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Abstract

Essays in Risk Management and Financial Econometrics

by

Haoyang Liu

Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor Nancy Wallace, Co-chair

Professor Christopher Palmer, Co-chair

This dissertation consists of three chapters that concern risk management and financial econo-

metrics. Fannie Mae and Freddie Mac’s implicit government guarantee is widely argued to cause

irresponsible risk taking. Despite moral-hazard concerns, this paper presents evidence that Fannie

Mae and Freddie Mac (the GSEs) more effectively managed home price risks during the 2000-

2006 housing boom than private insurers. Mortgage origination data reveal that the GSEs were

selecting loans with increasingly higher percentage of down payments, or lower loan to value ra-

tios (LTVs), in boom areas than in other areas. Furthermore, the decline of LTVs in boom areas

stems entirely from the segment insured by the GSEs only, and none of the decline stems from

the segment co-insured by private mortgage insurers. Private mortgage insurers also did not lower

their exposure to home price risks along other dimensions, including the percentage of high LTV

GSE loans they insured. To quantify how the GSEs’ portfolios would have performed under alter-

native home price scenarios, I build an insurance valuation model based on competing-risk hazard

regressions, calibrated Hull and White term-structure model, and forecasting prepayment and de-

fault speeds. I find that the GSEs’ risk management would have been sufficient for the historically

average 32% mean reversion but insufficient for the realized 95% mean reversion between 2006

and 2011. My results highlight that post-crisis reform of the mortgage insurance industry should

carefully consider additional factors besides moral hazard, such as mortgage insurers’ future home

price assumptions.

The second chapter studies high dimensional time series, with application to estimating the

mean variance frontier. One persistent challenge in macroeconmics and finance is how to draw in-

ference from data with a large cross section but short time series. Financial econometric techniques

all are designed for large time series and small cross-sections. However, financial data typically

has a large cross section and short time series (large-N small-T). One particular large-N small-T

impact is the underestimation of risk in the mean variance frontier. We propose a correction for

the finite sample bias when the underlying returns are high dimensional linear time series. Our

algorithm first corrects for the bias in eigenvalues of the asset return covariance matrix, and then

estimate the contribution of each leading factor to the mean variance frontier. A cross validation
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method is employed to select the optimal number of leading factors. Performance of the proposed

methods is examined through extensive simulation studies.

The third chapter studies how expected home prices affect borrowers’ default behavior. One of

the penalties mortgage defaulters face is being locked out of the mortgage market and missing the

home price appreciation. I find that this penalty deters some borrowers from defaulting. A higher

future home price growth implies a lower ex-ante default probability. Furthermore, high credit

score borrowers react more to past home price declines and future home price appreciation than

low credit score borrowers. This suggests that high credit score borrowers are more likely to be

strategic defaulters. A model is built to study the effect of changing the cooling off period. In high

expected home price appreciation areas, a longer cooling-off period amplifies the impact of each

foreclosure. In low expected home price appreciation areas, a longer cooling-off period reduces

the number of foreclosures.
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Chapter 1

Do Government Guarantees Inhibit Risk

Management? Evidence from Fannie Mae

and Freddie Mac

1.1 Introduction

From flood insurance to deposit insurance, from Medicare to mortgage default insurance, the risk

management of publicly sponsored insurance draws frequent scrutiny both from academia and the

popular press (Bin et al., 2008; Michel-Kerjan, 2010; McMillan, 2007; King, 1994; Oberlander,

1997; Pear, 1996). Economists have long reasoned that because taxpayers, not private investors,

bear the downside risk of public insurance, the insurance managers have limited incentives to

manage risk. Perhaps one of the most criticized public insurers is the “public/private partnership”

of Fannie Mae and Freddie Mac (Bernanke, 2015; Acharya et al., 2011). The two government-

sponsored enterprises (GSEs) had profit maximizing shareholders, but they also carried an implicit

government guarantee, essentially eliminating any downside risk. Both academics and policy mak-

ers, including the Obama administration, have argued that this flawed structure caused the GSEs

to “take on irresponsible risks” (Treasury, 2011; Acharya et al., 2011; Quigley, 2006; Jaffee et al.,

2007; Hermalin and Jaffee, 1996). Based on this view, many post-crisis proposals suggest that the

GSEs should be privatized, gradually replaced by private mortgage insurance companies, or only

allowed to passively follow prices set by private insurers. (Treasury, 2011; Acharya et al., 2011;

Jaffee and Quigley, 2012; Elenev et al., 2016).

A crucial assumption underlying these proposals is that by solving the incentive problem, pri-

vate insurers will more effectively manage risk and set fairer prices than the GSEs did. Inconsistent

with this assumption, I present evidence that the GSEs more effectively managed home price risk

than private mortgage insurers did during the 2000s housing bubble. By increasing the percentage

of down payments in boom areas, the GSEs reduced their exposure to a housing downturn. In

contrast, little evidence suggests that private insurers were aware of the housing bubble or took

precautionary measures for the looming home price crash. To study how the GSEs’ risk manage-
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ment would have performed under alternative home price environments, I construct a mortgage

insurance valuation model based on competing-risk hazard regressions, calibrated Hull and White

term-structure model and forecasting prepayment and default speeds.

My analysis is based on the segmentation of GSE loans along LTVs. GSE loans with LTVs at

or below 80% are insured by the GSEs only. For GSE loans with LTVs above 80%, private insurers

take first loss position before the GSEs cover additional losses (Frame et al., 2015). I document

that in the LTVs at or below 80% segment, boom areas had a greater relative decline of LTVs

than other areas. By lowering the LTVs in these boom areas with greater risk of home price mean

reversion (Cutler et al., 1991), the GSEs reduced their exposure to home price risk through lower

default rates and lower losses given defaults. In contrast, in the LTVs above 80% segment, I find

no evidence that private insurers lowered their home price risk along dimensions where they could

have adjusted. For instance, in the LTVs above 80% segment, LTVs did not decline more in boom

areas than elsewhere. Also, the share of mortgages with LTVs above 80% did not decline more in

boom areas. Another example is that private mortgage insurers slightly increased their percentage

of covered losses more in boom areas than in other areas. These results suggest that the GSEs more

effectively managed their home price risk compared with private insurers.

The first set of empirical challenges of my paper is interpretation of the central result of declin-

ing LTVs in boom areas among GSE loans with LTVs at or below 80%. I conduct a series of tests

to confirm that my results are most likely driven by the GSEs’ risk management. Two plausible

alternative explanations for this result are mortgagor demand-side story and reverse causality. For

the demand-side story, perhaps declining LTVs in boom areas stem from borrowers’ reluctance to

take out high LTV loans rather than the GSEs’ risk management. This is plausible because home

buyers who traded up in 2005 might have carried the equity from their previous homes to their next

mortgages. Trade-up buyers from boom areas had more equity in their previous homes than buyers

from other areas, and thus voluntarily took low LTV loans. To address this, I run separate regres-

sions for first-time home buyers and other buyers. First-time home buyers are particularly unlikely

to be affected by the wealth effect from past home price appreciation. In fact, it is far more likely

that first-time home buyers would prefer higher LTVs instead of lower LTVs after rapid home price

growth. I show that the relationship between home price appreciation and decline in LTVs among

first-time home buyers and other buyers are both strongly significant and have similar magnitudes.

Another concern is reverse causality. Changes in LTV requirements, or collateral constraints,

have causal impacts on home prices (Kiyotaki et al., 1997; Caballero and Krishnamurthy, 2001;

Corbae and Quintin, 2015a; Sommer et al., 2013; Iacoviello, 2005). I show that the reverse causal

story predicts the opposite sign of my coefficients. Lowering LTVs, or equivalently increasing

percentages of down payments, would bring down home prices, not trigger a housing boom. My

coefficients are likely biased towards zero by the reverse causal story. Another alternative story

in this context is the mechanical effect of conforming loan limits. GSE-insured mortgages are

required to be below a year-specific dollar amount. In high home price CBSAs with a large re-

cent home price boom, their LTVs would have to be lowered to continue to satisfy the conforming

loan limits. To address this, I conduct tests in two subsamples, one with only low-medium home

price CBSAs, one restricting to loans under 95% of conforming loan limits. I find that the rela-

tionship between decline of LTVs and home price appreciation persists in these two subsamples.
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Other alternative stories that I address include dynamic selection into GSEs’ Fixed Rate Mortgages

(FRMs), competition from private label loans, second liens and effect of binding debt-to-income

ratios (DTI) constraints.

LTVs are only one of the loan and borrower characteristics through which the GSEs manage

default risk. To understand how risk management using LTVs fits in the overall risk structure of

GSE loans, I study how other loan and borrower characteristics changed during the housing boom,

including FICO scores, DTIs, original loan amount, interest rates and owner occupation. The two

questions I aim to answer are: were LTVs the GSEs’ main tool managing home price risk? Can risk

taking along other dimensions undo the risk reduction along LTVs? Perhaps the most important

among other loan and borrower characteristics is FICO scores. I show that average FICO scores

of GSE loans declined more in boom areas than in other areas. In other words, the GSEs took an

increasing amount of FICO risk in boom areas than elsewhere. A natural question is whether the

risk taking along FICO scores is larger than risk management along LTVs. Using elasticities of

default with respect to FICO scores and LTVs estimated from a proportional hazard model, I show

that by a very conservative estimate, the risk reduction through LTVs is at least 3.6 times as large

as risk taking through FICO scores.

Between 2008 and 2011, the GSEs lost $215 billion from their insurance business and received

$187 billion capital injection from the federal government (Frame et al., 2015). This clearly in-

dicates that their risk management was insufficient for the 2006-2011 housing bust. However this

could be driven by the 95% home price mean reversion between 2006 and 2011, which was much

larger than the historically average 32% mean reversion (Glaeser, 2013; Glaeser and Nathanson,

2016; Cutler et al., 1991). To quantify how the GSEs would have performed under alternative

home price scenarios, I build a valuation model projecting the total discounted guarantee fees col-

lected by the GSEs and costs paid by the GSEs to investors under four home price mean reversion

scenarios. To do this, I first estimate how loan and borrower characteristics, the coupon gap, un-

employment rate and home price appreciation affect borrowers’ default and prepayment decision

using competing-risk hazard regressions. These hazard parameters, together with four different

assumed home price paths and projected future interest rates from a Hull and White term-structure

model, are used to forecast prepayment and default speeds. The final step is to transform the future

prepayment and default speeds to cash flows and discount them. Using this framework, I answer

two questions: taking into account risk adjustment along all mortgage and borrower characteris-

tics, did the GSEs’ indeed lower their risk in boom areas than other areas? Would the GSEs’ risk

management have been sufficient for a typical housing downturn?

Figures 1.2 to 1.5 illustrate the results from the structural valuation model. From Figure 1.2,

we see that risk management by the GSEs results in a net lower risk in boom areas compared to

other areas if home prices stay constant. However, the magnitude of risk management is small. For

example, Figure 1.3 shows that under a 10% home price mean reversion, boom areas would already

have larger normalized cost than elsewhere. Figure 1.4 shows that under the historically average

32% mean reversion, all CBSAs would collect sufficient revenue to cover losses. This suggests

that the GSEs’ risk management would have been sufficient for an average downturn. Figure 1.5

shows that under the realized 95% mean reversion, the GSEs’ cost would be much higher than

revenue in many boom areas.
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Besides the papers mentioned above, my findings contribute to the following literature: 1)

understanding home price expectations, especially during the 2000s housing bubble; 2) GSEs’

loan selection and risk management; 3) LTVs’ role in housing policy; 4) The interaction between

collateral constraints and home prices.

For the home price expectation literature, my findings complement Cheng et al. (2014) and

Cortés (2015). Using investment bankers’ personal home transactions, Cheng et al. (2014) showed

that private label securitization agents did not show an awareness of the housing bubble. In fact,

some groups of private label securitization bankers were particularly aggressive in expanding their

housing portfolios. In this paper, I show that in contrast to the private label securitization chains,

the GSEs were aware of the housing bubble, highlighting the different beliefs of public and private

mortgage insurers. In particular, the lack of relationship between the change in private label LTVs

and home price appreciation detailed in Section 1.4 is also consistent with the findings of Cheng

et al. (2014). Cortés (2015) show that local lenders forecasted the housing bust and reduced their

market shares in bubble areas.

Understanding beliefs about home prices is crucial because the magnitudes of the last housing

cycle far exceed what can be explained by credit expansion alone (Glaeser, 2013). Between 2001

and 2005, home prices rose by 103% in Phoenix, 110% in Las Vegas and 154% in Los Angeles,

much larger than the causal effects of credit expansion (Di Maggio and Kermani, 2015; Glaeser,

2013) 1. Exuberant expectation of home prices is argued to be a major cause for the boom-bust

cycle (Glaeser, 2013). Recent studies also show that credit expansion itself was more likely to

be driven by home price beliefs instead of changes in lending technologies (Adelino et al., 2016).

In other words, the massive credit expansion was more from inflated optimism about home prices

making lenders insensitive to borrower and loan characteristics, rather than a change in financial

technology, for example the securitization of subprime mortgages fueling credit to low income

borrowers. On one hand, we have the strong fact that housing markets mean revert (Cutler et al.,

1991). On the other hand it seems that during each boom, people tend to think that “this time it’s

different”. These two opposite effects make it difficult to infer whether people were really aware

of the housing bubbles. On top of that, during the housing boom, there was a lively debate among

prominent economists on whether home prices were reasonable (Himmelberg et al., 2005; Mc-

Carthy and Peach, 2004; Gallin, 2006, 2008; Davis et al., 2008).2 The results from this paper show

that the GSEs, the dominant insurers of the mortgage market, did take precautionary measures for

the looming housing crash.

On the GSEs’ loan selection, my paper is built on the premise of Kulkarni (2016) and Hurst

et al. (2016), namely, the GSEs charge uniform prices across different areas, but adjust along the

extensive margin. Kulkarni (2016) shows that the GSEs select more loans from lender-friendly

states than neighboring borrower-friendly states. My contribution is strong evidence that the GSEs

reacted to housing boom by lowering the share of high LTV loans in boom areas.

1To put those numbers in context, even with the very strong wage growth in the Bay Area between 2011 and 2015,

home prices in San Jose rose by 60% , less than half of the home price appreciation Los Angeles experienced between

2000 and 2005.
2Among the optimists are Himmelberg et al. (2005) and McCarthy and Peach (2004). Among the pessimists are

Gallin (2006, 2008) and Davis et al. (2008).
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The LTV ratio is a macroprudential policy tool widely used to intervene in home prices in other

countries, including Hong Kong, China, the Netherlands, Sweden, Singapore and New Zealand

(Wong et al., 2011; Shin et al., 2011; Lim et al., 2011; Borio and Shim, 2007). Academics also

suggest that during a boom period, banks should use the long run home prices, instead of the

current market prices, for mortgage underwriting (Glaeser, 2013). In the U.S., the government

is reluctant to directly express views on asset prices. Unless asset prices have a large effect on

inflation, the Federal Reserve Board tends not to adjust monetary policy for them. In this paper,

I show that although the GSEs do not explicitly claim LTVs as a policy tool to express views on

home prices, they do use LTVs in managing their home price risk.

I also contribute to the vast literature understanding how collateral constraints affect home

prices and asset prices in general (Kiyotaki et al., 1997; Caballero and Krishnamurthy, 2001; Cor-

bae and Quintin, 2015a; Sommer et al., 2013; Iacoviello, 2005). My contribution is that home

prices can also affect collateral constraints, even if this channel is not explicitly stated by the

GSEs.

The paper proceeds as follows. Section 1.2 gives a brief introduction of the institutional back-

ground. Section 1.3 describes data used in my analysis. Section 1.4 presents evidence that the

GSEs reacted to the housing bubble by lowering LTVs in boom areas. Section 1.5 presents the

insurance valuation framework. Section 1.6 concludes.

1.2 Institutional Background

This section gives a brief overview of the institutional settings studied in this paper. For more

details, I refer the reader to Jaffee and Quigley (2012); Frame et al. (2015); Weiss et al. (2012).

We first briefly discuss the history and business models of Fannie Mae and Freddie Mac. Then

we discuss private mortgage insurance companies. We also present a numerical example of how

private mortgage insurers take first loss positions for high LTV GSE loans.

Fannie Mae and Freddie Mac

Fannie Mae and Freddie Mac were established as government-sponsored enterprises by 1968 and

1970 legislation (Jaffee and Quigley, 2012). They are private entities in that they have profit-

maximizing shareholders with stocks traded on the New York Stock Exchange. They are also

public entities in the sense that they were chartered by Congress, with some board members se-

lected by the president. Their structure as government-sponsored enterprises is to remove their

activity and debt from the federal budget, while still achieving some public policy goals.

Fannie Mae and Freddie Mac’s activities take two broad forms. First, their credit guarantee

business involves providing mortgage insurance. They purchase a pool of mortgages from origi-

nators—typically banks or mortgage companies and then issue a security that receives cash flows

from the mortgage payments, also called a mortgage backed security. They promise mortgage

backed security investors timely payments of principal and interest, even if there are defaults and

losses on the underlying loans. In return, the firms receive a monthly “guarantee fee” (Frame et al.
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(2015)). The second form of Fannie Mae and Freddie Mac’s business is to invest in assets includ-

ing whole mortgages, their own agency mortgage-backed securities, nonagency mortgage-backed

securities, and other types of fixed income securities. (Frame et al. (2015)).

Notice that during the 2008-2011 crisis period, the credit guarantee business lost $215 billion.

The investment business generated $85 billion profit during 2009-2011, despite the large initial

loss of $83 billion in 2008 (Frame et al., 2015).

Private Mortgage Insurers

Private mortgage insurers are companies that provide mortgage insurance similar to the ones pro-

vided by the GSEs. They primarily provide credit enhancement for GSE loans with LTVs above

80%.

Because the default rate strongly co-moves with housing cycles, private mortgage insurers have

had concentrated failures. In the 1930s, all 50 or so private mortgage insurance companies became

insolvent (Weiss et al., 2012). From the mid-1930s until the 1950s no private mortgage insurers

existed and Federal Housing Administration (FHA) was the only provider of mortgage insurance.

In the 1980s crash, about half of the private mortgage insurance companies stopped underwriting

insurance. Only about a dozen companies survived. Due to the 2006-2011 housing crash, three

out of the eight major mortgage insurers failed, and one was placed into receivership. They also

changed their behavior handling claims, for example, rejecting a unprecedented high fraction of

claims and delaying settlements, so that they would suffer less loss at the expense of their clients.

Numerical Example of Insurance for High LTV GSE Loans

This section presents a numerical example of how private insurers take first loss positions for high

LTV GSE loans, with the GSEs covering any additional losses.

Consider a mortgage with an initial balance of $270,000 for a house valued $300,000 at origi-

nation. Since the initial LTV is 90%, higher than the 80% threshold, the mortgage requires private

mortgage insurance to be eligible for the GSEs’ purchase. The median percentage of loan bal-

ance covered by private insurers, also called coverage ratio, is 25% for high LTV GSE loans.

Assume that two years latter after origination, the borrower defaulted. At the time of default, the

remaining balance was $260,000 and the house value was $150,000. The total loss for the lender

is $110,000, the difference between remaining balance and house value. Assuming a 25% cover-

age ratio, the private insurer would cover 25% × $270, 000 = $67, 500. The GSEs would cover

$110, 000− $67, 500 = $42, 500.

Notice that in this example, since a private insurer covers 25% of the initial balance, the net

LTV for the GSEs is 75%×270, 000/300, 000 = 67.5%, much lower than the 80% threshold. This

is typical for high LTV GSE loans. In other words, just along the LTV dimension, high LTV GSE

loans are less risky than an 80% LTV GSE loan on the GSEs’ balance sheet.
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1.3 Data Description and Summary Statistics

The analysis in this paper is based on three different types of data: loan level mortgage origination

and performance data, home price indexes and interest rate data. In the following, I go through how

each of the data sets is constructed. Loan level mortgage origination data are used to study how

loan characteristics, for example LTVs and FICO scores, evolved during the housing boom. House

price indexes are used to differentiate between boom areas and other areas. Loan performance

data, house price indexes and interest rates data are used to build a mortgage insurance valuation

framework, studying how the GSEs’ risk management would have performed under different house

price mean reversion scenarios.

Loan Level Mortgage Origination and Performance Data

In this paper, I study both GSE loans and private label loans. For GSE loans, I use the public

data collected from Fannie Mae and Freddie Mac’s websites. Private label loans in my sample

come from ABSNet. Both data have rich mortgage characteristics, including original LTV, original

CLTV, FICO score, loan amount, loan purpose (purchase or refinance) and detailed monthly loan

performance. The GSE data also have a variable indicating if a loan is taken by a first-time home

buyer. As I will argue, this variable helps me address an important alternative story from the wealth

effect of past home price appreciation. I keep all first lien purchase mortgages.

Home Price Index

CBSA level home price indexes are collected from FHFA. I choose CBSA level home price indexes

over zip code level home price indexes because the finest geographic code in the public GSE data

are at the CBSA level. FHFA home price indexes are typically used for mortgage modeling and

stress testing.

Interest Rate Data

To value mortgage insurance, I collect interest rate data from Yield Book. Yield Book is a fixed

income valuation service provided by Citi group widely used on Wall Street. They also provide

historical data related to fixed income trading, including interest rate data. Interest rates affect the

valuation of mortgage insurance through two ways. First, forecast interest rates are the discount

rates for both the fixed leg and the floating leg of mortgage insurances. Second, a larger coupon

gap, defined as the original ten year rate minus the current ten year rate, gives borrowers stronger

incentives to refinance. This determines how long the insurance provider expects to collect pre-

mium and how long the insurance provider is exposed to house price risk.
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Summary Statistics

Table 1.1 reports the summary statistics. There are 321 CBSAs in my sample and 1926 CBSA-year

level observations between 2000 and 2006. In most of my specifications, separate regressions are

run for GSE loans for first-time home buyers and other buyers, with LTVs below 80.5% or above

80.5%3. Thus Table 1.1 reports changes in loan and borrower characteristics separately for these

four subsamples.

We can see that 2000-2006 was a period with strong home price and wage growth. The rising

debt-to-income ratios indicate that mortgage debt growth out paced wage growth. Interest rates

significantly declined during this boom period. In both the above and below 80.5% segments,

LTVs changed little on average. For first-time home buyers, the standard deviation of changes in

log LTVs for the below 80.5% segment is three times the standard deviation of changes in log

LTVs for the above 80.5% segment.

1.4 Home Price Risk Management through LTVs

This section presents evidence that during the 2000-2006 housing boom, the GSEs actively lowered

their home price risk exposure through LTVs while private insurers did not. The central piece of

evidence is the strong relationship between home price appreciation and the decline of average

LTVs among mortgages insured by the GSEs only, i.e., mortgages with LTVs at or below 80%.

In contrast, little evidence suggests that private insurers lowered their home price exposure for

mortgages with LTVs above 80%, where they would take first loss positions.

I first present the empirical model and my estimation samples. To isolate two important alter-

native explanations, the mechanical effect of conforming loan limits and wealth effect from past

home price appreciation, my preferred sample is purchase mortgages taken by first-time home

buyers from low to middle home price CBSAs. I then present the main results.

I also conduct robustness tests for private insurers and the GSEs respectively. I show that

private insurers did not lower their home price exposure through two other channels along which

they could have adjusted: share of high LTV loans and coverage percentage. I first focus on the

results for the GSEs. I conduct a series of robustness tests to verify that the most likely explanation

for my results is the GSEs’ dynamic home price risk management. Alternative explanations that I

address include reverse causality, upper bound on DTIs, risk adjustment along other dimensions,

challenges in saving for 20% down payments, borrowers voluntarily switching to second liens, and

private label ARMs or FRMs.

The main goal of this paper is to compare the GSEs’ home risk management with private

insurers’. Section 1.4 complements the main goal by presenting results for private label loans,

showing that they are consistent with existing results in Cheng et al. (2014), which finds that

3I use 80.5% instead of 80% as the threshold because loans with LTVs just above 80% within round errors are

treated by the GSEs as at 80%. They are exempt from the requirement for private mortgage insurance. By using

80.5% as the threshold, loans with LTVs just above 80% are classified as below or at 80%, consistent with the GSEs’

definition.
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investment bankers working for the private label securitization chain were unaware of the housing

bubble.

Empirical Model

The main specification is

∆ logLTVct,LTV≤80.5% = βLTV≤80.5%
LTV ∆ logHPIct + βX∆Xct + αc + γt + ǫct, (1.1)

∆ logLTVct,LTV >80.5% = βLTV >80.5%
LTV ∆ logHPIct + βX∆Xct + αc + γt + ǫct, (1.2)

where αc and γt are geographic and year fixed effects respectively; ∆ logLTVct,LTV≤80.5% and

∆ logLTVct,LTV >80.5% are changes in logged average LTVs from year t to year t + 1 in CBSA

c for the LTVs below 80% and LTVs above 80% segments respectively. Separate regressions

are run for GSEs loans for first-time home buyers and GSEs loans for other buyers, explained in

Section 1.4. ∆ logHPIct are changes in log home prices. ∆Xct are CBSA-year level control vari-

ables, including changes in macroeconomic conditions measured by unemployment and average

wage, changes in loan and borrower characteristics including average FICO scores, debt-to-income

ratios, interest rates and percentage of owner occupied mortgages.

LTVs are among the many loan and borrower characteristics the GSEs and private insurers

adjust. To complement the findings for LTVs, I also estimate the following regression for FICO

scores

∆ logFICOct = βLTV≤80.5%
FICO ∆ logHPIct + βX∆Xct + αc + γt + ǫct. (1.3)

Naturally, in the FICO score regressions, the set of control variables include changes in LTVs

and exclude changes in FICO scores. Separate regressions are run for GSE loans by first-time

home buyers (the full sample or the segment with LTVs below 80%) and private label ARMs.

Regression (1.3) is studied for two reasons. First, they are to study how the GSEs and private

insurers adjusted FICO scores to understand how LTV adjustment fits in the overall home risk

management, detailed in the following. Second, the FICO score results are used to eliminate some

alternative stories. For example, one concern is that rising house prices in boom areas drove up

mortgage payments, forcing some low income borrowers to switch to ARMs with lower current

interest rates than FRMs. This leaves the FRM borrower pool with good borrowers having enough

savings for large down payments, explaining why LTVs declined in boom areas. If my results were

driven by this story, we would expect a relative increase of FICO scores among GSE loans and a

relative decline of FICO scores among ARMs from boom areas. However, Table 1.7 finds the exact

opposite. Among GSE loans, FICO scores relatively declined in boom areas, while among ARMs,

FICO scores relatively increased in boom areas.

Below I argue that my preferred sample is GSE first-time buyers from low-to-middle home

price areas to address two important alternative explanations. I also discuss the mechanical effect of

conforming loan limits and how it is addressed by excluding high home price CBSAs or restricting

the sample to loans under 95% of the conforming loan limits. I also describe how the wealth effect

from past home price appreciation is addressed by restricting to first-time home buyers.
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Mechanical Effect of Conforming Loan Limit

One important alternative explanation for declining LTVs in boom areas is the mechanical effect of

the conforming loan limits (CLLs). The loan amount of GSE insured mortgages is required to be

under the CLLs. Since LTVs are loan amount divided by house prices, in areas where house prices

are high, LTVs of GSE loans have to be low to satisfy the CLL requirement. Thus past home price

appreciation could mechanically bring down average LTVs among GSE loans.

To address this, I construct two samples where the CLLs are not binding. In the first sample,

only CBSAs with low to middle home prices by 2006 are kept. Low to middle home price CBSAs

are defined as CBSAs with more than 80% of private label loans in 2006 under the CLLs. I use

the distribution of private label loans because their loan amount is not required to be under the

CLLs. Notice that the 80% selection criteria is very strict. All CBSAs in the remaining sample had

home prices at least one hundred thousand dollars below the CLLs throughout the housing boom.

Figure 1.1 plots the excluded and selected CBSAs. Intuitively, many of the CBSAs on the two

coasts have high home prices and are thus excluded. Some boom CBSAs with initial low home

prices, including part of inland California and Florida, are kept in the remaining sample because

their prices started low. This provides us with enough variation in HPA to study the relationship

between HPA and changes in LTV. I report results from both the full sample and the low to middle

home price CBSAs sample. In the second sample, I keep loans below 95% of the CLLs. The gap

between their loan amount and the CLLs ensure that the CLLs are not binding for this universe of

loans. Results under this robustness test is presented in Table 1.12. I can see that my results persist

in this subsample.

Ialth Effect from Past Home Price Appreciation

One could also argue that the decline of LTV for GSE loans was driven by borrowers’ demand for

low LTV loans, not driven by the GSEs’ supply of low LTV loans. This is especially plausible,

since buyers who traded up in 2005 might have carried the equity in their previous home, mainly

accumulated from the rapid home price appreciation in the last two years, to their new home. Thus,

trade-up buyers from boom areas in 2005 might naturally ask for a low LTV, unrelated to GSEs’

risk management. To address this, I run separate regressions for first-time home buyers and other

buyers. First time home buyers are particularly unlikely to be affected by the wealth effect from

past home price appreciation. In fact, because of their limited savings, it is far more likely that first-

time buyers on average would prefer lower LTVs than higher LTVs after large recent home price

growth. I show that the relationship between home price appreciation and decline of LTVs persists

in the first-time home buyer sample. This is more consistent with the supply side story from GSEs’

risk management than the demand side story of boom area borrowers voluntarily taking low LTV

loans.
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Main Result

Table 1.2 and Table 1.3 report results from regressions (1.1) and (1.2), estimating the effect of home

price appreciation on LTVs. Table 1.2 reports results from all CBSAs while Table 1.3 excludes high

home price CBSAs from the sample.

Panel A of Table 1.2 focuses on first-time home buyers. Columns 1-3 are for the LTVs below

80% segment. Columns 4-6 are for the LTVs above 80% segment. Columns 1 and 4 control for

year fixed effects only. Columns 2 and 5 add CBSA-year level controls, including changes in

macroeconomic conditions, changes in loan and borrower characteristics. Columns 3 and 6 further

add CBSA fixed effects. The most striking contrast in Panel A is the strongly negative coefficient

in column 3 and the statistically insignificant coefficient in column 6. In the LTVs below 80%

segment, LTVs significantly declined in boom areas than other areas, while there is no such pattern

in the above 80% segment.

Panel B of Table 1.2 reports the results for other buyers. Comparing the coefficients for other

buyers with the corresponding coefficients for first-time buyers in Panel A, we see that the LTVs

always declined more among loans taken by other buyers than first-time buyers in boom areas. This

is consistent with our hypothesis that second time home buyers voluntarily lowered their LTVs in

response to home price booms from a wealth effect.

Table 1.3 excludes high home price areas to rule out the mechanical effect of conforming lim-

its discussed in Section 1.4. As discussed in Section 1.4 and Section 1.4, my preferred sample is

GSE first-time home buyers from low to middle home price CBSAs, corresponding to Panel A of

Table 1.3. Columns 1-3 show that the relationship between decline of LTVs and home price appre-

ciation is always strong across different specifications in the LTVs below 80% segment. Columns

4-6 show that in the LTVs above 80% segment, boom areas did not have a disproportionately

larger declines of LTVs. The estimate -0.053 in column 3 of panel A implies that a 10% home

price appreciation leads to a 0.51% decline of LTVs.

Comparing Panel A and Panel B in Table 1.3, we see that in the low to middle home price

sample, the coefficients for GSE first-time home buyers and GSE other buyers are similar to each

other. The strong home price appreciation in boom areas should have led to large wealth differences

between first-time home buyers and second time home buyers, and potentially different preferences

for LTVs. With large equity in their previous homes, it is natural to expect second time home buyers

to carry some equity to their next purchase loans. The similar coefficients for the two buyer groups

are more consistent with the supply side story of the GSEs’ risk management than the demand side

story of boom area borrowers asking for lower LTVs.

Robustness Tests for Private Insurers

One challenge in interpreting Table 1.3 is that the share of loans with LTVs above 80.5% might

have changed over time. For instance, private insurers might have been concerned about the hous-

ing bubble and insured a decreasing number of LTVs above 80.5% loans in boom areas than the

other areas. To rule out this alternative story, I run the following regression

∆ logPct,LTV >80.5% = βLTV >80.5%∆ logHPIct + βX∆Xct + αc + γt + ǫct, (1.4)
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where Pct,LTV >80.5% is the percentage of loans with LTV above 80.5% in CBSA c and year t. Panel

A of Table 1.4 reports the results. I see that in my preferred sample, boom areas did not have a

larger relative decline of share of high LTV GSE loans.

Another potential channel for private mortgage insurance companies’ home price risk man-

agement is coverage percentage, the maximum percentage of loan amount they cover in case of

defaults. They could have relatively lowered their covered losses in boom areas to reduce home

price risk. Panel B of Table 1.4 reports results from the following regression

∆ logCPct = βLTV >80.5%∆ logHPIct + βX∆Xct + αc + γt + ǫct, (1.5)

where CPct is coverage percentage in CBSA c year t. I can see that private mortgage insurance

companies did not lower insurance percentages more in boom areas than elsewhere. The positive

and significant coefficient in column (3) panel B means that they relatively increased percentages

of covered losses in boom areas, the opposite of reducing home price risk exposure.

Robustness Tests for the GSEs

This section conducts a series of robustness tests to verify that the most likely explanation for the

relative decline of LTVs in boom areas among the LTVs below 80% segment is the GSEs’ home

price risk management.

I show that the reverse causal story predicts the opposite sign of my findings. In other words,

my estimates are biased towards zeros by the reverse causal story of stricter LTV requirements

lowering house prices. I address three alternative stories related to borrowers’ mortgage choice.

All three of them are based on the idea that high LTV borrowers from boom areas were not credit

rationed by the GSEs, but voluntarily switched to other mortgage products, including private label

FRMs, ARMs, or second liens. I present evidence inconsistent with each of these three stories.

For example, one could argue that borrowers might have switched to private label FRMs because

they offered better interest rates. However, Table 1.5 shows that the GSEs offered better interest

rates than private label FRMs in almost all market segments in each CBSA. Thus my results are

more likely to be driven by the GSEs’ voluntary risk management rather than being forced by

competition from the private label segment.

Another alternative story is upper bounds on DTIs. If borrowers are already taking out the

maximum loan amount allowed by DTI upper bounds, any more home price appreciation would

lower LTVs. To address this, I drop loans with high DTIs under a number of DTI thresholds. My

results persist in these low DTI subsamples.

I compare risk adjustment along FICO scores with risk management along LTVs and verify

that LTVs is the main channel for the GSEs’ home price risk management. The GSEs relatively

lowered FICO scores in boom areas, or took more risk along FICO scores in boom areas than

elsewhere. I show that the risk reduction along LTVs is much larger than risk taking along FICO

scores.

I also address a more subtle alternative story. It could be that borrowers always try to lower

their LTVs to 80% to avoid a private mortgage insurance premium. However, it was relatively
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easy to do with low home prices before the housing boom than the much higher home prices after

the housing boom. This manifests as non-boom areas having an increasing concentration of LTVs

at 80% than boom areas, explaining why boom area LTVs relatively declined in the LTVs under

80% segment. If my results are driven by this story, we would expect that after dropping loans

with LTVs at 80%, the coefficients will become insignificant. However, I show that the results are

stronger after dropping loans with LTVs between 79.5% and 80.5%.

Reverse Causality

One could argue that regressions (1.1) and (1.2) are subject to reserve causality. After all, the liter-

ature studying credit constraints and home prices largely focus on how credit conditions, including

LTV requirements, would affect house prices (Corbae and Quintin (2015a); Sommer et al. (2013)).

This reverse causal story predicts the opposite signs of my findings. The credit condition affecting

house price channel predicts that declining LTVs, or equivalently requiring higher percentage of

down payments, would lower home prices. In contrast, I find that LTVs for GSE loans declined in

boom CBSAs, the opposite of the causal effect of LTV requirement on house prices.

Borrowers’ Mortgage Choice

The risk management story essentially means that high LTV borrowers from boom areas were

credit rationed by the GSEs for home price risk management. One could argue that rather than

being credit rationed, these borrowers switched to other products by choice. This section addresses

three alternative stories along this line, that high LTV borrowers from boom areas voluntarily

switched to private label FRMs, ARMs, or second liens.

The first example is that borrowers switched to private label FRMs because they offered better

terms. To test this theory, I use interest rate data for both GSE FRMs and private label FRMs to

test if private label FRMs offered better interest rates relative to GSE loans towards the end of the

housing boom than in the beginning of the housing boom. I first divide mortgages into sixteen

segments along two dimensions, LTV and FICO score. Along the LTV dimension, I divide LTV to

four ranges: below 79.5%, between 79.5% and 80.5%, between 80.5% and 90%, and above 90%.
4 Along the FICO score dimension, I divide the spectrum into four ranges: below 660, between

660 and 720, between 720 and 760, and above 760. There are sixteen combinations of LTV ranges

and FICO score ranges. For each CBSA and each combination of LTV and FICO score, I collapse

the median interest rate for both GSE FRMs and private label FRMs. In each year, there are

more than 4000 CBSA-segment combinations. Table 1.5 reports the percentage of CBSA-segment

combinations in which private label FRMs had a lower median interest rate than GSE FRMs. I can

see that in every year between 2000 and 2006, GSEs had an interest rate advantage in more than

94% of the CBSA-segment combinations. More importantly, the percentage of CBSA-segments

in which private label loans had an edge was declining through the housing boom. Also, all of

the CBSA-segments in which private loans had an interest rate edge in 2005 and 2006 were small

4I define between 79.5% and 80.5% as a separate segment because many mortgages have LTVs very close to 80%.
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CBSA-segments, with 83 out of 133 having 3 or fewer private label FRMs. These results show

that competition from private label loans is unlikely to drive my results.

The second alternative story is about borrowers switching to ARMs. It could be that because

of the rising home prices, many borrowers in boom areas found FRM payments unaffordable and

switched to ARMs for temporarily lower interest rates. With these low income borrowers leaving

the FRM pool in boom areas, the remaining FRM pool improved and LTVs for GSE FRMs de-

clined. There are two pieces of evidence inconsistent with this argument. First, an assumption in

this argument is that relatively low income borrowers switched to ARMs in boom areas. However,

as illustrated in columns 4-6 of Table 1.7, average FICO scores for ARMs relatively increased in

boom areas across different specifications. In boom areas, good borrowers, rather than low in-

come borrowers were more likely to leave the FRM pool than the other areas. The second piece of

evidence is that, illustrated in columns 1-3 of Table 1.7, average FICO scores for GSE first-time

home buyers relatively declined in boom areas throughout the housing boom. It is unclear that the

relative improvement of GSE loans’ LTVs in boom areas is driven by improving borrower quality.

The third mortgage choice alternative explanation is that boom area borrowers could have

switched to low LTV GSE loans but took out second liens instead. To address this, I use changes in

combined-loan-to-value ratios (CLTVs) as the left-hand-side variable in the following regressions

∆ logCLTVct,LTV≤80.5% = βLTV≤80.5%
CLTV ∆ logHPIct + βX∆Xct + αc + γt + ǫct, (1.6)

∆ logCLTVct,LTV >80.5% = βLTV >80.5%
CLTV ∆ logHPIct + βX∆Xct + αc + γt + ǫct. (1.7)

Table 1.6 reports the results. Comparing Table 1.6 with Table 1.3, we see that changing the left-

hand-side variable to changes in CLTVs has almost no impact on the coefficients.

Upper Bound on Debt-to-Income Ratio

Another alternative story is that the debt-to-income ratios in boom areas might have got to the

upper bounds allowed by the GSEs. Under a rising home price environment, these upper bounds

on loan amounts make larger down payments, or lower LTVs necessary. To rule out this story, I

drop loans with high debt-to-income ratios by a number of different thresholds. By dropping these

loans with possibly binding debt-to-income ratios, I test if the relationship between home price

appreciation and decline of LTVs still holds. Table 1.8 report the results. I can see that in the low

DTI subsamples, my results continue to hold.

Comparing Magnitudes of Different Dimensions

LTVs are one of the dimensions through which the GSEs adjust risk. Other dimensions include

FICO scores, debt-to-income ratios (DTIs), original loan amount, interest rates, and owner occu-

pancy. One could argue that LTVs were not the main dimension of the GSEs’ risk management.

For example, the GSEs might adjust FICO scores between boom areas and non-boom areas much

more than their LTV adjustment. For a complete analysis of the net risk management by the GSEs,

I build a structural valuation framework in Section 1.5 based on calibration of term structure model,

hazard regressions and forecasting future prepayment and default speeds. In this section, I conduct



CHAPTER 1. DO GOVERNMENT GUARANTEES INHIBIT RISK MANAGEMENT?

EVIDENCE FROM FANNIE MAE AND FREDDIE MAC 15

back of envelope analysis for the GSEs’ risk taking or risk management along perhaps the most

important dimension besides LTVs, FICO scores.

Table 1.9 compares how the GSEs adjusted LTVs and FICO scores side by side. Column 2

shows that average FICO scores of GSE loans declined more in boom areas than other areas. In

other words, the GSEs took an increasing amount of risk in boom areas than other areas along the

FICO score dimension. A natural question is whether the risk taking along FICO scores is larger

than risk reduction along LTVs or the reverse.

I present evidence that risk reduction along LTVs dominates risk taking along FICO scores.

Conceptually, lower LTVs reduce the GSEs’ losses through two channels while lower FICO scores

increase the GSEs’ losses through only one channel. Lower LTVs reduce both default probabilities

and loss-given-default. Lower FICO scores only increase default probabilities, and have ambigu-

ous impact on loss-given-default. The loss-given-default channel could be much larger than the

default probability channel under moderate home price declines.

If we focus on the default probability channel, to compare the effects on default probabilities, I

use the elasticities of default with respect to LTVs and FICO scores estimated from hazard regres-

sions detailed in Section 1.5. From Table 1.14, we see that their default elasticities have similar

magnitudes, while Table 1.9 shows that the GSEs’ LTV response is 3.6 times as large as the GSE’s

FICO score response to rising home prices. Thus the GSEs’ LTV home risk reduction dominates

their FICO risk taking.

Difficulty of Obtaining 20% Down Payments

To address the story that rising home prices changed the difficulty of obtaining 20% down pay-

ments, I drop loans with binding LTVs-LTVs at 80%. Table 1.10 reports the results. I see that

relationship between home price appreciation and decline of LTVs persists.

Results for Private Label FRMs

While the main goal of the paper is to study the GSEs and private insurers’ home price risk man-

agement, in this section, I study if my results are consistent with previous results for the private

label segment studied in Cheng et al. (2014). Using securitization investment bankers’ personal

home transactions, Cheng et al. (2014) find no evidence that investment bankers foresaw the hous-

ing crash. My results are consistent with their findings. Table 1.11 reports the result for private

label FRMs. I see that after controlling for changes in macroeconomic conditions, loan and bor-

rower characteristics, CBSA and year fixed effects, private label FRMs had relatively increasing

LTVs in boom areas. This is consistent with the idea that the private label segment was unaware

of the housing bubble.
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1.5 Valuation of Insurance

In this section, I construct an insurance valuation framework quantifying the risk management of

the GSEs. The goal of the framework is to answer two questions: 1) Combining risk adjustment

using all loan and borrower characteristics, did the GSEs indeed lower their risk exposure more

in boom areas than other areas?; 2) Was the GSEs’ risk management sufficient? For the second

question, the GSEs’ $215 losses from the insurance business between 2008 and 2011 suggest that

their risk management was insufficient. However, one contributing factor to the large losses is

the larger than historical average house price mean reversion between 2006 and 2011. For every

$1 home price increase between 2001 and 2006 in a CBSA, it on average gave back 95cbetween

2006 and 2011. This 95% mean reversion was much larger than the 32% historically average

mean reversion. Thus the GSEs’ failure alone does not imply that the GSEs’ risk management

was insufficient based on reasonable assumptions ex-ante. To quantify how the GSEs’ portfolios

would have performed under alternative scenarios, I consider four hypothetical housing markets:

0% mean reversion, or prices staying constant, 10% mean reversion, 32% mean reversion and 95%

mean reversion.

My valuation framework calculates the discounted cash flows for the mortgage insurance un-

derwritten by the GSEs in 2005, the peak year of the housing boom. Section 1.5 describes the cash

flows. Section 1.5 presents the competing-risk hazard regressions, from which the estimated haz-

ard parameters are used to forecast default and prepayment speeds, and the cash flows. Section 1.5

introduces the term structure model, used both as the discount rates valuing the cash flows and

to calculate the coupon gap, an important predictor for default and prepayment risks. Section 1.5

summarizes the data-generating process. Section 1.5 presents the results.

To make the computation manageable. I restrict my loan sample to purchase mortgages from

the 100 largest CBSAs in the U.S. They represent about 75% of all mortgages in the full sample.

Insurance Cash Flows

Mortgage default insurance provided by the GSEs have two legs of cash flows. The first leg is the

premium collected by the GSEs from investors over the life of mortgages. The second leg is paid

by the GSEs to investors to cover losses when borrowers default and the collateral value is lower

than the remaining balance. To be consistent with the credit default swap terminologies, I refer to

the insurance premium leg as the fixed leg, and the leg of loss covered by the GSEs as the floating

leg.

Both legs of the cash flows are random. The fixed leg is collected by the GSEs until mortgage

termination, which are random events. Reasons for termination include default, being paid in full

till maturity, and prepayment caused by, for example, moving or refinance. The floating leg, paid

when borrowers default, is random as well. Table 1.13 summarizes how the cash flows evolve each

month by different mortgage outcomes.
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Hazard Model

Hazard Model Specification

Many factors affect borrowers’ default and prepayment decisions. For example, we have the intu-

ition that borrowers with lower initial FICO scores are more likely to default. Another example is

that when interest rates decline, borrowers have larger incentives to refinance and are more likely

to prepay. The goal of the competing-risk model presented in this section is to study the relative

importance of how different factors affect default and prepayment risks. I estimate the following

proportional competing-risk hazard model specified in equations (1.8) and (1.9)

λDefault
ic (t) ≡ lim

ξ→0

1

ξ
PrDefault

ic (t− ξ < τ ≤ t|τ > t− ξ,X) (1.8)

= exp
(

X ′
ictβ

Default
)

λDefault
0 (t),

λPrepay
ic (t) ≡ lim

ξ→0

1

ξ
Pr

Prepay
ic (t− ξ < τ ≤ t|τ > t− ξ,X) (1.9)

= exp
(

X ′
ictβ

Prepay
)

λPrepay
0 (t),

where

X ′
ictβ = θHPA log(HPAct) + θUnempUnemploymentct + θC(Coupon Gap)

+W ′
BiθB +W ′

LiθL + αc,

Coupon Gap = r10,origination − r10,t,

HPAct = HPct/HPc0

λDefault
ic (t) and λPrepay

ic (t) are the latent instantaneous default and prepayment probabilities for indi-

vidual i from CBSA g with loan age t months respectively. λDefault
0 (t) and λPrepay

0 (t) are the base-

line default and prepayment hazard functions, estimated nonparametrically, following Han and

Hausman (1990). In specifications (1.8) and (1.9), exp
(

X ′
ictβ

Default
)

and exp
(

X ′
ictβ

Prepay
)

propor-

tionally scale up or down the hazards, depending on the signs of Xict and coefficients βDefault and

βPrepay. βDefault and βPrepay are the main parameters of interests, measuring how different factors

affect default and prepayment risks. Covariates Xict cover static and dynamic variables. Static

variables include initial loan and borrower characteristics, denoted as WLi and WBi respectively,

including log FICO score, first-time home buyer indicator, owner occupancy, log original loan

amount, log original LTV, the difference between the original interest rate and the original ten

year rate. Dynamic covariates include log cumulative home price changes since origination HPAit,

coupon gap, defined as the difference between the ten year rate at origination and the current ten

year rate, and unemployment rate. The estimation sample is mortgage performance data between

2000 and 2005. I truncate the performance data at the end of 2005 to make my estimation sample

comparable to the data available for pricing mortgage insurance in 2005.
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Estimation

The competing-risk hazard model specified in equations (1.8) and (1.9) is a continuous time model.

However, loan performance is observed at the end of each month in discrete time. Assuming that

the time varying covariatesXict are constants in each discrete time interval [t−1, t], the continuous

time model in (1.8) and (1.9) can be transformed to a discrete time model. In greater details, let

S(t) = Pr(τ > t) denote the survivor function and let Λ(t) = − log(S(t)). Λ(t) is also called the

integrated hazard function because it satisfies the familiar identity

Λ(t) =

∫ t

0

λ(τ)dτ. (1.10)

Using Λ(t) = − log(S(t)) and identity (3.-3), the probability of survival between t − 1 and t
conditional on that one survived the first t− 1 periods is

Pr (τ > t|τ > t− 1) =
S(t)

S(t− 1)

= exp (Λ(t− 1)− Λ(t))

= exp

(

−

∫ t

t−1

λ(τ)dτ

)

In general λ(τ) depends on Xicτ , which is time varying between t − 1 and t. Assuming that Xicτ

are constants when τ is between t− 1 and t. We have

Pr (τ > t|τ > t− 1) = exp

(

−

∫ t

t−1

λ(τ)dτ

)

= exp (− exp (X ′
ictβ)λ0(t)) ,

or equivalently

log

(

log

(

S(t− 1)

S(t)

))

= X ′
ictβ + log(λ0(t))

log
(

− log
(

1− Pr
(

τ ∈ (t− 1, t]|τ > t− 1
)

))

= X ′
ictβ + log(λ0(t)),

which is the complementary log-log model I estimate in discrete time.

Results

Table 1.14 reports the hazard regression results. All coefficients have the expected signs. For

example, a high LTV loan is much more likely to default than a low LTV loan. The coefficient

on log(Original LTV) in column (1) implies that a 5% higher LTV increases default probability by

34.5%. A high FICO score borrower is much less likely to default and more likely to prepay than

a low FICO score borrower. A positive and large coupon gap gives the borrower strong incentive

to refinance, and leads to a larger prepayment risk. A 10% larger home price appreciation leads to

a 36.7% lower default hazard and a 14.2% higher prepayment hazard.
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Interest Rate Model

I calibrate the following Hull-White term-structure model

dr = (θ(t)− αr)dt+ σdw. (1.4)

The calibration process is a three-step procedure:

1) From Yield Book, I collect interest rates, or equivalently discount factors, for ten maturities

including 1-month, 3-month, 6-month, 1-year, 2-year, 3-year, 5-year, 7-year, 10-year, and

30-year. I first construct a continuous yield curve for all possible maturities by fitting the

discount function expressed as

Z(t) = eat+bt2+ct3+dt4+et5 (1.5)

using observed discount factors for the ten available maturities. The estimated Ẑ(t) is then

used to calculate the forward rate function f̂(t, t′).

2) Calibrate parameters α and σ in equation (1.4).

3) Calculate θ̂(t) using the estimated forward rate f̂(0, t) from step 1), and estimated α̂ and σ̂
from step 2).

Note that loans in my sample were originated in different months in 2005. To forecast how interest

rates would evolve after loan originations, I calibrate the term-structure model for each origination

month independently. For step 1), parameters a through e are estimated from first taking the log of

both sides of 1.5 and then running a linear regression.

For step 2), I estimate α and σ using caplet prices and discount rates. Caplets are essentially Eu-

ropean call options where the underlying is the interest rate with cash flow at time Ti proportional

to max(r(Ti−1, Ti)− rK , 0), where r(Ti−1, Ti) is the floating rate at time Ti−1 and maturity Ti, rK
is the strike interest rate. Intuitively, caplet prices, as prices for interest rate options, contribute

to estimating the volatility parameter σ and the mean reversion parameter α in the term-structure

model (1.4). α and σ are chosen to best fit all caplet prices by minimizing the following function

min
α,σ

√

√

√

√

I
∑

i=1

(

modeli(α, σ)−marketi
marketi

)2

where modeli(α, σ) and marketi are, correspondingly, model and market caplet i cash prices.

Model prices, modeli(α, σ)-s, are based on the modified Black-Sholes formula.

For step 3), θ̂(t) is calculated as

θ̂(t) =
∂f̂(0, t)

∂t
+ α̂f̂(0, t) +

σ̂2

2α̂

(

1− e−2α̂t
)

,

where f̂(0, t) is the estimated interest rate between time 0 and time t

f̂(0, t) = −ât− b̂t2 − ĉt3 − d̂t4 − êt5.
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Data-Generating Process

Data in my simulations are generated from the following sources. Loan and borrower characteris-

tics are from the GSE public data. I keep purchase mortgages originated in 2005 from the largest

100 CBSAs in the U.S. There are 596,911 loans in my sample. I calculate the discounted cash

flows for insurance underwritten on each loan and then collapse to the CBSA level and report the

results in Section 1.5. Hazard parameters—measuring how covariates, loan and borrower char-

acteristics affect default and prepayment speeds—are reported in Table 1.14. Interest rates are

simulated using estimated parameters from Section 1.5. For each month, I simulate 200 antithetics

interest rate paths. Future home prices follow assumed mean reversion. For example, for a 10%

mean reversion, between 2005 and 2010, each CBSA would give back 10% of the increase in

home prices between 2000 and 2005. Unemployment rates are simulated from AR(1) processes,

with persistence parameters estimated for each CBSA using historical unemployment rates.

Results

Figure 1.2 through Figure 1.5 illustrate the results. Figure 1.2 focuses on the 0% mean reversion,

or prices staying constant scenario. The assumption to test under this scenario is whether or not

the GSEs took more precautionary measures in boom areas compared with other areas. As argued

in Section 1.4, risk management for mortgages is inherently a multidimensional problem because

mortgages have many risk characteristics including FICO scores, debt-to-income ratios (DTIs),

original loan amount, interest rates, and owner occupancy. To study whether the GSEs indeed

lowered their risk exposure in boom areas more than other areas, a valuation model taking into

account all characteristics, like the one presented in this section, is necessary. From Figure 1.2,

we see that if home prices stay constant, boom areas indeed would have smaller losses than other

areas. This is consistent with the hypothesis that the GSEs were aware of the housing bubble and

lowered their home price risk exposure by originating safer loans in boom areas than elsewhere.

A natural question to ask is how large the GSEs’ risk management was. To study this, I con-

sider a 10% mean reversion scenario. Under a 10% mean reversion assumed in Figure 1.3, boom

areas would have larger losses than other areas. This suggests that the implied GSEs’ model mean

reversion was small, between 0% and 10%, assuming that the GSEs adjust their insurance to be

actuarially fair between CBSAs. However, there are confounding factors that might have prevented

the GSEs from implementing their believed house price mean reversion. One example is politi-

cal pressure for uniform access to mortgage credit between CBSAs. Another example is that if

the GSEs had asked for even higher percentages of down payments from boom areas, very few

borrowers from boom areas could provide the down payments.

Two additional natural scenarios to test are the historically average 32%, and the realized 95%

mean reversion. Somewhat surprisingly, under a 32% mean reversion assumed in Figure 1.4, all

CBSAs would have costs lower than even 40% of their projected revenue. This implies that under a

historically average mean reversion, the GSEs’ expected revenue would be more than twice of the

expected costs in every CBSA. Figure 1.5 shows the results under the realized 95% mean reversion

scenario. In this case, guarantee fees collected in boom CBSAs are clearly insufficient to cover



CHAPTER 1. DO GOVERNMENT GUARANTEES INHIBIT RISK MANAGEMENT?

EVIDENCE FROM FANNIE MAE AND FREDDIE MAC 21

the costs, with 10 CBSAs having projected costs over fives times of the projected revenue. This

explains the unprecedented losses and government bailouts for the GSEs during the 2008 crash.

1.6 Conclusion

A common critique of the “public-private” partnership of Fannie Mae and Freddie Mac is that their

implicit government guarantee reduces incentives for risk management and fosters irresponsible

risk taking. Evidence from this paper suggests that Fannie Mae and Freddie Mac more effectively

managed home price risk during the 2001-2006 housing boom than private mortgage insurance

companies did.

These somewhat surprising results are nevertheless consistent with the history of private mort-

gage insurance industry, including its repeated and concentrated failures. Most recently in the 2008

crash, three out of the eight largest private mortgage insurers failed. However, perhaps overshad-

owed by the highly publicized and controversial bailout of the GSEs, private mortgage insurers’

failures have received relatively little attention from academics and the popular press. Many post-

crisis proposals also assume that replacing the GSEs by private insurers would be a Panacea. My

results suggest that privatizing the GSEs alone is unlikely to ensure sufficient risk management in

the mortgage insurance industry. Additional factors besides incentives, such as assumptions about

future house prices, are important in shaping risk management practices. One way to establish rea-

sonable house price assumptions is to stress test mortgage insurers, forcing the industry to consider

their exposure to the housing downturn scenarios proposed by regulators.

The mortgage insurance industry plays a crucial role in financing Americans’ mortgages. Their

insurance reduce or remove mortgage default risks, thereby enhancing the liquidity of mortgage

backed securities and lowering homebuyers’ borrowing costs. The risks they face and the optimal

regulatory structure for them deserve more study to prevent them from being a source of systemic

risk in the financial system.

1.7 Figures and Tables
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Figure 1.1: CBSAs with High or Low-Middle Home Prices

Source: ABSNet, author’s own calculations. This figures plots CBSAs classified as high and low-middle home-price

CBSAs. Low-middle home-price CBSAs are defined as CBSAs with more than 80% of private label loans in 2006

under the conforming loan limits. As explained in Section 1.4, the low-middle home price CBSA subsample is used

to address the potential effect of the conforming loan limits. To isolate this effect, I report estimation results from both

the full sample and the subsample of low-middle home-price CBSAs.
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Figure 1.2: Projected Cost/Projected Guarantee Fees (0% Mean Reversion)

Source: Fannie Mae, Freddie Mac, FHFA, Yield Book and author’s calculation. This figure plots the result from

the default insurance valuation model, presented in Section 1.5. The simulation setting assumes a 0% home price

mean reversion, or home prices staying constant. Each dot represents a CBSA among the largest 100 CBSAs in the

U.S. The vertical axis is the total discounted cost for the GSEs from the insurance contracts normalized by the total

discounted revenue. The magenta line is the fitted line. The valuation model builds on the competing-risk hazard

estimates reported in Table 1.14 and a calibrated Hull-White term-structure model. Details of the competing-risk

hazard regressions are described in Section 1.5. The Hull-White term-structure model and its calibration procedure is

described in Section 1.5.
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Figure 1.3: Projected Cost/Projected Guarantee Fees (10% Mean Reversion)

Source: Fannie Mae, Freddie Mac, FHFA, Yield Book and author’s calculation. This figure plots the result from

the default insurance valuation model, presented in Section 1.5. The simulation setting assumes a 10% home price

mean reversion. Each dot represents a CBSA among the largest 100 CBSAs in the U.S. The vertical axis is the total

discounted cost for the GSEs from the insurance contracts normalized by the total discounted revenue. The magenta

line is the fitted line. The valuation model builds on the competing-risk hazard estimates reported in Table 1.14

and a calibrated Hull-White term-structure model. Details of the competing-risk hazard regressions are described in

Section 1.5. The Hull-White term-structure model and its calibration procedure is described in Section 1.5.
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Figure 1.4: Projected Cost/Projected Guarantee Fees (32% Mean Reversion)

Source: Fannie Mae, Freddie Mac, FHFA, Yield Book and author’s calculation. This figure plots the result from

the default insurance valuation model, presented in Section 1.5. The simulation setting assumes a 32% home price

mean reversion. Each dot represents a CBSA among the largest 100 CBSAs in the U.S. The vertical axis is the total

discounted cost for the GSEs from the insurance contracts normalized by the total discounted revenue. The magenta

line is the fitted line. The valuation model builds on the competing-risk hazard estimates reported in Table 1.14

and a calibrated Hull-White term-structure model. Details of the competing-risk hazard regressions are described in

Section 1.5. The Hull-White term-structure model and its calibration procedure is described in Section 1.5.
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Figure 1.5: Projected Cost/Projected Guarantee Fees (95% Mean Reversion)

Source: Fannie Mae, Freddie Mac, FHFA, Yield Book and author’s calculation. This figure plots the result from

the default insurance valuation model, presented in Section 1.5. The simulation setting assumes a 95% home price

mean reversion. Each dot represents a CBSA among the largest 100 CBSAs in the U.S. The vertical axis is the total

discounted cost for the GSEs from the insurance contracts normalized by the total discounted revenue. The magenta

line is the fitted line. The valuation model builds on the competing-risk hazard estimates reported in Table 1.14

and a calibrated Hull-White term-structure model. Details of the competing-risk hazard regressions are described in

Section 1.5. The Hull-White term-structure model and its calibration procedure is described in Section 1.5.
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Table 1.1: Summary Statistics

Mean Std Min Max

∆ log(HPI) 0.080 0.058 -0.072 0.364

∆(Unemployment) 0.138 0.830 -2.300 3.500

∆(Wage) 749 1001 -13151 4509

∆ log(LTV )

First-Time Buyers with LTVs ≤ 80.5% 0.001 0.015 -0.270 0.219

First-Time Buyers with LTVs > 80.5% 0.001 0.004 -0.040 0.050

Other Buyers with LTVs ≤ 80.5% -0.001 0.016 -0.134 0.081

Other Buyers with LTVs > 80.5% -0.000 0.003 -0.025 0.024

∆(FICO)

First-Time Buyers with LTVs ≤ 80.5% 1.741 5.166 -51.333 73.167

First-Time Buyers with LTVs > 80.5% -0.019 5.864 -104.000 70.500

Other Buyers with LTVs ≤ 80.5% 1.942 2.967 -27.333 28.896

Other Buyers with LTVs > 80.5% 0.459 4.138 -50.333 33.985

∆(DTI)

First-Time Buyers with LTVs ≤ 80.5% 0.528 1.804 -16.450 17.136

First-Time Buyers with LTVs > 80.5% 0.530 1.892 -16.348 22.500

Other Buyers with LTVs ≤ 80.5% 0.610 1.390 -9.320 11.700

Other Buyers with LTVs > 80.5% 0.601 1.530 -23.333 35.500

∆(Owner-Occupation)

First-Time Buyers with LTVs ≤ 80.5% 0.000 0.005 -0.087 0.077

First-Time Buyers with LTVs > 80.5% -0.000 0.005 -0.077 0.077

Other Buyers with LTVs ≤ 80.5% -0.010 0.021 -0.161 0.194

Other Buyers with LTVs > 80.5% -0.024 0.027 -0.500 0.208

∆ (Interest Rate)

First-Time Buyers with LTVs ≤ 80.5% -0.280 0.568 -1.342 0.881

First-Time Buyers with LTVs > 80.5% -0.458 0.536 -1.377 0.855

Other Buyers with LTVs ≤ 80.5% -0.316 0.560 -1.194 0.762

Other Buyers with LTVs > 80.5% -0.464 0.519 -1.238 1.542

Observations (CBSA-years) 1926

Source: Fannie Mae, Freddie Mac, FHFA, IRS, BLS, author’s own calculations. This table displays sum-

mary statistics for changes in loan and borrower characteristics in my sample of GSE loans at the CBSA-

year level.
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Table 1.2: Effect of Home-Price Growth on Loan-to-Value Ratios

A: GSE First-Time Home Buyers

LTVs ≤ 80.5% Segement LTVs > 80.5% Segement

(1) (2) (3) (4) (5) (6)

∆ log(HPI) -0.082*** -0.087*** -0.086*** -0.006*** -0.008*** -0.003

(0.006) (0.006) (0.010) (0.002) (0.002) (0.003)

Year FEs y y y y y y

Controls n y y n y y

CBSA FEs n n y n n y

Observations 1926 1926 1926 1926 1926 1926

R-squared 0.19 0.20 0.28 0.04 0.09 0.14

B: GSE Other Buyers

LTVs ≤ 80.5% Segement LTVs > 80.5% Segement

(1) (2) (3) (4) (5) (6)

∆ log(HPI) -0.125*** -0.133*** -0.129*** -0.012*** -0.013*** -0.012***

(0.005) (0.005) (0.007) (0.001) (0.001) (0.002)

Year FEs y y y y y y

Controls n y y n y y

CBSA FEs n n y n n y

Observations 1926 1926 1926 1926 1926 1926

R-squared 0.48 0.52 0.61 0.19 0.23 0.29

Source: Fannie Mae, Freddie Mac, FHFA, IRS, BLS, author’s own calculations. This table reports estimates

of Equations (1.1) and (1.2) in the text. The dependent variable is the annual change in log average LTV at

the CBSA-year level. Panel A and Panel B are for GSE first-time home buyers and other buyers respectively.

CBSA-year level controls include changes in macroeconomic conditions measured by unemployment rates

and average wage, and changes in loan and borrower characteristics including average FICO scores, debt-

to-income ratios, interest rates and percentage of owner occupied mortgages.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 1.3: Effect of Home Price Growth on Loan-to-Value Ratios (Excluding High HP Areas)

A: GSE First Time Home Buyers, Excluding High Home Price CBSAs

LTVs ≤ 80.5% Segement LTVs > 80.5% Segement

(1) (2) (3) (4) (5) (6)

∆ log(HPI) -0.042*** -0.047*** -0.054*** -0.003 -0.006** -0.001

(0.007) (0.007) (0.011) (0.002) (0.002) (0.004)

Year FEs y y y y y y

Controls n y y n y y

CBSA FEs n n y n n y

Observations 1794 1794 1794 1794 1794 1794

R-squared 0.09 0.10 0.15 0.04 0.09 0.14

B: GSE Other Buyers, Excluding High Home Price CBSAs

LTVs ≤ 80.5% Segement LTVs > 80.5% Segement

(1) (2) (3) (4) (5) (6)

∆ log(HPI) -0.064*** -0.067*** -0.064*** -0.011*** -0.011*** -0.012***

(0.004) (0.004) (0.006) (0.001) (0.001) (0.002)

Year FEs y y y y y y

Controls n y y n y y

CBSA FEs n n y n n y

Observations 1794 1794 1794 1794 1794 1794

R-squared 0.48 0.50 0.54 0.18 0.22 0.28

Source: Fannie Mae, Freddie Mac, FHFA, IRS, BLS, author’s own calculations. This table reports estimates

of Equations (1.1) and (1.2) in the text. The dependent variable is the annual change in log average LTV at

the CBSA-year level. The difference of this table from Table 1.2 is that high home price CBSAs, colored

orange in Figure 1.1, are excluded from the sample to address the potential effect of conforming loan

limits. Panel A and Panel B are for GSE first-time home buyers and other buyers respectively. CBSA-year

level controls include changes in macroeconomic conditions measured by unemployment rates and average

wage, and changes in loan and borrower characteristics including average FICO scores, debt-to-income

ratios, interest rates and percentage of owner occupied mortgages.

*** p < 0.01, ** p < 0.05, * p < 0.1



CHAPTER 1. DO GOVERNMENT GUARANTEES INHIBIT RISK MANAGEMENT?

EVIDENCE FROM FANNIE MAE AND FREDDIE MAC 30

Table 1.4: Effect of Home Price Growth on Private Insurers’ Risk Management

A: ∆ log(Share of Loans with LTVs > 80.5%)

(1) (2) (3)

∆ log(HPI) 0.055 -0.036 0.080

(0.053) (0.055) (0.077)

Year FEs y y y

Controls n y y

CBSA FEs n n y

Observations 1794 1794 1794

R-squared 0.31 0.36 0.46

B: ∆ log(Private Insurers’ Coverage Percentage)

(1) (2) (3)

∆ log(HPI) 0.039** -0.014 0.069***

(0.020) (0.016) (0.025)

Year FEs y y y

Controls n y y

CBSA FEs n n y

Observations 1794 1794 1794

R-squared 0.25 0.48 0.55

Source: Fannie Mae, Freddie Mac, FHFA, IRS, BLS, author’s own calculations. Panel A and B report

estimates of Equations (1.4) and (1.5) in the text respectively. In Panel A, the dependent variable is the

annual change in log percentage of loans with LTVs above 80.5%. In Panel B, the dependent variable is

the annual change in insurance percentage, percentage of initial loan balance covered by private insurers.

The estimation sample is loans by GSE first-time home buyers from low-to-middel CBSAs, colored blue

in Figure 1.1. CBSA-year level controls include changes in macroeconomic conditions measured by un-

employment rates and average wage, and changes in loan and borrower characteristics including average

FICO scores, debt-to-income ratios, interest rates and percentage of owner occupied mortgages.
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Table 1.5: Percentage of CBSA-mortgage segments where Private Labeled FRMs had Lower In-

terest Rates than GSE FRMs

(1) (2)

Full Low-to-Middle

Sample Home Price Sample

2000 5.2% 5.2%

2001 2.9% 2.9%

2002 5.2% 4.5%

2003 3.2% 3.6%

2004 2.1% 2.3%

2005 0.9% 1.0%

2006 2.1% 2.2%

Source: Fannie Mae, Freddie Mac, ABSNet, author’s own calculations. This table reports the percentage

of CBSA-mortgage segments where private label originators offered better interest rates than the GSEs

during the housing boom. Mortgages from each CBSA-year are divided into sixteen segments along two

dimensions, LTVs and FICO scores. Along the LTV dimension, the cutoffs are 79.5%, 80.5% and 90%.

Along the FICO score dimension, the cutoffs are 660, 720 and 760. For each CBSA-year-LTV-FICO

segment, I collapse the median interest rates for GSE FRMs and private label FRMs. This table reports

the percentage of CBSA-mortgage segments where private label loans had lower median interest rates than

GSE loans.
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Table 1.6: Effect of Home Price Growth on Combined-Loan-to-Value Ratios

A: GSE First Time Home Buyers, Excluding High Home Price CBSAs

LTVs ≤ 80.5% Segement LTVs > 80.5% Segement

(1) (2) (3) (4) (5) (6)

∆ log(HPI) -0.049*** -0.059*** -0.054*** -0.003 -0.006** -0.001

(0.009) (0.010) (0.015) (0.002) (0.002) (0.004)

Year FEs y y y y y y

Controls n y y n y y

CBSA FEs n n y n n y

Observations 1794 1794 1794 1794 1794 1794

R-squared 0.05 0.06 0.10 0.04 0.09 0.15

Panel B: GSE Other Buyers, Excluding High Home Price CBSAs

LTVs ≤ 80.5% Segement LTVs > 80.5% Segement

(1) (2) (3) (4) (5) (6)

∆ log(HPI) -0.087*** -0.090*** -0.077*** -0.011*** -0.011*** -0.012***

(0.005) (0.005) (0.007) (0.001) (0.001) (0.002)

Year FEs y y y y y y

Controls n y y n y y

CBSA FEs n n y n n y

Observations 1794 1794 1794 1794 1794 1794

R-squared 0.39 0.40 0.44 0.19 0.22 0.28

Source: Fannie Mae, Freddie Mac, FHFA, IRS, BLS, author’s own calculations. This table reports estimates

of Equations (1.6) and (1.7) in the text. The dependent variable is the annual change in log average CLTV,

as opposed to LTV in Table 1.3, at the CBSA-year level. High home price CBSAs, colored orange in

Figure 1.1, are excluded from the sample to address the potential effect of conforming loan limits. Panel A

and Panel B are for GSE first-time home buyers and other buyers respectively. CBSA-year level controls

include changes in macroeconomic conditions measured by unemployment rates and average wage, and

changes in loan and borrower characteristics including average FICO scores, debt-to-income ratios, interest

rates and percentage of owner occupied mortgages.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 1.7: Effect of Home Price Growth on FICO

Excluding High Home Price CBSAs

GSE First Time Buyers Private Label ARMs

(1) (2) (3) (4) (5) (6)

∆ log(HPI) -0.009*** -0.010*** -0.020*** 0.059*** 0.009*** 0.019***

(0.003) (0.003) (0.005) (0.003) (0.003) (0.004)

Year FEs y y y y y y

Controls n y y n y y

CBSA FEs n n y n n y

Observations 1794 1794 1794 1794 1794 1794

R-squared 0.21 0.26 0.31 0.70 0.86 0.87

Source: Fannie Mae, Freddie Mac, FHFA, IRS, BLS, author’s own calculations. This table

reports estimates of Equation (1.3) in the text. The dependent variable is the annual change in

log average FICO score. High home price CBSAs, colored orange in Figure 1.1, are excluded

from the sample to address the potential effect of conforming loan limits. CBSA-year level

controls include changes in macroeconomic conditions measured by unemployment rates and

average wage, and changes in loan and borrower characteristics including average FICO scores,

debt-to-income ratios, interest rates and percentage of owner occupied mortgages.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 1.8: Effect of Home Price Growth on LTVs for Various Low Debt-to-Income Ratio Subsamples

GSE First Time Home Buyers, Excluding High Home Price CBSAs

Full Sample DTI≤60% DTI≤55% DTI≤50% DTI≤45% DTI≤40%

(1) (2) (3) (4) (5) (6)

∆ log(HPI) -0.051*** -0.050*** -0.050*** -0.053*** -0.057*** -0.060***

(0.016) (0.016) (0.017) (0.017) (0.018) (0.020)

Obs 1794 1794 1794 1794 1794 1794

R squ 0.12 0.12 0.12 0.11 0.11 0.11

Source: Fannie Mae, Freddie Mac, FHFA, IRS, BLS, author’s own calculations. This table reports esti-

mates of Equation (1.1) in the text for low debt-to-income ratio subsamples. The dependent variable is the

annual change in log average LTV at the CBSA-year level. CBSA-year level controls include changes in

macroeconomic conditions measured by unemployment rates and average wage, and changes in loan and

borrower characteristics including average FICO scores, debt-to-income ratios, interest rates and percentage

of owner occupied mortgages.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 1.9: The Relative Importance of Risk Taking in FICO and LTVs

GSE First Time Home Buyers with LTVs ≤ 80.5%
Excluding High Home Price CBSAs

(1) (2)

Changes in Changes in

log LTVs log FICO

∆ log(HPI) -0.054*** -0.015***

(0.011) (0.006)

Year FEs y y

Controls y y

CBSA FEs y y

Observations 1794 1794

R-squared 0.15 0.19

Source: Fannie Mae, Freddie Mac, FHFA, IRS, BLS, author’s own calculations. This table reports estimates

of Equations (1.1) and (1.3) in the text for GSE loans by first time home buyers with LTVs below 80.5%.

The dependent variable is the annual change in log average LTV in column 1, and annual change in log

FICO score in column 2. High home price CBSAs, colored orange in Figure 1.1, are excluded from the

sample to address the potential effect of conforming loan limits. CBSA-year level controls include changes

in macroeconomic conditions measured by unemployment rates and average wage, and changes in loan and

borrower characteristics including average FICO scores, debt-to-income ratios, interest rates and percentage

of owner occupied mortgages. In the LTV regression reported in column 1, changes in LTVs are excluded

from the controls. In the FICO score regression reported in column 2, changes in FICO scores are excluded

from the controls.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 1.10: Robustness of LTV Results to Bunching at 80%

GSE First Time Home Buyers with LTVs ≤ 79.5%
Excluding High Home Price CBSAs

(1) (2) (3)

∆ log(HPI) -0.069*** -0.068*** -0.063**

(0.018) (0.019) (0.028)

Year FEs y y y

Controls n y y

CBSA FEs n n y

Observations 1794 1771 1771

R-squared 0.05 0.06 0.10

Source: Fannie Mae, Freddie Mac, FHFA, IRS, BLS, author’s own calculations. This table reports estimates

of Equations (1.1) in the text for GSE loans by first time home buyers with LTVs below 79.5%. The

dependent variable is the annual change in log average LTV. High home price CBSAs, colored orange in

Figure 1.1, are excluded from the sample to address the potential effect of conforming loan limits. CBSA-

year level controls include changes in macroeconomic conditions measured by unemployment rates and

average wage, and changes in loan and borrower characteristics including average FICO scores, debt-to-

income ratios, interest rates and percentage of owner occupied mortgages.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 1.11: Results for Private Label FRMs

Private Label FRMs

Excluding High Home Price CBSAs

(1) (2) (3)

∆ log(HPI) -0.026*** -0.020*** 0.017*

(0.005) (0.006) (0.009)

Year FEs y y y

Controls n y y

CBSA FEs n n y

Observations 1792 1792 1792

R-squared 0.69 0.71 0.74

Source: ABSNet, FHFA, IRS, BLS, author’s own calculations. This table reports estimates of Equations

(1.1) in the text for private label FRMs. The dependent variable is the annual change in log average LTV.

High home price CBSAs, colored orange in Figure 1.1, are excluded from the sample to address the po-

tential effect of conforming loan limits. CBSA-year level controls include changes in macroeconomic

conditions measured by unemployment rates and average wage, and changes in loan and borrower char-

acteristics including average FICO scores, debt-to-income ratios, interest rates and percentage of owner

occupied mortgages.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 1.12: Robustness of LTV Results to Conforming Loan Limits

GSE Loans by First Time Home Buyers

with Loan Amount under 95% of CLLs

(1) (2) (3)

∆ log(HPI) -0.042*** -0.047*** -0.055***

(0.007) (0.007) (0.011)

Year FEs y y y

Controls n y y

CBSA FEs n n y

Observations 1794 1794 1794

R-squared 0.09 0.10 0.15

Source: Fannie Mae, Freddie Mac, FHFA, IRS, BLS, author’s own calculations. This table reports estimates

of Equations (1.1) in the text for GSE loans by first time home buyers with with loan amount under 95%
of conforming loan limits. The dependent variable is the annual change in log average LTV. CBSA-year

level controls include changes in macroeconomic conditions measured by unemployment rates and average

wage, and changes in loan and borrower characteristics including average FICO scores, debt-to-income

ratios, interest rates and percentage of owner occupied mortgages.

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 1.13: Cash Flows of Default Insurance

Cash Flows

Mortgage Monthly Outcome Fixed Leg (Revenue) Floating Leg (Cost)

Defaulted 0 Loan balance − Value of the house

Prepaid or Matured 0 0

Paid Down ≈ 0.2%

12
of remaining balance 0

This table summaries in each month how the cash flows evolve according to the loan outcomes.
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Table 1.14: Default and Prepayment Hazard Estimates

(1) (2)

Default Risk Prepayment Risk

A: Static Covariates

log(FICO) -6.095*** 1.233***

(0.156) (0.119)

First-Time Home Buyer -0.071*** -0.053***

(0.024) (0.004)

Owner Occupied -0.396*** 0.274***

(0.112) (0.026)

Original r - Original 10 Year Rate 0.898*** 0.771***

(0.023) (0.021)

log(Original Amount) -0.045 0.773***

(0.100) (0.021)

log(Original LTV) 6.077*** -0.160***

(0.272) (0.026)

B: Dynamic Covariates

log(Cumulative HPA) -4.790*** 1.392***

(0.629) (0.226)

Coupon Gap 0.245*** 0.912***

(0.016) (0.025)

Unemployment 0.099*** 0.138***

(0.035) (0.017)

CBSA FEs y y

Observations 106,965,734 119,834,487

Source: Fannie Mae, Freddie Mac, FHFA, Yield Book, BLS, author’s own calculations. This table shows

estimates using maximum likelihood estimator of the hazard functions in (1.8) and (1.9) in the text, esti-

mated using a continuous-time nonparametric baseline hazard function. Estimated coefficients are the effect

of a given covariate on the log hazard rate of a mortgage. Details of the estimation procedure are described

in Section 1.5. Panel A and Panel B report the coefficients for static and dynamic covariates respectively.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Chapter 2

Estimation of Linear Process Spectra with

an Application to Determining the

Mean-Variance Frontier for Time Series

Co-authored with Alexander Aue and Debashis Paul

2.1 Introduction

One persistent challenge in macroeconmics and finance consists of devising inference procedures

for short time series data of length T with a large number N of cross sections. As Cochrane (2005)

argues:

“Our econometric techniques all are designed for large time series and small cross-sections.

Our data has a large cross section and short time series. A large unsolved problem in finance is the

development of appropriate large-N small-T tools for evaluating asset pricing models.”

One particular large-N small-T impact mentioned in Cochrane (2005) is the underestimation

of risk in the mean-variance frontier. This Mean-Variance Frontier (henceforth, MVF) measures

the minimum risk to be taken in order to achieve a set of expected returns.

As Cochrane (2005) articulated, apart from statistical uncertainty due to sampling, the large

dimensionality of the data leads to peculiar discrepancies between the sample MVF compared to

its population counterpart. From Figure 3.1, we can see that the ex-post frontier, calculated from

finite samples, significantly underestimates risk compared to the true, ex-ante frontier. Existing

works solve this problem for time independent data (Kan and Zhou, 2007; El Karoui, 2013). In

this paper, we propose a novel algorithm correcting the bias in MVF for time series returns.

Figure 2.2 illustrates the main result via Monte Carlo simulation. Dashed lines around each

solid line constitute the one standard error bands around the respective mean estimates. The mean

estimate of the proposed LinShrink algorithm closely matches the truth, outperforming the other

two algorithms when the data is sampled from a high-dimensional, second-order moving average

process. The magenta curve displays the result of the IndShrink method proposed by El Karoui
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Figure 2.1: Ex-ante and Ex-Post frontiers. Source: Cochrane (2005).

(2013), stressing that his algorithm yields an unbiased estimator when the underlying data gener-

ating process is time independent. The difference between the magenta curve and the green curve

is due to the model misspecification between a time independent model and a time series model.

Given that most time series in finance and econometrics have important inter-temporal correlations,

it is important to design an algorithm that accounts for the time dependence.

A simple justification of risk underestimation by the naive estimate of MVF, that is, the sample

version of the minimum portfolio risk formula, follows from Jensen’s inequality. The difference

between the population and sample versions only gets larger with increasing N . To understand

this intuitively, consider the extreme case of mutually uncorrelated assets. Here, the covariance

matrix Σ is a diagonal matrix and the population correlation of returns from any pair of assets

is 0. However, the sample correlations could still be significantly positive or negative. These

positive or negative sample correlations make assets look like good hedges for each other, despite

their independence in the population. These pseudo hedges are the fundamental reason why risk

is underestimated in finite samples. This is particularly an issue when the number of assets N is

large. There are N(N − 1)/2 number of distinct correlations, not to mention correlations between

linear combinations, or portfolios, of assets. Thus, when N is large, some pairs of assets should

appear to be correlated, or good hedges, with a very high probability despite the cross sectional

independence assumption.

The issue of bias in the empirical estimate of MVF gets more intricate when, in addition, there

is temporal dependence across observations. The aim of this paper, then, is to explore this aspect

in detail by making use of a widely used class of time series – linear processes – as a benchmark

for explaining the phenomena. In particular, RMT is utilized using the results developed in ?
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Figure 2.2: MVF estimation for an MA(2) process with N = 1000, T = 3000. LinShrink is

the proposed algorithm, IndShrink stands for shrinkage assuming independence, and the naive

estimate uses the standard sample covariance matrix estimate.

as a starting point. Throughout the exposition, significant differences and intricacies associated

with the temporal dependence in the returns are emphasized, in particular when related to issues

regarding MVF estimation.

To articulate the main ideas, note that the basic problem of MVF can be formulated as that

of estimating the quadratic form BTΣ−1B, where Σ = Cov(Xt) denotes the N × N covariance

matrix for asset return vector Xt, t = 1, . . . , T and B is an N ×K matrix. In MVF, B is an N × 2
matrix with expected returns of the N assets as the first column, and every entry in the second

column being equal to 1. As mentioned above, the “natural estimate” BTS−1B is biased, even if

the population mean return is assumed to be known. In this paper, a correction for the finite sample

bias is proposed for (Xt : t ∈ Z) in the class of high-dimensional linear time series of the form

Xt =
∑∞

ℓ=0 AℓZt−ℓ, where the coefficient matrices (Aℓ : ℓ ∈ N0) are symmetric and simultane-

ously diagonalizable, and (Zt : t ∈ Z) an independent, identically distributed (i.i.d.) process of

innovations with independent coordinates.1 Under the stated assumptions, ? established the ex-

istence of a limiting spectral distribution for any finite order symmetrized sample autocovariance

matrix. The latter result forms the cornerstone of the estimation procedures proposed in this paper.

Note that the assumed process on one hand generalizes the i.i.d. observations that have mostly

been assumed in the literature on (high-dimensional) portfolio optimization and encompasses the

stationary Autoregressive Moving Average (ARMA) processes widely used in time series model-

1In this paper, Z, N and N0 denote the integers, the positive integers and the nonnegative integers, respectively.
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ing, with the restriction of simultaneously diagonalizable coefficients. On the other hand, it also

constitutes a nontrivial extension to existing results in RMT literature on the asymptotic behav-

ior of spectra of sample covariance matrices in large dimensions, such as the works of El Karoui

(2008) and Ledoit and Wolf (2012, 2015). As is demonstrated later, estimation of the eigenvalue

distribution of these coefficient matrices is a challenge due to the highly nonlinear nature of the

relationship between the sample spectra and the population parameters. The first contribution of

this paper is to develop an algorithm for the estimation of these eigenvalue distributions. It is also

described how solving this problem allows for designing an effective algorithm, termed LinShrink,

that includes a model selection step for estimating the quantity of primary interest in this paper,

namely the MVF, in a time series context. The second contribution of this paper is the extension

of the algorithm to the scenario where asset returns follow a factor structure with the idiosyncratic

term possessing the linear process structure specified above. Related work for high-dimensional

factor models may be found in Bai (2003), Bai and Ng (2002), and Onatski (2009, 2012).

Although the results are illustrated in the classical MVF context, the proposed methodology has

the potential for further applications. Quadratic forms of the type BTΣ−1B arise in many fields

of time series econometrics; for example, in computing standard errors in the generalized methods

of moments and in linear discriminant analysis. Moreover, estimating the eigenvalue distribution

of coefficients of the linear time series provides avenues for designing appropriate shrinkage rules

for objects such as the spectral density matrix associated with it. The latter object and functionals

derived from it are especially important in prediction problems. Extensions of the proposed method

to these and other specific contexts constitute promising directions for future research.

Besides the papers mentioned above, our work contributes to the vast literature on asset pricing

and optimal portfolio choice. The pathbreaking work of Markowitz Markowitz (2009) utilized

optimization theory to determine the optimal MVF under the assumption of known mean and

covariances of the returns. Since then, decades of work in econometrics and finance have addressed

various facets of MVF estimation under statistical and parameter uncertainties. The importance of

the latter was revealed by Barberis (2000), who emphasized that even after incorporating parameter

uncertainty, there is sufficient predictability in returns, thus making it important to take estimation

risk into account when allocating assets to stocks.

? were among the earliest to study the phenomena associated with high dimensionality on the

portfolio risk estimation. Kan and Zhou (2007) considered the effects of model uncertainty and

studied the implications of combinations of portfolio choices. The bias in the empirical MVF can

be significant even when T and N are of comparable sizes. The bias in this setting was quantified

by Bai et al. (2009) and ? through the use of the Random Matrix Theorey (henceforth, RMT)

framework, assuming that the returns across time are independent. The latter works, as well as

El Karoui (2013), also suggested methods for correcting for this bias under the same assumptions.

It should be mentioned here that the use of RMT in explaining behavior of high-dimensional fi-

nancial data was pioneered by ??. A broad overview of this growing literature can be found in

Bouchaud and Potters (2009), and Paul and Aue (2014).

The approaches put forth in Bai et al. (2009); ?); El Karoui (2013) rely on various ways of re-

ducing the bias in the estimation of quadratic forms of the type aTΣ−1b, where Σ is the population

return covariance matrix. The vectors a and b are typically either the population mean returns µ or
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some fixed vector such as the vector of ones. One redeeming feature of their work are the minimal

structural assumptions on the population parameters. Recently, another line of study within the

MVF estimation framework has come into the focus that seeks to modify prior work through im-

posing various constraints on the portfolio weights. Empirical research, for example in ??Brodie

et al. (2009), has shown that such constraints can enhance portfolio performance. Some of these

empirical results were validated through theoretical justifications in ?. Very recently, Ao et al.

(2016) proposed a new sparsity constraint-based estimation of MVF and showed its consistency.

The remainder of the paper is organized as the follows. Section 2.2 reviews existing results,

sets the model and states the main assumptions. Section 2.3 describes in detail the proposed esti-

mation algorithm, including a thresholding and model selection algorithm. Section 2.4 discusses

the application of the proposed methodology to the Markowitz portfolio problem and an extension

to factor models with known factors. Section 2.5 reports empirical results from extensive Monte

Carlo simulations.

2.2 Overview of Results in ?

The methodology developed in this paper is built upon the theoretical analysis of the behavior

of empirical spectral distribution of symmetrized sample autocovariance matrices carried out in

Liu et al. ?, whose results are linked to the present work in the following way. Here, interest

is in estimating a generalized quadratic form of the type BTΣ−1B with a strategy based on the

spectral decomposition of the covariance matrix Σ. Denoting the distinct (ordered) eigenvalues of

Σ by (σj : j = 1, . . . , J) and corresponding eigen-projection matrices (Pj : j = 1, . . . , J), where

J ∈ {1, . . . , p}, the quadratic form can be expressed as

BTΣ−1B =
J
∑

j=1

1

σj
BTPjB. (2.1)

In a nutshell, the strategy is based upon splitting the estimation problem into two steps. The first

step involves the estimation of the eigenvalues (σj : j = 1, . . . , J) together with their multiplicities.

This can be equivalently expressed in the form of the empirical spectral distribution (ESD) of Σ.

The second step involves estimation of the parameters Θj = BTPjB, j = 1, . . . , J . The main

results of ? provide the foundation for estimating the ESD of Σ. Given the estimate of the ESD

of Σ, one can make use of a carefully constructed regression formulation, again based on the

derivations in ?, to estimate the parameters (Θj : j = 1, . . . , J). The final estimate of BTΣ−1B is

obtained by combining the two component estimates.

To elaborate further, ? established the existence of nonrandom limits of the ESD of the sample

covariance matrix S and symmetrized autocovariance matrices for linear process of the kind de-

scribed in Section 2.1. These results are expressed in terms of the Stieltjes transform of the ESDs

of the sample autocovariance matrices and the coefficients of the linear process. The proposed

estimation strategy for the ESD of Σ makes explicit use of the relationships between the Stielt-

jes transforms of the ESD of S and that of the coefficient matrices to formulate an optimization
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problem where the ESDs of the coefficient matrices are used as unknown parameters. Section 2.2

contains details on the model and the main notions, including the definition of the high-dimensional

setting, symmetrized autocovariance matrices, Stieltjes transform and the description of the linear

time series model. For convenience, Section 2.2 summarizes the main results of ?.

Setting

The limiting scenario considered considered here is the classical high dimensional setting when the

number of dimensions N grows with the number of observations T , so that N = N(T ) is assumed

to be a function of the sample size satisfying

lim
T→∞

N

T
= c ∈ (0,∞). (2.1)

A sequence of random vectors (Xt : t ∈ Z) with values in C
N is called a linear process or

moving average process of order infinity, abbreviated by the acronym MA(∞), if it has the repre-

sentation

Xt =
∞
∑

ℓ=0

AℓZt−ℓ, t ∈ Z, (2.1)

where (Zt : t ∈ Z) denotes a sequence of independent, identically distributed N -dimensional ran-

dom vectors whose entries are independent and satisfy E[Znt] = 0, E[|Znt|
2] = 1, and E[|Znt|

4] <
∞, where Znt denotes the nth coordinate of Zt. In the complex-valued case this is meant as

E[Re(Znt)
2] = E[Im(Znt)

2] = 1/2. It is also assumed that real and imaginary parts are indepen-

dent.

The symmetrized lag-τ sample autocovariance associated with the process (Xt : t ∈ Z) is

defined as

Cτ =
1

2T

T−τ
∑

t=1

(

XtX
∗
t+τ +Xt+τX

∗
t

)

, τ ∈ N0,

assuming X1, . . . , XT have been observed. For τ = 0, this definition gives the covariance matrix

S = C0. Let

F̂τ (σ) =
1

p

N
∑

n=1

I{σn,τ≤σ},

denote the empirical spectral distribution (ESD) of Cτ , where σ1,τ , . . . , σN,τ are the eigenvalues of

Cτ .

Assumption 2.2.1 below lists several additional assumptions on the coefficient matrices Aℓ

of the linear process in (2.2). The essence of this assumption is that, up to an unknown rotation

matrix U, the coordinates of the observation vector Xt, form uncorrelated stationary time series

with the coefficients in the linear process representation being functionally related in a suitably

smooth manner, as indicated by the behavior of a set of continuous functions fℓ.
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Assumption 2.2.1. (a) Set A0 = I, the N ×N identity matrix.

(b) The matrices (Aℓ : ℓ ∈ N0) are simultaneously diagonalizable Hermitian matrices satisfy-

ing ‖Aℓ‖ ≤ λ̄Aℓ
for all ℓ ∈ N0 and large N with

∞
∑

ℓ=0

λ̄Aℓ
≤ λ̄A <∞ and

∞
∑

ℓ=0

ℓλ̄Aℓ
≤ λ̄′

A
<∞.

Note that one can set λ̄A0
= 1.

(c) There are continuous functions fℓ : R
m → R, ℓ ∈ N0, such that, for every N , there is a set

of points λ1, . . . , λN ∈ R
m, not necessarily distinct, and a unitary N ×N matrix U such that

U∗AℓU = diag(fℓ(λ1), . . . , fℓ(λN)), ℓ ∈ N,

and f0(λ) = 1. Note that the functions fℓ could also be allowed to depend on N = N(T ) as long

as they converge uniformly to continuous functions as T → ∞.

(d) With probability one, FA

p , the ESD of {λ1, . . . , λN}, converges weakly to a nonrandom

probability distribution function FA on R
m as N → ∞.

One classical route to formulate results in the high-dimensional setting prescribed in (2.2) is

through the use of the Stieltjes transform, which transforms a distribution to a function defined on

C
+, where C

+ = {x + iy : x ∈ R, y > 0} denotes the upper complex half plane. The Stieltjes

transform of a distribution function F on the real line is the function

sF : C
+ → C

+, z 7→ sF (z) =

∫

1

σ − z
dF (σ).

It can be shown that sF is analytic on C
+ and that the distribution function F can be reconstructed

from sF using an inversion formula. See Bai and Silverstein (2010) or Paul and Aue (2014) for

further descriptions on Stieltjes transforms and their usage in random matrix theory.

Large-Sample Spectral Behavior of Cτ

Denote by A = [A0 : A1 : · · · ] the matrix collecting the coefficient matrices of the linear process

(Xt : t ∈ Z). Define the transfer functions

ψ(λ, ν) =
∞
∑

ℓ=0

eiℓνfℓ(λ) and ψ(A, ν) =
∞
∑

ℓ=0

eiℓνAℓ, (2.1)

and the power transfer functions

h(λ, ν) = |ψ(λ, ν)|2 and H(A, ν) = ψ(A, ν)ψ(A, ν)∗.

Note that the contribution of the temporal dependence of the underlying time series on the asymp-

totic behavior of F̂τ is quantified through h(λ, ν). Specifically, h(λn, ν) with λn as in part (c) of

Assumption 2.2.1 is (up to normalization) the spectral density of the nth coordinate of the process

rotated with the help of the unitary matrix U. With these definitions, the main results of ? can be

stated as follows.
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Theorem 1. If a complex-valued linear process (Xt : t ∈ Z) with independent, identically dis-

tributed Znt, E[Znt] = 0, E[Re(Znt)
2] = E[Im(Znt)

2] = 1/2, Re(Znt) and Im(Znt) indepen-

dent, and E[|Znt|
4] < ∞, satisfies Assumption 2.2.1, then, with probability one and in the high-

dimensional setting (2.2), F̂τ converges to a nonrandom probability distribution Fτ with Stieltjes

transform sτ determined by the equation

sτ (z) =

∫
[

1

2π

∫ 2π

0

cos(τν)h(λ, ν)

1 + c cos(τν)Kτ (z, ν)
dν − z

]−1

dFA(λ), (2.1)

where Kτ : C
+ × [0, 2π] → C

+ is a Stieltjes kernel, that is, Kτ (·, ν) is the Stieltjes transform of

a measure with total mass mν =
∫

h(λ, ν)dFA(λ) for every fixed ν ∈ [0, 2π], whenever mν > 0.

Moreover, Kτ is the unique solution of

Kτ (z, ν) =

∫
[

1

2π

∫ 2π

0

cos(τν ′)h(λ, ν ′)

1 + c cos(τν ′)Kτ (z, ν ′)
dν ′ − z

]−1

h(λ, ν) dFA(λ) (2.1)

subject to the restriction that Kτ is a Stieltjes kernel. Otherwise, if mν = 0, then Kτ (z, ν) is

identically zero on C
+ and so still satisfies (1).

Theorem 2. If a real-valued linear process (Xt : t ∈ Z) with independent, identically distributed

real-valued Znt, E[Znt] = 0, E[Z2
nt] = 1 and E[Z4

nt] < ∞, satisfies Assumption 2.2.1 with real

symmetric coefficient matrices (Aℓ : ℓ ∈ N0), then the result of Theorem 1 is retained.

2.3 Estimation Strategy

The estimation strategy for the quadratic form BTΣ−1B is based on two steps that are summarized

in the following. All details are given in subsequent sections.

(1) Estimate the ESD of Σ: Since under the assumed model, the ESD of Σ is determined by FA

and the (known) functions (fℓ : ℓ ∈ N), a strategy is formulated for the estimation of FA

within the linear process framework. For computational tractability, the assumed model is

chosen to be a finite-order MA process that can serve as an approximation to the true, and

typically unknown, infinite-order linear process. Once the process is specified, the system of

equations (1) and (1) describing the Stieltjes transform of the limiting spectral distribution

can be utilized for a collection of symmetrized sample autocovariance matrices, including

the sample covariance matrix S, to formulate an optimization problem involving a discrep-

ancy measure between the empirical and limiting Stieltjes transforms, with FA serving as the

unknown parameter of interest. To enable this optimization, FA is parametrized by treating

it as a mixture of point masses, though more general formulations are feasible. The pro-

posed approach to estimation of FA, and consequently the ESD of Σ, is connected to, but

significantly more involved than, the approach for estimating the distribution of eigenvalues

of the population covariance matrix adopted by El Karoui (2008). However, this approach
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is quite distinct from other recent estimation procedures for the spectrum of the population

covariance matrix, such as those by Bai et al. (2010) and Ledoit and Wolf (2015). Details of

the first step are given in Section 2.3.

(2) Estimate the parameters Θ1, . . . ,ΘJ : Recall that Θj = BTPjB, where Pj is the eigen-

projection matrix of Σ corresponding to its jth distinct eigenvalue σj , j = 1, . . . , J . For

the estimation of these parameters, make use of the deterministic equivalent of the resolvent

R(z) := (S−zIp)
−1, z ∈ C

+. This result is a key ingredient in ? for establishing the limiting

spectral distribution (LSD) of S and allows for the use of a regression problem formulation,

minimizing the sum of squared distances between the matrix-valued quantities BTR(z)B
and their limiting values, which can be expressed in terms of functionals of FA (dependent

on z) and the parameters (Θj : j = 1, . . . , J), with the discrepancy measure between the

empirical and limiting quantities then summed over a suitably dense set of values of z ∈ C
+.

Substituting the estimates of the ESDs of the coefficient matrices, this objective function

is minimized with respect to the parameters (Θj : j = 1, . . . , J) to find their estimators.

Details of the second estimation step are given in Section 2.3.

A few comments regarding the estimation procedure are in order. First, the MA representation

of the linear time series formulation allows us to make meaningful approximations of the process

by finite order MA processes. This kind of approximation is important for a stable implementation

of the proposed algorithms and turns out to be quite effective, as is demonstrated through numerical

studies. Second, the estimate of the ESD of Σ is derived from the estimate FA, even though the

latter object could be a higher dimensional distribution if the assumed MA process is of order larger

than one. Moreover, the quadratic form of interest, BTΣ−1B is a lower dimensional estimation

object. This suggests, and is supported by our numerical studies, that the estimation of the latter

is simpler in the sense that even when the estimation of FA is not very accurate, the estimate of

the quadratic form could still remain quite accurate. Moreover, when it comes to estimation of the

quadratic form, there is some redundancy in that not all of the eigen-subspaces of Σ may contribute

significantly to the object BTΣ−1B. This means that a model selection procedure choosing a set

of significant Θj can be more efficient. Indeed, such a model selection strategy is developed using

the principle of cross validation. Finally, even though the description here focuses on the linear

process formulation for the observed return, to deal with more realistic scenarios, the estimation

strategy is extended to factor models whose idiosyncratic term follows the linear process structure

described above. The corresponding description is given in Section 2.4 below.

Estimating the ESD of Σ

The essence of step (1) is to invert equations (1) and (1). By this we mean that we observe sτ (z)
on the left hand side of (1) and want to estimate FA on the right hand side. The following steps

are involved in our estimation procedure.
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(a) Discretization of FA. To estimate FA, use the discrete distribution

F̂A =
J
∑

j=1

η̂jδαj
,

as an approximation, where η̂j are weights, δαj
Dirac measures and J the number of grid points

αj ∈ R
q. For example, for an MA(2) process with q = 2, the number of grid points is the product

of the grid size for each coordinate corresponding to the MA coefficients. In this formulation, η̂j
are the objects to estimate.

(b) Picking a finite collection of z ∈ C
+. Observe first that, for every given z, (1) and (1) constitute

a separate system of equations. For fixed z and τ , compute as discrepancy measure the squared

error loss between the Stieltjes transform of the empirical and limiting ESDs, that is, the two sides

of (1). Pick then a finite collection D of z ∈ C
+ and a finite collection T of lag orders τ ≥ 0. The

foregoing gives as optimization criterion the sum over D and T and the optimal F̂A is chosen as

the one that minimizes this criterion.

The collection D is chosen to satisfy two criteria. The first criterion is that the real parts need

to cover the range of empirical eigenvalues. The second criterion is that the imaginary parts need

to be reasonably close to zero. The closer to zero the imaginary parts of z are, the more sensitive is

the Stieltjes transform to the changes to the model parameters. However, when the imaginary parts

are too close to zero, the Stieltjes transforms also become noisy. Thus, in the numerical studies,

the real parts are chosen to be equally spaced over the range of the empirical distributions of the

eigenvalues, while the imaginary parts are chosen to follow the geometric sequence of 1/4, 1/2, 1,

2 and 4.

(c) Reformulating (1) and (1) as a system of equations. To solve equations (1) and (1) for FA,

solving for the intermediate object Kτ (z, ν) defined in (1) is needed. For any given z, Kτ (z, ν)
is a function defined on [0, 2π]. Rewrite Kτ (z, ν) so that it is a combination of a finite number of

trigonometric functions. Thus estimating function Kτ (z, ν) becomes equivalent estimating a finite

number of parameters. For example, for an MA(q) process, (1) can be written as,

Kτ (z, ν) =

∫

h(λ, ν)

Mτ (z, λ)− z
dFA(λ)

=

q
∑

ℓ=0

q
∑

k=ℓ+1

2 cos((k − ℓ)ν)

∫

fℓ(λ)fk(λ)

Mτ (z, λ)− z
dFA(λ) +

q
∑

ℓ=0

∫

|fℓ(λ)|
2

Mτ (z, λ)− z
dFA(λ),

where

Mτ (z, λ) =
1

2π

∫ 2π

0

cos(τθ)h(λ, θ)

1 + c cos(τθ)Kτ (z, θ)
dθ, (2.1)

and z ∈ C
+. For 0 ≤ ℓ ≤ q define

sℓ,τ (z) =

∫

|fℓ(λ)|
2

Mτ (z, λ)− z
dFA(λ),
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and, for 0 ≤ ℓ < ℓ′ ≤ q, let

sℓ,ℓ′,τ (z) = sℓ′,ℓ,τ (z) =

∫

fℓ(λ)fℓ′(λ)

Mτ (z, λ)− z
dFA(λ).

Then, (1) and (1) can be formulated as a system of equations involving sℓ,τ (z) and sℓ,ℓ′,τ (z), which

are solved using Newton’s method for any given value of z ∈ C
+. The existence and uniqueness

of the latter solution is guaranteed by the results in Liu et al. ?.

Estimation of Quadratic Form

To accommodate step (2), use the fact that, for any z ∈ C
+,

BTR(z)B ≈

J
∑

j=1

1

M(z, αj)− z
Θj, (2.0)

where J is the number of grid points defined in Section 2.3, R(z) = (S − zI)−1, Θj = BTPjB,

andM(z, α) is the kernel defined in (2.3), determined by the Stieltjes kernel describing the LSD of

S. It should be noted here that the approximation in (2.3) holds in a limiting sense, as articulated

through the notion of deterministic equivalent of the resolvent R(z), the details of which can be

found in ?. Notice that Θ1, . . . ,ΘJ are symmetric (indeed, non-negative definite) and
∑J

j=1 Θj =

BTB. Equation (2.3) leads to the following estimation strategy for BTΣ−1B.

• Step 1: Let D ⊂ C
+ be the finite grid from Section 2.3.Then, estimate Θ = (Θ1 : · · · : ΘJ)

by

Θ̂ = arg min
Θ1,...,ΘJ∈SK×K

∑

z∈D

∥

∥

∥

∥

BTR(z)B−
J
∑

j=1

1

M(z, αj)− z
Θj

∥

∥

∥

∥

2

F

, (2.0)

where SK×K denotes the class of K ×K symmetric matrices.

• Step 2: Estimate BTΣ−1B by
J
∑

j=1

1

ψ(αj, 0)
Θ̂j. (2.0)

Thresholding and Model Selection

One challenge in the proposed algorithm is choosing how many grid points αj ∈ R
q to keep from

step (1) of Section 2.3. On one hand, there should be sufficiently many grid points to ensure an

accurate approximation of FA. On the other hand, there should sufficiently few grid points so

that their corresponding weights can be estimated with high precision. One natural solution is

to threshold eigenvalues with weights below some pre-specified tuning parameter ξ. Below, an

algorithm for a given value of ξ is described first and a discussion is then added on how to choose

the tuning parameter based on a model selection approach.
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Algorithm 2.3.1 ( Thresholding). Perform the following three steps.

• Thresholding. Let ξ ≥ 0 be a threshold. For each j ∈ {1, . . . , J}, threshold the estimated

weights η̂j at ξ. Define J (ξ) = {j ∈ {1, . . . , J} : η̂j > ξ} and drop the grid point αj if

j 6∈ J (ξ).

• Reweighting. For all j ∈ J (ξ), assign the updated weight

η̂j(ξ) =
η̂j

∑

j′∈J (ξ) η̂j′
.

Then the thresholded estimate of FA is

F̂A

ξ =
∑

j∈J (ξ)

η̂j(ξ)δαj
. (2.0)

• Estimation of Θ: Estimate the redefined Θ = (Θj : j ∈ J (ξ)) by minimizing

∑

z∈D

∥

∥

∥

∥

BTR(z)B−
∑

j∈J (ξ)

1

M̂ξ(z, αj)− z
Θj

∥

∥

∥

∥

2

F

,

where M̂ξ(z, α) is the kernel M0(z, α) in (2.3) determined by the distribution F̂A

ξ . Here, the

restriction that Θj , j ∈ J (ξ), are symmetric is imposed again. Finally, estimate BTΣ−1B

by

Φ̂(ξ) =
∑

j∈J (ξ)

1

ψ(αj, 0)
Θ̂j(ξ). (2.0)

The thresholding strategy outlined in Algorithm 2.3.1 could be performed for a sequence of

nonnegative ξ (the maximal ξ being the point beyond which J (ξ) is the empty set). In practice,

however, a particular value of the thresholding parameter ξ needs to be chosen. This is a model

selection problem, and a simple cross-validation strategy is proposed to solve it. Accordingly, split

the data {X1, . . . , XT} into two parts, a training set consisting of the first half of the observations

{X1, . . . , XT/2} and a test set of the second half observations {XT/2+1, . . . , XT}.

Algorithm 2.3.2 ( Model selection). Perform the following five steps.

• Given a ξ ≥ 0, obtain the estimate F̂A,Train
ξ based on the training data. Note that the

dimension-to-sample size ratio needs to be adjusted to 2N/T rather than N/T while carry-

ing out this procedure.

• Estimate Θj , j ∈ J Train(ξ), from the training data by the procedure described in Algorithm

2.3.1. Let the corresponding estimates be denoted by (Θ̂Train
j (ξ) : j ∈ J Train(ξ)).

• Let S0,Test denote the sample covariance matrix for the test data, and let RTest(z) be the

corresponding resolvent. Let M̂Test
ξ (z, α) be the analog of M0(z, α) when using the ratio
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2N/T in the computation for the LSD, while using F̂A,Train
ξ for the distribution. Compute

then the forward cross validation score

CVf (ξ) =
∑

z∈D

∥

∥

∥

∥

BTRTest(z)B−
∑

j∈J Train(ξ)

1

M̂Test
ξ (z, αj)− z

Θ̂Train
j (ξ)

∥

∥

∥

∥

2

F

.

• Flip the training data set and the test data set to calculate the backward cross validation

score CVb(ξ). Take the sum CV(ξ) = CVf (ξ) + CVb(ξ) as the score for model selection.

• Define ξopt to be the value of ξ for which CVf (ξ) is minimized subject to the restriction that

Φ̂(ξ) defined in (2.3.1) is nonnegative definite. The latter restriction helps to further narrow

down the scope of plausible models and thereby improves statistical efficiency.

Note that, although in the simulation study below FA is set up as a discrete distribution, the

proposed algorithm can be extended to continuous FA; for example through an approximation with

a set of spline functions. Hence, estimating a continuous FA becomes equivalent to estimating

the coefficients in the spline representation. This, however, can be implemented using numerical

methods similar to the ones utilized for the discrete FA under consideration here.

2.4 Extensions

Application to the Markowitz Portfolio Problem

As documented in El Karoui ?, the Markowitz portfolio problem can be formulated as a special

case of the quadratic program

min
w∈Rp

1

2
wTΣw subject to wTvk = uk, k = 1, . . . , K.

Let V = [v1 : · · · : vK ] be the p ×K matrix whose kth column is vk and U = (u1, . . . , uK)
T the

K-dimensional vector whose kth entry is uk. Define the K ×K matrix

Q = VTΣ−1V, (2.0)

assuming that the columns of V are such that Q is invertible. The solution of the quadratic program

with linear equality constraints (2.4) is

woptimal = Σ−1VTQ−1V (2.0)

and

wT
optimalΣwoptimal = UTQ−1U. (2.0)

The Markowitz portfolio problem fits into the above framework of quadratic programs. Its

aim is to find the minimum risk that one has to absorb in order to achieve an expected portfolio
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return. For each expected portfolio return, there is one minimum risk determined by the smallest

variance of portfolio returns, so it is standard to plot the variance of portfolio returns against the

expected portfolio returns, as in Figures 3.1 and 2.2. The Markowitz portfolio problem has two

linear constraints, so that K = 2. The first constraint is that the total weight is 1, while the second

constraint is that the expected portfolio return is equal to µP , that is,

wT e = 1,

wTµ = µP ,

where e is a p-dimensional vector whose entries are all equal to 1, µ is a vector of expected asset re-

turns in the portfolio and µP is a particular expected portfolio return. Consequently, the respective

quantities in (2.4) and (2.4) become

UP =

[

1
µP

]

and V = [ e : µ ],

noting that the dependence of U on µP will be expressed by the subscript P . Expected returns µ
are typically unknown and commonly estimated by the sample mean µ̂. For each fixed µP , the goal

is then to estimate the minimum risk in (2.4). The algorithm for this is listed in the following.

(1) Since the matrix V involves unknown expected asset returns, the first step is to calculate

V̂ = [ e : µ̂ ], where µ̂ is the sample mean.

(2) The proposed algorithm provides the estimate Q̂ = V̂T Σ̂−1V̂ for Q in (2.4).

(3) The estimate for the minimum risk in (2.4) is then UT
P Q̂

−1UP .

Note that, for each expected portfolio return, a minimum risk needs to be estimated. However, all

estimated minimum risks share the same Q̂, which hence has to be estimated only once.

Extension to Factor Models

In this section, an extension of the proposed algorithm to incorporate factor structures is discussed.

In the framework discussed below, it is assumed that there are M known factors, the context being

situations for which the leading factors in asset returns (for example the market return factor, “small

minus big” and “high minus low” factors in the Fama-French three-factor model, see Fama and

French (1993)) can reasonably be considered as known. When the leading factors are unknown,

they can be estimated from the leading eigenvectors of the sample covariance matrix with well

established procedures described in the literature; for example, in Onatski Onatski (2009, 2010).

Focusing here on the known factors framework, asset returns may be written as

Yt =
M
∑

m=1

Lmfm,t +Xt, Xt =
∞
∑

ℓ=0

AℓZt−ℓ, t ∈ Z,

where fm,t is the observable return of factorm at time t, and Lm the corresponding unknownN×1
factor loading, m = 1, . . . ,M . Assume that L = [L1 : · · · : LM ] is orthogonal to the eigenvectors
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of the linear process coefficient matrices (Aℓ : ℓ ∈ N). The estimation procedure for the quadratic

form BTΣ−1B may be adjusted to this factor model setting in the following way.

(1) Estimate the matrix of factor loadings by L by regressing Yt on the factor vector ft =
(f1,t, . . . , fM,t)

T . This yields the least squares estimate L̂ = [L̂1 : · · · : L̂M ].

(2) Estimate the covariance matrix of factor returns by
∑M

m=1 σ̂
2(fm)L̂mL̂

T
m, where L̂m is the

estimated loading vector on factor m and σ̂(fm) its estimated standard deviation. In matrix

notation, the estimated covariance matrix for the factor structure is therefore

L̂∆̂L̂T ,

where ∆̂ = diag(σ̂(f1), . . . , σ̂(fM)) is an M ×M diagonal matrix.

(3) Note that

BTΣ−1B = BT

(

L(IM +∆)−1LT +

(

P⊥
L +

∞
∑

ℓ=0

AℓA
′
ℓ

)−)−1

B

= BTL(IM +∆)−1LTB+BT
L

(

IN +
∞
∑

ℓ=0

AℓA
′
ℓ

)−1

BL,

where P⊥
L = IN − LLT , with C− denoting the Moore–Penrose generalized inverse of the

symmetric matrix C, and BL = P⊥
LB. In the above calculation it was used that, since

P⊥
LP

⊥
L = P⊥

L and P⊥
L(
∑∞

ℓ=0 AℓA
′
ℓ)P

⊥
L =

∑∞
ℓ=0 AℓA

′
ℓ, it holds (P⊥

L +
∑∞

ℓ=0 AℓA
′
ℓ)

− =
P⊥

L(IN +
∑∞

ℓ=0 AℓA
′
ℓ)

−1P⊥
L .

(4) Using the calculations in (3), the first term in (2.4) concerning the factor structure can be

estimated by BT L̂(IK + ∆̂)−1L̂TB. The second term concerning with the idiosyncratic

time series component can be estimated using the estimation strategy for quadratic forms

introduced in the previous sections.

2.5 Empirical Results

In this section, we carry out a set of simulation studies designed to show the effectiveness of the

proposed methodology for estimating the MVF, when the observations form a time series. This is

done in two settings – (i) when the observations together follow a stationary linear process model,

following the basic structural assumptions outlined in Section 2.2; and (ii) when the observations

follow a factor model structure with known factors, and where the idiosyncratic term constitutes

linear process satisfying analogous assumptions. In addition, we demonstrate the effectiveness of

the proposed strategy for estimating the distribution eigenvalues of the coefficient matrices of the

linear process, even though the latter is not the primary focus of this paper.

In Section 2.5 we report results of MVF estimation as well estimation of the distribution of

eigenvalues of coefficient matrices when the underlying data generating process is an MA(2) time

series. In Section 2.5 we report results of MVF estimation when the underlying data generating
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process is an AR(1) time series. In both cases, we estimate the process as an MA(2) process.

Notice that when the data are generated from an AR(1), our model is misspecified, and an MA(2)
model only fits an approximation to the AR(1) process. Finally, in Section 2.5 we demonstrate the

performance of MVF estimation under the factor model described in Section 2.4.

We compare the performance of the proposed method, referred to as LinShrink (stands for

shrinkage under linear process structure), for estimating the MVF with two other approaches. The

first one, referred to as Naive Estimate, is based on simply replacing the population covariance

with the sample covariance. The second method, which uses the shrinkage approach based on

independent observations, as proposed in ?, is referred to as IndShrink.

Estimation under MA(2) process

First we describe the simulation setting. We consider the setting where the two MA(2) coefficients,

A1 andA2 are symmetric and simultaneously diagonalizable, with the joint bivariate spectral distri-

bution given in Table 2.1 below. The common eigen-basis for A1 and A2 is chosen to be uniformly

distributed on the space of N ×N orthogonal matrices. The innovation process is taken to be i.i.d.

vectors with independent N(0, 1) entries.

Eigenvalue pair Probability

(0.1, 0.2) 0.3

(0.4, 0.5) 0.3

(0.7, 0.9) 0.4

Table 2.1: Joint eigenvalue distribution of (A1, A2) for MA(2) process used in the simulation.

We consider two scenarios which are comparable in that N/T = 1/3: Case 1: N = 1000,

T = 3000; Case 2: N = 2000, T = 6000. In each case, we use a square grid {(i/10, j/10) :
1 ≤ i, j ≤ 10} as candidate eigenvalue pairs for estimation of the joint empirical distribution

of eigenvalues of A1 and A2. For the mean variance frontier estimation, we choose the expected

return µ to be the N × 1 vector with j-th coordinate µj = 1 + j/N for all j = 1, . . . , N .

We report the result of MVF estimation under Case 1 in Figure 2.3. The left panel shows the

plot of the variance of return against expected return, while the right panel shows the frequency

distribution of the number of eigenvalue pairs receiving positive weights under the thresholding-

based model selection approach described Algorithms 2.3.1 and 2.3.2 in Section 2.3. The true MVF

is indicated by solid green line, while pointwise mean of LinShrink, IndShirnk and Naive Estimate

are shown in solid blue, magenta and red curves, respectively. The broken curves of same colors

represent +/− one standard deviation bands. It can be seen that the LinShrink estimate is nearly

unbiased, with a bit higher variability than the IndShrink estimate and the Naive Estimate, both

of which are biased. The IndShrink estimate has smaller bias than the Naive Estimate, indicating

that simply taking into account the dimensionality effect, while ignoring the temporal correlation,

can still improve the estimate. The model selection performance shows that the proposed method

largely avoids overfitting.
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Figure 2.3: MVF estimation for MA(2) process with N = 1000, T = 3000. Left panel: True

and estimated MVF (solid line), with one standard deviation band (broken line). LinShrink: blue;

IndShrink: magenta; Naive estimate: red. Right panel: Frequency distribution of the number of

eigenpairs chosen by the model selection procedure.

Results for MVF estimation under Case 2 are reported in Figure 2.4. Even though the sample

size is twice as before, the only noticeable qualitative change in the performance of the LinShrink

method is a slight reduction in variability and essentially zero bias, as reflected by the near com-

plete overlap of the blue and green solid lines. Also, the bias in estimates of the other two methods

do not decrease, as would be expected, since the dimension-to-sample size ratio remains the same.

The model selection performance of the proposed method seems to improve slightly, with fewer

models with larger number of eigenvalue pairs getting selected compared with Case 1.

We also display the true and estimated cumulative distribution functions (CDF) of the marginal

eigenvalue distributions of coefficient matrices A1 and A2 under Case 2 in Figure 2.5. As can be

seen from these plots, the estimated marginal CDFs are quite reasonable approximations to the true

marginal CDFs.

Estimation under an AR(1) model

We now consider the case where the time series is an AR(1) process, with the symmetric AR

coefficient matrix A having the eigenvalue distribution given in Table 2.2. The innovation process

is again chosen to be i.i.d. with independent N(0, 1) entries.

Recall that the proposed method is designed to estimate the eigenvalue distribution of MA

processes. Therefore, we are using this example as test case for the effect of model misspecifi-

cation. In our estimation procedure for MVF, we approximate the AR(1) process by an MA(2)
process. As a way of restricting the class of models, and thereby increasing estimation effi-
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Figure 2.4: MVF estimation for MA(2) process with N = 2000, T = 6000. Left panel: True

and estimated MVF (solid line), with one standard deviation band (broken line). LinShrink: blue;

IndShrink: magenta; Naive estimate: red. Right panel: Frequency distribution of the number of

eigenpairs chosen by the model selection procedure.
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Figure 2.5: Estimation of CDF of the eigenvalue distribution of coefficient matrices for the MA(2)
process with N = 2000, T = 6000. True CDF: solid red; Mean of estimated CDF: solid blue; 5-th

and 95-th pointwise percentiles of estimated CDF: broken blue. Left panel: CDF of eigenvalue

distribution of A1; Right panel: CDF of eigenvalue distribution of A2.
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Eigenvalue pair Probability

0.1 0.3

0.2 0.3

0.4 0.4

Table 2.2: Joint eigenvalue distribution of (A1, A2) for MA(2) process used in the simulation.

ciency, we choose an MA(2) representation derived by truncating the MA(∞) representation

of the AR(1) process. Accordingly, the MA coefficients in our MA(2) representation are set as

A1 = B and A2 = B2, for some unknown symmetric matrix B. Thus, while estimating the

joint eigenvalue distribution of (A1, A2), we restrict the domain of the eigenvalue pairs to the grid

{(j/10, (j/10)2) : j = 1, . . . , 10}. The parameter µ (expected return) is chosen to be the same as

in the setting of MA(2) simulation in Section 2.5. The results for MVF estimation are displayed in

Figure 2.6. What is apparent from this plot is that, now all three estimators – LinShrink, IndShrink

and Naive Estimate – are biased, though the bias in the proposed LinShrink is significantly smaller

compared to the other two methods. This bias in the proposed method is due to the bias in the

approximation of the true AR(1) model by an MA(2) model. However, the relative performance

of IndShrink and LinShrink, both of which are computed under model misspecification, also indi-

cates that, with a finer approximation, for example by increasing the order of the MA process, the

proposed should be able to obtain a nearly unbiased estimator of the MVF.
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Figure 2.6: MVF estimation for an AR(1) process with N = 1000, T = 3000. True and estimated

MVF (solid line), with one standard deviation band (broken line). LinShrink: blue; IndShrink:

magenta; Naive estimate: red.
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Estimation under a factor model

In this experiment, we assume that the returns Yt’s follow a factor model

Yt = µt + f1ta1 + f2ta2 + f3ta1 + εt (2.-1)

where µt ≡ 1; ak, k = 1, . . . , 3 are three randomly generated, mutually orthonormal vectors; and

for each k, fkt has i.i.d. N(νk, σ
2
k) entries with νk = 1.5 for all k, and σ1 = 0.5, σ2 = 0.625 and

σ3 = 0.7. The time series {εk} is assumed to follow the same MA(2) model as used in Section

2.5 and is independent of the fkt’s. We obtain the estimates of the eigenvalue distributions of the

coefficients of the MA(2) model by applying our spectrum estimation procedure to the residuals

from the regression fit for {Yt}
T
t=1, using the model (2.5), and treating fkt’s as known. Then we

apply the procedure described in Section 2.4 to estimate the MVF, using estimated mean vector.

The result is shown in Figure 2.7. The relative ordering of the three methods, in terms of degree of

bias in estimating the MVF, are similar as in the other cases considered above. But the difference

between the estimates based on IndShrink and LinShrink is smaller compared the pure MA(2)
time series case. The latter is due to the concentration of information in a few coordinates of the

covariance matrix Σ as a result of the strong factor structure.
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Figure 2.7: MVF estimation under a factor structure with MA(2) idiosyncratic terms and N =
1000, T = 3000. True and estimated MVF (solid line), with one standard deviation band (broken

line). LinShrink: blue; IndShrink: magenta; Naive Estimate: red.
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Conclusions

One important conclusion that can be derived from our numerical study is that even when the

estimation of spectra of coefficients of the constituent linear process is not perfect – an admittedly

difficult goal – the quality of estimation of MVF is still impressive, even when there is a model

mismatch (as when we estimate the MVF involving an AR(1) process by approximating through an

MA(2) process). More importantly, the results demonstrate the benefit of addressing the temporal

dependence explicitly, as in our methodology, by way of obtaining a nearly unbiased estimate of

the MVF when the model is correct. This is a significant improvement over the empirical MVF (i.e.

based on using sample covariance matrix) and representative methods that only take into account

the spatial (i.e., coordinatewise) dependence but assume independence of the observations across

time.

2.6 Discussion

In this paper, we use a model for high-dimensional, stationary time series proposed by ? to address

the question of estimation of mean-variance frontier (MVF) within the framework of Markowitz

portfolio optimization, where the returns are assumed to have a time series structure. This in-

vestigation is motivated by the established fact that empirical estimate of the MVF is known to

be significantly biased when the dimensionality of the returns is not negligible compared to the

sample size. The proposed method relies on the characterization of the limiting behavior of the

empirical distributions of eigenvalues of symmetrized sample autocovariance matrices of the time

series. We utilize the characterization established in ? to formulate an estimator of the eigenvalue

distribution of the coefficient matrices for high-dimensional, finite order, moving average (MA)

processes with simultaneously diagonalizable coefficients. These estimates are then utilized as

input in an optimization procedure aimed at estimation of quadratic forms involving the inverse

population covariance matrix of the time series. The latter allows us to compute estimates of the

MVF under two scenarios: (i) when the time series of returns belong to the class of linear processes

considered in ?; and (ii) when the returns follow a factor structure with known, finite-dimensional

factors, and where the idiosyncratic terms are orthogonal to the factor space and follow the same

linear process model as in (i). We perform a set of numerical simulations as a proof-of-concept,

where we compare the performance of the proposed estimator of MVF with the empirical estima-

tor, and a representative estimator of MVF proposed by ?. The estimator demonstrates superior

performance in terms of reducing the bias in estimating the MVF, thereby pointing to the key role

played by the time series structure and its utilization in the proposed method.

There are several directions in which we plan to extend the current work. First, we aim to

enhance the method of estimation of quadratic forms by implementing modifications that will

allow us to tackle ARMA-type linear processes of a given order, where the coefficients satisfy a

simultaneous diagonalizability condition. Secondly, we want to extend this estimation procedure

to the setting of factor models with relatively strong, but unknown factors, with time-dependent

idiosyncratic terms. Thirdly, we aim to carry out an extensive analysis based on data on stock prices
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to obtain a meaningful estimate of the MVF and to quantify its uncertainty. Finally, we would like

to carry out a thorough mathematical investigation aiming to establish consistency of the proposed

procedure for finite order ARMA-type time series with the required structural assumptions.



62

Chapter 3

Do Expected Home Prices Affect

Borrowers’ Default Decision?

3.1 Introduction

Understanding mortgage borrowers’ default behavior is important for both economic policies and

pricing mortgage backed securities. In this paper I study how expected home prices affect borrow-

ers’ default decision.

Why should expected home prices affect default decisions? Because defaulters are locked out

from the mortgage markets for a cooling-off period, in most cases 2-7 years. If a defaulter plans to

buy a home after the cooling-off period, she would take into account the expected home prices in

the next 2-7 years. The default decision is essentially comparing the two options: 1) keep paying

down the remaining balance and stay as a homeowner; 2) default, suffer other losses including

recourse, and can buy the next home at the home price after the cooling off period.

Figure 3.1 plots home prices in two CBSAs: Los Angeles and Riverside. The two CBSAs

share similar home price history from 2003 to the end of 2007 but have different paths after 2008.

Home prices in Los Angeles fell less and rebounded faster than home prices in Riverside. Consider

two identical borrowers, one in Los Angeles the other one in Riverside. If they both defaulted on

their mortgages in 2007, they could come back after the 2-7 years cooling off period and buy the

next home between 2009 and 2014. Assume that they both had perfect foresight for future prices.

The borrower in Riverside would have had more incentive to default than the borrower in Los

Angeles. This is because the home prices in Riverside between 2009 and 2014 would be much

lower than home prices in Los Angeles. The borrower in Riverside can better take advantage of

the temporarily low home price after the cooling off period than the borrower in Los Angeles. The

ratio of default probability curve in Figure 3.1 shows that borrowers in Riverside started to default

much more often than borrowers in Los Angeles before 2007, when prices in the two CBSAs

closely tracked each other. In this paper, I study how much of these lower default probabilities can

be explained by the higher expected home price in Los Angeles. Treating prices as exogenous, I

found that 1% higher expected home price lowers the default probability by 0.4%.
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Figure 3.1: Home Prices in Los Angeles and Riverside

A confounding story is that borrowers in Riverside first defaulted more before 2008, and that is

why home prices in Riverside fell more between 2008 and 2011 than Los Angeles. To account for

the endogeneity of prices, I use the long run home price cyclicality instrument proposed in Palmer

(2015). Sinai (2012) first observe that home price cyclicality are persistent over time. The long-

run cyclicality is plausibly independent of shocks to the housing market in the 2000s. Using the

long-run cyclicality instrument, I found that a 1% higher expected home price lowers the default

probability by 0.8%.

Using variation in expected home prices, this paper studies how borrowers react to penalties

and incentives in the cooling off period. When the expected home prices are higher, the penalty

in the cooling period is larger and borrowers should default less often. Why should we care about

how borrowers react to penalties in the cooling off period? First, the cooling off period is the

largest penalty facing defaulters in non-recourse states. Even in recourse states, because recourse

is rarely pursued (Fisher and Brueggeman (2010)), the penalty from the cooling off period is likely

to be greater than the penalty from recourse. Thus it is interesting to compare how borrowers react

to the threat from the cooling off period with how they react to the threat from recourse (Ghent and

Kudlyak (2011)).

Second, the cooling off period is a flexible policy instrument. Studying how borrowers react

to penalties from the cooling off period can guide us to optimally adjust the length of it. The
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cooling off period is flexible in the two ways. First, it can be changed in reaction to changing

economic environment. For instance, in August 2013, for defaulters who experienced at least 20

percent loss of income for 6 months or longer prior to default, FHA changed their cooling-off

period from 3 years to 1 year (FHA (2013)). Changing recourse laws, on the other hand, can be

relatively difficult and takes a longer time. Second, different borrowers can have different cooling

off periods. Conforming loans require 2-7 years of good credit history. FHA loans, which are

targeted more to low income borrowers, require 3 years of good credit from most borrowers.

Third, although borrowers have the right to strategically default and their mortgage interest

rates already incorporate this option, many people find strategic default immoral. Eighty-two per-

cent of respondents to the survey in Guiso et al. (2013) think it is morally wrong to engage in

strategic default. Government subsidies also seem to screen out strategic defaulters. For FHA

loans, only borrowers who experienced significant income loss are eligible for the shortened cool-

ing off period (FHA (2013)). Are strategic defaulters bad borrowers? or they are sophisticated

borrowers who, in normal times, behave better than others? I found that high credit score bor-

rowers are more likely to react to both past price changes and future price changes than low credit

score borrowers. This suggests that borrowers with high FICO scores are more likely to be strategic

defaulters.

There is a large literature on mortgage borrowers’ default behavior. In particular, there is an

ongoing discussions on whether or not homeowners strategically default, i.e., choose to walk away

from their mortgages even if they can afford mortgage payments. This paper tries to contribute to

the literature by studying how borrowers strategically react to future home prices. There are two

views on strategic defaults. The first view is that strategic defaults are rare and borrowers keep

paying mortgage payments till they cannot. As evidence for this view, Bhutta et al. (2013) show

that the median negative equity threshold for default is −67%. Gerardi et al. (2013) document

that only 13.9% of defaulters have liquid or illiquid asset (including securities and automobiles)

to make one month’s mortgage payment. If we strict asset to liquid asset, only 6% of defaulters

can make one mortgage payment. This suggests that in their sample, strategic defaulters cannot

be more than 6% of all defaulters. On the other hand, there is a second view on strategic defaults,

that borrowers strategically react to incentives and penalties of defaults. Guiso et al. (2013) es-

timate that 25% - 35% defaults in 2009-2010 were strategic, four times as many as the estimate

in Gerardi et al. (2013). Mayer et al. (2014) document that homeowners strategically default to

receive modification. Ghent and Kudlyak (2011) quantify how recourse deters some borrowers

from defaulting. At the mean value of the default option for defaulted loans, borrowers are 30%

more likely to default in non-recourse states. Furthermore, for homes appraised at $500, 000 to

$750, 000, borrowers are twice as likely to default in non-recourse states.

The rest of the draft is organized as follows. Section 3.2 described the data and variables. Sec-

tion 3.3 shows how expected home price growth affects default probability. Section 3.4 explores

the effects from changing the cooling-off period. Section 3.5 presents our conclusion.
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3.2 Data

In this section, I briefly describe the data sources used in this paper.

ABSNet Loan History Data. The main data source is ABSNet, which provides monthly loan

performance and borrower information on privately securitized loans. The estimation sample is

a 5% random sample of the first-lien subprime mortgages originated between 2003 and 2007. I

restrict property types to “Single Family Residence”, “Condominium” or “COOP”. I also dropped

mortgages with missing values for variables that we are interested in, including documentation

type, loan purpose, ARM or not, interest only or not, balloon mortgage or not, original combined

loan to value ratio, credit score, original loan to value ratio and original interest rate, resulting in

a final dataset of over five million loan × month observations. Default date is defined to be the

earliest of foreclosure date, REO date or liquidation date.

I censor all mortgage history to the first 52 months. This is because one of the explanatory

variables is future home price change, more specifically, the log price change in the next 3 years.

Home prices data are available through May 2015. Thus I can form the future price change variable

till May 2012. The last cohort in my sample are mortgages originated in December 2007. For this

cohort, I can only study the default probabilities in their first 52 months, i.e., between December

2007 and May 2012. All earlier cohorts are also censored to the first 52 months so that the earlier

cohorts are not oversampled.

Table I reports the descriptive statistics. The average credit score is 621, below the national

median score 720. By the 52nd month, 14% of mortgages have defaulted.

Zillow Home Value Index. For home price changes, I use zipcode level Zillow home value

indexes. They cover over ten thousands zipcodes and are computed from estimated home values

of over 70 millions homes.

Zillow Price to Rent Ratio. I control for price to rent ratio in all specifications as a proxy

for utility difference between owning a home and renting the same home. It is widely observed

and assumed in mortgage default models that people prefer being homeowners to being renters

(Chatterjee and Eyigungor (2011); Hatchondo et al. (2014); Corbae and Quintin (2015b)). There

are two utility losses from the cooling off period: missing the home price appreciation and being

a renter instead of a homeowner. To isolate the effect of missing the home price appreciation, the

utility loss from being a renter should be controlled for.

Next I show why price to rent ratio is a reasonable proxy for utility of being a homeowner.

Assume that each home can provide constant housing service follow R and utility of being a

homeowner U in each period. Also assume that people discount all future utilities using a constant

discount rate β. Then the price of a home should satisfy

P =
∞
∑

t=0

βt(R + U) =
R + U

1− β
. (3.1)

Price to rent ratio can be written as

P

R
=

R + U

R(1− β)
=

1

1− β

(

1 +
U

R

)

. (3.2)
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Thus price to rent ratio is a proxy for utility of being a homeowner per unit of housing service.

I use the Zillow zip code level price to rent ratio index. The index starts coverage in 2010. I

use the average of the price to rent ratio between 2010 and 2015 as the zip code level proxy. Price

to rent ratio is highly persistent. The correlation between the price rent ratios in any two periods

between 2011 and 2015 is above 0.97. Thus I assume that the average price to rent ratio between

2010 and 2015 is a reasonable proxy for the price to rent ratio in my estimation sample period,

between 2003 and 2015.

Unemployment Rates. To control for local labor market conditions, I use Metropolitan Statis-

tical Area and Micropolitan Statistical Area unemployment rates from the Bureau of Labor Statis-

tics (BLS) Local Area Unemployment Statistics series.

Long-run House Price Cyclicality. I use the long-run house price cyclicality instrument σP
g

constructed by Palmer (2015), defined as the standard deviation of monthly changes in the CoreL-

ogic repeat sales home price index from 1980-1995

σP
g ≡

(

1

T − 1

∑

t∈T

(∆HPIgt)−∆HPIg)
2

)1/2

.

3.3 The Impact of Expected Home Prices on Default

In this section, I study how expected home prices affect probability of default. I first present

results treating prices as exogenous. Then I explore how using the long-run home price cyclicality

instrument affects my estimates. Finally I discuss the economic magnitude of the estimates.

Results Treating Prices as Exogenous

Observations in my sample are monthly default decisions and are thus in discrete time. Following

Palmer (2015), I specify borrowers’ default timing as a proportional hazard model in continuous

time and then estimate it in discrete time using complementary log-log regression. Let λicg(t)
denote the latent instantaneous default probability for individual i from cohort c, location g with

loan age t months. In a proportional hazard model, λicg(t) is specified as

λicg(t) ≡ lim
xi→0

Pr (t− ξ < τ ≤ t|τ > t− ξ,X)

ξ
(3.2)

= exp
(

X ′
icgtβ

)

λ0(t),

where λ0(t) is the nonparametric baseline hazard function. Controls Xicgt include loan character-

istics, borrowers characteristics, price to rent ratio and unemployment rate interacted with FICO

score quantiles. The variables of interest are log home price changes in the past 12 months and in
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Table 3.1: Summary Statistics

mean sd min max

CreditScore 620.83 60.37 395.00 850.00

DTI Missing 0.86 0.34 0.00 1.00

dti 4.84 13.40 0.00 96.75

DTI Missing 0.86 0.34 0.00 1.00

Owner Occupied 0.91 0.29 0.00 1.00

Combined LTV 0.82 0.14 0.00 1.96

OriginalInterestRate 7.83 1.57 0.99 21.75

Full Documentation 0.57 0.49 0.00 1.00

Cash Out Refinance 0.53 0.50 0.00 1.00

Adjustable Rate 0.54 0.50 0.00 1.00

Interest Only 0.13 0.34 0.00 1.00

Balloon 0.09 0.28 0.00 1.00

Has Second Lien 0.13 0.34 0.00 1.00

default 0.14 0.34 0.00 1.00

prepay 0.49 0.50 0.00 1.00

censor 0.37 0.48 0.00 1.00

Observations 254349

the following 36 months interacted with FICO score quantile , i.e., the covariates are

X ′
icgtβ = θ′BW

borrower
i + θ′LW

loan
i + δ1∆HPIt−12,t × 1FICO quantile

+δ2∆HPIt,t+36 × 1FICO quantile + δ3Unemploymentg,t × 1FICO quantile

+γc + αg + θPRPrice Rent Ratio

∆HPIt−12,t = log(HPIgt)− log(HPIg,t−1 year)

∆HPIt,t+36 = log(HPIg,t+3 years)− log(HPIg,t)

Assuming that the time varying covariates Xicgt are constants in each discrete time interval

[t − 1, t], the continuous time model in (3.2) can be transformed to a discrete time model. In

greater details, let S(t) denote the survivor function and let Λ(t) = − log(S(t)). Λ(t) is also called

the integrated hazard function because it satisfies the familiar identity

Λ(t) =

∫ t

0

λ(τ)dτ (3.-3)
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Using Λ(t) = − log(S(t)) and identity (3.-3), the probability of survival between t − 1 and t
conditional on that one survived the first t− 1 periods is

Pr (τ > t|τ > t− 1) =
S(t)

S(t− 1)

= exp (Λ(t− 1)− Λ(t))

= exp

(

−

∫ t

t−1

λ(τ)dτ

)

In general λ(τ) depends on Xicgτ , which is time varying between t− 1 and t. Assuming that Xicgτ

are constants when τ is between t− 1 and t. We have

Pr (τ > t|τ > t− 1) =
S(t)

S(t− 1)

= exp (Λ(t− 1)− Λ(t))

= exp
(

−X ′
icgtβ

) 1

λ0(t)
,

which is the complementary log-log model I estimate in discrete time.

Table 3.2 reports the estimation result of the proportional hazard model (3.2). All loan and bor-

rower characteristics have the intuitive signs. Mortgages defaulted with higher probability if they

were adjustable rate mortgages, had higher CLTVs or interest rates, or lacked full documentation.

The signs on the unemployment rate interacted with credit score quantiles are counterintuitive. A

one percentage point increase in unemployment rate decreases default hazard by roughly 1% to

5%. Also from the interactions between unemployment and FICO score quantile, a higher unem-

ployment rate particularly lowers the default probability of low credit score borrowers compared

to high credit score borrowers. This is somewhat different from what I expected.

Column 1 includes past price shock log(HPIt) - log(HPIt−1 year). A 1% larger home price

decline in the past 12 months increases the default probability by 3.7%.

Column 2 adds the variable of interest, future home price growth or log(HPIt+3 years) - log(HPIt).
The negative coefficient in front of future home price growth means a higher future home price

lowers the default probability in the observation month. This supports the view that borrowers are

strategic. For two identical borrowers who took out the same mortgage and also experienced the

same past price shock (controlled by log(HPIt) - log(HPIt−1 year)), the one with higher future

home price growth (log(HPIg,t+3 years)− log(HPIg,t)) defaults with lower probability. This is in

line with the story that high expected home price growth gives borrowers incentive to stay current

on their mortgages. When expected home price growth is low, borrowers are more likely to de-

fault strategically to take advantage of the low future home price. The magnitude of the coefficient

means that a 1% higher future home price lowers the default probability by 0.4%.

I further explore which subgroup of borrowers are more likely to react to expected future home

prices. This is motivated by the facts that many people find strategic defaults immoral (Guiso et al.

(2013)), and government subsidies aim to screen out strategic defaulters (FHA (2013)). Are strate-

gic defaulters bad borrowers? or they are sophisticated borrowers who, in normal times, behave
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Table 3.2: Future Price Changes and Default Probability

Unemployment -0.039** -0.017 -0.036**

(0.017) (0.014) (0.015)

Unemployment ×1 FICO ≤ 560 -0.125*** -0.130*** -0.092***

(0.017) (0.017) (0.019)

Unemployment ×1 560 < FICO ≤ 620 -0.075*** -0.078*** -0.046***

(0.011) (0.011) (0.012)

Unemployment ×1 620 < FICO ≤ 680 -0.035*** -0.037*** -0.025***

(0.007) (0.007) (0.009)

Price Rent Ratio -0.007*** -0.006*** -0.006***

(0.002) (0.002) (0.002)

∆HPI t− 12, t -2.900*** -2.887*** -3.784***

(0.165) (0.167) (0.285)

∆HPI t, t+ 36 -0.292*** -0.409***

(0.099) (0.117)

∆HPI t− 12, t× 1 FICO ≤ 560 1.466***

(0.297)

∆HPI t− 12, t× 1 560 < FICO ≤ 620 1.242***

(0.236)

∆HPI t− 12, t× 1 620 < FICO ≤ 680 0.832***

(0.192)

∆HPI t, t+ 36× 1 FICO ≤ 560 0.472***

(0.121)

∆HPI t, t+ 36× 1 560 < FICO ≤ 620 0.316***

(0.102)

∆HPI t, t+ 36× 1 620 < FICO ≤ 680 -0.110*

(0.066)

Obs 5058817 5058804 5058804

CBSA FE y y y

Cohort FE y y y

Loan Characteristics y y y

Borrower Characteristics y y y

Notes: Standard errors are in parentheses and are clustered by cbsa. * significant at 10 percent; ** significant at 5
percent; *** significant at 1 percent.

better than others? To study this, column 3 in Table 3.2 adds interactions between price changes

and credit score quantiles. Borrowers are first divided into 4 groups according to their FICO

scores: lower than 560, between 560 and 620, between 620 and 680, and above 680. 560 is around

25 percentile and 680 is around 75 percentile. The omitted group in column 3 is high credit score

borrowers, with FICO scores above 680. The coefficient for ∆HPIt,t+36 × IFICO≤560 is positive.

This means that, borrowers with FICO scores lower than 560 are less likely to strategically react

to expected future home price compared to high credit score borrowers. In fact the total effect of

future home price growth on default probability of low credit score borrowers has the counterintu-

itive sign. The negative sum of coefficients for ∆HPIt,t+36 and ∆HPIt,t+36× IFICO≤560 suggests

that low credit score borrowers default slightly more often when future home price is higher. These
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results suggest that high credit score borrowers are more likely to engage in strategic defaults.

In column 3, I also control for interactions between ∆HPIt−12,t and credit score quantiles.

They show a similar pattern as in interactions between ∆HPIt,t+36 and credit score quantiles.

Low FICO score borrowers are less likely to react to price changes in the last 12 months than high

FICO score borrowers.

Notice that the patterns in interactions between price changes and FICO score quantiles are

almost monotonic. Borrowers with FICO scores below 560 react less to price changes than bor-

rowers with FICO scores between 560 and 620, who in turn react less than borrowers with FICO

scores between 620 and 680. The only exception is that borrowers with FICO scores between 620

and 680 respond more to future home price growth than borrowers with FICO scores above 680.

I further explore if the above higher FICO score more reaction pattern holds in each cohort.

Table 3.3 reports results from estimating the specification in column 3 in Table 3.2 on each cohort.

The pattern that high FICO score react more to prices holds partially but does not hold perfectly in

every cohort. For example, in the 2005 cohort, borrowers in the highest FICO quantile react least,

instead of reacting most, to future home price growth. However all other FICO quantiles in the

2005 cohort follow the higher FICO score more reaction pattern.

In the Table 3.2, I assumed 3 years as the cooling off period and used ∆HPI t, t+ 36 as

the future home price change variable. Table 3.4 repeats the specifications in Table 3.2, using

∆HPI t, t+ 48 as the future price change variable. We can see that the coefficients have the

same signs and similar magnitudes as in Table 3.2.

Nonlinear Instrument Approach

As discussed above, there are plausible stories that the estimates in Table 3.2 are not causal. For

instance, lower future home prices could be the result of more defaults, not the reason why bor-

rowers defaulted more frequently ex-ante. I use the nonlinear instrument approach as in Palmer

(2015). The instrument set for the future price change variable is the long-run cyclicality measure

σP
g interacted with the calendar-month indicator variables. The first stage is

∆ log(HPIigct) =
∑

s

πsσ
P
g 1(s = t+ t0(i)) + Z ′

2,icgtπ2 + vicgt, (3.-8)

where Z2,icgt includes the same covariates as in the second stage. Palmer (2015) discussed the

first stage and exclusion restriction for the long-run home price cyclicality instrument in great

details. In summary, the instrument is highly correlated with price changes in the 2000s. It is

uncorrelated with credit expansion but correlated with cyclicality of unemployment rate. CBSAs

with more cyclical housing markets tend to have more cyclical unemployment rates. Thus I control

for unemployment rate in all specifications.

Then I take the control function approach to estimate the second stage. Essentially, I estimate

the hazard model (3.2) adding one more control variable, the estimated residual v̂icgt from (3.-8)
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Table 3.3: Effect of Future Price Changes by Cohort

∆HPI t− 12, t -0.615 -4.989*** -4.108*** -2.023*** -1.374***

(1.547) (0.902) (0.349) (0.393) (0.498)

∆HPI t, t+ 36 0.469 -0.025 -0.190 -0.245 -0.166

(0.451) (0.310) (0.139) (0.149) (0.217)

∆HPI t− 12, t× 1 FICO ≤ 560 -0.587 3.499*** 2.054*** 1.984*** 0.152

(1.303) (0.914) (0.398) (0.388) (0.620)

∆HPI t− 12, t× 1 560 < FICO ≤ 620 -0.371 2.064** 1.977*** 1.410*** -0.024

(1.431) (0.848) (0.295) (0.374) (0.553)

∆HPI t− 12, t× 1 620 < FICO ≤ 680 -0.926 0.796 1.054*** 0.913*** -0.049

(1.279) (0.774) (0.335) (0.310) (0.566)

∆HPI t, t+ 36× 1 FICO ≤ 560 -0.024 0.132 -0.105 -0.502*** 0.131

(0.517) (0.339) (0.187) (0.123) (0.377)

∆HPI t, t+ 36× 1 560 < FICO ≤ 620 -0.126 0.046 -0.189 -0.063 -0.185

(0.485) (0.298) (0.152) (0.097) (0.182)

∆HPI t, t+ 36× 1 620 < FICO ≤ 680 0.163 -0.002 -0.428*** -0.253*** -0.646***

(0.499) (0.277) (0.126) (0.086) (0.215)

Unemployment -0.115* 0.014 0.089*** 0.010 0.125***

(0.069) (0.058) (0.024) (0.016) (0.035)

Unemployment ×1 FICO ≤ 560 0.001 0.010 -0.028 0.024* -0.013

(0.052) (0.045) (0.022) (0.014) (0.021)

Unemployment ×1 560 < FICO ≤ 620 0.042 0.015 -0.000 0.031*** -0.006

(0.045) (0.034) (0.016) (0.011) (0.015)

Unemployment ×1 620 < FICO ≤ 680 0.077* 0.024 -0.011 0.021* -0.006

(0.041) (0.026) (0.013) (0.011) (0.014)

Price Rent Ratio -0.013*** -0.009*** -0.003 -0.002 0.003

(0.003) (0.002) (0.003) (0.002) (0.003)

Obs 687536 1085086 1393921 1260993 266902

CBSA FE y y y y y

Cohort FE y y y y y

Loan Characteristics y y y y y

Borrower Characteristics y y y y y

Notes: Standard errors are in parentheses and are clustered by cbsa. * significant at 10 percent; ** significant at 5
percent; *** significant at 1 percent.

i.e., the covariates are

X ′
icgtβ = θ′BW

borrower
i + θ′LW

loan
i + δ1∆HPIt−12,t × 1FICO quantile

+δ2∆HPIt,t+36 × 1FICO quantile + δ3Unemploymentg,t × 1FICO quantile

+γc + αg + θPRPrice Rent Ratio + κv̂icgt

Table 3.5 reports the second stage results. The magnitude of coefficient ∆HPI t, t+ 36 is larger

than the magnitude treating prices as exogenous. A 1% higher future home price triggers 0.8%
more defaults. The following section studies the economic magnitudes of these coefficients using

two counterfactual price paths.



CHAPTER 3. DO EXPECTED HOME PRICES AFFECT BORROWERS’ DEFAULT

DECISION? 72

Table 3.4: Effect of Future Price Changes in 4 Years

Unemployment ×1 FICO ≤ 560 -0.115*** -0.124*** -0.069***

(0.019) (0.020) (0.023)

Unemployment ×1 560 < FICO ≤ 620 -0.069*** -0.075*** -0.028*

(0.013) (0.013) (0.016)

Unemployment ×1 620 < FICO ≤ 680 -0.027*** -0.030*** -0.012

(0.008) (0.008) (0.011)

Price Rent Ratio -0.008*** -0.006** -0.005**

(0.002) (0.002) (0.002)

∆HPI t− 12, t -3.605*** -3.772*** -4.922***

(0.192) (0.187) (0.333)

Unemployment -0.074*** -0.034* -0.066***

(0.021) (0.019) (0.021)

∆HPI t− 12, t× 1 FICO ≤ 560 2.066***

(0.345)

∆HPI t− 12, t× 1 560 < FICO ≤ 620 1.635***

(0.290)

∆HPI t− 12, t× 1 620 < FICO ≤ 680 0.916***

(0.223)

∆HPI t, t+ 48 -0.443*** -0.563***

(0.108) (0.126)

∆HPI t, t+ 48× 1 FICO ≤ 560 0.375***

(0.105)

∆HPI t, t+ 48× 1 560 < FICO ≤ 620 0.282***

(0.083)

∆HPI t, t+ 48× 1 620 < FICO ≤ 680 -0.042

(0.061)

Obs 4345401 4345386 4345386

R squ

CBSA FE y y y

Cohort FE y y y

Loan Characteristics y y y

Borrower Characteristics y y y

Notes: Standard errors are in parentheses and are clustered by cbsa. * significant at 10 percent; ** significant at 5
percent; *** significant at 1 percent.

Economic Magnitude

In this section, I construct two counterfactual price paths to show the economic magnitudes of

coefficients. The idea is to construct two price paths with the same history up to May 2012 and

different history between May 2012 and May 2015, one with high home price growth and the other

one with low home price growth. Again, the reason why I choose May 2012 as the turning point

is that the variable of interest is future price change in the following 3 years. May 2012 is the

last month when this variable is available. I then consider two borrowers who took out the same

mortgage in December 2007 (the last cohort in my sample). One borrower faces the high price
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Table 3.5: Effect of Future Price Changes, Nonlinear IV Approach

∆HPI t− 12, t -2.796***

(0.161)

∆HPI t, t+ 36 -0.770**

(0.341)

Unemployment 0.020

(0.030)

Unemployment ×1 FICO ≤ 560 -0.139***

(0.016)

Unemployment ×1 560 < FICO ≤ 620 -0.082***

(0.010)

Unemployment ×1 620 < FICO ≤ 680 -0.040***

(0.006)

Price to Rent Ratio -0.006***

(0.002)

Residuals 0.416

(0.416)

Obs 3687232

R squ

CBSA FE y

Cohort FE y

Loan Characteristics y

Borrower Characteristics y

Notes: Standard errors are in parentheses and are clustered by cbsa. * significant at 10 percent; ** significant at 5
percent; *** significant at 1 percent.

growth path and the other one faces the low price growth path. I compare the default probabilities

of the two borrowers before May 2012, a period when they shared the same past price experience

but had different expected prices in the future.

The blue curve plotted in Figure 3.2 is the Zillow national home price index between December

2007 and May 2015. Between May 2012 and May 2015, the national index increased by 17%. The

standard deviation of zipcode level home price change between May 2012 and May 2015 is 16%.

The high growth and low growth paths plotted in Figure 3.2 are constructed by:

HPIhigh growth,t −HPIhigh growth,t−1 =
17% + 1

2
16%

17%
(HPInational,t −HPInational,t−1)

HPIlow growth,t −HPIlow growth,t−1 =
17%− 1

2
16%

17%
(HPInational,t −HPInational,t−1) .

such that the price change between May 2012 and May 2015 in the high growth path is one half

standard deviation above the national price change.

The loan and borrower characteristics for the two hypothetical borrowers are set to be the

average values in the estimation sample. This means that for the binary characteristic variables,
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Figure 3.2: National Index and Two Counterfactual Price Paths

for example fixed rate or adjustable rate, the characteristics for the two hypothetical borrowers are

non-integers.

I first consider the coefficients in Table 3.2 treating prices as exogenous. Figure 3.3 plots

Pr (Default in month t|Survived the first t− 1 months, low growth path)

Pr (Default in month t|Survived the first t− 1 months, high growth path)
(3.-12)

This ratio is equal to 1 in the first 16 months because both past price changes and future price

changes in the following 3 years are identical for the two paths in the first 16 months. After the

17th month, the borrower facing low growth path starts to default with higher probabilities. In the

52nd month, the ratio is about 1.1.

Figure 3.4 plots the counterfactual cumulative default probabilities. There is almost no differ-

ence between the two paths. By the 52nd period, the low growth path has a cumulative default

probability of 28.5%, slightly higher than 27.8% from the high growth path.

Figure 3.5 and Figure 3.6 plot the default probability ratio and cumulative default probabil-

ities using the coefficients from the instrument variable approach. The default probability ratio

reaches 1.15 in the 52nd, month. By the 52nd period, the low growth path has a cumulative default

probability of 29.2%, slightly higher than 28.2% from the high growth path.
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Figure 3.3: Ratio of Default Probabilties

3.4 Effects of Changing the Cooling off Period

Results in the previous section suggests that people do react to penalties from the cooling off

period. As argued in Section 3.1, the cooling off period is a flexible policy instrument because it

can be changed timely and different groups of borrowers can have different cooling off periods. In

this section, we build a model to study the effect of changing the cooling off period.

Figure 3.7 summarizes the agents in the model. There are three types of sellers of homes:

normal sellers, strategic defaulters and liquidity defaulters. Strategic defaulters are borrowers who

defaulted when it is optimal for them to default. Liquidity defaulters were borrowers who were

underwater and received liquidity shocks. These double triggers made them involuntarily default.

After the cooling off period, defaulters come back to the housing market.

There are two effects from a longer cooling-off period. A longer cooling off period makes

the default penalty harsher, which would deter some borrowers from strategic defaults. On the

other hand, when borrowers do default, under a longer cooling-off period, they are locked out from

the housing market longer. Locking out buyers depresses home prices longer, which makes more

borrowers underwater and default when they receive liquidity shocks. The two effects work in two

opposite ways: less strategic defaults and larger impact of each default, including more liquidity

defaults. As we will show, the net effect also depends on the expected home price growth. In other

words, which effect dominates depends on the local expected home price growth and varies by
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Figure 3.4: Counterfactual Default Probabilties

cities.

Discount rate is assumed to be β. Rent is omitted to be zero thus home prices are premium

that people are willing to pay for being homeowners. Figure 3.8 shows demand and supply in a

typical period. The blue curve is the downward sloping demand curve. The supply curve is also

downward sloping because when home prices are lower, more borrowers are underwater and will

default if they receive a liquidity shock. Thus the lower the home prices, the more REO homes

are for sale. A percentage of the population are potential strategic defaulters. They strategically

choose to default based on the the loss from the cooling off period and the gain from not having to

pay for the remaining balance.

Figure 3.9 shows the demand, supply and normalized prices in one simulation. At time zero,

there is a downward demand shock due to credit tightening. Price first fell and then rebounded and

stabilized to a new long run level.

Figure 3.10 shows a similar simulation. The difference between Figure 3.10 and Figure 3.9 is

that Figure 3.10 has increasing demand and price trends.

Figure 3.11 shows the effects of a longer cooling off period in constant and increasing demand

markets. As the length of the cooling off period increases, there are less strategic default and more

liquidity defaults. In a market with increasing demand, few people strategically default thus a

longer cooling off period mainly increases liquidity defaults. In a market with constant demand,

the more liquidity defaults from a long cooling off period is partially offset by the less strategic
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Figure 3.5: Ratio of Default Probabilties

defaults.

3.5 Conclusion

I study if future home prices affect borrowers’ default decisions. I found that a higher future home

price lowers default probability. High credit score borrowers are more likely to respond more to

both past and future price changes than low credit score borrowers. The economic magnitudes are

not large. A model is built to study the effect of a longer cooling off period. A longer cooling

off period reduces strategic defaults and increases liquidity defaults. In high expected home price

appreciation areas, the more liquidity defaults channel dominates. In low expected home price

appreciation areas, the more liquidity defaults are partially offset by less strategic defaults.
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Figure 3.6: Counterfactual Default Probabilties

Figure 3.7: Agents in the Model
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Figure 3.8: Demand and Supply in a Typical Period
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Figure 3.9: Prices under Constant Demand
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Figure 3.10: Prices under Increasing Demand

Figure 3.11: Effects from a Longer Cooling-off Period
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