expected inflation does not feed back to real economy (i.e.

consumption growth), and thus does not affect real asset allocations and prices. In

my setup (τz 6= 0), the long-run expected inflation factor does affect the real economy,

and I call it a non-neutral model.

The coefficient Aσ measures the sensitivity of wealth-to-consumption ratio to

volatility fluctuations. If the IES and risk aversion are larger than one, the loading

is negative. In this case a rise in consumption or expected growth volatility lowers

asset valuations and increases the risk premium on all assets.

Using the equilibrium condition for the wealth-to-consumption ratio, I can pro-
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vide an analytical expression for the pricing kernel:

mt+1 = m0 +mxxt +mzzt +mσσ
2
t

−λcσtεc,t+1 − λxϕxσtεx,t+1 − λzϕzσtεz,t+1 − λωωσ,t+1.

In particular, the conditional mean of the pricing kernel is affine in state variables

xt, zt and σ
2
t , where the loadings m0,mx,mz and mσ depend on model and preference

parameters, as provided in the Appendix C.2.

The innovations in the pricing kernel are very important for thinking about risk

compensation (risk premia). The magnitudes of the risk compensation depend on

the market prices of short-run, long-run consumption and inflation risks, as well

as the volatility risks λc, λx, λc and λω. The market prices of systematic risks can

be expressed in terms of underlying preferences and parameters that govern the

evolution of consumption growth and inflation:

λc = γ, (3.6)

λx = (1− θ)κ1Ax,

λz = (1− θ)κ1 (Axρxz + Az) ,

λω = (1− θ)κ1Aσ.

The compensation for the short-run consumption risks is standard and given by

the risk-aversion coefficient γ. In the special case of power utility, γ = 1
ψ
, the risk

compensation parameters λx, λz, and λω are zero, and the intertemporal marginal

rate of substitution collapses to standard power utility specification,

mCRRA
t+1 = log δ − γ∆ct+1.
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With power utility there is no separate risk compensation for long-run growth, in-

flation risks and volatility risks, while, with generalized preferences, these risks are

priced. The pricing of long-run and volatility risks is an important feature of LRR

model.

When agents have a preference for early resolution of uncertainty, θ < 1, (i.e.

γ > 1
ψ
), the price of long-run consumption risks λx is positive, and the price of

volatility risks λω is negative. That is, the states with low expected growth or high

volatility are bad states and discounted more heavily. It is important to note that

the price of long-run inflation risks λz is intimately related to ρxz, which captures the

sensitivity of expected consumption factor to the innovations of expected inflation.

In particular, when ρxz < 0, that is, a positive news in expected consumption factor

predicts a decrease in long-run expected inflation, λz is negative; in contrast, when

ρxz > 0, λz can switch sign and become positive. In the model, I allow for this

correlation parameter ρxz to switch sign, which is the key channel to get switching

sign of market price of long-run inflation risk, and thus switching sign of nominal

bond risk premium.

The discount factor used to price nominal payoff is given by

m$
t+1 = mt+1 − πt+1.

The solution to the nominal discount factor is affine in the state variables, and nom-

inal market prices of risks depend on the real prices of risks and inflation sensitivity

to short and long-run consumption and inflation news.

Given the solutions to the real and nominal discount factor, I obtain that the
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yields on real and nominal bonds satisfy

yt,n =
1

n

(
B0,n +Bx,nxt +Bz,nzt +Bσ,nσ

2
t

)
,

y$t,n =
1

n

(
B$

0,n +B$
x,nxt +B$

z,nzt +B$
σ,nσ

2
t

)
.

The bond coefficients, which measure the sensitivity of bond prices to the aggregate

risks in the economy, are pinned down by the preference and model parameters. As

shown in Appendix C.2, the real yields respond positively to the expected growth

factor, Bx,n > 0, and negatively to volatility state, Bσ,n < 0. When high expected

inflation factor indicates lower future consumption (τz < 0), the real yields loads

negatively on expected inflation factor, Bz,n < 0.

One-period expected excess return on a real bond with 2 periods to maturity can

be written in the following form:

rp
(2)
t+1 = Etrx

(2)
t+1 +

1

2
V artrx

(2)
t+1 (3.7)

= −
1

ψ

(
γ −

1

ψ

)
κ1

(
ϕ2
x+ρ

2
xzϕ

2
z

1−κ1νx
+ τ2zϕ

2
z

1−κ1νz

+τzρxz

(
1

1−κ1νx
+ 1

1−κ1νz

)
ϕ2
z

)
σ2
t − B3,1λσ (σcω)

2 .

The last term, −B3,1λσ (σcω)
2, is the component of real bond premium attributable to

volatility risks. As shown in Appendix C.2, −B3,1 is the beta of real bond return with

respect to volatility innovations, which is positive. Since the market price of volatility

risks λσ is negative, therefore, the volatility risks always contribute negatively to real

bond premium. If the correlation of expected consumption and expected inflation

shocks is zero, ρxz = 0, the real bond risk premium from long-run consumption and

inflation risks are always negative. When the expected consumption factor decreases
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at the time of high expected inflation factor, i.e. τz < 0, negative correlation of

expected consumption and inflation shocks, i.e. ρxz < 0, will decrease the real bond

premium even further. On the other hand, positive correlation of these shocks can

increase bond risk premium. I get similar implications for real bond premium at the

long end.

For nominal bonds, I obtain that nominal bond risk premium is equal to real

bond risk premium plus an additional component capturing inflation shocks:

rp
$(2)
t+1 − rp

(2)
t+1 = −

(
γ −

1

ψ

)
κ1

(
ρxzϕ2

z

1−κ1νx
+ τzϕ2

z

1−κ1νz

+τx

(
ϕ2
x+ρ

2
xzϕ

2
z

1−κ1νx
+ τxρxz

1−κ1νz

)
ϕ2
z

)
σ2
t . (3.8)

Again, as shown in Appendix C.2, the parameters τz and ρxz are very important the

determine the risk premium for nominal bond. And its regime-dependent feature is

the driving force to lead to the switching sign of bond risk premium and stock-bond

correlation.

3.4.2 Characterizations of Different Regimes

A salient feature of the model is that I allow for regime shifts in exogenous con-

sumption and inflation dynamics. In particular, in the calibration part, I allow for

3 regimes – expansion, contraction and deep recession regimes and the following ele-

ments as shown in Table 3.1 to be regime specific. Ideally I should use a more general

model as laboratory, carry out a structural estimation by both consumption, infla-

tion and bond/equity market prices/returns, and let the data to speak for themselves

about the classifications of different regimes. I leave this for further research.

I first discuss the implications of different regime-specific elements, and then give

economic interpretations of three regimes.
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First, I set the nominal-real correlation, ρxz, to switch signs, in particular, ρxz < 0

in expansion and contraction regimes, while ρxz > 0 in deep recession regime. Ac-

cording to (3.6), the market price of long-run inflation risks can switch sign, in

particular, the price is negative with negative correlation, and vice versa. On the

other hand, the beta of nominal bond holding period return with respect to long-run

inflation risk innovation stays in the same direction. As a whole, long-run inflation

risk contributes positively to the nominal bond risk premium in expansion and con-

traction regimes, while negatively in the deep-recession regime. The time-varying

correlation also causes the equity beta to long-run inflation risks to switch sign, and

therefore, generates switching sign of correlation between stock and nominal bond

returns, i.e. in deep recession, the stock and bond correlation is negative, while in

the other two regimes, the relationship is positive. This is consistent with the em-

pirical evidence I highlighted in Section 3.1. These intuitions are summarized in the

following Table 3.1. In sum, this time-varying nominal-real correlation structure is

the key channel to generate switching signs of nominal bond risk premium as well as

stock-bond correlations.

Second, I allow for different levels of consumption growth and inflation across

different regimes. In equilibrium, higher µc, the unconditional mean of consumption

growth, implies higher real and nominal bond yields at all maturities simultaneously,

while µπ , the unconditional mean of inflation, only affects nominal yield, but not

real. Higher µπ indicates higher nominal yield at all maturities. To sum up, the con-

sumption growth and inflation levels, µc and µπ , are ”level” factors to term structure

of interest rate. The former shifts both real and nominal yield curve, while the latter

only affects the nominal side. This channel is very important to generate the shifts
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of yield curve in different economic regimes.

Third, the macroeconomic uncertainty, captured by consumption and inflation

volatility (tied to each other in the parsimonious specification of this paper) are al-

lowed to be time-varying. This time-varying feature of uncertainty lies in twofolds.

On one hand, within each regime, the volatility follows an autoregressive Gamma

process. This is important to get enough variations in equity and bond risk pre-

mium, and helps to replicate the violations of expected hypothesis of bond returns.

The intuition is similar to Bansal and Shaliastovich (2010). On the other hand,

I allow for regime specific uncertainty levels. I specify a low volatility mean level

in expansion, but higher mean level in bad states. This channel corresponds to a

counter-cyclical property of stock volatility, and is very important to generate higher

equity premium in contraction/deep-recession regimes, which is consistent with the

empirical findings of Lustig and Verdelhan (2010) . Furthermore, the mean level of

volatility also constitutes a ”slope” factor of yield curve, as the real (nominal) yield

curve slope is determined by the risk premium of long-term real (nominal) bond,

which is proportional to volatility level, as shown in the Appendix B. Different levels

of macroeconomic volatility will also alter the levels of real and nominal bond yields,

due to a precautionary saving argument.

Table 3.1: Characterizations of Different Regimes

Expansion Contraction Deep-Recession

Nominal-real correlation, ρxz Negative Negative Positive
Consumpiton level, µc High Medium Low
Inflation level, µπ Medium High Low
Uncertainty, σ2

c Low Medium High
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I broadly classify the economy into three regimes: expansion, contraction and

deep-recession. In the expansion regime, we have high consumption growth, a

medium level of inflation, and low uncertainty (which is measured by consumption

and inflation volatility). In the contraction regime, we have lower growth rate and

higher uncertainty. The inflation level is also higher. One can think this regime as a

stagflation regime, in which low growth and high inflation coexist. A typical sample

episode is the period late 1970’s and early 1980’s. In the deep-recession regime, we

have the lowest growth and the highest level of uncertainty. As opposed to regular

contraction, this regime has very low inflation, and thus deflation rather than infla-

tion is more of a concern at this time. Another key ingredient that is different across

three regimes is the nominal-real correlations, in particular, in the model it refers

to the correlation between shocks to expected growth and inflation factors. In the

first two regimes, positive news to expected growth factor indicates a lower future

expected inflation; however, in the deep recession regime, the relationship is just the

opposite. I provide the empirical evidence to support this channel in the next sec-

tion. This ingredient is very important to generate large movements (and potentially

switch signs) of nominal bond risk premium as well as stock-bond correlation.

3.4.3 Solutions to Long-run Risks Model with Regime Shifts

I now solve for the equilibrium price process of the model economy. The solution

proceeds via the representative agent’s Euler equation (3.3). To price assets we must

first solve for the return on consumption claim, rc,t+1, as it appears in the pricing

kernel itself. Denote the logarithm of the wealth-to-consumption ratio at given time

t and state st = j by vc,t (j). Since the consumption claim pays the consumption
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Table 3.2: Market Price of Risks and Return Betas to Risk Innovations

Shocks SR cons. LR cons. LR Infl. Vol. Overall Premium

Expansion Regime
Risk Price + + - -
Equity Return Beta + + - - +
Nom. Bond Return Beta 0 + - - +

Deep-Recession Regime
Risk Price + + + -
Equity Return Beta + + + + +
Nom. Bond Return Beta 0 +/- - - -

stream as its dividend, this is simply the price-dividend ratio of such a claim. Next,

I use Campbell and Shiller (1988) log-linearization to linearize rc,t+1 (j, k), which

depends on two consecutive states st = j and st+1 = k, around the unconditional

means of vt(j) and vt+1(k), respectively:

rc,t+1 (j, k) = κc,0 (k) + κc,1 (k) vc,t+1(k)− vc,t (j) + ∆ct+1(j). (3.9)

A similar approach is taken by Bansal and Yaron (2004) , and Bansal, Kiku and Yaron

(2007) for a standard LRR model (without regime switching). I then conjecture that

given current state st = j, the log wealth-to-consumption ratio is affine in the state

vector:

vt(j) = A0(j) + A′Yt(j), (3.10)

where A (j) = (Ac(j), Aπ(j), Ax(j), Az(j), Aσ(j), Ad(j))
′ is a vector of pricing coeffi-

cients, which are regime-specific. Substituting (3.10) into (3.9) and then substituting

(3.9) into the Euler equation gives the equation in terms of A,A0 and the state vari-

ables. The expectation on the left hand side of this Euler equation can be evaluated

analytically, as shown in Appendix C.3. Since any predictive information in ∆ct,
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πt and ∆dt is contained in xt and zt, they have no effects on vt(j) and therefore

Ac(j) = Aπ(j) = Ad(j) = 0.

Pricing Kernel

Having solved for rc,t+1(j, k), I substitute it into mt+1, which also depends on two

consecutive states st = j and st+1 = k, to obtain an expression for logarithm pricing

kernel at time t+ 1 :

mt+1 (j, k) = m0(j, k) +m1 (j, k)
′ Yt − Λ (k)′

(
Gt (j) εt+1 + ωjt+1

)
. (3.11)

The loadings m0(j, k), m1 (j, k) and Λ (k) are provided in Appendix C.3.

The Market Returns

I solve for the market return. A share in the market is modeled as a claim to a

dividend with growth process given by ∆dt+1. To solve for the price of a market I

proceed along the same lines as for the consumption claim and solve for vm,t(j) – the

price-to-dividend ratio of the market at time t, given st = j, by using Euler equation

(3.3). To do this, log-linearize the return on the market, rm,t+1, which depends on

on two consecutive states st = j and st+1 = k, around the unconditional means of

vm,t (j) and vm,t+1 (k), respectively:

rm,t+1 (j, k) = κ0,m (k) + κ1,m (k) vm,t+1(k)− vm,t (j) + ∆dt+1(j). (3.12)

Then conjecture that vm,t (j) is affine in the state variables:

vm,t(j) = A0,m(j) + A1,m(j)
′Yt, (3.13)
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where A1,m (j) = (Ac,m(j), Aπ,m(j), Ax,m(j), Az,m(j), Aσ,m(j), Ad,m(j))
′ is the vector

of pricing coefficients which are regime-independent. For similar reasons as in wealth-

to-consumption ratio, we have Ac,m (j) = Aπ,m (j) = Ad,m (j) = 0.

By substituting the expression for vm,t(j) into the linearized return, I obtain an

expression for rm,t+1(j, k) in terms of Yt and its innovations:

rm,t+1 (j, k) = J0,m (j, k) + J1,m (j, k)′ Yt + βd (k)
′ (Gt (j) εt+1 + ωjt+1

)
, (3.14)

in which the loadings of J0 (j, k), J1 (j, k) and βd (k) are provided in Appendix C.3.

Bond Prices

The equilibrium real and nominal yield are affine in the state variables. Indeed, in

Appendix C.3, I show that real and nominal yields at time t given the state st = j

satisfy

yt,n (j) =
1

n

[
B0,n (j) + Bn (j)

′ Yt
]
, (3.15)

y$t,n (j) =
1

n

[
B$

0,n (j) + B$
n (j)

′ Yt
]
. (3.16)

The bond coefficients, which measure the sensitivity of bond prices to the aggregate

risks in the economy, are pinned down by the preference and model parameters – the

expressions for the loadings are presented in Appendix C.3.

Define the holding period return of real bond as rb
(n)
t+1(j, k) = ny

(n)
t (j)−(n− 1) y

(n−1)
t+1 (k),

thus I get

rb
(n)
t+1(j, k) = G0,n(j, k) +G1,n(j, k)

′Yt + βb,n(k)
′
(
Gt (j) εt+1 + ωjt+1

)
.
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And similarly the holding period returns for nominal bond is

rb
$(n)
t+1 (j, k) = G$

0,n(j, k) +G$
1,n(j, k)

′Yt + β$
b,n(k)

′
(
Gt (j) εt+1 + ωjt+1

)
. (3.17)

3.5 Calibration and Empirical Results

3.5.1 Preference Parameters

I calibrate the subjective discount factor δ = 0.998. The risk-aversion coefficient is

set at γ = 10.

There is a debate in the literature about the magnitude of the IES. As in Bansal

and Yaron (2004), I focus on an IES of 1.5 – an IES value larger than one is important

for the quantitative results. Bansal, Kiku and Yaron (2007) document that the asset

valuations fall when consumption volatility is high, which is consistent only with

ψ > 1.

3.5.2 Calibration of Consumption and Inflation

I follow the standard LRR literature to calibrate the parameters for consumption

and inflation outlined in (3.4) at a monthly frequency and time-aggregate the output

from monthly simulations to match the key aspects of annual consumption growth

and inflation rate is US from 1930 to 2009. I report the calibration output of the

model, which is based on a very long simulation of monthly data aggregated to

annual horizon, in Table 3.8. As shown in the table, the model can match very well

the salient features of the consumption and inflation data.

Table 3.4 shows the detailed parameter calibrations of this model.
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3.5.3 Calibration of Regime Switches

I use j = 0, 1, 2 to denote deep recession, contraction and expansion regimes, respec-

tively. I assume π01 = 0 and π10 = 0, therefore, two-types of recessions cannot switch

from each other. Using the length of NBER dated business cycles to calibrate tran-

sition probability matrix, I base the calibration on 17 recessions from 1919−2009, in

which I consider two events i.e. (1) 1929 August - 1933 March and (2) 2007 Decem-

ber to 2009 June as deep recessions, while the other 15 events as regular recessions.

Table 3.6 and 3.7 shows the calibration of transition probability matrix and its im-

plications for unconditional probability and average duration of each regime. They

match the data counterparts quite well.

3.5.4 Empirical Results

Table 3.9 reports the model performance in terms of unconditional moments on the

bond and stock markets. As we can see, the model, on average, generates a downward

sloping real yield curve, while a positive nominal term structure. The average yields

over 1 to 5 years match the data reasonably well, and the magnitude is also similar

to Bansal and Shaliastovich (2010) . On the equity market, the model can match

the equity premium reasonably well.

Table 3.10 reports the model implied yields conditional on different regimes. Con-

sistent with Bansal and Zhou (2002) , we see significant level shifts across different

regimes. In the deep recession regime, the nominal yield is the lowest, mainly because

both consumption growth and inflation levels are low, while the macro uncertainty

is high. The nominal yield curve in the contraction regime is the highest, mainly

because the inflation level is the highest at this regime. The table also shows that
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the slope of nominal term structure in contraction is flat, which is consistent with

data.

In Table 3.11, I report the model implied risk premia for nominal (real) bond

holding period returns as well as the equity returns, conditional on different regimes.

As the intuition discussed in Section 3.4, in the deep recession regime, the nominal

bond premium is negative, while it is positive in other regimes, due to the time-

varying and switching signs of long-run inflation risk premium. And we also get

conditional stock-bond correlation consistent with Fig. 3.1. Another feature worthy

of mentioning is that conditional on the contraction regime, we have higher premia

in both bond and equity than those in expansion regime. This is consistent with the

findings of Lustig and Verdelhan (2010) .

In Table 3.12, I report the model implications for single factor projections of

Cochrane and Piazzesi (2005). Following their approach, I regress the average of

1-year nominal excess returns of 2 to 5 years to maturity on the forward rates of 1,

3 and 5 years to maturity:

1

4

5∑

n=2

rxt+12,12n = γ0 + γ1ft,12 + γ2ft,36 + γ3ft,60 + error.

I extract a single bond factor r̂xt,m = γ̂0+γ̂1ft,12+γ̂2ft,36+γ̂3ft,60 from this regression,

which is subsequently used to forecast excess bond returns at each maturity n from

2 to 5 years:

rxt+m,n = const+ bm,nr̂xt,m + error

Cochrane and Piazzesi (2005) show that the estimates bm,n are positive and increas-

ing with horizon, and a single factor projection captures 15 − 18% of the variation
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in bond returns. From the model, the slope coefficients in the second stage regres-

sions increase from 0.45 at 2-year maturity to 1.48 at 5 years, which matches very

well with the data estimates. The model implied R2 in the projections is about 11%,

which matches more than two thirds of that in the data. This implies that the model

is able to generate considerable time-variations of bond risk premium due to both

time-varying volatility and regime switching channels. The single factor projections

for the real bonds delivers a very similar pattern for the second-stage coefficients.

The R2’s in real regressions are quite substantial, though, they somewhat decrease

relative to their nominal counterparts. Hence, the model implies that predictability

of bond returns is intrinsically a feature of the real economy.

As a summary, I use the following table to illustrate the link between regime-

specific ingredients with their conditional model implied results.

Table 3.3: Model Implications Conditional on Different Regimes

Expansion Contraction Deep-Recession

Nominal-Real Correlation Channel
Bond-Stock Correlation Positive Positive Negative
Nominal Bond Premium Positive Positive Negative

Consumption and Inflation Level Channel
Nominal Yield Level Medium High Low
Yield Curve Slope Upward Upward Flat

Volatility Channel
Equity Premium Low Medium High
Integrated Variance Low Medium High
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3.6 Conclusion

This paper studies the joint determinants of stock and bond returns in Bansal and

Yaron (2004) type of long-run risks framework. A novel ingredient of the model

is to allow for regime shifts in consumption and inflation dynamics – in particu-

lar, the means, volatilities, and the correlation structure of consumption and infla-

tion dynamics are regime-dependent. This rational expectations general equilibrium

framework can (1) jointly match the dynamics of consumption, inflation and cash

flow; (2) generate time-varying and switching sign of stock-fbond correlation, as well

as switching sign of bond risk premium; (3) coherently explain another long list of

salient empirical features in stock and bond markets, including time-varying equity

and bond return premia, regime shifts in real and nominal yield curve, the violation

of expectations hypothesis of bond returns. The model also reveals that insight that

term structure of interest rates and stock-bond correlations are intimately related to

business cycles, while long-run risks and volatility risks play a more important role

to account for high equity premium than business cycle risks.
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Table 3.4: Model Parameters Calibration

Parameters Notation Value

Preference Parameters
Subjective discount factor δ 0.9982
IES ψ 1.5
Risk Aversion γ 10

Consumption and Inflation Dynamics: Regime-independent Parameters
Persistence of xt νx 0.989
Persistence of zt νz 0.989
Persistence of σ2

t νσ 0.982
σπ,t/σt ϕπ 1.35
σx,t/σt ϕx 0.03
σz,t/σt ϕz 0.05
The loadings of ∆ct+1 on zt τz -0.2
The loadings of πt+1 on xt τx -1
Volatility of volatility σcω 2.60E-06

This table reports calibrated parameter values for the baseline model. The model is cali-
brated at monthly frequency, hence I report monthly parameter values. j = 0, 1, 2 denote
deep-recession, contraction and expansion regimes, respectively.
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Table 3.5: Model Parameters Calibration (Continued)

Cons. and Infl.: Regime-dependent Parameters

Regimes j 0 1 2
Consumption mean µc 0.005 0.012 0.022
Inflation mean µπ 0.008 0.041 0.022
Correlation btw exp. growth and inflation shocks ρxz 0.5 -0.5 -0.8
Consumption volatility σc 0.0064 0.0052 0.004

This table reports calibrated parameter values for the baseline model. The model is cali-
brated at monthly frequency, hence I report monthly parameter values. j = 0, 1, 2 denote
deep-recession, contraction and expansion regimes, respectively.
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Table 3.6: Transition Probability Matrix Calibration

Deep-Recession (j’=0) Contraction (j’=1) Expansion (j’=2)

j = 0 0.9672 0 0.0328
j = 1 0 0.9107 0.0893
j = 2 0.0023 0.0175 0.9802

This table reports the calibrated value of transition probability matrix. The notion j =
0, 1, 2 denote deep-recession, contraction and expansion regimes, respectively.
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Table 3.7: Model Implied Regime Switching Features

Unconditional Probability Duration (months)

j = 0 j = 1 j = 2 j = 0 j = 1 j = 2

Data 0.0561 0.1544 0.79 30.5 11.2 50.53
Model 0.0552 0.1548 0.79 30.5 11.2 50.53

The data counterparts are based on the length of 17 NBER dated recessions from 1919−
2009. Two events (1) 1929/08 − 1933/03 and (2) 2007/12 − 2009/6 are considered as
deep-recessions. j = 0, 1, 2 denote deep-recession, contraction and expansion regimes,
respectively.
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Table 3.8: Model Implied Unconditional Moments

Moments Data Model

E(∆c) 2.03 2.04
σ(∆c) 2.26 2.16

AC1(∆c) 0.46 0.64
AC2(∆c) 0.13 0.43

E(π) 3.17 3.53
σ(π) 4.05 3.68

AC1(π) 0.63 0.7
AC2(π) 0.29 0.38

corr(∆c, π) -0.24 -0.36

The data moments are based on annualized consumption and inflation data from 1930 −
2009. The consumption are nondurable expenditure and service from BEA. The inflation
are deseasonalized CPI from FRED dataset. The model implied moments are computed
from a long simulation of monthly model, time aggregated to annual frequency. All the
statistics reported in this table are annualized.
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Table 3.9: Bond and Equity Markets

1y 2y 3y 4y 5y

Nominal Term Structure
Mean (Data) 5.56 5.77 5.94 6.07 6.16
Mean (Model) 5.54 5.61 5.81 6.03 6.26

Equity Returns
Data Model

Equity Premium 7.6 5.39
Std. Dev. 20.45 13.6

The equity returns are CRSP value weighted portfolio comprising the stocks traded in the
NYSE, AMEX and NASDAQ, from 1926− 2009. The nominal yields data are from Fama-
Bliss monthly Dataset from June 1952 till Dec 2009. The model implied moments are
computed from a long simulation of monthly model, time aggregated to annual frequency.
All the statistics reported in this table are annualized.
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Table 3.10: Model Implications – Bond Yield

1y 2y 3y 4y 5y

Conditional on expansion regime
Real Yield 2.23 2.06 1.79 1.51 1.23
Nominal Yield 5.44 5.66 5.86 6.08 6.3

Conditional on deep-recession regime
Real Yield 2 1.65 1.3 0.97 0.64
Nominal Yield 3.17 3.28 3.51 3.81 4.15

Conditional on contraction regime
Real Yield 1.76 1.47 1.17 0.87 0.57
Nominal Yield 6.32 6.22 6.34 6.55 6.79

The yields are reported by averaging the monthly yields conditional on the regime state
variables. The yields are annualized.

171



Table 3.11: Model Implications – Equity and Bond Premium

1y 2y 3y 4y 5y

Conditional on expansion regime
Real bond holding period return premium -0.22 -0.43 -0.61 -0.77 -0.9
Nominal bond holding period return premium 0.42 0.81 1.14 1.44 1.69

Equity premium 5.05 corr(r
(5)
b , rd) 0.23

Conditional on deep-recession regime
Real bond holding period return premium -0.27 -0.53 -0.75 -0.95 -1.11
Nominal bond holding period return premium -0.6 -1.06 -1.41 -1.69 -1.95

Equity premium 7.36 corr(r
(5)
b , rd) -0.2

Conditional on contraction regime
Real bond holding period return premium -0.28 -0.53 -0.76 -0.95 -1.12
Nominal bond holding period return premium 0.57 1.06 1.48 1.85 2.18

Equity premium 6.43 corr(r
(5)
b , rd) 0.06

The risk premia are reported by averaging 1-month nominal/real bond holding period
excess returns and 1-month equity excess return, conditional on the regime state variables.
The statistics are annualized.
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Table 3.12: Model Implications, Single Factor Projection

n 2y 3y 4y 5y

U.S. data (1952-2009)
Coeff. 0.48 0.13 1.24 1.44
Std. Dev. 0.13 0.25 0.36 0.45
R2 0.15 0.17 0.18 0.16

Model: Nominal Regression
Coeff. 0.45 0.85 1.2 1.48
Std. Dev. 0.03 0.06 0.08 0.1
R2 0.107 0.113 0.114 0.112

Model: Real Regression
Coeff. 0.45 0.85 1.2 1.53
Std. Dev. 0.04 0.07 0.1 0.13
R2 0.079 0.074 0.07 0.066

Nominal return predictability test in US bond market. Monthly observations of 1-5 year
yields on US for June 1952 to Dec 2009 are from Fama-Bliss Dataset. Single Factor
Projection reports the slope coefficients B$

m,n and R2 in single latent factor regression

rx$t+m,n = const + bm,nr̂x$t,m + error, where rx$t+m,n is an m-months excess return on

n-period bond, and r̂x$t,m corresponds to a single bond factor obtained from a first-stage
projection of average bond returns on three forward rates. Model implied slope coefficients
and R2 in single latent factor regression are based on a very long simulation of 3000 years’
monthly observations. Standard errors are Newey-West adjusted with 10 lags, computed
with GMM approach.
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Figure 3.1: Correlation between Stock and Nominal Bond Return

This figure plots the time-varying correlation between stock and 10-year nominal bond
returns, which is calculated based on a 3-year centered moving window of real monthly
stock and bond returns. Shaded areas denote NBER recessions.
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Figure 3.2: CAPM beta of Inflation

This figure summarizes the CAPM beta of inflation. I use a rolling 5-year window of
quarterly data and a first-order quarterly VAR for inflation, stock returns (real), and the
three-month treasury bill returns to calculate inflation shocks. The k-period beta is defined

as Ĉovt

(
k∑
i=1

πt+i,
k∑
i=1

rm,t+i

)
/V̂ art

(
k∑
i=1

rm,t+i

)
. Shaded areas denote NBER recessions.
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Figure 3.3: Consumption Beta of Inflation and Expected Inflation

This figure summarizes the consumption beta of inflation. I use a rolling 5-year window of
quarterly data and a first-order quarterly VAR for inflation, industrial production growth
(or consumption growth) to calculate inflation shocks. The k-period beta is defined as

Ĉovt

(
k∑

i=1

πt+i,

k∑

i=1

∆ct+i

)
/V̂ art

(
k∑

i=1

∆ct+i

)

. In the first panel, ∆ct+1 stands for industrial production growth, ranging from 1926Q1-
2009Q4, from FRED dataset. In the second panel, ∆ct+1 stands for consumption growth,
ranging from 1947Q1-2009Q4, from BEA. In the last panel, ∆ct+1 and πt+1 stands for
GDP growth and GDP deflator expectations from Surveys of Professional Forecasters for
the period of 1968Q4 - 2009Q4. Shaded areas denote NBER recessions.
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Figure 3.4: Integrated Volatility of Equity Return

The monthly integrated volatility is computed from squared sum of daily returns on CRSP
value weighted portfolio comprising the stocks traded in the NYSE, AMEX and NASDAQ,
from Jan 1926 - Dec 2009. Shaded areas denote NBER recessions.
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Appendix A

Appendix to Chapter 1

A.1 Derivations of Equilibrium Conditions from Household Problem

In the benchmark model, the representative household is making optimal consump-

tion and saving decisions by maximizing recursive preference (Kreps and Porteus,

1978; Epstein and Zin, 1989):

Ut =

[
(1− β)C

1− 1

ψ

t + β
(
Et
[
U1−γ
t+1

]) 1− 1
ψ

1−γ

] 1

1− 1
ψ

,

subject to the budget constraint:

Ct +Bt = Bt−1Rf,t−1 + πt.

The Euler equation gives:

Et [Mt+1]Rf,t = 1,
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in which the stochastic discount factor is:

Mt+1 = β

(
Ct+1

Ct

)− 1

ψ


 Ut+1

Et
[
U1−γ
t+1

] 1

1−γ




1

ψ
−γ

.

A.2 Derivations of Equilibrium Conditions from Bank’s Problem

Based on the recursive representation of a typical individual bank’s optimization

problem as stated in (1.21).

Use the law of the motion to substitute out nt+1. Let η (bt) denote the Lagrangian

multiplier with respect to the participation constraint.

The first order condition with respect to st+1 is:

(1 + η (bt))Et [Mt+1 {λ+ (1− λ)µ (bt+1)} {Q (bt+1) + Yt+1 −Q (bt)Rf,t}] = θη (bt)Q (bt) .

(A.1)

The envelope condition with respect to nt is:

µ (bt) = (1 + η (bt))Et [Mt+1 {λ+ (1− λ)µ (bt+1)}]Rf,t. (A.2)

The complementary slackness conditions are:

η (bt) [µ (bt)nt − θstQ (bt)] = 0, (A.3)

η (bt) ≥ 0,

µ (bt)nt − θstQ (bt) ≥ 0. (A.4)
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Since all the individual banks make the same decision, it allow us to have equilib-

rium conditions at the aggregation level. Equations (A.1), and (A.2) stay the same,

and the complementary slackness conditions become:

η (bt) [µ (bt)Nt − θQ (bt)] = 0, (A.5)

η (bt) ≥ 0,

µ (bt)Nt − θQ (bt) ≥ 0. (A.6)

Given {µ (bt+1) , Q (bt+1)}, I define

v (bt) = λ+ (1− λ)Et [Mt+1µ (bt+1)]Rf,t, (A.7)

v (bt) is the shadow price of net worth at date t if the constraint is not binding for

any bank1. Also, define

P (bt) =
Et [Mt+1 {λ+ (1− λ)µ (bt+1)} (Q (bt+1) + Yt+1)]

v (bt)
. (A.8)

P (bt) is the equilibrium price of the Lucas tree in the case where the participation

constraint does not bind for any bank. Note that v (bt) and P (bt) are completely

determined once the functional form of {µ (bt+1) , Q (bt+1)} is known. (The prices

Mt+1 and Rf are trivially determined because it is an endowment economy.)

It is easy to show that the Lagrangian multiplier η (bt) can be expressed as

η (bt) =
µ (bt)

v (bt)
− 1. (A.9)

1 Note, here I adopt the following mathematical definition of a ”binding” constraint. ”Binding”
means the Lagrangian multiplier must be strictly positive. It rules out the case where the constraint
holds with equality but the Lagrangian multiplier is zero.
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Use this relationship to substitute out η (bt), it is easy to show that the equilibrium

conditions are summarized by the following lammas.

Lemma 4. (Equilibrium Price of the Lucas Tree)

Given the equilibrium pricing functional {Q (bt+1) , µ (bt+1)}, we consider the

equilibrium pricing functional Q (bt)

1. Suppose

v (bt)Nt ≥ θP (bt) , (A.10)

then in equilibrium, we must have:

• Q (bt) = P (bt), where P (bt) is given in (A.8).

• The constraint (A.4) is not binding for any bank in the sense that the

Lagrangian multiplier on the constraint must be 0.

2. Suppose

0 < v (bt)Nt < θPt (bt) , (A.11)

then in equilibrium, we must have:

• The price of the Lucas tree, Q (bt), satisfies:

Q (bt) =
v (bt) [P (bt) +Nt]

θ + v (bt)
< Pt (bt) . (A.12)

• The constraint (A.4) is binding for all banks in the sense that the La-

grangian multiplier on the constraint must be strictly positive.

3. If Nt ≤ 0, then equilibrium cannot exist.
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The three cases discussed above provide a complete characterization of the equi-

librium at state bt given the price and quantities at state bt+1. The first part of the

lemma says that if the total net worth of the banking sector is large enough, then the

participation constraint will not bind, and the equilibrium price of the Lucas tree is

given by (A.8). Note, however, even if the constraint does not bind at time t, the

price is still different from that in a frictionless Lucas model. This is because the

possibility of a binding constraint in the future will affect today’s price.

The second part of the lemma implies that if the total net worth is positive, but

small, then the participation constraint will bind, and the equilibrium price has to

drop (relative the price P ) to lower the outside value of the bankers. The third part

of the condition says total net worth can never be zero or negative in equilibrium.

Given the above lemma, we can derive the functional form of V (bt, nt). It is

straightforward to show that if V (bt+1, nt+1) is linear in nt+1 as in (1.20), then

V (bt, nt) = µ (bt)nt, and µ (bt) is given by the following lemma.

Lemma 5. (Equilibrium Value Function of the Financial Intermediary)

Given the equilibrium pricing functional {Q (bt+1) , µ (bt+1)}, we consider the

equilibrium pricing functional µ (bt):

1. Under condition (A.10),

µ (bt) = v (bt) .

2. Under condition (A.11),

µ (bt) = v (bt)×
θ {P (bt) +N (bt)}

N (bt) [θ + v (bt)]
. (A.13)
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To summarize the above two lemmas, under condition (A.10), the constraint does

not bind, and {µ (bt) , Q (bt)} can be constructed recursively from {µ (bt+1) , Qt+1 (bt+1)}:

µ (bt) = λ+ (1− λ)Et [Mt+1µ (bt+1)]Rf,t, (A.14)

and

Qt (bt) =
Et [Mt+1 {λ+ (1− λ)µ (bt+1)} {Q (bt+1) + Yt+1}]

µ (bt)
. (A.15)

Note that

Et [Mt+1 {λ+ (1− λ)µ (bt+1)}]

µ (bt)
=

1

Rf,t

.

Note that on the right hand side of equations (A.14) and (A.15), all quantities

are known except {µ (bt+1) , Q (bt+1)}. So the system (A.14) and (A.15) defines a

mapping

{µ (bt) , Q (bt)} = T {µ (bt+1) , Q (bt+1)} .

Under condition (A.11), I similarly define the mapping {µ (bt+1) , Q (bt+1)} =⇒

{µ (bt) , Q (bt)}. To save notation, we can summarize the two case with a compact

notation. Using (A.13),

Q (bt) =
v (bt)P (bt) + v (bt)N (bt) ∧ θP (bt)

v (bt) + θ
. (A.16)

Also,

µ (bt) = ν (bt) ∨
θQ (bt)

Nt

. (A.17)

Here I used the short-hand notation x ∧ y ≡ min {x, y} and x ∨ y = max {x, y}.

Obviously, Qt (bt) ≤ P (bt) and µ (bt) ≥ ν (bt), and strict inequality holds if and

only if (A.11) is true, in which case the participation constraint is binding.
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A.3 Data Sources

Consumption: Per capita consumption data are from the National Income and

Product Accounts (NIPA) annual data reported by the Bureau of Economic Anal-

ysis (BEA). The data are constructed as the sum of consumption expenditures on

nondurable goods and services (Table 1.1.5, lines 5 and 6) deflated by corresponding

price deflators (Table 1.1.9, lines 5 and 6).

Dividend: The dividend process is constructed from VWRETD and VWRETX,

i.e. the value weighted return on NYSE/AMEX including and excluding dividends,

taken from CRSP. The construction of price-dividend ratio follows the data appendix

in Bansal, Khatchatrian and Yaron (2005).

Earnings: Corporate earnings data are from corporate profits (earnings) after

tax (in billions of dollars) from National Income and Product Accounts (NIPA) data

reported by the Bureau of Economic Analysis (BEA) (Table 1.14, line 29). The con-

struction of price-earnings ratio follows the data appendix in Bansal, Khatchatrian

and Yaron (2005).

Market Return: Nominal market return is the value weighted return on NYSE/AMEX

including dividends taken from CRSP. The real market return is computed by de-

flating the nominal return by corresponding price deflators (Table 1.1.9, lines 5 and

6).

Risk-free Rate: The nominal risk-free rate is measured by the annual 3-month

T-Bill return. The real risk-free rate is computed by subtracting the nominal risk-free

rate by expected inflation, a procedure detailed in Beeler and Campbell (2012).

TED Spread: Computed by the difference between annualized 3-month LIBOR
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rate and 3-month T-bill rate. Both series are from FRED dataset.

Leverage Ratio: I follow Adrian, Moench and Shin (2011)’s composition of the

aggregate financial intermediary sector. From Flow of Funds Table in U.S. I aggregate

the assets and liabilities of each component, and then compute the aggregate leverage

ratio based on:

Leveraget =
Aggregate Financial Assetst

Aggregate Financial Assetst − Aggregate Liabilitiest

Integrated Volatility: Integrated variance is the sum of squared daily stock

returns on NYSE/AMEX. Integrated volatility is the square root of integrated vari-

ance. The daily value weighted return data on NYSE/AMEX including dividends

are taken from CRSP.
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Table A.1: Composition of Aggregate Financial Intermediary Sector

Symbol Descriptions

FINBANK Banks
CBSI Charted depository institutions, excluding credit unions
CU Credit unions

FINPI Pension Funds and Insurances
PCIC Property-casualty insurance companies
LIC Life insurance companies
PPF* Private pension funds
SLGERF* State & local government employee retirement funds
FGRF* Federal government retirement funds

FINMF Mutual Funds
MMMF* Money market mutual funds
MF* Mutual funds
CEF* Closed-end funds and exchange-traded funds

SHADBANK Shadow Banks
MORTPOOL* Agency- and GSE-backed mortgage pools
ABS Issuers of asset-backed securities
FINCO Finance companies
FUNDCORP Funding corporations

SBRDLR Security brokers and dealers

This Table is based on the definitions in Adrian, Moench and Shin (2010). The component
intermediaries denoted by “*” means they are only financed by equity.
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A.4 Additional Details of the Numerical Solutions

I approximate the i.i.d. consumption shock εy,t by a finite-state Markov chain. I

fix 5 realizations evenly spaced on the bounded interval [−2 × σ, 2 × σ], in which

σ denotes the consumption volatility, and I confirm that the lowest realization of

the consumption shock satisfies the parameter requirement as emphasized in Section

1.3.3. The probability vector for these 5 states are pinned down by the following

five conditions: (1) matching the first four moments in the demeaned consumption

growth process; (2) The probabilities in the vector sum up to 1.

I specify 500 grids of the state variable b, evenly spanned on the the state space

[0,b], in which b denotes the highest possible debt level supported by the equilibrium.

It is endogenously determined and updated in each iteration. I start with a large

enough b in the initial iteration, and update b in each iteration to make sure that

n̂ is strictly positive. The supportable state space of b converges in the iterative

procedure.

I use constant price-dividend ratio and unit shadow price of net worth, suggested

by the standard Lucas economy without frictions, as the initial guesses to start the

iteration. In the subsequent iterations, I use point-wise linear spline to approximate

the new price functions. The critical value for determining the constrained region

corresponds to the last grid where the Lagrangian multiplier associated with the

constraint is strictly positive.

In the computation, I use extensively the approximation toolkit in the CompEcon

Toolbox of Miranda and Fackler (2002).
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A.5 Additional Details of Constructing Simulation Accuracy Test
Statistic

Based on equations (A.7) and (A.8) and the Euler equation from household problem,

the prediction errors corresponding to the first-order conditions are given by

wt+1 =




(1 + ηt)
[
M̃t+1 (Rm,t+1 −Rf,t)

]
− θηt

(1 + ηt) M̃t+1Rf,t − µt
Mt+1Rf,t − 1


 .

I use the following vector of five instrument variables:

ht = [1, gt, n̂t, n̂t−1, n̂t−2] .

Following Den Haan and Marcet (1994), the accuracy test consists of obtaining long

simulations of the process and calculating

WT =

T∑
t=1

wt+1 ⊗ ht

T
,

where wt and ht are calculated with simulated data, and T denotes the simulation

length. The accuracy test statistic is constructed as TW ′
TA

−1
T WT , where AT denotes

a consistent estimator of covariance matrix of WT . In the implementation, I simu-

late the model 500 times, each with 1000 annual observations. I use Newey-West

estimator AT of the covariance matrix. By proposition 1 in Den Haan and Marcet

(1994), under null hypothesis that the numerical solution is accurate, the simulation

accuracy test statistic has a χ2 distribution, with degree of freedom of 15. The sim-

ulation accuracy test results are insensitive to the number of instrument variable I

choose.
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Appendix B

Appendix to Chapter 2

B.1 Aggregation of Production Units

Lemma 6. Suppose there are m types of firms. For i = 1, 2, 3, · · ·m, the productivity

of the type i firm is denoted by A (i), and the total measure of the type i firm is denoted

by K (i). The production technology of the type i firm is given by

y (i) = [A (i)n (i)]1−α ,

where n (i) denotes the labor hired at firm i. The total labor supply in the economy

is N . Then total output is given by

Y =

[
m∑

i=1

K (i)

[
A (i)

A (1)

] 1−α
α

]α
[A (1)N ]1−α .

Proof. Without loss of generality, we assume that firms of the same type employ the
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same amount of labor. In this case, the total output in the economy is given by

Y = max
m∑

i=1

K (i)A (i)1−α n (i)1−α (B.1)

subject to

m∑

i=1

K (i)n (i) = N

The first-order condition of the above optimization problem implies that for all i,

n (i)

n (1)
=

(
A (i)

A (1)

) 1−α
α

Using the resource constraint, we determine the labor employed in firm 1:

m∑

i=1

K (i)

(
A (i)

A (1)

) 1−α
α

n (1) = N

This implies that

n (1) =

[
m∑

i=1

K (i)

[
A (i)

A (1)

] 1−α
α

]−1

N (B.2)

Therefore, the total production is given by

Y =
m∑

i=1

K (i)A (i)1−α
[(

A (i)

A (1)

) 1−α
α

n (1)

]1−α

=
[
A (1)−

1−α
α n (1)

]1−α m∑

i=1

K (i)A (i)
1−α
α

=

[
m∑

i=1

K (i)A (i)
1−α
α

]α
N1−α

= A (1)

[
m∑

i=1

K (i)

(
A (i)

A (1)

) 1

α

]α
N1−α
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Plugging in the expression for n (1) in equation (B.2), we have

Y =


A (1)−

1−α
α

[
m∑

i=1

K (i)

[
A (i)

A (1)

] 1−α
α

]−1

N




1−α
m∑

i=1

K (i)A (i)
1−α
α

=

[
m∑

i=1

K (i)A (i)
1−α
α

]α
N1−α

=

[
m∑

i=1

K (i)

[
A (i)

A (1)

] 1−α
α

]α
A (1)1−αN1−α

as needed.

At time t, there are t + 1 types of operating production units in the economy,

namely, production units of generation −1, 0, 1, · · · , t − 1. The measures of these

production units are (1− δK)
tK0, (1− δK)

t−1M0, (1− δ)t−2M1, · · · , Mt−1. Using

the above lemma, at date t, the total production in the economy is given by

Yt = At


(1− δK)

tK0 +
t−1∑

j=0

(1− δK)
t−j−1Ej

(
Ajt
At

) 1−1

α



α

N1−α
t .

Clearly, if we define the {Kt}
∞
t=0 according to (9), the aggregate production function

can be summarized as in (5).
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B.2 Estimation Details and Aggregate Data Sources

B.2.1 Robustness analysis for firm-level regressions

Endogeneity and the dynamic error component model. We follow Blundell

and Bond (2000) and write the firm-level production function as follows:

ln yi,j,t = zij, + wt + α1 ln ki,j,t + α2 lnni,j,t + vi,j,t + ui,j,t (B.1)

vi,j,t = ρvi,j,t−1 + ei,j,t,

where zi,j, wt and vi,j,t indicate a firm fixed effect, a time-specific intercept, and

a possibly autoregressive productivity shock, respectively. The residuals from the

regression are denoted by ui,j,t and ei,j,t and are assumed to be white noise processes.

The model has the following dynamic representation:

∆ ln yi,j,t = ρ∆ ln yi,j,t−1 + α1,j∆ ln ki,j,t − ρα1,j∆ ln ki,j,t−1 (B.2)

+α2∆ lnni,j,t − ρα2∆ lnni,j,t−1 + (∆wj,t − ρ∆wj,t−1) + ∆κi,j,t,

where κi,j,t = ei,j,t + ui,j,t − ρui,j,t−1. Let xi,j,t = {ln (ki,j,t) , ln (ni,j,t) , ln (yi,j,t)}. As-

suming that E [xi,j,t−lei,t] = E [xi,j,t−lui,t] = 0 for l > 0 yields the following moment

conditions:

E [xi,j,t−l∆κi,t] = 0 for l ≥ 3

E [∆xi,j,t−l∆κi,t] = 0 for l ≥ 3.

that are used to conduct a consistent GMM estimation of (B.2). Given the estimates

α̂1,j and α̂2,j, log productivity of firm i is computed as:

ln âi,j,t = yi,j,t − α̂1,jki,j,t − α̂2,jni,j,t. (B.3)
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We apply this method for regressions (5)–(6) and (9)–(10) of Table B.1. In all

specifications, the correlation between firm and aggregate productivity is increasing

in capital age, consistent with our main results reported in Table 2.2.

Endogeneity and fixed effects. An alternative way to estimate the production

function avoiding endogeneity issues is to work with the following regression:

ln yi,j,t = vj + zi,j + wj,t + α1,j ln ki,j,t + α2,j lnni,j,t + ui,j,t. (B.4)

The parameters vj, zi,j, and wj,t indicate an industry dummy, a firm fixed effect,

and an industry-specific time dummy, respectively. The residual from the regression

is denoted by ui,j,t. Given our point estimate of α̂1,j and α̂2,j, we can use equation

(B.3) to estimate ∆ai,j,t. Given this estimation of firms’ productivity, we proceed as

before in estimating equation (19). The results are summarized in regression (1)–(4)

and (7)–(8) of Table B.1 and are consistent with those reported in Table 2.2.

Sample Selection Bias. If exits caused by exposure to negative aggregate pro-

ductivity shocks are correlated with firm age, they can induce an upward bias in our

estimate of ξ3, the coefficient that measures variation in productivity exposure due to

age. We correct for sample selection bias in Regressions (2) and (3) of Tables 2.2 and

2.3. Our result that firms’ exposure to aggregate productivity shocks is increasing

in age is robust even after we control for potential sample selection bias.

We implement the Heckman (1979) two-stage procedure in regression (2). First,

we project an indicator variable of firms’ exit on a vector of observables, including

the Altman (2000) Score, size (measured by total book value of assets in real terms),
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size squared, R&D expenditure-sales ratio, earnings over sales, capital-labor ratio,

and aggregate productivity growth. Second, we compute the implied Inverse Mills

Ratio (IMR) (see Greene (2002)) and include it as an additional independent vari-

able in equation (19). In regression (3), we include observations only in years with

positive aggregate productivity shocks. Overall, our point estimate for ξ3 is positive

and significant across all specifications.

B.2.2 Aggregate Data Sources

Per capita consumption (Ct) data are from the National Income and Product Ac-

counts (NIPA) annual data reported by the Bureau of Economic Analysis (BEA).

The data are constructed as the sum of consumption expenditures on nondurable

goods and services (Table 1.1.5, lines 5 and 6) deflated by corresponding price defla-

tors (Table 1.1.9, lines 5 and 6).

Physical investment (It) data are also from the NIPA tables. We measure physical

investment by fixed investment (Table 1.1.5, line 8) minus information processing

equipment and software (Table 5.5.5, line 3) deflated by its price deflator (Table

1.1.9, line 8). Information processing equipment and software is interpreted as in-

vestment in intangible capital and is therefore subtracted from fixed investment.

Measured output (YM,t) is the sum of total consumption and physical investment,

that is, Ct + It. We exclude government expenditure and net export because not
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explicitly modelled in our economy. Notice also that the NIPA tables do not account

for Jt over the sample 1929–2003.

Intangible investment (Jt) is constructed as in Corrado et al. (2006) from 1953 to

2003. We include expenses in brand equity, firm-specific resources, R&D and com-

puterized information. Prior to 1953 data are not available. Data and notes on our

sources are available upon request.

Labor (Nt) is measured as the total number of full-time and part-time employees as

reported in the NIPA table 6.4. Data are annual from 1929 to 2003. In table B.3,

we divide N by total population.

We follow Hall (2001) and construct physical capital (Kt) according to the follow-

ing recursion: Kt = (1 − δK)Kt−1 + It, where δK = .11 as in our calibration. This

recursion is initialized in 1929 by imposing K1929 = I1929/δK as in Hall (2001).

Both the market returns (rLM) and the HML factor (rLk − rLS ) are from the Fama-

French dataset available online on K. French’s webpage:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/

F-F Research Data Factors.zip.

The nominal risk-free rate is measured by the annual 3-month T-Bill return. The

real risk-free rate (rf ) is computed by subtracting realized inflation from the nominal

risk-free rate.
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B.3 Calculation of the Macaulay duration and model extensions

B.3.1 Duration.

In this section, we derive a recursive relation that can be used to calculate the

Macaulay duration of growth options and assets in place defined in equation (2.25).

We first prove the following lemma.

Lemma 7. Let MDt and Pt be the time-t Macaulay duration and present value of

the cash flow process {CFt}
∞
t=1, respectively; then

MDt · Pt = Et [Λt+1 · CFt+1] + Et [Λt+1(1 +MDt+1)Pt+1] . (B.1)

Furthermore, if CFt = CF1,t + CF2,t for all t, then

MDt · Pt = Et [Λt+1 (CF1,t+1 + CF2,t+1)] + Et [Λt+1(1 +MD1,t+1)P1,t+1] . . . (B.2)

+ Et [Λt+1(1 +MD2,t+1)P2,t+1] ,

where Pi,t and MDi,t denote the price and Macaulay duration of cash flow CFi,t for

i = 1, 2.

Proof. By the definition of Macaulay duration,

MDt · Pt = Et




∞∑

j=1

jΛt,t+jCFt+j




= Et [Λt,t+1CFt+1] + Et


Et+1




∞∑

j=2

jΛt,t+jCFt+j






= Et [Λt,t+1CFt+1]

+Et


Λt,t+1


Et+1




∞∑

j=2

(j − 1)Λt+1,t+jCFt+j


+ Et+1




∞∑

j=2

Λt+1,t+jCFt+j








= Et [Λt,t+1 (CFt+1 +MDt+1Pt+1 + Pt+1)] ,

196



as needed.

Equation (B.1) can then be proved by applying the definition of present value and

duration separately for cash flow {CF1,t}
∞
t=1 and {CF2,t}

∞
t=1.

Let MDS,t denote the Macaulay duration of a growth option created at the end

of period t. Let MDK,t refer to the Macaulay duration of a generation-0 production

unit survived until the end of period t. We show that MDS,t and MDK,t satisfy the

following recursive relation:

MDS,t · qS,t = −Et

[
Λt+1

It+1

St+1

]
+ Et

[
Λt+1

G (It+1, St+1)

St+1

(1 +MDK,t+1)qK,t+1̟t+1

]
. . . (B.3)

+ Et

[
Λt+1

(
1−

G (It+1, St+1)

St+1

)
(1 +MDS,t+1)qS,t+1(1− δS)

]
,

MDK,t · qK,t = Et

[
Λt+1

(
αyt+1 −

Jt+1

Kt+1

)]
+ Et

[
Λt+1(1− δK)(1 +MDK,t+1)qK,t+1

]
. . . (B.4)

+ Et

[
Λt+1

Jt+1

Kt+1

(1 +MDS,t+1)qS,t+1

]
.

Consider a growth option at the end of period t. In period t+1 after the quality

of the option, θ, is revealed, there are two possibilities. If θ ≥ θ∗t+1 = GI (I t, St),

then the option is exercised. In this case, the cash flow in period t + 1 is −1
θ
, and

the option becomes a generation t + 1 production unit, which generates cash flow

equivalent to ̟t+1 generation-0 production units. In the case θ < GI (I t, St), the

option is not exercised and survives to the next period with probability 1 − δS, in

which case it generate the cash flow of a period t + 1 growth option. Note that the

above argument provides a cash flow decomposition of a growth option at period t.

197



By lemma 7, we have

MDS,t · qS,t = Et

[
Λt,t+1 ·

∫

θ≥GI(It,St)

[
−
1

θ
+ (1 +MDK,t+1)̟t+1qK,t+1

]
f (θ) dθ

]

+Et

[
Λt,t+1 ·

∫

θ<GI(It,St)
[(1− δS) (1 +MDS,t+1) qS,t+1] f (θ) dθ

]
.

Using the results in Ai (2009), the integrals can be written as functions of the

aggregate quantities:

MDS,t · qS,t = Et

[
Λt,t+1 ·

[
−
It+1

St+1
+
G (It+1, St+1)

St+1
(1 +MDK,t+1)̟t+1qK,t+1

]]

+Et

[
Λt,t+1 ·

G (It+1, St+1)

St+1
[(1− δS) (1 +MDS,t+1) qS,t+1]

]
,

as needed.

We can decompose the cash flow of a production unit as well. The total output

of a period-t production unit is used for three purposes: consumption; tangible in-

vestment that produces new-generation production units; and intangible investment

that creates new blueprints, which are associated with three difference sources of

future cash flows. Equation (B.4) can then be established by applying lemma 7 to

the above cash flow decomposition. By solving the system of recursive equations

(B.3)–(B.4) we obtain the pair of Macaulay durations, (MDK,t,MDS,t).

B.3.2 Microeconomic foundation of the adjustment cost function H

Here we show that the law of motion of intangible capital in equation (2.29) arises

as the result of a concave production function of new blueprints. Suppose consump-

tion goods, new blueprints, and new investment goods are produced in production

198



units. Let c, i and j denote the amount of general output used to produce consump-

tion goods, investment goods, and blueprints, respectively. Normalize the price of

consumption goods to 1, and denote qS and qI the price of blueprints and invest-

ment goods, respectively. In this case, the profit maximization problem of a typical

production unit can be written as:

max
c,i,j,n

[c+ qIi+ qSh(j)− wn]

c+ i+ j = (An)1−α .

In equilibrium we must have qI = 1. In addition, optimality requires qS = 1/h′(j),

which implies that all production units produce the same amount of blueprints.

We continue to use K to denote the total measure of production units. The total

amount of resources used to produce blueprints is therefore J = j · K, and the

total amount of blueprints produced is K · h(J/K) in this economy. After denoting

H(J,K) = h(J/K)K, the law of motion of intangible capital can be written as in

equation (2.29).

The function H, which resembles adjustment costs in neoclassical models, is

homogenous of degree one and concave in (J,K). Accordingly, we specify H in the

spirit of Jermann (1998) as follows:

H(J,K) =

[
a1

1− 1/ξ

(
J

K

)1−1/ξ

+ a2

]
K,

where 1/ξ determines the concavity of H and the parameters {a1, a2} satisfy the

following two steady state conditions: H(J,K) = J and HJ(J,K) = 1.
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B.3.3 Further extensions

In this section we retain adjustment costs in the production of intangibles and con-

sider two further extensions of our model. First, we add an endogenous labor supply.

Second, we further enrich the model and consider more general specifications of the

φj process that governs the heterogeneity of firms’ exposure to aggregate shocks.

We show that our main results are preserved and often enhanced in these more

general settings. For the sake of brevity, we focus our discussion only on moments

that significantly change across the new extensions.

Endogenous labor supply

In this section, we allow for an endogenous labor supply and explore the ability of

the model to account for the joint dynamics of aggregate consumption, investment,

and hours worked. We report conventional business cycle statistics generated by

the model in Table B.3 and illustrate the response of macroeconomic quantities to

productivity shocks in Fig. B.2.

To allow for endogenous labor supply, we adopt a Cobb-Douglas aggregator be-

tween consumption goods, Ct, and leisure, 1−Nt:

ut = Co
t (1−Nt)

1−o.

We set the parameter o so that the average number of hours worked is equal to one-

third of the total number of workable hours. The intratemporal first-order condition

for labor is

1− o

o
·

Ct
1−Nt

= (1− α)
Yt
Nt

,

200



and the stochastic discount factor becomes

Λt+1 = β

(
Ct+1

Ct

)−1(
ut+1

ut

)1− 1

ψ


 Vt+1

Et
[
V 1−γ
t+1

] 1

1−γ




1

ψ
−γ

.

All other equations that characterize the equilibrium remain unchanged.

We now turn our attention to the implied quantitative results. First, we note

that in Fig. B.2 the impulse response of consumption, investments, and returns are

qualitatively similar to that obtained with an inelastic labor supply and adjustment

costs on intangible capital. As a result, the model’s implications for asset prices and

macroeconomic quantities discussed so far remain largely unchanged (Table B.3).

Second, in Fig. B.2, short-run shocks (contemporaneous productivity shocks)

induce co-movement among consumption, investment, and hours worked, as in stan-

dard RBC models. Upon the realization of positive long-run shocks (news about

future productivity shocks), however, both investment and labor drop while con-

sumption increases. The negative response of labor with respect to news is due to

the income effect: good news about future productivity does not raise the current-

period marginal product of labor but does increase the wealth of the agent. As a

result, the agent works less, consumes more, and lowers investment. This feature

of our model is consistent with the empirical evidence reported in Barsky and Sims

(2011) and Kurmann and Otrok (2010) and enables us to produce a low contem-

poraneous correlation between consumption and labor growth. In this extension,

corr(∆Ct,∆nt) is slightly lower than in the data, but it increases in the two model

specifications to be discussed in the next subsection.

The reduction in the labor supply in response to news shocks lowers the marginal
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product of physical capital and enhances the decline in investment observed in the

benchmark model. Consequently, intangible capital provides even more insurance

against news shocks. This explains why the model with an elastic labor supply

generates a slightly higher value premium, as reported in Table B.3.

Overall, the inclusion of an endogenous labor supply preserves the success of

previous versions of our model and generates plausible cyclical dynamics of hours

worked, similar to the standard RBC model.

More general productivity processes

We consider an additional extension that allows for a more flexible specification of

the heterogeneity in the productivity processes of production units. As we show in

Section 3 of the main article and Appendix B, the exposure to aggregate productivity

shocks is increasing in capital vintage age. Allowing for a gradual transition from low

to high exposure requires more general specifications of the φj process and renders the

aggregation results in equation (2.9) invalid. Intuitively, multiple transition periods

introduce heterogeneity and history dependence of the productivity exposures and

require us to keep track of the age distribution as a state variable.

To avoid computational complexity, we restrict our attention to the following

simple form of the φj function:

φj =

{ 0 j = 0
φ1 j = 1
1 j = 2, ...

,

which allows the transition to happen in two periods. Previous versions of the model

correspond to the special case with φ1 = 1.
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In this case, the social planner’s problem can be made recursive by including

last-period physical investment as an additional state variable. To this aim, we use

Xt to denote the total measure of production units constructed at time t − 1 and

continue to use Kt to denote the productivity-adjusted stock of production units at

time t. The laws of motion of Kt and Xt can be written as follows:

Kt+1 = (1− δK)Kt +Xt [πt+1 − 1] +̟t+1G(It, St), (B.5)

Xt+1 = (1− δK)̟t+1G(It, St),

πt+1 = e−
1−α
α

(1−φ1)(xt+σaεa,t+1) ∀t.

The social planner’s problem is the same as before except that we replace equation

(2.9) with equation (B.5), and the value function, V (Kt, Xt, St, xt, At), now contains

the additional state variable Xt.

We consider two calibrations of the φj function. In the first, we set φ1 = 0 so

that new production units have zero exposure to aggregate productivity shocks for

two periods. In the second calibration, we set φ1 = 0.5 so that the correlation with

aggregate productivity shocks of new production units is 0 in its first period, 0.5 in

its second period, and 1 from the third period on. We report our results in the last

two rows of Table B.3. Multiple transition periods enhance the positive exposure

of the return on tangible capital and the negative exposure of return on intangible

capital to long-run productivity shocks. Consequently, these extensions allow us to

reduce the volatility of long-run productivity shocks relative to previous calibrations,

while still maintaining high equity and value premiums. As a result, the negative

correlation between consumption and hours worked induced by long-run shocks is

dampened, and our model produces a strong co-movement of consumption and labor,
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closely matching this moment in the data. All other quantitative implications of the

model remain largely unchanged.

B.3.4 Linking the aggregator G to microeconomic evidence

In Section 2.5.1 of the paper, we calibrate the CES aggregator, G (I, S), to match

macroeconomic moments. Here we describe a procedure that links the functional

form of G (I, S) to microeconomic evidence on the market-to-book ratio of new Initial

Public Offering (IPO) firms.

Using the results in Ai (2009), the CES aggregator, G (I, S) implies that θi,t is

an i.i.d. draw from the following distribution:

P (θi,t ≤ θ) =

∫ θ

0

ν−ξxξ−1

[ν−ξxξ−1 − 1]1+
1

1−1/ξ

dx, θ ∈ [0,+∞). (B.6)

In our model, the time-tmarket value of a newly created production unit is̟tpK,t.

Its book value is the value of investment goods used to implement the blueprint in

the last period, 1
θi,t−1

. Therefore the market-to-book ratio of a new production unit at

time t is θi,t−1̟tpK,t. Note that not all blueprints are implemented. By Proposition 1,

a blueprint i is implemented in period t−1 if and only if θi,t−1 ≥ θ∗t−1 = GI (It−1, St−1).

The above argument links the truncated density f to the distribution of market-

to-book ratios of newly exercised options across firms at a given time. The market-

to-book ratios of the firms in our COMPUSTAT-CRSP data set, in contrast, reflect

the market-to-book ratio of options exercised by the same firm at different points

in times. For this reason, we consider the market-to-book ratio of new IPO firms

a better proxy for that of newly exercised options. We think of implementation of

blueprints as initial public offering, and we compare the cross-section distribution of
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the market-to-book ratio of newly exercised options in our simulation with that of

the new IPO firms in the SDC Platinum data set.

We now provide more details about our simulation procedure. In our simulation,

we allow the productivity of production units to have an idiosyncratic component εit:

Ati,t = Att · ε
i
t.

We set E [εit] = 1 and choose V ar [εit] to match the cross-sectional dispersion of

productivity in our COMPUSTAT data. In this case, all aggregation results in our

model remain unchanged. The only difference is that the market-to-book ratio of

firms i becomes εitθi,t−1̟tpK,t.

We simulate the time series of macroeconomic quantities from our model. Note

that St measures the amount of blueprints in period t; therefore in each period we

sample from the distribution (B.6) a number of independent draws of θi,t proportional

to St. We compute the market-to-book ratio for all new production units which

are constructed from the implemented blueprints. This procedure gives a panel of

market-to-book ratios of newly established production units which can be used to

plot the empirical density. In Fig. B.1, we compare this density (denoted by circles)

to the observed empirical distribution (denoted by dots) of the market-to-book ratio

of new IPO firms in the SDC Platinum data set. Our sample ranges from 1970 to 2009

and includes 44,922 firms. Fig. B.1 suggests that our choice of the G (I, S) function

conforms well with the microeconomic evidence on the cross-sectional distribution of

market-to-book ratio of new IPO firms.
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Table B.1: Exposure to Aggregate Risk by Firm Age

Regr. Age Sample E.M. ξ3 ξ4 Obs. Firms
(1) F All FE 0.011*** -0.003 70899 7333
(2) F ∆at > 0 FE 0.013*** -0.004 59385 7224
(3) K-5 All FE 0.426** -0.120*** 82791 8012
(4) K-5 ∆at > 0 FE 0.880** -0.133*** 63717 7828
(5) K-5 All ECM 0.494** -0.146*** 82787 8010
(6) K-5 ∆at > 0 ECM 0.862** -0.159*** 63713 7826
(7) K-15 All FE 0.383*** -0.014*** 32127 2928
(8) K-15 ∆at > 0 FE 0.511*** -0.016*** 25955 2876
(9) K-15 All ECM 0.425*** -0.019*** 32130 2929
(10) K-15 ∆at > 0 ECM 0.510*** -0.022*** 25958 2877

This table reports firms’ risk exposure by age. All estimates are based on the following
second-stage regression: ∆ ln ai,j,t = ξ0i + ξ1∆ lnAt + ξ2AGEi,j,t + ξ3AGEi,j,t · ∆ lnAt +
ξ4B/Mi,j,t + εijt. In col. “Age”, F, K-5 and K-15 denote firm age, capital age with T=5,
and capital age with T=15, respectively. All regressions denoted by an even number are
computed on a sub-sample including only years of positive productivity growth to control
for firms exit. “E.M.” stands for Estimation Method used in the first stage to estimate
∆ai,j,t. We use FE to denote our Fix Effect procedure described in (B.4) and ECM for
the dynamic Error Component Model of Blundell and Bond (2000) described in (B.2). We
use ∗, ∗∗, and ∗ ∗ ∗ to indicate p-values smaller than 0.10, 0.05, and 0.01, respectively.
Standard errors available upon request.
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Table B.2: Calibration for Model Extensions
Extension 1 2 3 4

Preference parameters
Discount factor β 0.97 0.98 0.98 0.98
Risk aversion γ 10 29 29 29
Labor adjusted Risk aversion 10 10 10 10
Intertemporal elasticity of substitution ψ 2.0 2.0 2.0 2.0

Production function/Aggregator parameters
Capital share α 0.3 0.3 0.3 0.3
Depreciation rate of physical capital δK 11% 11% 11% 11%
Depreciation rate of intangible capital δS 11% 11% 11% 11%
Weight on physical investment ν 0.88 0.93 0.85 0.85
Elasticity of substitution η 2.50 3.8 1.60 1.60
Adjustment Costs ξ 5 5 5 5

TFP parameters
Average growth rate µ 2.0% 2.0% 2.0% 2.0%
Volatility of short-run risk σa 5.08% 4.40% 5.38% 4.98%
Volatility of long-run risk σx 0.86% 0.75% 0.64 0.75
Autocorrelation of expected growth ρ 0.925 0.925 0.925 0.925
Time-0 Risk exposure of new investment φ0 0 0 0 0
Time-1 Risk exposure of new investment φ1 1 1 0 0.5

This table reports the parameter values used for our calibrations referring to the model ex-
tensions studied in section 5 of the main article and Appendix C. All models are calibrated
at an annual frequency. The labor adjusted risk aversion is computed as γ/o (see Swanson
(2012)). Extension 1 features adjustment costs on intangible investment. In Extension
2 we also add endogenous labor. In Extension 3 and 4 we retain adjustment costs and
endogenous labor and set φ1 to 0 and 0.5, respectively, to study 2-period transitions of
productivity exposure.
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Table B.3: Key Moments across Several Model Extensions

σ∆C σ∆I/σ∆C σ∆J/σ∆I σ∆n ρ∆C,∆n E[rL,exM ] E[rLK − rLS ] αK − αS
Data 02.53 05.29 00.50 02.07 00.28 05.71 04.32 04.01

(00.56) (00.50) (00.07) (00.21) (00.07) (02.25) (01.39) (01.77)
Bench. 02.60 05.40 02.50 – – 05.20 04.20 00.40
Ext. 1 02.53 06.40 00.40 – – 04.55 04.16 04.91
Ext. 2 02.56 06.00 00.60 01.92 00.08 04.00 04.76 05.98
Ext. 3 02.59 06.23 00.50 01.84 00.28 05.41 05.68 07.70
Ext. 4 02.66 05.40 00.58 01.70 00.19 04.45 05.92 08.00

All figures are multiplied by 100, except contemporaneous correlations (denoted by ρ). Em-
pirical moments are computed using US annual data in log units. Numbers in parentheses

are GMM Newey-West adjusted standard errors. E
[
rLK − rLS

]
and E

[
rL,exM

]
measure the

levered spread between tangible and intangible capital returns, and the market premium,
respectively. The leverage coefficient is 3 (Feijo and Jorgensen (2010)). All the parameters
are calibrated as in Table B.2 in Appendix C. The difference in the intercept of the CAPM
regression for tangible and intangible returns is denoted by αK − αS . The entries for the
models are obtained by repetitions of small-sample simulations. Extension 1 features ad-
justment costs on intangible investment. In Extension 2 we also add endogenous labor. In
Extensions 3 and 4 we retain adjustment costs and endogenous labor and set φ1 to 0 and
0.5, respectively, to study two-period transitions of productivity exposure.
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Figure B.1: Book-to-Market Distribution for New Production Units.

The circles refer to our Benchmark Model, while the stars refer to IPO.s data from the
CDS data set. Our annual sample starts in 1970 and ends in 2009 and includes 22,116
observations.
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Figure B.2: The Role of Endogenous Labor

This figure shows annual log-deviations from the steady state. Returns are not levered.
All the parameters are calibrated to the values reported in Table B.2.
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Appendix C

Appendix to Chapter 3

C.1 Moment Generation Function of Gamma Distribution

Denote Ψ(u) the moment-generating functions for the Gamma distributed shocks in

volatility states:

Ψ(u) = E (euωσ,t+1) .

For my parameterization of Gamma distribution, the expression for the moment-

generating functions are given by,

Ψ(u) =
(
1− θ̃u

)−k̃
, for u <

1

θ
,

in which

k̃ =

[
σ2
c (1− ν)

σcω

]2
,

θ̃ =
σ2
cω

σ2
c (1− νσ)

.
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It is important to note that even though the volatility shocks are non-Guassian, the

model specification belongs to the exponentially affine class. Indeed, the expectations

of the exponential of the state variable is exponentially linear in the current states,

which generally facilitates the solution of the model.

C.2 Model Solutions of Within-Regime LRR Model

The dynamics of consumption growth and inflation is characterized as below:

∆ct+1 = µc + xt + τzzt + σtεc,t+1,

πt+1 = µπ + τxxt + zt + ϕπσtεπ,t+1,

xt+1 = νxxt + ϕxσtεx,t+1 + ρxzϕzσtεz,t+1,

zt+1 = νzzt + ρzxϕxσtεx,t+1 + ϕzσtεz,t+1,

σ2
t+1 = σ2

c (1− νσ) + νσσ
2
t + ωσ,t+1.

The short-run consumption and inflation shocks εc,t+1 and επ,t+1, the long-run

consumption and inflation shocks εx,t+1 and εz,t+1 are standard Normal. To ensure

the positivity of volatility process, I assume that the volatility shock ωσ,t+1 follows

demeaned Gamma distribution, i.e. ωσ,t+1 = ω̃σ,t+1 − E (ω̃σ,t+1) . The Gamma

distribution of ω̃σ,t+1 is characterized by two parameters, so I specify the mean and

volatility of the volatility shocks as

E (ω̃σ,t+1) = σ2
c (1− νσ) ,

V ar (ω̃σ,t+1) = σ2
cω.

Using the Euler equation for the consumption asset, I obtain that the equilibrium
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log wealth-to-consumption ratio vt is linear in the states of the economy:

vt = A0 + Axxt + Azzt + Aσσ
2
t .

Using the Euler equation (3.3) and the assumed dynamics of consumption growth

and inflation, I derive the solutions coefficients Ax, Az and Aσ :

Ax =
1− 1

ψ

1− κ1νx
,

Az =

(
1− 1

ψ

)
τz

1− κ1νz
,

Aσ =

θ

[(
1− 1

ψ

)2
+ κ21

{
(Ax + Azρzx)

2 ϕ2
x + (Axρxz + Az)

2 ϕ2
z

}]

2(1− κ1νσ)
,

A0 =
θ log δ + θ

(
1− 1

ψ

)
µc + θκ0 + logΨ (θκ1Aσ)

θ(1− κ1)
.

Using the equilibrium solution to the wealth-to-consumption ratio, I can write

down the expression for the real discount factor in the following way:

mt+1 = m0 +mxxt +mzzt +mσσ
2
t

−λcσtεc,t+1 − λxϕxσtεc,t+1 − λzϕzσtεz,t+1 − λωωσ,t+1.
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The solution to the discount factor loadings are given by

m0 = θ log δ − γµc + (θ − 1)κ0 + (θ − 1)A0 (κ1 − 1) + (θ − 1)κ1Aσσ
2
c (1− νσ) ,

mx = −
1

ψ
,

mz = −
τz
ψ
,

mσ = (θ − 1)Aσ (κ1νσ − 1) .

The market prices of systematic risks can be expressed in terms of underlying prefer-

ences and parameters that govern the evolution of consumption growth and inflation:

λc = γ,

λx = (1− θ)κ1 (Azρzx + Ax) ,

λz = (1− θ)κ1 (Axρxz + Az) ,

λω = (1− θ)κ1Aσ.

Denote qt,n and q$t,n the equilibrium solution to the real and nominal n-period

bond prices, respectively. Using the Euler equation, the equilibrium solutions to the

real bond prices are affine in state variables:

qt,n = −B0,n − Bx,nxt − Bz,nzt − Bσ,nσ
2
t .

where the loadings satisfy the recursions
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B0,n = B0,n−1 −m0 − log Ψ (−λω − Bσ,n)− λωσ
2
c (1− ν) ,

Bx,n = Bx,nνx −mx,

Bz,n = Bz,nνz −mz,

Bσ,n = Bσ,nνσ −mσ −
1

2
(λx +Bx,n−1 +Bz,n−1ρzx)

2 ϕ2
x

−
1

2
(λz +Bx,n−1ρxz +Bz,n−1)

2 ϕ2
z −

1

2
λ2c .

Define the holding period return of bond as rb
(n)
t+1 = q

(n−1)
t+1 − q

(n)
t , thus I get

rb
(n)
t+1 = G0,n +Gx,nxt +Gz,nzt +Gσ,nσ

2
t

+βbx,nϕxσtεc,t+1 + βbz,nϕzσtεz,t+1 + βbσ,nωσ,t+1,

in which

G0,n = B0,n − B0,n−1 − Bσ,n−1σ
2
c (1− ν) ,

Gx,n = Bx,n − Bx,n−1νx,

Gz,n = Bz,n − Bz,n−1νz,

Gσ,n = Bσ,n − Bσ,n−1νσ,

and beta’s are

βbx,n = − (Bx,n−1 +Bz,n−1ρzx) ,

βbz,n = − (Bx,n−1ρxz +Bz,n−1) ,

βbσ,n = −Bσ,n−1.
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Risk premium is

rpc = −Cov
(
mt+1, rb

(n)
t+1|It

)
,

= −
[
(Bx,n−1 +Bz,n−1ρzx)λxϕ

2
x + (Bx,n−1ρxz +Bz,n−1)λzϕ

2
z

]
σ2
t − Bσ,n−1λσσ

2
cω.

The discounts factor used to price nominal payoff is given by

m$
t+1 = mt+1 − πt+1.

Similarly, using the equilibrium solution to the nominal discount factor and the

Euler equation, the nominal bond prices are affine in state variables:

q$t,n = −B$
0,n − B$

x,nxt − B$
z,nzt − B$

σ,nσ
2
t ,

where the nominal bond loadings satisfy the recursions:

B$
0,n = B$

0,n−1 −m0 − log Ψ (−λω − Bσ,n) ,

B$
x,n = B$

x,nρx −mx,

B$
z,n = B$

z,nρz −mz,

B$
σ,n = B$

σ,nν −mσ −
1

2
(λx +Bx,n−1ϕx +Bz,n−1ρxz)

2

−
1

2
(λz +Bx,n−1ρzx +Bz,n−1ϕx)

2 −
1

2
λ2c .

C.3 Solutions to LRR Model with Regime Switching

C.3.1 Price-Consumption Ratio

Given st = j and st+1 = k,

mt+1 + rc,t+1 = B0(j, k) + B1(j, k)
′Yt +B2(k)

′
(
Gt (j) εt+1 + ωjt+1

)
,
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in which

B0(j, k) = θ log δ + θ

(
1−

1

ϕ

)
e′1µ(j) + θk0(k) + θκ1(k)

[
A0(k) + A1 (k)

′ µ(j)
]
− θA0(j),

B1(j, k) = θ

[(
1−

1

ϕ

)
F (j)′ e1 + κ1(k)F (j)′A1(k)− A1(j)

]
,

B2(k) = θ

[(
1−

1

ϕ

)
e1 + κ1(k)A1(k)

]
.

Conjecture log price-to-consumption ratio vt (j) is linear in the states of the econ-

omy:

vt (j) = A0(j) + A1(j)
′Yt, (C.1)

in which A0(j) and A1(j) are jointly determined by the following equation systems:

1 = Et [exp(mt+1 + rc,t+1)] ,

=
S∑

k=1

πjkE
[
exp

{
B0(j, k) + B1(j, k)

′Yt +B2(k)
′
(
Gt (j) εt+1 + ωjt+1

)}
|It, st+1

]
,

=
S∑

k=1

πjk
[
exp

(
B0(j, k) + logΨ [B2(k)

′e5]− B2(k)
′e5e

′
5µ(j)

+
{
B1(j, k) +

1
2
B2(k)

′Hσ (j)
′B2(k)

}′
Yt

)]
.

for j = 1, 2, ...S.

Loglinearize the above equation (C.1) around the unconditional mean µ (j) as:

0 = g(j) + g1(j)
′Yt, (C.2)
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where

g(j) = log

{
S∑

k=1

πjk
[
exp

(
B0(j, k) + logΨ [B2(k)

′e5]− B2(k)
′e5e

′
5µ(j)

+
{
B1(j, k) +

1
2
B2(k)

′Hσ (j)
′B2(k)

}′
µ(j)

)]}
,

g1(j) =
S∑

k=1

πjk





exp

(
B0(j, k) + logΨ [B2(k)

′e5]− B2(k)
′e5e

′
5µ(j)

+
{
B1(j, k) +

1
2
B2(k)

′Hσ (j)
′B2(k)

}′
µ(j)

)

×
[
B1(j, k) +

1
2
B2(k)

′Hσ (j)B2(k)e5
]



 .

Since the equation (C.7) holds for all j (j = 1, 2, ...S), I should have

g(j) = 0,

g1(j) = 06×1,

for j = 1, 2, ...S. With (7× S) equations, I can determine (7× S) unknowns

jointly, i.e. A0(j) and A1(j) for j = 1, 2, ...S.

C.3.2 Discount Factor

The equilibrium discount factor can be written in the following way:

mt+1(j, k) = m0(j, k) +m1(j, k)
′Yt − Λ(k)′

(
Gt (j) εt+1 + ωjt+1

)
, (C.3)

in which

m0(j, k) = θ log δ − γe′1µ(j) + (θ − 1) [κ0(k) + κ1(k) {A0(k) + A1(k)
′µ (j)} − A0(j)] ,

m1(j, k) = −γF (j)′e1 + (θ − 1) [κ1(k)F (j)
′A1(k)− A1(j)] ,

and the market prices of risks are:

Λ(k) = γe1 + (1− θ)κ1(k)A1(k).
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C.3.3 Return to Consumption Claims

From Campbell-Shiller Decomposition,

rc,t+1 (j, k) = κc,0 (k) + κc,1 (k) vc,t+1(k)− vc,t (j) + ∆ct+1(j). (C.4)

We have

rc,t+1 (j, k) = J0(j, k) + J ′
1(j, k)xt + βc(k)

′
(
Gt (j) εt+1 + ωjt+1

)
, (C.5)

in which

J0(j, k) = e′1µ(j) + κ0(k) + κ1(k) [A0(k) + A1(k)
′µ (j)]− A0(j),

J1(j, k) = F (j)′e1 + κ1(k)F (j)
′A1(k)− A1(j),

βc(k) = e1 + κ1(k)A1(k).

C.3.4 Return on Equity

Given st = j and st = k,

mt+1 + rm,t+1 = B0,m(j, k) + B1,m(j, k)
′Yt +B2,m(k)

′
(
Gt (j) εt+1 + ωjt+1

)
,

in which

B0,m(j, k) = m0(j, k) + κ0,m(k) + κ1,m(k)
[
A0,m(k) +A1,m(k)

′µ(j)
]
−A0,m(j) + e′6µ (st) ,

B1,m(j, k) = F (j)′ e6 +m1(j, k) + κ1,m(k)F (j)′A1,m(k)−A1,m(j),

B2,m(k) = e6 + k1,m(k)A1,m(k)− Λ(k).

Conjecture log price-to-dividend ratio vm,t (j) is linear in the states of the econ-

omy:

vm,t (j) = A0,m(j) + A1,m(j)
′Yt, (C.6)
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in which A0,m(j) and A1,m(j) are jointly determined by the following equation sys-

tems:

1 = Et [exp(mt+1 + rm,t+1)] ,

=
S∑

k=1

πjkE
[
exp

{
B0,m(j, k) + B1,m(j, k)

′Yt +B2,m(k)
′
(
Gt (j) εt+1 + ωjt+1

)}
|It, st+1

]
,

=
S∑

k=1

πjk
[
exp

(
B0,m(j, k) + logΨ [B2,m(k)

′e5]− B2,m(k)
′e5e

′
5µ(j)

+
{
B1,m(j, k) +

1
2
B2,m(k)

′Hσ (j)B2,m(k)
}′
Yt

)]
,

for j = 1, 2, ...S.

Loglinearize the above equation (C.1) around the unconditional mean µ (j) as:

0 = g0,m(j) + g1,m(j)
′Yt. (C.7)

where

g0,m(j) = log

{
S∑

k=1

πjk
[
exp

(
B0,m(j, k) + logΨ [B2,m(k)

′e5]− B2,m(k)
′e5e

′
5µ(j)

+
{
B1,m(j, k) +

1
2
B2,m(k)

′Hσ (j)
′B2,m(k)

}′
µ(j)

)]}
,

g1,m(j) =
S∑

k=1

πjk





exp

(
B0,m(j, k) + logΨ [B2,m(k)

′e5]− B2,m(k)
′e5e

′
5µ(j)

+
{
B1,m(j, k) +

1
2
B2,m(k)

′Hσ (j)B2,m(k)
}′
µ(j)

)

×
[
B1,m(j, k) +

1
2
B2,m(k)

′Hσ (j)B2,m(k)e5
]



 .

Since the equation (C.7) holds for all j (j = 1, 2, ...S), we should have

g0,m(j) = 0,

g1,m(j) = 06×1,

for j = 1, 2, ...S. With (7× S) equations, we can determine (7× S) unknowns

jointly, i.e. A0,m(j) and A1,m(j) for j = 1, 2, ...S.
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From Campbell-Shiller Decomposition,

rm,t+1 = κ0,m + κ1,mvm,t+1 − vm,t +∆dt+1,

we have

rm,t+1 (j, k) = J0,m(j, k) + J1,m(j, k)
′Yt + βd(k)

′
(
Gt (j) εt+1 + ωjt+1

)
, (C.8)

in which

J0,m(j, k) = e′6µ(j) + κ0,m(k) + κ1,m(k) [A0,m(k) + A1,m(k)
′µ (j)]− A0,m(j),

J1,m(j, k) = F (j)′e6 + κ1,m(k)F (j)
′A1,m(k)− A1,m(j),

βd(k) = e6 + κ1,m(k)A1,m(k).

C.3.5 Real Bond Prices

The log prices at period t of real discount bonds with n periods to maturity, qt,n,

satisfies the Euler condition

exp(qt,n) = Et exp(mt+1 + qt+1,n−1),

for qt+n,0 = 0.

The log bond price can be derived as

qt,n(j) = B0,n(j) + B1,n(j)
′Yt, (C.9)

an affine structure of the states of the economy. The coefficients B0,n and B1,n are

state st dependent, and follow the recursive relations:

B0,n(j) = log

{
S∑

k=1

πjk
(

D0(j, k) + logΨ [D2(k)′e5]−D2(k)′e5e′5µ(j)

+
{
D1(j, k) +

1

2
D2(k)′Hσ (j)D2(k)

}′
µ(j)

)}
, (C.10)

B1,n(j) =
1

exp (B0,n(j))





S∑

k=1

πjk





exp

(
D0(j, k) + logΨ [D2(k)′e5]−D2(k)′e5e′5µ(j)

+
{
D1(j, k) +

1

2
D2(k)′Hσ (j)D2(k)

}′
µ(j)

)

×
[
D1(j, k) +

1

2
D2(k)′Hσ (j)D2(k)e5

]







 ,
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where

D0(j, k) = m0(j, k)− B0,n−1(k)− B1,n−1(k)
′µ (j) ,

D1(j, k) = m1(j, k)− F (j)′B1,n−1(k),

D2(k) = − [Λ(k) + B0,n−1(k)] .

Define the holding period return of bond as rb
(n)
t+1 = q

(n−1)
t+1 − q

(n)
t , thus

rb
(n)
t+1 (j, k) = G0,n(j, k) +G1,n(j, k)

′Yt + βb,n(j, k)
′
(
Gt (j) εt+1 + ωjt+1

)
,

where

G0,n(j, k) = B0,n(j)− B0,n−1(k)− B1,n−1(k)
′µ (j) ,

G1,n(j, k) = B1,n(j)− F (j)′B1,n−1(kst+1),

βb,n(j, k) = −B1,n−1(k).

C.3.6 Nominal Discount Factor

The equilibrium stochastic discount factor can be written in the following way:

m$
t+1 = mt+1 − πt+1 = m$

0(j, k) +m$
1(j, k)

′xt−Λ$(j, k)′
(
Gt (j) εt+1 + ωjt+1

)
, (C.11)

in which

m$
0(j, k) = m0(j, k)− e′2µ(j),

m$
1(j, k) = m1(j, k)− F (j)′e2,

Λ$(j, k) = Λ(k) + e2.

The nominal bond pricing and nominal bond risk premium works exactly the

same as the real bond case.
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