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Abstract

Throughout the dissertation, network methods are developed to address pressing issues

in transportation science and geography. These methods are applied to case studies

to highlight their use for urban planners and social scientists working in transportation,

mobility, housing, and health. The first chapter introduces novel network robustness mea-

sures for multi-line networks. This work will provide transportation planners a new tool for

evaluating the resilience of transportation systems with multiple lines to failures. The se-

cond chapter explores optimizing network connectivity to maximize the number of nodes

within a given distance to a focal node while minimizing the number and length of addi-

tional connections. These methods can be used to identify optimal thoroughfare design

around important facilities, such as schools. The third chapter utilizes the network optimi-

zation heuristics presented in Chapter 2 to identify the impact of thoroughfare connectivity

on student active commuting. Housing developers can incorporate these findings when

planning new residential developments around schools. The dissertation concludes with

future directions in this research domain.
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Introduction

Transportation studies and geography have benefited greatly from network science (Lar-

son and Odoni, 1981, Magnanti and Wong, 1984, Derrible and Kennedy, 2010a) but there

are still many questions and issues in the field which need to be addressed. Measuring

the resilience of systems that have multiple connections between nodes, such as rail sy-

stems with several lines between stations, and optimizing the thoroughfare connectivity

around important facilities, such as greenways around schools, are examples of problems

still not fully explored. Utilizing network theory approaches to address these questions can

help urban planners and social scientists make more informed policy recommendations

for improving healthcare, infrastructure, and security.

The dissertation is composed of several chapters, each exploring a different aspect of

transportation research and network theory with the emphasis on developing new metho-

dology and written in separate manuscript formats. Each chapter addresses a separate

research question under the umbrella of transportation science and network theory. De-

finitions of terms, literature reviews, methodologies, results, and conclusions are present

in every chapter.

Robustness, or the resilience of a system to failures and attacks, is an increasingly

important characteristic of networks. Even though there have been proposed several me-

asures of network robustness, there is a lack of analysis of these techniques for networks

with multiple connections between the same nodes (multi-line networks). In chapter 1, to

address the issue of measuring vulnerability of multi-line network systems, a set of novel

global indexes and a local index to measure robustness for these multi-line networks are

introduced. These new indexes are designed to uncover the potential vulnerabilities of

network components (i.e. hubs, terminals and lines) to possible malfunctions which may

not be well identified with traditional connectivity matrix-based methods. Results of these

measures are compared with traditional network connectivity and robustness indexes for
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simulated networks that vary topologically and are each composed of multiple lines that

overlap in connectivity. A set of representative rail systems in the United States are used

as a case study to provide insights for planners working to enhance preparedness for

network disruptions, and highlight some future directions to further research in this realm.

Network optimization has generally been focused on solving network flow problems,

but recently there have been investigations into optimizing network characteristics. Chap-

ter 2 introduces optimizing network connectivity to maximize the number of nodes within

a given distance to a focal node and then minimizing the number and length of additional

connections has not been as thoroughly explored, yet is important in several domains

including transportation planning, telecommunications networks, and geospatial location.

We compare several heuristics to explore this network connectivity optimization problem

with the use of random networks, including the introduction of two planar random net-

works that are useful for spatial network simulation research, and a real-world case study

from urban planning and public health. We observe significant variation between nodal

characteristics and optimal connections across network types. This result along with the

computational costs of the search for optimal solutions highlights the difficulty of finding

effective heuristics. A novel genetic algorithm is proposed and we find this optimization

heuristic outperforms existing techniques and describe how it can be applied to other

combinatorial and dynamic problems.

Student active commuting to school is an important component to student achie-

vement and student health. Increasing street and trail connectivity between residential

developments and schools is a key to fostering student active commuting. In chapter 3,

a cost-benefit analysis of increased connectivity around schools is conducted. Benefits,

which include potential cost-savings to a school system if they had fewer students to bus to

school, increased student walking, and the reduction in health-care costs of fewer obese

students, are compared to the financial costs of the new connections. Advanced network

optimization techniques were applied to several urban and suburban schools from a U.S.

2



school system to locate the optimal new connections that maximize student walking to a

school. Results from this representative case study showed that short connections could

lead to a large increase of potential student active commuters. This work can inform city

planners, housing developers, and school officials on the impact of greater connectivity

for student active commuting and residential development.

The dissertation is concluded with a section highlighting the results from each chapter

along with providing future avenues of research for these topics.
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Chapter 1

Hiking Eulerian Forests:

Measuring Robustness and Coverage

in Multi-line Networks
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Abstract

Robustness, or the resilience of a system to failures and attacks, is an increasingly impor-

tant characteristic of networks. Even though there have been proposed several measures

of network robustness, there is a lack of analysis of these techniques for networks with

multiple connections between the same nodes (multi-line networks). To address the issue

of measuring vulnerability of multi-line network systems, a set of novel global indexes and

a local index to measure robustness for these multi-line networks are introduced. These

new indexes are designed to uncover the potential vulnerabilities of network components

(i.e. hubs, terminals and lines) to possible malfunctions which may not be well identified

with traditional connectivity matrix-based methods. Results of these measures are com-

pared with traditional network connectivity and robustness indexes for simulated networks

that vary topologically and are each composed of multiple lines that overlap in connecti-

vity. A set of representative rail systems in the United States are used as a case study to

provide insights for planners working to enhance preparedness for network disruptions,

and highlight some future directions to further research in this realm.
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Table 1.1: List of symbols and their definitions.

Symbol Definition

A Traditional (normalized) adjacency matrix
F Forest adjacency matrix
e Number of network edges
eF Number of Forest edges
ν Number of network nodes
νF Number of Forest nodes
T Number of trails in a Forest
Ti Set of edges for trail i
|Ti| Length of trail i

p Number of network subgraphs
α Network connectivity index (α index) the ratio of existing circuits to the max-

imum number of circuits
β Network connectivity index (β index) the average number of connections per

node
γ Network connectivity index (γ index) the ratio of existing routes to all poten-

tial routes
λ Eigenvalue
ΛF Eigenvalue robustness index
JF Line coverage similarity index
CF Muti-line coverage comparison index

ℓ Transit line
h Hub (h ∈ vHi )
|h| Number of hubs in a given network
|ℓt| Number of transit lines incident to hub h
|ℓm| Number of multiple transit lines incident to hub h
|ℓh| Number of intermediate and end stations incident to hub h
HSh Hub-stress index for hub h (h ∈ vHi )
HSGlobal Global Hub-stress index
HSTotal Total Hub-stress index

|N | Number of nodes in a given network
L Number of transit lines
LM Maximum length of a transit line in a system

L Average transit line length
Dh

A Highest degree of nodes in the traditional adjacency matrix
DM

A Average degree of nodes in the traditional adjacency matrix
Dh

F Highest degree of nodes in the Forest adjacency matrix
DM

F Average degree of nodes in the Forest adjacency matrix

6



Introduction

Networks that have multiple connections between the same nodes (i.e. multi-line, mul-

tilayer, or multiplex networks) have always existed or evolve in many domains. For ex-

ample, transportation networks regularly offer several modes of transit or multiple lines of

the same type of transit between two locations, and information can be transmitted bet-

ween the same two individuals through different forms of communication, by phone, email

and in-person over the course of the same day. The expectation is that these multi-line

networks would be more robust or resilient to failures or disruptions than single-line net-

works, but measures for robustness of these multi-line networks have yet to be explored

or developed (Mattsson and Jenelius, 2015).

Network robustness and resilience, the ability for the network to still maintain con-

nectivity after a disruption, has been traditionally evaluated from network connectivity.

This connectivity has been mathematically characterized by adjacency matrices where

the number of connections between nodes is normalized (Ellens and Kooij, 2013, Wu

et al., 2011). Although this approach has been widely used and applied for network ana-

lysis because of its benefit to abstract complex system into a simple form, this adjacency

matrix approach does not include the additional information from the existence of multi-

ple connections between the same nodes in multi-line systems (Derrible and Kennedy,

2010b). The traditional global measures of connectivity, such as the α, β, and γ indexes,

lose their scale and meaning when applied to multi-line systems. Therefore, the suite

of network robustness measures that account for multiple lines should be expanded and

this will allow those involved with transportation planning and emergency preparedness

to make more informed decisions.

To do this, this paper initiates the process of developing multi-line network robustness

indexes. Several novel and evident global and local indexes are presented to measure

multi-line network resilience. First, modifications of the α, β, and γ indexes are introduced

7



for multi-line systems. These are followed by a novel global measure based on spectral

graph theory, employing eigenvalues to study systems, which many modern approaches

to network analysis rely on and has yet to be done with mulit-line networks. Eigenvalues

have been used to study many phenomena in networks: the spread of diseases (Wang

et al., 2003), finding the most connected individual (Newman, 2008) or measuring the

speed of decision-making in groups (Gavrilets et al., 2016), and ranking webpages by

their importance (Bryan and Leise, 2006). Specifically, the largest eigenvalue of a network

has been linked to the robustness of the network (Kooij et al., 2008, Wu et al., 2011,

Ellens and Kooij, 2013, Lyer et al., 2013, Zhao et al., 2016). By applying spectral graph

theory, eigenvalues assess and become a useful barometer of the robustness of multi-line

networks, enabling the comparison of resilience among networks regardless of their sizes

and topology.

This paper also introduces a global robusteness index utilizing the inclusion-exclusion

principle, a line coverage similarity index, which is analogous to network dissimilarity in-

dexes (Alvarez-Socorro et al., 2015). This measure provides a way to view the differences

and similarities of connectivity for all pair of lines in a network. The last global network

index provided is based on the differences between traditional adjacency matrices and

the new multi-line adjacency matrices, which can be used to weigh the impact of shared

connectivity from the overlap of the systems multiple lines. This is similar to the road net-

work vulnerability measure developed by Jun-qiang et al. (2017), but applied to multi-line

networks.

For local level robustness measures, an index to identify nodes that are significant

in the resilience of multi-line systems is proposed. In complex networks, some nodes

are more important than others. The more critical the node becomes, the more likely their

elimination induces the network’s collapse, and identifying them is crucial in many circum-

stances. Here, Morone and Makse (2015) devised a rigorous method to determine the

most influential nodes in random networks by mapping the problem onto optimal percola-

8



tion and solving the optimization problem with an algorithm that the authors call ’collective

influence’. They find that the number of optimal influencers, or hubs, is much smaller, and

that low-degree nodes can play a much more important role in the network than previ-

ously thought. Not all of the hubs are critical in terms of newtork resilience (Kovacs and

Barabási, 2015). A way for identifying the critical ones is introduced in this paper and is

based on the number of low-degree stations, such as intermediate stations and/or end

stations, which are sequentially but cumulatively linked to a hub.

Given the traditional normalized representation of network connections raises a critical

issue when it is applied to rail systems because of the type of stations and the level of

connectivity by lines. As proposed by Derrible and Kennedy (2010b) and Derrible (2012),

a graphic representation for the transit systems requires the definition of the concepts of

nodes and edges in a different manner. Specifically, they defined the differentiated nodes

as transfer and end nodes and edges as single and multiple edges. These concepts were

designed to investigate the structure of transit systems to see the relationships between

directness and complexity. Note that the stations between hubs or end stations are igno-

red when a network is abstracted with graph form as reflecting them into a matrix is not

necessary in computing the proposed indicators. However, intermediate stations are also

critical components which affect the level of resilience of a network (Kim et al., 2016a)

because they cannot provide any option to reroute until flows are accumulated and they

reach hub stations. The more intermediate nodes in a network, the more vulnerable or

less resilient the network would become. In addition, the hub incident with more interme-

diate nodes in a line can have a greater resilience to handle flows compared to hubs with

a small number of intermediate nodes.

Hubs, in terms of multi-line networks, serve as transfer stations for passengers when

they need switching their routes to reduce transportation cost or find alternative paths.

With a handful of hubs, the total network cost is reduced and the hub-and-spoke type sy-

stems enhance network efficiencies in operation because of economy of scales of flows

9



on the network (O’Kelly and Bryan, 1998). It is known that the malfunctioning of these

special nodes can dramatically decrease the operation of the network (Kim et al., 2016a,

Kim and Ryerson, 2017) and affect network vulnerability and resilience to network failure

(O’Kelly, 2015). However, a recent work argues that not all of hubs are critical depending

on the network structure or flows among nodes (Kim, 2012, Kovacs and Barabási, 2015),

raising a fundamental question on what conditions would be the best determinants or fac-

tors to affect network vulnerability and resilience. The paper provides a way for identifying

the critical ones based on the number of low-degree stations, such as intermediate stati-

ons and/or end stations, which are sequentially but cumulatively linked to a hub. This is

particularly crucial in the case of closed-systems with multi-linkages such as heavy rail or

subway systems.

Traditionally, transit resilience and robustness have been associated largely with travel

time reliability and variability (Levinson, 2005, Scott et al., 2006). It is still an important

topic today from quantifying variability itself (Mazloumi et al., 2011, Kieu et al., 2015) or

its cost (Benezech and Coulombel, 2013, Sohn, 2006, Cats and Jenelius, 2014, Taylor

and Susilawati, 2012), to using reliability and variability as a design criterion (Yao et al.,

2014, An and Lo, 2014). Recently, the field of Network Science (Newman, 2010) has

emerged as particularly fitted to measure the robustness of a system, notably by studying

the impact of cascading failure (Watts, 2002, Crucitti et al., 2004, Kinney et al., 2005).

Indeed, as physical networks, metros are composed of stations (nodes) and rail lines

(links), and they therefore possess measurable network properties (Derrible and Kennedy,

2010b) that can be used to study their robustness (Berche et al., 2009, von Ferber et al.,

2012). Several works have also tried to combine information from both transit operation

and network properties to gain insight into the robustness of transit networks (Rodriguez-

Nunez and Garcia-Palomares, 2014, Kim et al., 2016a).

A comparison of the results from these new measures with traditional connectivity in-

dexes for US city rail networks (rapid transit systems) is conducted. These transportation
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systems are electric railway with the capacity to handle a heavy volume of traffic (Dic-

kens, 2016) and are composed of multiple lines and hubs stations (Derrible and Kennedy,

2010b). These multiple-lines facilitate movement of passengers in the transit systems

and the resilience of these transit systems are clearly associated with the placement of

hubs for transferring passengers (Kim and O’Kelly, 2009, Li and Kim, 2014). Measuring

robustness and assessing the system resilience are critical concerns as the portion of

service for ridership is considerably increasing in highly dense urban areas. Although

these networks are comparatively safer in operations than other modes of transportation,

the number of incidents, injuries, and fatalities by collision and derailments has increased

over time and become a serious concern (Nelson and Streit, 2011). A major issue is that

the portion of service for ridership is substantially increased in highly dense urban areas,

stressing that the role of transfer stations (or hubs) is vital to handle passenger volumes,

and the need of measures to evaluate the performance of network structures.

This paper is organized as follows. The next section begins with a re-definition of

network components to better describe multi-line systems. Then, a set of standardized

resilience indexes for the robustness of networks to be compared directly is described.

Section 3 examines the sensitivity of system resilience to different levels of network topo-

logy with generated networks. A set of representative rail systems in the United States

are also used for this analysis and as a case study to provide insights for planners to

enhance preparedness of network emergency. The concluding section highlights some

future directions to further research in measuring multi-line network robustness.

Index Development

Eulerian Forests

To explore multi-line network robustness the focus of this analysis begins with a subset

of these networks called Eulerian Forests. Eulerian Forests are multi-line networks com-

11



posed of Eulerian trails (see Fig. 1.1). Eulerian trails are paths in a graph that traverse

every edge of the path exactly once, and networks composed of separate lines, such as

rail networks (Wilson, 1986), can generally be classified as a collection Eulerian trails, i.e.

Eulerian Forests. To frame this in terms of transportation networks, a Eulerian trail repre-

sents a single transit line within a transportation network, e.g. a line of subway system or

an interstate road of a highway network, and the entire transportation system is classified

as a Eulerian Forest.

To develop robustness measures for these Forests start with the “adjacency ma-

trix” for Forests with T trails, called an F -matrix. The elements of an F -matrix, using

the notation Fi,j, are equal to the number of trails connecting nodes i and j, therefore

Fi,j ∈ (0, 1, · · · , T ). The structure of an F -matrix clearly differentiates it from traditional

adjacency matrices which are normalized such that Ai,j = 0 or 1. The common nota-

tion of e for a network edge and ν for a network node will continue to be used for the

analysis of these Forests, while Ti is used to denote the set of connections for trail i and

its corresponding trail length will be given by |Ti|. Fig. 1.1 provides a visual description

and comparison of three different Eulerian Forests with three trails (T = 3) each trail con-

necting four nodes (|Ti| = 3 ∀ i). Forest (a) has the maximal amount of spatial coverage

but is not robust since all nodes are connected by a single line (i.e. a disconnected Fo-

rest), (b) offers some geographic coverage, the network property of covering additional

nodes, along with resilience for some of the nodes, and (c) is the most robust form of the

Forest but minimizes nodal coverage (i.e. an uncut forest). The first row of matrices pro-

vides the respective adjacency matrices while the Forest adjacency matrices are on the

bottom. Note, networks (b) and (c) are resilient to line failures owing to their multiple lines

connecting the same nodes. The novel robustness indexes introduced below are scaled

to enable Forests with different compositions (different number and length of trails) to be

compared directly.
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(a) Disconnnected Forest (b) Generic Forest (c) Uncut Forest
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Figure 1.1: Comparison of three Eulerian Forests with the same number and length of
trails.
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Modified Traditional Global Connectivity Indexes (αF , βF , γF )

The traditional global indexes of network connectivity, which are used to evaluate nodal

network robustness, are the α, β and γ indexes (Garrison and Marble, 1958, Kansky

and Danscoine, 1989, Taeffe et al., 1996). The α index (Eq. 1.1), which is commonly

interpreted as the ratio of existing circuits to the maximum possible circuits, is given by

α =
e− ν + p

2ν − 5
∈ [0, 1], (1.1)

where p is the number of subgraphs. The lower bound is derived from the most minimally

connected graph, where e = ν − 1, and the upper bound is established from the complete

graph, where the maximum number of edges e = ν(ν − 1)/2. The β index (Eq. 1.2),

β =
e

ν
∈ [0, (ν − 1)/2], (1.2)

which provides a simple estimate for the average number of connections for a node in the

network, with a β = 0 for networks without any edges and an upper bound which can be

greater than 1. The γ index (Eq. 1.3),

γ =
e

3(ν − 2)
∈ [0, 1], (1.3)

is understood as the amount of existing routes in a network to the number of all potential

routes for that given network, and which provides a degree of the networks complexity. In

general, β and γ indexes are scaled in such a way that they are useful to compare the

complexity of networks with different sizes. Notice that these indexes may represent the

complexity of a network, however, they do not capture the robustness of a network. For

example, networks (a) and (c) in Fig. 1.1 have the same β value and network (b) has a

larger value. There is also little variation in the γ values for these networks.
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When these indexes are applied to F -matrices, they no longer have the same range

of values (i.e. scale), therefore interpretation and network comparison is lost. These

traditional measures are modified to take into account some of the additional information

from an F -matrix through rescaling. With the upper bounds of Forests determined by e =

T max |Ti| and ν = max |Ti| + 1, the following modified α connectivity index is proposed

(Eq. 1.4):

αF =

(

eF − νF + 1

2νF − 5

)(

2 max |Ti| − 3

(T − 1)max |Ti|+ p− 1

)

∈ [0, 1], (1.4)

the modified β index (Eq. 1.5):

βF =

(

eF
νF

)(

max |Ti|+ 1

T max |Ti|

)

∈ [0, 1], (1.5)

note that βF is now normalized, and the modified γ index (Eq. 1.6):

γF =

(

eF
3(νF − 2)

)(

3(max |Ti| − 1)

T max |Ti|

)

∈ [0, 1]. (1.6)

As these global indexes approach unity the network is more connected and they now

have the same scale regardless of network topology or the number/length of trails. These

measures represent the relationship between edges and nodes in the network and the

number of and lengths of trails present in the system, but overlapping trails, i.e. trails that

share the same nodal connections, do not directly contribute to them. In addition to these

global indexes of connectivity, several additional indexes are introduced in the following

subsections which account for the additional robustness when trails overlap.

Multi-Line Eigenvalue Robustness Index (ΛF )

This global index introduced for line network robustness is based on the eigenvalue of

a multi-line network. Robustness measures developed from spectral graph theory are

currently not applicable to an analysis of F -matrices since they rely on the normalized
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adjacency matrices. To compensate for this shortcoming, reliance on some general infe-

rences from linear algebra (see Appendix A.) are used to develop a robustness measure

from the F -matrix eigenvalues (Eq. 1.7):

ΛF =
λM − 2

2(T − 1)
∈ [0, 1]. (1.7)

Since ΛF is based on λM , which is directly related to the degree (i.e. connectivity) of

nodes, it provides a measure of Forest robustness. This measure reveals the robustness

of multi-line networks in terms of (i) the variance in the connectivity of the nodes and

is bounded below by the average number of connections per node and above by the

maximum number of connections for a node in the network, and (ii) not only the number of

connections for a node but the number of connections for neighboring nodes. When ΛF →

0 there is less variance in the number of connections per node at the same time a lower

number of connections for nodes, and more geographic coverage in the Forest at the

sacrifice of resilience while ΛF → 1 the Forest is more robust but offers less geographic

coverage.

Line Coverage Similarity Index (JF )

This new global measure of robustness is developed from the idea of the Jaccard index

(Jaccard, 1901). The Jaccard index was originally designed to represent the similarity (or

dissimilarity) of a pair of sets, and it has modified it to measure the similarity of a pair of

trails. This similarity of trails provides an index of trail pair robustness and when averaged

over all of the trail combinations for a Forest the following index is produce (Eq. 1.8):

JF =

[

T
∏

i,j>i

(

|Ti ∩ Tj|

|Ti ∪ Tj|
+ 1

)

]1/(T
2
)

− 1 ∈ [0, 1], (1.8)
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where |Ti ∩ Tj| is the number of edges trail i and trail j share in common (i.e. overlap),

and |Ti ∪ Tj| is the total number of edges for both trails i and j. The index provides the

geometric mean of these ratios, with the total number of trail combinations for the Forest,

given by
(

T
2

)

. In case a pair of trails does not share any connections, producing a 0

denominator, a 1 is added to the logarithm and removed from the final measure, which

can result in lower predicted values for small networks (ν ≤ 10). For this scale, as JF → 0

lines are less likely to overlap, there is less similarity in line pair coverage and therefore a

lower Forest robustness, while JF → 1 lines overlap more often, there is more similarity

between lines and the Forest should be more resilient.

Edge Comparison Index (CF )

A comparison of the number of edges in the traditional adjacency matrix for a Forest and

it’s F -matrix can provide another global measure for robustness. This index is a simple

representation of the additional connection present in a multi-line network (Eq. 1.9):

CF =

(

eF − e

eF

)













T
∑

i=1

|Ti|

T
∑

i=1

|Ti| −max |Ti|













∈ [0, 1] (1.9)

where

eF − e

eF
=















1−

T−1
∑

i=1

T
∑

j>i

Ai,j

T−1
∑

i=1

T
∑

j>1

Fi,j















.

The first part of this index represents the fraction of multiple connections in the network,

while the second part ensures it is normalized. If a Forest is composed of trails that do not

overlap, then eF → e and CF → 0, while a more robust Forest will have a greater distance

between eF and e, and CF → 1.
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Hub-Stress Index (HSI)

The HSI is designed to measure the criticality of a hub station based on the number of

intermediate stations and/or end stations which are sequentially but cumulatively linked

to a hub. This index is well applicable to the networks where a series of intermediate

stations are connected from an end station to a handful of hubs via transit lines and

multiple linkages are built among hubs for the enhanced transferability of passengers.

The index is calculated using the Eq. 1.10 for individual hub h:

HSh =

√

∑

ℓ∈h(|ℓ
h|)2

|ℓt|/(1 + |ℓm|)
, (1.10)

where h is the index of hubs, ℓ is the index of transit line, which is incident to hub h,

|ℓh| is the number of intermediate and end stations in transit line ℓ incident to hub h from

adjacent hub in transit lines ℓ, |ℓt| is the number of transit lines incident to hub h, and |ℓm|

is the number of multiple transit lines incident to hub h.

Notice that the more intermediate stations are linked successively until the terminal

intermediate station is incident to the hub station, the greater hub stress is expected

because the flows from intermediate stations to the hub are delivered only a single path

without any chance of re-routing. The index ranges [0 < HSh ≤ |N | − 1], where the

greatest value is found when all stations except a hub station are connected to a hub as

single sequence. Fig. 1.2 presents the properties of HSI to the density of connections

(Fig. 1.2 a and b), stress-sharing (c and d), and congestion level by multiple transit lines

among hubs (e and f). Given the index value, a hub becomes more stressful if the more

intermediate and end stations are incident to the hub (b), compared to a smaller number

of stations are connected to a hub (a). In case of multiple hubs are connected to each

other, the hub stress reduced (c) because the flows among hubs can be transferred to

the shared hub links compared to the case that a single hub takes care of all flows from

the lines (d). In terms of the number of existence of multiple lines to a hub, the hub stress
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increases with more multiple-lines since more flows can transit into the hub (f), rather

than a single line serve (e). This individual index is extended to two global network level

indexes, Total HSI (HSTotal) and Global HSI (HSGlobal), which is the sum of HSh and the

average stress on hubs in a transit system, respectively.

HSTotal =
∑

ℓ∈h

HSh, (1.11)

HSGlobal =
∑

ℓ∈h

HSh/|h|. (1.12)

Numerical Experiments

Simulated Forests

To evaluate the novel robustness measures they were first applied to generated Eulerian

Forests of different sizes and topologies. Simulated networks were created to observe

how the new indexes responded to variation in network structures. Networks were gene-

rated with variation in robustness, i.e. multi-line coverage, from systems with no overlap-

ping lines (no resilience) to a topology where all lines overlapped (maximum robustness).

As shown in Table 1.2, the global robustness indexes (α, β, and γ) when applied to the

generated Forests in the network examples from Fig. 1.1 are not effective at identifying

any of the additional connectivity provided by the existence of overlapping lines, which

are captured by αF , βF , γF , ΛF , JF , and CF . It is clearly seen that the α index does not

represent any of the variation in the robustness across the networks, and the β index va-

lues are inconsistent when presented with multi-line networks, and the γ index captures

little of the variation between the Forest network topologies. Whereas these global con-

nectivity indexes did not measure the resilience of having additional connections between

the same nodes, the new connectivity indexes (αF , βF , and γF ) and robustness measures
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Figure 1.2: Characteristics of the Hub Stress index.
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(ΛF , JF , and CF ) when applied to the F -matrices are sensitive to the existence of multiple

connections in a clear and consistent fashion. There is a clear trend of increasing index

value corresponding to increasing robustness in the new measures. For example, the

most robust network (Forest C) results in the αF , βF , γF , ΛF , JF , and CF indexes having

a maximum value at or close to unity, while the α, β, and γ indexes do not. Similarly, the

least robust network (Forest A) results in the αF , βF , γF , ΛF , JF , and CF indexes having

a minimum value at or close to 0, while the β, and γ indexes do not. Note, the βF and γF

index values for the least resilient Forest (Fig. 1.1(a)) is slightly greater than 0 while ΛF

slightly less than unity due for the most resilient Forest (Fig. 1.1(c)) due to sensitivities of

these indexes to small network sizes (ν ≤ 10).

Table 1.2: Network characteristics and global connectivity and robustness measures for
the Forests in Fig. 1.1

Nodal Indexes Line Indexes

Forest ν e eF p α αF β βF γ γF ΛF JF CF

A 12 9 9 3 0 0.000 0.750 0.333 0.300 0.200 0.000 0.000 0.0
B 7 6 9 1 0 0.167 0.857 0.571 0.400 0.600 0.587 0.293 0.5
C 4 3 9 1 0 1.000 0.750 1.000 0.500 1.000 0.814 1.000 1.0

Fig. 1.3 presents the distributions of the index values for the simulated Forest net-

work topologies highlight the differences between the indexes applied to the connectivity

and the F -matrices. To generalize the characteristics for these index value distributions,

10000 random network topologies were created for Forests with 5 trails connecting 10

nodes each. Small Forest networks were generated to reduce computational burden from

the set of network permutations that grows factorially as the number of nodes increases.

The index values are slightly sensitive to Forest size and will be greater for larger Fore-

sts networks, i.e. the distributions will shift slightly right as the number of nodes or trails

increases. Without loss of generality, the new measures, when applied to the F -matrices

respond to the variance in the robustness of the networks. The αF index is more respon-

sive than the α index (Fig. 1.3(a)), as a large amount of shared connectivity between
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lines is necessary for increasing the index value. The β index values are not bounded

to the same ranges as the other measures and the index does not vary as much as the

βF measure even though the networks were generated with the minimum and maximum

robustness (Fig. 1.3(b)). Similarly, the γ index does not cover the range of resilience pre-

sent in the networks which the γF measure does (Fig. 1.3(c)). The line coverage similarity

index (JF ) and the edge comparison index (CF ) similarly respond to the additional infor-

mation provided by the F -matrices with respect to network robustness (see Fig. 1.3(d)).

Notably, the new connectivity measures (αF , βF , γF , ΛF , JF , and CF ) cover the entire

range of values, as they should since the networks range from not being robust to having

maximum resilience. The α, β, and γ indexes do not share the same range of values,

even for the same set of networks, nor do they cover the entire range of possible values

for each index.

Fig. 1.4 highlights how the eigenvalue robustness index (ΛF ) when applied to the si-

mulated Forest networks can represent the robustness of the simulated networks as the

number of overlapping lines varies. Plots of the largest and second largest eigenvalues

for different Forest sizes and trails lengths are provided in Fig. 1.4 to demonstrate the

clear relationship between network robustness and eigenvalues. Fig. 1.4(a) and (b) show

the results for 5 trails that connect 10 and 20 nodes respectively, Fig. 1.4(c) and (d) dis-

play the results for 10 trails that connect 10 and 20 nodes respectively, and Fig. 1.4(e)

shows the results for a 5 trail Forest with 10, 15, 20, 25, and 30 trail lengths. Squares

represent the most covered Forest and the diamond represents the most robust Forest

for the given number and length of trails. Forests with trail overlappings, i.e. multiple trails

connecting the same set of nodes, are separated with different colors. Clusters exist from

the design of the sampling algorithm to ensure selection of various types of Forest net-

work topologies, otherwise the eigenvalues would be more continuous across the space.

Horizontal lines represent the eigenvalues analytic bounds [2, 2T ], a diagonal line is given

for reference, and 10000 Forests were created for each trail length and number combi-

22



Figure 1.3: Distributions of the various global robustness measures applied to the same
set of simulated Forests (10000 random networks).

nation. Even though the second largest eigenvalue is not used in the index it provides a

dimension for clarity of pattern trends and additional network systems were explored in

the Appendix (Fig. 1.A1). Notice that the eigenvalues are bounded by [2, 2T ] regardless of

network size, length and number of trails, and topology. As the robustness of the network

increases the largest eigenvalue approaches to 2T , which translates to ΛF = 1 and when

the network is less resilient the largest eigenvalue approaches 2, i.e. ΛF = 0. It is evident

that when there are additional trail overlaps (e.g. two to three trails connecting the same

set of nodes), the eigenvalue clearly step to a larger value.

Table 1.3 summarizes the correlations between the new indexes and the old measures

for the simulated networks. Notice that when the new indexes (αF , βF , and γF ) are applied
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Figure 1.4: Plots of the largest and second largest eigenvalues for different Forest sizes
and trails lengths.

to the F -matrices for the same set of networks, they are more strongly correlated than the

α, β, and γ indexes (upper-left and middle boxes). The JF and CF indexes are also

highly correlated with each other, which makes sense as they both measure pairwise line

overlap (lower-right box). Most importantly, the α, β, and γ indexes correlate weakly with

the αF , βF , and γF measures and weakly to not at all with the line robustness ΛF , JF , and

CF indexes. These new indexes are not inclusive to the traditional measures but inclusive

within the family of measures.

Case Study with US City Rail Systems

A comparison of the results from these new measures for US city rail networks (rapid tran-

sit systems) is conducted as a case study of transportation systems composed of multiple

lines and hubs stations (Derrible and Kennedy, 2010b). The set of the twelve largest rail

systems, by ridership, with multiple lines in the United States (Dickens, 2016) was used

for the real-world case study which provides variation in line numbers, line lengths, and

network topology. Network characteristics and index values for these rail systems are
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Table 1.3: Correlations between the global measures for the simulated Forests (10000
random networks).

α β γ αF βF γF ΛF JF CF

α 0.985 0.960 0.808 0.815 0.807 0.457 -0.069 -0.070
β 0.985 0.904 0.709 0.724 0.706 0.348 -0.209 -0.209
γ 0.960 0.904 0.940 0.941 0.938 0.649 0.205 0.210
αF 0.808 0.709 0.940 0.995 1.000 0.808 0.514 0.518
βF 0.815 0.724 0.941 0.995 0.993 0.820 0.509 0.516
γF 0.807 0.706 0.938 1.000 0.993 0.805 0.515 0.518
ΛF 0.457 0.348 0.649 0.808 0.820 0.805 0.745 0.747
JF -0.069 -0.209 0.205 0.514 0.509 0.515 0.745 0.981
CF -0.070 -0.209 0.210 0.518 0.516 0.518 0.747 0.981

given in Table 1.4. The α index is consistently not sensitive to the robustness of the sys-

tems whereas the αF is. Even though there is considerable variation in connectivity in the

rail networks there is little variation in the β and γ indexes ([0.974, 1.143] and [0.336, 0.424],

respectively), while the βF and γF indexes do vary according to this range of network

connectivity ([0.132, 0.549] and [0.114, 0.504], respectively).

The correlation of the network characteristics and novel robustness measures for the

twelve largest United States city rail systems is provided in Table 1.5. It should be noted

that the new global measures are all inversely related to the size of the network, whether

it be the number of nodes, edges, or multi-line edges, confirming the assumpiton that as

larger networks are built for geographic coverage they sacrifice resilience. Similar to the

simulated networks, the JF and CF indexes are highly correlated for the rail systems. Table

1.5 also summarizes the result of hub stress indexes for 12 heavy rail networks. Notice

that the HSTotal increases with the number of hubs in a network (r=0.907). However, it

does not necessarily indicates that hub stress at individual level in a large network also

greater than that of a small network (r=0.054). For example, NYMTA is the largest network

among 12 networks, but its HSGlobal is much smaller than other mid-size networks, ranked

10th. In contrast, the smallest network, SEPTA shows the 2nd highest HSGlobal
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Table 1.4: Network characteristics and robustness index values for the twelve largest United States city rail systems with
multiple lines.

PATH MARTA MDT BART RTA SEPTA LACMTA BTA MBTA WMATA CTA NYMTA

ν 13 38 42 47 50 53 81 107 109 141 158 419

e 14 37 42 47 49 52 80 108 108 140 162 479

eF 20 57 59 99 63 52 85 134 109 153 169 529

L 4 4 5 4 3 2 6 6 8 6 8 9

LM 7 18 21 24 23 27 20 34 19 33 33 108

L 5.00 14.25 12.40 21.00 22.00 26.50 15.00 22.33 14.50 26.50 22.00 59.78

Dh
A 4 4 4 3 3 3 4 4 4 10 6 8

Dh
F 4 8 7 8 6 3 6 8 4 10 8 9

DM
A 2.153 1.947 2.000 2.000 1.960 1.925 1.938 2.019 1.963 2.17 2.051 2.286

DM
F 3.077 3.000 1.982 4.213 2.520 1.925 2.086 2.505 1.981 2.170 2.133 2.525

α 0.095 0.000 0.013 0.011 0.000 0.000 0.000 0.010 0.000 0.000 0.016 0.073

αF 0.200 0.172 0.106 0.372 0.138 0.000 0.012 0.051 0.001 0.018 0.011 0.033

β 1.080 0.974 1.000 1.000 0.980 0.981 0.988 1.010 1.000 0.993 1.025 1.143

βF 0.440 0.400 0.294 0.549 0.438 0.509 0.184 0.215 0.132 0.186 0.138 0.142

γ 0.424 0.343 0.350 0.348 0.340 0.340 0.338 0.343 0.340 0.336 0.346 0.383

γF 0.325 0.352 0.270 0.504 0.400 0.472 0.161 0.200 0.114 0.172 0.127 0.138

λM 3.605 4.609 4.112 7.715 4.909 2.108 4.034 5.686 2.998 3.556 4.213 4.537

ΛF 0.067 0.035 0.026 0.062 0.030 0.001 0.013 0.017 0.005 0.006 0.007 0.003

JF 0.000 0.125 0.055 0.187 0.120 0.000 0.019 0.010 0.001 0.000 0.009 0.009

CF 0.000 0.385 0.288 0.525 0.222 0.000 0.071 0.021 0.009 0.000 0.041 0.095

|h| 11 21 22 29 13 3 9 25 7 34 13 126

HSTotal 29.00 53.71 82.37 95.17 62.68 32.77 55.94 125.17 42.51 132.37 202.36 404.38

HSGlobal 2.64 2.56 3.74 3.28 4.82 10.92 6.22 5.69 6.07 4.14 15.57 3.21

max HSh 3.54 6.48 10.07 14.88 15.59 16.16 14.46 34.05 12.87 25.62 32.6 12.79

min HSh 1.41 1.41 1.41 1.41 1.41 6.27 2.12 1.41 1.73 1.41 2.45 0.71
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Table 1.5: Correlations between the global measures for the twelve US rail networks.

ν e eF α β γ αF βF γF ΛF JF CF |h| HST HSG

ν 0.999 0.990 0.361 0.728 0.155 -0.404 -0.605 -0.560 -0.526 -0.346 -0.266 0.895 0.951 0.045
e 0.999 0.994 0.393 0.752 0.190 -0.375 -0.574 -0.532 -0.495 -0.328 -0.244 0.911 0.954 0.017
eF 0.990 0.994 0.399 0.755 0.195 -0.279 -0.518 -0.472 -0.423 -0.238 -0.151 0.942 0.965 -0.043
α 0.361 0.393 0.399 0.896 0.975 0.187 0.009 -0.098 0.376 -0.272 -0.208 0.491 0.406 -0.279
β 0.728 0.752 0.755 0.896 0.779 -0.035 -0.282 -0.337 0.039 -0.348 -0.257 0.772 0.743 -0.171
γ 0.155 0.190 0.195 0.975 0.779 0.280 0.144 0.017 0.510 -0.215 -0.168 0.315 0.199 -0.325
αF -0.404 -0.375 -0.279 0.187 -0.035 0.280 0.720 0.688 0.917 0.822 0.798 -0.050 -0.226 -0.508
βF -0.605 -0.574 -0.518 0.009 -0.282 0.144 0.720 0.987 0.671 0.621 0.532 -0.316 -0.502 -0.229
γF -0.560 -0.532 -0.472 -0.098 -0.337 0.017 0.688 0.987 0.584 0.663 0.576 -0.282 -0.456 -0.187
ΛF -0.526 -0.495 -0.423 0.376 0.039 0.510 0.917 0.671 0.584 0.597 0.564 -0.196 -0.366 -0.510
JF -0.345 -0.328 -0.238 -0.272 -0.348 -0.215 0.822 0.621 0.663 0.597 0.949 -0.063 -0.195 -0.371
CF -0.266 -0.244 -0.151 -0.208 -0.257 -0.168 0.798 0.532 0.576 0.564 0.949 0.047 -0.099 -0.413
|h| 0.895 0.911 0.942 0.491 0.772 0.315 -0.050 -0.316 -0.282 -0.196 -0.063 0.047 0.907 -0.323
HST 0.951 0.954 0.965 0.406 0.743 0.199 -0.226 -0.502 -0.456 -0.366 -0.195 -0.098 0.907 0.055
HSG 0.0450 0.017 -0.043 -0.279 -0.171 -0.325 -0.508 -0.229 -0.187 -0.510 -0.371 -0.413 -0.323 0.055



among them. The SEPTA is characterized as a typical network having denser intermedi-

ate stations, little stress-sharing but single-line based structure, resulting in placing in the

2nd rank.

As Fig. 1.5 displays, heavy rail networks can be classified into four groups regarding

hub stress levels using HSTotal (X-axis) and HSGlobal (Y-axis). In this Figure, the median

values of each measure are used as a reference to draw the quadrats. Given this classi-

fication, some observations are worthy to note. First, obviously, the NYMTA is the most

stressful network with the largest value of HSTotal because it is the largest heavy rail with

many hub stations. However, it does not necessarily imply that the hubs are also highly

stressful because its HSGlobal indicates its average hub stress falls into the class of low

(Q4). Rather, such networks as the CTA and the BTA placed in Q1 should be highligh-

ted as the most stressful networks. In the Q2, the SEPTA is noticeable because of its

large HSGlobal. Based upon both hub stress indexes, arguably, the networks in the Q2 are

the most vulnerable when their hubs face any malfunction because of their great network

dependency on hubs. In contrast, the networks in the Q3 such as the MARTA and the

PATH would be least vulnerable because their network size is relatively smaller than other

networks and its hub dependency from intermediate stations is low.

Combined with Fig. 1.5, Fig. 1.6 shows hub stress on the networks at the individual

station level from a different dimension using box-plots. Note that the upper outliers in

the Box-plot represent the extremely high hub stress stations, the more outliers the net-

work has, the more dependable the network operates via hubs. Given this indication, the

BTA and the WMATA are considered vulnerable if a few of “highly” stressful hubs are in

malfunction, though they are positioned on the marginal line of Q1 and Q4, respectively.

The decent size of rail systems, for example, the RTA, BART, MBTA, and MDT are resilient

for most of the random malfunctions. Identifying the hub stations with extreme HS index

is the key to protect and improve the robustness of the network.
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Figure 1.5: Comparison of Hub Stress index values for the twelve heavy rail networks.
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Figure 1.6: The ranges of Hub Stress index values for the hubs of each of the twelve rail
networks.

Conclusion and Future Work

Traditional measures appear to not be enough to evaluate the robustness of transit net-

works and other multi-line systems. By redefining network components and beginning the

development of new indexes we can begin to capture some of the information previously

lost in these multi-line systems and identify differences in network criticality. These new

measures appear to be consistent in their response and highly correlated to the existence

of additional lines in a network and provide additional information about the system’s

tradeoff between a resilient structure and one that attempts to cover the geography of de-

mands. These new indexes can be applied to categorizing networks and have the same

range of values, both important characteristics for measuring the robustness of transpor-

tation systems.
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Rail systems are recognized as the major public transit networks of US major me-

tro areas as they provide high-speed mobility for passengers with separate rights-of-way

from which all other vehicular and foot traffic are excluded. Measuring robustness and

assessing the system resilience are critical concerns as the portion of service for riders-

hip is considerably increasing in highly dense urban areas. By using our measures, we

can help decision makers and transportation planners prioritize the protection or main-

tenance of stations, not based on a simple but monotonic traditional approach, but our

comprehensive approach.

There are several avenues for future work in this area including disruption scenarios

and their impact on the indexes. Extending these global measures for systems with di-

rected graphs and circuits should also be considered. Once the robustness measures

mentioned in Ellens and Kooij (2013) and established Laplacian techniques are applied

to multi-line matrices and their F -matrices, results can be compared with the findings

presented in this work. Another extension is developing additional local measures for

robustness, centrality, and connectivity in multi-line networks using network spatial partiti-

oning (Ji and Geroliminis, 2012). Finally, these new indexes can also provide novel ways

to look at distance based matrices, resilience simulations, and longitudinal analysis.

Appendix

Eigenvalue Index Development

Since the F -matrices are positive and square, the spectrum of Forests is contained to

(0, 2T ) according to the Gershgorin circle theorem (Varga, 2002). In order to find the

magnitude of the largest eigenvalue (λ) for a set of F matrices with the same number of

trails, start with the forest that has the Fi,j and largest degree, i.e. the Forest with all trails

overlaying each other (|Tk| = c ∀ k and see Fig. 1.1 (c) for an example). This is also

the most robust Forest structure and call it an uncut Forest. The structure of an uncut F -
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matrix is a pseudo-Toeplitz matrix and Kulkarni et al. (1999) provided an analytic solution

for the eigenvalues of such matrices

λi = 2T cos (iπ/ (|Tk|+ 1)) , (1.A1)

where the largest eigenvalue converges to 2T . Numerical results agree that the largest

two eigenvalues (λM and λM−1) converge to 2T as the length of trails increases and this

convergence is quicker for larger Forests (see Fig. 1.4 and Appendix Fig. 1.A1).

For the lower bound of the maximum eigenvalues the analysis begins with the other

extreme of the Forest topological structures, is found when each trail is disjoint from the

others and which contains the most subgraphs (see Fig. 1.1 (a)). These Forests are the

least resilient yet cover the most nodes, or cover the most geographic space for transpor-

tation networks. Treating the F -matrix as a block matrix composed of T Toeplitz matrices

on the diagonal and 0 blocks on the off diagonal, the following result from the Schur

complement is used (Horn and Zhang, 2005)

det(F − λI) = ΠT
k=1 det(F (Tk)− λI). (1.A2)

Therefore the eigenvalues of each F (Tk) are eigenvalues of the F -matrix and the solution

for these Teoplitz matrices,

λi = 2 cos (iπ/ (|Tk|+ 1)) , (1.A3)

gives a maximum eigenvalue magnitude around 2 for these disconnected Forests. Fig.

1.4 presents numerical results which support this lower bound, λM ≈ 2.

Comparing the eigenvalues for Forests with the same number of lines but different

structures is a non-trivial problem since Forests with the same number of trails can have

F -matrices with different sizes and structures, but numerical results place the largest

eigenvalue for all possible Forest variations, with the same number and lengths of trails,
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on the line [2, 2T ] (see Fig. 1.4 and Fig. 1.A1). It is important to note this may not

be the case for traditional adjacency matrices of different sizes. These bounds are also

independent of variation in trail lengths for a Forest (see Fig. 1.4 (e)) and as the trail

length increases the eigenvalues get closer to the bounds (see Fig. 1.4 (a) - (d)). This is

calibrated to create the index:

ΛF =
λM − 2

2(T − 1)
∈ (0, 1). (1.A4)
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Figure 1.A1: Numerical simulations to explore the eigenvalues of multi-line networks. The
plots show the largest and second largest eigenvalues for different Forest sizes and trails
lengths. The first row contains the results for 5 trails, the second row for 10 trails, and the
third row for 20 trails. The first column contains the results for trail length of 5, the second
column for trail length of 10, the third column for trail length of 20, and the fourth column for
trail length of 20. Squares represent the most covered Forest and the diamond represents
the most robust Forest for the parameter combination. Forests with trail overlays, multiple
trails connecting the same set of nodes, are separated with shades, the lighter shade
representing more overlays. A diagonal line is given for reference and 10000 Forests
were created for each parameter combination.
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Chapter 2

Network Connectivity Optimization: An

Evaluation of Heuristics Applied to

Complex Networks and a

Transportation Case Study
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Abstract

Network optimization has generally been focused on solving network flow problems, but

recently there have been investigations into optimizing network characteristics. Optimi-

zing network connectivity to maximize the number of nodes within a given distance to

a focal node and then minimizing the number and length of additional connections has

not been as thoroughly explored, yet is important in several domains including trans-

portation planning, telecommunications networks, and geospatial location. We compare

several heuristics to explore this network connectivity optimization problem with the use of

random networks, including the introduction of two planar random networks that are useful

for spatial network simulation research, and a real-world case study from urban planning

and public health. We observe significant variation between nodal characteristics and

optimal connections across network types. This result along with the computational costs

of the search for optimal solutions highlights the difficulty of finding effective heuristics. A

novel genetic algorithm is proposed and we find this optimization heuristic outperforms ex-

isting techniques and describe how it can be applied to other combinatorial and dynamic

problems.
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Table 2.1: List of symbols and their definitions.

Symbol Definition

ν Network node
e Network edge
N Number of nodes in a given network, N =

∑

i νi
A Network adjacency matrix
aij Adjacency matrix element ij
F Focal node
d(i, j) Network distance between nodes i and j
D Threshold distance from focal node
NC Set of close nodes, NC ⊂ N
ND Set of distant nodes, ND ⊂ N
N ′

C Set of nodes that are now close after a new connection
LF Average path length to the focal node

C(i, j) Cost of the new connection
B(i, j) Benefit of the new connection
α Cost weight
β Benefit weight
t Optimization iteration
Ot Optimal solution for iteration t
O∗ Optimal solution
M Set of long-term memory solutions
NC

i Set of neighboring close nodes for node i
ND

j Set of neighboring distant nodes for node j

CD
i Degree centrality of node i

CC
i Closeness centrality of node i

σij Shortest path between nodes i and j
σjk(i) Shortest path between nodes j and k that includes node i
CB

i Betweeness centrality of node i
λ Eigenvalue
xi Eigenvector
CE

i Eigenvector centrality of node i
αP Attenuation factor
CP

i Pagerank centrality of node i

η Variable neighborhood size
µ Genetic algorithm mutation rate
s Genetic algorithm selection coefficient
P Population of solutions for the genetic algorithm
f(i, j) Genetic algorithm fitness function
ǫB Benefit error from heuristic
ǫC Cost deviation from heuristic

p Connection probability (Erdös-Rényi graphs and Klemm and Eguı́lez graphs)
pW Rewiring probability (Watts-Strogatz graphs)
kL Initial node degree (Watts-Strogatz graphs)
m0 Initial network size (Barabási and Albert graphs and Klemm and Eguı́lez graphs)
m Degree of new nodes (Barabási and Albert graphs)
pS node selection probability (Klemm and Eguı́lez graphs)
pR Edge removal probability (Delaunay and Voronoi random graphs)

CD Mean degree of a network

L Average path length of a network
cwi Weighted clustering coefficient for node i
wij Weight of connection between nodes i and j

C Weighted clustering coefficient of a network

Cr Weighted clustering coefficient of a completely random network

Lr Average path length of a completely random network
γ Power law exponent
P (n) Degree distribution
E Efficiency of a network
Er Efficiency of a completely random network
EG Global efficiency of a network
K Number of clusters
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Introduction

Network optimization has generally been focused on solving the following classes of pro-

blems (i) finding the shortest path between nodes, (ii) maximizing the flow of information

across a network, (iii) minimizing the cost of the flow of information across a network,

and (iv) the problems dealing with multiple types of information flows across the network

(Schrijver, 2002, Wu et al., 2004). One problem, optimizing network connectivity around

a specific node with the introduction of new edges, has not been thoroughly explored and

yet is important in several domains. Optimizing the network connectivity of additional ed-

ges attempts to maximize the number of nodes within a given distance to a focal node to

be connected and minimizing the number and length of additional connections is essential

in network layout planning for telecommunications and computer systems (Resende and

Pardalos, 2006, Donoso and Fabregat, 2007), the spread of information or diseases in

social networks (Eubank et al., 2004), and the development of neural networks (Whitley

et al., 1990). This network connectivity problem is particularly important with transpor-

tation planning in urban environments, where the weights of the network edges can be

physical distances or riderships and future street connections or transportation lines can

impact flow to established facilities. For example, residential developers could optimize

thoroughfare connectivity around existing schools to foster student active commuting and

reduce busing costs when planning new developments (Linehan et al., 1995), and evalu-

ating accessibility and patient travel time to health care facilities (Branas et al., 2005).

Optimization approaches have been applied to several network problems: the search

for new edges that minimize the average shortest path distance in a network (Meyerson

and Tagiku, 2009); the minimization of the diameter of the network, i.e. minimizing the the

maximal distance between a pair of nodes (Demaine and Zadimoghaddam, 2010); and

maximization of betweenness centrality (Jiang et al., 2011). However, the search for new

edges, or shortcuts, that maximize connectivity to a focal node and minimize the length of
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these new edges is less understood and as with the above mentioned graph optimization

problems, the search for optimal solutions can become costly when networks are large

and complex. This work compares a set of heuristics for this task drawn from a review

of combinatorial heuristics (Mladenović et al., 2007) and from methods used for location

models as this problem has many applications where space is an essential component

(Brimberg and Hodgson, 2011). In this study, we show that optimization heuristics are

preferred for the analysis and practice due to the nonlinearity of the solution space and

the optimal soultion’s dependence on nodal characteristics, such as distance to the focal

node.

In connectivity optimization, network nodes are first segmented and assigned to ’close’

and ’distant’ sets by a specified weighted network distance from the network’s focal node.

An exhaustive search, where all possible edges from distant to close nodes for a network

are evaluated to identify the optimal connections and as a benchmark for the time to find

these solutions. This approach ensures that the optimal edges are found. However, as the

number of nodes increases and therefore the number of possible connections between

close and distant nodes increases, it can become computationally expensive and timely

to implement. When the exhaustive search routine was applied to random networks and

a real-world street networks, we also discovered that the optimal solution is nonlinearly

related to nodal characteristics. To counter this, several heuristics are explored to find

the optimal connection utilizing nodal characteristics and possibly in a quicker and less

computationally expensive manner: hill climbing with random restart (Russell and Norvig,

2004); stochastic hill climbing (Greiner, 1992); hill climbing with a variable neighborhood

search (Mladenović and Hansen, 1997); simulated annealing, which has a history of ap-

plications in graph problems (Kirkpatrick et al., 1983, Johnson et al., 1989, Kirkpatrick,

1984); and genetic algorithms, which has been successfully used for combinatorial opti-

mization (Anderson and Ferris, 1994). A Tabu heuristic was not employed as it has been

observed to not be an effective method for multi-objective optimization problems, whereas
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simulated annealing and genetic algorithms have shown to be effective (Golden and Skis-

cim, 1986, Kim et al., 2016b). Among these methods, the genetic algorithm presented

here introduces a novel chromosome formulation where the genes are not properties of a

specific variable but weights for the probability to move in a given direction in the solution

space. This allows the method to dynamically change what solution characteristics to

explore while possibly reducing the size of the local neighborhood search.

These optimization heuristics are then applied to randomly generated networks that

vary in complexity and size to evauluate their efficacy in finding the optimal connection.

Several types of random graph networks were generated to analyze the efficacy of the op-

timization heuristics for systems with different topologies which are generally representa-

tive of naturally occuring and built systems: (1) Erdös-Rényi networks, (2) Watts-Strogatz

networks, (3) Barabási and Albert networks, (4) Klemm and Eguı́lez networks, (5) De-

launay triangulation networks, and (6) Voronoi diagrams. Erdös-Rényi random networks

are constructed by randomly creating connection between pairs of nodes with a proba-

bility (Erdös and Rényi, 1959). These networks, even though they have random con-

nections, consistently have short average path lengths and irregular connections, both of

which are well found in natural systems. The Watts-Strogatz networks also have random

connections but the networks also form clusters, another feature commonly found in real-

world networks (Watts and Strogatz, 1998). The Barabási-Albert model produces random

structures with a small number of highly connected nodes, ’hubs’, which are observed in

numerous types of networks (Barabási and Albert, 1999, Albert and Barabási, 2002).

Klemm and Eguı́lez networks have random connections, clusters, and hubs (Klemm and

Eguı́lez, 2002).

We also introduce two novel types of random planar network versions of Voronoi di-

agrams and Delaunay triangulations. The reasons these were considered was that pla-

narity is particularly important in many fields and networks generated from Voronoi di-

agrams and Delaunay triangles have been used in spatial health epidemiology (John-
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son, 2007), transportation flow problems (Steffen and Seyfried, 2010, Pablo-Martı̀ and

Sánchez, 2017), terrain surface modeling (Floriani et al., 1985), telecommunications (Me-

guerdichian et al., 2001), computer networks design (Liebeherr and Nahas, 2001), hazard

avoidance systems in autonomous vehicles (Anderson et al., 2012). Delaunay triangula-

tion maximizes the minimum angles between three nodes, to generate planar graphs with

consistent network characteristics (Delaunay, 1934). Voronoi diagrams, the dual of a De-

launay triangulation, are composed of points and cells such that each cell is closer to

its point than any other point. When edges are randomly removed from the connected

Delaunay network or Voronoi network, with weights given by node distance from a fo-

cal node, we show that these networks display some of the properties similarly found in

the networks mentioned above, such as complexity and randomness, but with the ad-

ded component of being planar and having edge weights that can be framed as physical

distances.

To complement the random network analysis, the network connectivity optimization

methods are applied to a study of urban transportation planning. We use the network

connectivity optimization methods to evaluate the potential costs and benefits of increa-

sed thoroughfare connectivity for student active commuting to school. It is assumed that

expanding this connectivity around a school would allow for more households, and stu-

dents, to be included within the walking distance to the school. If more students actively

commute to school, this reduces the busing costs for the school system and increases the

health and academic achievement of the students (Centers for Disease Control and Pre-

vention, 2010). The combinatorial optimization techniques employed here to identify and

evaluate new street connections can complement the optimization approaches used for

other transportation planning problems, such as greenway planning (Linehan et al., 1995),

bus stop locations (Ibeas et al., 2010, Delmelle et al., 2012), and health care accessibility

(Gu et al., 2010).

The following section describes the formulation of the connectivity problem in more
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detail, the local search methodology, and the optimization heuristics (see Appendix A for

the specific pseudocode of the optimization algorithms). The section also details the data

used for the study including descriptions of the random networks and the street networks

around schools that are used for the transportation study. Results of the heuristics applied

to both the random networks and the case study data are also presented in that section.

This is followed by a detailed discussion of the heuristic results, the further implications

of these techniques for urban transportation planning, and future work for this avenue of

research.

Methods and Results

Network Connectivity Optimization

For the description of the optimization methodology the following nomenclature will be

used. The number of nodes is N , and nodes are separated into two sets based on their

shortest network paths, d(i, j), where i and j are nodes, to the focal node F . The nodes

that are outside the path distance under consideration, D, are assigned to the ‘distant’ set,

ND ⊂ N , i.e. i ∈ ND if d(i, F ) > D. The nodes that are within this distance are assigned

to the ‘close’ set, NC ⊂ N , i.e. i ∈ NC if d(i, F ) ≤ D and F ∈ NC (see Figure 2.1 (A)).

Node neighborhoods are assigned to the sets ND
i and NC

j for the distant and close nodes

of i and j, respectively by the nodal characteristics described in the following subsection.

For a network of size N the number of new connections to evaluate is ≤ N2/4.

When a new connection is evaluated, any distant nodes that are now within the path

distance D to the focal node are assigned to the new set N ′
C . For example, if a new

connection is established between distant node i and close node j, then k ∈ N ′
C if k ∈ ND

and d(k, i) + d(i, j) + d(j, F ) ≤ D (see Figure 2.1 (C)). The number of nodes in N ′
C set

is considered the benefit of this new connection, B(i, j) = |N ′
C |. The cost of the new

connection is denoted by C(i, j) and for simplicity and this analysis C(i, j) = d(i, j). The
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Figure 2.1: Diagram of the network connectivity optimization problem. The close nodes
that are within a threshold network distance (orange dashed circle) from the focal node
(black square) are colored green, distant nodes that could be within the threshold network
distance with additional edges are colored red, and distant nodes that could not be within
this distance regardless of additional edges are gray. Figure (a) is an example graph, (b)
shows the same graph with the optimal new connection that maximizes the number of
additional nodes within the threshold network distance and minimizes the length of the
new connection, and the inset (c) highlights this optimal connection, between nodes i and
j, with the methodological terminology presented in Section 2.
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optimal solution is the solution with the greatest benefit, or number of new nodes now

within the distance to the focal node which can be expressed as the bi-objective function

O∗ = max
(i,j)

(αB(i, j) + βC(i, j)),

where α and β are the weights for the benefits and costs, respectively and for this study

α = 1 and β = ∞. If β = ∞, then the objective is only to minimize costs for the same

benefit. Some of the heuristics are also dependent on the number of iterations (t) and

terminate when the solutions converge, Ot = Ot−1, or the solution does not improve,

Ot−1 > Ot.

Local Search Methodology

The selection of neighboring nodes to improve solutions begin with on several evident no-

dal characteristics (see Figure 2.2 and Appendix Table 2.A2). These nodal characteristics

are explored to find the critical network properties for connectivity optimization and their

impact on the performance in finding the optimal solution. Nodes are ranked by these

characteristics and this creates a multidimensional solution space. A two-level selection

process is used, with the following nodal level characteristics: (i) distance to the focal

node, (ii) degree centrality, (iii) closeness centrality, (iv) betweenness centrality, (v) eigen-

vector centrality, (vi) pagerank centrality, (vii) weighted clustering coefficient; and the the

following clustering of the characteristics: (i) hierarchical clusters, (ii) network-constrained

clusters, and (iii) network modularity. Multiple nodes in a network can have the same

degree or assigned to the same cluster, therefore the local searches include a random

shuffling routine to evaluate nodes with the same values.

Nodes are ranked by their distance to the focal node and moving in this solution di-

mension may result in lower connectivity length costs but may not maximize the number

of nodes ultimately connected to the focal node. Ranking and selecting nodes by their
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(d)

Edge Benefit Cost

(i,m) 7 0.45
(i, n) 6 0.60

...
(j,m) 8 0.35

...
(ℓ, p) 5 0.85

Figure 2.2: Diagram of the local search methodology. Figure (a) shows a generated net-
work with the focal node represented by a black square, the close nodes are colored green
and the distant nodes red. Figure (b) shows part of the search space neighborhood for
distant node i by increasing and decreasing degree and distance to the focal node, d(i, F )
(the other nodal characteristics and clusters are not shown for simplicity). Figure (c) si-
milarly represents the space for the close node m. The number of neighbors selected at
each iteration of the optimization routine is heuristic dependent. Table (d) gives the costs
and benefits for selected connections from the local search and the optimal connection
(j,m) for this iteration is shown in (e) an an orange edge.

centrality, i.e. the importance of the node, could result in maximizing the number of nodes

within the specified distance to the focal node but with the possibility of higher connecti-

vity length costs compared to selecting nodes by other characteristics. Several commonly

used measures of centrality are explore: degree, the number of edges incident to a node;

closeness centrality, the average length of the shortest path between the node and all

other nodes in the network (Bavelas, 1950); betweenness centrality, the frequency of a

node included in the shortest paths between all other node pairs (Freeman, 1977); eigen-

vector centrality, which is a relative ranking of nodes such that nodes with high values are

connected to other nodes with high values (Newman, 2008); and pagerank centrality, a
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variant of eigenvector centrality that ranks nodes based on their probability of being con-

nected to a randomly selected node and which is commonly used in web-page rankings

(Brin and Page, 1998).

Nodes are clustered using weighted clustering coefficients, hierarchical clustering,

network-constrained clustering, and network modularity. The weighted clustering coef-

ficient of a node is the count of the triplets in the neighborhood of the node and accounts

for the weights of the edges times the maximum possible number of triplets that could

occur (Barrat et al., 2004). Nodes are also clustered by their characteristics with hier-

archical clustering utilizing Ward’s method and the gap criterion. Hierarchical clustering

with Ward’s method attempts to minimize variance within clusters and maximize variance

between clusters (Ward, 1963). The gap criteria is used to identify the optimal number of

hierarchical clusters by maximizing the distance between the within-cluster variation and

the expected within-cluster variation found from bootstrapping (Tibshirani et al., 2001).

The network-constrained clustering method utilizes the shortest paths between nodes

and thereby capturing the network neighbors of each node (Yamada and Thill, 2006).

Network modularity attempts to cluster nodes by maximizing the number of connections

within a cluster and minimizing the number of connections between the clusters. Network

modularity accomplishes this by comparing the probability that an edge is in a cluster with

the probability a random edge is in the module, i.e. an edge is present in a random graph

with the same node degree distribution (Newman, 2006).

Network Connectivity Optimization Heuristics

The following techniques were selected for the network connectivity optimization study

from their extensive use in optimization (see the Appendix for the algorithms). Parameter

selection was simplified for easy comparison of the methods. Random restart, randomly

selecting initial nodes to avoid local optima and running the routine until the optimal so-

lution is found, was used for each method to ensure the methods did not converge on
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suboptimal solutions due to the initial starting values. Six heuristics are employed as

below.

Exhaustive Search (ES). The exhaustive search optimization routine creates an edge

for every combination of distant and close nodes (see Algorithm 1 in the Appendix). Be-

cause the results by ES is the optimal, the solution times and the objective values are

used to benchmark the solutions by other methods.

Hill Climbing (HC). The solution space was observed to be hilly from the exhaustive

search results, so several modifications were introduced to the hill climbing technique to

address this (Algorithm 2). A stochastic hill climbing (HCS), an advanced search method

based on HC, routine is also explored where the selection of nodes for the next iteration

is randomly picked with

probability(i, j) =
αC(i, j) + βB(i, j)

∑

(m,n)(αC(m,n) + βB(m,n))
,

which terminates when a better solution is no longer found (Algorithm 3). A hill climbing

algorithm is coupled with a variable neighborhood (HCVN) where the size of the neighbor-

hood starts with the nearest neighbors (η = 1) and is updated as follows:

η =















1 if Ot > Ot−1

η + 1 if Ot ≤ Ot−1

,

and the HCVN method terminates after nmax is reached (Algorithm 4).

Simulated Annealing (SA). As a meta-heuristic approach, the simulated annealing

method randomly selects an initial solution from the solution space to avoid entrapment in

a local optima. At each iteration, the heuristic evaluates the neighboring solutions and if it

does not find an improved solution, it moves to a new solution with the following probability

probability(i, j) = exp

(

−
Ot−1 −O(i, j)

t

)

,
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to obtain an improvement of the solution. The distance of the move decreases with the

number of iterations until a better solution is no longer found (Algorithm 6).

Genetic Algorithm (GA). The genetic algorithm begins with a population of P rand-

omly selected solutions with a set of chromosomes composed of genes which represent

the weights of selecting a neighbor and are all initialized to unity (Algorithm 7). During

each iteration of the method, solution scores (fitnesses) are computed by

f(i, j) =
O(i, j)

∑

(m,n) O(m,n)
,

and a new generation of solutions are selected based on the following probability condition

probability(i, j) =
s ∗ f(i, j) + (1− s)

∑

(m,n)(s ∗ f(m,n) + (1− s))
,

where s is the selection coefficient. Weak selection, s ≪ 1, is used to ensure the that

random mutations impact solution frequency. Crossover is conducted by alternating the

weights for the offspring from each parent, also known as cycle crossover (Oliver et al.,

1987). Mutations are introduced at a low rate µ ≪ 1 for each gene and increase the nodal

characteristic or cluster neighbor selection weight by one. The probability that characte-

ristic or cluster m is used to find a neighbor for node i is given by

probability(characteristic or cluster) =
gene(i,m)

∑

k gene(i, k)/K
,

where K is the total number of nodal characteristics and clusters. This formulation ensu-

res that the nodal characteristics or clusters that improve the solution increase in weight,

results in a greater probability they will be selected for neighborhood exploration, and

reduces the size of the neighborhood search.
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Simulated Data: Complex Random Networks

Complex Random Networks. Several types of random networks were used to evaluate

the effectiveness of each hueristic in identifying the optimal new connection. The following

types of random undirected networks were generate: (1) Erdös-Rényi (ER) networks, (2)

Watts-Strogatz (WS) networks, (3) Barabási and Albert (BA) networks, (4) Klemm and

Eguı́lez (KE) networks (see Appendix Figure 2.A1 (A) – (D) and for the algorithms used

to generate the networks see Prettejohn et al. (2011)).

Complex Planar Networks. Two novel types of random networks are created here,

random Delaunay triangulation (DT) (Appendix Figure 2.A1 (E)) and random Voronoi dia-

grams (VD) (Appendix Figure 2.A1 (F)). These networks are inherently planar and edges

are removed from network nodes randomly based on their distance from the focal node

with probability

pR ·
max(d(i, F ), d(j, F ))

maxk d(k, F )
,

where pR is the removal probability and weighted by the normalized edge distance from

the focal node.

Parameter Selection. To compare the efficacy of different optimization methods for

different network topologies, identifying the best set of parameters are critical. Parame-

ters values were selected for each type of random network to ensure network complexity

(Appendix Table 2.A5 summarizes the parameters which were used in the analysis). Va-

riation in network size was also explored and the most connected node in each network

was selected as the focal node. Uniformly randomly generated edge weights in [0,1] were

used for the network distances and the threshold distance was set to ensure that half

of the nodes were initially within the distance to the focal node. The costs and benefits

were normalized using the ranges from the exhaustive search routine as a benchmark to

compare the results from the different optimization methods.
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Empirical Data: Street Networks Around Schools

Networks composed of street edges and residence nodes around several schools from

a US school system were used for the analysis. Ten suburban and rural schools from

Knox County, TN, were selected for the analysis, including seven elementary and three

middle, that would benefit the most from increased thoroughfare connectivity, i.e. had the

most students within the Euclidean walking distance but not the network distance to the

school. Urban schools were not used since the street connectivity around the schools

was significantly high and the from additional thoroughfares would be low. Residential

nodes were placed on the street networks. The residences within 1 mile and 1.5 miles,

for the elementary schools and the middle schools respectively, are considered close

nodes while the nodes outside of these distances were classified as distant nodes (see

Figure 2.3). The school networks do not generally display the characteristics of complex

network, they had low average degree, large path lengths, and were not efficient, yet

have a few intersections (nodes) with a large number of street connections (see Appendix

Table 2.A4). The networks were evaluated with each optimization method to maximize the

number or close residences connected to the school and minimize the distance of the new

thoroughfares. The costs and benefits of these street connections were normalized using

the ranges from the exhaustive search routine as a benchmark to compare the results

from the different optimization methods.

Results

Several finding are worthy to note. First, there were consistent nonlinear relationships

between the nodal characteristics and the quality of the solutions for each type of random

network and the school networks (see Figure 2.4). Nonlinear Pareto frontiers were also

observed as was significant variation for which nodal characteristics were correlated with

the quality of the solution across networks (see Table 2.1). Among those, the distance
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Figure 2.3: Examples of the street networks used for the analysis: (a) a suburban ele-
mentary school and (b) a rural elementary school. The red nodes represent the distant
residences, i.e. the residences within the 1-mile Euclidean walking distance but not the
1-mile network walking distance, the green nodes are the close residences within the
network walking distance, and the black square represents the school.

between the close node and the focal node and the distance between the distant node and

the close node were most often highly correlated with the quality of the solution across

networks. The centrality measures were inconsistently related to the solution quality for

the random networks. The clustering methods were consistently unrelated to the quality

of the solutions for the random networks, while the network modularity for the distant node

was correlated with spatial networks and the school networks.

Results of the termination times and the optimal solutions deviations from the opti-

mization heuristics applied to the random networks are summarized in Figure 2.5 and

Appendix Figures 2.A2 and 2.A3. The hill climbing method was consistently faster for all

of the networks, yet had the largest cost and benefit deviations. Simulated annealing and

the genetic algorithm had similar termination times, but the genetic algorithm was consis-

tently superior to all of the other methods in approaching the optimal solution. The results

from the application of the optimization heuristics applied to the ten school networks are

shown in Figure 2.5. The times to termination for each hueristic according to network size
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consistently followed the following pattern: ES>SA>HCVN>GA>HCS>HC and network

topology played a significant role in these times (e.g. the dips in 2.5 (e)). The genetic

algorithm clearly outperformed the other heuristics, followed by simulated annealing, in

terms of cost and benefit deviations (see Figure 2.5 (b), (d), and (f)).

Discussion

The network connectivity problem introduced in this study is relevant to a wide range

of applications and is nontrivial as the number of solutions can become large even for

small systems. This type of combinatorial optimization problem highlights the difficulty

in determining local search routines a priori. The nodal characteristics were nonlinearly

related to the solutions while different characteristics varied in their correlation with so-

lution quality for different networks making it difficult to exclude specific characteristics

for network connectivity optimization. Distance to the focal node was consistently rela-

ted to the quality of the solution as this lowers connectivity length costs, while centrality

was intermittently correlated with solution quality it provides greater benefit through more

connections. Clustering nodal characteristics did not provide additional useful informa-

tion from the nodal characteristics for the random networks. This could arise from the

following issues: the curse of dimensionality, i.e. large sparse subspaces in the solution

space; the nodal characteristics are highly correlated with each other; outliers; finding the

appropriate influential nodal characteristics is not possible a priori; and the influence of

specific characteristics is dynamic as the heuristics converge. For the school networks:

the clustering coefficient was a poor measure due to the lack of triplets in the networks;

the network modularity also had poor results possibly due to the measure’s inability to ac-

count for the spatial component of the nodes; and the network-constrained clusters were

also poor in explaining the solutions, due to the complexity of the network topology.
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Figure 2.4: The relationship between the distances of the close node and the focal node
with the costs and benefits for each solution for different networks. Figure (a) shows the
relationship for a Watts-Strogatz network with N = 500, (b) a Barabási and Albert network
with N = 500, (c) a Delaunay network with N = 500, and (d) a suburban school network
(N ≈ 4000). Each point represents a connection between a distant and close node, where
the cost is the length of the connection and the benefit is the number of new nodes within
the distance to the focal node or school.
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Table 2.1: Average correlation coefficients for the random networks (1000 graphs for each
network type with N = 1000) and the ten school networks. The three coefficients with
the largest magnitude are highlighted for each network type. There was no variation in
clustering coefficients as triplets were not common in the street networks.

Network

ER WS BA KS DT VD Schools

N
o

d
a

l
c
h

a
ra

c
te

ri
s
ti
c
s

c
lo

s
e

n
o

d
e

d(j, F ) -0.08 -0.52 -0.37 -0.48 -0.28 -0.41 -0.30
CD

j 0.14 0.08 0.05 0.09 -0.01 0.02 0.02
CC

j 0.10 0.26 0.05 0.15 0.15 0.15 0.18
CB

j 0.14 0.15 0.05 0.04 -0.02 0.03 0.06
CE

j 0.12 0.11 0.05 0.09 0.01 0.08 -0.01
CP

j 0.14 0.07 0.05 0.10 -0.03 -0.01 -0.00
cwj 0.00 -0.03 0.02 0.00 0.14 0.03 *
HCj 0.01 -0.01 -0.02 -0.01 0.03 0.00 -0.00
NMj -0.01 0.03 0.07 0.06 -0.06 0.02 0.22

d
is

ta
n

t
n

o
d

e

d(i, F ) -0.46 -0.18 -0.12 -0.09 -0.07 -0.08 -0.04
CD

i 0.17 0.03 0.08 0.05 0.29 0.30 0.08
CC

i 0.15 -0.01 0.07 0.00 0.35 0.21 0.06
CB

i 0.19 0.03 0.07 0.03 0.20 0.20 0.07
CE

i 0.21 0.02 0.07 0.06 -0.16 -0.01 -0.03
CP

i 0.17 0.01 0.08 0.07 0.30 0.22 0.01
cwi 0.08 -0.01 0.03 0.03 0.12 0.12 *
HCi 0.00 0.00 0.02 0.00 0.05 -0.03 -0.01
NMi 0.12 -0.07 0.02 -0.01 -0.30 -0.19 0.17
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Figure 2.5: The termination times for the heuristics applied to the random networks and
school networks: (a) and (b) Erdös-Rényi networks, (c) and (d) Delaunay networks, and
(e) and (f) the ten school networks. These are average times for 1000 random restarts for
optimization applied to 1000 random network of each type and size. The times are scaled
by the exhaustive search time and log transformed for easier interpretation. The benefits
were scaled by the results from the exhaustive search, where a longer connection length
is a positive cost deviation and a shorter connection is a negative cost deviation.
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The optimization heuristics save computational time but vary considerably in their abi-

lity to find a solution near the optimal. The stochastic hill climbing search was not effective

due to the large neighborhood search space explored. In our experiment, the number of

solutions checked at each iteration is > 300 and resulted in a skewed probability distribu-

tion of objective values favoring the selection of low values. This degraded the efficiency of

the method resulting in the selection of poor solutions. The variable neighborhood search

method was similarly not reliable because of the significantly large neighborhood search

space (the number of possible solutions explored at a given iteration could be > 5, 000),

and had intermediate results with cost and benefit deviations. The simulated annealing

heuristic consistently took longer to converge than the other optimization methods from

the exploration of suboptimal solutions prior to moving towards better solutions, yet it was

able to converge to values close to the optimal solution.

The computational costs and the variance in the importance of nodal characteristics

for the random networks and real-world systems highlights the need for a heuristic that

is able to quickly and effectively explore the solution space. The genetic algorithm provi-

ded in this work offers a solution to this issue, exploring the nonlinear Pareto frontier and

outperformed the other algorithms in terms of the consistently higher solution precision

and accuracy. The genetic algorithm is able to dynamically reduce the size of the neig-

hborhood search space and what variables to analyze. This reduction in the local solution

search space allows the genetic algorithm presented here to converge on solutions near

the optimal in a timely fashion. This shows the power of biologically inspired algorithms

to effectively explore multidimensional spaces (commonly found in natural systems) and

their potential use in a wide variety of disciplines, including specific applications for plan-

ning and health care.

Application of these methods and heuristics to multi-level networks, such as tele-

communication systems, higher dimensional real-world networks (transportation networks

with elevation), directed networks, and additional planar random networks (e.g. Gabriel
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graphs) should be conducted. Different distance measures to the focal node, such as

the Hamming distance, could also be evaluated for different applications, and other real

world examples should be used for analysis. The methods presented here do not evaluate

whether the new connections intersect existing edges and attempts to incorporate such

a feature resulted in unrealistic computational times. Optimizing this feature is currently

being developed as is a tool for ArcGIS and Python for planners and researchers to utilize.
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Appendix

Additional Figures and Tables

Figure 2.A1: Examples of the random graphs (N = 250) used for the analysis: (A) Erdös-
Rényi network, (B) Watts-Strogatz network, (C) Barabási and Albert network, and (D)
Klemm and Eguı́lez network, (E) Delaunay network, and (F) Voronoi network. The colored
subgraph represents the close nodes to a random focal node with high connectivity and
the edge weights (distances) are not to scale for a clearer visualization.
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Table 2.A1: Node characteristics used for the neighborhood search and their formulations.

Local search selection criteria
N

o
d

a
l
c
h

a
ra

c
te

ri
s
ti
c
s

distance from focal node degree centrality
d(i, F ) CD

i =
∑

j A(i, j)

closeness centrality betweenness centrality

CC
i = 1/

∑

j d(i, j) CB
i =

∑

j 6=i 6=k

σjk(i)

σjk

eigenvector centrality pagerank centrality

CE
i =

1

λ

∑

j A(i, j)xj CP
i = αP

∑

j A(i, j)
xj

∑

i A(i, j)
+

1− αP

N

weighted clustering coefficient

cwi =
1

(CD
i − 1)

∑

j aijwij

∑

j,h

(wij + wih)

2
aijaihajh

C
lu

s
te

rs hierarchical clusters
network-constrained clusters

network modularity

Measures of Network Complexity. To evaluate the complexity of the random Voronoi

networks and random Delaunay networks we use the following measures that capture

the random, scale-free, and small-world features of complex networks: average degree,

average path length, weighted clustering coefficient, proximity ratio, global efficiency, and

power law (see Table 2.A2 for the mathematical formulations of these characteristics).

General measures of connectivity and network topology (for connected graphs) include

the mean degree and the average path length, which refers to the average number of

edges within the shortest path for all pairs of nodes in a network (Albert and Barabási,

2002). The weighted clustering coefficient of a node is the ratio of the node degree and

the total number of possible edges for a node in the network (Luce and Perry, 1949). The

global version of this measure is the average of the node weighted clustering coefficients

and provides an estimate of small-world-ness (Watts and Strogatz, 1998). The proximity

ratio is the ratio of the following ratios: (i) the average weighted clustering coefficient

and the average path length and (ii) the average weighted clustering coefficient for a
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completely random network of the same size and the average path length for that random

network of the same size. This provides a measure of the small-world-ness of networks,

with S = 1 for random networks and S ≫ 1 for small-world networks (Walsh, 1999).

Another measure of small-world-ness is average efficiency which is the average of the

inverses of the network’s shortest paths and captures the network’s ability to exchange

information between nodes (Latora and Marchiori, 2001). If the degree distribution of the

nodes follows a power law, then the network is said to be scale-free, i.e. random with

some highly connected nodes (Barabási and Albert, 1999).

Table 2.A2: The measures used to evaluate network complexity.

Measures of network complexity

mean degree average path length

CD =

∑

i C
D
i

N
L =

1

N(N − 1)

∑

i

∑

j>i d(i, j)

weighted clustering coefficient proximity ratio

C =
1

N

∑

i c
w
i S =

C/L

Cr/Lr

power law global efficiency

P (n) ≈ n−γ EG =
E

Er

, E =
1

N(N − 1)

∑

i

∑

j>i

1

d(i, j)

Table 2.A3: The average characteristics of 1000 random Delaunay and Voronoi networks.

Delaunay Voronoi

N 500 1000 2000 500 1000 2000

CD 4.708 5.392 5.208 2.840 2.900 2.938
L 9 12 17 21 29 40

C 0.003 0.003 0.003 0.006 0.003 0.003
S 1.005 0.991 0.980 0.845 0.091 0.089
γ 1.667 1.800 3.000 837 1784 1907
EG 0.0724 0.0523 0.0385 0.0328 0.0238 0.0177
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Figure 2.A2: The termination times for the heuristics applied to the random networks:
(a) Erdös-Rényi networks, (b) Watts-Strogatz networks, (c) Barabási and Albert net-
works, and (d) Klemm and Eguı́lez networks, (e) Delaunay networks, and (f) Voronoi
networks. These are average times for 1000 random restarts for optimization applied to
1000 random network of each type and size. The times are scaled by the exhaustive
search time and log transformed for easier interpretation.
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Table 2.A4: The network characteristics of the street networks around the schools used
for the study. The average weighted clustering coefficient C was not calculated since
triplets were uncommon in these networks and neither was the proximity ratio S since it
depends on C.

Suburban school network Rural school network
Elementary Middle Elementary

SE(1) SE(2) SE(3) SM(1) SM(2) SM(3) RE(1) RE(2) RE(3) RE(4)

N 3952 4222 5149 7750 4895 8059 1727 2160 1539 1996
NC 1772 1807 1077 4614 1198 2210 416 330 363 735
ND 2180 2415 4072 3136 3697 5849 1311 1830 1176 1261
LF 50 96 194 110 43 103 51 95 50 52

CD 2 2 2 2 2 2 2 2 2 2
L 80 133 183 135 72 123 77 88 71 82
γ 1179 1300 1604 2353 1432 2427 761 967 679 891
EG 0.0060 0.0060 0.0045 0.0052 0.0074 0.0056 0.0078 0.0080 0.0104 0.0092

Table 2.A5: The random network parameters and values used for the analysis. Following
Barabási and Albert (1999), the degree of new nodes for the Barabási and Albert graphs
were equal to the initial network size (m = m0).

Parameter Description Values

N Number of nodes 500, 1000, 2000
Erdös-Rényi graphs p connection probability 0.01
Watts-Strogatz graphs pW rewiring probability 0.01

kL initial node degree 10
Barabási and Albert graphs m0 connected network size 10

m degree of new nodes m0
Klemm and Eguı́lez graphs m0 connected network size 10

pS node selection probability 0.1
p connection probability 0.01

Delaunay random graphs pR edge removal probability 0.1
Voronoi random graphs pR edge removal probability 0.1
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Optimization Algorithms

ALGORITHM 2.1

Exhaustive search pseudocode

for i in ND do ⊲ Select a distant node.
for j in NC do ⊲ Select each close node.

if d(i, j) + d(j, S) < D then ⊲ If node will be within the distance.
C(i, j) = d(i, j) ⊲ Calculate the cost of the connection, i.e. the length.
for k in ND do ⊲ Select each distant node.

if d(k, i) + d(i, j) + d(j, S) < D then ⊲ Calculate the distance to the focal node.
k ∈ N ′

C
⊲ If node is within the distance assign it to the new close set.

end if

end for
B(i, j) = |N ′

C
| ⊲ Calculate the number of new close nodes.

end if

end for

end for
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Figure 2.A3: The cost and benefit deviations for the heuristics applied to the random
networks: (a) Erdös-Rényi networks, (b) Watts-Strogatz networks, (c) Barabási and Al-
bert networks, and (d) Klemm and Eguı́lez networks, (e) Delaunay networks, and (f)
Voronoi networks. Each point represents the results for a given method and network
size (N = 500, 1000, 2000). The costs and benefits were scaled by the results from the
exhaustive search, where a longer connection length is a positive cost deviation and a
shorter connection is a negative cost deviation. These are average times for 1000 random
restarts for optimization applied to 1000 random network of each type and size.
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ALGORITHM 2.2

Hill climbing

randomly select i from ND

randomly select j from NC

C(i, j) = d(i, j)
for k in ND do

if d(k, i) + d(i, j) + d(j, F ) < D then

k ∈ N ′
C

end if

end for

B(i, j) = |N ′
C |

O0 = αC(i, j) + βB(i, j)
t = 1
while Ot 6= Ot−1 do

ND
i = neighbors of i in ND

NC
j = neighbors of j in NC

for m in ND
i do

for n in NC
j do

C(m,n) = d(m,n)
for k in ND do

if d(k,m) + d(m,n) + d(n, F ) < D then

k ∈ N ′
C

end if

end for

B(m,n) = |N ′
C |

end for

end for

Ot = max(m,n)(αC(m,n) + βB(m,n))
t = t+ 1

end while
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ALGORITHM 2.3

Stochastic hill climbing

randomly select i from ND

randomly select j from NC

C(i, j) = d(i, j)
for k in ND do

if d(k, i) + d(i, j) + d(j, F ) < D then

k ∈ N ′
C

end if

end for

B(i, j) = |N ′
C |

O0 = αC(i, j) + βB(i, j)
t = 1
while Ot 6= Ot−1 do

ND
i = neighbors of i in ND

NC
j = neighbors of j in NC

for m in ND
i do

for n in NC
j do

C(m,n) = d(m,n)
for k in ND do

if d(k,m) + d(m,n) + d(n, F ) < D then

k ∈ N ′
C

end if

end for

B(m,n) = |N ′
C |

end for

end for

Ot = αC(i, j) + βB(i, j) with probability(i, j) =
αC(i, j) + βB(i, j)

∑

(m,n)(αC(m,n) + βB(m,n))
t = t+ 1

end while
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ALGORITHM 2.4

Hill climbing with a variable neighborhood

set nmax

randomly select i from ND

randomly select j from NC

C(i, j) = d(i, j)
for k in ND do

if d(k, i) + d(i, j) + d(j, F ) < D then

k ∈ N ′
C

end if

end for

B(i, j) = |N ′
C |

O0 = αC(i, j) + βB(i, j)
η = 1
t = 1
while η < ηmax do

ND
i = neighbors of i in ND

NC
j = neighbors of j in NC

for m in ND
i do

for n in NC
j do

C(m,n) = d(m,n)
for k in ND do

if d(k,m) + d(m,n) + d(n, F ) < D then

k ∈ N ′
C

end if

end for

B(m,n) = |N ′
C |

end for

end for

Ot = max(m,n)(αC(m,n) + βB(m,n))
if Ot > Ot−1 then

η = 1
else

η = η + 1
end if

t = t+ 1
end while
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ALGORITHM 2.5

Simulated annealing

randomly select i from ND

randomly select j from NC

C(i, j) = d(i, j)
for k in ND do

if d(k, i) + d(i, j) + d(j, F ) < D then

k ∈ N ′
C

end if

end for

B(i, j) = |N ′
C |

O0 = αC(i, j) + βB(i, j)
t = 1
while Ot 6= Ot−1 do

ND
i = neighbors of i in ND

NC
j = neighbors of j in NC

for m in ND
i do

for n in NC
j do

C(m,n) = d(m,n)
for k in ND do

if d(k,m) + d(m,n) + d(n, F ) < D then

k ∈ N ′
C

end if

end for

B(m,n) = |N ′
C |

O(m,n) = αC(m,n) + βB(m,n)
end for

end for

if max(m,n) O(m,n) > Ot−1 then

Ot = O(m,n)
else

Ot = O(m,n) with probability(m,n) = exp

(

−
Ot−1 −O(m,n)

t

)

end if

t = t+ 1
end while

68



ALGORITHM 2.6

Genetic algorithm

µ = mutation rate
s = selection coefficient
P = randomly selected population
Chromosome(i) = (1...1)
Chromosome(j) = (1...1)
for (i, j) in P do

C(i, j) = d(i, j)
for k in ND do

if d(k, i) + d(i, j) + d(j, F ) < D then

k ∈ N ′
C

end if

end for

B(i, j) = |N ′
C |

O(i, j)0 = αC(i, j) + βB(i, j)
end for

t = 1
while max(i,j) O(i, j)t 6= max(i,j) O(i, j)t−1 do

f(i, j) =
O(i, j)

∑

(i,j) O(i, j)

populate P with (i, j) with probability(i, j) =
s ∗ f(i, j) + (1− s)

∑

(m,n)(s ∗ f(m,n) + (1− s))

for k in P do

for ℓ in chromosome(k) do

if random number ≤ µ then

gene(k)ℓ = gene(k)ℓ + 1
end if

end for

end for

for (i, j) in P do

randomly select m from ND
i with probability gene(i)m/

∑

k gene(i)k
randomly select n from NC

j with probability gene(j)n/
∑

k gene(j)k
C(m,n) = d(m,n)
for k in ND do

if d(k,m) + d(m,n) + d(n, F ) < D then

k ∈ N ′
C

end if

end for

B(m,n) = |N ′
C |

O(m,n)t = αC(m,n) + βB(m,n)
end for

t = t+ 1
end while
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Chapter 3

Small Changes in Street Connectivity

can Result in Big Gains for Student

Walking
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Abstract

Student active commuting to school is an important component to student achievement

and student health. Increasing street and trail connectivity between residential develop-

ments and schools is a key to fostering student active commuting. This study conducts

a cost-benefit analysis of increased connectivity around schools. Benefits, which include

potential cost-savings to a school system if they had fewer students to bus to school, in-

creased student walking, and the reduction in health-care costs of fewer obese students,

are compared to the financial costs of the new connections. Advanced network optimiza-

tion techniques were applied to several urban and suburban schools from a U.S. school

system to locate the optimal new connections that maximize student walking to a school.

Results from this representative case study showed that short connections could lead to a

large increase of potential student active commuters. This work can inform city planners,

housing developers, and school officials on the impact of greater connectivity for student

active commuting and residential development.
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Introduction

School Active Commuting: Importance and Recent Decline in the

U.S.

Physical activity is a valuable component of childhood development. A meta-analysis of

the literature on student physical activity and academic achievement in the U.S. found a

positive relationship between the two regardless of socioeconomics, demographics, ge-

ography, and school characteristics (Centers for Disease Control and Prevention, 2010).

Increased physical activity has also been correlated with higher attendance rates and

fewer disciplinary incidents (Welk, 2009). Children who actively commute to school, by

walking or biking, tend to be more active outside of this commuting (Sirard and Slater,

2008, Lubans et al., 2011). This is important because the lack of physical activity is

one of the primary contributors of childhood obesity (Robert Wood Johnson Foundation,

2009) and active commuting to school has been shown to be inversely associated with

body mass index (Mendoza et al., 2011, Turrell et al., 2018).

Yet, there has been a rapid decline in physical activity reported for U.S. children (Nader

et al., 2008) and active commuting to school (McDonald, 2007, Pedestrian and Bicycle In-

formation Center, 2010, The National Center for Safe Routes to School, 2016). Parents

have reported several that have contributed to this decline: the distance between home

and school; the perception of possible violence or crime along the route; the speed and

volume of traffic along the route; and poor weather or climate in the area; (Pedestrian

and Bicycle Information Center, 2010, McDonald and Aalborg, 2009, Centers for Dise-

ase Control and Prevention, 2005, Mendoza et al., 2014). School systems also impose

barriers to active commuting, often because of liability concerns (Chriqui et al., 2012).

School site design and location often make active transportation difficult. Since the

1970s, school systems have increasingly constructed larger schools on larger tracts of
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land, often in rural areas further from population centers. One reason is an attempt to

reduce construction and operating costs. Another is the imposition of national minimum-

acreage standards, which are still adhered to in many places, even though they are no

longer in place. In Knox County, TN, for example, the average acreage of elementary

schools jumped from 8.5 acres (for schools built prior to 1977) to 24.5 acres (for schools

built since then). There’s a trend toward larger schools nationally as well, with the number

of schools dropping from 262,000 in 1930 to 95,000 in 2004, while the student population

has increased from 28M to 54.5M (Office of Children’s Health Protection, 2011). School

systems additionally find zoning ordinances limit their site selection choices.

School location is an important factor affecting student active commuting. Clarence

Perry’s Neighborhood Unit Plan advocated for a centrally located school to promote stu-

dent walking (Perry, 1929). More centrally located schools have more student walking or

biking, even after controlling for other neighborhood characteristics (Kim and Lee, 2016).

Yet, active commuting for students is usually not considered part of the school location

planning, as site acreage, and building costs are the top priorities.1 Residential neighbor-

hood developers are incentivized to minimize street connectivity in order to maximize the

number of buildable lots, especially lots on cul-de-sacs, which are often popular with buy-

ers because they are low-traffic streets, while the connectivity of the built environment has

been found to be positively correlated with student active commuting as it contributes to

a shorter distance between school and home (Babey et al., 2009, Bungum et al., 2009,

Larsen et al., 2009).

The design of school sites also contributes to the lack of walkability, especially re-

quirements that schools be single-story, and the provision of ample parking and driving

spaces on school sites, but often not sidewalks. These siting and design factors contri-

bute to urban sprawl and to greater distances between student homes and schools, and

when coupled with a lack of sidewalks and bike paths greatly reduce student opportunities

1From personal communication with Knox County employees.
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for active commuting (Kouri, 1999). As expected, neighborhood walkability and distance

between home and school has been shown to be negatively correlated with childhood

obesity (Spence et al., 2008, Grafova, 2008, Oreskovic et al., 2009). Due to school site

selection in Knox County, from the 2013-14 school year to the 2017-18 school year, the

number of students who lived outside the walking distance increased by approximately

6,000 (Transportation Consultants, 2014, Knox County Board of Education, 2018).

This decline in active commuting to schools leads to increased traffic from private dri-

ving and school busing, which accounts for 10-14% of morning rush-hour traffic (McDo-

nald et al., 2011), and increased pollution. The additional traffic also intensifies parental

safety concerns related to traffic and student active commuting. Still, the number of child-

ren killed and injured while walking or biking is dwarfed by the increasing rate of vehicle

crashes, which are the leading cause of death among school-age children (National Cen-

ter for Statistics and Analysis, 2016). This decrease in active commuting also imposes

a considerable cost on school systems with increased costs related to purchasing and

maintaining buses, hiring drivers (an occupation with a high turnover rate), and fuel and

insurance expenditures (DeNisco, 2015). A study of school administrators found that

addressing the perceived safety concerns and increasing the number of sidewalks can

increase active travel to schools (Price et al., 2011), and one the key elements of the

National Center for Safe Routes to School is transportation planning approaches to ens-

ure safe active commuting opportunities (The National Center for Safe Routes to School,

2016).

School Active Commuting Policy Case Study

The Knox County School (KCS) public school system serves 60,000 students in and sur-

rounding Knoxville, Tennessee, with 89 schools and 337 buses. KCS has an established

policy to determine if a student is eligible for transportation by a bus, based on each stu-

dent’s residence location in relation to their school (Knox County Schools Transportation
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Department, 2009). A student is inside the Parental Responsibility Zone (PRZ) – and

ineligible for busing – if the distance from the student’s residence to the drop-off location

of the student’s zoned school is less than 1 mile (for elementary students) or less than 1.5

miles (for secondary students), based upon the existing street network.

A report by the Knox County Department of Engineering and Public Works identified

22,322 students who live within a PRZ, a figure equal to 37.6% of the total number of

students in the school district (Transportation Consultants, 2014). The report calculated

the likelihood of each student walking to school based on the distance from home to

school, and predicted that there were 7,434 potential daily walk trips, if there were good

conditions for walking. More than 30% of those predicted walk trips originated outside

the PRZ. Therefore, KCS is responsible for busing large numbers of students to school

who could potentially be within active transportation distance, which places a significant

financial burden on the school district.

In addition to distance, poorly connected street networks may pose a barrier to stu-

dents walking or bicycling to school. An analysis conducted by the authors of this study

found many Knox County schools sited near neighborhoods with street networks that have

few intersections or frequent dead-ends (cul-de-sacs), i.e. neighborhoods with low street

connectivity. As such, the network PRZs fail to capture many residences that are close to

the school “as the crow flies,” that is, the straight-line or “Euclidean distance” (see Figure

3.1).

Scope of Research

The purpose of this study is to estimate the potential benefits of policies that would lead to

larger PRZs around new and existing schools as new neighborhoods are built with greater

street connectivity. In order to do that, it models how existing PRZs could be expanded

via greater street connectivity in a way that would capture more households and students.

Several potential benefits may result from this research. First, the study will examine

75



Figure 3.1: The left figure provides an example of residential parcels (orange circles)
within the Euclidean PRZ distance (blue dashed line) of the school (blue square) but
not within the network PRZ distance. The residential parcels within the network PRZ
distance are represented by green circles and the residences outside of the Euclidean
PRZ distance are the red circles. In the right figure the dashed line depicts the optimal
new connection that maximizes the number of residences now within the network PRZ
distance and minimizes the length of the connection.

the potential cost-savings to the Knox County Schools if they had to provide busing for

a smaller proportion of students. Second, it will look at the expected health impact to

students (e.g., increased physical activity) by increasing the chance that they will walk

or bike to school. Third, the reduction of health costs from reduced obesity prevalence.

Fourth, an analysis of subdivision trails (greenways) to explore how modifying the PRZ

school policy include these types of connections increases the above benefits. Currently,

KCS does not consider greenways or trails as walkable thoroughfares.

Combinatorial optimization techniques were employed to identify and evaluate new

street connections, expanding on optimization approaches used for greenway planning

and bus stop locations (Linehan et al., 1995, Ibeas et al., 2010, Delmelle et al., 2012).

These techniques were utilized with data provided by the Knoxville-Knox County Metro-

politan Planning Commission (MPC) to identify the lengths and economic costs of the new

streets and trails, and the benefits of these additional connections, specifically the number
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of additional residences within the walking distance to a school, the increased physical

activity of the additional students who can actively commute, and the possible reduction of

health care costs related to childhood obesity. Results from this work will be shared with

Knox County planners and other decision-makers with the intent of making them aware of

the costs imposed by lack of street connectivity in neighborhoods (Thaler and Sunstein,

2008). Results from this work could also influence planners to consider street connectivity

and student active commuting when siting schools. Furthermore, these results could also

start the dialogue of allowing greenways to be included as student commuting paths for

school systems that currently do not consider them as permitted thoroughfares for student

active commuting. The presence of greenways near residences have shown to increase

property values (Nichols and Crompton, 2005) as prospective home buyers are willing to

pay more for a home in a walkable neighborhood (Knoxville Area Association of Realtors,

2017). Finally, after optimal connections are computationally identified, residents should

be involved with the design of their future communities (Forester, 1999).

Methods

Data

Since student residences for a given school can change over the course of the year and

from year to year, as students enroll, graduate, or move, we used residential parcels as

the proxy for student residence locations. Data about residential parcel locations and

types, such as single-family residence or multi-family residence, were provided by MPC,

which is the GIS administrator for Knoxville, Knox County, and the Knoxville Utilities Board.

MPC has also provided the average number of students for residential parcel types in the

study area, which was used to estimate the number of students that would be affected by

changes in street connectivity. MPC has also supplied the number of students for each

school in Knox County, the number of students within each school’s PRZ, and the number
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of students that are within the PRZ and network distance to their respective school. The

data was collected in 2017 and engineered according to the methods provided in the

Supplementary Material.

Figure 3.2: Map of the study area with the Euclidean PRZ distance shown for each school
selected for analysis. Elementary schools have a 1-mile Euclidean PRZ distance and
middle schools have a 1.5-mile Euclidean PRZ distance.

School Selection and Optimal Location of Connections

To identify schools that would benefit most from additional street connectivity, we develo-

ped a metric for a school’s PRZ distance disparity. PRZ distance disparity is the difference

between the number of students in the Euclidean PRZ distance and the number of stu-

dents in the network PRZ. A large proportion of students within both the Euclidean PRZ
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distance and the network PRZ is associated with an environment that has high street

connectivity, typically urban. A large proportion of students within the Euclidean PRZ

distance with and a low proportion in the network PRZ is indicative of a built-up yet low-

connectivity environment, typically suburban. Low proportions in both the Euclidean PRZ

distance and the actual PRZ is associated with a low-density, typically rural, environment.

The ten schools with the largest PRZ distance disparity were selected for the analysis

in this study (see Figure 3.3). These ten schools were from suburban and rural envi-

ronments, as urban schools already had large proportions of students within the network

PRZs and therefore low PRZ distance disparity. An exhaustive search of all possible con-

nections between all residences and street intersections was conducted for each of the

ten schools (see Algorithm 3.1 in the Appendix for the optimization algorithm pseudocode

and Chapter 2 for optimization heuristics that can reduce the computational costs for large

networks).
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Figure 3.3: PRZ distance disparity for Knox County schools. The ten schools with highest
PRZ distance disparity, i.e. the number of students who could walk if there was additional
street and trail connections, are labeled and selected for analysis.
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Energy Expenditure

To estimate the health benefit of potential new street and trail connections, the number of

additional residences within the PRZ were converted to the number of potential students

who could walk or bike to school. The total benefit was calculated by taking this number of

students and multiplying it by the estimated duration of the physical activity. The average

U.S. student who walks to school acquires 16 minutes of moderate-intensity activity and

they walk at a rate of 71.7 meters per minute Crouter et al. (2013). Assuming a linear

relationship between distance walked and walking time, it would take an average student

22.5 minutes to walk 1 mile, and this rate was used to calculate the walking benefit for the

students along the optimal connection for each school evaluated. These times of physical

activity can be converted to the metabolic equivalent of task to compare active commuting

to other forms of exercise (Bassett et al., 2013, Basset, 2013).

Busing Costs

Knox County Schools contracts for 337 passenger buses with each bus having the capa-

city to carry either 65 or 90 passengers. Assuming that each bus completes approximately

four runs per day, KCS pays its bus contractors daily rates of $219.03 and $259.85, re-

spectively. 2 However, if a bus travels more than 52 miles a day, there is an overmile

charge of $0.01 for each additional mile with the school system subsidizing fuel costs if

gasoline costs more than $2.80 per gallon at that point in time. Afternoon ridership is typi-

cally greater than morning, when parents are more likely to drive students. There is also

joint ridership for several different schools, for example students at a nearby elementary

school and middle school may share a bus trip.

Busing costs for Knox County Schools are increasing. The proposed budget for fiscal

year 2019 includes an increase of $1.9 million for busing costs (Knox County Board of

2Busing rates and over-mile charges were collected during an interview with a Knox County School
official.
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Education, 2018). $1 million of that proposed increase is to pay to contractors. The

remaining increase is to serve additional routes and new schools set to open in the 2018-

19 school year. KCS has also raised its standards for bus contractors following a crash of

two school buses in 2014 that resulted in the deaths of two students and a teacher’s aide.

Officials describe finding enough bus operators as an “everyday struggle,” because of the

more stringent requirements on bus operators at both the state and local level (Deese,

2018).

Health Economics

According to 2016 data, in the U.S. 1 in 5 school-age children are obese (Hales et al.,

2017). Obese children ages 2-19 in the United States were found to stay on average

0.85 days longer for hospital treatment, incur $2000 additional charges, and $925 more in

hospital costs than non-obese children (in 2017 dollars) (Trasande et al., 2009). Further-

more, obese children incurred $210 in higher outpatient visit expenditures, $124 higher

prescription drug expenditures, and $13 higher emergency room expenditures (Trasande

and Chatterjee, 2012). There were approximately 73.8 million children under the age of

18 in the United States in 2017 (United States Census Bureau, 2016) and children were

hospitalized in the U.S. at a rate of 0.0014 in 2012 (Witt et al., 2014). Assuming obese

children were hospitalized a this rate, it is estimated that the hospital treatments of obese

children in 2017 resulted in $40 million dollars in additional hospital costs and $20 million

in additional charges.

Connection Costs

The financial costs of streets and greenways per mile for Knox County are $1M and

$500K, respectively. This is a very general cost and does not include site-specific en-

gineering requirements (such as bridges) and land costs, which vary widely. The cost for

residential developers is approximately half a million per mile, excluding ROW, crossing
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water/wetlands, and major topography (Bushell et al., 2013).

Results

The location of the optimal connections are given in Figure 3.4 and Supplementary Fi-

gure 3.A1. Results for the costs and benefits were calculated by taking the average of

1,000 random samples, using the proportion of student per residence, of the new resi-

dences from the optimal connection solution for each school. The length of the optimal

connection, the number of residences and students included in the network PRZ with the

new connection, and the total time spent walking to and from the school for these students

are provided in Table 3.1.

Figure 3.4: Optimal connection results for a rural elementary school (left) and a subur-
ban elementary school (right). The black square represents the school, and grey lines
indicate streets. Dark green points are residences within the network PRZ distance, blue
points signify residences not within the network PRZ distance and orange points are the
residences that are within the Euclidean PRZ distance after the new connection is made,
denoted by the orange line.
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Table 3.1: Active commuting characteristics and optimal results for the ten schools with the greatest walking potential.
Schools denoted with an ∗ are located in a suburban area, otherwise the school is located in a rural area. Standard
deviations for the optimal walking times are given in the parentheses.

Proportion students within walking # distant students/ Optimal Optimal Optimal Optimal

School Network PRZ Euclidean PRZ potential residences residence # residences length (ft) # students walking (m)

E
le

m
e

n
ta

ry

A∗ 0.11 0.28 292 1680 0.17 453 3704 77 2936 (30)

B 0.01 0.03 239 1035 0.23 137 3891 32 1308 (16)

C 0.05 0.18 228 1173 0.19 203 3613 39 1536 (24)

D∗ 0.41 0.53 220 1911 0.12 255 3133 31 1168 (26)

E 0.06 0.19 210 1154 0.18 287 3307 52 2008 (30)

F 0.08 0.35 173 1120 0.15 287 2907 43 1502 (32)

G∗ 0.20 0.31 171 1027 0.17 703 602 120 4220 (76)

M
id

d
le H∗ 0.10 0.29 316 2033 0.13 940 3260 122 6452 (112)

I 0.04 0.17 269 1058 0.25 464 3554 116 5994 (100)

J∗ 0.29 0.45 209 4246 0.05 381 5027 19 1104 (28)



Discussion

The results show that even the addition of short street or trail segments can greatly incre-

ase the number of residences within the PRZ of a school. These additional residences

now within the PRZ increase the potential number of students who could actively com-

mute to school, and commuting is positively correlated with improved health and educa-

tion achievement. Planners and other decision-makers can use this result to increase

their awareness about the costs, to families and to school systems, imposed by the lack

of street connectivity in new neighborhoods. Another way to reduce busing costs is to

stagger bell times for different school, which Knox County Schools does not do, which

would reduce the number of vehicles and drivers needed.

Limitations

There are several issues with the current analysis. First, the study area is limited to one

U.S. county, and to make these results more robust, the networks for schools in additio-

nal study areas should be evaluated. Second, residences may be placed on the nearest

street but that may not be the street they are physically located on. The error rate for

this occurring is small for this study area but could vary for different study areas. Third,

restrictions on the locations of new streets and trails need to be included. For example,

streets and trails cannot be built on slopes beyond a specific threshold, and it may be

cost-prohibitive or impossible to route them through specific parcel types (such as com-

mercial areas, mining sites and landfills) or highways. Fourth, solutions are dependent on

the location of nodes at every parcel and intersection. This can lead to large sparse areas

of possible connectivity and should be corrected with the placement of artificial nodes at

regular intervals. Fifth, the issue that newly constructed connections can intersect existing

streets (planarity) was not resolved in this study. Calculating the determinants for each

pair of lines is computationally expensive. To counter this, a coloring scheme where each
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region of the space segmented by edges is classified as a unique color has been propo-

sed. Every node is labeled with the colors its edges touch. A new connection can only be

established between nodes that share a color. This would be used to reduce the set of

lines needed to calculate the determinants for. Lastly, due to the limitations of shapefiles,

it is recommended that government agencies move away from their dependence on them

for spatial data. There are several emerging data formats, such as OGC GeoPackage

and GeoJSON, that are robust and free.

Conclusions

Knox County, TN, like many other places in the U.S., has one group that make decisions

about school policies, such as siting and busing (the KCS School Board), and another

that makes decisions about the design of new neighborhoods and other developments

(the MPC). Those groups may not always be aware of how decisions they make affect

each other. This paper attempts to describe and quantify the ways in which decisions

made by the MPC – specifically about street connectivity in developments near schools –

can impose additional costs on Knox County Schools, in the form of the need to provide

more busing. Reduced street connectivity around schools also imposes costs on families

and on children themselves, in the form of less opportunity for physical activity, potentially

lower academic achievement, and increased risk of obesity and other health problems.

It would be in the best interest of KCS to request that the MPC take into account the

impact that low street connectivity around schools has on busing costs. It is probably

too late to remedy the low street connectivity around the schools examined in this paper,

because of cost and likely neighborhood opposition. But the key finding of this paper –

that short connections can vastly increase connectivity and walkability around schools,

while decreasing future busing and health costs – should inform future decision-making

about neighborhood design around schools with the goal of reducing costs and improving
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students’ health and academic achievement. An expanded working relationship between

MPC and KCS may eventually lead to additional opportunities to collaborate toward cost

savings, such as better coordination of school siting with other land use goals for Knox

County.

Future directions for this work include the optimization of school bus drop-off points

and allowing for multiple connections to be evaluated simultaneously, a significant nontri-

vial extension. Once these additions have been added, including the solution to the pla-

narity issue, a tool should be developed for planners in Python for ArcGIS. MPC provided

socioeconomic data at the parcel level that could be used to identify inequalities in active

commuting, such as car ownership, rental identification, household income, and free lunch

eligibility. An evaluation of student walking in the context of their socioeconomic status

should also be conducted to determine if there are inequalities in active commuting and

how they should be addressed (Althoff et al., 2017).
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Appendix

Additional Results

Figure 3.A1: Optimal connection results for the ten schools. The black square represents
the school, grey lines indicate streets, dark green points are residences within the network
PRZ distance, blue points signify residences not within the network PRZ distance, and
orange points are the residences now within the network PRZ distance after the new
connection is made, denoted by the orange line.

Data Engineering

The spatial data provided by KGIS was in shapefiles, which are commonly used by go-

vernment agencies but have significant limitations for analysis. The data cleaning and

processing methods described below are provided for planners and researchers to use

for their own systems (see Karduni et al. (2016) and Oliver et al. (2007) for additional

useful methods to process shapefile data for network analysis).

To identify optimal connections a network approach is used and the data was conver-

ted to a network with nodes at residences and street intersections and the streets were

converted to edges. To accomplish this data transformation, in ArcMap (version 10.6):

1. buffers were created around each school (1 mile for elementary schools and 1.5

miles for middle schools).
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2. street edge and street intersection node development:

(a) street data outside of the school buffer were removed (using the clip tool),

(b) highways were removed, as students will not use them for active commuting,

(c) streets part of the school property were also removed (as schools do not want

direct connections),

(d) nodes at the street intersections were created and labeled as intersections,

i. points at the street intersections were created (intersect tool with output

type point),

ii. two numeric fields were added to this layer using a field type DOUBLE to

ensure maximum precision and the spatial coordinates were identified for

the street intersection points (calculate geometry),

iii. ArcGIS creates these intersections as multipoint geometries (coinciding

with the number of streets that meet at the intersection), therefore these

intersections were converted to single points (feature to point tool)

iv. the identical intersection points were removed by their coordinates (delete

identical tool),

v. a numeric field was added to this layer and all street intersection points

were given a value of 0,

3. residential node development3:

(a) residential parcels outside of the school buffer were removed (using the clip

tool),

(b) vacant residential lots were removed (select by attributes),

(c) nodes at the street intersections were created and labeled as intersections,

3Apartments were already divided into separate single family residence points. If this is not the case
then apartments should be labeled with the number of units for the optimization method to consider when
calculating the benefit of the new connections.
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i. the nearest street location was identified for each residence (the near tool),

ii. the attributes of these points were converted to a database table (output

attribute as .dbf),

iii. these residential coordinates plotted and saved as a layer (display XY data

with the Near X and Near Y coordinates),

iv. a numeric field was added to the layer and all residential points were given

a value of 1,

4. a school node was placed at the nearest street intersection and labeled,

5. the street intersection point data, the school point, and the residential point data

were merged (merge tool) with the following important fields kept: (1) X-coordinate,

(ii) Y-coordinate, and (iii) node type and exported as a text file,

6. the street polylines were cut at each residential and intersection point (split line

at point tool). A search radius of 100 ft was used to offset any residential nodes

that were not exactly on a street and this also provides additional solutions for the

optimization method.

Due to the limitations of ArcGIS, for example the inability of the software to produce a

network connectivity matrix (which is an extremely useful mathematical representation),

the cut street data files were imported into Python and the NetworkX package (version

2.1) was used to produced adjacency (connectivity) matrices (Hagberg, 2017). These

adjacency matrices and the node data (school, residence, intersection) were imported

into MATLAB (version 9.3 R2017b) for the optimization routines. Note, the street cutting

process mentioned above (step 6) also creates nodes at the end of streets and these are

considered as intersections for the purpose of the analysis. Network distances between

all nodes were calculated and nodes were labeled as close or distant distant based on

the walking network distance.
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Optimal Connection Search Algorithm

To find the optimal connection that maximizes the number of residences within the network

PRZ, exhaustive search optimization algorithms were performed in MATLAB (version 9.3

R2017b, see Algorithm 3.1). The exhaustive search optimization routine creates an edge

for every combination of distant and close nodes and evaluates the cost of the new con-

nection, i.e. the length of the new connection, and the benefit of the new connection, i.e.

the number of residences that are now within the network PRZ. Note we parallelize the

optimization routine as finding all of the solutions for large networks is computationally

expensive (thousands of nodes results in millions of possible connections to evaluate).

Heuristics have been developed to find near-optimal solutions when the exhaustive se-

arch is not feasible (See Chapter 2).

ALGORITHM 3.1

Exhaustive search pseudocode

for i in ND do ⊲ Select a distant node.
for j in NC do ⊲ Select a close node.

if d(i, j) + d(j, S) < D then ⊲ If node is within the PRZ.
C(i, j) = d(i, j) ⊲ Calculate the distance of the new connection.
for k in ND do ⊲ Select each distant residence.

if d(k, i) + d(i, j) + d(j, S) < D then ⊲ Calculate the distance to the school.
k ∈ N ′

C
⊲ If residence is within PRZ, then assign it to the new close set.

end if

end for
B(i, j) = |N ′

C
| ⊲ Calculate the number of new close residences.

end if

end for
end for

For the optimization algorithm, the network distance between two nodes is given by

d(i, j), and if the distance between a node and the school node (S) is less than the PRZ

distance, d(i, S) < D (1 mile for elementary schools and 1.5 miles for middle schools)

then the node i is assigned to the set of close nodes (ND), otherwise it is assigned to the

distant set (ND). After a new connection is established, the nodes that are now within the

network PRZ distance are assigned to the set N ′
C . The cost of the new connection is the
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connection length, C(i, j) = d(i, j), and the benefit of this new connection B(i, j) is the

number of additional residences now within the PRZ, i.e. B(i, j) = |N ′
C | minus the number

of nonresidential nodes. The optimal solution is the solution with the greatest benefit, or

number of new residences now within the distance to the school, which can be expressed

as the bi-objective function

O∗ = max
(i,j)

(B(i, j) + αC(i, j)),

where α = ∞ and implies the objective is only to minimize costs for the same benefit.
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Conclusion

This dissertation provided several methods to address issues in transportation planning

using network theory approaches. Each chapter explored a different question where un-

derstanding the geography of the system was paramount and viewing these spatial sys-

tems as networks shed new light on how to understand them.

Traditional measures appear to not be enough to evaluate the robustness of transit

networks and other multi-line systems. By redefining network components and beginning

the development of new indexes in chapter 1 we can begin to capture some of the in-

formation previously lost in these multi-line systems and identify differences in network

criticality. These new measures appear to be consistent in their response and highly cor-

related to the existence of additional lines in a network and provide additional information

about the system’s tradeoff between a resilient structure and one that attempts to cover

the geography of demands. These new indexes can be applied to categorizing networks

and have the same range of values, both important characteristics for measuring the ro-

bustness of transportation systems.

Rail systems are recognized as the major public transit networks of US major me-

tro areas as they provide high-speed mobility for passengers with separate rights-of-way

from which all other vehicular and foot traffic are excluded. Measuring robustness and

assessing the system resilience are critical concerns as the portion of service for riders-

hip is considerably increasing in highly dense urban areas. By using our measures, we

can help decision makers and transportation planners prioritize the protection or main-

tenance of stations, not based on a simple but monotonic traditional approach, but our

comprehensive approach.

There are several avenues for future work in this area including disruption scenarios

and their impact on the indexes. Extending these global measures for systems with di-

rected graphs and circuits should also be considered. Once the robustness measures
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mentioned in Ellens and Kooij (2013) and established Laplacian techniques are applied

to multi-line matrices and their F -matrices, results can be compared with the findings

presented in this work. Another extension is developing additional local measures for

robustness, centrality, and connectivity in multi-line networks using network spatial partiti-

oning (Ji and Geroliminis, 2012). Finally, these new indexes can also provide novel ways

to look at distance based matrices, resilience simulations, and longitudinal analysis.

The network connectivity problem introduced in chapter 2 is relevant to a wide range

of applications and is nontrivial as the number of solutions can become large even for

small systems. This type of combinatorial optimization problem highlights the difficulty

in determining local search routines a priori. The nodal characteristics were nonlinearly

related to the solutions while different characteristics varied in their correlation with so-

lution quality for different networks making it difficult to exclude specific characteristics

for network connectivity optimization. Distance to the focal node was consistently rela-

ted to the quality of the solution as this lowers connectivity length costs, while centrality

was intermittently correlated with solution quality it provides greater benefit through more

connections. Clustering nodal characteristics did not provide additional useful informa-

tion from the nodal characteristics for the random networks. This could arise from the

following issues: the curse of dimensionality, i.e. large sparse subspaces in the solution

space; the nodal characteristics are highly correlated with each other; outliers; finding the

appropriate influential nodal characteristics is not possible a priori; and the influence of

specific characteristics is dynamic as the heuristics converge. For the school networks:

the clustering coefficient was a poor measure due to the lack of triplets in the networks;

the network modularity also had poor results possibly due to the measure’s inability to ac-

count for the spatial component of the nodes; and the network-constrained clusters were

also poor in explaining the solutions, due to the complexity of the network topology.

The optimization heuristics save computational time but vary considerably in their abi-

lity to find a solution near the optimal. The stochastic hill climbing search was not effective
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due to the large neighborhood search space explored. In our experiment, the number of

solutions checked at each iteration is > 300 and resulted in a skewed probability distribu-

tion of objective values favoring the selection of low values. This degraded the efficiency of

the method resulting in the selection of poor solutions. The variable neighborhood search

method was similarly not reliable because of the significantly large neighborhood search

space (the number of possible solutions explored at a given iteration could be > 5, 000),

and had intermediate results with cost and benefit deviations. The simulated annealing

heuristic consistently took longer to converge than the other optimization methods from

the exploration of suboptimal solutions prior to moving towards better solutions, yet it was

able to converge to values close to the optimal solution.

The computational costs and the variance in the importance of nodal characteristics

for the random networks and real-world systems highlights the need for a heuristic that

is able to quickly and effectively explore the solution space. The genetic algorithm provi-

ded in this work offers a solution to this issue and outperformed the other algorithms in

terms of the consistently higher solution precision and accuracy. The genetic algorithm is

able to dynamically reduce the size of the neighborhood search space and what variables

to analyze. This reduction in the local solution search space allows the genetic algo-

rithm presented here to converge on solutions near the optimal in a timely fashion. This

shows the power of biologically inspired algorithms to effectively explore multidimensional

spaces (commonly found in natural systems) and their potential use in a wide variety of

disciplines, including specific applications for planning and health care.

Application of these methods and heuristics to multi-level networks, such as tele-

communication systems, higher dimensional real-world networks (transportation networks

with elevation), directed networks, and additional planar random networks (e.g. Gabriel

graphs) should be conducted. Different distance measures to the focal node, such as

the Hamming distance, could also be evaluated for different applications, and other real

world examples should be used for analysis. The methods presented here do not evaluate
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whether the new connections intersect existing edges and attempts to incorporate such

a feature resulted in unrealistic computational times. Optimizing this feature is currently

being developed as is a tool for ArcGIS and Python for planners and researchers to utilize.

Knox County, TN, like many other places in the U.S., has one group that make de-

cisions about school policies, such as siting and busing (the KCS School Board), and

another that makes decisions about the design of new neighborhoods and other develop-

ments (the MPC). Those groups may not always be aware of how decisions they make

affect each other. Chapter 3 describes and quantifies the ways in which decisions made

by the MPC – specifically about street connectivity in developments near schools – can

impose additional costs on Knox County Schools, in the form of the need to provide more

busing. Reduced street connectivity around schools also imposes costs on families and

on children themselves, in the form of less opportunity for physical activity, potentially

lower academic achievement, and increased risk of obesity and other health problems.

It would be in the best interest of KCS to request that the MPC take into account the

impact that low street connectivity around schools has on busing costs. It is probably

too late to remedy the low street connectivity around the schools examined in this paper,

because of cost and likely neighborhood opposition. But the key finding of this paper –

that short connections can vastly increase connectivity and walkability around schools,

while decreasing future busing and health costs – should inform future decision-making

about neighborhood design around schools with the goal of reducing costs and improving

students’ health and academic achievement. An expanded working relationship between

MPC and KCS may eventually lead to additional opportunities to collaborate toward cost

savings, such as better coordination of school siting with other land use goals for Knox

County.

Future directions for this work include the optimization of school bus drop-off points

and allowing for multiple connections to be evaluated simultaneously, a significant nontri-

vial extension. Once these additions have been added, including the solution to the pla-
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narity issue, a tool should be developed for planners in Python for ArcGIS. MPC provided

socioeconomic data at the parcel level that could be used to identify inequalities in active

commuting, such as car ownership, rental identification, household income, and free lunch

eligibility. An evaluation of student walking in the context of their socioeconomic status

should also be conducted to determine if there are inequalities in active commuting and

how they should be addressed (Althoff et al., 2017).

The results from this dissertation can contribute to a better understanding of transpor-

tation issues and help planners and researchers working in these domains. Extensions

of this work are also not limited to transportation and geography, but provide avenues of

research for interdisciplinary scientists working at the intersection of planning, computati-

onal methodology, and the social sciences.
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