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ABSTRACT

Essays on Communication in Game Theory

Takakazu Honryo

This dissertation consists of essays on communication in game theory. The �rst

chapter develops a model of dynamic persuasion. A sender has a �xed number of

pieces of hard evidence that contain information about the quality of his proposal,

each of which is either favorable or unfavorable. The sender may try to persuade

a decision maker (DM) that she has enough favorable evidence by sequentially

revealing at most one piece at a time. Presenting evidence is costly for the sender

and delaying decisions is costly for the DM. I study the equilibria of the resulting

dynamic communication game. The sender e¤ectively chooses when to give up

persuasion and the DM decides when to make a decision. Resolving the strategic

tension requires probabilistic behavior from both parties. Typically, the DM will

accept the sender�s proposal even when she knows that the sender�s evidence may

be overall unfavorable. However, in a Pareto e¢ cient equilibrium, the other type of

error does not occur unless delays costs are very large. Furthermore, the sender�s

net gain from engaging in persuasion can be negative on the equilibrium path,

even when persuasion is successful. we perform comparative statics in the costs

of persuasion. I also characterize the DM�s optimal stochastic commitment rule



and the optimal non-stochastic commitment rule; compared to the communication

game, the former yields a Pareto improvement, whereas, the latter can leave even

the DM either better or worse o¤.

The second chapter studies a unidimensional Hotelling-Downs model of elec-

toral competition with the following innovation: a fraction of candidates have

�competence�, which is unobservable to voters. Competence means the ability

to correctly observe a policy-relevant state of the world. This structure induces a

signaling game between competent and incompetent candidates. We show that in

equilibrium, proposing an extreme platform serves as a signal about competence,

and has a strictly higher winning probability than that of the median platform.

Polarization happens and the degree of it depends on how uncertain the state is

and how much political candidates are o¢ ce-motivated.

The third chapter examines the dynamic extension of Che, Dessein, and Kartik

(2011). They study strategic communication by an agent who has non-veri�able

private information about di¤erent alternatives. The agent does not internalize the

principal�s bene�t from her outside option. They show that a pandering distortion

arises in communication. This chapter studies the long-run consequence of their

model when a new agent-principal pair is formed in each period, and principals in

later periods may learn some information from predecessors�actions. I characterize

the conditions under which e¤ective communication between principal and agent

can continue in perpetuity.
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CHAPTER 1

Dynamic Persuasion

1.1. Introduction

Persuasion is the act of in�uencing someone to undertake a particular action,

or, more generally, to form a certain belief. Successful persuasion takes time and is

costly for both parties: the speaker exerts e¤ort to present convincing arguments

or information and, in turn, the listener re�ects upon or inspects these carefully.

A typical process of persuasion may involve a back-and-forth interaction where

the speaker gradually presents a series of arguments up until when the listener is

either su¢ ciently convinced by the speaker or has decided that the speaker�s case

lacks merit.

This chapter is an attempt to understand some essential features of the dy-

namics of persuasion. As an example, consider an entrepreneur who is trying to

convince a venture capitalist (VC) to invest in his startup. The VC only wants

to invest if the startup is su¢ ciently likely to succeed. The onus is on the entre-

preneur to explain and validate a number of di¤erent aspects of the project that

justify investment. Of course, the VC will scrutinize each argument, possibly hir-

ing third parties to do so. In a stylized way, the process may unfold as follows: the

entrepreneur presents a set of facts about the project that the VC scrutinizes, and
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then the VC decides to either invest, walk away, or request further explanation;

and the process repeats, with the entrepreneur deciding whether to comply or give

up on persuading the VC.

Observe that this process has a dynamic element of "matching pennies" as

in game theory. If the VC knows that the entrepreneur only brings pro�table

plans, she just rubber-stamps his proposals, rather than paying the various costs

incurred to scrutinize the plans. On the other hand, once the entrepreneur thinks

that the VC will not carefully scrutinize his proposal, he may bring plans lacking

in precision. This, in turn, generates the VC�s incentive to carefully scrutinize.

This simple story, which has the �avor of the matching pennies game, shows that

each player has an incentive to outfox his or her opponent.

Having this salient nature of persuasion in mind, this chapter describes the

dynamic process of persuasion in a formal game theoretic model. A sender (per-

suader, speaker) may try to persuade a decision maker (receiver, listener) that she

has enough favorable evidence for his proposal by sequentially communicating ev-

idence by paying the communication cost. He can also remain silent, which incurs

no cost for him. At each period, the decision maker chooses whether to require an-

other piece of evidence that delays her decision making, or not. Hence she chooses

to require evidence as long as she can expect that there is an informational gain

from doing so. We show that the equilibrium involves probabilistic decision mak-

ing from both parties. The decision maker may make a decision before she gets

enough information from the sender, so she may make the wrong decision.
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Our model succeeds in providing some essential features of the dynamics of

persuasion. Each time the sender communicates a piece of evidence, the decision

maker updates her belief about the sender�s proposal, and she accepts the proposal

with a strictly positive probability. As the game proceeds, the decision maker

accumulates more and more information and the probability that she makes the

wrong decision decreases. A good sender, who has enough good evidence, continues

to persuade by showing evidence until his proposal is accepted. However, he may

pay too much communication costs so he may lose ex-post even though he was

successful at persuasion. A bad sender tries to persuade the decision maker with

some probability. When the decision maker judges that the cost of requiring a

further piece of evidence exceeds the additional informational bene�t, she accepts

the proposal for sure and the process of persuasion terminates.

The fact that the equilibrium involves probabilistic decision-making stems from

the game�s similarity to the matching pennies game. If the decision maker does not

accept the sender�s proposal until a certain amount of evidence is shown, then the

sender never tries to persuade unless he has enough good evidence. However this

implies that the �rst piece of good evidence already screens out the bad sender

and the decision maker loses the incentive to check the rest of the evidence. If

the decision maker cannot make a "commitment to listen", they should use mixed

strategy in order to get around this strategic tension, as in the matching pennies

game.
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General characterization of the equilibrium demonstrates the following results.

There is a lower bound of the probability of immediate acceptance every time the

sender communicates evidence (either good or bad). Actually, this lower bound is

the acceptance probability that makes the sender�s communication cost equal his

immediate expected gain. Also, silence never meets immediate acceptance, which

tells us that only a costly message has a persuasive power.1 Finally, and rather

obviously, the decision maker accepts the proposal for sure only after the sender

shows a good piece of evidence.

Although there is a plethora of equilibria, we characterize the set of Pareto

equilibria that are not Pareto dominated by other equilibria and, furthermore, the

best equilibrium for the decision maker, which is unique. Generally, it is possible to

have an equilibrium that involves intuitively inessential stages such as the sender

remains silent, which incurs no cost for him, and the decision maker just waits

for the sender to start talking. We show that any Pareto e¢ cient equilibrium

excludes such redundant stages. Speci�cally, we show that in a Pareto e¢ cient

equilibrium, the sender never communicates bad evidence, sender�s silence meets

immediate rejection, and the decision maker�s acceptance probability immediately

after seeing a piece of good evidence is either maximized or minimized among

all possible ways of constructing an equilibrium. It is also shown that in a Pareto

e¢ cient equilibrium, once the process of persuasion starts, the decision maker does

1Hence, even if we endow the sender with a set of cheap messages as available message, these
only have the same role as silence.
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not make the error of rejecting a good proposal. We further show that in the best

equilibrium the decision maker requires the largest amount of good evidence in

order to accept for certainty: intuitively, increasing the amount of good evidence

necessary for persuasion discourages bad senders from trying to persuade.

The uniqueness of the best equilibrium for all parameter values enables us to

pin down a reasonable benchmark on which we conduct comparative static analy-

sis. We particularly examine the e¤ects of two players�costs of communication

on their expected payo¤s and expected duration of persuasion. We show that a

decrease in the costs of communication for the decision maker (delay costs) ben-

e�ts her through two e¤ects. The �rst one is the direct e¤ect. The second one,

which is indirect e¤ect, bene�ts the decision maker by discouraging the bad sender

from trying to persuade. It also reduces the sender�s expected payo¤ because it

increases the length of time for acceptance. With respect to the e¤ects of the cost

of communication for the sender, on top of some intuitive results, a decrease in it

also lengthens the expected time of acceptance.

While in the main analysis, we consider that the decision maker cannot make

any form of commitment, we also characterize her optimal commitment problem.

First, we show that the optimal commitment mechanism takes a stochastic form,

in which the decision maker attaches the highest probability of acceptance to each

node that prevents the bad type sender from trying to persuade. Furthermore, it

can be shown that this does not harm the sender relative to the (best) equilibrium,
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which means that the optimal stochastic commitment can be a Pareto improve-

ment. This is because the commitment makes it possible to avoid the case in

which the bad sender tries, but fails, to persuade the decision maker. In this case,

which necessarily happens with a positive probability in the equilibrium, both pay

wasteful communication costs.

In order to consider the case that it is hard to make stochastic commitment,

we also examine a limited commitment method in which the decision maker can

make only the non-stochastic commitment of requiring a predetermined amount

of evidence. We show that even this limited commitment is bene�cial for the

decision maker relative to the best equilibrium when the sender�s communication

cost is low. However, interestingly, playing the best equilibrium is better when

the sender�s cost is high. This result comes from the fact that the equilibrium

of the game may make the sender pay more communication cost ex-post than the

gain from persuasion, which allows the decision maker to extract more information

from him. In contrast, in the non-stochastic commitment, the sender is perfectly

knowledgeable about the outcome of the persuasion at the beginning and, hence,

it is impossible to make him show a large amount of evidence.

1.1.1. Related Literature

Our model is most closely related to the literature on strategic communication with

veri�able messages, which is also called persuasion games. The most important

benchmark was developed by Grossman (1981) and Milgrom (1981). They study a
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persuasion model in which the sender is not required to tell the truth in a precise

manner, and show that we have complete unraveling of information. Shin (1994)

studies a persuasion game in which the decision maker does not know how precise

the sender�s information is, and shows that unraveling of information breaks down.

Verrechia (1983) incorporates a cost of information transmission for the sender to

those models, and also shows that it prevents complete unravelling of information.2

In the current study, complete unraveling of information does not happen because

the decision maker is not willing to pay the cost of communication up to the point

that full information is obtained.3 Forges and Koessler (2008) characterize the sets

of equilibrium payo¤s achievable with unmeditated communication in persuasion

games with multi-stages. Hörner and Skrzypacz (2011) study a dynamic model

of veri�able information transmission in which a seller can transmit information

gradually as the buyer makes payment for it.

In using a setting in which the sender gets a collection of binary signals about

the state, this chapter is related to Dziuda (2007) and Quement (2010). Dziuda

(2007) o¤ers a model in which a sender tries to persuade the decision maker to make

a particular action by revealing veri�able information. In her model, the persuader

2Kartik, Ottaviani, and Squintani (2007) and Kartik (2009) study a model in which the sender�s
information is not veri�able but he bears a cost of lying and, hence, information is costly to
falsify.

3Che and Kartik (2009) build a model of veri�able information, but the sender has to pay the
cost of information acquisition. They analyze the problem of who to ask for advice, given the
fact that full information revelation from the sender does not happen.
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may be either a strategic agent or a truth teller. Quement (2010) constructs

a model in which the sender has either a small amount of evidence or a large

amount of evidence. Their question is whether the strategic sender has an incentive

to reveal unfavorable signals or not, and they show that the sender may do so.

Although our model does not pay a particular attention for the question of whether

the sender communicates unfavorable signals or not, it also has an equilibrium

in which the sender communicates unfavorable signals (and it is proved to be

ine¢ cient). This is because even sending an unfavorable signal incurs the cost and

thus it signals that the sender is a good type, who has con�dence of being able to

persuade, ultimately.

There are some studies that investigate a problem of persuasion as a mech-

anism design problem. In Glazer and Rubinstein (2004), the decision maker is

allowed to check one piece of evidence of the sender�s proposal, and they study

mechanisms that maximize the probability that the decision maker accepts the

sender�s request, if and only if it is justi�ed. Sher (2010) generalizes the Glazer

and Rubinstein�s model in a way that both static and dynamic persuasion can be

considered, and characterizes the relation between them. Kamenica and Gentzkow

(2010) demonstrate that a sender can induce his favorite action from the deci-

sion maker by ingeniously designing the signal structure, by which they can make

Bayesian updating of information. This chapter also addresses a similar problem

of how the decision maker should design her acceptance rule by examining the

optimal commitment problem.
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Analytically, this study is closely related to a variant of the games of attrition

where players use mixed strategies to resolve the dynamic strategic tension.4 Hen-

dricks, Weiss, and Wilson (1988) study a war of attrition in a complete information

model. Kreps and Wilson (1982b), and Ordover and Rubinsten (1986) consider

models of attrition with asymmetric information. Although they build models on

zero-sum payo¤ structure while we do not, their models are analytically similar

to our model in the sense that some of the players must play mixed strategies to

have a gradual revelation of types in an equilibrium. An important di¤erence is

that in their studies, one of the informed players has a dominant strategy for the

duration of the game and, as a consequence, all nodes of the game are reached with

a positive probability. However, in our study, no player has a dominant strategy

and all players�incentives are endogenously determined in the game. One more

important di¤erence is that in the variant of war of attrition, duration works as

an indirect signal about player�s private information, which can be cost of �ght-

ing, cost of failing the agreement, time preference, and so on, through showing

how much they can �burn money�. In our model, in contrast, private informa-

tion is gradually revealed by the process of the decision maker directly asking the

sender. Baliga and Ely (2010) consider a model in which a principal uses torture

to extract information from an informed agent. In equilibrium, the informed agent

4A notable di¤erence is that we formulate the game in discrete time, rather than continuous time
that is standard in game of attrition.
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reveals information gradually, initially resisting and facing torture, but eventually

he concedes.

This chapter is also related to the literature on cheap-talk communication in

dynamic models. Sobel (1985) develops a dynamic cheap talk model5 in which

the sender is either a friend or an enemy of the decision maker, and examines

the problem of how long the sender should spend on constructing his reputation

and when he should deceive the decision maker. Aumann and Hart (2003), and

Krishna and Morgan (2004) show that multiple exchanges of messages can convey

more information than a single message. Eso and Fong (2008) study a model with

multiple senders where the decision maker can choose when to make her decision.

They show that the threat of costly delay can induce instantaneous full revelation

of information.

This chapter is organized as follows. Section 1.2 introduces the basic structure

of the model. In section 1.3, we provide analysis on the simplest example of the

model. In Section 1.4, we provide general cauterization of equilibrium. Section

1.5, we do comparative static analysis. In section 1.6, we examine commitment

problems. Proof of the theorems can be found in the Appendix.

5For a benchmark model of the cheap-talk game, see Crawford and Sobel (1982).
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1.2. Model

There are two players: a sender (persuader) and a decision maker, or DM

hereafter.6 The sender has a proposal that he would like the DM to accept. The

quality of the sender�s proposal � (the state) is either 1 or �1; there is a common

prior over the state. The sender does not observe the state �; 7 but he receives N 2

Z pieces of evidence that contain information about the quality of the proposal.

Each piece of evidence is either good (G) or bad (B). The vector of evidence e 2

fG;BgN is drawn from a distribution g(ej�): Given the environment, we also have

the probability distribution over �; conditional on the realization of e: We assume

that the pieces of evidence are interchangeable in the sense that the E[�je] depends

only on the number of pieces of good evidence in e: Given the assumption, we have

the expected value of �; conditional on the realization of j pieces of good evidence

amongN; and denote it by E[�jj]. We assume that E[�jj] is increasing with j; which

means that more good evidence makes the prospect of the proposal better. In order

to exclude trivial cases, we assume that E[�j0] < 0 and E[�jN ] > 0:

Denote by � the threshold number of good pieces of evidence that makes the

expected value of � higher than zero, that is,

E[�j� � 1] < 0 � E[�j�]:

6Throughout, we use female pronouns for the decision maker and male pronouns for the sender.

7In our model, it does not matter at all whether we assume that the sender observes � or not.
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Furthermore, denote by f the unconditional density over the realization of the

number of good pieces of evidence; the sender�s type. The DM wants to accept the

sender�s proposal if � = 1 and reject if � = �1 and, hence, she cares about the

sender�s type. Everything, except the realization of the sender�s type is common

knowledge.

To illustrate our setting, as an example, think of the following simple scenario

which is taken from the literature on strategic voting.8 The prior probability that

the state is 1 is 1=2: There are two pieces of evidence, i.e., N = 2: Each piece of

evidence is independent from each other. Conditional on � = 1; the probability that

a realization of a piece of evidence is G is p > 1=2; and conditional on � = �1; it

is 1� p: Then, it follows that

E[�j0] = 1� 2p
p2 + (1� p)2

; E[�j1] = 0; and E[�j2] = 2p� 1
p2 + (1� p)2

;

Hence, E[�j2] > E[�j1] > E[�j0] and � is one. Also, f (0) = f (2) = 1
2
fp2 +

(1� p)2g and f (1) = 1 � p2 � (1� p)2 : Our setting allows more general cases,

relative to this example, in a sense that we do not necessarily assume that each

piece of evidence is independent from all others.

8See Feddersen and Pesendorfer (1998) for an example.
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1.2.1. Dynamic Game of Persuasion

In the process of the game, the decision maker�s turn and the sender�s turn alter-

nate. At each turn of the DM, she has three choices: whether she accepts, rejects,

or continues, which is interpreted as requiring a piece of evidence from the sender.

At each turn of the sender, he has three choices: communicating the DM about

a good piece of evidence, a bad piece of evidence, or being silent. It is assumed

that the sender cannot reveal more than one piece of evidence at a time, which is

understood to be a technological constraint of communication. We can also think

that it is extremely costly to communicate multiple evidence at a time. The game

is terminated once the DM chooses to accept or reject.

The formal description of the model is as follows. Time is discrete and ex-

tends from 0 to 1 that is denoted by t 2 T = f0; 1; 2; ::;1g: Before everything

starts, Nature draws � 2 f�1; 1g and, conditional on the realization, it chooses the

sender type, the number of pieces of good evidence the sender has. The number

j is the sender�s private knowledge. In our model, it is assumed that the sender

is not informed about the realization of �; although it does not matter at all for

the analysis. At period 0; the decision maker chooses one from fA;R;Cg; where

A; R; and C correspond to accept, reject, and continue (require a piece of evi-

dence), respectively. If C is chosen, the game proceeds to period 1. In period 1,

�rst the sender chooses m1 2 fG;B; Sg under the condition that he can choose

G (B) only when j � 1 (j � N � 1). Here, G and B mean to show a good or bad
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piece of evidence, respectively, and S means that the sender remains silent.9 He

can show a good (bad) piece of evidence only when he has at least one of it. Then,

the communication takes place and the DM chooses one from fA;R;Cg and, in

the case that C is chosen, the game proceeds to period 2. Now, in the beginning

of period 2, the sender chooses m2 2 fG;B; Sg under the condition that m2 can

be G only when j � 2 if m1 = G and j � 1 if m1 6= G: We have the symmetric

condition for B as well. The rest of the game is described in a similar manner.

The game terminates once the DM chooses either A or R:

Message history at period t is a sequence of messages communicated up to

period t; and it is denoted with superscript by mt: The set of all histories at

period t is M t = �tfG;B; Sg; and the set of all histories is M = [M t: Then,

de�ne function NG : M ! f1; 2; ::; Ng; NB : M ! f1; 2; ::; Ng and NS : M !

f1; 2; ::; Ng as the number of G, B, and S along message historymt; respectively10.

Obviously, we have NG (mt) + NB (m
t) + NS (m

t) = t: In the following analysis,

the set of available message for type j sender after message history mt is denoted

by M (mt; j) ; that is S �M (mt; j) for all (mt; j) and

G 2M
�
mt; j

�
i¤ j > NG

�
mt
�
and B 2M

�
mt; j

�
i¤N � j > NB

�
mt
�
:

9We can also change the model by allowing sender to send a cheap message from a �nite set of
cheap messages, without adding any change to the results.

10More precisely, NG (mt) = jfkjmk = G; k � tgj ; NB (mt) = jfkjmk = B; k � tgj, and
NS (m

t) = jfkjmk = S; k � tgj :
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Therefore, M (mt; j) cannot contain G (B) if the sender runs out of good (bad)

pieces of evidence to communicate on the history mt:

In our model, persuasion is costly for both players. We can simply think that it

is costly because it takes up valuable time and there are cognitive costs that they

have to pay to make the DM understand the sender�s explanation. Speci�cally,

we want to think that communication is costly for the DM because it delays his

decision making, and it is costly for the sender because formulating or explaining

evidence to the DM is costly due to cognitive costs. In this sense, we will use the

term "communication cost" in a broad sense that includes delay cost.

We can also take the interpretation of Dewatripont and Tirole (2005)�s observa-

tion, which states that information is neither hard nor soft initially, but the degree

of softness is endogenously changed. Only by combining the mutual e¤ort of the

two sides they turn the information into the hard type. If we take this interpreta-

tion, we assume that the degree of softness is zero-one11. To make things simple,

we assume that the cost of communicating a piece of evidence is �xed for both

sides. Thus, the communication technology for our model is speci�ed as follows:

Communication cost for the DM.

11In Dewatripont and Tirole (2005), in contrast, the level of e¤ort, which can increase the proba-
bility of being able to make information hard, is chosen by both sides. They examine the problem
of moral hazard in team with that setting.
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The (one time) cost of communication for the DM is represented by a function

� : fG;B; Sg ! R; where

1 > � (G) = � (B) > 0 and � (S) > 0:

Communication cost for the sender.

The (one time) cost of communication for the sender is represented by a func-

tion � : fG;B; Sg ! R; where

� (G) = � (B) > 0 and � (S) = 0:

These say that communicating a piece of evidence G or B is costly for the DM

as well as the sender and, in particular, communicating a piece of good evidence

incurs strictly positive cost for both. Silence is also costly for the DM,12 while it is

not for the sender. Although it is possible to work on a model of positive silence

cost for the sender, the assumption simpli�es some of the mathematical expressions

that appear later. Assumptions of � (G) = � (B) and � (G) = � (B) are purely for

notational simplicity, and it is straightforward to extend the model by relaxing

those assumptions.

We simply denote � (G) (hence, also � (B)) by �; � (S) by �S; and � (G) (� (B))

by �: The communication costs that two players have to pay depend on how many

12It is also possible to choose a model setting in which silence does not incur cost for the DM.
We chose the current setting because it generates inessential multiplicity of equilibrium.
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times pieces of evidence or silence are communicated, multiplied by the commu-

nication cost. To shorten the notation, we de�ne the functions that represent the

costs of communication along the message history mt; as follows:

CDM
�
mt
�
= �fNG

�
mt
�
+NB

�
mt
�
g+ �SNS

�
mt
�

for the decision maker and

CS
�
mt
�
= �fNG

�
mt
�
+NB

�
mt
�
g:

for the sender. As soon as the DM takes an action, both of the players get their

respective payo¤s. The DM�s (expected) payo¤ when the seeder type is j, which

is denoted by UDM (a; j;mt) ; depends on the particular action (accept or reject)

taken by the DM, the type of sender, and the communication history after which

the DM takes action:

UDM
�
A; j;mt

�
= E[�jj]� CDM

�
mt
�
and UDM

�
R; j;mt

�
= �CDM

�
mt
�
:

When the DM accepts the proposal, her payo¤depends on the sender type through

the term E[�jj], which should be interpreted that the actual payo¤ of the decision

maker is � and its expected value is taken.13 If the DM rejects the proposal, she has

13More precisely, the DM�s utility depends on the state, action, and message history that is
written as UDM (A; �;mt) = � � CDM (mt) and UDM (R; �;mt) = �CDM (mt) :
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an outside option that ensures her payo¤ of zero, and just pays her communication

cost.

The sender�s payo¤, which is denoted by US (A;mt), depends only on the par-

ticular action taken by the DM and the communication history, after which the

DM takes the action:

US
�
A;mt

�
= V � CS

�
mt
�
and US

�
R;mt

�
= �CS

�
mt
�
;

where V � �: Hence, the sender�s payo¤ is V; which is the gain from persuading

the DM, minus the communication cost if the DM accepts his proposal. It implies

that the sooner he can persuade the DM, the higher his payo¤ is. It is possible

that even if he could eventually persuade the DM, the communication cost is larger

than the gain of persuasion V: On the other hand, he just pays the communication

cost when the DM ends up with rejecting the proposal.

Hence, in our model, the cost of communication, which can be interpreted as

a time cost, appears in the players�payo¤s in an additively separable form. An

alternative setting is one in which players�payo¤s are discounted as time goes by.

This setting, however, cannot generate the equilibrium that we will characterize;

in such a setting the sender does not have an incentive to give up persuasion

because his payo¤ just shrinks and never becomes negative. On the other hand, it

is possible to model the DM�s payo¤ in a discounted form and still get the same
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type of equilibrium, because even in such a setting, she faces the same trade-o¤

between prompt decision making and information collection.

Now, we de�ne the strategies of two players. The sender�s (behavior) strategy is

a probability measure � (�;mt; j) over available messagesM (mt; j) ; parameterized

by (mt; j) : It represents the type j sender�s strategy after message history mt; and

� (m;mt; j) represents the probability that he chooses a particular message m 2

fG;B; Sg: The strategy of period 1 is denoted by � (�;?; j) ; by using a convention

of notation m0 = ?. On the other hand, the DM�s (behavior) strategy is a prob-

ability measures � over fA;R;Cg; parameterized by mt. Her strategy at period

0 is � (�;?).

We introduce notations and de�nitions to be used in the subsequent analysis.

As the game proceeds, the DM�s belief about the sender type evolves. Her belief,

which is parametrized by message historymt; is represented by a vector of function

Bn : M ! [0; 1] for n = 0; 1; 2; ::; N such that
PN

n=0Bn (m
t) = 1; that is, Bj (mt) is

the probability that the DM attaches to the event, the sender type being j; after

communication history mt:

Given a sender�s strategy �; we can de�ne the probability that a particular

message history is followed; that is

'
�
mt
�
=

NX
j=0

f (j)� t
�=1�

�
m� ;m

��1; j
�
:
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Given the DM as well as the sender�s strategy, we can de�ne the set of message

history that can be reached with strictly positive probability

� = fmt j
NX
j=0

f (j)� t
s=1�

�
ms;m

s�1; j
�
� �
�
C;ms�1� > 0g:

We simply call elements of �; on-equilibrium message history.

In the following analysis, we use the following notations for the ease. The nota-

tion (mt;m) reads �a message history such that mt is followed by m�: In particu-

lar, (mt; G) 2M t+1 represents message history mt followed by G (Also, (mt; B) 2

M t+1 should be read similarly). Furthermore, we denote by Gt 2 M t the message

history at period t that contains only G:

1.2.2. Equilibrium

Our solution concept is that of perfect Bayesian equilibrium, as is de�ned in Fu-

denberg and Tirole (1991, De�nition 8.2).14 This requires that after each history

of messages mt 2M; the DM maximizes her expected payo¤ given her belief about

sender�s type and their future play of the game, and also the sender maximizes his

expected payo¤ given the DM�s strategy.

In order to formally de�ne the equilibrium, we �rst de�ne the value function

of the players. In our game, the decision of each period necessarily depends upon

the decisions of the next period, and that in turn depends on the decision of the

14Their de�nition is for �nite multistage games. Here, instead, the game has in�nite stages and,
hence, the de�nition follows a slight generalization of it.
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following period, and so on. The value function we will de�ne makes it possible to

summarize all the information about the future play of the game that is necessary

for making the current decision.

We start by de�ning the value function for the DM. In order to do this, let

'(jmt) be a probability distribution function over fG;B; Sg; parameterized by

mt 2M; which can be interpreted as the DM�s belief about next period�s messages

she will hear from the sender, should she continue. We say that a function VDM :

M ! R is a value function for the DM given (';B) if, for all mt 2M;

(1.1) VDM
�
mt
�
=

maxf max
a2fA;Rg

NX
j=0

Bj
�
mt
�
UDM(a; j;m

t);
X

m2fG;B;Sg

'(mjmt)VDM (mt;m)g

and

(1.2) lim
t!1

VDM(m
t) = �1 for all fmtg1t=0:

The de�nition of value function (1.1) says that the DM�s value of history mt is

the higher one of the expected payo¤ when she makes decision immediately after

message history mt, and the expected value for waiting for one more period. The

next condition (2) is understood to be the counterpart of �no-Ponzi game condi-

tion�in dynamic optimization problems in our model. In a typical formulation of

a consumer�s dynamic optimization problem, the no-Ponzi game condition ensures

that the consumer cannot keep borrowing money over time and accumulating debt
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and, thereby, makes his utility arbitrary large. Condition (2) is reminiscent of that

restriction in our model, which is necessary to pin down the value function for the

DM; without it, the uniqueness of the value function is not ensured. Note that

(1.2) is the same as requiring limt!1 VDM(m
t) = �CDM (mt) ; because silence is

costly for the DM and, hence, limt!1CDM (m
t) ! 1 for all sequence of history

fmtg1t=1: We have the following lemma, which states that once we are given the

sender�s strategy and the DM�s belief, the value function for the DM is uniquely

determined.

Lemma 1. Given (';B); VDM is uniquely determined.

Similarly, we can de�ne the value function for the sender. Contrary to the

value function for the DM, sender�s value function should be parameterized by his

type. We say that a function VS : M � N ! R is a value function for the sender

type j, given the DM�s strategy � if

VS
�
mt; j

�
= �

�
A;mt

�
US
�
A;mt

�
+ �

�
R;mt

�
US
�
R;mt

�
+�

�
C;mt

�
max

m2M(mt;j)
VS
��
mt;m

�
; j
�

(1.3)

and

(1.4) lim
t!1

VS
�
mt; j

�
= � lim

t!1
�fNG

�
mt
�
+NB

�
mt
�
g for all fmtg1t=0:
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The max operator in the right hand side of (3) subsumes the fact that the sender

behaves optimally at the next period. We also have no-Ponzi game condition as

well. Then, we have the same lemma as when we de�ned the value function of the

DM.

Lemma 2. Given �; VS is uniquely determined.

Corollary 1. Value function VDM satis�es �CDM (mt) � VDM (m
t) � 1 �

CDM (m
t) for all mt and value function VS satis�es �CS (mt) � VS (m

t; j) �

V � CS (mt) :

With the above preparations, we can de�ne the equilibrium. We focus on

following conditions for a pair of strategies and the DM�s belief (�; �;B; ').

D1. The optimality of the sender�s strategy at every history of messages:

�
�
m;mt; j

�
> 0 only when m 2 arg max

m2M(mt;j)
VS
��
mt; a

�
; j
�
:

D2. The optimality of the DM�s strategy at every history of messages:

�
�
C;mt

�
> 0 only when VDM (mt) = E[VDM

�
mt+1)jmt

�
];

and a 2 fA;Rg; �
�
a;mt

�
> 0 only when VDM (mt) = E[U(a; j; t)jmt]:
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D3. Bayes�rule for the belief of the DM (B;') : For all mt 2M;

'
�
mt+1jmt

�
=

NX
n=0

Bn
�
mt
�
�
�
mt+1;m

t; j
�
;

and if there is some j such that � (mt; j;m
t�1) > 0 and Bj (mt�1) > 0;

Bj
�
mt
�
=

Bj (m
t�1)� (mt;m

t�1; j)PN
n=0Bn (m

t�1)� (mt;mt�1; n)
and Bj

�
m1
�
=

f (j)� (m1;?; j)PN
n=0 f (n)� (m1;?; n)

:

Bj
�
mt
�
= 0 for all j < NG

�
mt
�
and Bj

�
mt
�
= 0 for all j > N �NB

�
mt
�
:

Our equilibrium is de�ned by those three conditions.

De�nition 1. A pair (�; �;B; ') is a perfect Bayesian equilibrium i¤ it satis�es

D1-D3.

The �rst condition D-1 requires that the each time the sender chooses what

to show, he chooses the one that maximizes his value. Note that, this must hold

not only for message histories that are reached with strictly positive probability

(on-equilibrium history), but also the histories that are not supposed to reach

with positive probability (o¤-equilibrium history). D-2 requires the same kind of

behavior for the DM. She chooses to continue only when it maximizes her value,

in which case her value VDM (mt) is equal to E[VDM (mt+1)jmt)]; and the same

applies for the choices of accept and reject.

Note that D-3 is stronger than simply using Bayes�rule in the usual fashion,

since it applies to updating from period t to period t + 1 when messages history
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mt has probability zero, i.e., mt =2 �: The motivation for this requirement is that

if Bj (mt) represents the DM�s beliefs given mt; and players follow their strategies

at t+ 1; the DM should use Bayes�rule to form his belief in period t+ 1:15

The �nal requirement in D-3 simply says that the DM assigns zero probability

to the type of sender who has a strictly smaller number of pieces of good (or bad)

evidence than already shown. In the terminology of incomplete information game,

the set

f
�
j;mt

�
jj � NG

�
mt
�
and N � j � NB

�
mt
�
g � f0; 1; ::; Ng �M

is the information set for the DM after getting message mt and, hence, the DM

has to put all the probability mass in this set.

Note how the two belief functions B and ' play di¤erent roles in the DM�s

decision making. The belief function B; which shows the DM�s belief over how

good the proposal is, is relevant for choosing whether to accept or reject, if she has

to make a decision immediately. On the other hand, the belief function '; which

shows the DM�s beliefs about the sender�s behavior at the next period, is relevant

for choosing whether to decide immediately or to continue.

We conclude this section by showing some immediate results that follow almost

directly from the de�nition of the equilibrium. The �rst one says that once the

sender communicates su¢ cient number of pieces of good evidence, the DM accepts

15For more discussion about the requirements, see Fudenberg and Tirole (1991).
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the proposal with certainty, and the sender just remains silent afterwards (thus,

such a node should be o¤-equilibrium). The proof is straightforward and, hence,

omitted:

Claim 1. 1. In any equilibrium, for all mt such that NG (mt) � �; � (A;mt) =

1:

2. In any equilibrium, for all mt such that NG (mt) � �; � (S;mt; j) = 1 for

all j:

Since the DM, after verifying that the sender�s proposal has a su¢ cient number

of good pieces of evidence, already knows that her optimal action is to accept the

proposal irrespective of the realizations of the rest of evidence, she does not pay

more communication costs and reveals the rest of evidence. On the other hand,

knowing that the DM will accept the proposal, the sender does not communicate

remaining evidence by incurring the communication cost.

Given an equilibrium, let � be the set of on-equilibrium history of termination

with acceptance, that is, m� 2 � if and only if � (A;m� ) = 1 and m� 2 �: From

the de�nition, � (A;ms) < 1 for all ms that is a sub-history of m� : The next result

shows that the DM accepts the proposal for certain on equilibrium, only after she

is shown qualifying evidence.

Proposition 1. For all m� = (m��1;m� ) 2 �; it must hold that m� = G:
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This follows because if there is a message history such that (m��1; B) 2 � or

(m��1; S) 2 �; even the lowest type sender among all types who may follow

m��1 can get accepted at period � ; which implies that there is no screening of

a bad sender taking place at period � . This contradicts the fact that the DM

chooses continue after m��1:

Remark 1. One may think that we should impose more restrictions on o¤-

equilibrium belief than when we are working on the usual signaling games. This is

because, in our game, the DM�s decision to take an action or continue crucially

depends on her belief after the current period. In particular, when she decides to

take some action and, thereby, terminates the game, that decision must be based

on her o¤-equilibrium behavior of herself and the sender and, moreover, even their

o¤-equilibrium behavior also depends on further o¤-equilibrium behavior. There-

fore, one may want to use the concept of sequential equilibrium (Kreps and Wilson

(1982a)), rather than perfect Bayesian equilibrium, just because it imposes more

restrictions on o¤-equilibrium belief of the players. However, in our game it can

be shown that those two equilibrium concepts coincide in a fundamental sense. In

order to show this, let us de�ne the usage of the term, outcome equivalence. Let

O := M � fA;Rg be the set of pairs of message history and the DM�s action.

Then, the outcome of the game is a probability distribution over O: We say that

that two di¤erent strategies pairs (�0; �0; '0; B0) and (�00; �00; '00; B00) are outcome

equivalent if they induce the same outcome. Note that, in such a case we have
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�0 (�;mt) = �00 (�;mt) on every mt 2 �0 and �0 (m; j;mt) = �00 (m � j;mt) for

every m if j 2 P (mt) and mt 2 �0 such that �0 (C;mt) > 0; where �0 �

M is the set of nodes that can be reached with strictly positive probability (the

set of on-equilibrium history in equilibrium (�0; �0; '0; B0)), and �00 �M is de�ned

in a similar manner. It is easy to see that those imply �0 = �00: We will call

PBE (�; �; ';B) a sequential equilibrium if there is a sequence of totally mixed

strategy (��; ��; '�; B�), with � 2 N+ such that for each mt 2 M and j; it con-

verges to (� (mt; j) ; � (mt) ; ' (mt) ; B (mt)) 2 R9+N : Now we have the following

claim.

Claim 2. For every PBE, there is an outcome equivalent sequential equilibrium.

1.3. An Example

This section is devoted to the analysis of the special case in which the number

of pieces of evidence is two and every piece of evidence should be good for the

expected value of the proposal becomes positive, that is, N = � = 2. Although

this is a special case, it is useful for getting the idea of the construction of the

equilibrium and it provides fundamental properties that are shared with more

general cases.

The �rst observation is that the DM�s strategy of continuing until two pieces of

good evidence is communicated is not supported as an equilibrium. This is because

this naive strategy makes the type 1 sender give up persuasion by silence from the

beginning, because he knows that two pieces of good evidence are necessary to
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persuade the DM. However, it makes the DM strictly better to accept immediately

after the �rst piece of good evidence, because it already screened out low type

sender (type 0 and type 1). This implies that equilibrium necessarily involves

mixing strategies to resolve the tension.

In order to focus on the most interesting case, we impose the following assumptions.

(1.5) E[�jj � 1] � 016 and � E[�j1]f (1) � �f (2) + �Sf (1) :

The second condition says that the cost of communication is low enough, com-

pared to the loss from accepting type 1 sender�s proposal. Roughly speaking, the

DM is willing to pay the communication cost if she can screen out type one sender

when she knows that the sender is either type 1 or 2.

Even in this special case, we have a plethora of equilibria. The next proposition

characterizes one of those, where the reason we focus on it is fully discussed in

the next section (it is actually the ex-ante best equilibrium for the DM). In the

statement of the theorem, we omit the description of o¤-equilibrium behaviors,

because it is straightforward to specify those. Remember that the second element

of the sender�s strategy � is a message history, and the third element represents

the type of the sender.

Proposition 2. A pair of strategies that satis�es the following is an equilib-

rium.

16This is rewritten as f (1)E[�j1] + f (2)E[�j2] � 0; which is compatible with � = 2:
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1. Type 2 sender communicates good pieces of evidence in row: � (G;?; 2) =

� (G;G; 2) = 1; and type 0 sender chooses silence at period 1: � (S;?; 0) = 1:

2. Type 1 sender mixes at period 1:

� (G;?; 1) = c and � (S;?; 1) = 1� c; where c = � f (2) �

f (1) (E[�j1] + �S)

3. At period 2, the DM accepts if she has been communicated two pieces of good

evidence, and rejects otherwise:

� (A; (G;G)) = 1 and �
�
R;m2

�
= 1 if m2 6= (G;G) :

4. At period 1, the DM mixes between continuing and acceptance if she has been

communicated a piece of good evidence, and rejects otherwise:

� (A;G) = �=V; � (C;G) = 1� �=V; and � (R;m1) = 1 if m1 6= G:

5. At period 0, the DM continues if W � maxf0;E[�]g; rejects if

0 > maxfW;E[�]g; and accepts if E[�] > fW; 0g; where

W = cf (1) (E[�j1]� �) + f (2) (E[�j2]� �)� ff (0) + (1� �) f (1)g�S:

The second period strategies are easy to see. The DM accepts the sender�s

proposal if the sender communicates the second piece of good evidence again and

rejects otherwise, which induces the sender to communicate the last piece of good
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evidence if he still has it. For the �rst period strategies, after checking one piece of

good evidence, the DM mixes between accepting and continuing. The probability

that she accepts is �=V; which makes the sender type 1 be indi¤erent between trying

persuasion (by communicating good evidence) and giving up by being silent. On

the other hand, the probability that type one sender tries persuasion is set in

a way that the DM is indi¤erent between accepting and continuing and thereby

screening it out at period 1. Note that if this probability is too low, at period one

after checking one piece of good evidence, the DM is sure enough that the sender

is type 2 and she strictly prefers to accept, and if it is too high she strictly prefers

to continue. The expression c; which is the type one sender�s trial probability

� (G;?; 1) ; follows from the condition17

� cf (1)

cf (1) + f (2)
E[�j1] = cf (1)

cf (1) + f (2)
�S +

f (2)

cf (1) + f (2)
�:

The left-hand-side, the conditional probability that the sender is type 1 after com-

municating one piece of good evidence is multiplied by the expected loss, is the

bene�t of continuing one more time. The right hand side is the expected cost from

communicating one more time, given the sender�s strategy. Those two must be

17Alternatively, we can write it as

f (2)

cf (1) + f (2)
E[�j2] + cf (1)

cf (1) + f (2)
E[�j1] = f (2)

cf (1) + f (2)
(E[�j2]� �) + cf (1)

cf (1) + f (2)
�S ;

where the left hand side represents the DM�s expected payo¤ from accepting the sender�s proposal
after checking a single piece of good evidence, while the right hand side is her expected payo¤
from continue and screen type one sender out.
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equal, because the DM must be indi¤erent between acceptance and communicat-

ing one more time.

At period zero, if the bene�t from proceeding to period 1 is higher than the

expected payo¤ from accept or reject without communication, the DM chooses

continue. In such a case, we have W; which is characterized in the proposition,

becomes VDM (?) :

An important point to note is that at period one, it is optimal for type 2 sender

to communicate a piece of good evidence, because he is sure to be able to persuade

the DM. This is so even when 2� > V; so that the communication cost he ends up

paying is larger than V: This implies that he is expecting "success with regret" to

happen with some probability at the beginning of the game, because at period 1

after being required to show one more piece of evidence, his �rst communication

cost is sunk and responding to the DM�s request and showing the second good

evidence becomes optimal.

The speci�c equilibrium provided in Proposition 2 has some special character-

istics that we focus on in the next section. First, a piece of bad evidence is never

communicated on-equilibrium. Second, the acceptance probability after commu-

nicating a good evidence is �=V or 1: Finally, silence meets immediate rejection.

Although there are other equilibria that do not satisfy those properties, we will

discuss in the next section that the equilibria that have those properties, which

more plausible relative to other equilibria.
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An important note is that we can also have an equilibrium in which only one

piece of good evidence is needed to persuade the DM. If

f (1) (E[�j1]� �) + f (2) (E[�j2]� �)� f (0) �S � maxf0;E[�]g;

the DM chooses to continue at time zero even if she knows that she is able to screen

only type zero sender out. In such an equilibrium, both type one and two senders

have success with persuasion by communicating only one piece of good evidence.

Obviously, the equilibrium payo¤ is lower for the DM and higher for the sender,

relative to the equilibrium of Proposition 1 (this fact is generalized in subsection

4.3).

In the rest of this section, we investigate more about the equilibrium in our

example. First we do some comparative statics with respect to the parameter values

� and �: We start it by looking at the e¤ect of �:

Proposition 2 shows that the sender�s cost � has no e¤ect on the DM�s ex-

pected payo¤. On the other hand, it has negative e¤ect on the sender�s expected

payo¤ Ej[VS (?; j)]. To see this, think that we increase �: It has no e¤ect on type

0 sender�s payo¤, because it does not participate in the persuasion process. Also,

it has no e¤ect on type 1 sender�s expected payo¤, because the increase of the cost

is exactly o¤set by period 1�s acceptance probability. Type 2 sender�s expected

payo¤, however, will be decreased because period 20s acceptance probability is still

one and, thus, does not fully compensate the burden of the increase in the cost. It
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is easily seen that the increase in sender�s cost decreases the expected time of DM�s

decision making through the increase in the acceptance probability at period 1.

We next discuss the comparative statics with respect to the DM�s cost of com-

munication, �: Proposition 2 demonstrates that it actually has no e¤ect on the

equilibrium payo¤ of the sender, Ej[VS (?; j)], as long as (1.5) is satis�ed, because

it does not a¤ect the acceptance probability at period one and two.

It is obvious that � has a strictly negative relationship with VDM (?) : An

interesting fact is that when � decreases, the DM can enjoy not only direct e¤ect

as well as indirect e¤ect of the decrease. It is seen by the following relation:

@VDM (?)
@�

=
�� (G;?; 1) f (1)� f (2)| {z }

Direct e¤ect (�)

+

@� (G;?; 1)
@�

f (1) (E[�j1]� � + �S)| {z }
Indirect e¤ect (�)

;

where
@� (G;?; 1)

@�
=

�f (2)
f (1) (E[�j1] + �S)

> 0:

The direct e¤ect is obvious. Since the sender will communicate a piece of good

evidence with probability � (G;?; 1) f (1)+f (2) at period one, it becomes the �rst

order e¤ect on the decrease in �: Indirect e¤ect stems from the fact that the DM

must be indi¤erent between communicating and accepting after communicating

once. To keep her indi¤erent after � gets smaller, the probability that type 1
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sender tries to persuade should be suppressed so that the gain from screening that

type out at period 2 gets smaller.

An important implication is that the DM wants to make commitment if she can

write down a contingent plan to follow, rather than playing the original game. In

fact, it is easy to see that the following method of commitment, if possible, makes

the DM better o¤, for sure: the DM accepts the o¤er with probability slightly

smaller than �=V at period one if a piece of good evidence is shown. At period

two, she accepts for sure if the second piece of good evidence is shown. She rejects

immediately when the sender shows something else. This commitment makes the

DM better o¤ because if the sender does not have two good pieces of evidence, he

remains silent from the beginning and hence the commitment makes it possible to

avoid accepting type one sender�s proposal, that happens with some probability in

the equilibrium of the original game.

We can also see that the DM can make her better o¤ even if she can make a

limited form of commitment. Think of the commitment in the following method:

the DM commits to checking two pieces of evidence as long as the sender tries

to communicate, and she accepts the proposal if two good pieces of evidence are

shown. If, on the other hand, the sender chooses silence, the DM immediately

rejects the proposal. To ensure that the sender�s incentive compatibility is satis�ed,

we assume that V � 2�: Then the expected utility for the DM from this limited
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method of commitment is

VC = f (2)E[�j2]� 2f (2) � � (f (0) + f (1)) �S:

With probability f (2) ; the sender is type 2 and the DM has to pay the commu-

nication cost of 2�. Otherwise, the sender is a bad type (type 0 or 1) and she will

pay just a period cost of silence.

The expected payo¤ from this limited commitment is higher than W; which is

the expected payo¤ from playing the original game. It is computed as

(1.6) VC = W + � (G;?; 1) f (1) �;

Note that � (G;?; 1) is the probability that the decision maker can prevent type

one sender from persuasion by making the commitment, relative to the equilibrium

of the game. Given the equilibrium strategy of the sender, the following strategy is

optimal for the DM: continue after the �rst piece of good evidence and accept after

the second piece of good evidence, and otherwise reject. Then, the decision maker

expects that if the sender is type 1, she communicates a piece of good evidence

with probability � (G;?; 1) and silent with probability 1 � � (G;?; 1) : In the

former case, she will end up being silent in the next period. Hence, the expected

communication cost with sender type 1 in the equilibrium is �S+� (G;?; 1) �; while

it is just �S when she makes the commitment. Since the expected communication

cost with sender type 2 is the same between the equilibrium and the commitment
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(2�), the relation (1.6) follows. Succinctly, the commitment makes it possible to

avoid checking type one sender�s piece of good evidence, by completely discouraging

it from persuasion. Whether the DM can make her better o¤ when the condition

V � 2� does not hold is discussed in Section 1.6.

Although this simple example is enough to provide intuition to some of the im-

portant results that are valid for more general cases, there are still some questions

that cannot be addressed by the simple example. For instance, obviously, in the

setting of N = �; we cannot have an equilibrium in which communicating a piece

of bad evidence is on-equilibrium. However, such an equilibrium does exist in more

general cases of N > �: To see this, think of the case in which � is large and all

types of sender chooses B or S at period one. If the sender chooses G; the DM

believes that the sender type is exactly 1 (o¤-equilibrium belief that we have no

restriction) and, hence, immediately rejects the proposal. This in turn makes the

sender avoiding G: Hence, one possible question is whether such an equilibrium is

e¢ cient or not, relative to other equilibria.

1.4. General Analysis

This section is for characterizing the properties of equilibria. In the �rst sub-

section, we give some basic properties of all equilibria. In the second subsection,

we examine the properties that must be satis�ed in an e¢ cient equilibrium. Those

are 1. a bad piece of evidence is never communicated. 2. Silence meets immediate

rejection. 3. acceptance probability after a good piece of evidence is �=V or 1: In
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the third subsection, we characterize the best equilibrium for the DM, which is

unique. We show that the best equilibrium must have the longest possible length

of communication among Pareto optimal equilibria.

1.4.1. Properties of All Equilibria

As in most signaling games, our model also has a plethora of equilibria. However,

it is possible to identify some important properties that all equilibria have to

share. The following theorem characterizes the most important properties of the

equilibrium in our persuasion game. It says that every time a piece of good or

bad evidence is communicated on-equilibrium, the DM must accept the proposal

immediately with strictly positive probability. It also characterizes the lower bound

of it.

Theorem 1. In any equilibrium, if mt+1 = (mt; G) 2 � then � (A;mt+1) 2

[�=V; 1]: Also, if mt+1 = (mt; B) 2 � then � (A;mt+1) = �=V:

This result follows from the fact that communicating a piece of good or bad

evidence incurs cost for the sender. If the probability of acceptance is very small

right after (mt; G), for the sender, communicating an evidence does not pay from

myopic point of view, which implies that he expects acceptance with high probabil-

ity in the future. It implies that every on-equilibrium history afterwards reaches a

node that the DM accepts with some probability and, hence, acceptance is the best

action for the DM at the node. However, it implies that acceptance is optimal in
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all the contingencies, which implies that the DM should accept the proposal rather

than continuing after (mt; G).18

An important implication of the theorem is that in an equilibrium, the DMmust

not strictly prefer to continue each time she is communicated a piece of good or

bad evidence. In constructing the equilibrium, this restriction imposes conditions

about how much of bad sender types drop persuasion in the next period and, hence,

how much the DM�s informational gain is. Note, however, that it is possible that

the DM strictly prefers to continue at period 0; at the point where the sender has

not yet paid the communication cost.

The next statement is an immediate corollary to Theorem 1, but also provides

an important characterization of the equilibrium in our game. It says that silence

has essentially no power of persuading the DM.

Theorem 2. In an equilibrium, if mt+1 = (mt; S) 2 �; then � (A;mt+1) = 0:

From Theorem 1, every essential communication (not silent) meets immediate

acceptance with a strictly positive probability. Moreover, if silence, which incurs

no cost for the sender, also meets immediate acceptance with a strictly positive

18In the alternative setting in which �S = 0; the proposition can be rewritten as follows: if
mt+1 = (mt; G) 2 � then there is a sequence of silence stage m�

t+1 = (S; ::; S) such that

�
�
A;m�

t+1

�
=

��1X
s=t

�
�
A;
�
ms+1;ms

��
�
�
C;
�
ms+1;ms

��s�t � �=V;
that is, the DM must accept the proposal with probability higher than �=V before they commu-
nicate another evidence.
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probability, acceptance is an optimal for all contingencies from the previous pe-

riod�s point of view. However, then for the DM it is strictly better to accept

immediately at the previous period, which is a contradiction.

Theorem 1 implies that the value of a message history for the DM after a piece

of evidence is shown (not silence) is equal to the expected payo¤ from accepting

the proposal because it is an optimal action, where the expectation is taken with

all the information she had gained through the message history. This is stated in

the following corollary. Note that this should be the case even after a piece of bad

evidence is communicated as long as it is on an on-equilibrium path.

Corollary 2. In any equilibrium, it holds that

VDM
�
mt
�
=

NX
n=0

Bn
�
mt
�
UDM(A; n;m

t) for all (mt�1;mt) 2M t�1 � fG;Bg 2 �:

1.4.2. Pareto Optimal Equilibria

In this subsection, we demonstrate that an e¢ cient equilibrium is characterized

by three properties.19 Towards this end, �rst we de�ne the set of Pareto optimal

equilibria. Denote by E (�; �S; �) the set of all equilibrium for a given pair of

parameter values (�; �S; �): Also, we denote each value function with superscript

19In this section, we ignore cases of some non-generic constellations of parameter values. More
precisely, we exclude the cases in which

�f (j) (E[�jj] + �S)PN
k=j+1 f (k)

= � for some j � �:
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e when we are mentioning it in a particular equilibrium e: We de�ne the set of

Pareto optimal equilibria as follows:

De�nition 2. Given (�; �S; �); the set of Pareto optimal equilibria P(�; �S; �) �

E(�; �S; �) is de�ned as follows: If e 2 P(�; �S; �); there is no e0 2 E(�; �S; �) such

that V e
0

DM (?) � V eDM (?) and E[V e
0

S (?; j)] � E[V eS (?; j)]; where the expectation is

taken with respect to j20; and one of the inequalities is strict.

While we de�ned the set of Pareto optimal equilibria in a way that the sender�s

expected payo¤ is compared ex-ante, before the state of the world is realized,

we can also de�ne it in the interim way, in which the sender�s expected payo¤ is

compared after the state of the world is realized, i.e., the condition �E[V e0S (?; j)] �

E[V eS (?; j)]� is replaced by �V e
0

S (?; j) � V eS (?; j) for all j�. However, all the

results provided in this section are valid for whichever criteria we choose.

We de�ne an important class of equilibrium that includes the set of Pareto

optimal equilibria as a subset. In any equilibrium in the set, silence meets imme-

diate rejection, even a single piece of bad evidence is never communicated, and

acceptance probability is minimized among all possible ways of constructing an

equilibrium.

De�nition 3. Given (�; �S; �); the set of benchmark strategy equilibria B(�; �S; �) �

E(�; �S; �) is de�ned as follows: If e 2 B(�; �S; �);

20Hence, E[V eS (?; j)] =
PN

j=0 f (j)V
e
S (?; j) :
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1. A bad piece of evidence is never communicated, that is, (mt; B) =2 � for all

mt 2M:

2. For all (mt; G) 2 �; it holds that

(1.7) �
�
A;
�
mt; G

��
2 f�=V; 1g and �

�
C;
�
mt; G

��
= 1� �

�
A;
�
mt; G

��
:

3. For all (mt; S) 2 �; it holds that � (R; (mt; S)) = 1:

A property of benchmark strategy equilibrium is that once the DM chooses to

enter the communication phase (period 1), all sender types higher than the number

� such that � (A;G� ) = 1 keep communicating good evidence until the proposal is

accepted (it is the only optimal behavior given the DM�s strategy). The DM never

rejects the proposal from a high type sender, because he keeps communicating the

good pieces of evidence, until the DM accepts eventually. Hence the DM does not

make type I error in this sense.

Figure 1.1 describes how the value of the DM evolves over time in a benchmark

strategy equilibrium. At period 1, the sender sends either G or S and the DM�s

value becomes VDM (G) and ��S; respectively. Because, in a benchmark strategy

equilibrium, only low type sender sends S at period 1, the DM�s optimal action

is to reject immediately and it results VDM (S) = ��S. Once the game reaches

the node G; accepting the proposal is an optimal and she is indi¤erent between

doing so and continuing. This means that VDM (G) is the appropriately weighted

average of VDM (G2) and VDM (G;S) : The latter is ��S � � because again only
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low type sender sends S at period 2 and hence rejection is the optimal. At the

�nal period where the DM accepts the proposal for sure, say period � ; her value

reaches E[�jj � � ]� ��:

It is useful to de�ne the "length" of persuasion for a benchmark strategy equi-

librium. Given a benchmark strategy equilibrium e 2 B (�; �S; �), we call the

number � such that �
�
A;G�

�
= 1 but � (A;Gt) = �=V for all t < �; as the

length of persuasion and denote it by NG (e). Actually, the length of persuasion

is the number of pieces of good evidence to be required to make the DM accept

for sure. Note, of course, that the DM may accept the proposal sooner with some

probability and hence the terminology should be understood to be an abbrevia-

tion of �maximum possible length of persuasion�. Then, an important property of

benchmark strategy equilibrium follows directly from the de�nition.

Claim 3. 1. In a benchmark strategy equilibrium e; for all j < NG (e) ; VS (?; j) =

0: Moreover, for all j < NG (e) and j � t < NG (e) ; VS (Gt; j) = (t� 1) �:

2. In a benchmark strategy equilibrium e; for all j � NG (e) ; VS (?; j) >

0: Moreover, for all j � NG (e) and t < NG (e) ; VS (Gt; j) > (t� 1) �:

In a benchmark strategy equilibrium, after each message history, the sender

has only two choices; communicating a piece of good evidence, or being silent.21

21In a benchmark strategy equilibrium, the acceptance probability after a piece of bad evidence
is communicated (o¤-equilibrium) is set to be small and, thus, silence, which incurs no cost, is
better for the sender.
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Because silence e¤ectively implies giving up persuasion, the sender�s strategy is

characterized by a "dropping vector". Formally, type j sender�s strategy is char-

acterized by a � dimensional vector

dj = (d
1
j ; d

2
j ; :::; d

�
j);

where dnj ; which is � (S;G;G
n�1) ; represents the probability that type j sender

drops persuasion by silence at n�s trial, i.e., if d1j = 1; type j sender drops at

period 1 for sure. Obviously, in a benchmark equilibrium e, for all type j �

NG (e) ; d
n
j = 0 for all n � NG (e) ; because it never drops out until eventually

persuading the DM (this follows from Claim 3). We denote N � � dimensional

vector (d1; d2; :::; dN) (collection of all sender types�s strategy) by simply d in the

subsequent analysis. The next proposition shows the equations that characterize

our benchmark strategy equilibrium.

Proposition 3. Sender�s strategy with dropping vector d such that d1j > 0 for

some j is supported as a benchmark strategy equilibrium if and only if there is

� such that

�
�X
j�t
dt+1j �ts=1(1� dsj)f (j)E[�jj](1.8)

= �

NX
j�t+1

�t+1s=1(1� dsj)f (j) + �S
�X
j�t
dt+1j �ts=1(1� dsj)f (j)
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for all t < � and ��+1s=1d
s
j = 0 for all j � �+ 1; and

(1.9)
NX
j

�
1� d1j

�
f (j) (E[�jj]� �)� �S

NX
j

d1jf (j) � 0:

In equation (1.8), the left-hand-side is the expected gain from screening out

low type sender by continuing at period t. From Theorem 1, after message history

Gt; the DM�s optimal action is acceptance and thus acceptance is the status quo

action. By continuing, with the probability

(1.10)

PN
j�t d

t+1
j �ts=1(1� dsj)f (j)PN

j�t�
t
s=1(1� dsj)f (j)

;

she can know that the sender is a low type and change her action to rejection (a

high type sender never give up persuasion). On the other hand, this incurs the

cost of communication. With probabilityPN
j�t+1�

t+1
s=1(1� dsj)f (j)PN

j�t�
t
s=1(1� dsj)f (j)

;

the sender is a high type to show next piece of good evidence with whom the DM

has to pay the communication cost of �. On the other hand, with probability

(1.10), the sender chooses silence and the DM has to pay the communication cost

of �S: Proposition 3 requires that those two values, when adequately weighted, are

equal with each other.
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Note that (1.8) implies that if the DM accepts for sure at period �; we must

have

(1.11) ����1s=1d
s
��1f (�� 1) (E[�j�� 1] + �S) = �

NX
j��

f (j) ;

because at period �; only type � � 1 sender drops persuasion by being silent and

d���1 = 1. Therefore, if � (f (l)E[�jl] + �S) < �
PN

k�l+1 f (k) for all l � j; we have

no way to have an equilibrium with the maximum length of persuasion longer

than j + 1: The condition (1.9) ensures that after the �rst piece of good evidence

is communicated, the DM�s optimal action is A: If this condition is not satis�ed,

the DM does not accept the proposal, which contradicts Theorem 1.

We have a corollary of Theorem 1 that is used in the subsequent analysis. It

determines the value of the DM�s value function at the beginning of the game by

a simple formula.

Corollary 3. In a benchmark strategy equilibrium, it holds

(1.12) VDM (?) = maxf0;E[�];
NX
j=1

(1� d1j)f (j) (E[�j1]� �)�
NX
j=1

d1jf (j) �Sg

In the cases of VDM (?) = 0 and VDM (?) = E[�]; the DM just rejects and

accepts the proposal without requiring a piece of evidence, respectively. When

those are not the case, the DM proceeds to period 1 and, hence, her value is

determined by the weighted average of payo¤s between the case that the sender
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communicates a piece of good evidence, where her optimal action is acceptance,

and the case that he chooses silent, where her optimal action is rejection.

Here we comment on the general procedure to �nd out an equilibrium. The

easiest way to �nd an equilibrium is to determine the sender�s strategy backward.

First, we determine the �nal period at which the DM accepts the proposal for sure,

say period �. Second, let

d�j = 0 for all j � � and � � �;

that is, the sender type higher than � certainly keeps communicating good pieces of

evidence. It must be so in the equilibrium because for the sender type higher than

� showing a piece of good evidence has a strictly higher continuation value, rather

than choosing silence and being rejected. Then, we can determine���1t=0

�
1� dt��1

�
by

(1.11). The rest of the values of d should be chosen in a way that (1.8) as well as

d1j � 0 for all j is satis�ed. If there is no such a way of choosing d; we have no

equilibrium with communication. Finally, we see if

NX
j=1

(1� d1j)f (j) (E[�j1]� �)�
NX
j=1

d1jf (j) �S � f0;E[�]g

holds. If it does, we can support � (C;?) = 1 and, hence, we have a benchmark

strategy equilibrium with the sender�s dropping vector d:
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Remark 2. It can be shown that when � � 4; for a generic constellation of

parameters, the �rst and the third conditions of a benchmark strategy equilibrium

implies that second.

Now, we state the main result of this subsection. We denote by B(�; �S; �) the

set of benchmark strategy equilibrium. Then we have the following theorem, which

demonstrates that every e¢ cient equilibrium is a benchmark strategy equilibrium.

Theorem 3. For all (�; �S; �); P(�; �S; �) � B(�; �S; �):

Theorem 1, in Section 1.3, demonstrates that even if there is an equilibrium that

involves the communication of a bad piece of evidence, the DM must accept it with

probability �=V; before she communicates the next piece of evidence. This means

that even from a piece of bad evidence, the DM is actually positively updating

the sender type. The message that the set of Pareto equilibria involves no piece of

bad evidence says that the way such an equilibrium screens the sender type is not

e¢ cient for both players.

The fact that playing an equilibrium with a period of communicating a piece of

bad evidence does not bene�t the sender can be easily seen. Because communicat-

ing a piece of bad evidence only meets with acceptance probability of �=V; which is

just enough to recover the communication cost, playing another equilibrium that

skips such a period does not harm the sender (and it is possible to construct such

an equilibrium). On the other hand, the fact that it does not bene�t the DM is not
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as straightforward as one may think. To see this, think of an equilibrium such that

a piece of bad evidence should be communicated. Then, the sender type N; who

has only good pieces of evidence, has to drop at some period. This equilibrium

makes it possible to make the right hand side of (1.8), the cost of communication,

smaller at each period. Accordingly, this reduces the dropping from the low type

sender at each period (the left-hand-side of (1.8)) or equivalently, increases the

dropping at period one, which itself bene�ts the DM. The question is whether this

gain outweighs the loss of giving up the best type sender, f (N)E[�jN ]; the answer

turns out to be negative (see the Appendix).

It is rather easy to see that silence should meet immediate rejection in an e¢ -

cient equilibrium. From Theorem 2, the sender cannot be accepted after silence,

which means that having such a period does not make him better o¤, while even

silence is costly for the DM. Those imply that given an equilibrium that has silence

that does not meet immediate rejection, it is possible to construct another equi-

librium that skips such a period, which Pareto dominates the original equilibrium.

To see the reason that the probability of acceptance immediately after a piece

of good evidence should be exactly �=V or 1 in an e¢ cient equilibrium, suppose

that communicating a piece of good evidence, for example for the third time, has

acceptance probability strictly higher than �=V; that is, � (A;G) > �=V: Then all

the sender types who have more than three pieces of good evidence will commu-

nicate them at least three times. However, in such a case, we can make another
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equilibrium by making the DM accept the proposal with probability one after com-

municating three pieces of good evidence. This is an equilibrium, since the sender

as well as DM�s strategy in the original equilibrium remains an optimum. Now the

sender is strictly better o¤because he can persuade the DM sooner, without harm-

ing the DM. Hence, the acceptance probability immediately after a piece of good

evidence is either maximized or minimized among all possible ways of constructing

an equilibrium.

1.4.3. The Best Equilibrium

In this subsection, we characterize the best equilibrium for the DM (we say just

the best equilibrium, hereafter), that is, the equilibrium such that VDM (?) ; the

value of the DM at the initial period, is maximized. Because it is proved that the

best equilibrium is unique for all parameter values, it pins down the equilibrium

on which we can do comparative statics (Section 1.5). Also, it gives the highest

benchmark with which the DM�s equilibrium payo¤ is compared when we examine

the commitment problem (Section 1.6).

The result given in the previous subsection already demonstrated that the best

equilibrium, which must be a Pareto optimal equilibrium, is one of benchmark

strategy equilibrium. Therefore, in this section, we focus our analysis exclusively

on the set of benchmark strategy equilibrium. The �rst property of the best equi-

librium for the DM is that it is actually unique.
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Proposition 4. B (�; �S; �) has a unique maximizer of VDM (?).22

An important characteristic of the best equilibrium for the DM is that it max-

imizes the length of persuasion among the set of Pareto e¢ cient equilibria. Intu-

itively, increasing the amount of good evidence necessary for persuasion discourages

bad senders from trying to persuade.

Theorem 4. If equilibrium e� is the best equilibrium for the DM, there is no

equilibrium e such that NG (e) > NG (e�) :

Note that there are multiple equilibria even if we focus on the ones that maxi-

mize the length of persuasion. Also, note that the theorem does not state that an

equilibrium has a higher expected payo¤ than another equilibrium if the former

has longer length of persuasion.23 It only says that if an equilibrium is the best

equilibrium, it must have the maximum length of persuasion.

To see this result in the simplest case, suppose that there are two equilibria,

one with the length of persuasion of 1 and the other with the length of persuasion

of 2. In the former equilibrium, both type 1 and 2 senders try to persuade, which

implies that after checking a single piece of good evidence, the value of the proposal

is E[�jj � 1] for the DM. On the other hand, in the latter equilibrium, type 1 sender

does not try to persuade with probability one, which implies that after checking

22We regard two equilibria that are outcome equivalent identical.

23This statement holds in the special case of N = � = 2; where the best equilibrium is unique.
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one piece of evidence the value of the proposal is higher than E[�jj � 1]:24 Hence,

the value of the decision maker at period zero is higher in the latter because it

screens out more bad sender (type one sender) by the �rst piece of evidence.

The procedure of �nding the best equilibrium involves 1. �nd the maximum

length of persuasion. 2. given the maximum length of persuasion, �nd the way

that the sender gives up persuasion over time in a way that the low type�s trial by

showing an evidence at period 1 is suppressed the most. In other words, given the

length of equilibrium, we have to connect di¤erent periods by equation (1.8) in a

way that
���P��1

j d1jf (j)E[�jj]
��� is maximized.

We can get the basic idea of characterizing the best equilibrium by rewriting

the condition (1.8) as

(1.13) �
�X
j�t
dt+1j �ts=1(1� dsj)f (j) (E[�jj] + �S) = �

NX
j�t+1

�t+1s=1(1� dsj)f (j) :

As we saw in the previous subsection, we can construct an equilibrium back-

ward. We �rst determine the last period of persuasion, say �; and let dtj = 0 for

all t � � and j � �; i.e, the sender type higher than � never drop persuasion.

Then, we choose elements of d backward so that equation (1.13) is satis�ed for

all period. At each period t, given the value of the right hand side, there are

24Under the condition that the latter equilibrium exists, in order to support the former the
decision maker has to expect that type 2 sender does not show the second piece of good evidence
with probability one at period 2.
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multiple ways to assign the probability of dropping, dt+1j �ts=1
�
1� dsj

�
; among dif-

ferent types to make the equality hold. An important observation is that because

the absolute value of E[�jj] is decreasing with j as long as j � �; if we decrease

dt+1j �ts=1
�
1� dsj

�
a bit for some j; say by �dt+1j �ts=1

�
1� dsj

�
; we need to increase

it for i for more than �dt+1j �ts=1
�
1� dsj

�
if i > j: This re-allocation of the drop-

ping probability leads to higher value of the right hand side at period t� 1; which

leads lower dropping at period 1, i.e., lower
���P��1

j d1jf (j)E[�jj]
��� : This observation

implies that we should use more lower types to tie the consecutive period in the

equality (1.13).

Although it is possible to state the general algorithm to construct the best

equilibrium that is applicable to general cases, we can introduce an assumption

that makes the characterization of the best equilibrium easier. Towards this end,

let � be the highest j < � such that E[�jj]+�S < 0: Approximately, � is the sender

type that the DM does not dare to pay the communication cost to screen it out.

Obviously, for any equilibrium e; NG (e) < �:

Think of the function � : f0; 1; ::; �g ! R that is de�ned as

� (j) =

����� f (j)PN
k=j+1 f (k)

(E[�jj] + �S)
����� :

The assumption we want to impose is function � being decreasing. The func-

tion �(j) is made by multiplying the loss from accepting type j sender�s proposal

with the probability that the sender�s type being j relative to the probability
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that the sender type is strictly higher than j: Approximately, high �(j) implies

that the DM has strong incentive to screen out type j sender, after having al-

ready screened out lower types. A su¢ cient condition for � (j) to be decreasing

is that jE[�jj]j decreases fast enough to compensate for the change in the term

f (j) =
PN

k=j+1 f (k) ; which is likely to be increasing. If f (j) =
PN

k=j+1 f (k) is in-

creasing with j; the assumption is automatically satis�ed.

To see that the assumption makes it easier to �nd the maximum length of

persuasion, see condition (1.11). Under this condition, the maximum length of

persuasion is determined by the largest � such that � < � (�� 1) : From the

condition, we know that � < � (l) for all l < � and this implies that we can

�nd dropping vectors which can take only values less than one, in such a way

that (1.8) is satis�ed at each period. If the condition is not satis�ed, the fact

that j is the largest number satisfying � < � (�� 1) does not necessarily imply

that the maximum length of persuasion is �: To see this, think of the case that the

assumption of � decreasing is not satis�ed and � < � (�� 1) but � > � (�� 2) : To

be an equilibrium with maximum length of persuasion of �; we must have (1.11)

holding in order to support period � � 1�s behavior of the DM (mixing between

accepting and continuing) and we also have

�
��1X
j���2

d��1j ���2s=1

�
1� dsj

�
f (j) (E[�jj]+�S) = �f���1s=1

�
1� dsj

�
f (�� 1)+

NX
j��

f (j)g;
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in order to support the DM�s period � � 2�s behavior. Here, note that only type

��2 or ��1 sender can drop at period ��1: However, if � > � (�� 2) ; it may not

possible to choose d in such a way that above equality is satis�ed, which implies

that the maximum length of persuasion should be shorter than �� 2:

In sum, under the condition of � (j) being decreasing, the maximum length of

persuasion is determined by j that satis�es

(1.14) � (j) > � > � (j + 1) :

The assumption also makes it easier to �nd out the optimal dropping vector.

As we discussed above, in �nding the best equilibrium, we should use more lower

type sender�s dropping to tie the consecutive period by the equality (1.13). In the

equilibrium characterized in the theorem, we use only type j sender�s dropping

to make period j�s equation (1.13). Apparently, type j is the lowest possible type

to drop at period t in a benchmark strategy equilibrium. If � is decreasing, it is

ensured that once we can make the equation (1.13) at period j satis�ed by letting

only type j sender drops at period j, it is also possible to make the equations hold

at previous periods in the same way.

Think of the following procedure to �nd out a N dimensional vector c =

(c0; c1; c2; ::; cN).
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� Step 1. Let c� = c�+1 = :: = cN = 1; and c0 = 0: Find c��1 that satis�es

� = �c��1f (� � 1)PN
j=� cjf (j)

(E[�j� � 1] + �S);

if we cannot �nd c��1 in a way that c��1 � 1; let c��1 = 1: Next, �nd c��2 that

satis�es

� = � c��2f (� � 2)PN
j=��1 cjf (j)

(E[�j� � 2] + �S):

If we cannot have c��2 in a way that c��2 � 1; let c��2 = 1 and rewrite c��1 = 1; and

continue this process until we get c1: If we get cj > 1 at some period; rewrite

cj = cj+1 = :: = cN and continue. Let the greatest k such that ck < 1 be 
:

� Step 2. Check if V =
PN

j=1 cjf (j) (E[�jj]��)�
PN

j=1(1�cj)f (j) �S � E[�] and

also V � 0. If both hold, it is done. If it is not, then let c1 = c2 = :: = cN = 0:

The above argument is summarized in the following theorem, which demon-

strates that the best equilibrium is found by the procedure when � (j) is decreas-

ing.

Theorem 5. Let (c0; c1; ::; cN) be a vector derived from the above procedure. If

function � (j) is decreasing, there is a unique (in the class of outcome equivalent)

DM�s utility maximizing equilibrium that is characterized as follows:

1. � (G; j;?) = cj; � (S; j;?) = 1� cj:

2. � (G; j;Gt) = 1 if t � j and t � 1:

3. If mt 6= Gt; � (R;mt) = 1:
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4. If t � 
; � (A;Gt) = �=V: If t � 
 + 1; � (A;Gt) = 1:

In this equilibrium, each type of sender mixes at period one whether to com-

municate a good piece of evidence or to give up persuasion by being silent. Once

he chooses to communicate a piece of good evidence, he does so until he runs out

of evidence. At each period, say t; the DM can screen out exactly type t sender

by continuing. The way that type t sender mixes at period one makes the DM�s

expected bene�t from screening out type t and cost of communication equal with

each other at period t.25

1.5. Comparative Statics

In this section, we examine the e¤ect of changes in the model�s cost parameters

(�; �S; �) on the equilibrium. In order to do this, hereafter, we focus solely on the

best equilibrium for the decision maker and, hence, from the analysis of Section

1.6, we focus on the best benchmark strategy equilibrium, where value functions

are denoted with superscript �*�. We have the next theorem, whose proof is easy

and thus omitted:

Theorem 6. 1. Fix (�S; �): Suppose that the prior of the proposal is bad, i.e.,

E[�] < 0: Then Ej[V �S (?; j)] is a step function of � and there is a threshold value

of � under which it is increasing, and above which it is zero.

25The equilibrium characterized in the theorem has a dropping vector such that d1j = 1�cj ; dkj =
0 for all k 2 f2; ::; jg; and dj+1j = 1:
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2. Fix (�S; �): Suppose that the prior of the proposal is good, i.e., E[�] > 0:

Then Ej[V �S (?; j)] is a step function of � and there is a threshold value of � under

which it is increasing, and above which it is V .

If the prior of the proposal is bad, the DM whose communication cost � is very

high, does not talk with the sender and just rejects the proposal. For the sender,

this is the worst case because he has no chance of persuading her. The best DM for

the sender is the DM whose communication cost is low enough to communicate,

but not too low to be willing to communicate for a long time. The DM may

communicate as long as � (j) de�ned in the previous section exceeds � and thus

the maximum length of persuasion is decreasing with �: In this case of the prior

of the proposal being bad, the expected payo¤ of the sender is non-monotonic.

Note that the relation between E[VS (?; j)] and � is a step function whose values

depends on the length of persuasion.

Figure 1.2 describes the relation when � (j) is decreasing, in which the length

of persuasion is determined by (1.14): Because � (j) is decreasing, as we gradually

increase � from zero, the length of persuasion decreases one by one and, thereby,

increases the expected payo¤ of the sender.

On the other hand, if the proposal is ex-ante good and the DM has a very

high communication cost, the DM does not require evidence from the sender and

just rubber-stamps the proposal. For the sender, this is the best possible case in

which his expected payo¤ is maximized. Therefore, in such a case of ex-ante good
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proposal, the expected payo¤ of the sender becomes monotonic, which is again a

step function.

The e¤ect of change in � on the DM�s expected payo¤ is divided into direct

and indirect e¤ects, as we have seen in the example of Section 1.3. We have

V �DM (?) =

NG(e)�1X
j=1

� (G;?; j) f (j) (E[�j1]� �) +
NX

j=NG(e)

f (j) (E[�j1]� �)

��S
NG(e)�1X
j=1

f1� � (G;?; j)gf (j) ;

since the sender will communicate a piece of good evidence or being silent at period

1. Hence we have @V �DM (?)
@�

=

�
NG(e

�)�1X
j=1

� (G;?; j) f (j)�
NX

j=NG(e�)

f (j)| {z }
Direct e¤ect (�)

+

NG(e
�)�1X

j=1

@� (G;?; j)
@�

f (j) (E[�j1]� � + �S)| {z }
Indirect e¤ect (�)

:

We can see that the direct e¤ect is negative, and we are able to show that the

indirect e¤ect is also negative (see Appendix). Interpretation of the direct e¤ect

is straightforward: it just reduces the cost of communication at period one. The

indirect e¤ect comes from the later periods. The reduction in � makes it possible
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to make the DM indi¤erent between acceptance and continue at each period with

a small bene�t from screening and, hence, with a high dropping of bad senders at

period 1.

Another important implication is that, assuming that the best equilibrium

always holds, the probability that the decision maker makes a wrong decision,

either choosing A when the sender type is less than � (type II error) or choosing

R when the sender type is bigger than � (type I error), monotonically converges

to zero as � converges to zero. Thus, by denoting the probability by z (�; �S) ; the

next theorem follows, where its proof is omitted:

Theorem 7. Fix �: Then,

lim
�#0

sup
�S��

z (�; �S)! 0:

To see the theorem, �rst note that the probability that the decision maker

makes the wrong decision of accepting the bad proposal, type II error, is smaller

than
PNG(e

�)�1
j=1 � (G;?; j) f (j). It is easily seen by (1.8) that the absolute value

of it is decreasing. On the other hand, in the best equilibrium, type I error never

happens when E[�] > 0: Even when E[�] � 0; type I error never happens as long

as the DM chooses C at period 0; which is the case when � is su¢ ciently small.

We next consider comparative statics with respect to the sender�s communica-

tion costs. It is easy to see from the construction of equilibrium that the DM�s

expected payo¤ is invariant with the sender�cost of communication. On the other
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hand, the sender�s expected payo¤ can be naturally shown to be decreasing with

his cost of communication.

Theorem 8. Fix (�; �S): Then V �DM (?) is constant with respect to � and

E[V �S (?; j)] is strictly decreasing with �:

The reason for E[V �S (?; j)] being strictly decreasing with � is easy to see. From

Claim 3, the low type sender�s expected payo¤ is 0; irrespective of his communica-

tion cost �; which comes from the fact that acceptance probability will adjust in

an equilibrium. However, the acceptance probability at period NG (e�) ; which is 1,

cannot adjust with the change in �; which implies that an increase in � decreases

the high type sender�s expected payo¤. These also tell that a decrease in � lengthens

the expected time before acceptance.

1.6. Commitment

In this section, we examine whether the DM can be better o¤ by making a

commitment if she can write down a contingent plan to follow. If we think of the

DM as an organization which is frequently making decisions based on the advice

of concerned parties, this question is particularly important for designing the rule

used to handle this advice. We consider two di¤erent forms of commitment.

Optimal Stochastic Commitment
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The answer to the problem, however, is easy if the DM is allowed to make

commitment in a very sophisticated way. In fact, it is easy to see that the following

method of commitment, if possible, makes the DM better o¤ for sure: the DM

accepts the o¤er with probability �=V (or actually, slightly lower than) each time

a piece of good evidence is shown, until enough good evidence is shown at which

point she accepts the o¤er for sure. It follows that if the sender does not have

enough good pieces of evidence to show, he remains silent from the beginning.

Once the DM knows that, she has an incentive to accept as soon as possible. The

probability �=V is the largest probability of acceptance that can make the screening

of sender types possible. Furthermore, it can be shown that this is the optimal

commitment that the DM can make.

Theorem 9. The optimal commitment takes the following form: the DM ac-

cepts the proposal with probability �=V each time the sender communicates a piece

of good evidence until � pieces of good evidence are communicated, where � is the

number characterized by

� = argmax
k

X
j�k

f (j)E[�jj]

�
X
j�k

f (j) [

kX
n�1

n�

�
1� �

V

�n�1
�

V
+ k�

�
1� �

V

���1
]� �S

X
j<k

f (j) :

An important point is that the stochastic commitment is a Pareto improvement

from the best equilibrium. This follows because in the best equilibrium, the low
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type sender�s expected payo¤ is zero, and it can be shown that the length of

communication is shorter in the commitment case than in the best equilibrium,

which makes the sender better-o¤. This tells us that the persuasion game involves

an inevitable waste of time or energy, which can be mitigated by the commitment.

Optimal Limited (Non-Stochastic) Commitment

Although stochastic commitment attains a desirable outcome compared to the

best equilibrium, making stochastic commitment possibly di¢ cult because the

agent cannot verify the DM�s behavior and the DM cannot prove that she is actu-

ally following the committed plan. In order to consider such a case, in particular,

we think of the following form of commitment that is easier to make: she decides

to listen to the sender for a predetermined length of time, say � ; as long as good

pieces of evidence are shown. If she is shown � pieces of good evidence in a row,

she accepts the o¤er, while she rejects the o¤er as soon as she is shown other

evidence or silence. If the DM makes such a commitment, it is optimal for the

sender types lower than � to remain silent at period 1 and get rejected, because

they know that they cannot persuade the DM. We call this type of commitment

"limited commitment," hereafter.
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The optimization problem the DM has to solve when she makes the limited

commitment is as follows:

max
k
�DM (k) = max

k
f
X
j��

f (j) (E[�jj]� ��)� �S
X
j<�

f (j)g;

subject to �� � V:

With probability
P

j�� f (j) ; the sender is of high type and the DM has to pay

the communication cost of ��: Otherwise, the sender is low type and the DM pays

just a period cost of silence. We have a participation constraint for the sender,

�� � V: Unless this condition is satis�ed, the sender does not try to persuade the

DM by paying the communication cost.

We have the following result, which shows that the DM is better o¤ by making

a limited commitment if the sender�s persuasion gain V is high enough relative to

his communication cost.

Theorem 10. Suppose that V � �NG (e
�) ; 26 where NG (e�) is the length of

persuasion of the best equilibrium. If � (C;?) = 1 in the best equilibrium, the DM

prefers to make limited commitment, i.e., maxk�DM (k) > V �DM (?) :

This result follows from the same reason as we discussed in Section 1.4. In

the best equilibrium, an optimal strategy of the decision maker, given the sender�s

26Note that NG (e�) is an endogenous variable. Another su¢ cient condition that uses only
exogenous variable is V � ��; which is stronger because � � NG (e�) :
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strategy, is to require further pieces of evidence until enough good evidence is com-

municated, and otherwise reject. This prevents bad senders from communicating

good evidence and then giving up, which causes the DM to incur communication

costs.

Contrary to the stochastic commitment, the limited commitment is not a Pareto

improvement from the best equilibrium. This follows because in the best equilib-

rium, the high type sender has a chance of succeeding with persuasion quickly,

while he has to communicate for a certain amount of time in a limited commit-

ment case. Because the low type sender�s expected payo¤ is zero, both in the

best equilibrium and with limited commitment, it can happen that the sender is

worse-o¤ in a limited commitment case than in the best equilibrium.27

The above result, however, can only be guaranteed if V � �NG (e
�) ; i.e., the

sender is willing to pay the persuasion cost in order to induce his preferred action

from the DM even if it takes NG (e�) periods to communicate with certainty. Once

this condition is violated, it is possible to have a situation where the DM prefers to

play the persuasion game instead of making a limited commitment. An example

is shown in the following claim.

Claim 4. Suppose that the parameter values of the model are as follows: N =

� = 2: 2� > V; E[�jj � 1] > 0; and the DM�s communication cost � is small to

27It can be shown that the length of persuasion is shorter in the commitment case than in the
best equilibrium.
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the extent that (1.5) is satis�ed. Then, the DM prefers to play the best equilibrium

than the limited commitment, i.e., V �DM (?) > maxk�DM (k) :

The proof is easy. In the setting above, the best limited commitment is to

require only one good piece of evidence. If she requires two pieces, no sender

type tries to persuade her. Hence, she can only require at most one piece of good

evidence in the limited commitment, which gives her the same expected payo¤, as

playing the game with the equilibrium of NG (e) = 1: Then, the claim follows from

Theorem 4, which states that the equilibrium that attains the highest expected

payo¤ for the DM has the longest length of persuasion.

More generally, in the best equilibrium, we may have �NG (e�) > V; which

means that the sender communicates for too long and pays more persuasion cost

than what he can get (V ) if the decision maker postpones the decision the most.

This makes it possible for the DM to extract more information from the sender,

relative to the case of limited commitment where the sender is perfectly knowledge-

able about the outcome of the persuasion and, hence, never pay the communication

cost excessively.

1.7. Conclusion

In this study, we developed a model that describes the dynamic process of per-

suasion. We show that the equilibrium necessarily involves probabilistic behavior

from both parties. We characterized the set of Pareto e¢ cient equilibria and the

best equilibrium for the decision maker.
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Although we provided an entrepreneur-venture capitalist relation as a primary

example, there are a lot of real world examples that �t out model. Glazer and

Rubinstein (2004) provide a number of nice examples of persuasion through hard

evidence.28 Those include, for example, the case in which a worker wishes to be

hired by an employer for a certain position. The worker tells the employer about

his previous experience and the employer wishes to hire the worker if his ability is

above a certain level.

It may be interesting to extend the model in a way that parameters � and

�, which represent players�costs of communication, have non-degenerate distrib-

utions and also are private information. Then, we will obtain more complicated

strategic interactions because the fact that the game did not terminate until a

particular period conveys some information about the players�types. This gives

our game an additional �avor of Fudenberg and Tirole�s (1986) war of attrition

model.

Obviously, this is just a �rst step for a deeper understanding of the process of

persuasion. There are a lot of questions that cannot be addressed in this study.

These include interesting questions such as 1. In which order should pieces of

evidence be released when each piece of evidence has a di¤erent value? 2. If the

sender is allowed to show multiple pieces of evidence at a time, how does this

28They work on a setting that the DM is restricted to checking only one piece of evidence. In
this sense, they think of the case where players face a very tight constraint in communication
relative to our model.
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change the nature of persuasion? 3. Can we render a reasonable explanation for

why sometimes a persuader reveals unfavorable information? Those questions are

left up to future research.

1.8. Appendix: Proofs

In the following, we use the following notations.

T : The set of terminal message histories that can be reached with strictly

positive probabilities, i.e., T = fmt 2 � j� (C;mt) = 0g:

P (mt) : The set of types of sender that follows message historymt with strictly

positive probabilities, i.e., if j 2 P (mt) then �ts=1� (ms;m
s�1; j) > 0:

�: Incomplete order onM de�ned asms � mt if and only ifms = (mt;ms
t+1) for

some ms
t+1 such that s � t+ 1; i.e., ms is a continuation from mt:

� (m� ; j) : The probability that type j sender follows communication history

m� ; i.e., � (m� ; j) = ��s=1� (ms;m
s�1; j) :

�
�
m�
t�1; j

�
: The probability that type j sender follows message historym�

t�1 from

period t� 1; i.e., �
�
m�
t�1; j

�
= ��s=t� (ms;m

s�1; j) :

Proofs of Lemma 1 and 2: We �rst prove the uniqueness of VDM : Let

(�; ';B) be given. Suppose that we have two value functions VDM and V 0DM that

satisfy conditions (1.1) and (1.2). Let

W = fmtjVDM
�
mt
�
6= V 0DM

�
mt
�
g;
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which is the set of message histories such that two value functions take di¤erent

values. To get a contradiction, suppose that W 6= ?: Then there must be some

m� 2 W such that

VDM (m
� ) > max

a2fA;Rg
E[UDM(a; j;m� )jm� ](1.15)

and V 0DM (m
� ) = max

a2fA;Rg
E[UDM(a; j;m� )jm� ];

or

VDM (m
� ) = max

a2fA;Rg
E[UDM(a; j;m� )jm� ](1.16)

and V 0DM (m
� ) > max

a2fA;Rg
E[UDM(a; j;m� )jm� ];

where we denote
PN

n=0Bn (m
t)UDM(a; j;m

t) by E[UDM(a; j;mt)jmt]:

To see this, note that if neither holds,

VDM (m
� ) > max

a2fA;Rg
E[UDM(a; j;m� )jm� ]

and

V 0DM (m
� ) > max

a2fA;Rg
E[UDM(a; j;m� )jm� ] forallm� 2 W:
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These, respectively, imply that

VDM (m
� ) = E[VDM (m� ;m�+1)jm� )] =

X
mt+1

' (m�+1jm� )VDM (m� ;m
� )

and V 0DM (m
� ) = E[V 0DM (m� ;m�+1)jm� )] =

X
mt+1

' (m�+1jm� )V 0DM (m� ;m
� ) :

Since m� 2 W; we let VDM (m� ) > V 0DM (m
� ) ; without loss of generality. Then

above relations imply that there is some m�+1 such that

VDM (m
� ;m�+1) > V

0
DM (m

� ;m�+1) > max
a2fA;Rg

E[UDM(a; j; (m� ;m�+1)jm� ;m�+1]:

By continuing the same argument, we have a sequence fmsg1s=t such that

VDM (m
s) � VDM (ms;ms+1) for all s � � :

From (1.2), we have to have lims!1 V
0
DM (m

s;ms+1) = lims!1��fNG (ms) +

NB (m
s)g = �1; but this contradicts VDM (m� ) > maxa2fA;Rg E[UDM(a; j;m� )jm� ]:

Without loss of generality, let (1:15) holds. For every history mt that can

be reached from m� with a strictly positive probability, we can �nd the smallest

s � t such that VDM (ms) = maxa2fA;Rg E[UDM(a; j;ms)jms]. To see this, note that

if it is not, we have a sequence fmsg1s=� such that VDM (ms) � VDM (ms;ms+1) for

all s � � and thus VDM (ms) � lims!1 VDM (m
s) = �1, which contradicts

VDM (m
� ) > maxa2fA;Rg E[UDM(a; j;m� )jm� ]. Let the set of such histories �; and

probability measure on � generated by ' be !. Then we have VDM (m� ) =
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R
VDM (s) d! (s). For each s 2 �; we must have

V 0DM (m
s) � max

a2fA;Rg
E[UDM(a; j;ms)jms] = VDM (m

s) ;

and, hence, we have
R
V 0DM (s) d! (s) �

R
VDM (s) d! (s). However, it must hold

that V 0DM (m
� ) �

R
V 0DM (s) d! (s) from the de�nition of the value function. This

implies V 0DM (m
� ) � VDM (m� ) ; which is a contradiction. Hence the uniqueness of

the value function follows.

Next, we prove the uniqueness of VS. To get a contradiction, suppose that we

have two di¤erent value functions, and let VS (mt; j) > V 0S (m
t; j) for some j and

mt: Make the sequence fmsg1s=t by

VS
�
mt; x

�
= �

�
A;mt

�
(V � CS

�
mt
�
)

��
�
R;mt

�
CS
�
mt
�
+ �

�
C;mt

�
VS
��
mt+1; a

�
; j
�
:

Then we have

lim�1t=0�
�
C;mt

�
VS
�
mt+1

�
� lim�1t=0�

�
C;mt

�
V 0S
�
mt+1; j

�
> VS

�
mt; j

�
� V 0S

�
mt; j

�
> 0;

which contradicts (1:2):

Next, we will prove the existence of VDM . To shorten the notation, denote by

g (mt) the highest value of expected utility of the DM when she decides whether
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to accept or reject, i.e., g (mt) = maxa2fA;Rg E[U(a; j;mt)jmt]. Take an arbitrary

mt and �x it. Make the sequence of real numbers V0 (mt) ; V1 (m
t) ; ::: as follows.

Let

V0
�
mt
�
= g

�
mt
�
; V1

�
mt
�
= maxfg

�
mt
�
;
X
mt+1

'
�
mt+1jmt

�
g
�
mt+1

�
;

and V2 (mt) =

maxfg
�
mt
�
;
X
mt+1

maxf'
�
mt+1jmt

�
g
�
mt+1

�
;
X
mt+2

f'
�
mt+2jmt+1

�
g
�
mt+2

�
g;

and so on. That is, Vk (mt) is constructed by Vk�1 (mt) by replacing terms

'
�
mt+k�1jmt+k�2� g �mt+k�1�

with

maxf'
�
mt+k�1jmt+k�2� g �mt+k�1� ; X

mt+k�1

f'
�
mk+tjmk+t�1� g �mk+t

�
g:

Obviously, Vn (mt) is an increasing sequence with each satis�es Vn (mt) � 1 �

�fNG (mt)+NB (m
t)g: Hence it converges to some value V1 (mt) � 1��fNG (mt)+

NB (m
t)g: Let this value be VDM (mt) ; and do this for all elements in H. It is a

routine work to verify that those satisfy the condition for being the value function.
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To prove the existence of VS (mt; j) ; pick a pair (mt; j) and �x it. Again, de�ne

the sequence V0 (mt; j) ; V1 (m
t; j) ; :: as follows:

V0
�
mt; j

�
= �

�
A;mt

�
fV � CS

�
mt
�
g � �

�
R;mt

�
CS
�
mt
�
� �

�
C;mt

�
CS
�
mt
�
;

V1
�
mt; j

�
= �

�
A;mt

�
(V � CS

�
mt
�
)� �

�
R;mt

�
CS
�
mt
�

��
�
C;mt

�
[ max
a2M(mt;j)

f�
�
A;
�
mt; a

��
(V � CS

�
mt; a

�
)

��
�
R;
�
mt; a

��
CS
�
mt; a

�
� �

�
C;mt

�
CS
�
mt; a

�
g];

and so on. That is, Vk+1 (mt; j) is constructed by using Vk (mt) by replacing terms

�
�
C;mt+k

�
C
�
mt+k

�
with

�
�
C;mt+k

�
max

a2M(mt+k;j)
[�
�
A;
�
mt+k; a

��
(V � CS

�
mt+k; a

�
)

��
�
R;
�
mt+k; a

��
CS
�
mt+k; a

�
)� �

�
C;
�
mt+k; a

��
CS
�
mt+k; a

�
]:

Then obviously, the sequence Vn (mt; j) is an increasing sequence with each satis�es

�CS
�
mt
�
� Vn

�
mt; j

�
� V � CS

�
mt
�
� V:

Hence it converges to some value V1 (mt) : Let this value be VS (mt; j) ; and do this

for all elements inM . It is a routine work to verify that these satisfy the condition

for being the value function. Q.E.D.
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Proof of Claim 2: Take an arbitrary PBE and let it
�b�; b�; b'; bB� : We will

construct a sequence of totally mixed strategy (��; ��; '�; B�), with � 2N+ (and

� � 2) that converges to
�b�; b�; b'; bB� as � ! 1: More precisely, we show that

there is a sequence
�
��; ��; '�; B�

�
such that for each mt 2M and j; it converges

to
�b� (mt; j) ; b� (mt) ; b' (mt) ; bB (mt)

�
2 R9+N in a way such that �� (mt) > 0 as

a vector in R3; �� (S;mt; j) > 0; �� (G;mt; j) > 0 if j > NG (mt), �� (B;mt; j) >

0 if N � j > NB (mt), and '� (mt) and B� (mt) are induced by Bayes rule.

In order to do this, we �rst specify the sequence of sender�s �rst period strat-

egy as follows. We will choose, for each m1 2 M; su¢ ciently large number

	(m1) ; and a function "� (�; �;?) : M � N ! [0; 1]. Let the following condi-

tions are satis�ed: �rst, if j =2M (m1; j) ; "
� (m1;?; j) = 0: Next think of m1 such

that
NX
n=0

� (m1;?; j) = 0 (hencem1 is an o¤-equilibrium message). If NG (m1) < �,

let it satis�es the followings: for j such that m1 2M (?; j) and j < �; we have

f (j) "� (m1;?; j)X
f (n) "� (m1;?; n)

=
1

jfnjm1 2M (m1; n) and n < �gj

�
�� 1
�

�
;

and for j such that m1 2M (?; j) and j � �;

f (j) "� (m1;?; j)X
m12M(m1;n)

f (n) "� (m1;?; n)
=

1

jfnjm1 2M (m1; n) and n � �gj
1

�
:

If NG (m1) � � (and thus � = 1 and m1 = G); let it satis�es

"� (m1;?; j) = 1 for j � 1 and "� (m1;?; x) = 0 for j < 0:
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On the other hand, for each m1 such that
NX
j=0

� (m1;?; j) > 0 (hence m1 is an

on-equilibrium message); let it satis�es

"� (m1;?; j) =
1

	 (m1)�
if � (m1;?; j) = 0; "� (m1;?; j) = 0 if � (m1;?; j) > 0:

Finally, let "� be a su¢ ciently small number. More precisely, let it satisfy

X
m12M(x;?)

"� (m1;?; x) < min
a2M(x;?); �(m1;?;x)>0

� (m1;?; x) :

By using "� (m1;?; j) ; we will construct �� (m1;?; j) as follows. For m1 such

that � (m1;?; j) = 0; let �� (m1;?; j) = "� (m1;?; j) (hence � (m1;?; j) = 0 if

m1 =2M (j;?)) and for m1 such that � (m1;?; j) > 0; let

(1.17) �� (m1;?; j) = � (m1;?; j)�
1

jfm1j� (m1;?; j) > 0gj
X
m12M

"� (m1;?; j) :

Note that
X

m12M(j;?)

b�� (m1;?; j) = 1; and it constitutes the totally mixed �rst

period strategy for the sender.

In order to construct a sequence of the �rst period�s strategy for the DM, let

{ (mt) = jfa 2 fA;R;Cg j� (a;mt) > 0gj; which is the number of actions that

DM takes with a strictly positive probability after message history mt (and hence
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less than three). Then for mt 2 �; let it be

�� (a;m1) = b� (a;m1)�
1

{ (m1)�
if b� (a;m1) > 0;

and �� (a;m1) =
1

{ (m1)�
if b� (a;m1) = 0:

And for m1 =2 �; let it be

�� (Q;m1) =
2�� 1
2�

and �� (A;m1) = �
� (C;m1) =

1

2�
if NG

�
mt
�
< �;

and �� (A;m1) =
2�� 1
2�

and �� (Q;m1) = �
� (C;m1) =

1

2�
if NG

�
mt
�
� �:

B�j (m1) =
f (j)�� (m1;?; j)PN
n=0 f (n)�

� (m1;?; j)
and '� (m1j?) =

X
j

f (j)�� (m1;?; j) :

The idea is to make DM�s strategy put a strictly high probability of rejection

(acceptance) after every o¤-equilibrium messages with low (high) number of good

evidence in the original equilibrium.

Next we de�ne the totally mixed strategy for period 2: Fix m1 2 H1: For

each m2; choose su¢ ciently large number 	(m1;m2) ; and function "� (�; �;m1) :

M � N ! [0; 1]: Let the following conditions are satis�ed: If j =2 M (m1; j),

"� (m1; j;?) is zero. Think of the case in which
NX
n=0

� (m1; n;?) = 0. IfNG (m1;m2) <
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�; let it satisfy the following: for j such that m2 2M (m1; j) and j < �; we have

B�j (m1) "
� (m2;m1; j)X

B�n (m1) "� (m2;m1; j)
(1.18)

=
1

jfnjm1 2M ((m1;m2) ; n) and n < �gj

�
�� 1
�

�
;

and if j � � and m2 2M (m1; j) ; let it satisfy

(1.19)
B�j (m1) "

� (m2;m1; j)X
m12M(m1;n)

B�j (m1) "� (m2;m1; j)
=

1

jfnjm1 2M ((m1;m2) ; n) and n � �gj
1

�
:

On the other hand, for each m2 such that
NX
j=0

� (m2;m1; j) > 0;

"� (m2;m1; j) =
1

	 (m1;m2)�
if � (m2;m1; j) = 0;

and "� (m2;m1; j) = 0 if � (m2;m1; j) > 0;

and moreover,

X
a2M(j;(m1;m2))

"� (m2;m1; j) < min
a2M(j;(m1;m2)); �(m2;j;m1)>0

� (m2;m1; j) :

By using "� (m2;m1; j) ; we construct �� (m2;m1; j) as follows. For m2 such

that � (m2;m1; j) = 0; let �� (m2;m1; j) = "� (m2;m1; j) : For m2 such that
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� (m2;m1; j) > 0; let

�� (m2;m1; j)(1.20)

= � (m2;m1; j)�
1

jfm1j� (m2;m1; j) > 0gj
X
j

"� (m2;m1; j) :

Note that
X
a

b�� (m2;m1; j) = 1; and it constitutes the totally mixed �rst period

strategy for the sender. Let

B�j (m1;m2) =
B�j (m1)�

� (m2;m1; j)PN
n=0B

�
j (m1)�� (m2;m1; j)

and ' (m2jm1) =

PN
n=0Bn (m1)� (m2;m1; j)PN
n=0Bn (m1)� (m2;m1; j)

:

For the second period�s strategy for the DM, for m2 = (m1;m2) 2 �; let it be

��
�
a;m2

�
= b� �a;m2

�
� 1

{ (m2)�
if b� �a;m2

�
> 0;

and ��
�
a;m2

�
=

1

{ (m2)�
if b� �a;m2

�
= 0:

And for m1 =2 �; let it be

��
�
Q;m2

�
=

2�� 1
2�

and ��
�
A;m2

�
= ��

�
C;m2

�
=
1

2�
if NG

�
m2
�
< �;

and ��
�
A;m2

�
=

2�� 1
2�

and ��
�
Q;m2

�
= ��

�
C;m2

�
=
1

2�
if NG

�
m2
�
� �:

Strategies after period 3 are constructed inductively, and we eventually get the

sequence
�
��; ��; B�; '�

�
: Using almost the same procedure, we can construct
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�
��+1; ��+1; B�; '�+1

�
: In doing this, replace � with � + 1, but use the same

	(m) for allm 2M: Also, choose "�+1 (mt; j; h) in a way thatmax "�+1 (mt; j; h) <

1
2
"� (mt; j; h) ; from which we can get lim�!1 "

�+1 (mt; j;m) = 0 for all j; a; and

m 2M: It is possible since the left hand side in (1.18) and (1.19) are homogeneous

of degree 0 with respect to "� (a; j; h) : Let

(�; �; ';B) := lim
�!1

(��; ��; '�; B�):

It is easy to see that
�b�; b�; b'; bB� = (�; �; ';B) on every h 2 �; and � = �0: To

see that
�b�; b�; b'; bB� is an equilibrium, note that for any mt =2 �; bVDM (mt) �

VDM (m
t) and hence for allmt such thatmt 2 � and b� (C;mt) = 0; b� (C;mt) = 0 is

also optimal. This shows the optimality of DM. It is easy to see the optimality of

the sender�s strategy. Q.E.D.

Proof of Proposition 1: Suppose that m� = (m��1; S) 2 �: Because being

silent incurs no cost but can persuade the DM, it must hold that �(S;m��1; j) =

1 for all j; which implies that

'
�
Sjm��1� = 1 and VDM �m��1� > E[VDM �m��1;m�

�
jm��1]:

These imply � (A;m��1) = 1: However, this contradicts (m��1; S) 2 �: That

m� = (m��1; B) =2 � follows from Theorem 1. Q.E.D.

Proof of Theorem 1: To prove the theorem, suppose that we have an equi-

librium in which � (A; (mt; G)) = 0 for some (mt; G) 2 �: Obviously, it must hold
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that � (C; (mt; G)) > 0: Think about period t + 2; after message history (mt; G).

Then there must be some message m0
t+2 such that �

�
A; (mt; G;m0

t+2)
�
= 0 and�

mt; G;m0
t+2

�
2 �; since otherwise, we have

VDM
�
mt; G;mt+2

�
=

NX
j=0

Bj
�
mt
�
UDM(A; j;m

t)

for all (mt; G;mt+2) 2 �; which implies

VDM
�
mt; G

�
�

NX
j=0

Bj
�
mt; G

�
UDM(A; j;

�
mt; G

�
)

>
X

mt+22M
'
�
mt+2j

�
mt; G

�� NX
j=0

Bj
�
mt; G;mt+2

�
UDM(A; j;

�
mt; G;mt+2

�
)

=
X

mt+22M
'
�
mt+2j

�
mt; G

��
VDM

�
mt; G;mt+2

�
;

which contradicts � (A; (mt; G)) = 0: On the other hand, �
�
R; (mt; G;m0

t+2)
�
has

to be smaller than one, since if so sender types from P
�
A; (mt; G;m0

t+2)
�
should

have chosen S at period t+1 after mt; which contradicts
�
mt; G;m0

t+2

�
2 �: This

implies that �
�
C; (mt; G;m0

t+2)
�
> 0 and, hence,

VDM
�
mt; G;m0

t+2

�
=

X
mt+32M

'
�
mt+3jmt; G;m0

t+2

�
VDM

�
mt; G;m0

t+2;mt+3

�
:

These imply that at period t + 2; after all on-equilibrium messages, either A is

optimal or C is optimal, where in the latter case, the probability of acceptance is
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zero. Take such a message and let it mt+2; and denote (mt; G;mt+2) by mt+2: At

period t + 3, there is no
�
mt+2;m0

t+3

�
2 � such that �

�
R;mt;

�
mt+2;m0

t+3

��
=

1 and
�
mt+2;m0

t+3

�
2 �; since otherwise, senders from P

�
mt+2;m0

t+3

�
should have

chosen S at period t+ 1 after mt; which contradicts
�
mt+2;m0

t+3

�
2 �: It in turn,

implies that �
�
A;mt;

�
mt+2;m0

t+3

��
> 0 or �

�
C;mt;

�
mt+2;m0

t+3

��
> 0: In sum

we have

VDM
�
mt+2;m0

t+3

�
=

NX
j=0

Bj
�
mt+2;m0

t+3

�
UDM(A; j;

�
mt+2;m0

t+3

�
)

or

VDM
�
mt+2;m0

t+3

�
=

X
mt+42M

'
�
mt+4jmt+2;m0

t+3

�
VDM(m

t+2;m0
t+3;mt+4):

Repeat the same reasoning, we can see that for every on-equilibrium history

m� that is a continuation from (mt; G) ; it must hold

VDM (m
� ) = maxf

NX
j=0

Bj (m
� )UDM(A; j;m

t);
X

m�+12M
' (m�+1jm� )VDM(m

� ;m�+1)g:

Then, it is easy to see that

VDM
�
mt; G

�
>

X
mt+22M

'
�
mt+2jmt; G

�
VDM(m

t; G;mt+1);

which contradicts � (C; (mt; G)) > 0: We can apply the same proof to show that

(mt; B) 2 � implies � (A; (mt; B)) > 0:
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To see that (mt; G) 2 � implies � (A; (mt; G)) � �=V; suppose that there is

some (mt; G) 2 � such that � (A; (mt; G)) < �=V: If � (C; (mt; G)) = 0; then

the sender should choose S after mt rather than G; which contradicts (mt; G) 2

�: Hence we have � (C; (mt; G)) > 0: Using the same type of argument above, we

can see that there must be some type of sender in P (mt; G) such that he is never

accepted after period t + 2 (he sends S after (mt; G)): For a such type of sender,

it is strictly better to send S after mt; which gives him at least ��fNG (mt) +

NB (m
t)g; rather than G; which gives him only � (A; (mt; G)) � V � �fNG (mt) +

NB (m
t)g � � < ��fNG (mt) +NB (m

t)g:

Next, we will show that (mt; B) 2 � implies � (A; (mt; B)) = �=V: We can

apply the same proof as above to show that (mt; B) 2 � implies � (A; (mt; B)) �

�=V: Hence suppose that (mt; B) 2 � and � (A; (mt; B)) > �=V: These and mt 2

� imply that (mt; S) 2 � and � (A; (mt; S)) = 0 and, thus, there must be some

j 2 P (mt; S) that follows a message history such that he is never accepted after

period t+1: However rather than that, he can send B after mt and get the strictly

higher expected payo¤ of

�
�
A;
�
mt; B

��
� V � �fNG

�
mt
�
+NB

�
mt
�
g � � > ��fNG

�
mt
�
+NB

�
mt
�
g;

unless he has no more pieces of bad evidence. If he has no more pieces of bad

evidence, it contradicts the optimality of the DM�s behavior of not accepting him.

Thus, we must have � (A; (mt; B)) � �=V: Q.E.D.
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Proof of Theorem 2: In order to get a contradiction, suppose that there

is some (mt; S) 2 � such that � (A; (mt;m)) > 0: If (mt; G) 2 � (or (mt; B) 2

�); from Theorem 1 it must hold that � (A; (mt;m)) > 0 (or � (A; (mt;m)) > 0).

In such a case, choosing A at period t+2 becomes optimal after all on-equilibrium

message at t+2 and, hence, contradicts � (C;mt) > 0: Thus we must have (mt; G) =2

� and (mt; B) =2 �: However if it is the case, ' (Sjmt) = 1 and the DM does not

expect to update belief at period t+2; which implies � (C; (mt;m)) = 1 and, hence,

� (A; (mt;m)) = 0: Q.E.D.

Proof of Proposition 4: Only if direction: Suppose that we have a benchmark

strategy equilibrium e with the sender�s strategy �, and let � = NG (e) : Obviously,

� (A;G�+1) = 1 and � (A;Gt) = �=V for t � �: Because for t � �; A as well as

C are optimal for the DM, from D1; it must hold that

(1.21)
NX
j=0

Bj
�
Gt
�
UDM(A; j;G

t) =
X
m2M

'(mjmt)VDM (mt;m)

= '(GjGt)VDM
�
Gt+1

�
+ '(SjGt)VDM

�
Gt;m

�
:
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In the benchmark strategy equilibrium, for all (m;S) 2 �; VDM (G
t;m) =

�CDM (mt;m) = ��t� �S; because � (R; (Gt;m)) = 1: Moreover, we have

Bj (G
� ) =

��s=1
�
1� dsj

�
f (j)P

j�� �
�
s=1

�
1� dsj

�
f (j)

(1.22)

and '(GjG� ) =

P
j��+1

�
1� d�+1j

�
��s=1

�
1� dsj

�
f (j)P

j�� �
�
s=1

�
1� dsj

�
f (j)

:(1.23)

Then by substituting those into (1.21), we can see that (1.8) must hold. Since the

optimal action for the DM after m1 = G is A; (1.9) must hold as well.

If direction: let � (A;G�+1) = 1 and � (A;Gt) = �=V for t � �; � (B;mt; j) =

0 for all mt 2 H and B and ' satisfy (1.22), as well as

BN
�
mt
�
= 1 for all mt such that mt 6= G�+1 and NG

�
mt
�
� �;(1.24)

BNG(mt)

�
mt
�
= 1 for all mt such that mt 6= G�+1 and NG

�
mt
�
< �;

'(Sjmt) = 1 for all mt such that mt 6= Gt for some t � �;

where (1.24) corresponds to o¤-equilibrium beliefs. It is easily seen that D3 is

satis�ed.

Let the value function for the sender as follows. For sender type j � �+ 1;

VS
�
mt; j

�
= (t� 1) �G for mt = Gt; t < �+ 1.

VS
�
mt; j

�
= ��fNG

�
mt
�
+NB

�
mt
�
g otherwise.
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and for sender type j > �+ 1;

VS
�
mt; j

�
= V � �fNG

�
mt
�
+NB

�
mt
�
g for mt such that NG

�
mt
�
� �;

VS
�
G�+1; j

�
= V � � (�+ 1) ,

VS
�
Gt; j

�
=

��t+1X
j=0

�
�

V

��
1� �

V

�j
(V � � (t+ j))

+

�
1� �

V

���t+1
(V � � (�+ 1)) for t � �+ 1;

and

VS
�
mt; j

�
= ��fNG

�
mt
�
+NB

�
mt
�
g otherwise.

It is straightforward to verify that VS satis�es condition for being a value function,

given �.

Take a sender with j � � number of pieces of good evidence. From above, it

follows that

VS
��
mt; G

�
; j
�
= � � �t = �� (t� 1) = VS

��
mk�1; S

�
; j
�
:

Then he is indi¤erent between sending G and any S after mt = Gt; with t �

j; which shows that � (�; �; j) satis�es D2 for j � �: For sender with j > � number
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of good aspects, on the other hand, we have

VS
��
Gt; G

�
; j
�
> VS

��
Gt; S

�
; j
�
= ��t > VS

��
Gt; B

�
; j
�
= ��t� �;

for all t � �; which shows that � (�; �; j) satis�es D2 for j > �:

For the DM, let the value function be

VDM
�
mt
�
=

X
j=0

Bj
�
Gt
�
E[�jj]� �t for all Gt;

VDM
�
mt
�
= �fNG

�
mt
�
+NB

�
mt
�
g

for all mt such that mt 6= Gt and NG
�
mt
�
< �;

and

VDM
�
mt
�
= E[�jN ]� �fNG

�
mt
�
+NB

�
mt
�
g

for all
�
mt;m

�
such that mt 6= Gt and NG

�
mt
�
� �:

It is straightforward to show that VDM is a value function.

Think about the decision at the �rst period. The expected payo¤ from not

continuing is maxfE[�]; 0g: On the other hand, the expected payo¤ from enter-

ing period 1 and making decision at period 1 is given by (1.9). Hence from D1,

� (C;?) = 1 is optimal. Think about the decision after mt = Gt and t � �: From

the description of sender�s strategy, the DM never receives B by choosing C and



87

thus we can calculate

VDM
�
Gt
�
= E[UDM(A; j; t)jGt]� t� =

X
m2fG;B;Sg

'(mjGt)VDM
�
Gt;m

�
;

and hence � (A;Gt) satis�es D1. It is easy to see that D1 is satis�ed for the other

cases as well, because in such cases we have

VDM
�
mt
�
>

X
m2fG;B;Sg

'(mjGt)VDM
�
Gt;m

�
and

�
�
R;mt

�
= 1 if NG

�
mt
�
< � and �

�
A;mt

�
= 1 if NG

�
mt
�
� �:

Q.E.D.

In order to prove Theorem 3, we �rst prove several lemmata. In the following,

we �x an equilibrium (�; �; ';B):

Lemma 3. If (mt; G) 2 � and � (A; (mt; G)) < 1; there must be some j 2

P ((mt; G)) such that

max
m2M((mt;G);j)

VS
��
mt; G;m

�
; j
�
= ��fNG

�
mt; G

�
+NB

�
mt; G

�
g:

Proof. It is seen from the proof of Proposition 1. �

Lemma 4. For all ns 2 � and k� 2 �; it holds that NG (ns) = NG (k� ) :
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Proof. Take n� = (n1; ::; ns) 2 � and kt = (k1; ::; k� ) 2 � and suppose that

NG (n
s) > NG (k

� ) : Let nt be a longest sub-history of n� and k� such that

nt = kt. Note that this can be ? if n1 6= k1: We can show that NG (ns) � 1 2

P (ns�1) : To see this, note that from NG (n
s) > NG (k

� ) ; there must be some

ns
0 � ns such that NG(ns

0
) = NG(n

s) � 1; which means that the DM knows that

the sender has at least NG(ns)�1 number of good evidence after history ns
0
: Since

� (C; ns�1) > 0; the DM has to expect some type from P (ns�1) chooses S, which

can be only type NG(ns)�1 sender. This implies that VS ((nt; nt+1); NG(ns)� 1) �

VS ((n
t; kt+1) ; NG(n

s)� 1) : However, since the type NG(ns)� 1 sender can follow

the path ks instead and � (A; ks) = 1; this implies that

��1X
l=t

�
1� �

�
A; nl

��t0�t
�
�
A; nl

�l
US
�
A; nt+1

�
>

��1X
l=t

�
1� �

�
A; kl

��t0�t
�
�
A; kl

�l
US
�
A; kt+1

�
;

where each term is the expected payo¤ for the sender summed up before period

� � 1: In other words, the path ns has a higher probability of acceptance than

ks does in the early period of the path. However, this implies that

VS
�
(nt; nt+1); NG(k

��1)� 1
�
> VS

��
nt; kt+1

�
; NG(k

� )� 1
�

and, hence, NG(k� ) � 1 =2 P (k��1) : However this is a contradiction because we

can show that NG (k� )� 1 2 P (k��1) ; from the same reasoning used above. �
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Take an equilibrium (�; �; ';B). Let �1 2 � be a subset of � such that

each m 2 �1 contains only one G as its �nal element, that is, m takes the form

of (G); (m1; G) ; (m1;m2; G) : De�ne �j in a similar manner, that is, each m 2

�1 contains j number of G and also its �nal element is G. We can show the

following lemma.

Lemma 5. Take an equilibrium. Then for allm 2 �j andm0 2 �j; � (A;m) =

� (A;m0) and � (C;m) = � (C;m0) for all j:

Proof. We �rst show that for all m 2 �1 and m0 2 �1; � (A;m) = � (A;m
0) : To

see this, suppose that there is some pairm 2 �1 andm0 2 �1 such that � (A;m) >

� (A;m0) : Then obviously, 1 =2 P (m0) : Also because � (A;m0) < 1; from Lemma

3 there must be some j 2 P (m0) such that VS ((m0;m) ; j) = ��fNG (m0) +

NB (m
0)g: However, then we have VS (m; j) > VS (m

0; j) ; which contradicts j 2

P (m0) : Then we can prove that � (A;m) = � (A;m0) for m 2 �j and m0 2

�j inductively. We can also prove that � (C;m) = � (C;m0) for allm 2 �j andm0 2

�j in a similar manner. �

Lemma 6. For all m 2 � and m0 2 � such that � (A;m) = � (A;m0) =

1; NB (m) = NB (m
0) :

Proof. Suppose that m 2 � and m0 2 �; � (A;m) = � (A;m0) = 1 but NB (m) >

NB (m
0) : Then it is immediately seen that from Lemma 5, for all j 2 P (m) ; we

have VS (m0
1; j) > VS (m1; j) ; where m0

1 2 �1; m
0
1 � m0; m1 2 �1; m1 � m (note
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that history m0 reaches the node of sure acceptance faster than m does), which

contradicts m 2 �. �

This lemma allows us to de�ne the function that gives the number of pieces

of good and bad evidence to persuade the DM for a given equilibrium, which we

denote by NG (e) and NB (e) :

Proof of Theorem 3 is divided into three parts.

Lemma 7. For all e 2 P (�; �S; �) ; � (A; (mt; G)) = 1 or � (A; (mt; G)) =

�=V for all (mt; G) 2 �:

Proof. Suppose that the set of message historyM+ = fmtj (m� ; G) 2 � such that

� (A; (m� ; G)) 2 (�=V; 1) is non-empty. Also, let M++ be the set of the smallest

elements of M+ with respect to the order of �; that is, if ms 2 M++ there is no

mt 2 M+ such that mt � ms: Note that from Lemma 6, NG (ms) = NG
�
ms0
�
=


 for some 
 for all ms 2 M++ and ms0 2 M++: Also, for all m� 2 � we can �nd

mt 2M++ such that mt � m� :

In the equilibrium e; for every sender type j such that N � 
 > j � 
, there

is a m1 2 M (?; j) such that Vs (m1; j) > 0; that is, every sender types from

fNG (M++) ; ::; N � NB (M++) � 1g can get strictly positive payo¤s by following

a message path from M++ (note that from proposition 1, each time a sender

communicates an aspect, he is accepted with a probability of as high as �=V; which

is enough to recover the cost of communication one time).



91

In this case, we can construct equilibrium be = �b�; b�; bB; b'� in a way that�b�; b�; bB; b'� = (�; �;B; ') except b� (A;ms) = 1 for all ms 2 M++: To see that

this is an equilibrium, �rst note that

V eS (m;m
s; x) = V beS (m;ms; x) for all ms � m� such that m� =2 �be =M++

V eS (m;m
s; x) = V beS (m;ms; x) for all ms � m� such that m� 2 �be =M++;

and V beS (m;ms; j) = V beS (m;ms; j) for all ms;ms+1; and m
0
s+1 such that there exist

m� and m� 0 such that (ms;ms+1) � m� 2 �be and �ms;m0
s+1

�
� m� 0 2 �be: Those

imply that b� satis�es D-2 given b�; from the fact that � satis�es D-2 given �: On the
other hand, we have V beDM (mt) � V eDM (mt) for allmt such that there ism� 2 �be and
mt � m� : Also, V beDM (mt) = V eDM (m

t) if there is not suchm� ; and hence b� satis�es
D-1 given

�b'; bB� ; from the fact that � satis�es D-1 given (';B) : Hence be is an
equilibrium. We can also see that be Pareto dominates e since it has strictly higher
payo¤ for sender types fNG (M++) ; ::; N � NB (M++) � 1g while giving exactly

the same payo¤ for other types of sender and the DM. �

Lemma 8. For all e 2 P (�; �S; �) ; it holds that � (R; (mt; S)) = 1 for all

(mt; S) 2 �:

Proof. From Lemma 7, we assume that � (A; (mt; G)) 2 f1; �=V g for all (mt; G) 2

� holds in any equilibrium we consider.
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Take e 2 E (�; �S; �) such that � (R; (mt; S)) < 1 for some (mt; S) 2 �: Let

	 be a set of such mt: In order to get a contradiction, suppose that 	 is not empty.

From Lemma 4, NG (m� ) = NG
�
m� 0

�
= NG (e) and NB (m� ) = NB

�
m� 0

�
=

NB (e) for all m� 2 �e and m� 0 2 �e: From the equilibrium condition, for all

mt+1 = (mt;mt+1) 2 � such that mt+1 2 fG;Bg; we have

�
NX
j�1
f1�

X
m2fG;Bg

�
�
m;mt+1; j

�
g�
�
mt+1; j

�
f (j) (E[�jj] + �S)(1.25)

� �
NX
n�1

X
m2fG;Bg

�
�
m;mt+1; j

�
f (j) ;

which follows from
PN

j=0Bj (m
t)UDM(A; j;m

t) =
P

m2M '(mjmt)VDM (mt;m) and

Proposition 1. Note that this holds with equality when � (R; (mt+1; S)) = 1 and

strict inequality otherwise, and from the maintained assumption we have (1.25)

with strictly inequality for at least one mt 2 �: Let � (e) be a set of mes-

sage histories such that their last element is G or B and rest of elements are

S, that is, it is the set of message history that an piece of evidence is commu-

nicated for the �rst time. Then, we can construct following equilibrium be: there
is only one acceptance history m� = (B; ::; B;G; ::; G); that is, b� (R;mt) = 1

for all mt � m� ; b� (A;m� ) = 1: The sender�s strategy b� satis�es (1.8) with in-
equality for all mt � m� . Then, it is possible to choose b� in such a way that
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b� (B;?; j) � P
m2�(e) � (m; j) for all j � NG (m

� ) and at least one strictly in-

equality. However this implies that

V beDM (?) =

NX
n�1

b� (B;?; j) (E[�jj]� �)� �S NX
n�1
(1� b� (B;?; j))

>
NX
n�1

X
m2�(e)

� (m; j) (E[�jj]� �)� �S
NX
n�1
(1�

X
m2�(e)

� (m; j))

� V eDM (?) :

�

Lemma 9. If there is an equilibrium e such that (mt; B) 2 � for some mt; then

there is a benchmark strategy equilibrium e0 that gives the DM a strictly higher

payo¤.

Proof. Take an equilibrium e = (�; �;B; ') that involves communicating a piece of

bad aspect one time. From Lemma 6, all the equilibrium acceptance path involves

at least one time communication of a piece of bad evidence, which implies that

type N sender has to drop before reaching "acceptance for sure" nodes. Without

loss of generality, assume that m� = (m1; ::;m
� ) 2 � contains no S, that is,

mt 2 fG;Bg and thus NG (e) + 1 = � : Moreover, from Lemma 7, we can assume

that for all (mt; G) 2 �; � (A; (mt; G)) 2 f�=V; 1g: Then, VDM (m1) =

NX
j�1

� (m1;?; j) f (j) (E[�jj] + �)� �S
NX
j�1
f1� � (m1;?; j)gf (j)
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= �
2X
t=1

NX
j�1

�ts=1�
�
ms;m

s�1; j
�
f (j) +

NX
j�1

�ks=1�
�
ms;m

s�1; j
�
f (j)E[�jj]

=
N�1X
j��

f (j)E[�jj]� �
�X
t=1

NX
j�1

��s=1�
�
ms;m

s�1; j
�
f (j) ;

where we used the relation

�
NX
j�1
f1� �

�
mt+1;m

t; j
�
g�ts=1�

�
ms;m

s�1; j
�
f (j) (E[�jj] + �S)(1.26)

= �
NX
j�1

�t+1s=1�
�
ms;m

s�1; j
�
f (j) ;(1.27)

for allmt+1: Since typeN sender has to drop at some period and VDM (m1) � 0; this

implies that

(1.28) �
PN�1

j�� f (j) (E[�jj] + �S)PN�1
j�� f (j)

� �
P�

t=1

PN
j�1�

t
s=1� (ms;m

s�1; j) f (j)PN�1
j�� f (j)

We will �rst show that there exists a benchmark strategy equilibrium such that

it gives a strictly higher payo¤ to the DM than equilibrium e does: We moreover

assume that m1 = B:
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Take a benchmark strategy equilibrium e0 = (�0; �0; '0; B0) that maximizes

NG (e
0) : First, suppose that we have NG (e0) � NG (e)� 1: De�ne

�� (t) = �t�1s=1�
0 �ms;m

s�1; j
� �
1� �0

�
mt;m

t�1; j
��
f (j)

��t�1s=1�
�
ms;m

s�1; j
� �
1� �0

�
mt;m

t�1; j
��
f (j)

and �E (j) = �t�1s=1�
0 �ms;m

s�1; j
� �
1� �0

�
mt;m

t�1; j
��
E[�jj]

��t�1s=1�
�
ms;m

s�1; j
� �
1� �0

�
mt;m

t�1; j
��
E[�jj]

If NG (e0) = NG (e)� 1; because we cannot construct an equilibrium in a way that

k pieces of evidence are communicated, we must have �f (�� 1) fE[�j� � 1] +

�Sg < �
PN

j�� f (j) : To see this, note that If �f (NG (e)) fE[�jNG (e)] + �S) �

�
PN

j�NG(e)+1, by the fact that we can construct an equilibrium e0 with NG (e0) =

NG (e) implies that we can construct another equilibrium e0 withNG (e0) = NG (e) by

setting

�0
�
G;Gk�1; NG (e)

�
= ��

NX
j�NG(e)+1

=fE[�jNG (e)] + �g;

and �0 � � (G;Gn�1; j) for all n; j; which is a contradiction. Then because we

have

��s=1�
�
ms;m

s�1; j
�
f (NG (e)� 1) fE[�jNG (e)� 1] + �Sg = �

N�1X
j��

f (j)
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from the construction of equilibrium e; we have

(1.29) �E (�) < �f (N) and �� (�) <
1

E (NG (e)� 1)
�f (N)

On the other hand, if NG (e0) � �; (1:29) follows immediately. Those in turn imply

that

�E (� � 1) < �f (N) + �� (�) � and �� (� � 1) < 1

E (NG (e)� 1)
�E (� � 1) :

By continuing this, we will get

�E (t) < �f (N) +
�X

s=t+1

�� (s) for all j > 1:

Next we show that

(1.30) �E (t) < �f (N)

PN
j�1�

�
s=t� (ms;m

s�1; j) f (j)PN�1
j�� f (j)

:

To see this, note thatPN
j�1�

t
s=1� (ms;m

s�1; j) f (j)PN�1
j�� f (j)

=

P�
s=t

PN
j�1�

s
n=t (1� � (ms+1;m

s; j))� (mn;m
n�1; j) f (j) +

PN�1
j�� f (j)PN�1

j�� f (j)

=
� (t+ 1) + :::+ � (� � 1) + � (�)PN�1

j�� f (j)
;

where we de�ned � (r) =
Pr

s=1

PN
j�1�

r
s=1 (1� � (mr;m

r�1; j))� (ms�1;m
s; j) f (j) :
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On the other hand we can show that

�E (�) < �f (N) = �f (N)

PN�1
j�� f (j)PN�1
j�� f (j)

= �f (N) � (�) ;

�E (� � 1) < �f (N) + �� (�) � = �f (N) � (�) + �f (N)
�

E (�� 1)

� �f (N) � (�) + �f (N)
���1s=t � (ms;m

s�1; �� 1) f (�� 1)PN�1
j�� f (j)

= �f (N) � (�) + �f (N) � (� � 1) ;

and more generally, �E (r) < �f (N)
P�

j�r � (�) ; which implies

�E (r) <

PN
j�1�

r+1
s=1� (ms;m

s�1; j) f (j)PN�1
j�� f (j)

for all r 2 f1; ::; �� 1g

Obliviously, we have

0 � V eDM (?)� V e
0

DM (?) <
��1X
j=1

�E (�)� E (�jN)

and thus (1.30) implies

E (�jN) >
P�

t=1

PN
j�1�

t
s=1� (ms;m

s�1; j) f (j)PN�1
j�� f (j)

;

which contradicts (1.28) since E[�jj] is increasing with j:

Next, think of the case in which we have a benchmark strategy equilibrium

e0 = (�0; �0; '0; B0) such that NG (e0) = � � 2 but not � � 1: The fact that we

cannot construct an equilibrium in a way that k � 1 aspects are communicated
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implies

�f (�� 1)E[�j�� 1]� f (�� 2)E[�j�� 2] < 2�
NX
j��

f (j) + �2
PN

j�� f (j)

E[�j�� 1] :

Then by using the same argument we can get a contradiction. Other cases can be

treated similarly. �

Theorem 3 follows immediately from Lemma 7, 8, and 9. Q.E.D.

Proof of Proposition 4: Fix model�s parameter values (�; �S; �) : In a bench-

mark strategy equilibrium, the sender�s strategy � can be seen as an element of

[0; 1]2(��1) (each represents the probability of communicatingG); since � (G;Gt; j) =

1 for all j � � and t � �: Let E � [0; 1]2(��1) be the set of the sender�s strategy that

is supported as an equilibrium, and let E� � E for � 2 f1; :::; �g be a subset of the

sender�s strategy that is supported by an equilibrium e such that NG (e) = �: We

�rst show that set E� is closed in the usual sense of Euclidean topology. However

this is easy because if we take a sequence f�ng1n=1 from E that converges to �; it

holds that

�
NX
j�x
f1� �n

�
G;Gt; j

�
g�ts=1�n

�
G;Gs�1; j

�
f (j) (E[�jj] + �S)

= �

NX
j�x

�t+1s=1�
n
�
G;Gs�1; j

�
f (j) ;

for all n and t � �; which implies that the same condition holds for � from

limn!1 �
n ! �: Hence � 2 E� and E� is closed. Then VDM (?) ; calculated as
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PN
j�1 � (G;?; j) f (j) (E[�jj] � �); is a continuous function on E�; which is closed

and bounded, and hence has a maximum point in E�: Then VDM (?) has the

maximum on E , which is a �nite union of E�:

We next prove the uniqueness. Towards this end, suppose that we have two

di¤erent equilibria e and e0 such that V eDM (e) = V eDM (e) and those maximize

the DM�s expected payo¤ (best equilibria). From Theorem 4, which will be

proved below, NG (e) = NG (e
0) = � and � (G;Gt; j) = �0 (G;Gt; j) = 1 for

all t � NG (e) and j � NG (e) : Moreover, since (1:11) must hold at period

� � 1; we must have �
�
G��1; �� 1

�
= �0

�
G��1; �� 1

�
: Let h < � � 1 be

the biggest t such that � (Gt; j) 6= �0 (Gt; j) for some j � h; and let l be the

biggest l � h such that �
�
Gh; j

�
6= �0

�
Gh; j

�
: Without loss of generality, let

1 � �
�
Gh; j

�
> �0

�
Gh; j

�
: Since we have (1:8) for period h; there must be some

q such that �
�
Gh; q

�
< �0

�
Gh; q

�
� 1: Then we can �nd a pair of strictly positive

numbers " < �0
�
Gh; q

�
� �

�
Gh; q

�
; � < �

�
Gh; l

�
� �0

�
Gh; l

�
; and � such that

f1� �
�
G;Gh�1; q

�
g�h�2s=1�

n
�
G;Gs�1; q

�
f (q) fE[�jq] + �Sg

+f1� �
�
G;Gh�1; l

�
g�h�2s=1�

n
�
G;Gs�1; l

�
f (l) fE[�jl] + �Sg

= f1� �
�
G;Gh�1; q

�
� "g

�
�
�
Gh�1; q

�
� �
�
f (q) fE[�jq] + �Sg

+f1� �
�
G;Gh�1; l

�
+ �g

�
�
�
Gh�1; l

�
� �
�
f (l) fE[�jl] + �Sg;
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because E[�jj] is strictly increasing with j: Then think of the following strategy

after after period h� 1 : b� (Gt; j) = � (Gt; j) for all j 6= l; q; and
b� �G;Gh�1; q� = �

�
G;Gh�1; q

�
+ "

and b� �G;Gh�1; q� = �
�
G;Gh�1; q

�
� �;

�h�2s=1b� �G;Gs�1; q� = �
�
Gh�1; q

�
� �

and �h�2s=1b� �G;Gs�1; l� = �
�
G;Gh�1; l

�
� �:

Then obviously,
X
j

�h�2s=1b� (G;Gs�1; j) f (j) < X
j

�h�2s=1� (G;G
s�1; j) f (j) ; and

equilibrium condition (1.8) is satis�ed after period h�1: Then, by taking the same

steps as in the proof of Theorem 3, we can construct an equilibrium that can sup-

port such strategy after h� 1 in a way such that b� (G;?; j) f (j) � � (G;?; j) for
all j holds with at least one strict inequality. Obviously, such an equilibrium attains

a strictly higher VDM (?) than e does, and it is a contradiction. Q.E.D.

Proof of Theorem 4: To get a contradiction, suppose that equilibrium e is

the best equilibrium for the DM, but there is another equilibrium be such that
NG (be) > NG (e) : Obviously, NG (be) � �: Then from the fact that e being an

equilibrium, we have (1:8) for all t < NG (e) and �ts=1� (G;G
s�1; j) = 1 for all
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j � NG (e) : On the other hand, since NG (be) > NG (e) ; we have
�

NX
j�1
f1� b� �G;Gt; j�g�ts=NG(e)b� �G;Gs�1; j� f (j) (E[�jj] + �S)

= �
NX
j�1

�t+1s=NG(e)
b� �G;Gs�1; j� f (j) > 0;

for all t < NG (be) and
�ts=1b� �G;Gs�1; j� = 1 for all j � NG (be) and t � NG (be) :

Then from the assumption 1, it holds that �NG(e
0)

s=1 b� (G;Gs�1; NG (e0)� 1) <
1: Hence

(1.31)

��
NX

j�NG(e)

�
NG(e)
s=1 �

�
G;Gs�1; j

�
f (j)� �

NX
j�NG(e)

�
NG(e)
s=1 b� �G;Gs�1; j� f (j) > 0:

Then we can construct a benchmark strategy equilibrium e0 = (�0; �0; '0; B0) in the

following way.

�0 (; ; j) = b� (; ; j) for all j � NG (be)� 1; �0 = b�;
(1:8) for all t < NG (be) ; and

�0
�
G;Gt; j

�
� �

�
G;Gt; j

�
for all j < NG (be) and t < NG (be) ;
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which is possible from (1.31). Then it follows that

V e
0

DM (?) =

NX
j 6=NG(e0)�1

�0 (G;?; j) f (j) (E[�jj]� �)

+�0 (G;?; j) f (NG (e0)� 1) (E[�jNG (e0)� 1]� �)

��S[
X

j 6=NG(e0)�1

f1� �0 (G;?; j)gf (j)

+f1� �0 (G;?; NG (e0)� 1)gf (NG (e0)� 1)]

>
NX

j 6=NG(e0)�1

� (G;?; j) f (j) (E[�jj]� �)

+� (G;?; j) f (NG (e0)� 1) (E[�jNG (e0)� 1]� �)

��S[
NX

j 6=NG(e0)�1

f1� � (G;?; j)gf (j)

+f1� � (G;?; NG (e0)� 1)gf (NG (e0)� 1)]

= V eDM (?) ;

which contradicts e being the best equilibrium for the DM. Q.E.D.

Proof of Theorem 5: That the strategies constructed by the procedure is an

equilibrium follows from Theorem 4. Let � be the largest j such that cj < 1 in

the above process. Then we have � (j) < � for all j > �: Suppose that be =
(b�; b�; b'; bB) is the best equilibrium. From Lemma 9 and Theorem 4, it must hold

that ��s=1b� (G;Gs�1; �) = c�: Suppose that ���1s=1b� (G;Gs�1; �� 1) 6= c��1: because
if ���1s=1b� (G;Gs�1; �� 1) > c��1 the (1.8) cannot be satis�ed at period 
 � 2; it

must hold that ���1s=1b� (G;Gs�1; �� 1) < c��1: From the choice of c��1; we have to
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have 1� b� �G;G��2; �� > 0 and, hence,
�f1� b� �G;G��2; �� 1�g���2s=1b� �G;Gs�1; �� 1� f (�� 1) (E[�j�� 1] + �S)(1.32)

�f1� b� �G;G��2; ��g���2s=1b� �G;Gs�1; �� f (�) (E[�j�] + �S)
= �

NX
j���1

���1s=1b� �G;Gs�1; j� f (j)
= �c��1f (�� 1) (E[�j�� 1] + �S)� c�f (�) (E[�j�] + �S):

Because jE[�j�� 1]j > jE[�j�]j ; (1.32) implies that

�
NX

j���1

���1s=1b� �G;Gs�1; j� f (j)
= �f���1s=1b� �G;Gs�1; �� 1� f (�� 1) + ���1s=1b� �G;Gs�1; �� f (�) + NX

j��+1

f (j)g

> �fc��1f (�� 1) + c�f (�) +
NX

j��+1

f (j)g:

This implies in the equilibrium condition (1.8) at period ��3; the right hand side is

strictly higher in equilibrium be than in the equilibrium generated by the procedure.
However, then it is possible to construct another equilibrium e0 = (�0; �0; '0; B0) by
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letting ���1s=1�
0 (G;Gs�1; �� 1) = c��1; ��s=1�0 (G;Gs�1; �) = c�; and

�

NX
j���1

�ts=1�
0 �G;Gs�1; j� f (j)

< �
NX

j���1

�ts=1b� �G;Gs�1; j� f (j) for all t 2 f2; ::; �� 2g:
Obviously, we have

V e
0

DM (?) =
NX
j

�ts=1�
0 (G;?; j) f (j) (E[�jj]� �)

��S
NX
j

�ts=1f1� �0 (G;?; j)gf (j)

>
NX
j

�ts=1b� (G;?; j) f (j) (E[�jj]� �)� �S NX
j

�ts=1f1� b� (G;?; j)gf (j)
= V beDM (?) ;

which contradicts be being the best equilibrium. Then, ���1s=1b� (G;Gs�1; �� 1) =
c��1 follows. Following the same procedure, we eventually get �

j
s=1b� (G;Gs�1; j) =

cj for all j; which shows that our procedure generates the best equilibrium. Q.E.D.
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Proof of Theorem 8: The �rst statement is straightforward. In the bench-

mark strategy equilibrium e, we have VS (?; j) = 0 for j < NG (e) and

VS (?; j) =
X

s2f1;::;NG(e)�1g

(V � s�) (1� �=V )s�1 �=V

+(V �NG (e) �) (1� �=V )NG(e)�1

=
X

s2f1;::;NG(e)�1g

(V � s�) (1� �=V )s�1 �=V � (1� �=V )NG(e)�1NG (e)

+ (1� �=V )NG(e)�1NG (e) + (V �NG (e) �) (1� �=V )NG(e)�1

= VS (?; NG (e)� 1) + (1� �=V )NG(e)�1NG (e)

+ (V �NG (e) �) (1� �=V )NG(e)�1

= (1� �=V )NG(e)�1NG (e) + (V �NG (e) �) (1� �=V )NG(e)�1 ;

for j � NG (e) ; where we used the fact VS (?; NG (e)� 1) = 0: Now obviously

@VS(?;j)
@�

< 0; which implies the result. Q.E.D.

Proof of
PNG(e)�1

j=1
@�(G;?;j)

@�
f (j) (E[�j1]� �) � 0:

In order to get a contradiction, suppose that
PNG(e)�1

j=1
@�(G;?;j)

@� j�=�0
f (j) (E[�j1]�

�0) > 0 for some �0: Then, we have �00 > �0 for �00 su¢ ciently close to �0 andPNG(e)�1
j=1 �0 (G;?; j) f (j) (E[�j1]��0) >

PNG(e)�1
j=1 �00 (G;?; j) f (j) (E[�j1]��0); where

�0 and �00 correspond the sender�strategy in the best equilibrium for the DM when

� = �0 and � = �00; respectively.
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From the fact that �0 is supported as an equilibrium when � = �0 implies that

(1.8) holds for all t � NG (e0) : Since �0 > �00; this implies that

b��GNG(e0)�1; NG (e0)� 1� f (NG (e0)� 1)E[�jNG (e0)� 1] = �00 NX
n�NG(e0)

f (n)

for some b� �GNG(e0)�1; NG (e0)� 1� < �0
�
GNG(e

0)�1; NG (e
0)� 1

�
; where we used

the notation � (m� ; j) = ��s=1� (ms;m
s�1; j). The fact that (1.8) holds for t =

NG (e
0)� 1 implies that

NG(e
0)�1X

j�NG(e0)�2

f1� b��GNG(e0)�1; j�gb��GNG(e0)�2; j� f (j)E[�jj]
= �00[b��GNG(e0)�1; NG (e0)� 1� f (NG (e0)� 1) + NX

n�NG(e0)

f (n)];

for some

b��GNG(e0)�2; NG (e0)� 2� � �0 �GNG(e0)�2; NG (e0)� 2�
and

b��GNG(e0)�2; NG (e0)� 1� � �0 �GNG(e0)�2; NG (e0)� 1� ;
with at least one with strictly inequality. By continuing this, we will eventually get

b� (G; j) � �0 (G; j) for all j with at least one strict inequality. This implies that a
sender�s strategy b� can be supported as an equilibrium when � = �00: However, it
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contradicts the fact that �00 is the best equilibrium, since

NG(e
00)�1X

j=1

b� (G;?; j) f (j) (E[�j1]� �00)� NX
j=NG(e00)

f (j) (E[�j1]� �00)

>

NG(e
00)�1X

j=1

�0 (G;?; j) f (j) (E[�j1]� �00)�
NX

j=NG(e00)

f (j) (E[�j1]� �00)

>

NG(e
00)�1X

j=1

�00 (G;?; j) f (j) (E[�j1]� �00)�
NX

j=NG(e00)

f (j) (E[�j1]� �00):

Q.E.D.

Proof of Theorem 9: A probabilistic commitment is characterized by a � �

1 dimensional vector � = (�1; �2; ::; ���1); where �j is the probability that the DM

accepts the proposal after requiring j pieces of good evidence. We will prove that

for any � the the probabilistic commitment given in the theorem attains higher

expected payo¤ for the DM. Towards this end, pick a commitment � and �x it.

Also, denote by � (�) be the DM�s expected payo¤ associated with commitment

�; and k (�) be the threshold type of sender above which he is eventually accepted

by the DM. It is without loss of generality to assume the followings:

(1.33) (1� �l)
NX

j�l+1

f (j) � <

k(�)�1X
j�l

f (j)E[�jj] for all l � k (�)� 1;

because otherwise, another commitment �0 = (�1; �2; ::�l�1; 1; 1; 1) attains higher

expected payo¤ for the DM.
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First suppose that �1 > �=V: Then, every sender j � 1 communicates a piece

of good evidence at period 1. Then we have � (�) =

�1f
NX
j�1

f (j) (E[�jj]� �)� �Sf (0)g+ (1� �1)�2	2 + (1� �1) (1� �2)�3	3

+ �+(1� �1) (1� �2) �
�
1� �k(�)�1

�
f

NX
j�k(�)

f (j) (E[�jj]� (k (�)� 1) �)g;

where 	j is the expected payo¤ for the DM when she accepts at period j:

Think of the commitment �0 = (�=V; �2; ::; ��): We have � (�) �

�=V f
NX

j�k(�)

f (j) (E[�jj]� �)� �Sf (0)g+ (1� �=V )�2	2

+ �+(1� �=V ) (1� �2) �
�
1� �k(�)�1

�
f

NX
j�k(�)

f (j) (E[�jj]� (k (�)� 1) �)

��S
NX

j<k(�)

f (j)g;

which is strictly higher than � (�) ; because of (1:33): This implies that for all

commitment � such that �1 > �=V; there is a commitment �0 such that �01 =

�=V and attains higher expected payo¤ for the DM. Applying the same reasoning

inductively, we can prove that for all commitment � such that �j > �=V for some

j; there is a commitment �0 such that �0j = �=V for all j and attains higher expected

payo¤ for the DM.
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Next, suppose that �k(�)�1 < �=V: We have

� (�) = �1	1 + (1� �1)�2	2 + �+

(1� �1) � �
�
1� �k(�)�2

�
�k(�)�1f

NX
j�k(�)

f (j) (E[�jj]� (k (�)� 1) �)g

(1� �1) � �
�
1� �k(�)�1

�
f

NX
j�k(�)

f (j) (E[�jj]� k (�) �)g:

Think of the commitment �0 = (�1; :; �k(�)�2; �=V; 1; :; ��): Now we have

� (�0) = �1	1 + (1� �1)�2	2 + �+

= (1� �1) � �
�
1� �k(�)�2

� �
V
f

NX
j�k(�)

f (j) (E[�jj]� (k (�)� 1) �)g

= (1� �1) (1� �2) �
�
1� �

V

�
f

NX
j�k(�)

f (j) (E[�jj]� k (�) �)g;

which is strictly higher than � (�) : Applying the same reasoning inductively back-

ward, we can prove that for all commitment � such that �j < �=V for some j; there

is a commitment �0 such that �0j = �=V for all j and attains higher expected payo¤

for the DM.

Proof of Theorem 10:We denote the solution to the commitment problem by

r (�; �S; �) ; and let � (�; �S; �) be the length of persuasion of the best equilibrium
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for DM, i.e.,

� (A;G�) = 1 and �
�
A;Gt

�
= �=V for all t � �� 1:

Since the result is trivially true when � (�; �S; �) = 0; think of the case in which

� (�; �S; �) � 1; i.e.,

V �DM (?) =
NX
n=1

f (n)� (G; n;?) (E[�jn]� �)� �S
NX
n=1

f (n) (1� � (G; n;?)):

Let r = r (�; �S; �) and � = � (�; �S; �) :

Because � (G;?; j) = 1 for all j � �; we have

�DM (�)� V �DM (?)

=
X
j��

f (j) (E[�jj]� ��)� �S
X
j<�

f (j)

�
NX
j=1

f (j)� (G;?; j) (E[�jj]� �) + �S
NX
j=1

f (j) f1� �(G;?; j)g

= �
X
j��

f (j)�� +
NX
j=1

f (j)� (G;?; j) �

�
��1X
j�1

f (n)� (G;?; j)E[�jn]� �S
k�1X
j=1

f (j)�(G;?; j);
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where we used � (G;?; j) = 1 for all j � �. Then it follows that

�DM (�)� VDM (?)

= ���
X
j��

f (j) + �

NX
j=1

f (j)� (G; j;?)� �S
k�1X
j=1

f (j)�(G;?; j):

�
��1X
j�1

f (n)� (S; j;G)� (G; j;?)E[�jj]�
��1X
j�1

f (n)� (G; j;G)� (G; j;?)E[�jj]

= ���
X
j��

f (j) + �

NX
j=1

f (j)� (G;?; j)� �S
k�1X
j=1

f (j)�(G;?; j)

+�
NX
j�1

f (j)� (G;G; j)� (G;?; j) + �S
��1X
j�1

f (j)� (S; j;G)� (G; j;?)

�
��1X
j�1

f (j)� (G;G; j)� (G;?; j)E[�jj]

= �� = ���
X
j��

f (j) + �
NX
j�1

�X
t�1
�t�1s=0� (G;G

s; j) f (j)

= �
��1X
j�1

�X
t�1
�t�1s=0� (G;G

s; j) f (j) � 0;

where the last inequality is strict when k � 1: Note that we used the conditions of

benchmark equilibrium repeatedly, i.e.,

�
X
j�1

�
�
S;Gn�1; j

�
�n�1j=0�

�
G;Gj; j

�
(E[�jj] + �S)

= �
��1X
j�1

�
�
G;Gn�1; j

�
�n�1j=0�

�
G;Gj; j

�
;
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for all n < �: Q.E.D.
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Figure 1.1. DM�s value on a benchmarket strategy equilibrium
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Figure 1.2. Comparative statics on the sender�s expected payo¤
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CHAPTER 2

Signaling Competence in Elections

2.1. Introduction

At a Republican presidential debate held in Iowa in summer 2011, amid the

economic turmoil, after the debate over raising the debt ceiling is settled, all can-

didates rejected the idea of a de�cit-reduction plan that included one dollar of

tax increase for every $10 of spending cuts. Apparently, they have been building

the reputation of being extreme, putting more weight on their traditional small

government doctrine over the textbook prescription of �scal expansion in a down-

turn. In the previous 2008 US presidential campaign, the presumptive Republican

nominee, Senator John McCain picked Governor Sarah Palin, whose political posi-

tion was far more conservative than his own, to be his running mate and, thereby

shifted public perception about his political position. Although those behaviors

completely contradict the celebrated median voter theorem, the casual observation

that being extreme increases public appeal seems to be a very general phenomena.

This chapter tries to explain this casual observation.

Towards this end, this chapter incorporates a dimension of �competence� of

politicians, which is their private information. Our perception of competence fol-

lows the point made by Stokes (1963). According to Stokes, the role of politicians
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includes identifying the electorate�s concerns and trying to convey the message that

their policy proposals e¤ectively address those concerns. This perception de�nes

a dimension of politicians�competence in our model: the ability to discover the

most e¤ective policies, where e¤ectiveness depends on the circumstances. In an

election, the electorate tries to choose a competent person as their leader, under

the presumption that only a portion of political candidates possess competence.

This makes it necessary for electoral candidates to behave in a way that projects

the appearance of competence.

Our results show that proposing an extreme platform serves as a signal of com-

petence and gives candidates a strictly higher winning probability in comparison

to a median platform. This result stems from the fact that an extreme platform,

which can be very bad depending on the circumstance, is a gamble for incompetent

candidates.1 This gives the extreme platform a signaling e¤ect of competence. In

an equilibrium, extreme platforms have to have strictly higher winning probabil-

ities than the median platform in order to make incompetent candidates bet on

the gamble and, thereby, prevent perfect separation of the incompetent from the

competent.

We model electoral competition by adding a state space to a standard Hotelling-

Downs one-dimensional policy location game. The bliss policy of the median voter

depends on the realized state of the world and is probabilistic in nature. In our

1This e¤ect is �rst found by Majumdar and Mukand (2004), although they are not dealing with
an electoral competition game.
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model the probability distribution over states is such that the best policy, from

an ex-ante point-of-view, is the median policy. Competent candidates can observe

the state of the world at the time of the election and, hence, they are aware of

the ex-post best policy, while incompetent candidates are not. This means that

our model is a signaling game, in which competent candidates�strategies can be

state-dependent.

The equilibrium behavior of incompetent candidates depends on the extent to

which electoral candidates are policy-motivated and how uncertain the states are.

When candidates are su¢ ciently policy-motivated, the motive to signal competence

is dominated by the policy motive, and they choose the median platform, that is,

the ex-ante best platform. However, when they are strongly motivated to win

the o¢ ce and the states are uncertain, they may choose an extreme platform

to pretend to be competent and, thereby, increase their winning probability. In

contrast, competent candidates always choose an extreme platform in an extreme

state and how they behave in the median state depends on how uncertain the

states are.

We also provide some comparative static analysis. Perhaps surprisingly, we

show that an increase in the degree of o¢ ce motivation does not a¤ect the voter�s

expected payo¤, once it exceeds a certain level. This follows because a high moti-

vation to obtain o¢ ce increases the probability that the median platform will win

and, thereby, mitigates the candidates� signaling competence motivation. This

makes candidates�equilibrium strategy invariant with respect to their degree of
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o¢ ce motivation, which makes the voter�s expected payo¤ invariant also. How-

ever, when their o¢ ce motivation is low enough, below a threshold value, then

we may have an equilibrium such that all the candidates just propose the best

policy for the voter according to their information, which attains the highest level

of payo¤ among all the equilibria.

Because our basic model setting is based on that of Kartik andMcAfee (2007), it

is important to discuss the di¤erences between our study and theirs in some detail.

In their model, a fraction of candidates have �character�, which is unobserved

by voters like �competence�in our model. Our model di¤ers from their model in

not treating competence as an attribute that voters intrinsically prefer. While in

their model whether a candidate has a character or not (indicator function) enters

directly in the voter�s payo¤ function, in our model the voter cares only about

what policy is implemented, contingent on the state of the world. Hence, the fact

that the voter prefers competent candidates is an equilibrium phenomenon and,

hence, is a result of the model.

One more important di¤erence is that in our model each platform has a di¤erent

winning probability. In Kartik and McAfee (2007), as in most models of electoral

competition, each platform (on-equilibrium) has the same winning probability:

otherwise, candidates concentrate on the platform that has the highest winning

probability particularly, when they care only about winning the election, which is

the setting most often used. Our study is novel in constructing a model that sup-

ports di¤erent winning probabilities for di¤erent platforms, which is accomplished
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by using the hybrid of o¢ ce motivation and policy motivation in candidates�pay-

o¤s.

Finally, the technology of equilibrium construction is very di¤erent. In their

model, the voter�s payo¤ from choosing a candidate is independent from the choice

made by another candidate and, hence, the voter simply compares the two payo¤s

and votes for the preferred one. In our model, the voter�s (expected) payo¤ from

voting for a candidate depends on both candidates�choices because types of them

are correlated, which gives some information about the payo¤ relevant state of the

world. In this sense, two candidates are more strategically interacted with each

other, which requires di¤erent technology for solving the model. In constructing

a signaling game of electoral competition, this chapter is also related to Banks

(1990), Callander (2008) and Callander and Wilkie (2005).

This study is di¤erent from the most traditional electoral competition model

(Downs (1957) and Davis, Hinich, and Ordeshook (1970)) in which the candidates

are concerned solely with winning the election, where they are endowed with com-

plete knowledge about what the election results will be, given any particular choice

of platforms by the candidates. In this study, we assume that candidates are also

policy motivated in the usual sense the term is used (Calvert (1985) and Wittman

(1977)), which is crucial for deriving the main insights.

In developing a model with uncertainty about the policy-relevant state of the

world and where politicians receive private signals about the true state, this study

is related to a number of other studies. Majumdar and Mukand (2004) develop a
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dynamic model of policy choice in which politicians, who are either high ability or

low ability, care about both public welfare and future electoral prospects. They

show the possibility of ine¢ cient persistence of a previously enacted policy, since

changing policies signals low ability of candidates.

Schultz (1996) analyzes an election model in which ideologically biased candi-

dates are informed about the policy-relevant state. He �nds that the degree to

which candidates reveal their private information depends on the degree their pol-

icy preferences are biased. Martinelli (2001) analyzes the case in which voters also

have private information about the policy-relevant state and shows that equilib-

rium does not result in policy convergence. Heidhues and Lagerlof (2003) show that

pandering happens, that is, the candidates have a strong incentive to bias their

platform choice toward the electorate�s prior belief.2 On the contrary, in a recent

paper, Kartik, Squintani, and Tinn (2012) show that candidates have an incentive

to exaggerate their private information, i.e., to anti-pander. This study also shows

the possibility of anti-pandering, which comes from their motive to signal their

competence.

In focusing on the vertical di¤erence between candidates, rather than on the

horizontal di¤erence (policy preference), this chapter is also related to Aragones

and Palfrey (2001). They study an electoral model in which one candidate enjoys

an advantage in the sense that when his opponent candidate chooses the same

2See also Jensen (2009), Laslier and Straeten (2004), and Loertscher (2012), for more studies on
how candidates convey their policy relevant private information through their platform choices.
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platform, the voter votes for him. Our perception of competence di¤ers from theirs

because the voter does not necessarily prefer a competent over an incompetent

candidate as long as they choose the same policy; rather, the preference over

competence is generated endogenously by the fact that competent candidates tend

to choose appropriate policies. In Caselli and Morelli (2004), competent candidates

have a high ability to implement policy, but they tend to have better outside

options in comparison to being politicians. Their focus is on the relation between

the demand and supply of electoral candidates, while our focus is on the outcomes

of elections.

This chapter is organized as follows. Section 2.2 introduces the basic structure

of the model. In Section 2.3, we characterize some important equilibria of our

game. We also give some discussion about re�nement issue. Section 2.4 presents

some concluding remarks. Formal proofs are given in Appendix.

2.2. The Model

The basic element of the model is a standard Hotelling-Downs unidimensional

policy location game augmented with an uncertain state of the world. There is

a one-dimensional policy space X = f�1; 0; 1g; and a set of states of the world,

� = f�1; 0; 1g3: There is a probability mass function over states f : �! [0; 1]; that

satis�es f (0) = m 2 (0; 1) and f (�1) = f (1) = (1�m) =2; where m is seen to

represent the degree of uncertainty. Typical elements of X and � are denoted by

3We will discuss the choice of this discrete model setting in the concluding section.
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x 2 X and � 2 �; respectively. There is one voter who has a policy preference

de�ned on the product of X and �; or we can interpret it as a median voter

which has a strictly positive mass.4 Speci�cally, we assume that the voter�s utility

u (x; �) takes the quadratic loss form, u (x; �) = � (x� �)2 ; which implies that

the voter wants the implemented policy and the state of the world to be as close

as possible.5 It follows immediately that policy 0 maximizes the voter�s expected

utility E�[u (x; �)], where the expectation is taken with respect to random variable

�: Hereafter, we call platform 0 the median, and 1 and �1 extreme.

We now introduce competence of candidates as follows. There are two can-

didates, A and B: Competence of candidates is a binary variable: candidate i 2

fA;Bg either possesses competence (ci = C) or does not (ci = I): This is pri-

vate information and it is drawn independently from a Bernoulli distribution with

Pr (ci = C) = c > 0: Before choosing his platform, a competent candidate receives

a perfect signal about the state of the world, �; whereas an incompetent candidate

does not receive any signal.6

4Alternatively, we can think that a voter is characterized by her preference parameter, b; and her
preference over policy is � (x� � � b)2 : The median value of preference parameter is 0; which
has a strictly positive mass.

5One way to understand this setting is to interpret x as a level of a government�s �scal spending,
and � as a state of its economy. The people�s preference over the level of �scal spending swings
with the state of the economy.

6Majumdar and Mukand (2004) de�ne a high ability politician and a low ability politician in a
similar way.
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Our election game proceeds as follows. First, Nature chooses the types of

the two candidates, determining whether they are competent or not, and this

becomes private information. Second, Nature chooses a state from � according

to pmf f , and only competent candidates observe it. Then, the two candidates

simultaneously choose their respective platforms. Since a competent candidate

observes the state of the world, his platform choice can be state-dependent, while

an incompetent candidate�s platform choice is not state-dependent. After observing

the two candidates�platforms, the voter votes sincerely to maximize her expected

utility, without knowing the true state of the world or receiving any signal by

herself. After the election, the two candidates receive a payo¤ from policy of

u (x; �) ; which is the same as the voter�s utility. To focus on the vertical di¤erence

(competence) between the candidates, we assume that each candidate has the same

policy preference. In addition to the payo¤ from policy, the winning candidate

obtains the o¢ ce rent, k 2 [0;1); which is the degree of motivation to win the

o¢ ce, where the case of k = 0 corresponds to the pure policy motivation case. The

value of k is common knowledge and common across candidates, which is dealt

with as a parameter of the model.7

Since incompetent candidates do not observe the state of the world, their strate-

gies are state-independent. Allowing the possibility of mixed strategies, a strat-

egy for incompetent candidate i 2 fA;Bg is represented by a probability mass

7In a benchmark Hotelling-Downs models of electoral competition, candidates are purely o¢ ce
motivated, i.e., k = 0:
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function gi : X ! [0; 1]:8 In contrast, since competent candidates observe the

state, their strategies can be state-dependent. A strategy for competent candidate

i 2 fA;Bg when the state of the world is � is represented by a probability mass

function gi� : X ! [0; 1]:

Since the voter does not observe the state, she has to decide which candidate

to vote for based only on candidates� chosen platforms. Her voting strategy is

described by a voting function v : X �X ! [0; 1]; where its value represents the

probability of voting for Candidate A:

With this preparation, given Candidate B�s strategy and the voter�s voting

strategy, Candidate A�s expected payo¤ from choosing platform xA when he is

competent, observing the state of � is written as

(2.1) c
X
xB2X

fv(xA; xB)(k + u
�
xA; �

�
) +

�
1� v(xA; xB))u

�
xB; �

��
ggB�

�
xB
�

+(1� c)
X
xB2X

fv(xA; xB)(k + u
�
xA; �

�
) +

�
1� v(xA; xB))u

�
xB; �

��
ggB

�
xB
�
;

8As in Kartik and McAfee (2007), we take the interpretation of mixed strategies according to
Bayesian view of opponents�conjectures, originating in Harsanyi (1973). That is, a candidate�s
mixed strategy need not represent him literally randomizing over platforms; instead, it represents
the uncertainty that the other candidate and the electorate have about his pure strategy choice.
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which we denote by UA
�
xA; �

�
: On the other hand, Candidate A�s expected

payo¤ when he is incompetent is

(2.2) E�[UA
�
xA; �

�
] =

X
�2�

UA
�
xA; �

�
f (�) :

Candidate B�s expected payo¤ can be described in an analogous way.

As this is a signaling game, voter beliefs about the state of the world are critical.

Let '
�
�; xA; xB

�
: �! [0; 1] be the posterior probability mass over the states given

Candidate A�s and Candidate B�s platforms xA and xB; respectively. Given the

posterior belief over the states, '; the voter votes for Candidate A if

(2.3)

�����xA �X
�2�

�'
�
�; xA; xB

������ <
�����xB �X

�2�

�'
�
�; xA; xB

������ ;
and votes for Candidate B if the opposite inequality holds.9 Any voting rule is

optimal when those two terms in (2.3) are equal.

Our solution concept is that of perfect Bayesian equilibrium (Fudenberg and

Tirole 1991). This requires that the platform distributions, gA; gB; gA� and g
B
� ,

maximize the expected payo¤ for each candidate given voter belief '; and that they

are consistent with Bayes�rule. Therefore, competent candidates maximize (2.1),

whereas, incompetent candidates maximize (2.2). To simplify the analysis, we focus

on the anonymous equilibrium, where gA = gB; gA� = gB� for all �, v (x; y) =

9This follows from the quadratic loss form of the voter�s utility function.
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1� v (y; x) for all x; y 2 X:10 Hence, two candidates choose the same strategy and

the voting rule treats two candidates equally. This allows us to drop the superscript

on candidate strategies.

Those imply that in an equilibrium, the following must hold

(2.4) '
�
�; xA; xB

�
=

f (�)�
�
xA; xB; �

�P
� f (�)� (x

A; xB; �)
;

where

�
�
xA; xB : �

�
= c2g�(x

A)g�(x
B)

+c (1� c) (g�(xA)g(xB) + g(xA)g�(xB)) + (1� c)2 g(xA)g(xB);

which represents the probability that a particular pair of platforms (xA; xB) is

chosen, conditional on the realization of the state. We have no restrictions on

'
�
�; xA; xB

�
when

�
xA; xB

�
is never chosen in an equilibrium (no restrictions on

o¤-equilibrium belief).

Finally, given equilibrium (g; g�; v; ') ; which is a pair of candidates�strategies,

the voter�s voting strategy and the voter�s updated belief over states, the (ex-ante)

winning probability of platform x before observing the opponent�s choice, which is

10Note that we are not assuming g� (�1) = g� (1) nor g (�1) = g (1) :
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denoted by W (x) ; is

W (x) = c � E�[
X
y2X

g� (y) v (x; y)] + (1� c)
X
y2X

g (y) v (x; y) :

This follows because with probability c; the opponent is competent, using state

contingent strategy g� (y) while with probability 1�c the opponent is incompetent

using non-state contingent strategy g (y) :

In the following, in order to state our results, let T = fIg [C �� be the type

space of candidates with an element t = (C; �), where I 2 T corresponds to the

incompetent type, and (C; �) 2 T corresponds to the type of competent candidate

observing the state �:

2.3. Signaling Competence

In this section, we examine strategies that constitute a perfect Bayesian equi-

librium behavior. As in usual signaling games, our model has multiple equilibria

where some of them are supported only by using unreasonable o¤-equilibrium be-

liefs. From this reason, except for Theorem 1, we put emphasis on the equilibria

that have no o¤-equilibrium platform choice, that is, from ex-ante point of view

each of the three platforms may be chosen with a strictly positive probability.

The possibilities of other types of equilibria and their plausibility are examined

in the end of the section, and we provide more formal argument when we discuss

re�nement issues in the Appendix.
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Before characterizing the equilibria that have no o¤-equilibrium platform choice,

we start by giving the equilibrium in which the median platform is never chosen,

but its existence is ensured for all parameter speci�cations. In this sense, we have

complete polarization in the equilibrium.

Theorem 11. For all parameter values, there is a perfect Bayesian equilibrium

such that

1. Competent candidates completely polarize, that is,

g�1 (�1) = g1 (1) = 1; and g0 (0) = 0:

2. Incompetent candidates completely polarize, that is,

g (�1) = g (1) = 1

2
:

3. The voting strategy is such W (�1) > W (0) and W (1) > W (0) :

In this equilibrium, it does not need to be g0 (�1) = g0 (1) ; because the ex-

pected value of the state for the voter after observing candidates�platform choices

is invariant with those values, that is,
P

�2� �' (�;�1; 0) =
P

�2� �' (�; 0; 1) =

1=2 for all allocations of g0 (�1) and g0 (1) : The equilibrium is supported by at-

taching a low belief about competence, to those who deviate and propose the

median.
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Although the existence of the equilibrium in Theorem 11 is ensured for all

parameter speci�cations, we have a good reason to doubt the plausibility of it

for some cases. The equilibrium is supported because the winning probability of

the median platform is minimized by making the voter�s o¤-equilibrium beliefs

extreme, after observing one candidate chose the median and another chose an

extreme, (we are free to attach any belief, from the de�nition of perfect Bayesian

equilibrium). A simple intuition, however, tells us that when the median state is

very likely, or candidates are very likely to be incompetent, the equilibrium hardly

seems to be supported. For example, if the voter uses the simple updating rule such

that after a candidate deviates to the median, she updates her belief based only on

the platform choice made by the non-deviating candidate by using Bayesian rule,

it can be shown that we need c � m= (1�m) to make the voter want to vote for

a non-deviating candidate.

In the following, we characterize di¤erent types of equilibrium in order of the

degree of polarization. We start from an equilibrium in which no candidates po-

larize and proceed to ones with more and more polarization. Generally speaking,

the degree of polarization depends on how uncertain the state is and how much

political candidates are motivated to obtain the o¢ ce. However, all the equilibria

characterized in this section share the following common facts, whose proofs follow

from Theorem 12 through 16:
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Proposition 5. In an equilibrium such that all the three platforms may be

chosen, that is, in an equilibrium such that maxfg (x) ;
P

� g� (x)g > 0 for all

x; the following facts are satis�ed:

Fact 1: The (ex-ante) winning probability from proposing an extreme platform

(-1 or 1) is strictly higher than that from proposing the median platform (0), that

is, W (�1) > W (0) and W (1) > W (0) :

Fact 2: The probability that a candidate who chooses an extreme platform is

competent is higher than c; that is, c
P
� g�(�1)

c
P
� g�(�1)+(1�c)g(�1)

> c and c
P
� g�(1)

c
P
� g�(1)+(1�c)g(1)

>

c:

Fact 3: Competent candidates who observe an extreme state choose the same

platform as policy as the state, that is g�1 (�1) = g1 (1) = 1:

Fact 4: Competent candidates who observe the median state choose the median

platform (weakly) less often than incompetent candidates do, that is, g0(0)� g (0) :

There is a subtlety in Fact 2. The mathematical expressions given there say that

conditional on observing a candidate choosing an extreme platform, but without

using information that may be taken from another candidate�s choice, the proba-

bility of the candidate being competent is higher than c. In our model, the voter

observes both candidates�choices simultaneously and because candidates�choices

are correlated, one candidate�s choice should tell the voter something about an-

other candidate�s type. This implies that the voter does not update the candidate�s

type by using simple Bayesian rule given in the statement of Fact 2. We can also
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state Fact 2 in the alternative way, that is, for all combination of candidates�plat-

form choices, the probability of a candidate choosing an extreme platform being

competent is higher than c. Although Fact 2 is stated in the former form, both of

the statements are correct in our model.

Fact 3 says that competent candidates observing an extreme state simply choose

the (ex-post) best platform that matches the true state. Because such a platform

actually maximizes the voter�s utility given the state, we do not call such behavior

of candidates �polarization�. Here, it might be useful to explicitly de�ne the usage

of the term polarization in our study. We say that a candidate is polarizing when

he is choosing a platform �1 or 1; when the median platform is most preferred ac-

cording to his policy preference and available information. This says that the word

is used only for the behavior of incompetent candidates and competent candidates

observing the true state of the median. Furthermore, we say that a candidate is

completely polarizing if he never chooses the median and mildly polarizing when he

puts some positive probability (but less than one) on choosing the median, when

the median is the most preferred according to his policy preference.

Fact 4 comes from the fact that candidates are risk averse. No that for a

type (C; 0) candidate, choosing an extreme platform is not very risky compared to

an incompetent candidate because he already knew that the state is the median.

This implies that when type (C; 0) candidates are moderately polarizing or not

polarizing, incompetent candidates are not polarizing either.
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One important corollary of Proposition 5 is that the winning probability of

competent candidates is strictly higher than that of incompetent candidates. It

follows because the winning probability from proposing an extreme platform is

strictly higher than that of the median platform and competent candidates are

more likely to choose the extreme platform.

Corollary 4. In an equilibrium such that every platform may be chosen, that

is, in an equilibrium such that maxfg (x) ;
P

� g (x)g > 0 for all x; competent can-

didates have a strictly higher winning probability than incompetent candidates.

2.3.1. Low Motivation for O¢ ce

We start from the case in which candidates are su¢ ciently policy motivated (low k).

The following theorem demonstrates that there is a perfect Bayesian equilibrium

in which candidates always choose the best policy for them, that is, the same

policy as the state for competent candidates and median policy for incompetent

candidates (all the proofs can be found in the Appendix).

Theorem 12. There is a perfect Bayesian equilibrium that satis�es the follow-

ing if and only if k � 2:

1. Competent candidates choose the best platform for each state, that is, g0 (0) =

g�1 (�1) = g1 (1) = 1:

2. Incompetent candidates always choose median platform, that is, g (0) = 1:



133

3. The voter votes for an extreme candidate over a moderate one, that is,

v (�1; 0) = 1; v (1; 0) = 1:

In the equilibrium, the voter always votes for a candidate who chooses an ex-

treme platform over a moderate one because choosing an extreme platform is a per-

fect signal of competence, and thereby, conveys the perfect information about the

state being the extreme. An incompetent candidate chooses the median platform,

which is the ex-ante best platform, and wins the election only when his opponent

is incompetent or when the median platform is actually the ex-post best platform,

in which case the election results in a tie with the competent opponent. Although

choosing an extreme platform gives incompetent candidates a strictly higher win-

ning probability than choosing the median platform, they do not do so because such

a policy is likely to turn out to be wrong. We can easily see that Facts 1 through 4

hold, and in particular, Fact 4 holds withW (�1) = W (1) > W (0) : Note that, it is

not necessarily the case that we have v (�1; 1) = 1=2; as long asW (�1) = W (1) is

ensured (we can adjust by v (�1; 0) and v (1; 0) ; accordingly).

An important implication of Theorem 12 is the validity of the median voter

theorem. In our model, the appropriate statement of the median voter theorem

is that each type of candidate chooses the most desirable platform based on his

knowledge. One interesting insight to note is that, contrary to the literature, the

incompetent candidate�s reason for choosing the median platform arises from policy

motivation, whereas, in the usual Hotelling-Downs model of electoral competition,
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candidates�motivation for choosing the median platform arises from the motivation

to win the o¢ ce.

As the above reasoning clearly shows, the equilibrium in Theorem 12 is sup-

ported by candidates�su¢ ciently high policy motivation, that is, by small k. In the

equilibrium, even though incompetent candidates know that choosing an extreme

platform gives a higher winning probability, they stick to the median platform be-

cause of their policy motivation. It can easily be seen that the candidates�strategies

supported in the equilibrium of Theorem 12 is the best for the voter among all

possible strategies candidates may choose.

2.3.2. Low Uncertainty

In this subsection, we examine the equilibrium when there is low uncertainty.

More precisely, we focus on the case in which m; the probability that the state

is median, is higher than 1/2. We show that in such a case, when a candidate�s

motivation to obtain the o¢ ce is higher than some threshold, the equilibrium

involves polarization from competent candidates and moderation from incompetent

ones.

Theorem 13. Let m > 1=2: There is a perfect Bayesian equilibrium that sat-

is�es the following if and only if, we have k � � (c;m) ; where � (c;m) is a unique

number determined by (c;m) and � (c;m) < 2� 2c for all (c;m) :
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1. Competent candidates mildly polarize, that is,

g0 (0) > 0; g0 (�1) = g0 (1) > 0; and g�1 (�1) = g1 (1) = 1:

2. Incompetent candidates always choose the median platform, that is, g (0) = 1:

3. The voting strategy is such that W (�1) > W (0) and W (1) > W (0) :

We say that competent candidates �mildly� polarize because they still put

strictly positive probability on choosing the median platform. Note that, we do

not exactly specify the voting strategy v, since there are multiple voting rules that

attain the indi¤erence for the type of sender, which we explain later.

In the equilibrium, competent candidates observing the median state (type

(C; 0) candidates) mix between all the policies. Incompetent candidates choose the

moderate policy for certainly. The voter, who is indi¤erent between two candidates

proposing an extreme and the median, respectively, mix strategies.11 This requires

that the way the voter mixes strategies makes type (C; 0) candidates indi¤erent

between all platforms, and that the way type (C; 0) candidates mix strategies on

policy announcements makes the voter indi¤erent between candidates.

11Kartik and McAfee (2007)�s model also shares this property. In their model, this property and
the assumption that voters �ip a fair coin when there is a tie induces ex post equilibrium, in which
the same behavior of candidates remains an equilibrium, regardless of one candidate announces
�rst, second, or both announce simultaneously. The equilibrium in our model, however, is not
ex-post equilibrium, since the voter is more likely to vote for an extreme. This implies that an
extreme platform is more preferred when the opponent chooses an extreme and vice versa.
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To see this point, keeping the other types�strategies �xed as stated in the theo-

rem, suppose that type (C; 0) candidates�strategy puts a very small probability on

choosing an extreme platform, say platform 1. Then, choosing the platform works

as a very strong signal about type (C; 1) or state being one and, hence, it makes

the voter to vote for the extreme. On the other hand, if type (C; 0) candidates

choose an extreme platform with high probability, that platform loses signaling

power and, thus, the voter prefers to vote for the median. In the adequate degree

of mixing, the expected value of the state after observing a platform pair of (0,1)

becomes exactly 1/2. On the other hand, to make type (C; 0) candidates indi¤erent

between the median and extremes the winning probability of extreme platforms

must be larger than that of the median platform because extreme platforms attain

lower policy utility than the median platform for those types of candidates.

As is mentioned above, there are multiple voting strategies that support the

equilibrium, and it does not need to be W (�1) = W (1) : The way that the voting

strategy v supports the candidates�strategies is to make two relations hold, that

is, U (�1; 0) = U (0; 0) and U (1; 0) = U (0; 0) : However, we have three variables,

v (�1; 1) ; v (�1; 0) ; and v (0; 1) to attain this, which is the reason for the mul-

tiplicity. If we further impose the symmetry assumption of v (�1; 1) = 1=2; it is

possible to get W (�1) = W (1) :
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We have some comparative statics results and limiting behavior of the equilib-

rium when we take extreme values of parameters.12 In order to do this, focus on

the symmetric equilibrium such that v (0;�1) = v (0; 1) > 0; and denote g0 (0) and

v (0;�1) by g (k; c) and � (k; c) ; respectively, as functions of k and c:13 It can be

shown that they are di¤erentiable and

(2.5)
@g (k; c)

@c
> 0;

@g (k; c)

@k
= 0; and lim

c"1
g (k; c) = 0;

and

(2.6)
@� (k; c)

@c
> 0;

@� (k; c)

@k
> 0; and lim

k"1
� (k; c) =

1

2
:

The relations in (2.5) say that as we increase the high probability of compe-

tence, incompetent candidates�strategies skews toward the median. This is ex-

plained as follows. If we �x the candidates�strategies, in which type I candidates

are moderate and type (C; 0) candidates mildly polarize, an increase in the prob-

ability of competence makes the voter think that an extreme platform choice is

likely to be made by a type (C; 0) candidate. This shifts her belief about the state

12As will be shown in the Appendix, there are two di¤erent voting rules that support the can-
didates�strategies in Theorem 2.3 as an equilibrium. One involves v (�1; 0) = v (1; 0) = 0 and
another involves at least one of those being strictly higher than zero. In the comparative statics,
we focus on the latter because the former equilibrium exists only for a smaller range of parameters
compared to the latter.

13The existence of the symmetric equilibrium and the uniqueness of those values, g and �; are
proved in the Appendix.



138

toward the center when she observes the pair of platform choices of an extreme and

the median. This e¤ect must be o¤set by making type (C; 0) candidates put less

weight on the extreme so that the voter�s expected state being 1=2 (�1=2) when

she observes the platform pair (0; 1) ((-1,0)) and, thereby, make her indi¤erent to

the choice of median. It implies that a higher probability of competence (higher

c) has positive e¤ects on the voter�s welfare.

On the other hand, (2.6) shows that a high motivation to obtain o¢ ce increases

the probability that the median platform will win, thereby, preventing candidates

from polarizing more. It also shows that a high probability of competence increases

the probability that the median will win. To see this, note that a high probability

of competence implies that the opponent candidate is more likely to choose an

extreme. This means that the winning probability of the median decreases, which

must be o¤set to support the equilibrium.

The comparative statics analysis gives the relation between those parameters

and voter�s expected payo¤, which is denoted by E(u) as a corollary. Because, on

the equilibrium of the theorem, g0 (0) is constant with respect to k, the voter�s

expected payo¤ is also constant with respect to k: On the other hand, the voter�s

payo¤ is increasing with c; mainly from the direct e¤ect of competence, and partly

from the indirect e¤ect of making type (C; 0) candidates put more weight on the

median. See Figure 2.1.

The condition for the existence of the equilibrium in Theorem 13 is explained

as follows. The equilibrium requires that the voter is indi¤erent to choice between
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the median and extremes. If an extreme platform can be chosen only by candi-

dates observing the same state, the voter votes for a candidate who chooses the

extreme because it is a perfect signal about the state. Therefore, to support the

equilibrium of Theorem 13, some types must choose the extreme platform without

actually observing the same extreme state so that the voter is indi¤erent between

voting for an extreme and the median. When m is high and, thus, the state is

likely to be the median, mixing from type (C; 0); is enough to generate the in-

di¤erence. On the other hand, when m is small and thus extremes are likely, it

is impossible to generate the indi¤erence if incompetent candidates always choose

the median. Then we need not only type (C; 0) but also type I; incompetent, to

choose an extreme to generate the indi¤erence, and those cases are treated in the

next theorems.

Note the di¤erence in players� behavior between the equilibria in Theorems

12 and 13. When the motivation for o¢ ce is su¢ ciently high, i.e., k > �; there

is an equilibrium in which competent candidates try to utilize the e¤ect of sig-

naling competence to increase the probability of winning, by choosing extreme

platforms. On the other hand, when the motivation for o¢ ce is su¢ ciently low,

i.e., k � 2; there is an equilibrium in which they simply cast aside the opportunity

of pretending to be competent. Note that the parameter range that ensures the

existence of equilibria in Theorem 12 or 13 covers all the cases of m > 1=2:
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The fact that we have multiplicity of equilibria in a parameter range speci�ed

in Theorems 12 and 13 stems from the fact that the model has strategic comple-

mentarity among candidates. To see this, think of the case in which candidates�

motivation for o¢ ce is in the range where we have both types of equilibria, that is,

2 � k � � (c;m) : In the equilibrium of Theorem 12, even if an extreme platform

has a much higher winning probability than the median, competent candidates ob-

serving the true state of 0 (type (C; 0) candidates) do not polarize, while they do in

the equilibrium of Theorem 13. This comes from the fact that in the former equilib-

rium, because the opponent, who always chooses the median when he is type (C; 0);

is likely to choose the median. This implies that the winning probability of the me-

dian is high compared to the case in which even type (C; 0) candidates may choose

an extreme, which keeps them from deviating to an extreme platform. On the other

hand, in the equilibrium of Theorem 13, even a type (C; 0) candidate may choose

an extreme, which makes the winning probability of the median smaller, up to the

point that the extreme and the median are indi¤erent to type (C; 0) candidates.

2.3.3. High Uncertainty

In this subsection, we examine the case of high uncertainty, that is, m � 1=2. It is

shown that the equilibria in such a case involve more polarization than in the case

of low uncertainty.

The next two theorems deal with the cases in which a candidate�s motivation

for o¢ ce is not too high and not too low. In there, the voter votes for an extreme
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candidate for certainty. In the equilibrium of Theorem 14, a competent candidate

mildly polarizes in a sense that when he observes the true state of the median,

he sometimes chooses an extreme policy and sometimes chooses the median, while

incompetent candidates converge to the median. In the equilibrium of Theorem

15, on the other hand, a competent candidate completely polarizes in a sense that

when he observes the true state of the median, he never chooses the median policy,

while incompetent candidates converge to the median.

Theorem 14. Let m � 1=2: There is a perfect Bayesian equilibrium that sat-

is�es the following conditions if and only if k 2 (2� 2c; 2� 2cm):

1. Competent candidates mildly polarize, that is,

g0 (0) > 0; g0 (�1) = g0 (1) > 0; and g�1 (�1) = g1 (1) = 1:

2. Incompetent candidates choose the median platform, that is, g (0) = 1:

3. The voter votes for an extreme candidate, that is, v (�1; 0) = 1 and v (1; 0) =

1:

Theorem 15. Let m � 1=2: There is a perfect Bayesian equilibrium that sat-

is�es the following conditions if and only if k 2 [2� 2c; 2� 2cm]:

1. Competent candidates completely polarize, that is,

g0 (�1) + g0 (1) = 1; and g�1 (�1) = g1 (1) = 1:
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2. Incompetent candidates choose the median platform, that is, g (0) = 1:

3. The voter votes for an extreme candidate, that is, v (�1; 0) = 1 and v (1; 0) =

1:

The equilibria given by Theorems 12, 14, and 15, respectively, are similar in the

players�strategies, and the range of parameter values that ensure their existence.

Between the three equilibria, only the behaviors of competent candidates observing

the true state of the median (type (C; 0) candidates) di¤er. Again, the reason

for multiplicity of equilibria is the strategic complementarity between candidates

generated by the voting strategy. A candidate has more incentive to polarize as

more and more the opponent polarizes, because the median platform, which has a

smaller probability of winning, becomes unlikely to win and is, thus, less attractive.

The equilibria characterized in Theorems 14 and 15 are supported by the can-

didates�intermediate degree of motivation for o¢ ce. Since incompetent candidates

are risk averse from our functional assumption of policy utility, choosing an ex-

treme platform is very risky for them, while it is not for competent candidates

observing the true state of the median. Therefore, as long as extreme platforms

give them a higher winning probability, competent candidates, knowing that the

true state to be the median, may be willing to be extreme because it does not hurt

much. To support such a behavior, candidates�motivation for o¢ ce should not be

too high for incompetents to polarize, and not be too low for type (C; 0) candidates

to polarize. Also note that, given such behavior of candidates, the voter does not
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want to vote for an extreme unless it is likely that the state is the extreme, i.e.,

m is small.

The next result characterizes an equilibrium for the case in which k is high and

probability of competence is not too high. In the equilibrium, competent candi-

dates completely polarize while incompetent candidates mix between all policies.

Theorem 16. Let m � 1=2: There is a perfect Bayesian equilibrium that sat-

is�es the following conditions if and only if c < 1
2(1�m) ; and k > � (m; b) ; where

� (c;m) is the unique number determined by (c;m) such that � (c;m) < 2�2cm for

all (c;m) :

1. Competent candidates completely polarize, that is,

g0 (�1) + g0 (1) = 1; and g�1 (�1) = g1 (1) = 1:

2. Incompetent candidates mildly polarize, that is,

g (0) > 0 and g (�1) = g (1) > 0:

3. The voting strategy is such that W (�1) > W (0) and W (1) > W (0) :

Again, the set of equilibria characterized in Theorem 16 contains the symmet-

ric case, that is, g0 (�1) = 1=2; v (0; 1) = v (0;�1) ; and v (�1; 1) = 1=2: This

equilibrium has a similarity towards that of Theorem 13. In the equilibrium of



144

Theorem 16, the way the voter mixes strategies makes incompetent candidates

indi¤erent between all platforms, while it makes type (C; 0) candidates indi¤erent

in Theorem 13. On the other hand, the way incompetent candidates mix makes

the voter indi¤erent between candidates for any combination of platform choices.

That incompetent candidates are indi¤erent between the median platform and ex-

treme platforms means a higher winning probability of extremes and competent

candidates are willing to be extreme.

We can do some comparative statics in this equilibrium, and get somewhat

similar results as in Theorem 13. Again, focus on the symmetric equilibrium

where v (0;�1) = v (0; 1) > 0 and denote v (0;�1) and g (0) by � (k; c) and

g (k; c) ; respectively as functions of k and c: Then we have

@g (k; c)

@c
> 0;

@g (k; c)

@k
= 0; and lim

c"1
g (k; c) = 0:

and
@� (k; c)

@c
> 0;

@� (k; c)

@k
> 0; and lim

k"1
� (k; c) =

1

2
:

Those comparative statics results come from almost the same reasoning as in

the case of Theorem 13. Fixing other parameter values, increase in candidates�

o¢ ce motivation reduces the winning probabilities of extreme platforms. We can

also see that those comparative statics results give the same relation between the

voter�s payo¤ and the degree of o¢ ce motivation, as in the case of Theorem 13.
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This equilibrium, however, cannot be supported when competence probability

is very high. This is because in such a case, even when incompetent candidates

put a high probability of choosing extremes, the voter still strictly prefers to vote

for an extreme because the median state is unlikely. Then, we cannot support

incompetent candidates�strategy in a way that the median is chosen with a strictly

positive probability when motivation for o¢ ce is high.

So far, we have focused mainly on equilibria where all the platforms can be cho-

sen with strictly positive probabilities (no o¤-equilibrium platform choice). The

following theorem demonstrates that there are no other equilibria than those char-

acterized so far, if we con�ne our focus on the ones where there is no o¤-equilibrium

platform choice.

Theorem 17. Any equilibrium such that all the three platforms may be chosen

is one of those characterized in Theorems 12 through 16.

We brie�y mention the possibilities of other types of equilibria. By appropri-

ately choosing voter�s o¤-equilibrium belief, it is possible to construct the following

types of equilibrium. 1. An equilibrium such that only one platform is chosen by

candidates. 2. An equilibrium such that only two platforms (0 and �1; or 0 and

1) may be chosen by candidates. We did not focus on those types of equilibria

because we do not perceive those to be plausible, compared to the equilibria char-

acterized above. Indeed, we can exclude the �rst type of equilibrium by applying

usual D1 criterion. Because the type of candidate who has the strongest incentive
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to deviate to an o¤-equilibrium platform is competent observing the same state,

the voter votes for the deviating candidate and, thereby, breaks the equilibrium.

For the second type of equilibrium, although we do not �nd the usual application

of D1 criterion is enough to invalidate it, we �nd that appropriately combining

D1 with the requirement that the voter believes that the deviation is unilateral

invalidates it.14 All the equilibria shown in this section survive such re�nements.

The equilibrium characterized in Theorem 11, which survives our re�nement

criteria, may be given a reasonable justi�cation, at least for some parameter range.

To see this, suppose that the median state is unlikely and candidates are likely to be

competent. If the median platform is o¤-equilibrium choice, the type of candidates

that have the strongest incentive to deviate is incompetent type. Then, after the

voter observes one candidate chooses median while another chooses an extreme,

her expectation about the true state is still su¢ ciently extreme, and, hence, she

votes for the extreme candidate, which prevents candidates from deviate. Note

also that the range of parameter values that we can render such justi�cation, low

m and high c; approximately corresponds to the range where equilibria of Theorem

12 through 16 are not supported.

2.4. Conclusion

This study examined a signaling game where a fraction of candidates have

competence, which is unobservable to voters. We show that candidates have an

14It is discussed in Section 2.6.
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incentive to polarize to make them appear competent and, thereby, increase their

probability of winning. Depending on the parameter speci�cations, the equilibrium

varies from the equilibrium in which only competent candidates polarize to the one

in which every candidate polarizes. The general insight is that being extreme is

advantageous for winning the election, because it makes the candidate appear

competent.

An important aspect of our model is that candidates are assumed to commit

to policies during the election, and the commitment is assumed to be credible.

Some justi�cation for this assumption can be made. For example, real-life im-

plementation of a policy requires preparation, when there is a time lag between

proposing a platform and actually implementing it and, thus, it is impossible to

change policies �exibly. In our model, if the commitment is not credible,15 the

voter knows that, after the election, competent candidates will implement the best

policy contingent on the revealed state of the world and incompetent candidates

will implement the median. There are two types of equilibrium in such a setting.

When candidates�policy motivation is su¢ ciently high, something reminiscent of

the equilibrium of Theorem 12 emerges. The only di¤erence is that now, one of

the three platform works as a signal about incompetence or competence observing

the true state of median. The name of a platform does not matter because now

the game becomes a cheap-talk game. On the other hand, when candidates�policy

15Osborne and Slivinski (1996) and Besley and Coate (1997) consider models in which candidates
cannot make commitments at all.
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motivation is su¢ ciently small, all the equilibrium that may be announced in an

equilibrium (on-equilibrium) should have the same winning probability.

In this chapter, in order to focus on the roles of vertical di¤erence between

candidates (competence), we assumed that every candidate shares the same policy

preference, conditional on state. It may be interesting to extend the model to the

case in which candidates have biased policy preferences that are common knowledge

among all players. In such a case, there may be an e¤ect such that proposing a

platform that is opposite to a candidate�s policy bias serves as a stronger signal

about his competence. This type of extension needs to enlarge the policy space

as in the standard continuum policy space model. However, in such an extension,

the number of possible combinations of policy announcements becomes large and

it is necessary to construct a large number of equilibrium beliefs, contingent on

policy choices over the state, which is a highly di¢ cult task that requires some

simplifying assumptions on the way the voter beliefs are formed. For the same

reason, extending our model into the one with continuum of state space is also

di¢ cult.

Finally, although our equilibrium heavily depends on mixing of strategies of

players, it is possible to purify their strategies without changing the main insights.

One way of doing this is to assume that parameter k for each candidate, which

represents his degree of o¢ ce motivation, has a non-degenerate distribution and

also is private information about him. Then there is a cut-o¤ value above which he

chooses an extreme platform and below which he chooses the median. Similarly,
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it is possible to purify the voter�s strategy by adding some preference parameter

such as the degree of risk aversion, that is private information.

2.5. Appendix: Proofs

2.5.1. Proof of Theorem 12

If direction: Suppose that candidates�strategies are as described in the theorem.

For a pair of o¤-equilibrium platform choices, i.e., �1 and 1 are chosen, let it

satisfy E[' (�;�1; 1)] = E[' (�; 1;�1)] = 0: We will show that no player has an

incentive to deviate.

Note that we have

U (1; 1)� U (0; 1) = U (�1;�1)� U (0;�1) = 1

2
ck + 1� c � 0;

and

U (0; 0)� U (�1; 0) = U (0; 0)� U (1; 0) = �1
2
k + 1 � 0:

Thus no competent candidates have an incentive to deviate.

It is straightforward to see that type I candidates do not have an incentive to

deviate.

For the voter, the voting rule is optimal if
P

�2� �' (�; 1; 0) � 1=2; where the

left hand side is 1. Those imply that no player has an incentive to deviate, and

thus it is an equilibrium.

Only if direction: It is straightforward from �if�direction. Q.E.D.
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2.5.2. Proof of Theorem 13

If direction: Suppose that the players strategies are as follows: v (0;�1) = v (0; 1) =

�; v (1;�1) = 1=2, g (0) = 1; g�1 (�1) = g1 (1) = 1; g0 (0) = d; and g0 (�1) =

g�1 (1) = (1� d) =2. We will show that we can �nd � 2 [0; 1=2) and d 2 (0; 1) such

that those strategies constitute an equilibrium. Note that if this is the case,

W (�1) > W (0) and W (1) > W (0) follow immediately.

There are two ways of supporting those strategies as an equilibrium, that is,

by � = 0 and � > 0.

First, we examine how we can support the equilibrium by � > 0: A strategy

of type (C; 0) candidates is optimal when U (1; 0) = U (0; 0) and U (�1; 0) =

U (0; 0) : The former (and also the later) can be rewritten as

(2.7) G (d; k) = U (1; 0)�U (0; 0) = (1
2
� �)k+ c� cd+ � � 2c� + 2cd� � 1 = 0:

On the other hand, the voting strategy is optimal if and only if
P

�2� �' (�; 1; 0) =

1=2 and
P

�2� �' (�;�1; 0) = 1=2, since in such a case, candidates proposing 0 and

�1 (and 0 and 1) are equally preferred. Thus we have

1�m
2
c (1� c)

1�m
2
c (1� c) +mc (1� c) 1�d

2
+ 2mc2d

�
1�d
2

� = 1

2
;

which can be rewritten as

(2.8) F (d) = cmd2 + (c� 2cm)d+ 1� c� 2m+ 2cm = 0:
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We can see that F is a strictly increasing function and F (1) = cm+1�c�m > 0; we

can �nd some d 2 (0; 1) if and only only if F (0) < 0; which is m > 1=2: Let this

value of d be d (c;m) : To prove the theorem, it is enough to show that given k; we

can �nd � such that G (�; d (c;m) ; k) = 0: Since it is a strictly decreasing function

of � and G (�; d; k) < 0 for all � � 1=2; we can �nd such a � if G (0; d (c;m) ; k) >

0; which holds if and only if k+2c�2
2c

> d (c;m) : Thus it is an equilibrium when

k > � = 2cd (c;m) + 2� 2c > 2� 2c, because when those are satis�ed, it is easy

to see that the other types of candidates�strategies are optimal.

Second, we examine how we can construct an equilibrium such that � =

0: First, type (C; 0) candidates�strategy is an optimal when U (1; 0) = U (0; 0) and

U (�1; 0) = U (0; 0) : The former (and also the later) can be rewritten as

G (�; d; k) = U (1; 0)� U (0; 0) = 1

2
k + c� cd� 1 = 0;

and thus bd = k+2c�2
2c

, and thus it must hold that k 2 (2 � 2c; 2): Denote this

value by d (k) : On the other hand, the voting strategy, � = 0; is optimal ifP
�2� �' (�; 1; 0) � 1=2 and

P
�2� �' (�;�1; 0) � 1=2; since in such case, a candi-

date proposing �1 (and 1) is preferred to a candidate proposing 0. This can be

rewritten as

(2.9) F (d) = cmd2 + (m� 2cm)d+ 1� c� 2m+ 2cm � 0;
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and the solution of the equation F
�bd� = 0 is given by

(2.10) bd = �(m� 2cm) +
p
(m� 2cm)2 � 4cm (1� c� 2m+ 2cm)

2cm
:

Then we have an equilibrium when k+2c�2
2c

� d (c;m) ; because in such a case

F
�bd� � 0.
Only if direction: Suppose that the parameter values are outside of the two

ranges, and we are given players�strategies such that g (0) = 1; g�1 (�1) = g1 (1) =

1; g0 (0) > 0; and g0 (�1) = g0 (1) > 0. We must have U (�1; 0)�U (0; 0) = 0 and

U (1; 0) � U (0; 0) = 0 to be an equilibrium. If we regard U (�1; 0) � U (0; 0) and

U (1; 0)�U (0; 0) as functions of v (0;�1) ; v (0; 1) ; v (�1; 1) ; and g0 (�1), we have

@W�1 (x; y; z; a)

@x
=

@W1 (x; y; z; a)

@y
< 0;

@W�1 (x; y; z; a)

@y
=

@W1 (x; y; z; a)

@x
< 0;

and

����@W�1 (x; y; z; a)

@z

���� =
@W1 (x; y; z; a)

@z
;

where W�1 = U (�1; 0) � U (0; 0), W1 = U (1; 0) � U (0; 0), x = v (0; 1), y =

v (0;�1), and v (�1; 1) = z; g0 (�1) = a. Since we haveW�1 andW1 are decreasing

functions of x and y; it is enough to show that W�1 (0; 0; z; a) � 0 W1 (0; 0; z; a) �

0 cannot hold simultaneously for any combinations of z and a such that bothP
�2� �' (�;�1; 0) � �1=2 and

P
�2� �' (�; 1; 0) � 1=2 hold. This follows from

a simple calculation combined with the facts that
���@W�1(x;y;z;a)

@z

��� = @W1(x;y;z;a)
@z

and
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that we cannot have W1

�
0; 0; 1

2
; a
�
� 0 and W1

�
0; 0; 1

2
; a
�
� 0 simultaneously for

all a in a way that
P

�2� �' (�;�1; 0) � �1=2 and
P

�2� �' (�;�1; 0) � 1=2, which

is shown in the �if�part of the proof.

Comparative statics results follow from (2.7) and (2.8). Q.E.D.

2.5.3. Proof of Theorem 14

It is proved in the same way as in Theorem 13. Note that when m � 1=2; function

F de�ned by (2.8) satis�es F (0) � 0: Q.E.D.

2.5.4. Proof of Theorem 15

If direction: Suppose that k is in the range, m � 1=2; players�strategies are as

follows: v (0;�1) = v (0; 1) = 0; v (1;�1) = 1=2, g (0) = 1; g�1 (�1) = g1 (1) =

1; and g0 (�1) = g�1 (1) = 1=2: We will show that no player has an incentive to

deviate.

First note that

E[u (0; �)] = �(1�m) and E[u (�1; �)] = E[u (1; �)] = � (2�m) :

For a type h0;?i candidate, his expected payo¤ from choosing 0 is

(1� c)
2

k � cm� (1� b) (1�m) :
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On the other hand, his payo¤ from deviating to x = 1 is

�
2� c
2

�
k � c� (1� c) (2�m) =

�
2� c
2

�
k � 2 + c+m� cm:

Thus his no-deviation condition is 2� 2cm � k:

For type h1; 0i ; his expected payo¤ from choosing �1 is
�
2�c
2

�
k � 1; whereas

his expected payo¤ from deviating to x = 0 is (1�c)
2
k � c: Thus his no-deviation

condition is k � 2� 2c:

Those strategies can be supported as an equilibrium when
P

�2� �' (�;�1; 0) �

�1=2 and
P

�2� �' (�; 1; 0) � 1=2; which can be written as

1�m
2
[c (1� c)]

1�m
2
[c (1� c)] +m[1

2
c (1� c)]

� 1

2
! m � 1=2:

Only if direction: It is straightforward from the proof of �if�direction. Q.E.D.

2.5.5. Proof of Theorem 16

If direction: Suppose that the players strategies are as follows: v (0;�1) = v (0; 1) =

�; v (1;�1) = 1=2, g (0) = 1; g�1 (�1) = g1 (1) = 1; g0 (�1) = g0 (1) = 1=2; and

g (�1) = g (1) = (1� d) =2, and g (0) = d: We will show that we can �nd � 2

[0; 1=2) and d 2 (0; 1) such that those strategies constitute an equilibrium. Note

that if this is the case, W (�1) > W (0) and W (1) > W (0) follow immediately.

First, we examine when we can construct an equilibrium in a way such that

� > 0: Then, obviously, we must have E[U (�1; �)] = E[U (0; �)] and E[U (1; �)] =
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E[U (0; �)], since in such case, candidates proposing 0 and �1 (and 0 and 1) are

equally preferred.

(2.11) G (�; d; k) = E�[U (1; �)]� E�[U (0; �)] = 0:

Also, we have
P

�2� �' (�; 1; 0) = 1=2 and
P

�2� �' (�;�1; 0) = 1=2: Those can be

rewritten as

(2.12)
1�m
2
[c (1� c) d+ (1� c)2 d1�d

2
]� 1�m

2
[(1� c)2 d

�
1�d
2

�
	

=
1

2
;

, where

	 =
1�m
2

[c (1� c) d+ (1� c)2 d1� d
2
]

+m[c (1� c) 1
2
d+ (1� c)2 d

�
1� d
2

�
] +

1�m
2

[(1� c)2 d
�
1� d
2

�
]

This can be rewritten as

(2.13) F (d) = 2c+ d� 2cm� cd� 1 = 0:

Then it follows immediately from F
�bd� = 0 that

(2.14) bd = 1� 2c+ 2cm
1� c 2 (0; 1) and c < 1

2 (1�m) :

Therefore, to prove the theorem, it is enough to show that given k; equation (2.11),

as a function of �; has a solution in (0; 1=2) when d = bd: It can be easily seen that
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G (�; d; k) < 0 for all � � 1=2; d; and k: Let � be the value of k that satis�es

G
�
0; bd; �� = 0: Since G is a strictly increasing function of k when � = 0; we can

�nd such �: Then it follows that when k > �; we can �nd � such that G
�
�; bd; k� =

0 from (0; 1=2). It is easy to see that � < 2� 2cm:

Next, we examine when we can construct an equilibrium in a way such that

� = 0: First, type h0;?i candidates� strategy is optimal when E[U (�1; �)] =

E[U (0; �)] and E[U (1; �)] = E[U (0; �)]. The former (and also the later) can be

rewritten as

G (�; d; k) = E�[U (1; �)]� E�[U (0; �)](2.15)

=
1

2
k +m[cd� d] + (1�m)

2

�
3

2
cd� 2d� 3

2
c� 1

2
c2 +

1

2
c2d

�
= 0:

and thus d = k+2c�2
2c

; and thus it must hold that k 2 (2� 2c; 2): Denote this value

by d (k) : On the other hand, the voting strategy is optimal if
P

�2� �' (�; 1; 0) �

1=2 and
P

�2� �' (�;�1; 0) � 1=2; since in such case, a candidate proposing 1 (and

�1) is preferred to a candidate proposing 0. This can be rewritten as F (d) � 0: It

is easy to see that the inequality holds for all d so long as m � 1=2; and thus the

equilibrium can be supported when k 2 (2� 2c; 2).

The proof of the �only if�direction is almost the same as in Theorem 13 and

thus omitted. Q.E.D.
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2.5.6. Proof of Theorem 17

Given an equilibrium strategies (g; g�; v; '); denote by �(g; g�; v; ') the set of plat-

forms that are chosen with strictly positive probabilities, i.e., �(g; g�; v; ') =

fxjmaxfg (x) ;
P

� g� (x)g > 0g (we sometimes abbreviate and just write �). In

the following proofs, we often use the necessary conditions for having U (x; �) �

U (y; �) for jx� �j > jy � �j ; which we can derive by explicitly writing down the

inequality by using (2.1). We do not provide the explicit form every time it appears

because it is space consuming. One example is

U (�1; �)� U (0; �) = fc(1� g� (1)) + (1� c) (1� g (1))g
�
1

2
� v (0;�1)

�
k

+fcg� (1) + (1� c) g (1)g (v (�1; 1)� v (0; 1)) k

+
X

x2f�1;0;1g

fcg� (x) + (1� c) g (x)g �

fv (0; x)u (0; �) + v (x; 0)u (x; �)� v (�1; x)u (�1; �)� v (x;�1)u (x; �)g

from which we can see that the di¤erence in expected o¢ ce rent between proposing

�1 and 0 does not depend on g� (0) ; g� (�1) ; g (0) and g (�1) : This property is

going to be implicitly used very often.

Lemma 10. If �(g; g�; v; ') = X; the followings cannot hold.

1. U (�1;�1) = U (0;�1) = U (1;�1) :

2. U (�1; 1) = U (0; 1) = U (1; 1) :
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Proof. Suppose that U (�1;�1) = U (0;�1) = U (1;�1) : It is easy to see that

we have to have k > 1; and it can be easily veri�ed the following: 1. U (�1;�1) =

U (0;�1) implies either a: v (0;�1) > 1=2 or x: v (0; 1) > v (�1; 1) : 2. U (1;�1) =

U (�1;�1) implies either b: v (1;�1) > 1=2 or y: v (1; 0) > v (�1; 0) : 3. U (0;�1) =

U (1;�1) implies either c: v (1; 0) > 1=2 or z: v (1;�1) > v (0;�1) : We will show

that each combination leads to a contradiction.

Case abc: If v (1; 0) � v (�1; 0) ; it must hold that f(C;�1)g = P (�1) ; since

E[U (�1; �)] < E[U(1; �)] from it and b: In such a case, from the voter�s opti-

mization condition, v (�1; 0) = 1; which is a contradiction. Hence we must have

v (�1; 0) > v (1; 0) : However, this contradicts a and c:

Case abz: By using the same logic used above, we can derive v (�1; 1) >

v (0;�1). However, this contradicts z:

Case ayz: Same as in case abz:

Case ayc: From the same kind of reasoning used above, we must have v (1;�1) <

1=2: Then, to have U (�1;�1) = U (1;�1) ; wemust have v (1; 0) > v (0;�1) ; which

contradicts y:

Case xbc; xyc; xbz; and xbz: The fact that x is the only possibility for having

U (�1;�1) = U (0;�1) = U (1;�1) and we must have the symmetric condition

for having U (�1; 1) = U (0; 1) = U (1; 1) implies that we have either U (1; 1) >

U (�1; 1) or U (1; 1) > U (0; 1) :
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Think of the case in which U (1; 1) > U (�1; 1) : Then, unless U (�1; 0) >

U (1; 0) ; we have f(C;�1)g = P (�1), and thus v (�1; 0) = v (�1; 1) = 1; a con-

tradiction. Hence U (�1; 0) > U (1; 0). We can check that this, x; and U (�1;�1) =

U (1;�1) imply that g0 (0) > 0 and hence U (0; 0) � U (�1; 0) : This implies

that U (�1; 1) � U (0; 1) ; since if it is not the case, we must have f(C;�1)g =

P (�1) : Then, we have U (1; 1) > U (0; 1) and g1 (1) = 1; but U (�1; 1) � U (0; 1) and

U (0; 0) � U (�1; 0) requires g0 (1) > g1 (1) = 1; which is a contradiction.

Therefore, think of the case in which U (1; 1) = U (�1; 1) > U (0; 1) : From the

same argument already used, we must have U (0; 0) > U (1; 0) = U (�1; 0) :However,

U (1;�1) = U (�1;�1) and U (�1; 1) = U (1; 1) imply g1 (0) > 0; which is a con-

tradiction. �

The following lemma demonstrates that in all equilibrium such that�(g; g�; v; ') =

f�1; 0; 1g; it must hold that g�1 (�1) = 1 and g1 (1) = 1:

Lemma 11. If �(g; g�; v; ') = f�1; 0; 1g;

1. U (�1;�1) > maxfU (0;�1) ; U (1;�1)g:

2. U (1; 1) > maxfU (0; 1) ; U (1; 1)g:

Proof. 1. First, to get a contradiction, suppose that U (�1;�1) = U (0;�1) >

U (1;�1) : Then we must have either A: v (0;�1) > 1=2 and v (0; 1) < v (�1; 1) ; or

B: v (0;�1) < 1=2 and v (0; 1) > v (�1; 1) ; because otherwise we have f(C;�1)g =

P (�1) or f(C; 0)g = P (�1) ; which leads to v (�1; 0) = v (�1; 1) = 1 and thereby

U (�1;�1) > U (0;�1) ; a contradiction.
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Case A: In such a case, not to have f(C;�1)g = P (�1) ; which leads a contra-

diction, we have two possibilities as follows: 1. U (�1; 0) � U (0; 0) and U (�1; 1) �

U (0; 1) : 2. U (�1; 0) < U (0; 0) and U (�1; 1) > U (0; 1) : We induce contradic-

tion for each case. Think of the �rst case. From U (�1;�1) = U (0;�1) and

U (�1; 0) � U (0; 0) ; we must have g0 (1) > g�1 (1) = 0; which implies U (1; 0) �

U (0; 0) : This and U (1; 1) � U (0; 1) imply g0 (�1) > g1 (�1) = 0 and v (1;�1)�

v (0;�1) > 0: However, those imply that U (1; 0) > U (�1; 0) ; which contradicts

g0 (�1) > 0: Think of the second case. U (�1; 1) > U (0; 1) and U (�1;�1) =

U (0;�1) implies g0 (1) > 0: Then we have to have U (1; 0) � U (0; 0) ; which

implies either v (1;�1) � v (0;�1) > 0 or v (1; 0) > 1=2: Moreover, U (1; 0) �

U (�1; 0) implies that we have to have either v (1;�1) < 1=2 or v (�1; 0)�v (1; 0) >

0: It can be easily checked that only the case of v (1; 0) > 1=2 and v (0;�1) >

1=2 are compatible withA:However, it such a case, we have U (�1;�1)�U (1;�1) <

jU (�1; 1)� U (1; 1)j and thus E[U (�1; �)] < E[U(1; �)] and g (1) = 0: It implies

that v (�1; 1) = 1; which is a contradiction.

Case B. From g�1 (1) = 0; we have U (�1; 1) � U (0; 1) < [U (�1;�1) �

U (0;�1)] = 0 from a simple calculation. Then, we have to have U (�1; 0) �

U (0; 0) > 0; since otherwise, f(C;�1)g = P (�1) follows. However, U (�1; 0) �

U (0; 0) > 0 and U (�1;�1) � U (0;�1) = 0 imply g�1 (1) > g0 (1) > 0; which is

a contradiction.

The proof for the case U (�1;�1) = U (1;�1) uses the same kind of argument,

and thus omitted. The proof for the second statement is the same. �
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Lemma 12. 1.If �(g; g�; v; ') = f�1; 0; 1g; then g (�1) = g (1) :

2. If �(g; g�; v; ') = f�1; 0; 1g; 0 < g0 (0) � 1 implies g (0) = 1:

3. If �(g; g�; v; ') = f�1; 0; 1g; g (0) = 1 implies g0 (�1) = g0 (1) :

Proof. 1. First, take an equilibrium such that �(g; g�) = f�1; 0; 1g and g0 (0) >

0: Suppose g (�1) > 0: Then we have E[U (�1; �)] � E[U (0; �)]; which is possi-

ble only when U (�1;�1) + U (�1; 1) � U (0;�1) + U (0; 1) ; because we already

have U (0; 0) � U (�1; 0). This and g1 (1) = 1 imply that v (�1; 1) > v (0; 1) >

0: Because v (�1; 1) > 0 holds only when
P

�2� �' (�;�1; 1) � 0; we must have

g (�1) � g (1) : This implies E[U (1; �)] � E[U (0; �)]; which is possible only when

U (1;�1) + U (1; 1) > U (0;�1) � U (0; 1) : This and g�1 (�1) = 1 imply that

v (1;�1) > v (0;�1) > 0: However, this implies
P

�2� �' (�;�1; 1) � 0 and thus

g (�1) � g (1) : Hence we have g (�1) = g (1) :

Next, take an equilibrium such that �(g; g�; v; ') = f�1; 0; 1g and g0 (0) =

0: Suppose that g (1) > g (�1) : Then,
P

�2� �' (�;�1; 1) < 0 follows and we

have v (�1; 1) = 1: If, moreover, g0 (1) � g0 (�1) ; we have
��P

�2� �' (�;�1; 0)
�� >��P

�2� �' (�; 1; 0)
�� and hence either v (0; 1) = 1 or v (�1; 0) = 1 follows. In

both cases, we have U (�1; 0) > U (1; 0) ; which is a contradiction. Hence we

have g0 (1) < g0 (�1) ; and thus U (�1; 0) � U (1; 0) : Suppose that U (�1; 0) =

U (1; 0) : Then, using v (�1; 1) = 1; we can calculate that U (1; 1) � U (�1; 1) +

U (1;�1) � U (�1;�1) = U (1; 0) � U (�1; 0) + 4c > 0; and thus E[U (�1; �)] �

E[U (1; �)] > 0: This implies g (1) = 0; which is a contradiction. Next, suppose
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that U (�1; 0) > U (1; 0) : Then we have g0 (�1) = 1: However, in such a case, we

can get E[U (�1; �)] � E[U (1; �)] > 0; which contradicts g (1) > 0: Those imply

that g (�1) = g (1) :

2. Take an equilibrium such that �(g; g�) = f�1; 0; 1g:We prove the statement

by showing that E[U (0; �)] � E[U (1; �)] > U (0; 0) � U (1; 0) and E[U (0; �)] �

E[U (�1; �)] > U (0; 0) � U (�1; 0) : Suppose that E[U (0; �)] � E[U (�1; �)] �

U (0; 0) � U (�1; 0) : It must hold that U (0; 0) � U (�1; 0) = 0; since otherwise

we have f(C;�1)g = P (�1) ; which leads to a contradiction.

If E[U (0; �)] � E[U (�1; �)] < U (0; 0) � U (�1; 0) = 0; we have f(C; 0)g =

P (0) and hence v (0; 1) = v (0;�1) = 1: This implies that g0 (0) = 1: In such case,

it can be calculated that E[U (0; �)] � E[U (�1; �)] > 0; which is a contradiction.

Therefore, we must have E[U (0; �)]�E[U (�1; �)] = 0: Then if moreover U (1; 0) >

U (0; 0) or U (1; 0) < U (0; 0) holds, we have f(C;�1)g = P (�1) for the former

case and f(C; 1)g = P (1) for the later case, which leads to a contradiction. Hence

we have U (1; 0) = U (0; 0) and E[U (1; �)] � E[U (0; �)] = 0: Since we must have��P
�2� �' (�;�1; 1)

�� = 0 to support such an equilibrium under g1 (1) = g�1 (�1) =
1, it must hold that bg0 (1)+(1� b) g (1) = bg0 (�1)+(1� b) g (�1). However, then,

we can calculate that E[U (1; �)] + E[U (1; �)] � 2E[U (0; �)] < 0: This shows that

we cannot have both E[U (1; �)]� E[U (0; �)] = 0 and E[U (�1; �)]� E[U (0; �)] =

0 simultaneously, which is a contradiction.
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3. Because if g0 (�1) > g0 (1) ; in addition to g (0) = 1; we have both�����X
�2�

�' (�; 1; 0)

����� >
�����X
�2�

�' (�;�1; 0)
����� and

�����X
�2�

�' (� : 1;�1)
����� > 0;

that lead v (1; 0) � v (�1; 0) and v (1;�1) > 1=2; respectively, which contradicts

g0 (�1) > 0. �

Thus, combining Lemma 10 through 12, it follows that any equilibrium such

that every platform may be chosen, i.e., maxfg (x) ;
P

� g� (x)g > 0 for all x, can-

didates�strategies are one of those characterized in Section 2.3. To see that we also

have W (�1) > W (0) and W (1) > W (0) ; suppose that W (�1) � W (0) : Then,

it follows that U (0; 0) > U (�1; 0) and hence g0 (�1) = 0; and g (�1) = 0: Then

f(C;�1)g = P (�1) and thus v (�1; 0) = v (�1; 1) = 1; which is a contradiction.

Q.E.D.

2.6. Appendix: Equilibrium Re�nement

Here, we discuss some re�nement issue. Towards this end, we apply the D1

re�nement, proposed by Cho and Kreps (1987). In our context, it requires that

the voter does not attribute a deviation to a particular type of candidate if there

is some other type that is willing to make the deviation for a strictly larger set of

possible voting rules.

In our model, however, the simple application of D1 criterion is not powerful

enough to re�ne equilibrium, because we cannot derive a set inclusion relation
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between the set of voting rules that induces a particular type of candidate to

deviate. To get around this, we modify the usual D1 criterion by applying the idea

�rst invented by Bagwell and Ramey (1991). It uses the fact that the types of two

candidates are strongly correlated and type of candidates are also correlated with

the state. For example, it is not possible that the voter perceives a candidates�

type to be (C; 1) at the same time while perceiving another candidate to be type

(C; 0): Once we require that after one candidate deviates the voter should still

believe that another candidate follows the equilibrium strategy, this property of

correlated types should impose some conditions on o¤-equilibrium belief.16 Our

modi�ed D1 criterion makes use of this intuition.

To formally de�ne the modi�ed D1 criterion of our model, given an equilib-

rium (g; g�; v; ') ; let �(g; g�; v; ') be the set of platforms that are chosen with

strictly positive probabilities. Moreover, let V (t) be the equilibrium payo¤ for

type t candidates in equilibrium (g; g�; v; ') ; which is de�ned by (2.1) for compe-

tent candidates and (2.2) for incompetent candidates. Also, denote by P (x) the

set of types of candidates that choose a particular platform with strictly positive

probability, that is, (C; �) 2 P (x) if g� (x) > 0 and I 2 P (x) if g (x) > 0:

Then given a tuple (g; g�; v; '), de�ne �(g;g�;v;') be the set of belief functions such

that for all pair of x; y such that x =2 �; y 2 � and I =2 P (y) ; we have

16Bagwell and Ramey (1991) construct two periods oligopoly model in which the incumbents�
pricing choices, which may signal their production cost, are followed by the entrant�s entering
decision. In their re�nement of what they call unprejudiced beliefs, the entrant assumes a single
deviation happens after o¤-equilibrium choices of incumbents.
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P
�2� �'

0 (�; x; y) 2 cof�j(C; �) 2 P (y)g; where coA means convex hull of set

A: Thus �(g;g�;v;') is the set of belief functions such that the voter�s belief about

the type of the non-deviating candidate is not a¤ected by the deviating candidate,

that is, the deviation is unilateral. To get the sense of this condition, suppose that

f(C; 1)g = P (1) and 0 =2 �; and thus platform 1 is chosen only by candidate type

(C; 1) and platform 0 is never chosen in an equilibrium. Then as long as the voter

assumes that the deviation is unilateral, after seeing zero probability platform

choices of (0; 1); she believes that platform 1 is chosen by a type (C; 1) candidate,

because only that type chooses 1; and hence the true state is 1: Moreover, let 	 be

the set of voting rule that can be justi�ed by some element from �(g;g�;v;'); that is,

each voting rule in 	 maximizes the voter�s expected payo¤, under some belief in

�(g;g�;v;'):

Next, given an equilibrium (g; g�; v; '); for each pair of type t 2 T and an o¤-

equilibrium platform choice p =2 � let Dt (p) and D+
t (p) be sets of functions from

X �X to [0; 1] that are de�ned, respectively, as follows:

Dt (p) = fv0 : U (p; �) � V (t)g \	 if t = (C; �)

= fv0 : E�[U (p; �)] � V (t)g \	 if t = I:

D+
t (p) = fv0 : U (p; �) > V (t)g \	 if t = (C; �)

= fv0 : E�[U (p; �)] > V (t)g \	 if t = I;
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where U (p; �) is calculated by (2.1) with voting rule v0 and candidates�strategies

g and g� of the equilibrium. Note that these sets can be empty.

Above de�nitions say that, Dt (p) is the set of voting rules that make type

t candidates weakly prefer to deviate to o¤-equilibrium platform p; when the voter�s

belief and voting strategy satisfy the particular restriction and the opponent is sup-

posed to follow equilibrium strategy (g; g�) : Similarly, D+
t (p) is de�ned with strict

preference. An electoral equilibrium that satis�es D1 criterion is the equilibrium

satisfying the following condition, in addition to the conditions for a Bayes-Nash

equilibrium:

De�nition 4. An equilibrium (g; g�; v; ') satis�es the D1 criterion if for all

pair of x and y such that x 2 �(g; g�; v; ') ; y =2 �(g; g�; v; ') ; the followings

are satis�ed:

1. It holds that ' (�; x; y) = 1 if f(C; �)g = P (x) ; and
P

�2� �' (�; x; y) 2

int cof�j(C; �) 2 P (x)g if ]P (x) > 1:

2. If DI (y) 2 D+
t (y) for some t then ' (�; x; y) = 1 if Dt0 (y) 2 D+

(C;�) (y) for

all t0 6= (C; �) otherwise
P

�2� �' (�; x; y) 2 int cof�jD(C;�) (y) =2 D+
t (y) for all tg:

In the de�nition, intA is the interior of set A: Although the �rst condition is

not at all related to usual D1 requirement, we include it as a natural requirement

of the voter�s belief formation after the unilateral deviation of a candidate. The
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second condition corresponds to usual D1 requirement adequately translated into

our model. Note that we have no restriction on o¤-equilibrium beliefs when in-

competent candidates are not excluded from the possibility of being the deviator,

because the voter is free to think that the deviator should be incompetent in which

case his deviation tells nothing about the state. We have the following result, which

demonstrates that in any equilibrium that satis�es D1, extreme platforms signal

competence and have strictly higher winning probabilities.

Theorem 18. An equilibrium that satis�es D1 is one of those characterized in

Section 2.3.

Proof. We �rst show that there is no equilibrium that satis�es D1 such that � is a

singleton. Towards this end, suppose that there is an equilibrium (g; g�; v; ') that

satis�es D1 such that � is a singleton. First think of the case in which � =

f1g: Then, we have

Dt (�1) � D+
(C;�1) (�1) for all t 2 fI; (C; 1); (C; 0)g:

Then D1 implies that if the voter observes platform pair (�1; 1); her o¤-equilibrium

belief puts the whole mass on the event that the deviating candidate to be type

(C;�1). However, then it must be the case that v (�1; 1) = 1. This implies that

type (C;�1) candidates have an incentive to deviate to 0; which is a contradiction.

The same proof applies to the case in which � = f�1g:
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Next, think of the case in which � = f0g: Then we have

Dt (1) � D+
(C;1) (1) for all t 2 fI; (C; 0); (C;�1)g:

Then D1 implies that if the voter observes platform pair (1; 0); o¤-equilibrium

belief puts the whole mass on the event that the deviating candidate being type

(C; 1). However, then it must be the case that v (1; 0) = 1 and v (0; 1) = 0. Those

imply that type (C; 1) candidates have an incentive to deviate to 1; which is a

contradiction.

Next, we show that there is no equilibrium that satis�es D1 such that � =

f0; 1g or � = f0;�1g: Towards this end, take an equilibrium such that � = f0; 1g:

By using g� (�1) = g (�1) = 0 for all � and (1) we can show that g�1 (0) = 1: To

see this, if g�1 (0) < 1; it must hold that U (1;�1) � U (0;�1) ; which implies�
v (0; 1)� 1

2

�
k+3v (0; 1) � 0, which in turn implies that both U (1; 0)�U (0; 0) >

0 and U (1; 1) � U (0; 1) > 0 hold, and thus E�[U (0; �)] > E�[U (1; �)]: Then only

type (C;�1) candidates choose 0; which implies that v (0; 1) = 1 that contra-

dicts U (1;�1) � U (0;�1) � 0: Hence, g�1 (0) = 1. Similarly, we can show that

g1 (1) = 1:Moreover, we have g0 (0) > 0; since otherwise
P

�2�' (�; 0; 1) < 1=2 and

v (0; 1) = 1; which is a contradiction. Also, it can be shown that v (1; 0) >

1=2; since otherwise, we must have U (0; 0) � U (1; 0) > 0 and E�[U (0; �)] �

E�[U (1; �)] � 0; which imply g0 (0) = 1 and g (0) = 1; respectively. However,
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this leads
P

�2�' (�; 0; 1) = 1 and thereby v (0; 1) = 1; which is a contradic-

tion. Finally, g0 (0) > 0 and E�[U (0; �)] � E�[U (1; �)] > U (0; 0) � U (1; 0) imply

g (0) = 1:

We will show that

(2.16) Dt (�1) � D+
(C;�1) (�1) for all t 2 fI; (C; 0); (C; 1)g:

Note that from (C;�1) =2 P (1) ; I =2 P (1) ; and D1, it must hold that v0 (�1; 1) =

0 for all v0 2 	: Note that whether v0 2 D+
(C;�1) (�1) or not depends only on

whether v0 (�1; 0) is strictly larger than some threshold value or not. More pre-

cisely, v0 2 D+
(C;�1) (�1) if and only if

(2.17) v0 (�1; 0) k � (1� v0 (�1; 0)) > 1

2
k � 1:

However, it is easy to see that (2.17) is a necessary condition for v0 2 Dt (t) ; from

which (2.16) follows. �
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k

Expected payoff in Theorem 1 (low k)

Expected payoff in Theorem 2 (high k)

Figure 2.1. Comparative statics on the voter�s expected payo¤
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CHAPTER 3

Cheap Talk and Observational Learning in a Market for

Advice

3.1. Introduction

In a recent paper, Che, Dessein, and Kartik (2011) examine how an agent ad-

vises a principal on selecting one of multiple projects or an outside option. The

agent is privately informed about the projects�bene�ts and shares the principal�s

preferences except for not internalizing her value from the outside option. They

show that a distortion in advice arises in which the agent biases his recommenda-

tion toward "conditionally better-looking projects." The purpose of this chapter

is to examine the dynamic consequence of such an advice structure, when a new

principal-agent pair, who can observe previous decisions, is formed each period.

In our model, there are two projects and an outside option that the principal

can implement, where each project has either a high or low fundamental quality.

At each period, idiosyncratic shocks are added to the fundamental qualities and are

observed only by an agent who advises the principal. Subsequent players observe

principals�earlier choices and can make inference about the two projects�funda-

mental qualities. The model can be interpreted as stating that product/project

have a fundamental common quality and an idiosyncratic match quality. Examples
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include markets for advice (e.g. constants, or �nancial brokers), and the academic

hiring process, which takes place every year. With a slight modi�cation of the

model, it is also possible to capture situations that either products changing over

time or products being �xed, but information gradually accruing over time about

each product, with agents always fully-informed about all currently available in-

formation.

The learning process evolves in a way that if a project is chosen by a principal,

public belief is updated toward favoring the fundamental quality of the project,

while disfavoring that of other projects. Pandering distortion in advice arises

once su¢ ciently unbalanced public beliefs about the fundamental qualities are

formed. After that, successors should extract information from the distorted advice

structure. Natural questions are (i) what are the robust long-run outcomes of the

learning process in sequential communication? (ii) do principals settle on one

choice, and if so, under what conditions?

We show that, depending on the idiosyncratic shocks in the early periods, it is

possible that e¤ective communication can be perpetually sustained. There are two

scenarios for this to happen; in one scenario, the communication structure eventu-

ally becomes the phase in which an agent simply recommends the better project,

and a principal, without reaching an accurate belief of the fundamental qualities,

rubber-stamps the recommendations. In another scenario, an agent distorts his

recommendation, as in Che, Dessein, and Kartik (2011)�s pandering equilibrium.
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The �rst scenario is sustained only when two projects share the same funda-

mental quality. In such a case, as long as agents keep recommending the better

project, or as long as there is no distortion in recommendations, both projects

are recommended with the same frequency, which tells principals that the rela-

tive qualities of two projects are equal. However, the absolute levels of the two

projects�fundamental qualities are never revealed. In this sense, we have perpet-

ual communication with incomplete learning. This scenario provides the optimal

communication structure for the principal if both projects have a high fundamental

quality.

The second scenario arises only when one of the projects has a high fundamental

quality and another has a low fundamental quality. In such a case, agents start to

distort their advice in the long run, but the public belief can converge to the true

state. Then if the value from the outside option for the principal is low enough

to the extent that e¤ective communication is sustained even when the principal

is sure that one project has a higher fundamental quality than another, we have

perpetual communication with complete learning. This contrast with the �rst

scenario stems from the fact that a pandering equilibrium can convey information

about the absolute levels of the fundamental qualities to the successive periods.

We also show that this property leads to a possibility of informational cascade.

We also show that, depending on the realizations of idiosyncratic shocks in early

periods, at some stage a principal may ignore her agent�s advice and act only on

the information obtained from previous decisions. This phenomenon, informational
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cascade, occurs when it is optimal for the principal, having observed the choices of

those ahead of her, to follow the behavior of the preceding principal without regards

to her agent�s advice. Once this stage is reached, her decision is unin�uential

to principals in the later periods. Therefore, the next principal draws the same

inference from the history of past decisions, as do all later principals. In such a

case, e¤ective communication breaks down completely, and it incurs an e¢ ciency

loss when both projects have a high fundamental quality.

This chapter brings together two strands of literature. Che, Dessein, and Kar-

tik (2011) is the base model for the current study. They show that the pandering

distortion in communication arises when there are alternative actions with di¤er-

ent potentials but there is a non-trivial con�ict of interest over an outside option.

Chakraborty and Harbaugh (2007) is also relevant in examining a model in which

comparative statement can be credible across di¤erent dimensions. These papers

are part of the literature on "cheap-talk games" that was initiated by a very in�u-

ential paper of Crawford and Sobel (1982), which studies the credibility of cheap

talk when there are con�icts of interest between an adviser and a receiver.

The second strand is the literature on observational learning that starts with

Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992). They show the

possibility of an informational cascade when it is optimal for an individual, having

observed the actions of those ahead of him, to follow the behavior of the preceding

individual without regards to his own information. Smith and Sorensen (2000)

study the observational learning process in a more general model. Lee (1993)
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characterizes the necessary and su¢ cient condition for the occurrence of a fully re-

vealing informational cascade, which is de�ned as an event in which the sequence

converges to a limit that is optimal under the true state. Our study also charac-

terizes the conditions under which the public belief about fundamental qualities

of projects converges, although there is an idiosyncratic shock in each period that

the principal cannot learn from predecessors�actions.

In our model, a new agent-principal pair is formed each period and, hence, they

do not care about the future period�s choices; all they only care about the decision

made in their period. This distinguishes the model from literature on reputation or

career concerns in adviser-advisee relationships (e.g., Scharfstein and Stein (1990),

Prendergast and Stole (1996), Ottaviani and Sorensen (2006), and Dasgupta and

Prat (2008)). Hence, in our model, an equilibrium path is solved forwardly, and

the focus is how public belief, that summarizes the past choices, evolves over time

and its long run consequences.

Brandenberger and Polak (1996) show that a �rm that cares about the mar-

ket�s posterior expectation of its pro�t will distort investment decision. They also

consider a dynamic extension where each �rm makes decision sequentially where

�rms in later periods may learn some information from predecessors�distorted de-

cisions, like in our model. Their study, however, like many applications of herding

models, is not one of strategic communication, but rather has an agent making

decision himself.
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The chapter continues as follows. The following section develops our dynamic

extension of Che, Dessein, and Kartik (2011). Section 3.3 characterizes the asymp-

totic properties of the equilibrium. Section 3.4 presents some extensions of our

baseline model. All the proofs are given in the Appendix.

3.2. Model

There is a sequence of periods, t = 1; 2; :::; T (T can be �nite of in�nite). In each

period, there is a distinct principal-agent pair, who care only about the decision

made at the period. The principal at each period must make a choice from a set

f0; 1; 2g. It is convenient to interpret option 0 as a status quo or outside option for

the principal. Both players enjoy a common payo¤ if one of the alternative projects

is chosen, but this value is private information of the agent. The payo¤ to both

when the principal chooses project i 2 f1; 2g is bti; the status quo action 0 gives

v0 to principal (for simplicity does not vary over time) and 0 to the agent. Assume

that bti = vi + u
t
i; where u

t
i (idiosyncratic shocks) is independently and identically

drawn across projects and time from some distribution with non-negative support,

and the vi (fundamental qualities) is drawn at time 0 i.i.d. from some distribu-

tion with non-negative support. We assume that the agent at period t privately

observes vi and uti: The project chosen at time t is denoted at 2 f0; 1; 2g: At

the beginning of period t; the only history observed by the principal-agent pair

in that period is at = (a1; a2; :::; at): Finally, there is no veri�able information to

observe/reveal, all information is soft. To make the setting very comparable to
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the leading static example of Che, Dessein, and Kartik (2011), CDK hereafter,

suppose that Support[vi] = f0; vg with prior � := Pr(vi = v) 2 [0; 1]; and uti is

drawn uniformly on [0; 1]: We assume that v < 1; which implies that idiosyncratic

shocks can overturn the di¤erence in the fundamental qualities. In the following,

we sometimes abbreviate the superscript or subscript in uti and b
t
i, when it does

not cause confusion.

Remark 3. Note that by assumption, the history does not add any useful in-

formation for an agent-principal pair, since the agent knows (bt1; b
t
2): This distin-

guishes our model from the standard herding literature (Bikhchandani, Hirshleifer,

and Welch/Benergee). Moreover, agents have no future concerns here and are not

trying to signal ability, which distinguishes from the reputation or career concerns

literature.

Now we describe the strategies of players. The agent at period t�s strategy

is a function �t : f0; 1; 2gt�1 � [0; 1 + v]2 ! [0; 1] such that it represents the

probability that he recommends project one, given history at�1 and a pair of values

of projects bt1 and b
t
2: Note that he never recommends the outside option and,

hence, 1 � �t is the probability that he recommends project two. The principal

at period t�s strategy is a pair of functions qti:{0,1,2}
t�1! [0; 1] for i 2 f1; 2g such

that qti (a
t�1) is the probability that she accepts recommendation i given history
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at�1: With probability 1 � qti (at�1) she chooses the outside option.1 We denote

(qt1; q
t
2) by q

t: The Bayes Nash equilibrium in each period is de�ned in an obvious

way.2

We de�ne some important terms. We denote (bt1; b
t
2) by b

t: If qtj (a
t�1) =

1; we say that the principal rubber-stamps project j; since she chooses it with

probability one when the agent recommends it. We call an equilibrium play at

particular period t truthful given at�1; if agents recommends the better project

given at�1, i.e., �t = 1 if bt1 � bt2 and �
t = 0 if bt1 < bt2: It is important to

emphasize that truthful here is only in the sense of rankings, not in the sense that

the agent fully reveals the cardinal values of the projects. An equilibrium play at

period t is in�uential given at�1; if minfqt1 (at�1) ; qt2 (at�1)g > 0: Notice that if

an equilibrium play at period t is truthful and in�uential given at�1; it must be

the case that the principal rubber-stamps both projects.

We maintain the following assumptions on parameter speci�cations throughout

the following:

(A1) v0 2 (v3 +
2
3
; v + 2

3
):

(A2) E[b1i jb1i � b1j ] > v0:

1In this de�nition, we exclude the possibility that the principal mixes between accepting projects
1 and 2, after a recommendation. This is actually without loss of generality; see Che, Dessein,
and Kartik (2011).

2See, for example, Fudenberg and Tirole (1991).
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Assumption (A1) is for two purposes. First, it ensures v0 2 (0; 1 + v); which

implies that a project has a positive chance of being better and worse for the prin-

cipal than the outside option; this is without loss of generality because otherwise

a project or outside option would not be viable. More importantly, it also implies

that the agent strictly prefers any project to the outside option, whereas with

positive probability, each project is worse than the outside option for principal.

Thus the con�ict of interest is entirely about the outside option: agent does not

internalize the opportunity cost to the principal of implementing a project.

Secondly, it excludes some trivial cases from the analysis. Actually, we can

prove the following claim that demonstrates that when the value of the outside

option for the principal is too high, there is no in�uential equilibrium, while in the

opposite case there is a truthful and in�uential equilibrium even when the principal

knows that one project has higher fundamental quality than another project.

Claim 5. 1. If v0 � v+ 2
3
; there is no in�uential period in an equilibrium path.

2. If v0 � v
3
+ 2
3
; there is a truthful and in�uential equilibrium when it is common

knowledge that vi = v and vj = 0.

To see Claim 5-1, note that v + 2
3
= E[ui + vjui + v � uj + v]: When the value

of the outside option to the principal is too high, relative to this value, there is

no way to have an in�uential equilibrium; it is always optimal for the principal to

choose outside option. Similarly, to see Claim 5-2, note that v
3
+ 2

3
= E[uijui �
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uj+v]:
3 Because E[ui+vjui+v � uj] > E[uijui � uj+v]; if v0 � v

3
+ 2

3
it is always

optimal for the principal to rubber-stamp the agent�s recommendation, even when

she knows that vi > vj. The assumption (A1) excludes these trivial cases.

In order to understand the role of (A2), think about the initial period. Because

both projects have the same prior, at the initial period in an in�uential equilibrium

(given an empty history), the agent just recommends the better project. Thus when

the agent recommends project i; project i�s expected payo¤ is

(3.1) E[b1i jb1i � b1j ] = �2E[ui + vjui � uj]

+2� (1� �) g (v)E[ui + vjui + v � uj]

+2� (1� �) (1� g (v))E[uijui � uj + v] + (1� �)2 E[uijui � uj];

where g (v) = Pr[ui � uj � v] = �1
2
v2 + v + 1

2
: Hence if � is su¢ ciently large,

it is optimal for the principal to accept project i; i.e., (3.1) becomes higher than

v0; while if � is small, then (3.1) becomes smaller than v0 and we cannot have an

in�uential equilibrium. Assumption (A2) implies that � is su¢ ciently large so that

we have the truthful equilibrium at period one and the principal rubber-stamps

3In order for E[uijui � uj + v] to be de�ned, it must hold that v � 1:
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the agent�s recommendation. More generally, it can be shown that there is no

in�uential equilibrium if (A2) is violated.

We further examine the properties of the equilibrium inductively. Although we

always have a babbling equilibrium (the equilibrium of no communication), we

assume that players always play the in�uential equilibrium, which is unique if any

at each period.

In the following analysis, the pair of real numbers st = (stvv; s
t
v0; s

t
0v; s

t
00) 2

[0; 1]4 is seen as a state variable, where stxy represents the probability that public

belief st puts to the event v1 = x and v2 = y; where x 2 f0; vg and y 2 f0; vg; in

the beginning of period t: It is generated by Bayes rule. We have stvv + s
t
v0 + s

t
0v +

st00 = 1 from the de�nition. Given public belief st; we refer to project j(i) as the

conditionally better-looking (worse-looking) project if E[btjjbtj � bti; s
t] >

E[btijbti � btj; st]: Because the equilibrium in each period is characterized by st; we

focus on it instead of observed history at�1.

We characterize an equilibrium path forwardly. We have initial public belief as

follows:

(s1vv; s
1
v0; s

1
0v; s

t
00) = (�

2; � (1� �) ; � (1� �) ; (1� �)2):

Without loss of generality, suppose that b11 > b
1
2 is realized and hence project one is

proposed and accepted in the initial period, i.e., a1 = 1. Then the second period�s

state, the principal�s belief at the beginning of the second period, is calculated as
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follows:

(3.2) (s2vv; s
2
v0; s

2
0v; s

2
00) = (�

2; 2� (1� �) g (v) ; 2� (1� �) (1� g (v)) ; (1� �)2):

Note that we have s2v0 > s
2
0v and hence project one is more likely to have superior

fundamental quality than project two from the second period�s principal�s point-

of-view.

In the second period, as long as the agent is using the strategy of recommending

the better project, if project one is proposed again project one�s expected payo¤

for the principal is

s2 � (1
2
(v + 2

3
); g (v)E[ui + vjui + v � uj]; (1� g (v))E[uijui � uj + v]; 12 �

2
3
)

1
2
s2vv + s

2
v0g (v) + s

2
0v (1� g (v)) + 1

2
s200

:

On the other hand, if project two is proposed, project two�s expected payo¤ for

the principal is as follows:

s2 � (1
2
(v + 2

3
); (1� g (v))E[ui + vjui + v � uj]; g (v)E[uijui � uj + v]; 12 �

2
3
)

1
2
s2vv + s

2
v0 (1� g (v)) + s20vg (v) + 1

2
s200

:

Hence the principal at period two rubber-stamps the agent�s recommendation if

both are higher than the value of outside option to principal, v0:

More generally, suppose that the players have kept playing the truthful equi-

librium up until period � � 1; and history a��1 includes m � 1 number of i and
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� �m number of j: Then, at period � ; also suppose that the agent takes the strat-

egy of recommending the better project. Then if project i is proposed, expected

payo¤ of project i is calculated as

�
1
2

��
�2(v + 2

3
) + � (1� �) g (v)m (1� g (v))��m E[ui + vjui + v � uj]

�

+
� (1� �) g (v)��m (1� g (v))m E[uijui � uj + v]g+

�
1
2

��
(1� �)2 2

3

�
;

where

� =

�
1

2

��
�2 + � (1� �) fg (v)m (1� g (v))��m + g (v)m (1� g (v))��mg

+

�
1

2

��
(1� �)2 :

We denote this expression by ' (� ;m) : Some properties follow from the de�n-

ition.4

Claim 6. 1. ' (t;m) > ' (t; n) for all m > n:

2. ' (t;m) > ' (s;m) for all s > t:

Think about function Nt from a set of histories to positive integers such that

Nt (a
� ) is the number of times project 1 is contained in the �rst t elements of

4We cannot ensure that ' (t+ 1;m+ 1) > ' (t;m) for all t andm: The issue is that recommending
a particular project more frequently than another makes a principal believe that two projects
have the di¤erent fundamentals, which may decrease the expected value of the better looking
project.



184

a� : For example, if a4 = (1; 1; 2; 1); N3 (a
4) = 2: Then the discussion so far is

summarized in the following proposition.

Proposition 6. Given history a��1; the agent at period � recommends the

better project if and only if

(3.3) minf'
�
� ;N��1

�
a��1

�
+ 1
�
; '
�
� ; � �Nt

�
a��1

�
+ 1
�
g � v0:

This result says that players play the truthful equilibrium up until condition

(3.3) is �rst violated. Let t be the �rst such period. If both ' (t; Nt�1 (at�1) + 1) and

' (t; t�Nt�1 (at�1) + 1) become smaller than the value of the outside option v0; we

have no way to make an in�uential equilibrium at period t: Now think of the case

in which

(3.4) '
�
t; Nt�1

�
at�1

�
+ 1
�
> v0 and '

�
t; t�Nt�1

�
at�1

�
+ 1
�
< v0:

Note that in such a case, project one has been recommended more often than

project two, i.e., Nt�1 (at�1) > t � Nt�1 (at�1). From the de�nition of '; then we

have E[b1jb1 � b2; s
t] > v0 and E[b2jb2 � b1; s

t] < v0 hold and we may expect

to have CDK�s �pandering equilibrium.�The idea is that the agent recommends

project one (the better-looking project) whenever bt1 > bt2; but he recommends

project two (the worse-looking project) only when it is su¢ ciently better than

project one and, thereby, increases the principal�s posterior about bt2 when he

does in fact recommend project two. Thus, pandering toward project one makes a
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recommendation of project two more acceptable. In turn, the principal must be

more likely to follow a recommendation of project one than a recommendation of

project two.

Remark 4. It is important to note that even when the outside option is cho-

sen, players from subsequent periods can infer what project is recommended; if the

outside option is chosen at a period, it conveys information that the worse-looking

project was recommended at that period. This means that we have the same out-

come if we work on the setting in which history consists of advises given, instead

of the projects implemented.

In sum, the in�uential equilibrium, if any, in period t when (3:4) holds is char-

acterized by a probability that a recommendation of project two is accepted, i.e.,

qt2 2 (0; 1). The agent proposes project one if and only if qt2 < bt1=bt2 and proposes

project two if and only if qt2 � bt1=b
t
2: The principal accepts a recommendation

of project one with probability one, qt1 = 1; and accepts a recommendation of

project two with probability qt2. The key of the construction of the equilibrium

is that the agent is indi¤erent between recommending project one and two when

bt1=b
t
2 = q

t
2; and also

(3.5) E[b1jb1 � qt2b2; st] > v0 and E[b2jb2 � b1=qt2; st] = v0;
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and, hence, the principal accepts the recommendation of project one and she is

indi¤erent between project two and the outside option when project two is rec-

ommended. In the following, we call this type of equilibrium �a pandering equi-

librium.�Note that the existence of such qt2 is not automatically ensured. Analo-

gous argument shows that we may have a pandering equilibrium with qt1 < 1 and

qt2 = 1 when E[b1jb1 � b2; st] < v0 and E[b2jb2 � b1; st] > v0:

De�nition 5. Given st, an equilibrium at period t is a pandering equilibrium if

there is a number q 6= 1 such that the agent recommends project one if bt1 � qbt2 and

recommends project two if qbt2 � bt1: Moreover, if q < 1; the principal rubber-stamps

project one, and accepts project two with probability q: If q > 1; the principal rubber-

stamps project two and accepts project one with probability 1=q:

In a pandering equilibrium, if q < 1 project one is accepted with certainty and

project two is accepted with probability q; while if q > 1; project two is accepted

with certainty and project one is accepted with probability 1=q: It is convenient for

the subsequent analysis to divide the space of public belief into di¤erent regions.

We de�ne subset ST of the space of public belief by

fstjE[b1jb1 � b2; st] > v0 and E[b2jb2 � b1; st] > v0g;

and call it the truthful and in�uential equilibrium phase, or the truthful equilibrium

phase for short. Generally svv should be high, relative to sv0; s0v; and s00; in the

truthful equilibrium phase ST . Also, de�ne subset SP ; which we call the pandering
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equilibrium phase, by

fstjE[b1jb1 � qb2; st] > v0 and E[b2jb2 � b1=q; st] = v0 for some q < 1

or E[b1jb1 � qb2; st] = v0 and E[b2jb2 � b1=q; st] > v0 for some q > 1g:

Obviously, in the pandering equilibrium phase either sv0 or s0v should be high,

relative to svv and s00. Those sets are determined by parameter speci�cations of

(v; v0; �); but we always have ST \SP = ? (see Claim 10 in the Appendix). When

public belief is in ST ; players play the truthful equilibrium, while when it is in

SP ; a pandering equilibrium is played. An important observation is that once an

equilibrium path, which starts from ST , goes out from ST [ SP ; communication

breaks down and the unin�uential equilibrium is played perpetually.

Remark 5. An important observation is that a pandering equilibrium incurs

e¢ ciency loss compared to the truthful equilibrium. Obviously, the most desirable

behavior of the agent for the principal is that he recommends project one if and

only if b1 � b2: It is computed that

Pr[b1 � qb2js]E[b1jb1 � qb2; s] + Pr[qb2 � u1js]E[b2jqb2 � b1; s]

> Pr[b1 � q0b2js]E[b1jb1 � q0b2; s] + Pr[q0b2 � b1js]E[b2jq0b2 � b1; s];

for all q0 < q < 1 and s; which stems from the fact that a pandering equilibrium

distorts the recommendation. In this sense q; or inverse of q may be interpreted
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as the degree of distortion in advice. This fact makes the following interesting

phenomenon happen. Suppose that E[bjjbj � bi] � " < v0 for a very small " >

0: Therefore, (A2) is barely satis�ed and truthful equilibrium exists at the initial

period. Then, for a su¢ ciently small "; there is no truthful equilibrium in the second

period. Without loss of generality, suppose that that project one is recommended

at the initial period. Note that s2 does not depend on v0: However, the degree

of distortion to make E[b2jqb1 � b2] = v0; which is the necessary condition for

pandering equilibrium, is so high that we may have

Pr[b1 � qb2js2]E[b1jb1 � qb2; s2] + Pr[qb2 � b1js2]E[b2jqb2 � b1; s2] < v0

for such q: In this case we cannot even have a pandering equilibrium. In such a

case, communication breaks down at the second period with probability one.

3.3. Asymptotic Properties of Equilibrium

In this section, we examine the asymptotic properties of the equilibrium. We

characterize conditions under which informational cascade may occur or ever-

lasting communication is sustained. In the following analysis, we denote by s=

the public belief that attaches probability one to the event that the two projects

have the same fundamental quality, and the relative likelihood of the remaining

two events is the same as the initial prior: s= =
�

�2

�2+(1��)2 ; 0; 0;
(1��)2

�2+(1��)2

�
:
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Before examining the asymptotic properties in detail, we give an immediate

consequence as Proposition 7. It demonstrates that e¤ective communication can-

not be sustained perpetually by totally incorrect public belief, because as long as

e¤ective communication is sustained, the relative frequency of recommendations

between the two projects at least partially corrects the belief.

Proposition 7. 1. If v1 6= v2 is realized, the truthful equilibrium is never played

in a su¢ ciently long-run, i.e., almost surely, there is � such that st =2 ST for all

t � � .

2. If v1 = v2 is realized (either v1 = v2 = v or v1 = v2 = 0), the pandering

equilibrium is never played in a su¢ ciently long-run, i.e., almost surely, there is

� such that st =2 SP for all t � � .

Note that the threshold � in the statement of proposition depends on an equi-

librium history. Some equilibrium history may take more time than others to

perpetually leave a particular phase. Also, note that st =2 ST (st =2 SP ) for all

future t does not mean that st 2 SP (st 2 SP ) holds: it may be the case that

communication breaks down perpetually.

We �rst examine the possibility that communication continues perpetually.

Remark 5 in Section 3.2 shows the possibility that communication breaks down

with certainty. However, once we impose a certain condition, it is possible that

the in�uential equilibrium is played perpetually.
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Theorem 19. Suppose that parameter speci�cations are such that s= 2 ST and

' (2; 0) > v0: If v1 = v2; with a strictly positive probability, the truthful equilibrium

is played perpetually, i.e., st 2 ST for all t � � for some � .

Hence the result shows that informational cascade does not occur with prob-

ability one. Basically, the condition ' (2; 0) > v0 excludes the possibility that an

equilibrium path goes out from the truthful equilibrium phase at period 2 (hence

the situation described in Remark 5 is excluded). This allows an equilibrium path

to stay in the truthful equilibrium phase for the initial few periods and make svv and

s00 su¢ ciently high relative to sv0 and s0v: This makes the truthful equilibrium

phase an absorbing phase when v1 = v2.

The question if an equilibrium can perpetually stay in the truthful equilib-

rium phase has a similar �avor as the Gambler�s ruin problem where a gambler�s

objective is to become in�nitely rich. In our game, once the principal holds the

strong belief that the two projects do not share the same fundamental, i.e., svv and

s00 become su¢ ciently small relative to sv0 or s0v, the equilibrium path goes out

from the truthful equilibrium phase ST . This situation corresponds to ruin in the

gambler�s problem. It is known that as long as the odds of the gamble are in his fa-

vor, the gambler is not ruined with probability one. If v1 = v2, the random process

of the agents�belief is biased toward the truthful equilibrium phase and, hence,

we have a strictly positive probability of having the right convergence of belief
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without the state going out from ST ; as an analog of the gambler accumulating an

in�nite fortune, when the odds of the gamble are in his favor.

An important observation is that an equilibrium may perpetually stay on the

truthful equilibrium phase with a strictly positive probability even if both projects

have low fundamental quality, i.e., v1 = v2 = 0. This happens because once

the equilibrium starts to stay on the the truthful equilibrium phase, public belief

ratio svv=s00 cannot be updated. In such a case, although herding to a particular

project is not observed, the equilibrium path is only sustained due to incomplete

process of information updating. Hence we have perpetual communication with

incomplete learning. Note that even if principals cannot completely learn the values

of fundamental qualities, the �rst best outcome for them (in a sense of ex-ante from

the beginning of each stage) is attained in this case. This observation gives the next

proposition.

Proposition 8. When v1 = v2; fully correct learning about fundamental quali-

ties (for principal) is impossible. In the long run, when v1 = v2 = v, the (ex-ante)

�rst best outcome for the principal is attained by perpetual communication with

incomplete learning. On the other hand, when v1 = v2 = 0; the (ex-ante) �rst best

outcome for the principal is attained by correct cascade:

Theorem 19 leaves open the question of what the asymptotic behavior of the

equilibrium is when the two projects have di¤erent fundamental qualities, i.e., v1 6=

v2: We will show that the following condition is crucial for the question:
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Condition 1. Parameter speci�cations are such that (0; 1; 0; 0) 2 SP and

(0; 0; 1; 0) 2 SP ; i.e., the existence of pandering equilibrium in the one shot game

is ensured when it is common knowledge that vi = v and vj = 0:

Remember that (0; 1; 0; 0) represents the belief that puts the whole mass on

the event that only project one has high fundamental quality. Condition 1 re-

quires that even when the principal is completely sure that a project has a supe-

rior fundamental quality than another, we have an in�uential equilibrium. Note

�rst that it requires v0 < 1; 5 because otherwise, the worse-looking project can

never be chosen over the outside option. Also, this makes it possible for idio-

syncratic shocks to overturn the di¤erence in fundamental qualities between the

two projects. When it is common knowledge that v1 = v and v2 = 0; the con-

dition E[b2jq�2b2 � b1] = v0; which determines the acceptance probability of the

worse-looking project in a pandering equilibrium, implies q�2 =
v

3v0�2 : Then the ex-

istence of a pandering equilibrium is ensured if E
h
b1jb1 � v

3v0�2b2

i
� v0: Because

E
h
b1jb1 � v

3v0�2b2

i
is a non-increasing function of v0; there is a unique v�0 such

that E
h
b1jb1 � v

3v�0�2
b2 = v

�
0

i
: Then a pandering equilibrium exists if and only if

v0 < minfv�0; 1g: Under the assumption v0 < 1; the outside option is chosen if

Condition 1 does not hold.

Now we have the following results, which characterize the asymptotic behavior

of the equilibrium when v1 6= v2 is realized.

5This is satis�ed by the assumption v < 1 and (A1).
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Theorem 20. 1. Suppose that Condition 1 holds. If v1 = v and v2 = 0 is

realized initially (if v2 = v and v1 = 0), public belief converges to the true state,

i.e., stv0 ! 1 (st0v ! 1) with a strictly positive probability. In such a case, a

pandering equilibrium is played perpetually, i.e., st 2 SP for all t � � for some � .

2. Suppose that Condition 1 does not hold. If v1 = v and v2 = 0 is realized

initially (or v2 = v and v1 = 0), communication breaks down within a �nite period

of time, i.e., st =2 ST [ SP for some t; almost surely, and the outside option is

chosen perpetually.

Theorem 20 holds because in the pandering equilibrium phase, so long as e¤ec-

tive communication is sustained, we have complete learning asymptotically. Hence

if Condition 1 does not hold, public belief, which converges to the true state, even-

tually leaves SP and communication breaks down. On the other hand, if Condition

1 is satis�ed, it can be shown that there are equilibrium histories that su¢ ciently

convince the public belief about the true state without leaving ST [SP even once.

Because the existence of a pandering equilibrium is ensured in the limit of the

public belief, (0; 1; 0; 0) 2 SP ; we can sustain communication perpetually.

We next show the possibility of informational cascade: depending on the re-

alizations of initial periods�idiosyncratic shocks, communication may break down

even when the true state (fundamental qualities of projects) allows players to gain

mutual bene�t through communication. We have two types of informational cas-

cade. In one type of cascade, the outside option is chosen perpetually, without
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having e¤ective communication: this happens when public belief is formed in a

way that both projects have low fundamental quality. Another possibility is that

public belief is formed in a way that the two project have di¤erent fundamental

qualities. In such a case, depending on parameter speci�cations, the outside option

may be chosen perpetually. Theorem 21 actually shows that informational cascade

occurs with a strictly positive probability after any realizations of fundamental

qualities.

Theorem 21. For all realizations of (v1; v2), with a strictly positive probability,

communication breaks down within a �nite period of time, i.e., st =2 ST [ SP for

some t.

Theorem 21 is easily seen if s= =2 ST : In such a case, if an equilibrium path stays

in the truthful equilibrium phase ST for su¢ ciently long, public belief converges

to s= and, hence, at some point, communication breaks down. Hence the question

is what if this is not the case. Theorem 21 is proved by showing that, even if

s= 2 ST ; there is a �nite history that su¢ ciently convinces the public belief that

both projects have low fundamental quality, i.e., v1 = v2 = 0. It is somewhat

a striking result given that agents do not internalize the value from the outside

option and hence they never recommend the outside option. However, there is a

intertemporal pattern of recommendation that may form the belief. In order to

explain this, note the following important observation, which we give as a lemma.
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Lemma 13. Suppose that a pandering equilibrium with q < 1 is played at period

t: If project one (the better-looking project) is recommended, st+1vv =s
t+1
00 > stvv=s

t
00,

and if project two (the worse-looking project) is recommended, st+1vv =s
t+1
00 < stvv=s

t
00.

Analogous results hold for the case q > 1:

As long as the truthful equilibrium is played, the public belief cannot update the

relative likelihood between the two events of both projects having high fundamental

quality and neither having it: stvv=s
t
00 stays at the same. On the other hand,

in a pandering equilibrium in which, say, project two has a smaller acceptance

probability it is easier for project two to make up for it when both have low

fundamental quality than when both have high fundamental quality: Pr[qu2 >

u1] > Pr[q(u2 + v) > u1 + v] for all q < 1: This implies that when the worse-

looking project is recommended, the public belief is updated toward convincing

the principal that the two projects have low fundamental quality, i.e., increasing

the relative likelihood st00=s
t
vv.

This observation generates the �rst type of informational cascade. Suppose

that in the observed history, the equilibrium reverts to the truthful equilibrium

very quickly because the worse looking project is recommended. Then, the public

belief is updated toward s00 high. Then by repeating this path for many times

(hence the equilibrium path �uctuates between two phases), the condition for the

existence of in�uential equilibrium may be violated.6 A straightforward observation

6The existence of a path that makes s00 su¢ ciently high, not only relative to svv but also sv0 and
s0v, is shown in the Appendix, when we prove Theorem 21.
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is that this type of informational cascade is the most likely to happen when (A2)

is barely satis�ed and v1 = v2 = 0; the situation we may call Correct Cascade,

but it can also happen with non-zero probability when v1 = v2 = v; the situation

we may call Incorrect Cascade.

In order to see the possibility of the second type of informational cascade,

suppose that in the initial few periods only one project, say project one, is rec-

ommended. Then, the principal�s belief is shaped towards increasing sv0; relative

to s0v; svv; and s00: Then obviously, whether communication eventually breaks

down depends on if we have an in�uential equilibrium when v1 = 1 and v2 = 0 is

common knowledge. If we have this type of cascade, we may say that the correct

cascade occurs if v1 = v and v2 = 0 while the incorrect cascade occurs if not.

3.4. Extensions

Delegating authority to the agent: Our baseline model is based on the as-

sumption that the principal is not able to commit ex-ante to a vector of accep-

tance probabilities. However, it is also interesting to consider the case in which she

can make some form of commitment. Among di¤erent commitment mechanisms,

perhaps the easiest for the principal is to fully delegate the decision to agent. We

examine the consequence of such an extension.

CDK show that in a pandering equilibrium phase, the principal is ex-ante better

o¤by delegating authority to the agent.7 The intuition is as follows: the principal is

7They also characterize the optimal commitment mechanism.



197

indi¤erent between a project, say project two, and the outside option in a pandering

equilibrium. Holding the agent�s strategy �xed, the principal�s expected payo¤ is

the same whether she plays the equilibrium strategy or rubber-stamps all the

recommendations. Delegation commits the principal to play the latter strategy

and also has the bene�t of eliminating pandering distortion because the agent will

always choose the best project (see Remark 5). Furthermore, full delegation is also

ex-ante bene�cial even when st =2 ST [ SP ; so long as v0 < E[maxfb1; b2gjst].

To compare the outcome of the game with full delegation and our original

game, suppose that the principal at each period can decide whether she wants

to fully delegate the decision to the agent, based on her available information

st. Obviously, when in the truthful equilibrium phase, st 2 ST ; she is indi¤erent

between delegating or not, because the outcome is the same. In a pandering

equilibrium phase st 2 SP ; she strictly prefers to delegate. Also, even when st =2

ST[SP ; she strictly prefers to delegate so long as v0 < E[maxfb1; b2gjst]:Only when

these are violated, the principal chooses the outside option and communication

breaks down perpetually.

An appropriate counterpart for Condition 1 to think about asymptotics in this

setting is as follows:

Condition 2: E[maxfb1; b2gjv1 6= v2] � v0:
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A very important observation is that now, the public belief ratio stvv=s
t
00 can

never be updated on an equilibrium path. This induces the following theorem that

characterizes the asymptotic behavior of an equilibrium when full delegation is

possible.

Theorem 22. Suppose that full delegation is possible.

1. If s= 2 ST and Condition 2 hold, delegation never stops.

2. If s= =2 ST , delegation stops and the outside option is chosen within a �nite

period with a strictly positive probability. If v1 = v2 is realized, delegation stops

within a �nite period for sure.

3. Condition 2 is violated, delegation stops and the outside option is chosen

within a �nite period with a strictly positive probability. If v1 6= v2 is realized,

delegation stops within a �nite period for sure.

The condition s= 2 ST is crucial for determining if the truthful equilibrium

can be perpetually sustained. Indeed, as long as an equilibrium path stays in the

truthful equilibrium phase, limt!1 E[maxfb1; b2gjst] � v0 is equivalent to s= 2 ST :

It is worth noting that in the long run, the availability of the option of full

delegation may hurt the principal in a later period. In the original game in which

delegation is not possible, the principal can update the belief stvv=s
t
00 and, hence,

may have a chance to appropriately terminate communication by �nding out that

stvv=s
t
00 is su¢ ciently small, when both projects actually have a low fundamental
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quality (although she has a chance of wrongfully terminating communication when

both projects have high fundamental quality).

Commitment to not observing the history: A di¤erent way for the prin-

cipal to make a commitment is not to observe the history. Indeed, because a

pandering equilibrium distorts the advice, the principal is better-o¤ by not observ-

ing the history and, thereby, inducing the truthful equilibrium, if she is likely to

play a pandering equilibrium. Suppose that the principal in period t can make a

commitment of not observing the history at period 0. Then there is a trade-o¤.

The upside of observing the history is that the principal may know whether she

should listen to the agent�s advice, in other words, she may know st 2 ST [ SP or

st =2 ST [ SP : On the other hand, by not observing the history, she is able to get

the truthful recommendation from the agent, which is bene�cial if st 2 SP :

To see the consequence of allowing this option for the principal, suppose that

the principal each period can make a decision of whether to make a commitment

of not observing the history, and agents are informed of their decision.8 Obviously,

the period one principal�s decision does not matter at all, and hence we regard her

as making the commitment, for expositional convenience in the next theorem. It

is seen that the period two principal should make the commitment, or her decision

does not matter. To see this, note that if ' (2; 0) > v0 and hence the period two�s

players are supposed to play the truthful equilibrium, the principal�s decision of

8Actually, even if they are not informed of principals�decision, they can infer these.
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making the commitment or not does not matter at all. On the other hand, if

' (2; 0) < v0; and hence they are supposed to play a pandering equilibrium or

non-in�uential equilibrium (see Remark 5), it is strictly better for the principal

to make the commitment. Hence, we also regard her as making the commitment.

Although their decisions after period three depend on parameter speci�cations of

the model, we have a general result as follows:

Theorem 23. If s= 2 ST and Condition 1 hold, principals in every period

make the commitment.

To see the result, suppose that principals up to period � make the commitment.

This implies that for the principal at period � +1; even if she observes the history,

she cannot update svv=s00: Then, as long as s= 2 ST and Condition 1 hold, for

all s�+1 that she can form by observing the history, s�+1 2 ST [ SP holds and,

hence, we have an in�uential equilibrium. This implies that she is better-o¤ by not

observing the history and playing the truthful equilibrium.

On the other hand, if one of the conditions is not satis�ed, by observing the

history, the principal in a su¢ ciently later period can know if st 2 ST [ SP or

st =2 ST [ SP ; and hence she may know if she should ask advice from the agent

or ignore his advice. To see this, suppose that s= =2 ST : Then if she makes the

commitment, she will rubber-stamp her agent�s advice, which gives her strictly

negative payo¤ if v1 = v2 = 0: This may be avoided by observing the history, and
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hence she may not want to make the commitment. Characterization of principals�

incentives when one of the conditions is violated is left for future research.

Partially internalizing preference on outside option: An important ex-

tension of our baseline model is to allow the agent to internalize the principal�s

preference for the outside option. A simple way to introduce such an idea is to

assume that with some probability, an agent is a type who partially internalizes

the principal�s value for the outside option. Speci�cally, we think of the case where

with some probability p; an agent�s payo¤ from the outside option is �v0; where

� 2 (0; 1) determines the degree to which the agent internalizes the value of outside

option.9

This modi�cation does not cause any qualitative change in asymptotic behavior

of the equilibrium, except for the possibility of perpetual communication with

incomplete learning. If we assume that with a very small probability an agent

partially internalizes the principal�s value from the outside option, in a su¢ ciently

long run, the principal can �nd out if both projects have good fundamental quality,

which is information that she can never learn in the original game in the truthful

equilibrium phase.

9It does not matter if agent�s type is private information or not.



202

Theorem 24. Suppose that with probability p an agent partially internalizes

the value of outside option to a degree of �. If v1 = v2 = 0; then st =2 ST [ SP for

some t almost surely.

General distributions for fundamental quality:We discuss the generalization

of our results to the case in which projects�fundamental qualities are distributed

in continuous ways, rather than the discrete ways as in our original setup. For

this purpose, let F be a symmetric (cumulative) and absolutely continuos dis-

tribution function for fundamental qualities of projects with support [v0; v0]
2; and

G be a symmetric (cumulative) and absolutely continuous distribution function for

idiosyncratic shocks with support [u; u]2. Fundamental qualities and idiosyncratic

shocks are independent of each other. For simplicity, we impose the assumption

that u � u � v0 � v0 and, hence, idiosyncratic shocks can overturn the di¤erence

in fundamental qualities. The maintained assumption (A1) in our speci�c model

should be modi�ed, and we also need additional assumptions. These are provided

as follows:

(A10) v0 2 (E[uj + v0juj + v0 � ui + v0];E[uj + v0juj � ui]):

(A3) Given (vj; vi) ; E[ujjuj + vj > � (bi + vi)] is non-decreasing in �:10

(A4) Given vi; E[uj + vjjuj + vj � ui + vi] is increasing in vj 2 [v0; v0]:

10Note that it is only de�ned for � � u+vj
u+vi

:
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The condition (A10) is analogous to (A1) in Section 3.2. Conditions (A3)

and (A4) are automatically satis�ed in our original setup developed in the pre-

vious section.11 We maintain (A2) as well. In this setting, the appropriate state

variable (public belief) st is now regarded as a probability density function over

[v0; v0]
2; parameterized by the history at�1: As in the previous section, we can

de�ne ST as the truthful equilibrium phase, and SP as the pandering equilibrium

phase in analogous ways. From (A2) we have F 2 ST . With a slight abuse of nota-

tion, we identify a point (v1; v2) with a distribution function that puts the entire

mass on the point.

Now let vL be the threshold value of v such that E[uj+vLjuj+vL � ui+v0] = v0,

which is uniquely determined from (A4). Then, it is easy to see that for all public

beliefs s such that Support [s1] � [v0; vL] or Support [s2] � [v0; vL]; we have

s =2ST : Let ' := v0 � vL: Then we have the following claim:

Claim 7. If jvi � vjj � '; the truthful equilibrium is never played in a su¢ -

ciently long-run,i.e., there is � such that st =2 ST for all t � � ; almost surely.

To see the result, note that if the truthful equilibrium is played perpetually, the

relative frequency of recommendations between the two projects tells the principal

su¢ ciently accurate information about jvi � vjj : From the de�nition of '; this

implies that E[bijbi � bj; s
t] < v0 or E[bjjbj � bi; s

t] < v0 holds for a su¢ ciently

11For a detailed discussion on this condition, see Che, Dessein, and Kartik (2011).
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large t; which contradicts the fact the truthful equilibrium is played perpetually.

Hence ' provides an upper bound for the di¤erence in fundamental qualities that

allows the truthful communication to be perpetuity sustained.

It is important to note that, in this general distribution case, it is possible to

sustain the truthful communication perpetually even when v1 6= v2: To see this,

think of the case in which F (�jv1 = v2) 2 ST ; and ' (2; 0) > v0: As is discussed

in the previous section, these conditions make the truthful equilibrium phase an

absorbing phase when v1 = v2: However, actually, it is also an absorbing phase

if the di¤erence in fundamental qualities is small. More precisely, because F is

absolutely continuous and F (�jv1 = v2) 2 ST , there is � such that F (�j jvi � vjj <

") 2 ST ; or in other words there is � such that E[bijbi � bj; jvi � vjj < "] > v0 and

E[bjjbj � bi; jvi � vjj < "] > v0 for all " < �. The truthful equilibrium is an

absorbing phase if jvi � vjj < �: This leads the following claim.

Claim 8. Suppose that F (�jv1 = v2) 2 ST ; and ' (2; 0) > v0: Then, there is

� > 0 such that the truthful equilibrium is played perpetually with a strictly positive

probability if jv1 � v2j � �:

It is also possible to characterize an upper bound for the di¤erence in fundamen-

tal qualities that allows the pandering communication to be sustained perpetuity.

Towards this end, let vl be the threshold value of v above which we can �nd q such

that E[uj + v0juj + v0 � bq (ui + vl)] � v0 and E[q (ui + vl) jq (ui + vl) � uj + v0] =
v0; and below which there is not such q: Then, again it is easy to see that for all
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public belief s such that Support s1 � [v0; vl] or Support s2 � [v0; vl]; we have

s =2SL: More generally, we have the following claim.

Claim 9. Suppose that jv1 � v2j > v0 � vl: Then, the pandering equilibrium

is never played in a su¢ ciently long-run, i.e., there is � such that st =2 SP for

all t � � ; almost surely. If, moreover, jv0 � vlj > '; communication breaks down

within �nite a �nite period of time, i.e., st =2 ST [ SP for some t; almost surely.

The remaining questions are (i) if the initial realizations of fundamental quali-

ties (v1; v2) are such that (v1; v2) 2 SP ; can we sustain the pandering equilibrium

perpetually with a strictly positive probability? (ii) if so, can we have fully correct

learning? This question turns out to be very subtle. To see this point, in a pandering

equilibrium with project two�s acceptance probability q; principals in later peri-

ods cannot update the relative likelihood of two events that (v1; v2) = (v01; v
0
2) and

(v1; v2) = (v
0
1; v

0
2) if v

0
1 � v001 = q (v02 � v002), because the probability that project two

(or one) is recommended is the same between these two events. Hence, a pander-

ing equilibrium cannot convey information about �absolute levels�of fundamental

qualities, where the absoluteness is appropriately de�ned by its acceptance proba-

bility q: However, the same information can be conveyed in a pandering equilibrium

with di¤erent acceptance probability, although it cannot be very informative if the

two equilibria are close. Hence the question is if the public belief can accurately
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obtain the information about the true values of fundamental qualities, which in-

cludes the information that cannot be gathered in the pandering equilibrium with

the limit acceptance probability q: At this point of time, we give the asymptotic

behavior of equilibrium in the case of (v1; v2) 2 SP as a conjecture.

Conjecture 1. Take (v01; v
0
2) 2 SP : If v1 = v01 and v2 = v02 are realized initially,

public belief converges to the true state, i.e., st ! (v01; v
0
2) (note the abuse of nota-

tion), with a strictly positive probability. In such a case, the pandering equilibrium

is played perpetually, i.e., st 2 SP for all t � � for some � .

3.5. Conclusion

This study has studied a dynamic extension of Che, Dessein, and Kartik

(2011)�s cheap-talk model, where a new agent-principal pair is formed each period,

and principals in later periods may observe predecessors�actions. The equilibrium

paths exhibit di¤erent outcomes depending on the idiosyncratic shocks in the early

periods. We also discussed some possible extensions of our basic setup.

It may be interesting to extend the model into the case in which the agent is

a long-lived player, who meets a new principal in each period. This setting gives

an interesting intertemporal trade-o¤ in advice for the agent. Indeed, the agent

has an incentive to make principals hold balanced belief about the relative quality

of the two projects and, thereby, induce the truthful (and in�uential) equilibrium.

However, it does not necessarily maximize the payo¤ from the current advice.

Also, as is shown in Theorem 21, the agent wants to avoid recommending the
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worse-looking project in a pandering phase, because it may make both projects�

fundamental qualities look worse, which hurts the gain from the future advice.

This extension is left for future research.

Another interesting extension would be to generalize the model into a case

with many projects. If there are many projects, depending on the realizations of

idiosyncratic shocks in initial periods, some projects may be discarded forever. This

is because if a project is not recommended in the initial few periods, public belief

is formed toward disfavoring the fundamental quality of the project. Hence, after

that, it may not be possible to support an equilibrium in a way that the project

has a strictly positive probability of acceptance, especially because recommending

the worse-looking project shifts the public belief towards disfavoring the absolute

levels of other projects�fundamental qualities as well. In such a case, in the long

run, we have a perpetual communication in which only a subset of all projects can

be recommended.

3.6. Appendix: Proofs

Note that E[ujjquj � ui + v] =8>><>>:
R 1
0

R 1
(ui+v)=q

ujdujduiR 1
0

R 1
(ui+v)=q

dujdui
= 3v2=q2+3v=q2+1=q2�3

3=q+6v=q�6 for q 2 [1 + v;1];R qj�v
0

R 1
(ui+v)=qj

ujdujduiR qj�v
0

R 1
(ui+v)=q

1dujdui
= 2

3
+ v

3q
for q 2 [v; 1 + v];

and it is not de�ned for q < v: Also, E[uijui + v � quj] =
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8>>>><>>>>:
v + 1

2
for q � 1=v;

�2v3+3v2=q+6v=q�1=q3+3=q
�3v2+6v=q�3=q2+6=q for q 2 ( 1

1+v
; 1
v
)

6v2+6v+2
6v+3

for q � 1
1+v
:

From above, it is easy to see that E[ui + vjui + v � uj] > E[uijui � uj + v] for

all v 2 (0; 1): Also, we can check that following claim holds, on which following

proves are based.

Claim 10. E[ujjqjuj � ui+ v] is decreasing in q and E[uijui+ v � qjuj] is non

decreasing in q:

Proof of Proposition 7:

It is immediately seen from the following proofs and, hence, omitted. Q.E.D.

Proof of Theorem 19:

Note that the condition
�

�2

�2+(1��)2 ; 0; 0;
(1��)2

�2+(1��)2

�
2 ST is rewritten as

(3.6)
�2

�2 + (1� �)2
�
v +

2

3

�
+

(1� �)2

�2 + (1� �)2
� 2
3
> v0

Suppose that v1 = v2 is realized, and in the initial � periods, which we

take � even number, project one and two are recommended in turn, i.e., a� =

(1; 2; :::; 1; 2): Then from (3.6) and ' (2; 0) > v0; it is ensured that the truth-

ful equilibrium is kept played. Note that s�00=s
�
vv = (1� �)2 =�2; and by taking
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� su¢ ciently large, we can make �s�00 > s�v0 = s�0v for arbitrary � < 1: From

(3.6), it is enough to show that the probability that an equilibrium path starts

from (s�vv; s
�
v0; s

�
0v; s

�
00) never enter the pandering equilibrium phase is strictly pos-

itive. Then for the equilibrium path to enter the pandering equilibrium phase

SP ; after the history a� , at least we must have stvv=s
t
v0 < M for some M: Note

that because v1 = v2; we have st+1vv =s
t+1
v0 = 2g (v) stvv=s

t
00 with probability 1/2 and

st+1vv =s
t+1
v0 = 2f1 � g (v)gstvv=stv0 with probability 1/2: Because g (v) > 1=2 and

(1� g (v)) < 1=2; but g (v) (1� g (v)) < 1=4; we have E[st+1vv =s
t+1
v0 jstvv=stv0; v1 =

v2] > stvv=s
t
v0: This implies that if agents keep recommending the better project

irrespective of principals�action, st+1vv =s
t+1
v0 converges to in�nite almost surely, from

martingale convergence theorem. Then, we can see that there is s and ' such that

fstvv=stv0g1t=s that starts from ' never become smaller than M; as long as principal

has been kept recommending the better project. However by extending � to s; we

can reach stvv=s
t
v0 > '; which demonstrates the theorem. Q.E.D.

Proof of Theorem 20:

1: Think of the case in which v1 = v and v2 = 0: At each period t; given state

st; the players play an equilibrium such that the agent recommends project 1 if bt1 >

qbt2 (truthful equilibrium corresponds to the case q = 1): Such q is characterized by

the number that satis�es E[bt1jbt1 � qbt2; st] > v0 and E[bt2jbt2 � bt1=q; st] = v0: Note

that for all (stvv; s
t
v0; s

t
0v); q � v and q � 1

v
: In the equilibrium, because the true

state is v1 = 1 and v0 = 0; the agent recommends project one with probability

Pr[bt1 > q2b
t
2] = 1� q + v + q2�v2

2q
.
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Think about the stochastic process of
n
st+10v

st+1v0

o1
t=1
. Because it is a martingale

process, E
h
st+10v

st+1v0

j s
t
0v

stv0

i
=

st0v
stv0
does not convergence to any dead wrong belief almost

surely, i.e., Support
�
limt!1

st0v
stv0

�
� [0;1): Also, the process

n
st+10v

st+1v0

o1
t=1

converges

almost surely to a random variable. Hence it is enough to prove that limt!1
st0v
stv0
=

0:

If we regard stochastic process of
n
st+10v

st+1v0

o1
t=1
; the public likelihood ratio, as a

conditional stochastic process in given state of v1 = 0 and v2 = 0; we have

Ev1=1 and v2=0
�
st+10v

st+1v0

js
t
0v

stv0

�
= Pr[bt1 > qb

t
2]
Pr[u1 > q(u2 + v)]s

t
0v

Pr[bt1 > qb
t
2]

+
�
1� Pr[bt1 > qbt2]

� Pr[qu2 > u1 + v]stv0
Pr[bt1 > qb

t
2]s

t
v0

= fPr[u1 > q(u2 + v)] + Pr[qu2 > u1 + v]g
stv0
st0v
:

If q 2 (v; 1 + v); we have

Pr[u1 > q(u2 + v)] =

Z 1

0

Z 1

q(u2+v)

du1du2 = 1�
q

2
� qv

and

Pr[qu2 > u1 + v] =

Z 1

q=v

Z qu2�v

0

du1du2 =
q

2
� v � q3

2v2
+ q;

and hence

Ev1=1 and v2=0
�
st+10v

st+1v0

js
t
0v

stv0

�
= [1 + q (1� v)� v � q3

2v2
]
stv0
st0v

< �
stv0
st0v
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for some � < 1: Note that the expectation operator here is not computed by public

belief. Rather, it is computed by using the true information of v1 = v and v0 = 0.

Similarly, we can prove that Ev1=1 and v2=0
h
st+10v

st+1v0

i
< �

st0v
stv0

for some � < 1 when

q2 > 1 + v: This implies that for all (stvv; s
t
v0; s

t
0v); we have

Ev1=1 and v2=0
�
st+10v

st+1v0

js
t
0v

stv0

�
< �

st0v
stv0

for some � 2 (0; 1):

This implies that st+1v0 =s
t+1
0v ! 0: Similarly, we can also prove that both st+1vv =s

t+1
v0 and

st+100 =s
t+1
v0 converges almost surely to 0. Then, because Condition 1 is violated, we

eventually have st =2 ST [ SP .

2. Before proving the statement, we give the following lemma.

Lemma 14. If Condition 1 holds, the existence of a pandering equilibrium is

also ensured when public belief is such that svv = s00 = 0:

Proof. Suppose that svv = s00 = 0; and �x sv0 = s�v0: Without loss of generality,

suppose that Es�v0 [b1jb1 � b2] > v0 and Es�v0 [b2jb2 � b1] < v0: Obviously, s�v0 >

1
2
: Note that Es�v0 [b1jb1 � qb2] and Es�v0 [b2jqb2 � b1] are increasing and decreasing

functions of q, respectively. Because for all 1 > sv0; we have Esv0 [b2jqb2 � b1] >

Esv0=1[b2jqb2 � b1]; there is q� such that Es�v0 [b2jq
�b2 � b1] = v0: Denote by q�� the

threshold acceptance probability of project two when v1 = 1 and v2 = 0 in the

pandering equilibrium.
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Because there exists a pandering equilibrium when v1 = 1 and v2 = 0; we have

Esv0=1[b1jq��b2 � b1] > v0 and Esv0=1[b2jq��b2 � b1] = v0: We can verify that

Pr[u1 + b > u2]Esv0=1[b1jb1 � b2] + Pr[u2 > u1 + v]Esv0=1[b2jb2 � b1] >

Pr[u1+v > q
��u2]Esv0=1[b1jb1 � q��b2]+Pr[q�� (u1 + v) > u2]Esv0=1[b2jq��b2 � b1] > v0:

De�ne function a1 and a2 as follows:

�1 (q; sv0) = sv0 Pr[u1 + v > qu2]Esv0=1[b1jb1 � qb2]

+ (1� sv0) Pr[u1 > q (u2 + v)]Esv0=0[b1jb1 � qb2];

and

�2 (q; sv0) = sv0 Pr[qu2 > u1 + v]Esv0=1[b2jqb2 � b1]

+ (1� sv0) Pr[q (u2 + v) > u1]Esv0=0[b2jqb2 � b1]:

Then we can compute @�1(q;sv0)
@q

> 0; @�1(q;sv0)
@sv0

> 0; @�2(q;sv0)
@q

< 0; and @�1(q;sv0)
@sv0

<

0: De�ne q (sv0) be a function such that �2 (q (sv0) ; sv0) = v0: Then q (sv0) is a

decreasing function and we have q (1) = q��; q (s�v0) = q�; and q
�
1
2

�
> 1: Since

�1
�
q
�
1
2

�
; 1
2

�
> v0 and �1 (q (1) ; 1) > v0; and �1 is a monotone function of two

variables, we must have �1 (q (s
�
v0) ; s

�
v0) > v0: Hence we have both Es�v0 [b1jb1 �

q�b2] > v0 and Es�v0 [b2jq
�b2 � b1] = v0; which shows that there is a pandering

equilibrium with acceptance probability of project two being q�. �
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Suppose that Condition 1 is satis�ed and v1 = v and v2 = 0 is realized. Think

of the sequence of idiosyncratic shocks up to period � such that bt1 > bt2 for

t < �: We show that an in�uential equilibrium is kept played at least until

� : First, think of the case in which (3.6) is satis�ed. Suppose that we have an

in�uential equilibrium up until period t � 1; and reached public belief st: Let

bst = (0; stv0= (stv0 + st0v) ; st0v= (stv0 + st0v) ; 0). Then we have
E[bt1jbt1 � qbt2; st] > E[bt1jbt1 � qbt2;bst]

and

E[bt2jqbt2 � bt1; st] > E[bt2jqbt2 � bt1;bst]:
Then the existence of pandering equilibrium at t is ensured by Lemma 2.

Next, think of the case in which (3.6) is not satis�ed. If an in�uential equilib-

rium is kept played, we can form a sequence of qt and ss; where qt is generated by

the condition E[bt2jqtbt2 � bt2; st] = v0: Then the proof is done if we can see E[bt1jbt1 �

qtbt2; s
t] > v0 for all t � � : From Lemma 13, we have st�1vv =s

t�1
00 < stvv=s

t
00: If it be-

comes
ssvv

ssvv + s
s
00

�
v +

2

3

�
+

ss00
ssvv + s

s
00

2

3
� v0;

for some s; it is also satis�ed for t > s: From Condition 1 and Claim 10, this

implies that E[bt1jbt1 � qtbt2; s
t] > v0 for all t � s. Hence focus on the case that

above is not satis�ed. However, in such a case, because st�1vv =s
t�1
v0 < stvv=s

t
v0,

and st�1vv =s
t�1
0v < stvv=s

t
0v; we have E[bt1jbt1 � qbt2; st] > E[bt�11 jbt�11 � qbt�12 ; st�1] and
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E[bt2jqbt2 � bt1; st] > E[bt�12 jqbt�12 � bt�12 ; st�1] for all q:We know that from Condition

1, by taking � su¢ ciently high, we have an in�uential equilibrium if s = s� : This

and (A1), which shows the existence of in�uential equilibrium when s = s1, imply

that we also have an in�uential equilibrium for t 2 f2; :::; � � 1g:

Hence with a strictly positive probability, an equilibrium path enters a pan-

dering equilibrium phase with su¢ ciently high sv0: Then, by employing the same

reasoning as in Theorem 19, we can prove that the equilibrium may perpetually

stay in the pandering equilibrium phase with a strictly positive probability. Q.E.D.

Proof of Theorem 21:

Think about the following sequence of realizations of idiosyncratic shocks (re-

alizations of fundamental qualities can be anything), and also let players play the

(unique) in�uential equilibrium at each period given the history before their pe-

riod. For the �rst period, b11 > b
2
1: After the second period, let b

1
t > b

2
t if players

are supposed to play the truthful equilibrium at period t; and let qtb2t > b1t if

players are supposed to play a pandering equilibrium with qt < 1 at period t, and

b1t > qtb2t if players are supposed to play a pandering equilibrium with qt > 1 at

period t. Note that this path of random shocks generates the following path: the

truthful equilibrium is followed by a pandering equilibrium with qt < 1; and when

a pandering equilibrium is played the worse-looking project is proposed. Note that

if the truthful equilibrium is played at period t, we have st+100 =s
t+1
vv = st00=s

t
vv; and
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if a pandering equilibrium is played,

(3.7)
st+100

st+1vv

=
1� Pr[u > 
u]

1� Pr[u+ v > 
 (u+ v)]
st00
stvv

=
1
2



1
2

 � (1� 
) v + (1�
)2

2

v2

st00
stvv

= � (
)
st00
stvv
;

where 
 = max
n
q; 1

q

o
: Because � (
) > 1 for all 
 < 1; st00=s

t
vv monotonically

increases over time. If we get the point that an in�uential equilibrium does not

exist, the proof is done. Hence suppose that we can continue without having

communication to break down in a �nite period, in order to get a contradiction.

Take a subsequence k of t such that a pandering equilibrium is played and

the truthful equilibrium is played at t + 1. This implies that sk00
skv0
> is uniformly

bounded below. Then think about the sequence qk; where qk is the corresponding

acceptance probability in a pandering equilibrium at k: Note that we have

(3.8)
Pr[qu2 � u1]

Pr[qu2 � u1 + v] + Pr[q (u2 + v) � u1]
>
1

2

for all q: This implies that minfstv0; st0vg=st00 converges to zero. Also, from the

construction, we must have sk0v < s
k
v0: These imply that

st00
st0v
!1 and we can �nd

a su¢ ciently small uniform lower bound for st00
st0v
:

First, think of the case in which qk converges to 1. From st00
st0v
! 1; we have

limk!1 s
k = (bsvv; bsv0; 0; bs00): Note that in a su¢ ciently long run, a pandering equi-

librium reverts to the truthful equilibrium at once because j1� g (v)j < g (v) ; and
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the equilibrium exhibits a cycle. Then we must have

1

2 (1� g (v))
bs00bsv0 = s00

sv0
and

�
1

2g (v)

�s
s00
sv0

=
bs00bsv0 ;

which implies that there must be s such that
�

1
2g(v)

�s
= 2 (1� g (v)) ; which can

not happen for almost all constellation of parameter speci�cations.

Therefore, think about the case in which the sequence qk does not converge

to 1. If qk does not converges to 1, there is q< 1 such that qk becomes smaller

than q for in�nitely many times. Because st+100

st+1vv
is an increasing sequence, we have

st+100

st+1vv
!1 from (3.7). Then it must hold that limk!1 s

k = (0; bsv0; 0; bs00): However,
it implies that eventually the equilibrium path does not allow the existence of

the truthful equilibrium, which cannot happen from our choice of sequence of

idiosyncratic shocks. Q.E.D.

Proof of Theorem 22:

1. Suppose that delegation does not stop until period � : Think about the deci-

sion of the principal at period � +1: Think of the case that st 2 SP : Then, there is

q such that E[u1+ vju1+ v � qu2] > v0 and E[u2jqu2 � u1+ v] = v0; which implies

that

Pr[u1 + v � qu2]E[u1 + vju1 + v � qu2] + Pr[qu2 � u1 + v]E[u2jqu2 � u1 + v] > v0:
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From the discussion in Remark 5, we have

Pr[b1 � b2js]E[b1jb1 � b2; s] + Pr[qb2 � b1js]E[b2jb2 � b1; s]

= Pr[u1 + v � u2]E[u1 + vju1 + v � u2] + Pr[u2 � u1 + v]E[u2ju2 � u1 + v]

= Pr[u1+v � qu2]E[u1+vju1+v � qu2]+Pr[qu2 � u1+v]E[u2jqu2 � u1+v] > v0;

for all st such that stvv = s
t
00 = 0: This demonstrate that delegation attains higher

payo¤ for the principal when st 2 SP :

On the other hand, even think of the case that st =2 SP [ST : Because stvv=st00 =

�2= (1� �)2 ; Condition 2 and
�

�2

�2+(1��)2 ; 0; 0;
(1��)2

�2+(1��)2

�
2 ST imply

Pr[b1 � b2js]E[b1jb1 � b2; s] + Pr[b2 � b1js]E[b2jb2 � b1; s]

= �

(
�2

�2 + (1� �)2
E[u1 + vju1 � u2] +

(1� �)2

�2 + (1� �)2
E[u1ju1 � u2]

)

+(1� �) f�E[u1 + vju1 + v � u2] + (1� �)E[u1ju1 � u2 + v]g

> �v0 + (1� �) v0 > v0;

for some � 2 (0; 1) and � 2 (0; 1): Hence delegation attains higher payo¤ for the

principal even when st =2 SP [ ST : Because the delegation attains the same payo¤

when st 2 ST ; the statement follows.

2. Suppose that Condition 2 does not hold. Think of the sequence of the

realizations of idiosyncratic shocks such that bt1 > b
t
2 for even periods and b

t
1 < b

t
2 for
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odd periods. Apparently, st converges to s=; which implies the �rst part. Also,

from the same reasoning as in the proof of Theorem 21, st converges to s= almost

surely when v1 = v2; so long as communication is sustained. Hence eventually we

have st =2 ST and, hence, delegation stops. The third statement of the theorem is

proved in a similar way. Q.E.D.

Proof of Theorem 24:

Suppose that v1 = v2 = v: In the truthful equilibrium phase, if the outside

option is not proposed at period t, we have

st+100

st+1vv

= f1� p+ pPr[maxfu1; u2g � �v0]g
st00
stvv

< �
st00
stvv
;

for � < 1; which implies that st00
stvv

! 0: On the other hand, if v1 = v2 =

0; s
t
vv

st00
becomes zero once the outside option is recommended. Because lim�!1 Pr[ut >

�v0 for all � ] = 0; eventually we have
stvv
st00
= 0: The result follows from those obser-

vations, combined with Theorem 20. Q.E.D.
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