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Introduction

The present thesis is a collection of research papers on the analysis of the term
structure of interest rates with a focus at the intersection of macroeconomics and
finance. The topic is important not only to academics, but also to investors and
policymakers. For instance, investors may want to predict the future dynamics of the
term structure of interest rates to determine their optimal portfolio allocation across
different assets. Policymakers are often interested in extracting market expectations
of policy rates and other macroeconomic variables from long-term interest rates, and
in taking actions to influence them, as the whole term structure is important for the
investment and borrowing decisions of households and businesses. An emphasis is
put on the analysis of the failure of the expectations hypothesis of the term structure
of interest rates, which asserts that long-term rates are simple averages of short-rate
expectations, and that risk premium, if not equal to zero, is constant over time.

The first paper “Risks in macroeconomic fundamentals and bond return pre-

dictability” contributes to the macro-finance literature by studying the macroeco-
nomic forces behind risk premia in the US government bond market. Emphasis is
put on the measurement of risks underlying the macroeconomy and their relation-
ship with the term structure of interest rates. More specifically, the paper provides
evidence that measures of macroeconomic risks related to expectations, uncertainty
and downside (upside) macroeconomic risks are able to explain variation in bond
risk premia across maturities. Factors, referred to as macro risk factors, extracted
from these measures are found to be powerful predictors of bond excess returns.
In addition, it is shown that they provide new information about bond risk premia
when compared to forward rates and current macroeconomic conditions, which are
often used to explain time-variation in expected bond excess returns.

The paper also contributes to a vast literature on the use of factors beyond the
yield curve to describe the behavior of the term structure of interest rates using affine
models. I document that macro risk factors provide information about variation in
bond risk premia that is not spanned by the yield curve and discuss its practical
implications for the identification and estimation of the term premium component in
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long-term yields using these models. Accordingly, the estimation of an affine term
structure model with unspanned macro risk factors reveals that they carry significant
prices of risk and generate time-varying and countercyclical term premium, as
suggested by economic theory.

It happens, however, that in-sample predictive power does not necessarily imply
out-of-sample predictability. Recent research evaluating the predictability of excess
returns in government bond and equity markets has documented that many variables
that are shown to work quite well in-sample have not had the same success in an
out-of-sample framework. The second paper “Out-of-sample bond excess returns

predictability” builds on this argument to assess the statistical and economic sig-
nificance of out-of-sample forecasts of bond excess returns based on forward rates,
macroeconomic variables and risks in macroeconomic outcomes. Results suggest
that macroeconomic variables, risks in macroeconomic outcomes as well as the
combination of these different sources of information outperform a constant model
of no-predictability that is consistent with the expectations hypothesis of the term
structure of interest rates. These results are confirmed when using macroeconomic
data available in real-time, indicating that the predictability of bond returns is not
driven by data revisions, as suggested by recent research.

The research papers above relating bond risk premium (or term premium) to
subsequent developments in macroeconomic variables are part of a much larger
literature on the predictive power of the slope of the yield curve and its relationship
with future GDP growth, recessions and inflation. This is the object of study of the
third paper, “Re-examining the predictive power of the yield curve with quantile

regression”, in co-authorship with Mauro S. Ferreira. More specifically, in this
paper we use quantile regression methods to re-examine the predictive ability of the
yield curve slope (or term spread) with respect to future GDP growth throughout the
entire conditional distribution of the latter variable. The simple, but novel approach,
allows us to reach a number of interesting conclusions. The term spread is found
to be a better predictor of negative to intermediate conditional GDP growth in the
US, confirming its usefulness for predicting recessions and future economic activity.
In addition, changes in the predictive relationship towards longer horizons and
structural breaks at upper percentiles and dated around 1984 suggest the Fed started
to respond tougher and in great advance to inflationary pressures resulted from
excessive growth after the mid-1980’s. Motivated by these findings we use quantile
regression to forecast GDP growth and recessions probabilities in an out-of-sample
scheme. Results suggest that quantile models deliver more accurate forecasts than
competitors in both exercises. We also compare the performance of the spread-based
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models to professional forecasters. Superiority is found for mid and longer horizons,
but higher accuracy in shorter horizons was also observed in the period prior the
2008/2009 recession. We conclude that the predictive power of the yield curve
remains, despite the changes in the GDP growth - term spread relationship.

The fourth paper, “Modeling and forecasting the yield curve by an extended

Nelson-Siegel class of models: a quantile regression approach”, also in co-authorship
with Mauro S. Ferreira, deals with yield curve prediction. More specifically, the
paper compares the in sample fitting and the out of sample forecasting performances
of four different Nelson-Siegel type of models: Nelson-Siegel, Bliss, Svensson, and
a five factor model we propose in order to enhance fitting flexibility. The introduc-
tion of the fifth factor resulted in superior adjustment to the Brazilian data. For the
forecasting exercise the paper contrasts the performances of the term structure mod-
els in association to four different econometric methods: quantile autoregression
evaluated at the median, VAR, AR, and a random walk. Results suggest that the
quantile procedure delivered the best results for longer forecast horizons, which may
be explained by robustness of the quantile regression method, especially because
the paper deals with very volatile financial data characterized by the presence of
extreme values that tend to bias mean estimators.





Chapter 1

Risks in macroeconomic fundamentals

and bond return predictability1

Rafael B. De Rezende

ABSTRACT. I extract factors from quantile-based risk measures estimated for US macroeconomic
variables and document that risks in macroeconomic fundamentals contain valuable information
about bond risk premia. Macro risk factors predict bond excess returns with power above and
beyond the Cochrane-Piazzesi and Ludvigson-Ng factors, with results being verified statistically as
well as economically. Importantly, macro risk factors generate countercyclical bond risk premia
and capture unspanned predictability in bond excess returns. These results provide further support
for the idea that predictability of bond excess returns cannot be completely summarized by the
yield curve. Risks in macroeconomic fundamentals should also be taken into account.

Keywords: ex ante macroeconomic risks; bond risk premia; quantile-based risk measures.
JEL Classifications: G12, G17, G11, E43, E44

1.1 Introduction

Empirical research in financial economics has revealed significant predictable
variation in expected excess returns of US government bonds, a violation of the
expectations hypothesis. Understanding this variation and its relationship with the
economy has been an important question in economics and finance, and an active

1I would like to thank Magnus Dahlquist, Lars E.O. Svensson and Michael Halling for comments and
suggestions that significantly improved this paper. I am also grateful to Ádám Faragó, Roméo Tédongap,
Erik Hjalmarsson, Andrejs Delmans, Nikita Koptyug, Ricardo Aliouchkin and seminar participants at the
Swedish House of Finance, the XXI Finance Forum, the National PhD Workshop in Finance 2013 and the
9th BMRC-QASS Conference on Macro and Financial Economics for comments and suggestions. I kindly
thank the Swedish Bank Research Foundation (BFI) for financial support.
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area of ongoing research. Fama (1984), Fama and Bliss (1987), Stambaugh (1988)
and Cochrane and Piazzesi (2005) find that yield spreads and forward rates predict
excess bond returns with R2s ranging from 10% to 40%. Ludvigson and Ng (2009)
and Cooper and Priestley (2009) document that macroeconomic variables carry
information about bond risk premia not contained in financial variables.

In this paper I study the links between the macroeconomy and bond risk premia
from a forward looking perspective. I start by asking the following questions. How
do distributions of future macroeconomic outcomes evolve over time? Do they
reveal the existence of any potential risks in the macroeconomy such as risks of
extreme macroeconomic outcomes, downside (upside) risks and macroeconomic
uncertainty? If so, do these potential macroeconomic risks carry any information
about bond risk premia?

In order to answer these questions, I provide three simple measures that allow
me to empirically study how conditional distributions of future macroeconomic
variables evolve over time. First, as a measure of central tendency, the median

(Med) is a natural candidate for describing the center of predicted conditional
distributions, in particular when data are highly asymmetric.2 The second measure,
the interquantile range (IQR), captures how spread out conditional distributions
are, while the third measure, the interquantile skewness (IQS), as the corresponding
quantile-based metric of conditional skewness, can be used to gauge the degree of
conditional distributions’ asymmetry.

The three measures share the property of having appealing economic interpre-
tations. First, as one way of measuring the typical values variables may assume
in the future, the median arises as a natural metric of macroeconomic point expec-

tations. The interquantile range allows capturing the current level of uncertainty

about future macroeconomic outcomes, while the interquantile skewness provides
a natural characterization of the downside (upside) risks regarding the future state
of the economy. I concentrate my analysis on the top and bottom 5% conditional
quantiles, meaning that both IQR and IQS also allow capturing information on
macroeconomic tail risks, providing an even richer description of the risks involving
future macroeconomic variables. From here on I refer to these measures − Med,
IQR and IQS − as measures of ex ante macroeconomic risks, where “ex ante” stands
for the fact that all measures can be obtained at date t.

Using simple quantile regression methods (Koenker and Basset, 1978), I esti-

2As is well known the median may be preferable to the mean if the distribution is long-tailed. The
median lacks the sensitivity to extreme values of the mean and may represent the position (or location) of
an asymmetric distribution better than the mean. For similar reasons in the regression context one may be
interested in median regressions.
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mate risk measures for six variables closely related to business cycles in the US:
GDP price index, real GDP, unemployment, industrial production, housing starts
and corporate profits; and document several interesting features of their predicted
conditional distributions. First, I find that the interquantile range for all variables,
except inflation, shows pronounced countercyclical behavior, indicating increasing
levels of uncertainty regarding the future state of the US economy during recessions.
Using different approaches this result is also documented by Jurado, Ludvigson
and Ng (2013) and Bansal and Shaliastovich (2013). Interestingly, for the last great
recession, the level of uncertainty for housing starts rises right from 2004, the year
when subprime mortgage lending increased dramatically in the US. I also document
that ex ante lower tail risks for GDP and industrial production move cyclically, while
the opposite holds for the other variables. When it comes to asymmetries, I find
that predicted conditional distributions for inflation and unemployment (industrial
production and housing starts) growth are mostly positively (negatively) skewed,
indicating the presence of consistent upside (downside) risks for these variables.

The estimated risk measures also reveal themselves as important determinants of
bond risk premia variation. I extract a few factors, referred to as macro risk factors,
that summarize almost all the information about bond risk premia contained in the
estimated risk measures and verify that they predict future bond excess returns across
different maturities with R2s ranging from 20% to 30%. Importantly, the macro risk
factors have economic interpretations in terms of the ex ante macroeconomic risks
I estimate. Point expectations regarding economic activity variables, uncertainty
about GDP growth and downside (upside) risks with respect to housing starts,
unemployment and inflation are shown to be important determinants of bond risk
premia variation in the US.

I also form a single macro risk factor following the idea of Cochrane and Piazzesi
(2005, CP hereafter). The new single factor predicts excess bond returns with power
beyond CP and Ludvigson and Ng (2009, LN hereafter) factors. For instance,
the single factor explains variation in excess bond returns with R2s of up to 31%.
Combining it with the CP and LN factors increases models’ predictive power to
levels around 45%, indicating that risks in macroeconomic fundamentals capture
information about bond risk premia that is not embedded in forward rates and
current macroeconomic variables. Importantly, the new factor shows a pronounced
countercyclical behavior, consistent with theoretical models asserting that investors
must be compensated for risks associated with recessions (Campbell and Cochrane,
1999; Wachter, 2006; Bansal and Yaron, 2004; Rudebusch and Swanson, 2009).
Much of this evidence can be explained by the countercyclical behavior of the ex



8 ESSAYS ON MACRO-FINANCIAL LINKAGES

ante macro risks I estimate.
Consistent with recent research, I also find that macro risk factors capture pre-

dictability in bond excess returns that is largely unspanned by the yield curve
(Duffee, 2011; Joslin, Priebsch and Singleton, forthcoming). This result has impor-
tant implications for the identification of the term premium component of yields
using affine term structure models, as models of this class commonly disregard the
information about expected excess returns contained in factors beyond the yield
curve (Ang and Piazzesi, 2003; Ang, Dong, and Piazzesi, 2007; Rudebusch and Wu,
2008). Accordingly, the estimation of an affine model with unspanned macro risk
factors reveal that they carry significant prices of risk and generate time-varying
and countercyclical term premia.

My findings have important implications for both finance and macroeconomics.
In finance, a clearer understanding of the determinants of bond risk premia helps
explain why investors demand higher compensation for bearing the risk of holding
long-duration bonds, in particular during bad times. Furthermore, the notion that the
information in the whole distribution of future macroeconomic outcomes matters for
explaining bond risk premia variation challenges the prevailing use of conditional
point expectations and uncertainty alone underlying many asset pricing models. For
macroeconomics, the better identification of the term premium component of yields
helps to clarify the relationship between short and long interest rates and facilitates
the understanding of the transmission mechanisms of monetary policy, as the whole
yield curve is important for the investment and borrowing decisions of households
and businesses.

Related literature

The present study adds to the literature examining the failure of the expectations
hypothesis of the term structure of interest rates and its determinants (Fama, 1984;
Fama and Bliss, 1987; Stambaugh, 1988; Cochrane and Piazzesi, 2005; Ludvigson
and Ng, 2009; Cooper and Priestley, 2009; Huang and Shi, 2012; Cieslak and Povala,
2012; among others). My main contribution is to show that risks in macroeconomic
fundamentals are able to explain variation in bond risk premia. Furthermore, I show
that the information they provide is, to a large extent, unrelated to that contained in
financial and current macroeconomic variables.

This article also relates to the works by Bansal and Shaliastovich (2013),
Buraschi and Whelan (2012), Wright (2011), Dick, Schmeling and Schrimpf (2013)
and Chun (2011) which document that bond risk premia are influenced by expec-
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tations and uncertainties about the future state of the economy. 3 A drawback of
most of these studies, however, is that they have relied exclusively on survey-based
proxies such as the consensus forecast and the dispersion of the cross-sectional
distribution of analysts’ forecasts to measure these variables, a strategy that has a
number of weaknesses. First, as respondents typically sampled are professional
forecasters, surveys do not necessarily represent expectations of financial market
participants. Second, some analysts may provide potentially strategic forecasts or
omit relevant forecasting information (Ottaviani and Sorensen, 2006), while surveys
also commonly suffer from the small number of cross sectional observations at
certain dates. Differently, I estimate macroeconomic expectations and uncertainties
by relying on quantile regression methods (Koenker and Basset, 1978), accom-
modating a rich information set composed by analysts’ forecasts, expectations of
consumers and by financial variables that are known to be good predictors of several
macroeconomic indicators. This makes feasible the use of information that is more
likely to span the unobservable information sets of bond market investors when
forming their macroeconomic predictions. Moreover, I analyze the role played by
asymmetries and tail risks.

In a recent paper Colacito, Ghysels and Meng (2013) rely on the first three
moments of the cross-sectional distribution of analysts’ forecasts to show that
conditional point expectations and skewness are able to explain the equity premium.
They rationalize their results using a long-run risk model that introduces asymmetry
in the distribution of expected consumption growth rates and show that their model
can account for a number of observed features of the distribution of equity returns.
The present study is closely related to their work as I also look at asymmetries in
distributions of macroeconomic forecasts. However, in addition to GDP growth, I
analyze the role played by a number of other macro indicators and study risk premia
in the government bonds market. Furthermore, I do not rely exclusively on survey
data to estimate my objects of interest.

Another related strand of research aims at measuring macroeconomic risks,
which is commonly done using volatility. My measures go beyond volatility as I
also look at skewness and tail risks. In a similar spirit, Kitsul and Wright (2012) rely
on CPI based options to construct probability densities for inflation and use them to

3Macroeconomic uncertainty and disagreement are terms that have been used interchangeably in this
literature. For instance, Buraschi and Whelan (2012) study both theoretically and empirically the links
between macroeconomic disagreement, or differences in beliefs, and bond markets. Their empirical measure
of macroeconomic disagreement - the mean absolute deviation of professional forecasts - however, can
be also interpreted as a measure of macroeconomic uncertainty as it simply measures the dispersion of
the cross-sectional distribution of forecasts as in many other papers (Lahiri and Liu, 2006; Giordani and
Söderlind, 2003; Wright, 2011).
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measure deflation and high inflation risks. De Rezende and Ferreira (2013) rely on
quantile regression and the term spread to forecast probabilities of future recessions.
Gaglianone and Lima (2012) use quantile regression to construct density forecasts
for macro variables and use them to estimate risks of high unemployment rates.
Christensen, Lopez and Rudebusch (2011) rely on Treasury Inflation Protected
Securities to measure deflation probabilities.

Other papers measure macroeconomic risks from the distribution of forecasts
provided by surveys. Garcia and Werner (2010) extract measures of inflation
risks such as asymmetry and uncertainty from the cross-sectional distribution of
professional forecasts. In a similar spirit, Giordani and Söderlind (2003) look at
uncertainty only. Andrade, Ghysels and Idier (2012) propose new measures of
inflation tail risk, uncertainty and asymmetry similar to the ones used in this paper.
The authors rely on inflation probability distributions obtained from each forecaster
to estimate their measures of inflation risk. Differently, I estimate my risk measures
using quantile regression methods (Koenker and Basset, 1978) and discuss how this
approach allows extending the notion of risks in macroeconomics to any variable of
interest.

The rest of the paper is organized as follows. The next section introduces
the measures of macroeconomic risks used in the paper and discusses how they
are estimated; the third section presents the econometric framework proposed for
predicting excess bond returns; in the fourth section I discuss the main results of
the paper; and the last section concludes.

1.2 Measures of ex ante macroeconomic risks

1.2.1 Median, interquantile range and interquantile skewness

I provide three simple measures, each with three distinguishing features, namely,
robustness to outliers, the ability to capture time variation in future conditional
distributions and finally that they can be obtained for any h-period ahead macro
variable, zt,t+h, using information known at date t. I start by defining my first
object of interest, the median. Let zt,t+h denote the annual log rate of change
of macroeconomic variable Z during the period t to t + h, and Fzt,t+h

(x) be its
cumulative distribution function (CDF) conditional on date t information Ωt ,

Fzt,t+h
(x) = Pr

(
zt,t+h ≤ x|Ωt

)
(1.1)
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Let also qzt,t+h
(τ) = F−1

zt,t+h
(τ) be its conditional quantile associated with probability

τ ∈ (0,1), assuming that Fzt,t+h
(x) is strictly increasing. I then define

Medh
t = qzt,t+h

(0.5) (1.2)

as the median of Fzt,t+h
, measured at time t. The median is one of a number of ways

of summarizing typical values that can be assumed by zt,t+h. Unlike the mean or
the mode, however, the median presents the appealing property of robustness, being
an attractive candidate for forecasting zt,t+h, especially in the presence of outliers
and conditional asymmetries in the data.

The second measure is the interquantile range of the conditional distribution of
zt,t+h. As the simplest robust measure of data dispersion, the interquantile range
provides a natural way of gauging how spread out the conditional distribution of
zt,t+h is. More precisely, given qzt,t+h

(τ), the interquantile range of the conditional
distribution of zt,t+h associated to the level τ , τ < 0.5, is defined as

IQRh
t (τ) = qzt,t+h

(1− τ)−qzt,t+h
(τ) (1.3)

The third measure is based on Hinkley’s (1975) generalization of Bowley’s
(1920) robust coefficient of asymmetry (skewness). It is defined as the interquantile
skewness of the conditional distribution of zt,t+h associated to level τ , with τ < 0.5,
or more precisely,

IQSh
t (τ) =

(qzt,t+h
(1− τ)−qzt,t+h

(0.5))− (qzt,t+h
(0.5)−qzt,t+h

(τ))

qzt,t+h
(1− τ)−qzt,t+h

(τ)
(1.4)

The normalization in the denominator ensures that the measure assumes values
between -1 and 1. If the right quantile is further from the median than the left
quantile, then IQS is positive indicating that there is a higher probability that zt,t+h

will be above the median than below, while the opposite yields a negative coefficient.
Also an advantage of this measure is that because it does not cube any values, it
is more robust to outliers than the conventional third-moment formula (Kim and
White, 2004). Other papers that have used the interquantile skewness in empirical
macro and finance include Conrad, Dittmar and Ghysels (2013), White, Kim, and
Manganelli (2008), Ghysels, Plazzi, and Valkanov (2010) and Andrade, Ghysels
and Idier (2012).
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1.2.2 Economic interpretation and estimation

The risk measures defined above share one additional property − that of having
appealing economic interpretations in terms of measures of macroeconomic point
expectations, uncertainty and downside (upside) macroeconomic risks. To motivate,
I assume that there exists a continuum of individuals in the economy who are
interested in making predictions about zt,t+h. Following the literature on forecast
optimality (Granger, 1969; Granger and Newbold, 1986; Christoffersen and Diebold,
1997; Patton and Timmermann, 2007; Gaglianone and Lima, 2012, Gneiting, 2011),
I consider that each individual chooses an optimal forecast ẑi

t,t+h by minimizing an
expected individual loss function Li. In this case, disagreement among individuals
about zt,t+h will result from the heterogeneity of loss functions and, as discussed
below, optimal estimates for Med, IQR and IQS can be obtained through the
estimation of simple quantile regressions for certain individuals’ corresponding
percentiles.4

More precisely, I assume that each individual i makes his optimal prediction
ẑi

t,t+h by minimizing an expected asymmetric loss function Li defined as below,

Assumption: the loss function is of the form

Li
(
τ i, z, ẑ

)
=

{ (
τ i −1

)[
f(zt,t+h)− f(ẑt,t+h)

]
, i f zt,t+h < ẑt,t+h

τ i
[
f(zt,t+h)− f(ẑt,t+h)

]
, otherwise

(1.5)
where τ i ∈ (0,1) and f is a strictly increasing real function.

The parameter τ i describes the degree of asymmetry in the individual i’s loss
function. Values less than one half indicate that overpredicting induces greater loss
to the individual than underpredicting by the same magnitude. In the symmetric
case τ i equals one half and the individual i’s cost due to over- and underpredictions
are the same.

It can be shown that if individual i’s loss function is of the form given in (1.5),
then his optimal forecast ẑi

t,t+h is simply the respective conditional quantile of zt,t+h

(Gneiting, 2011; Komunjer, 2005; Komunjer and Vuong, 2010), or more specifically

ẑi
t,t+h = qzt,t+h

(τ i)

4This approach was firstly proposed by Gaglianone and Lima (2012) for constructing density forecasts for
macro variables using a location-scale model and very general individual loss function. In my approach, the
shape of the distribution of zt,t+h is also allowed to vary over time. This is important to estimate time-varying
interquantile skewness.
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Optimal individuals’ predictions are then based on the same information set
and differences in opinion are explained by differences in loss functions or, more
specifically, by differences in the parameter τ i.5 Importantly, the real function f
which enters individuals’ losses need not be known. This means that quantiles are
optimal forecasts for a large number of loss functions obtained by letting f vary in
the set of monotone increasing functions. This result is very powerful as strong
assumptions on the form of the loss function used by individuals are not needed.6

Assuming that the quantiles of zt,t+h can be approximated by a linear function
as qzt,t+h

(τ) = β (τ)′ xt , where xt is a k×1 vector of covariates and β (τ) is a k×1
vector of coefficients to be estimated, it follows that parameters β (τ) will depend
solely on Li and optimal estimates for Med, IQR and IQS can then be simply
obtained through the estimation of quantile regressions as

qzt,t+h
(τ) = β (τ)′ xt (1.6)

for certain individuals’-corresponding percentiles τ ∈ (0,1), where β (τ) can be
estimated as in Koenker and Basset (1978) (see Appendix 1.A for details).

This means that Med, IQR and IQS can be viewed as specific characteristics
of the cross-sectional distribution of individuals’ optimal forecasts and can then
be interpreted as measures of ex ante macroeconomic risks. Med can serve as a
measure of the consensus forecast (median) that is commonly used as a proxy for
macroeconomic point expectations. IQR can be viewed as a measure of uncertainty
or individuals’ disagreement about zt,t+h, while IQS can serve as a measure of
downside (upside) macroeconomic risks as negative values for IQS, for instance,
indicate that more individuals believe that zt,t+h will be below its median value than
above. Finally, it is also crucial to point out that when evaluated at percentiles close
to zero, IQR and IQS share the attractive property of also capturing information
on both the upper and lower tails of the conditional distribution of zt,t+h, that
is, they can also be used to model tail risks regarding this variable, allowing
for a rich characterization of the risks involving the future state of the economy.
Macroeconomic tail risks enables the estimation of risks of extreme macroeconomic
outcomes such as, for example, risks of a large drop in economic activity, high

5Patton and Timmermann (2010) point out that differences in opinion are not primarily driven by
differences in information.

6Empirical evidence on asymmetric loss has been found in forecasts for different economic variables made
by different economic agents. See Elliot, Kmounjer and Timmermann (2005) for evidences on governments’
budget deficits forecasts made by the IMF and the OECD; Elliot, Kmounjer and Timmermann (2008) on
GDP growth forecasts generated by professional forecasters; Capistrán (2008) on inflation forecasts made by
the Federal Reserve; Clatworthy, Peel and Pope (2012) for evidence on firms’ earnings forecasts generated
by analysts.
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inflationary pressures or even a boom in the housing market, which can have
important implications for explaining risk premia in equity and bond markets
(Gourio, 2013; Gabaix, 2012; Tsai and Wachter, 2013).

Although linear, model (1.6) allows for great flexibility. The advantage relies
on the estimation of one regression for each conditional quantile of the response
variable, meaning that covariates xt are allowed to affect the shape of the distribution
of zt,t+h, which may be Gaussian, but can also assume non-standard forms. Figure
1.1 illustrates this with several quantile lines estimated for inflation and growth in
GDP, unemployment, industrial production, housing starts and corporate profits.
Notice that due to the flexibility of the quantile regression approach, predicted
conditional distributions are allowed to assume quite interesting shapes, while they
are also able to capture several interesting features of the data as, for instance, the
increasing levels of uncertainties, tail risks as well as downside (upside) risks in
these variables, in particular around recessions dates. Notice that while the median
is able to match realized values on many dates, it misses important periods of
macroeconomic stress. The indicators of macroeconomic tail risks, on the other
hand, seem to capture extreme movements in macroeconomic variables with higher
accuracy. This result is evident for several variables during the 2008/2009 recession.

Variables entering the vector xt were chosen in such a way to maximize the bene-
fits of a large information set while minimizing the curse of dimensionality problem
that may limit any forecasting model (Stock and Watson, 2005). In this paper, I
follow Gaglianone and Lima (2012) who propose the use of analysts’ consensus
forecasts to construct density forecasts for macroeconomic variables using quantile
regressions, but I augment their specification with information from additional
predictors as in Aiolfi, Capistrán and Timmermann (2011). More specifically, I con-
sider a specification that combines the equal-weighted survey forecast, or consensus
forecast, with three other covariates that are known to contain information about
zt,t+h,

x
′
t =
(

1, z
SPF,h
t , Mich Expectt , 5− year term spreadt , Baa corp spreadt

)
(1.7)

where z
SPF,h
t is the h period ahead consensus (mean) forecast for variable z obtained

from the Survey of Professional Forecasters (SPF hereafter) reported at time t,
Mich Expectt is the University of Michigan consumer expectations index (MCEI
hereafter), 5− year term spreadt is the 5-year TBond rate spread over the 3-month
TBill rate (5yTS hereafter) and Baa corp spreadt is the Moody’s Baa corporate rate
spread over the 3-month TBill rate (BaaCS hereafter).



CHAPTER 1 15

Recent works studying the links between bond risk premia and macroeconomic
expectations and uncertainties have relied exclusively on survey based proxies
such as the consensus forecast and the dispersion of the cross-sectional distribution
of analysts’ forecasts for measuring these variables (Buraschi and Whelan, 2012;
Wright, 2011; Dick, Schmeling and Schrimpf, 2013; Chun, 2011).7 A drawback of
this strategy, however, is that survey’ respondents typically sampled are professional
forecasters meaning that they may not accurately represent expectations of financial
market participants. Moreover, some analysts may provide potentially strategic
forecasts or omit relevant forecasting information (Ottaviani and Sorensen, 2006),
while surveys commonly suffer from a small number of cross sectional observations
at certain dates.

The main advantage of the approach I propose is the possibility of estimating
these variables using information that is more likely to span the unobservable infor-
mation sets of bond market participants. While z

SPF,h
t is a good source of information

about analysts’ expectations (Capistrán and Timmermann, 2009), MCEI, which has
been shown to be a good predictor of future macro variables (Ang, Bekaert and Wei,
2007), is able to capture consumers’ expectations about the short and long-term
levels of the US economy. Moreover, 5yTS and BaaCS are well known predictors
of future inflation and economic activity (Estrella and Hardouvellis, 1991; Mishkin,
1990; Stock and Watson, 2003; Friedman and Kuttner, 1998), as they may contain
information on agents’ perceptions about the likelihood of business bankruptcy
and default (Friedman and Kuttner, 1998) and about the future reactions of the
Fed towards inflation and economic activity. Another advantage is that optimal
predictions can be made available for a continuum of individuals since an infinite
number of quantile regressions can be estimated. In this case, values assumed by
coefficients β (τ) at each percentile τ ∈ (0,1) will simply define the weights each
individual will put on each covariate when predicting zt,t+h.

The macro variables were selected according to their availability in the SPF
data set from 1968:Q4, the date when the survey was initiated. This means that
the risk measures I propose are estimated for GDP price index, real GDP, unem-
ployment rate, industrial production, housing starts and corporate profits after tax
(see appendix 1.D for more details about the data). Despite being few in number,
these six variables contain a large amount of information about business cycles and
inflationary pressures, which have been shown to be closely related to movements
in bond risk premia (Ludvigson and Ng, 2009). The sample ranges from 1968:Q4
to 2011:Q4. Since I will be predicting bond excess returns accumulated over the

7See footnote 2.
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following year starting from t, when estimating risk measures, h is set equal to 4
(four quarters).

Med is obviously estimated for τ = 0.5. For estimating IQR and IQS I set
τ = 0.05. In principle, other values of τ could be considered, but typically the case
of τ = 0.05 allows capturing the tails of conditional distributions of zt,t+4, meaning
that Fzt,t+4 can be richly characterized through the estimation of Med, IQR and IQS
only. This procedure yields a 18×1 column vector mt of macro risks observed at
time t (ex ante) for time t +4, where three measures are estimated for each of the
six macro variables.

1.2.3 Ex ante macroeconomic risks in the US: some interesting new

facts

Figures 1.2, 1.3 and 1.4 show the eighteen estimated measures of macro risks
observed at time t together with qzt,t+4 (.05) and qzt,t+4 (.95) lines. NBER-dated
recessions are shown as shaded bars. Notice that their time series reveal several
interesting features. First, the range of ex ante conditional distributions of growth in
GDP, unemployment, industrial production and housing starts, show pronounced
countercyclical behavior, indicating the presence of increasing levels of uncertain-
ties regarding these variables during bad times. Using a different approach this
result is also documented by Jurado, Ludvigson and Ng (2013) and Bansal and
Shaliastovich (2013). This pattern is also observed for tail risks. Although lower
and upper tails show similar dynamics for most variables, risks of extreme declines
in GDP, industrial production and housing starts and extreme rises in unemployment
and inflation show more pronounced behavior and increase substantially during
recessions periods.

It is also worth commenting on the behavior of uncertainty regarding housing
starts during the recession of 2008/2009. While we see sharp increases for this
variable during all previous NBER recessions, when it comes to the last recession
the level of uncertainty shows consistent increases right from 2004, the year when
the subprime mortgage lending rose dramatically in the US. Another result is that
inflation uncertainty increases with the level of expected inflation as documented by
Golob (1994), Garcia and Perron (1996) and Capistrán and Timmermann (2009),
while it seems to decrease quickly during periods of economic slowdowns, when
the level of expected inflation follows the same trend.

When it comes to asymmetries, notice that predicted conditional distributions
for inflation and unemployment (industrial production and housing starts) growth
are mostly positively (negatively) skewed, indicating the presence of consistent ex
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ante upside (downside) risks for these variables. This last feature is also verified in
Table 1.1 - Panel A, which shows descriptive statistics for macro risks. Mean values
indicate that consistent upside risks for inflation and unemployment, and downside
risks for GDP, industrial production, housing starts and corporate profits are present.
In addition, ex ante lower tail risks for GDP, industrial production and housing starts
is more volatile (with higher standard deviation) than upper tail risks. The opposite
seems to be the case for inflation, unemployment and corporate profits.

In order to have a better understanding of how ex ante risks for each of the six
macro variables relate to business cycles, Figure 1.5 shows correlations between
estimated risk measures and GDP growth, both measured at time t. Blue circles
indicate statistically significant correlation coefficients. Observe that most ex ante
risks show strong relations to GDP growth. Tail risks as well as median predictions
regarding GDP and industrial production are positively related to GDP growth. The
opposite seems to be the case for unemployment, housing starts and corporate profits.
Uncertainty for all variables, except inflation, show strong and negative correlations
to movements in GDP, strengthening my previous findings that macroeconomic
uncertainty is countercyclical. Also, observe that GDP growth relates positively
to ex ante downside risks for inflation, GDP and industrial production, revealing
that the current level of the economy may have an effect on skewness risks for
these variables. This is also true for housing starts and corporate profits, although
correlations show negative signs, that is, when the economy is slowing down, ex
ante upside risks for these variables tend to rise.

1.3 Predicting excess bond returns

I focus on one-year log returns on an n-year zero-coupon Treasury bond in excess
of the annualized yield on a 1-year zero coupon bond. These are constructed
from the Fama-Bliss discount bond yields data set for maturities up to five-years,
and from the Treasury zero-coupon bond yields data set of Gürkaynak, Sack, and
Wright (2007) (GSW) for maturities from six to ten years. The sample ranges
from 1968:Q4 to 2011:Q4.8 As both the SPF and the Michigan Survey reports are
released by the middle of the quarter, I use yields for the end of the second month of
each quarter.9 For t = 1, ...,T , excess returns are denoted as rxn

t,t+4 = rn
t,t+4 − y1

t =

−(n−1)yn−1
t+4 +nyn

t − y1
t , where rn

t,t+4 is the one-year log holding-period return on

8For the period 1968Q4 - 1971Q3 yields for maturities from eight to ten years were obtained by
extrapolating the Gürkaynak, Sack and Wright (2007) data set using Svensson’s (1997) parametrization and
the estimated parameters provided by the authors.

9The Michigan Survey is conducted at a monthly frequency beginning from January 1978.
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an n-year bond purchased at time t and sold one year after at time t +1 (or t +4
quarters) and yn

t is the log yield on the n-year bond.
Table 1.1 - Panel B shows descriptive statistics for the 1-year yield and the

2-year to 10-year excess bond returns. Notice that the average term structure of
excess returns is positively sloped and standard deviations increase with maturities,
suggesting that investors require higher premia for investing in longer (riskier) bonds.
In addition, returns are negatively skewed and exhibit positive excess kurtosis. The
Robust Jarque-Bera test of normality, however, does not reject the null hypothesis
of normality for excess returns, which also show high persistence as indicated by
the first order autocorrelation coefficients.

For predicting excess bond returns I then propose the following regression
model,

rxn
t,t+4 = α0 +α ′mt +ϑ ′gt + εt,t+4 (1.8)

where α and ϑ are 18×1 vectors of coefficients, mt is a 18×1 vector of estimated
macro risks measured at time t (ex ante), three for each of the six macro variables,
and gt can include any other potential predictor such as the single forward factor
of Cochrane and Piazzesi (2005) or the single macro factor of Ludvigson and Ng
(2009). The risk measures I include in mt are Med, IQR and IQS. Since IQR and
IQS were both estimated using τ = 0.05 they implicitly embed information about
tail risks, meaning that tail risks do not necessarily need to be included in mt .

Although regression (1.8) allows the use of all the information available on
macroeconomic risks to explain variation in bond risk premia, it quickly becomes
impractical since there are at least 218 possible combinations of predictors to con-
sider. Furthermore, it is highly likely that the high dimension assumed by (1.8) will
deteriorate its out-of-sample forecasts (Stock and Watson, 2002a, 2002b, 2005),
obfuscating any sign of out-of-sample predictability. Nevertheless, as a remedy to
these problems, substantial dimensionality reduction can be achieved by extracting
a few factors that summarize almost all the information about rxn

t,t+4 contained in
the panel of estimated risk measures. In this paper, I follow Stock and Watson
(2002a, 2002b) and Ludvigson and Ng (2007, 2009, 2010) and use a factor model
estimated by Principal Component Analysis (see Appendix 1.B for details). The
initial number of factors to be estimated is set by Bai and Ng (2002) information
criteria, while factors that are effectively important for predicting rxn

t,t+4 can be
optimally selected using Schwarz (1978) Bayesian information criteria (SBIC)10.

10This is the procedure adopted by Ludvigson and Ng (2007, 2009, 2010). Also, Stock and Watson
(2002b) point out that minimizing the SBIC yields the preferred set of factors. I also tested the Hannan and
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This leads to the following regression

rxn
t,t+4 = α0 +α ′MRFt +ϑ ′gt + εt,t+4 (1.9)

where MRFt is a vector of estimated macro risk factors and α0 and α are parameters
to be estimated by OLS11. The advantage of this approach is that we can summarize
almost all important information about rxn

t,t+4 contained in mt in a few variables,
MRF t .

1.4 Empirical results

Do risks in macro fundamentals explain variation in bond risk premia?

Bai and Ng (2002) information criteria indicate that the panel of estimated macro
risks is well described by eight principal components (or factors) from which three
were formally chosen (using SBIC) among all the 28 possible specifications for
rxn

t,t+4 =α0+α ′MRFt +εt,t+4. The selected factors were the first, the fourth and the

sixth first principal components, forming the vector MRFt =(MRF1t ,MRF4t ,MRF6t)
′
.

In principle, other combinations of factors could also be used, but I focus my anal-
ysis on MRFt since this is the combination that delivers the highest explanatory
power (optimal SBIC) for rxn

t,t+4, while I also find that this particular combination
has economic meaning, as I discuss below. Following Cochrane and Piazzesi (2005)
I also test whether a single linear combination of these factors has predictive power
for excess returns across maturities. I define this object as the “single macro risk
factor”, SMRF , which can be constructed from a simple linear regression of average
excess returns (across maturities ranging from 2-year to 10-year) on MRFt

rxt,t+4 = θ0 +θ1MRF1t +θ2MRF4t +θ3MRF6t + εt,t+4

SMRFt = θ̂ ′MRFt

(1.10)

Table 1.2 shows results with both MRF and SMRF as predictors. Newey-West t-
stats computed with 6 lags are shown in parentheses. The small-sample performance
of statistics was also verified and 95% bootstrap confidence intervals for coefficient
estimates, Wald statistics and adjusted-R2s are provided in square brackets. Results
reveal that factors have high predictive power for rxn

t,t+4 for all maturities with
R2s ranging from 0.20 for the 2-year bond to 0.30 for the 10-year bond. Factor
MRF4 presents the highest statistical significance followed by MRF1. MRF6 is

Quinn (1979) (HQIC) criteria, which delivered the same set of optimal factors as SBIC.
11I disregard the use of hats in MRFt to ease notation.
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not significant, although it seems important for predicting rxn
t,t+4 according to

SBIC.12 The single factor also shows high predictive power with R2s slightly higher
than MRF regressions. Results remain robust when we analyze the small-sample
significance of estimated coefficients. Notice that MRF1 is no longer significant for
the 2-year excess return. The Wald statistic, however, remains highly significant,
indicating that all factors are jointly significant, even in small samples.

Since factors are orthogonal by construction, we can characterize their relative
importance in the vector MRFt by simply investigating the absolute value of the
coefficients on each factor in regression (1.10). After running (1.10) I find the
following values for coefficients estimates: θ̂1 = 2.128, θ̂2 = −2.264 and θ̂3 =

1.052; revealing that the first and the forth factors are the most important predictors.
It is well known that factors do not correspond exactly to a precise economic

concept. Nonetheless, it is useful to show that MRF capture relevant information
about macro risks. I do so here by briefly characterizing macro risk factors as they
relate to each of my estimated risk measures. This analysis is based on marginal
R2s obtained by regressing each of the 18 variables in mt onto the three factors, one
at a time.

Figure 1.6 displays computed R2s as bar plots, with Panel A showing R2s
grouped by macro variables and Panel B showing R2s grouped by risk measures.
Results reveal that the first factor loads on all variables, but R2s are higher for
risks on unemployment, industrial production and GDP, that is, variables related
to economic activity. The forth factor is highly related to risks on housing starts,
more specifically, to downside (upside) risks, although it also manifests a strong
relationship with GDP-IQR and Unemp-IQS. The sixth factor is clearly significantly
related to risks associated to inflation, with Inf-IQS explaining a large portion of its
variation. Notice also from Panel B that while the first factor seems to be mostly
related to expectations, the forth and sixth factors are strongly related to downside
(upside) risks.

Figure 1.7 plots the time series of MRF1, MRF4 and MRF6 against the respective
macro risk that is most related to each factor. In order to verify that the first factor is
indeed a real activity risk factor I picked Unemp-Med, while MRF4 and MRF6 are
plotted against Hous-IQS and Inf-IQS, respectively. Shaded bars indicate NBER
recessions. Figure 1.7 indicates that MRF1 is highly related to Unemp-Med, with
the two series presenting a correlation of -98%. The correlation with GDP-Med is
96% and with Unemp-IQR is -90%, which indicates that MRF1 has strong relation
to risks in economic activity. MRF4 is clearly negatively correlated with Hous-IQS

12The Hannan and Quinn (1979) (HQIC) criteria delivered the same set of optimal factors as SBIC.
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with a coefficient of -49%. The correlations with GDP-IQR and Unemp-IQS are
both 47%. Factor MRF6 on the other hand shows strong comovement with Inf-IQS,
and the correlation between the two series is 55%. These results lead us to classify
MRF4 (MRF6) as a housing (inflation) skewness factor, although it is also possible
to interpret MRF4 as a GDP uncertainty or an unemployment skewness factor.

Beyond the median

I have provided evidence that risks in macroeconomic fundamentals derived from
Med, IQR and IQS are able to explain movements in expected excess bond returns.
Recent empirical evidence has shown that macroeconomic expectations obtained
from survey based consensus forecasts (mean or median) are able to explain bond
risk premia (Chun, 2011; Piazzesi, Salomao and Schneider, 2013; Dick, Schmeling
and Schrimpf, 2013; Buraschi and Whelan, 2012). Thus, a natural question that
arises is whether IQR and IQS provide information about risk premia that is not
contained in simple mean or median forecasts. If so, there is strong evidence that
information beyond the median is indeed important for explaining movements in
bond premia.

Rather than focusing on survey consensus forecasts, I extract median forecasts
by estimating regressions as (1.6) for the six macro variables, as previously done.13

When evaluated at τ = 0.5, equation (1.6) provides a measure that is similar to the
median of individuals’ forecasts provided by surveys. For purposes of comparison
with the macro risk factors previously estimated I then estimate median factors,
MeF , and a single median factor, SMeF , by applying PCA to the T ×6 panel of
estimated medians. Bai and Ng (2002) information criteria indicates that this panel
is well described by three principal components from which all the three were
formally chosen (using SBIC) as previously done. The single median factor was
then obtained as

rxt,t+4 = κ0 +κ1MeF1t +κ2MeF2t +κ3MeF3t + εt,t+4

SMeFt = κ̂ ′MeFt

(1.11)

Table 1.3 shows the results of this exercise. As has been recently documented,
conditional median forecasts represented here by SMeF show high predictive power
for rxn

t,t+4 for all maturities with R2s ranging from 0.12 to 0.25 and highly significant
estimates. SMeF loads more heavily on excess returns at longer maturities and
its predictive power increases with n. However, notice that all the significance

13I use the conditional median instead of the conditional mean E (zt,t+4|Ωt)= β ′xt because of its robustness
property against the conditional asymmetries existent in the data.
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of SMeF switches to SMRF when the single macro risk factor is included as
additional predictor. This result is somewhat expected given that SMRF embeds
the information in SMeF about rxn

t,t+4. Notice, however, that R2s also increase
substantially, indicating that IQR and IQS indeed provide additional information
about bond risk premia variation.

Comparison with classical bond return predictors

Cochrane and Piazzesi (2005, 2008) show that a single factor, which they make
observable through a linear combination of forward rates, captures substantial
variation in expected excess returns on bonds with different maturities. Similarly,
Ludvigson and Ng (2009) find that a single factor formed from a linear combination
of individual macro factors has forecasting power for future excess returns, beyond
the predictive power contained in forward rates. In this subsection I then compare
the predictive abilities of SMRF, CP and LN factors.

As in Cochrane and Piazzesi (2008), CP was formed from the linear combination
of the 1-year yield and forward rates from two to ten years,

rxt,t+4 = δ0 +δ1y1
t + ...+δ10 f w10

t + εt,t+4

CPt = δ̂ ′ f wt

(1.12)

where f wn
t is the n-year forward rate defined as f wn

t =−(n−1)yn−1
t +nyn

t .
LN was obtained as a linear combination of macro factors extracted from a

large macroeconomic data set (131 variables). When forming LN I used the data
set provided by Ludvigson and Ng (2010) but I set October 1968 as the starting
date to enable direct comparisons with the other predictors studied in the paper.14

Quarterly frequency was obtained by selecting observations for the second month
of each quarter. LN was then constructed by running average bond returns on the
best subset of macro factors estimated by Principal Component Analysis,

rxt,t+4 = ϕ0 +ϕ1F1t +ϕ2F2t +ϕ3F6t + εt,t+4

LNt = ϕ̂ ′Ft

(1.13)

where ϕ̂ is a line vector of estimated parameters and Ft is a column vector of
estimated macro factors, where I also disregard the use of hats to ease notation.15

Results are shown in Table 1.4. As documented by Cochrane and Piazzesi (2005,
2008) I find that CP captures a large portion of variation in expected excess returns

14The data set was downloaded from Sydney C. Ludvigson’s web page:
http://www.econ.nyu.edu/user/ludvigsons/.

15Following Ludvigson and Ng (2009) I also included F3
1t in the set of macro factors.
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with R2s ranging from 0.21 to 0.32. When CP regressions are augmented with
SMRF, notice that both variables reveal strong statistically significant predictive
power, with R2s increasing substantially and reaching 0.40 for the 10-year return.
These results reveal that the factor I propose contains additional information about
bond risk premia, despite the forward looking nature of forward rates.

The LN factor also has high explanatory power with R2s ranging from 0.17
to 0.21 and highly significant estimates. Notice, however, that when SMRF is
included as additional predictor, LN estimates decrease considerably, together with
its statistical significance, while R2s values jump substantially. As an example,
R2s increase from 0.17 to 0.38 for the 10-year return when including SMRF. The
increases are quite large, especially for longer maturities, indicating the SMRF and
LN capture information about bond risk premia that is somewhat independent.

I also test regressions that include all three single factors jointly. As documented
by Ludvigson and Ng (2009), including LN to CP regressions increase R2s to levels
close to 0.4. Notice, however, that R2s are even higher when augmenting regressions
with SMRF, with highly significant coefficients from the 2-year maturity according
to asymptotic t-stats, and from the 5-year maturity in small samples. Notice also
that LN loses significance from the 3-year maturity in small-samples.

In general, results suggest that, to a large extent, SMRF captures information
about expected excess bond returns that is not contained in CP and LN factors. This
indicates that macroeconomic expectations, uncertainties, macroeconomic downside
(upside) risks and tail risks are important determinants of bond risk premia in the
US and are also able to capture information about bond risk premia that is somewhat
unrelated to that contained in forward rates and current macroeconomic variables.

Are bond risk premia countercyclical?

From a theoretical point of view, Campbell and Cochrane (1999) and Wachter
(2006) provide an explanation for the link between time-varying bond risk premia
and the business cycle. Simply speaking, the rationale behind their argument is
that investors have a slow-moving external habit, so when the economy falls into a
recession, the risk of running below the minimum level of consumption increases
and investors become more risk-averse, which leads risk premia to go up during bad
times.

In light of this, we can gain some economic intuition of how bond premia implied
by risks in macro fundamentals behave by examining its fluctuations over business
cycles. More specifically, I show that movements in the single macro risk factor, a
measure of the average bond risk premia across maturities, are closely connected to
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NBER-dated business-cycle phases. Figure 1.8 - Panel A plots the 4-quarter moving
average of SMRF. In general, we see declines in bond premium during expansions
and sharp increases during recessions. Observe also that the increases in the risk
premium during the 1990-1991 and 2001 recessions are somewhat more modest
than those during recessions in the 80’s and the recession of the late 2000’s. This
makes sense, since these two recessions were milder relative to the others. Overall,
Figure 1.8 - Panel A demonstrates that macroeconomic risks produce a bond risk
premium that closely tracks NBER business-cycle phases.

In order to complement the evidence shown in Figure 1.8 - Panel A, Panel
B shows lead/lag relations between the bond premium and growth rates of three
macroeconomic variables - real GDP, industrial production and unemployment rates
- that are closely related to business cycles. I keep my bond premium indicator fixed
at date t and then lead and lag the economic indicators. Notice that correlations
turn negative and positive as macro variables are leaded/lagged. While a drop
in economic activity leads an increase in bond premium, a rise in bond premium
tends to lead an improvement in future economic activity. These correlations
are statistically significant and demonstrate that bond premia implied by risks in
macroeconomic fundamentals are closely related to movements in the real economy.

Are macro risk factors unspanned?

Several recent papers have considered the possibility that some factors in the term
structure of interest rates are unspanned in the sense that while they are irrelevant
for explaining the cross-sectional variation of current yields, they are important for
forecasting future interest rates and explain variation in bond risk premia (Duffee,
2011; Joslin, Priebsch and Singleton, forthcoming; Ludvigson and Ng, 2009; Kim,
2008). As shown, macro risk factors are able to predict bond returns, but are they
unspanned factors? In this section, I provide a possible answer to this question.

It is customary in the term-structure literature to summarize the information
in yields using the three first principal components (PC hereafter) as they explain
virtually all of the variation in the yield curve (Litterman and Scheinkman, 1991).
Thus, the first evidence of the unspanning property of MRF can be provided by
regressing PC and/or MRF onto yields and verifying their explanatory power.
If macro risk factors are able to explain variation in current yields with levels
comparable to PC, they may not be unspanned factors. Table 1.5 provides results
for this exercise. While PC is able to explain about 0.99 of the variation in current
yields, MRF regressions show moderate to low R2s. Also adding MRF to PC
regressions keeps R2s unaltered, indicating that the new factors do not add any
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information about current yields.
Another possibility is to verify whether the new risk factors contain information

about bond risk premia that is in some degree independent of that contained in the
yield curve. Table 1.5 shows R2s for regressions of PC and/or MRF onto excess
returns. While PC shows predictive power with R2s ranging from 0.07 to 0.19,
regressions with PC and MRF deliver R2s ranging from 0.30 to 0.36. In other words,
to some extent, macro risk factors and the yield curve contain different information
about bond risk premia.

Joslin, Priebsch and Singleton (forthcoming) also suggest examining the follow-
ing spanning condition,

MRFjt = ω0 +ω ′PCt , j = 1,4,6 (1.14)

by projecting each risk factor onto PC. Projections of MRF1, MRF4 and MRF6 onto
PC give R2s of 0.68, 0.05 and 0.28. Augmenting the dimension of the principal
components to five only raises R2s to 0.72, 0.05 and 0.34, indicating that a large
portion of variation in MRF arises from variables distinct from PC. This is especially
true for MRF4.

To sum up, there is strong evidence indicating that macro risk factors contain
information about bond risk premia that is unspanned by the yield curve, suggesting
that predictability of bond excess returns cannot be completely summarized by the
cross-section of yields or forward rates. This result has important implications for
the estimation of the term premium component of yields using affine term structure
models, as many models of this class commonly disregard the information about
expected excess returns contained in factors other than the yield curve (Ang and
Piazzesi, 2003; Ang, Dong, and Piazzesi, 2007; Rudebusch and Wu, 2008). In
fact, information in current macro variables (Wright, 2011; Joslin, Priebsch and
Singleton, forthcoming; Ludvigson and Ng, 2009) and in conditional distributions
of future macroeconomic outcomes, as I have shown, also need to be taken into
account.

In Section 1.5 I provide results on the estimation of an affine term structure
model along the lines of Joslin, Priebsch and Singleton (forthcoming) with MRF and
PC as state variables, and discuss further results on the unspanning features of MRF.
In general terms, estimated parameters governing expected excess returns show that
shocks to MRF4 (MRF6) have a negative (positive) and significant impact on risk
premia through the level risk. Additionally, shocks to all macro risk factors cause
off-setting movements in the term premium and expected short-rate components of
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current long-yields, leaving them statistically unaffected.16 These results provide
further evidence that macro risk factors have a component that is unspanned by the
yield curve, meaning that they are indeed able to affect term premium estimates
obtained from affine term structure models.

Robustness Tests

A natural question that may arise is whether specification (1.7) is really capturing
the true quantiles of zt,t+4. In order to verify this I apply the backtest of Gaglianone
et al (2011) (GLLS hereafter) who propose a framework to evaluate the performance
of a VaR model through quantile regression methods. While the most common
backtests are based on simple hit indicators that signal whether a particular threshold
was exceeded, the GLLS backtest allows identifying to what extent a VaR model
indicates increases in risk exposure, which is a key issue to any risk model. The
authors also show through Monte-Carlo simulations that the GLLS backtest shows
increased finite sample power in comparison to the most common backtests existent
in the literature. The GLLS test is implemented through the estimation of the
following quantile regression

qzt,t+4 (τ) = φ0 (τ)+φ1 (τ) q̂zt,t+4 (τ)

where the null hypothesis of correct specification of the quantile model at level τ

is given by H0 : (φ0 (τ) ,φ1 (τ)) = (0,1). H0 can be tested through the VQR test
statistic proposed by GLLS, which follows a chi-square distribution with 2 degrees
of freedom. If the model is correctly specified H0 is not rejected implying that
qzt,t+4 (τ) = q̂zt,t+4 (τ).

Table 1.6 shows p-values of the GLLS test for several percentiles. Since
Med, IQR and IQS were obtained from quantile functions estimated for τ =

0.05, 0.5, 0.95, these are the most important test results, but the implementation
of the test for other typical values reveals that my quantile specification is well
identified at other percentiles as well. Results in Table 1.6 show that specification
(1.7) produces conditional quantiles forecasts, q̂zt,t+4 (τ) , that are statistically indis-
tinguishable from the true conditional quantiles of zt,t+4, which suggests that my
risk measures are being precisely estimated and also that (1.7) is able to accurately
capture the conditional distributions of zt,t+4.

The most natural question, however, is whether the high predictability I have
found is coming exclusively from variables in the vector xt . If this is the case,

16Duffee (2011) points out that factors whose impacts on term premium and short-rate expectations cancel
each other out may be considered unspanned.
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there is no reason to add the complexity of estimating measures of ex ante macro
risks and then using them to forecast excess bond returns. A suitable test for
this issue is provided by simply checking the predictive power of SMRF when
controlling directly for the information in xt . In order to guard against the possibility
of overfitting, the information in predictors xt can be summarized by estimating
predictor factors, Fx, and a single predictors factor, SFx, by applying PCA to the
T ×9 panel of predictors formed by the six consensus forecasts, z

SPF,4
t , and MCEI,

5yTS and BaaCS. Bai and Ng (2002) indicates that this panel is well described by
seven factors from which three (first, third and fifth principal components) were
formally chosen using SBIC. These three factors form the vector Fx. Factor SFx is a
linear combination of Fx and provides a variable that can directly be used to control
for the information in quantile predictors xt . Results of this exercise are provided in
the Appendix 1.E. In general, they show that although SFx contains high predictive
power for rxn

t,t+4, adding SMRF to regressions increases R2s substantially to levels
almost identical to the ones shown by Table 1.2, with statistical significance shifting
to SMRF. These results suggest that the high predictability found is largerly due to
the extra information obtained from the estimation of Med, IQR and IQS.

Another convenient robustness test I make available is the assessment of the
predictive power of macro risk factors (MRF and SMRF) when risk measures
are estimated using alternative approaches. To guard against the possibility of
inadequacy of quantile regressions estimated at τ = 0.05, 0.95 Appendix 1.F shows
results using two alternative estimation procedures. First, I assess the predictive
power of ex ante macroeconomic risks when risk measures are estimated for τ =

0.10. While the use of τ = 0.10 somewhat misses some information about tail risks,
it places less weight on extreme data points, guarding against possible instabilities
of quantile regressions estimated at tails. In the second procedure, risk measures are
estimated for τ = 0.05 using the Wang, Li and He (2012) approach, which integrates
quantile regression with Extreme Value Theory and is suitable for quantile curves
at tails. Their procedure is explained in details in the Appendix 1.F. Results show
that the statistical significance of macro risk factors (MRF and SMRF) and the
magnitudes of their predictive power remain very high with levels comparable to
those shown in tables 1.2, 1.3 and 1.4, which corroborate my previous findings.
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1.5 An affine term structural model with macro risk fac-

tors

Motivated by my findings that bond risk premia is driven by risks in macro funda-
mentals, in this section I examine time variation in term premia. From a monetary
policy perspective, understanding time variation in term premia is important as
term premia obfuscates the relationship between short-term interest rates controlled
by central banks and long-term interest rates, while it also makes it difficult to
measure expectations of future short-term rates using the yield curve. I do so by
estimating a Gaussian affine term structure model along the lines of Joslin, Priebsch
and Singleton (forthcoming) (JPS hereafter), where state variables are composed
by the first three principal components of yields and the three macro risk factors,
MRF1, MRF4 and MRF6. I treat the macro risk factors as unspanned in the state
vector (Duffee, 2011; Joslin, Priebsch and Singleton, forthcoming), as I have found
that they explain variation in risk premia, but are irrelevant for explaining the
cross-sectional variation in current yields.

Model specification

Following the macro-finance literature since Ang and Piazzesi (2003), I assume that
the p×1 vector of state variables Xt follows a VAR(1) process under the objective
probability measure P,

Xt+1 = µ +ΦXt +Σεt+1 (1.15)

where εt ∼ iid N (0, Ip), the state vector consists of the first three principal com-
ponents of yields and MRF1, MRF4 and MRF6, and Σ is an p× p lower triangular
matrix. The pricing kernel is assumed to be conditionally lognormal

Mt+1 = exp

(
−rt −

1
2

λ
′
t λt −λ

′
t εt+1

)
(1.16)

where rt = δ0 + δ
′
1Xt is the three-month interest rate and the p× 1 vector of risk

prices is affine in state variables, λt = λ0 +λ1Xt . Under the risk-neutral measure Q

the state vector follows the dynamics,

Xt+1 = µQ+ΦQXt +Σεt+1 (1.17)

where µQ = µ −Σλ0 and ΦQ = Φ−Σλ1.
It then follows that under no-arbitrage bond prices are exponential affine func-
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tions of the state variables, Pn
t = exp

(
An +B

′
nXt

)
, where An is a scalar and Bn is an

p×1 vector that satisfy the recursions

An+1 =−δ0 +An +B
′
nµQ+ 1

2B
′
nΣΣ

′
Bn

Bn+1 = ΦQ′
Bn −δ1

(1.18)

which start from A1 =−δ0 and B1 =−δ1.
I treat the macro risk factors as unspanned factors. To illustrate, partition Xt as

(X
′
1t ,X

′
2t)

’, where X1t and X2t are p1 × 1 and p2 × 1 vectors consisting of the first
three principal components of yields and MRF1, MRF4 and MRF6, respectively. Set
also the last p2 elements of δ1 and the upper-right p1 × p2 block of ΦQ to be equal
to zero. Then the last p2 elements of Bn will be equal to zero and bond prices reduce
to

Pn
t = exp

(
An +B

′
1nX1t

)
(1.19)

where B1n consists of the first p1 elements of Bn. The result of this is that factors in
X2t are important for forecasting future yields, but only factors in X1t are important
for pricing bonds at time t. Model implied yields are then computed as yn

t =

−n−1log Pn
t =−n−1(An +B

′
1nX1t).

Estimation

The estimation approach follows JPS and Joslin, Singleton and Zhu (2011) with
parameters being estimated by MLE. Due to the separation result of the likelihood
function derived in Joslin, Singleton and Zhu (2011) parameters in µ and Φ are
estimated separately from those governing the risk neutral pricing of bonds, which
can be done by a simple OLS. For estimating the remaining identified parameters,
i.e. Σ, µQ

1 , Φ
Q
11, δ0 and δ1,1, where µQ

1 and δ1,1 are the p1 ×1 vectors of µQ and δ1,
and Φ

Q
11 is the upper-left p1 × p1 block of ΦQ, it is assumed that observed yields

are equal to the model-implied yields plus i.i.d. Gaussian measurement errors. As
in JPS, the model is first reparameterized in terms of a p1 ×1 latent state vector S

that follows a VAR with zero intercept and diagonal slope coefficient matrix equal
to I1+ΛQ , and an equation for the short-rate that assumes the form rt = rQ∞ +1St ,
where 1 is a line vector of ones. The likelihood is then maximized with respect to
these parameters and original parameters’ estimates can be retrieved from rQ∞ and
ΛQ as in JPS.17 In the estimation I use the three-month interest rate and yields from
one to ten years. In order to correct for the possibility of existence of small-sample
bias in VAR parameters (Duffee and Stanton, 2004; Kim and Wright, 2005; Kim

17Appendix B in Joslin, Priebsch and Singleton (2010) specifies how to do this.
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and Orphanides, 2005) I use the bootstrap approach following Bauer, Rudebusch
and Wu (2012).18

The model shows a good fit. Fitting errors measured in terms of MSE are small
and equal to 0.0039, indicating that the first three principal components together are
able to account for almot all the cross-sectional variation in yields and that no other
factor is required for this purpose.

It is also worth computing a Wald statistic testing the hypothesis that macro
risk factors do not enter matrix Φ in (1.15). The hypothesis is highly rejected with
Wald statistic equal to 2065.9 and p-value virtually equal to zero, indicating that
MRF1, MRF4 and MRF6 do help to predict future interest rates, and motivating their
inclusion in the state vector under the P measure.

Table 1.7 shows the full set of parameter estimates for the affine model, including
the ones governing the expected excess returns, λ0 and λ1. Bootstraped standard
errors are in parentheses.19 The prices of level (PC1) and slope (PC2) risks have a
significant negative constant component, implying that investors on average require
positive expected excess returns for holding the level and slope portfolios. In
addition to level and slope risks being nonzero unconditionally, I find that the level
risk varies significantly as a function of MRF4 and MRF6. The loading on these
factors have positive and negative coefficients, respectively, implying that shocks to
MRF4 (MRF6) have a negative (positive) impact on risk premia. Another finding is
that the slope carries a significant price of risk. The level factor, the slope factor
itself, as well as the curvature (PC3) factor all significantly affect the price of slope
risk over time. Coefficients on the level and curvature factors are positive, indicating
that expected excess returns on the slope portfolio is decreasing in the level and
curvature of yields. Contrary, the coefficient on the slope factor shows a negative
coefficient.

Decomposing long term yields

Long term yields can be represented as the sum of future nominal short-rate ex-
pectations plus a term premium defined as the average of risk premia of declining

18I also test the indirect inference approach proposed by Bauer, Rudebusch and Wu (2012), which is
supposed to remove higher-order bias. I found that the two methods deliver almost the same results in the
particular case of this paper. I use the bootstrap approach due to its simplicity and faster computation.

19The method used to bootstrap standard errors is as follows. First I resample the OLS residuals in the
state equation and randomly choose a starting value among the T observations to construct a bootstrap
sample for state variables using the original state equation parameters. Then, using the maximum likelihood
estimates of the parameters, I simulate a path of the term structure for the whole sample and estimate the
model based on these simulated data. These steps are repeated 1000 times delivering empirical probability
distributions for all parameters from which bootstrap standard deviations can be easily computed.
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maturities.20 After estimating the parameters for the affine model, the n-year term
premium can be computed as the difference between the n-year implied yield under
Q and the average of expected short-rate up to year n under the P measure.

This decomposition is ilustrated by Figure 1.9 for the 10-year yield. Two
aspects are noteworthy. First, long-term term premium implied by risks in macro
fundamentals have a marked countercyclical behaviour showing declines during
expansions and increases during recessions. Observe that increases have been
more pronounced since the early 90’s, even though the 10-year yield has shown a
decreasing pattern since then. Second, these movements have been closely followed
by decreases in short-rate expectations, indicating that the two components seem
to move in opposite directions, in particular, during bad times. As an example of
this, notice that while the term premium raised sharply during the recession of the
late 2000’s, short-rate expectations declined abruptly to levels close to zero. The
correlation between the two series is high and negative: -51%.

Consistent with previous findings concerning SMRF (the return risk premia),
term premium is highly countercyclical. Figure 1.9 - Panel B shows lead/lag
relations between the term premium and growth rates for real GDP, industrial
production and unemployment rates. Contemporaneous correlations with real GDP,
industrial production and unemployment growth rates are -32%, -27% and 32%,
respectively, and are highly statistically significant. In addition, cross-correlations
turn negative and positive as macro variables are leaded/lagged, indicating that
bond premia implied by risks in macroeconomic fundamentals are closely related to
movements in the real economy, as suggested by theory (Campbell and Cochrane,
1999; Wachter, 2006; Bansal and Yaron, 2004; Rudebusch and Swanson, 2009).

Impulse response analysis

Duffee (2011) points out that factors whose impacts on term premium and short-rate
expectations cancel each other may be considered unspanned, as shocks have no
impact on current bond yields. As Figure 1.9 suggests, term premium and short-rate
expectations implied by expected macro risks move in opposite directions. It is then
worth verifying how shocks to macro risk factors affect these two terms separately
and, consequently, yields.

Figure 1.10 shows impulse response functions (IRFs) for the term premium,
short-rate expectations and the 10-year yield to one-standard deviation shocks in
MRF1, MRF4 and MRF6. Notice that shocks in all macro factors cause off-setting

20yn
t can be decomposed as yn

t = 1
n
Et(rt + rt+1 + ... + rt+n−1) +

1
n
[Et(rxn

t+1) + Et(rxn−1
t+2 ) + ... +

Et(rx2
t+n−1)].
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movements in the term premium and expected short-term interest rates, leaving
current yields statistically unaffected. While shocks in MRF1 and MRF4 (MRF6)
drive term premium down (up), they bring the expectations component up (down).
Following Duffee (2011), these results provide even stronger evidence that macro
risk factors are indeed unspanned by the yield curve.

It is also worth interpreting the impulse response functions shown by Figure
1.10. Notice that a positive shock in MRF1 drives term premium down by about
10 basis points after which it gradually reverts back. This is consistent with the
notion that higher expected economic activity leads to lower risk premium. A
similar but stronger effect is observed for MRF4 with term premium decreasing
by about 33 basis points. A shock in MRF6, on the other hand, causes an increase
in term premium of about 20 basis points, which is consistent with the idea that
higher upside inflation risks raise risk premium for long-term bonds as investors
will demand a higher premium to compensate for inflation risk. The magnitude of
the impacts over the expectations component are of lower magnitude and mostly
statistically insignificant.

1.6 Conclusions

I provide evidence that risks in macroeconomic fundamentals revealed from pre-
dicted distributions of future macroeconomic outcomes contain valuable information
about bond risk premia. I extract factors, referred to as macro risk factors, from
quantile-based risk measures estimated for variables closely related to business
cycles and find that they predict excess bond returns across maturities with R2s
ranging from 20% to 30%.

From macro risk factors I construct a measure of variation in bond risk premia,
referred to as “single macro risk factor”. The new single factor is highly counter-
cyclical and predicts future excess bond returns with power above and beyond that
of the Cochrane-Piazzesi and Ludvigson-Ng factors. These results provide evi-
dence that risks in macroeconomic fundamentals explain a large portion of variation
in bond risk premia, with information that is, to a large extent, unrelated to that
contained in forward rates and current macro variables.

In addition, I document that macro risk factors capture unspanned predictability
in bond excess returns, and discuss its practical implications for the identification
and estimation of the term premium component in long-term yields using affine term
structure models. Accordingly, the estimation of an affine model with unspanned
macro risk factors reveals that they carry significant prices of risk and generate



CHAPTER 1 33

time-varying and countercyclical term premium. An impulse response analysis
allows reaching similar conclusions. Shocks in all macro risk factors are found
to cause off-setting movements in term premium and expected short-term interest
rates, leaving current yields statistically unaffected.

To sum up, this study provides further support for the idea that predictability of
bond excess returns cannot be completely summarized by the yield curve. Risks in
macroeconomic fundamentals should also be taken into account.
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Table 1.1: Descriptive statistics

Notes: Panel A shows summary statistics for the estimated ex ante macroeconomic risks. Panel B shows
summary statistics for the 1-year yields and 2-year to 10-year excess bond returns. The statistics reported
are the mean, standard deviation, skewness, excess kurtosis, the p-value of a Robust Jarque-Bera (RJB) test
for normality and the 1st and 4th sample autocorrelations. Critical values for the RJB test were obtained
empirically through 4000 Monte-Carlo simulations. Mean values are reported in percentage point basis.

Panel A
in f l gd p unemp

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

q(.05) 2.224 1.616 −0.894 2.032 −0.129 0.085

Med 3.523 1.941 2.737 1.298 −0.003 0.097

q(.95) 6.090 2.213 5.383 1.361 0.236 0.204

IQR 3.866 0.954 6.278 1.476 0.366 0.125

IQS 0.302 0.215 −0.151 0.110 0.262 0.203

ip hs cpro f

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

q(.05) −5.774 5.725 −32.515 20.446 −13.654 5.800

Med 2.751 2.202 1.176 12.588 9.063 8.378

q(.95) 6.942 2.323 22.600 19.649 30.116 8.699

IQR 12.717 3.711 55.115 24.351 43.770 3.889

IQS −0.286 0.228 −0.248 0.129 −0.040 0.283

Panel B
Mean Std. Dev. Skewness Exc. Kurtosis pv-RJB ρ1 ρ4

y1 5.840 2.918 0.378 0.434 0.014 0.936 0.794

rx2 0.595 1.714 −0.244 0.331 0.214 0.754 0.202

rx3 1.038 3.121 −0.277 0.324 0.233 0.749 0.151

rx4 1.424 4.324 −0.260 0.385 0.284 0.756 0.138

rx5 1.548 5.232 −0.183 0.171 0.575 0.742 0.099

rx6 1.964 6.287 −0.157 0.300 0.624 0.752 0.077

rx7 2.031 7.144 −0.135 0.486 0.459 0.747 0.056

rx8 2.168 8.028 −0.115 0.615 0.264 0.746 0.038

rx9 2.273 8.900 −0.093 0.738 0.149 0.746 0.023

rx10 2.354 9.765 −0.068 0.847 0.076 0.745 0.010
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Table 1.2: Predictive power of macro risk factors

Notes: This table shows the predictive power of MRF and SMRF. t-stats computed using Newey-West
standard errors with six lags are reported in parentheses and R

2
refers to the adjusted-R2. Wald statistics

were also computed using Newey-West variance-covariance matrices with six lags. 95% confidence intervals
for estimated coefficients and R

2
s, and p-values for Wald statistics are reported in square brackets. These

were obtained through a residual-based block bootstrap with 4999 replications and overlapping blocks of
size equal to six. Confidence intervals for coefficients were obtained using an asymptotic refinement based
on the t-stat (percentile-t method) with bootstrapped t-stats computed using Newey-West standard errors
with six lags.

MRF1 MRF4 MRF6 SMRF R
2

Wald

rx2

0.413 −0.667 0.198 0.210 0.000

(2.287) (−4.020) (0.867) − −
[−0.01;0.84] [−1.05;−0.28] [−0.36;0.75] [0.04;0.39] [0.010]

0.241 0.210

(4.664) −
[0.12;0.36] [0.01;0.35]

rx3

0.811 −1.209 0.488 0.230 0.000

(2.463) (−4.676) (1.226) − −
[0.06;1.55] [−1.83;−0.61] [−0.43;1.39] [0.04;0.39] [0.005]

0.461 0.233

(5.063) −
[0.25;0.67] [0.02;0.36]

rx5

1.664 −1.986 1.006 0.271 0.000

(3.019) (−5.012) (1.580) − −
[0.41;3.01] [−2.93;−1.04] [−0.51;2.51] [0.06;0.41] [0.000]

0.843 0.278

(6.078) −
[0.52;1.16] [0.04;0.40]

rx7

2.554 −2.681 1.303 0.291 0.000

(3.490) (−4.918) (1.571) − −
[0.89;4.20] [−3.94;−1.39] [−0.58;3.17] [0.07;0.43] [0.000]

1.194 0.299

(6.470) −
[0.78;1.61] [0.05;0.43]

rx10

3.884 −3.534 1.620 0.306 0.000

(3.891) (−4.810) (1.526) − −
[1.52;6.22] [−5.19;−1.88] [−0.81;4.02] [0.08;0.45] [0.000]

1.667 0.313

(6.423) −
[1.08;2.22] [0.06;0.45]
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Table 1.3: Predictive power of SMRF and SMeF

Notes: This table shows the predictive power of SMRF and SMeF. t-stats computed using Newey-West
standard errors with six lags are reported in parentheses and R

2
refers to the adjusted-R2. 95% confidence

intervals for estimated coefficients and R
2
s obtained through a residual-based block bootstrap as detailed by

Table 1.2 (Notes) and Appendix 1.C are reported in square brackets.

SMRF SMeF R
2

rx2

0.212 0.125

(3.230) −
[0.06;0.36] [0.00;0.27]

0.245 −0.006 0.205

(3.386) (−0.080) −
[0.08;0.41] [−0.18;0.18] [0.02;0.36]

rx3

0.426 0.152

(3.591) −
[0.16;0.71] [0.00;0.29]

0.437 0.036 0.229

(3.557) (0.253) −
[0.16;0.73] [−0.29;0.37] [0.03;0.38]

rx5

0.819 0.200

(4.508) −
[0.40;1.24] [0.02;0.33]

0.732 0.165 0.277

(4.047) (0.783) −
[0.33;1.16] [−0.31;0.63] [0.05;0.41]

rx7

1.203 0.231

(5.134) −
[0.68;1.74] [0.04;0.35]

0.965 0.342 0.303

(4.031) (1.203) −
[0.45;1.50] [−0.30;0.98] [0.07;0.43]

rx10

1.723 0.254

(5.301) −
[1.01;2.46] [0.05;0.38]

1.275 0.585 0.320

(4.058) (1.565) −
[0.59;1.98] [−0.24;1.40] [0.08;0.45]
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Table 1.5: Evidence of MRFs as unspanned factors

Notes: This table shows the predictive/explanatory power of PCt = (PC1t ,PC2t ,PC3t)
′

and MRFt =

(MRF1t ,MRF4t ,MRF6t)
′
for rxn

t,t+4 and yn
t . Only R

2
s are provided.

PC MRF PC+MRF PC MRF PC+MRF

rx2 0.076 0.210 0.303 y2 0.999 0.325 0.999

rx3 0.076 0.233 0.303 y3 0.999 0.305 0.999

rx5 0.117 0.278 0.324 y5 0.999 0.289 0.999

rx7 0.155 0.299 0.347 y7 0.999 0.287 0.999

rx10 0.191 0.313 0.364 y10 0.999 0.283 0.999

Table 1.6: GLLS test of quantile model performance

Notes: This table shows p-values for the GLLS test of quantile model performance with specification
qzt,t+h

(τ) = β (τ)′ xt , x
′
t = (1, z

SPF,h
t , Mich Expectt , 5− year term spreadt , Baa corp spreadt). The test is

implemented for percentiles τ = 0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95.

Macro Variables (z)

tau (τ) in f l gd p unemp ip hs cpro f

0.05 1.0 1.0 1.0 1.0 0.62 1.0

0.20 1.0 1.0 1.0 1.0 1.0 1.0

0.35 1.0 1.0 1.0 1.0 0.54 1.0

0.50 1.0 1.0 1.0 1.0 1.0 1.0

0.65 1.0 1.0 1.0 1.0 1.0 1.0

0.80 1.0 1.0 1.0 1.0 1.0 1.0

0.95 1.0 1.0 1.0 1.0 1.0 1.0
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Table 1.7: Affine model - parameter estimates

Notes: This table shows the full parameters estimates for the affine model with macro risk factors MRF1,
MRF4 and MRF6. Bootstrap standard errors are shown in parentheses.

µ
′

0.497 −0.245 0.231 −0.535 0.169 0.297 µQ′
2.398 0.757 0.079

(0.988) (0.310) (0.127) (0.197) (0.274) (0.265) (0.880) (0.222) (0.223)

Φ 0.957 0.055 0.261 −0.205 0.339 −0.538 ΦQ 0.991 0.242 −0.348

(0.035) (0.242) (0.623) (0.352) (0.214) (0.217) (0.010) (0.016) (0.024)

0.015 0.752 0.843 0.194 −0.059 0.081 −0.008 0.888 0.514

(0.010) (0.074) (0.192) (0.104) (0.065) (0.066) (0.005) (0.025) (0.016)

−0.001 0.042 0.592 −0.069 0.006 −0.001 0.004 0.009 0.805

(0.004) (0.031) (0.080) (0.044) (0.027) (0.028) (0.002) (0.004) (0.023)

0.002 0.113 0.157 0.808 −0.034 0.051

(0.007) (0.048) (0.125) (0.070) (0.041) (0.045)

0.005 0.021 −0.396 0.075 0.833 0.077

(0.009) (0.062) (0.166) (0.090) (0.056) (0.057)

−0.018 −0.114 0.516 0.179 −0.090 0.727

(0.009) (0.065) (0.166) (0.094) (0.055) (0.061)

Σ 4.204 −1.012 0.026 −0.288 0.184 0.175 δ0 0.016

(2.146) (0.833) (0.090) (0.246) (0.295) (0.264) (0.000)

−1.012 0.974 −0.237 0.414 −0.389 −0.075 δ
′
1 0.083 −0.155 0.144

(0.833) (0.315) (0.035) (0.099) (0.105) (0.096) (0.007) (0.008) (0.008)

0.026 −0.237 0.115 −0.136 0.140 0.007 λ
′
0 −0.927 −1.708 −1.461

(0.090) (0.035) (0.020) (0.036) (0.039) (0.038) (0.440) (0.714) (1.059)

−0.288 0.414 −0.136 0.313 −0.193 −0.079 λ1 −0.017 −0.091 0.297 −0.100 0.165 −0.262

(0.246) (0.099) (0.036) (0.660) (0.347) (0.210) (0.011) (0.066) (0.216) (0.080) (0.075) (0.078)

0.184 −0.389 0.140 −0.193 0.436 0.022 0.017 −0.212 0.557 0.017 0.026 −0.057

(0.295) (0.105) (0.039) (0.347) (0.987) (0.352) (0.007) (0.074) (0.225) (0.076) (0.071) (0.070)

0.175 −0.075 0.007 −0.079 0.022 0.342 0.000 −0.116 −0.324 −0.106 0.056 −0.065

(0.263) (0.096) (0.038) (0.210) (0.352) (0.532) (0.013) (0.092) (0.325) (0.116) (0.114) (0.111)
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Figure 1.1: Predicted conditional distributions

Notes: charts show predicted conditional distributions for inflation and growth in the real GDP, unem-
ployment, industrial production, housing starts and corporate profits using quantile models estimated for
τ = 0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95. The prediction horizon is set equal to four (h = 4) and

the predictors used are x
′
t =
(

1, z
SPF,h
t , Mich Expectt , 5− year term spreadt , Baa corp spreadt

)
. Red lines

indicate the predicted median and blue lines indicate the realized values.
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Figure 1.5: Correlations of ex ante macro risks and GDP growth

Notes: graphs show Pearson’s correlations between the estimated ex ante macroeconomic risks and GDP
growth. Circles indicate statistical significant correlations at the 5% level.
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Figure 1.7: Comovements of macro risk factors and key ex ante macro risks

Notes: Standardized units are reported. Shadings areas denote NBER dated recessions. MRF1, MRF4 and
MRF6 denote the first, fourth and sixth macro risk factors. Unemp-Med denotes the unemployment median,
Housing-IQS and Inflation-IQS denote the housing starts and inflation interquantile skewness, respectively.
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Figure 1.8: Bond risk premium estimate

Notes: Panel A shows the estimated SMRF, a measure of the average risk premia across maturities. Shadings
areas denote NBER dated recessions. The risk premium is smoothed using exponential-weighted moving
average. In Panel B graphs show lead/lag correlations between the non-smoothed risk premium and growth
rates of key economic activity indicators. The risk premium is at date t while growth rates are at time t + l,
where l refers to lead (if negative) and lags (if positive). Leads and lags are shown in an annual frequency.
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Figure 1.9: 10-year yield decomposition

Notes: Panel A shows NBER dated recessions and time series for the 10-year yield (solid black), 10-year
short-rate expectations (dotted blue) and 10-year term premium (solid blue) estimated from the affine term
structure model with macro risk factors. The term premium is smoothed using exponential-weighted moving
average. In Panel B graphs show lead/lag correlations between the non-smoothed 10-year term premium and
growth rates of key economic activity indicators. The term premium is at date t while growth rates are at time
t + l, where l refers to lead (if negative) and lags (if positive). Leads and lags are shown in annual frequency.
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Figure 1.10: Impulse response functions

Notes: This figure shows impulse response functions for the 10-year term premium, 10-year average short-
rate expectations and 10-year yield to one standard-deviation shocks in MRF1, MRF4 and MRF6. 95%
percent confidence intervals are shown as dotted lines.
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Appendices

1.A. Quantile regression estimation

Given zt,t+4 = β ′xt + et , the τth quantile regression estimator β̂ (τ) minimizes the
following asymmetric loss function

VT =
1
T

T

∑
t=1

ρτ

(
zt,t+4 −β ′xt

)
=

1
T

[
τ ∑

zt,t+4≥β ′xt

∣∣zt,t+4 −β ′xt

∣∣+(1− τ) ∑
zt,t+4<β ′xt

∣∣zt,t+4 −β ′xt

∣∣
]

where ρτ(e) = (τ − 1{e<0})e is the check function. β̂ (τ) does not have a closed
form, so the minimization problem is solved using the Barrodale-Roberts simplex
algorithm for L1 (Least Absolute Deviation) regressions described in Koenker and
d’Orey (1987, 1994). In order to guarantee the monotonicity of Fzt,t+4 , a set of
quantile regressions as (1.6) is first estimated for τ = 0.01,0.02, ...,0.99 and then
the “rearrangement” procedure of Chernozhukov, Fernandez-Val and Galichon
(2010) is applied across quantiles. The “rearrangement” procedure is performed as
follows. Starting with a model qzt,t+4 (τ) for the conditional quantiles of zt,t+4 given
xt , estimate the conditional quantile regression q̂zt,t+4 (τ). Then use the estimated
curve to construct a new random variable z∗t,t+4 ≡ q∗zt,t+4

(U), where U ∼ iid U (0,1)
is a uniform random variable on (0,1), and estimate its quantile function q∗zt,t+4

(τ)

as

q∗zt,t+4
(τ)= F̂−1

zt,t+4
(τ)= in f

{
d : F̂zt,t+4 (d)≥ τ

}
with F̂zt,t+4 (d)≡

ˆ 1

0
1
{

q∗zt,t+4
(τ)≤ d

}
dτ

which is naturally monotone. Besides guaranteeing the monotonicity of Fzt,t+4 across
quantiles, this procedure also delivers more precisely estimated quantile curves.
Chernozhukov, Fernandez-Val and Galichon (2010) show that a “rearranged” curve
is closer to the true quantile curve in finite samples than the original one with
estimation errors being reduced by up to 14%.

1.B. Macro risk factors estimation

It is assumed that each of the 18 estimated macro risks contained in m̂t has a factor
structure, i.e.

m̂lt = λ ′
l MR ft + elt
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where MR ft is an s×1 dimensional vector of common macro risk factors, λl is a
s×1 vector of factor loadings and elt denotes an idiosyncratic component. In matrix
notation,

M̂ = MR f Λ+ e

where M̂ is a T ×18 matrix, MR f is an T × s matrix of latent macro risk factors,
Λ is an s×18 matrix of factor loadings and e is a T ×18 matrix of idiosyncratic
components.

As MR ft is not observed, it needs to be replaced by estimates M̂R f t , which is
obtained via standard PCA. I start by allowing for s factors in the estimation. Then
under the restriction that Λ

′
Λ/18= Is, the factor loadings matrix Λ̂=

(
λ̂1, ..., λ̂18

)
is

estimated by
√

18 times the eigenvectors corresponding to the s largest eigenvalues
of the matrix M̂

′
M̂. The corresponding factor estimates are then given by M̂R f t =

M̂Λ
′
/18. As it is usually recommended in factor analysis, all variables in M̂ are

standardized prior to estimation. The dimension s of M̂R f t is set using Bai and
Ng (2002) information criteria, while M̂RF t is optimally selected using SBIC after
running rxn

t,t+4 on all the possible 2s combinations of factors in M̂R f t .

1.C. Small Sample Inference

The small-sample performance of test statistics in forecasting regressions with
overlapping data is especially important when the right-hand-side variables are
highly serially correlated (Bekaert, Hodrick and Marshall, 1997). Even though
factors in the vector M̂RF t are not as highly persistent as forward rates, for example
(see Table A.1.1), a bootstrap analysis is performed. I use a residual-based block
bootstrap to assess the small sample properties of test statistics. Bootstrap samples
of rxn

t,t+4 are obtained by creating bootstrap samples for factors MRF1, MRF4,

MRF6, SMRF, SMeF, LN and CP in the first place. Let m̂lt = λ̂ ′
liM̂R f t + êlt , where

λ̂l and M̂R f t are the principal components estimates of λl and MR ft , and êlt is the
estimated idiosyncratic error. For each l = 1, ...,18, I estimate an AR(1) model
êlt =ψ0+ψ1êlt−1+ult , sample u∗it from ult by letting u∗l1 = ul1 and use the estimated
autoregression to obtain ê∗lt . With ê∗lt in hands it is then straightforward to build
m̂∗

lt from m̂∗
lt = λ̂ ′

l M̂R f t + ê∗lt , yielding the T ×18 panel M̂∗. Applying PCA to M̂∗

yields M̂R f
∗
t and M̂RF

∗
t =

(
M̂RF

∗
1t ,M̂RF

∗
4t ,M̂RF

∗
6t

)′

, which is then used to obtain

ŜMRF
∗
t . Applying the same procedure on the panel of macroeconomic variables pro-

vided by Ludvigson and Ng (2010) and on the panel of expectations medians, yields
LN∗

t and ŜMeF
∗
t . CP∗

t is obtained by first approximating it by an AR(1) process, and



52 ESSAYS ON MACRO-FINANCIAL LINKAGES

then sampling the residuals of the autoregression. Bootstrap samples of rxn
t,t+4 can

now be generated from rxn∗
t,t+4 = δ̂0+ δ̂ ′G∗

t +ε∗t,t+4, where G∗
t is a set of bootstrapped

regressors, ε∗t,t+4 is sampled from εt,t+4 = rxn
t,t+4 − δ̂0 − δ̂ ′G∗

t using overlapping

blocks of size equal to six and δ̂ are the least squares estimates reported in Table 1.2,
1.3 and 1.4. After running the regression of rxn∗

t,t+4 on G∗
t , the bootstrap coefficients

δ̂ ∗
0 and δ̂ ∗ are obtained. This procedure is repeated 4999 times producing empirical

distributions for estimated parameters, t-statistics, Wald statistics and R
2
s. In order

to be valid, the bootstrap t and Wald statistics were computed as t∗j =
δ̂ ∗

j −δ̂ j

s
(

ρ̂∗
j

) and

Wald∗ =
(

δ̂ ∗− δ̂
)′

V
(

δ̂ ∗
)−1(

δ̂ ∗− δ̂
)

, where s
(

δ̂ ∗
j

)
and V

(
δ̂ ∗
)

were obtained
using a Newey-West HAC estimator with truncation lag equal to six. Asymptotically
refined confidence intervals for δ̂ j are obtained by computing a percentile-t 95%

confidence interval such as
[
δ̂ j −

∣∣t∗0.975

∣∣× s
(

δ̂ j

)
; δ̂ j +

∣∣t∗0.025

∣∣× s
(

δ̂ j

)]
.

1.D. Data

Table A.1.2 describes the data used in this study. It provides the name of each
variable with its respective code, period, a short description and the data source.
In order to match the data obtained from the Survey of Professional Forecasters
(SPF) some of the macro variables were constructed by merging different series. For
example, gd p was built from merging Real GNP - for the period 1968Q4-1991Q4 -
with Real GDP - for the period 1992Q4-2011Q4. The real-time macro data provided
by the Philadelphia Fed is merged already, except cpro f .

1.E. Controlling for the information in xt

This appendix presents results on the predictive power of SMRF when controling
directly for the information in xt . In order to guard against the possibility of overfit-
ting in out-of-sample forecasting the information in predictors xt is summarized by
estimating predictors factors, Fx, and a single predictors factor, SFx, by applying
PCA to the T ×9 panel of original predictors formed by the six consensus forecasts
z

SPF,h
t , MCEI, 5yTS and BaaCS. Bai and Ng (2002) indicates that this panel is

well described by seven factors from which three (first, third and fifth principal
component) were formally chosen using SBIC. These three factors form the vector
Fx. Factor SFx is a linear combination of Fx. It not only provides a variable that
can directly be used to control for the information in the original predictors, but also
guards against the possibility of overfitting in out-of-sample forecasting. Results of
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this exercise are provided by Tables A.1.3. Results show that although SFx contains
high predictive power, adding SMRF to regressions increases R2s substantially to
levels almost identical to the ones shown by Table 1.2, with statistical significance
of SFx also shifting to SMRF. These results indicate that the high predictability
found is, to a large extent, due to the extra information obtained from the estima-
tion of Med, IQR and IQS, which capture the different features of the conditional
distribution of the macro variables.

1.F. Alternative estimation procedures for IQR and IQS

The baseline quantile regression estimation used in the paper relies on the modified
Barrodale and Roberts algorithm for L1 (or Least Absolute Deviation) regressions
described in Koenker and d’Orey (1987, 1994) in conjunction with the monotone
rearrangement procedure of Chernozhukov, Fernandez-Val and Galichon (2010).
It is well known in the literature of quantile estimation that regression quantiles
can show instabilities at tails due to paucity and sparsity of data (He, 1997; Wang,
Li and He, 2012). For this reason I present results for two alternative estimation
procedures:

(i) qzt,t+4 (τ) is estimated for τ = 0.10 using the baseline approach. Using τ =

0.10 places less weight on extreme data points and assures more robust estimated
quantile regressions;

(ii) qzt,t+4 (τ) is estimated for τ = 0.05 using the approach proposed by Wang, Li
and He (2012) (WLH hereafter) which integrates quantile regression and Extreme
Value Theory and is suitable for quantile curves at tails. This procedure is explained
below.

Wang, Li and He (2012) procedure explained

The estimation is performed without assuming common slopes for qzt,t+4 (τ). I
focus here on the procedure for the estimation of conditional high quantiles since a
low quantile of zt,t+4 can be viewed as a high quantile of −zt,t+4. First I define a
sequence τ j = j/(T +1), j = T −b, ...,v, where v = T − [T a] with [T a] denoting
the integer part of T a, T = 169 is the sample size and a > 0 and b > a are constants
fixed as a = 0.1, as suggested by Wang, Li and He (2012), and b = 25. For each
j = T −b, ...,v I estimate β (τ j) in (1.6) following the baseline approach. Then, for
each t = 1, ...,T I define q̂ j = β̂ (τ j)

′
xt and estimate the parameter γ as

γ̂ =
1

b− [T a]

k

∑
j=[T a]

log
q̂T− j

q̂T−b

(1.20)
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The robust quantile function qzt,t+4 (τs)
⋆ is then obtained as q̂zt,t+4 (τs)

⋆=
(

1−τT−b

1−τs

)γ̂
q̂T−b,

where τs is the percentile of interest. In our case, τs = 0.05.

Results using alternative estimation procedures

I show results predictive results for regressions with the following specifications: (i)
MRF, (ii) SMRF, (iii) SMRF and CP, (iv) SMRF and LN and (v) SMRF, CP and
LN. I only provide results with asymptotic inference. Tables A.1.4 and A.1.5 show
results for the baseline approach and percentile equal to 0.10. The optimal vector of
macro risk factors selected by SBIC now includes the fifth factor instead of the sixth
one. Statistical significance of MRF and SMRF and R2s remain very high for all
bond maturities and results are comparable to the ones shown in tables 1.3 and 1.4.
Tables A.1.6 and A.1.7 show results for the WLH approach. The SBIC now selects
four factors as predictors: MRF1, MRF4, MRF5 and MRF8. Notice that with the
exception of MRF8, all factors are highly statistically significant, and the same is
true for Wald statistics. The predicitive powers of MRF and SMRF remain very
high with R2s ranging from 0.17 to 0.30. When comparing the predictive power of
SMRF with LN and CP, results are only a bit weaker than the ones shown in Table
1.4, but still high significance and high R2s are obtained, especially from the 5-year
maturity. These results corroborate my previous findings.
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Table A.1.1: Sample autocorrelations

M̂RF1 M̂RF4 M̂RF6 y1 f w5 f w10 F1 F2 F6

ρ1 0.88 0.79 0.78 0.94 0.94 0.95 0.70 0.49 0.18
ρ3 0.58 0.46 0.55 0.86 0.88 0.89 0.25 0.33 0.22
ρ5 0.26 0.28 0.46 0.75 0.81 0.82 0.03 0.09 0.03
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Table A.1.3: Predictive power of SMRF and SFx
Notes: This table shows the predictive power of SMRF and SFx. t-stats computed using Newey-West
standard errors with six lags are reported in parentheses and R

2
refers to the adjusted-R2.

SMRF SFx R
2

rx2

0.225 0.126

(3.157) −
0.224 0.027 0.206

(2.911) (0.291) −

rx3

0.436 0.144

(3.243) −
0.423 0.063 0.230

(3.045) (0.361) −

rx5

0.816 0.180

(3.567) −
0.748 0.154 0.277

(3.478) (0.541) −

rx7

1.196 0.208

(3.914) −
1.003 0.310 0.302

(3.517) (0.792) −

rx10

1.722 0.232

(4.078) −
1.328 0.548 0.319

(3.607) (1.080) −
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Table A.1.4: Predictive Power of Macro Risk Factors - baseline with τ = 0.10
Notes: This table shows the predictive power of MRF and SMRF when qzt,t+4 (τ) is estimated using τ = 0.10.
t-stats computed using Newey-West standard errors with six lags are reported in parentheses. Wald statistics
were also computed using Newey-West variance-covariance matrices with six lags.

MRF1 MRF4 MRF5 SMRF R
2

Wald

rx2

0.397 −0.494 0.447 0.192 0.000

(2.002) (−2.341) (2.034) − −
0.228 0.182

(4.080) −

rx3

0.803 −0.864 0.903 0.214 0.000

(2.302) (−2.366) (2.357) − −
0.445 0.210

(4.444) −

rx5

1.682 −1.223 1.729 0.255 0.000

(2.921) (−2.250) (2.772) − −
0.832 0.262

(5.306) −

rx7

2.605 −1.416 2.487 0.282 0.000

(3.371) (−1.929) (2.998) − −
1.195 0.291

(5.803) −

rx10

3.954 −1.633 3.502 0.310 0.000

(3.756) (−1.686) (3.188) − −
1.700 0.315

(5.879) −
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Table A.1.6: Predictive Power of Macro Risk Factors - WLH
Notes: This table shows the predictive power of MRF and SMRF when qzt,t+4 (τ) is estimated using τ = 0.05
and the WLH approach. t-stats computed using Newey-West standard errors with six lags are reported in
parentheses. Wald statistics were also computed using Newey-West variance-covariance matrices with six
lags.

MRF1 MRF4 MRF5 MRF8 SMRF R
2

Wald

rx2

0.432 −0.555 0.263 0.058 0.175 0.000

(2.304) (−3.550) (1.977) (0.312) − −
0.225 0.166

(3.802) −

rx3

0.860 −0.958 0.534 0.242 0.187 0.000

(2.457) (−3.800) (2.309) (0.704) − −
0.436 0.190

(4.075) −

rx5

1.758 −1.451 0.987 0.768 0.230 0.000

(3.010) (−4.072) (2.556) (1.346) − −
0.823 0.242

(4.718) −

rx7

2.700 −1.809 1.537 1.117 0.262 0.000

(3.545) (−3.928) (2.937) (1.529) − −
1.195 0.275

(5.245) −

rx10

4.076 −2.286 2.196 1.610 0.292 0.000

(3.983) (−3.728) (3.155) (1.739) − −
1.711 0.302

(5.405) −
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Chapter 2

Out-of-sample bond excess returns

predictability1

Rafael B. De Rezende

ABSTRACT. This article investigates the out-of-sample predictability of bond excess returns. I
assess the statistical and economic significance of forecasts generated by empirical models based
on forward interest rates, macroeconomic variables and risks in macroeconomic outcomes. Results
suggest that macroeconomic variables, risks in macroeconomic outcomes as well as the combination
of these different sources of information outperform a constant model of no-predictability. These
results are confirmed when using macroeconomic data available in real-time, suggesting that the
predictability of bond returns is not driven by data revisions.

Keywords: out-of-sample; bond risk premia; statistical predictability; economic predictability.
JEL Classifications: G11, G12, E43, E44

2.1 Introduction

Empirical research in financial economics has revealed significant predictable
variation in expected excess returns of US government bonds, a violation of the
expectations hypothesis. Understanding this variation and its relationship with the
economy has been an important question in economics and finance, and an active
area of ongoing research. Fama (1984), Fama and Bliss (1987), Stambaugh (1988)
and Cochrane and Piazzesi (2005, 2008) find that yield spreads and forward rates

1I would like to thank Magnus Dahlquist, Lars E.O. Svensson and Michael Halling for comments and
suggestions that significantly improved this paper. I am also grateful to Ádám Faragó, Roméo Tédongap,
Erik Hjalmarsson, Andrejs Delmans, Nikita Koptyug and Ricardo Aliouchkin for comments and suggestions.
I kindly thank the Swedish Bank Research Foundation (BFI) for financial support.
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predict excess bond returns with R2s ranging from 10% to 40%. Ludvigson and Ng
(2009) and Cooper and Priestley (2009) document that macroeconomic variables
carry information about bond risk premia not contained in financial variables. De
Rezende (2014) finds that measures of risks in macroeconomic outcomes provide
information about bond risk premia variation that is not embedded in forward rates
and macroeconomic variables.

In-sample predictive power, however, does not necessarily imply out-of-sample
predictability (Inoue and Kilian, 2004, 2006). Thornton and Valente (2012) show
that, although working quite well in-sample, the forward rate factor of Cochrane
and Piazzesi (2005) generates poor out-of-sample bond excess returns forecasts.
Similarly, in the context of equity premium prediction, Welch and Goyal (2008)
show that a long list of predictors commonly found in the literature are unable to
deliver out-of-sample forecasts that are consistently superior to a simple random
walk model.

This paper contributes to the existing literature by examining the failure of the
expectation hypothesis of the term structure of interest rates in an out-of-sample
setting. More specifically, I look at the predictive abilities of the forward rate factor
of Cochrane and Piazzesi (2005, CP hereafter), the macro factor of Ludvigson and
Ng (2009, LN hereafter) and the macro risk factor of De Rezende (2014, SMRF
hereafter) and compare them to a constant model of no-predictability in a genuine
out-of-sample exercise.

Since statistical predictability does not imply economic predictability (Leitch
and Tanner, 1991; Della Corte, Sarno and Thornton, 2008; Della Corte, Sarno, and
Tsiakas, 2009), I also assess the economic value of the three predictors. The analysis
is based on a classical portfolio choice problem, in which I consider a risk-averse
investor who exploits the predictive power of factors to invest in a portfolio of bonds.
I quantify the portfolio management fee that the investor would be willing to pay to
have access to the additional information available in a predictive regression model
relative to a constant model. The other measures of portfolio performance I consider
are the Sharpe ratio and the risk-adjusted measure proposed by Goetzmann et al.
(2007), which has is shown to be robust to a number of manipulations.

Results reveal that the factors LN and SMRF are largely more accurate than
the constant model of no-predictability. While LN performs quite well in shorter
maturities, SMRF performs best in intermediate and long maturities. For instance, I
find that prediction errors are reduced by up to 29% when relying on SMRF. The
LN factor, in turn, delivers predictions that are up to 12% more accurate than the
constant model. More interestingly, the combination of the two factors generates
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improvements ranging from 15% to 35%. The CP factor, on the other hand, is shown
to perform poorly and does not beat the constant model for any bond maturity. The
combination of the three factors, however, increases predictive power substantially
with prediction errors being reduced by levels ranging from 20% to 37%. These
results provide further evidence that the three factors capture somewhat independent
information about bond risk premia variation, as documented by De Rezende (2014)
in an in-sample exercise.

When evaluated economically, results indicate that SMRF delivers utility gains
that are around 3% superior than the constant model. Slightly lower numbers are
found for the LN factor, but combining the two variables increases utility gains
to levels up to 3.7%. Similar results are found for the other measures of portfolio
performance. Consistent with the statistical analysis, the CP factor shows a poor
performance, which is in line with the findings by Thornton and Valente (2012).
Improvements concerning the CP factor are only obtained when augmenting its
regressions with factors SMRF, LN or both.

These results are confirmed when using macroeconomic data available in real-
time. Although the use of revised macroeconomic data overstate the information set
available to investors at the time predictions are made, I document that the predictive
power of a SMRF constructed in real-time is not strongly affected, suggesting that
the predictability of bond returns is not necessarily driven by data revisions. Ghysels,
Horan and Moench (2012) conclude differently when relying on the Ludvigson and
Ng (2009) macro factors.

This paper is part of large literature investigating the failure of the expectations
hypothesis of the term structure of interest rates (Fama, 1984; Fama and Bliss,
1987; Stambaugh, 1988; Cochrane and Piazzesi, 2005; Ludvigson and Ng, 2009;
Cooper and Priestley, 2009; Huang and Shi, 2012; Cieslak and Povala, 2012; among
others). Although Thornton and Valente (2012) find no evidence of time-variation
in out-of-sample bond risk premia based on forward rates, this paper identifies two
important sources of out-of-sample time variation in bond risk premia: current
macroeconomic conditions and risks in macroeconomic outcomes.

This paper also relates to a literature examining time-variation in risk premium
in equity markets. Welsh and Goyal (2008) investigates the predictive power
of a large number of financial and macroeconomic based variables and find no
systematic evidence of out-of-sample excess equity return predictability. Campbell
and Thompson (2008), Rapash, Strauss and Zhou (2010), Henkel, Martin and
Nardari (2011) and Dangl and Halling (2012) investigate the same set of predictors
applying different econometric models and find evidence of predictability in an



66 ESSAYS ON MACRO-FINANCIAL LINKAGES

out-of-sample setting. Differently, this paper investigates variation in risk premia
in government bond markets and find evidence of statistical as well as economic
out-of-sample predictability.

The rest of the paper is organized as follows. The next section describes the
framework for predicting excess bond returns; section three describes the framework
used to assess the bond return predictions; the forth section presents the main results
of the paper; and the last section concludes.

2.2 Predicting bond excess returns

In line with the existing literature, I focus on one-year log returns on an n-year
zero-coupon Treasury bond in excess of the annualized yield on a 1-year zero
coupon bond. More specifically, for t = 1, ...,T , one-year excess returns are denoted
as rxn

t,t+4 = rn
t,t+4 − y1

t =−(n−1)yn−1
t+4 +nyn

t − y1
t , where rn

t,t+4 is the one-year log
holding-period return on an n-year bond purchased at time t and sold one year after
at time t +1 year and yn

t is the log yield on the n-year bond.
Several studies have uncovered that expected bond excess returns vary over

time and that they are a quantitatively important source of fluctuations in the bond
market. In this study, I selected three models that have been successful in explaining
variation in bond excess returns. More specifically, I look at the predictive power
of the single forward factor of Cochrane and Piazzesi (2005), the macro factor of
Ludvigson and Ng (2009) and the macro risk factor of De Rezende (2014).

As in Cochrane and Piazzesi (2008), CP was formed from a linear regression of
average excess returns (across maturities ranging from 2-year to 10-year) on the
1-year yield and forward rates from two to ten years,

rxt,t+4 = δ0 +δ1y1
t + ...+δ10 f w10

t + εt,t+4

CPt = δ̂ ′ f wt

(2.1)

where f wn
t is the n-year forward rate defined as f wn

t =−(n−1)yn−1
t +nyn

t .
LN was obtained from a linear combination of macro factors extracted from a

large macroeconomic data set (131 variables). When forming LN I used the data
set provided by Ludvigson and Ng (2010) but I set October 1968 as the starting
date to enable direct comparisons with the other predictors studied in the paper.2

Quarterly frequency was obtained by selecting observations for the second month of
each quarter. LN was then constructed by running the average bond returns on the

2The data set was downloaded from Sydney C. Ludvigson’s web page:
http://www.econ.nyu.edu/user/ludvigsons/.
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best subset of macro factors selected using Schwarz (1978) Bayesian information
criteria (SBIC),

rxt,t+4 = ϕ ′Ft + εt,t+4

LNt = ϕ̂ ′Ft

(2.2)

where ϕ̂ is a line vector of estimated parameters and Ft is a column vector of macro
factors estimated by Principal Component Analysis, where I also disregard the use
of hats to ease notation.3

The single macro risk factor of De Rezende (2014), SMRF, was obtained from a
linear combination of macro risk factors, as specified in De Rezende (2014). These
are obtained by estimating a factor model on a set of measures of macroeconomic
risks estimated from quantile regressions and that capture expectations, uncertainty
and downside (upside) risks for six key US macro variables. SMRF was constructed
by running the average bond returns on the best subset of macro risk factors selected
optimally using SBIC,

rxt,t+4 = θ0 +θ1MRF1t +θ2MRF4t +θ3MRF6t + εt,t+4

SMRFt = θ̂ ′MRFt

(2.3)

where θ̂ is a line vector of estimated parameters and MRFt is a column vector of
macro risk factors also estimated by Principal Component Analysis.

Bond excess returns can then be predicted by estimating the following regression
by OLS,

rxn
t,t+4 = α0 +α ′Zt + εt,t+4 (2.4)

where Zt can assume different forms: SMRFt , CPt , LNt , SMRFt +CPt , SMRFt +

LNt , CPt +LNt , SMRFt +CPt +LNt .
When α = 0 bond excess returns are not predictable and are constant over time.

This model is consistent with the expectations hypothesis of the term structure of
interest rates and is a natural candidate for testing its validity in an out-of-sample
setup.

3Following Ludvigson and Ng (2009) I also included F3
1t in the set of macro factors.



68 ESSAYS ON MACRO-FINANCIAL LINKAGES

2.3 Assessing bond excess returns predictions

2.3.1 The statistical approach

The predictors evaluated are SMRF, CP, LN and their respective combinations. I
conduct several model comparisons. First, I assess the incremental predictive power
of each predictor and their respective combinations relative to a constant model of
no-predictability. In the second round of comparisons I test whether adding a factor
to a specific regression increases its predictive power. Ludvigson and Ng (2009)
shows that including LN in a regression with the CP factor increases out-sample
predictability substantially. In this paper, I test whether adding SMRF to CP, LN
and CP+LN regressions increases their predictive power. In this case, I compare the
out-of-sample forecasting performance of an “unrestricted” specification including
SMRF and the other predictors to the performance of a “restricted” model (the null)
which includes only CP, LN or both.

It is important to clarify how this exercise is implemented. The first estimation
window uses data from 1968Q4 to 1989Q1, meaning that forecasts of excess
bond returns were generated for the period 1990Q1 - 2011Q4. I implement a
recursive forecasting scheme in which all parameters are re-estimated as a new
observation becomes available. In each recursion, factors used in the construction
of SMRF and LN are also re-estimated and picked optimally (using SBIC), taking
into consideration the possibility that different factors may be chosen in different
samples. When the LN factor is included in the set of predictors, the out-of-sample
portion of data ends at 2007Q4.

For both evaluations I use the out-of-sample R2 statistic, R2
oos, suggested by

Campbell and Thompson (2008). The R2
oos statistic measures the reduction in Mean

Squared Prediction Error (MSPE) obtained with a predictor based (“unrestricted”)
model relative to the constant (“restricted”) model. Thus, when R2

oos > 0, the
predictor based (“unrestricted”) model outperforms the constant (“restricted”) model
according to the MSPE metric.4

A more rigorous comparison, however, can be assessed by relying on the MSPE-
adjusted test statistic proposed by Clark and West (2007) (CW hereafter) and the
MSE-F statistic of equal forecast performance of McCracken (2007) (MC hereafter),

4The R2
oos statistic is given by R

2, j
oos = 1− ∑

T
t=R

(
rxn

t,t+4−r̂x
n, j
t,t+4

)2

∑
T
t=R

(
rxn

t,t+4−r̂x
n,b
t,t+4

)2 , where r̂x
n, j
t,t+4 is a forecast generated from

model j = SMRF,CP, LN, SMRF +CP, SMRF +LN,CP+LN, SMRF +CP+LN and r̂x
n,b
t,t+4 is the forecast

generated from the benchmark, with b = constant, CP, LN, CP+LN. R is the length of the initial sample
window used for estimating parameters and T the total sample size.
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which are both suitable for cases when one is comparing forecasts generated from
nested models. In this case, a rejection of the null hypothesis implies that additional
regressors contain out-of-sample predictive power regarding rxn

t,t+4.
The advantage of relying on the MSPE-adjusted test of CW, however, is that it

corrects for finite sample bias in MSPE comparison between nested models. The
correction accounts for the fact that when considering two nested models, the smaller
model has an unfair efficiency advantage relative to the larger one because it imposes
zero parameters that are zero in population, while the alternative introduces noise
into the forecasting process that will, in finite samples, inflate the MSPE. Without
correcting the test statistic the researcher may, therefore, erroneously conclude that
the smaller model is better, resulting in size distortions where the larger model is
rejected too often. The MSPE-adjusted statistic makes a correction that addresses
this finite sample bias, and the correction is why it is possible for the larger model to
outperform the benchmark even when the computed MSPE differences are positive.

2.3.2 The economic value approach

Statistical predictability does not mechanically imply economic predictability as it
does not explicitly account for the risk borne by an investor over the out-of-sample
period (Leitch and Tanner, 1991; Della Corte, Sarno and Thornton, 2008; Della
Corte, Sarno, and Tsiakas, 2009). It is then useful to also assess the economic
value of predictors relative to the constant model of no-predictability using an asset
allocation framework. Here, I closely follow the work by Thornton and Valente
(2012) who evaluate the economic value of forward rates.

The analysis is based on a classical portfolio choice problem, in which I consider
an investor who exploits the predictability of excess returns to optimally invest in a
portfolio comprising J+1 bonds: a risk-free 1-year bond and J risky n-year bonds.
The investor constructs a dynamically rebalanced portfolio by choosing weights to
maximize the trade-off between mean and variance in the portfolio return. More
specifically, at each date t the investor solves the following problem,

max
wt

w
′
tµt,t+4 −

ρ

2
w

′
t ∑t,t+4wt (2.5)

with solution equal to wt =
1
ρ ∑

−1
t,t+4 µt,t+4, where wt =

(
w2

t , ...,w
10
t

)′
is the J × 1

vector of weights on the risky bonds, µt,t+4 and ∑t,t+4 are the conditional expectation
and the conditional variance-covariance matrix of the J×1 vector of excess bond
returns rxt,t+4 and ρ is a parameter governing the degree of investor’s risk aversion.

I limit the weights for each of the n-year risky-bonds by −1 ≤ wn
t ≤ 1 to



70 ESSAYS ON MACRO-FINANCIAL LINKAGES

avoid extreme investments (Welsh and Goyal, 2008; Dangl and Halling, 2012),
but allow for the full proceeds of short sales (Vayanos and Weill, 2008; Thornton
and Valente, 2012). The weight on the 1-year bond is equal to 1−w

′
tι , where ι

is a J × 1 vector of ones. Conditional expected bond excess returns, µt,t+4, are
generated using the constant model of no-predictability and various other predictor
based models. Volatility forecasts are obtained by assuming that the conditional
covariance matrix of the residuals of each model, ∑t,t+4 = E

(
εt,t+4ε

′
t,t+4

)
with

εt,t+4 =
(

ε2
t,t+4, ...,ε

10
t,t+4

)
, is constant up to time t, ∑̂t,t+4 = ∑̂. Although simple,

this approach works quite well in practice (Thornton and Valente, 2012).
The economic value of predictors is assessed by using power utility in wealth as

in Campbell and Viceira (2002).5 The average utility of the investor is then given by

U (·) = 1
T −R

T

∑
t=R

[
r

p
t,t+4 −

(ς −1)
2

w
′
t ∑t,t+4wt

]
(2.6)

where r
p
t,t+4 = y1

t +w
′
tµ t,t+4 is the log return on the bond portfolio and ς denotes

investor’s degree of relative risk aversion (RRA), which plays the same role as ρ in
(15) and is set such that ρ = ς −1. R is the length of the initial window used for
estimating parameters and T the total sample size.

As in Campbell and Thompson (2008) and Rapash, Strauss and Zhou (2010),
the economic value of models is obtained by evaluating the average utility gain,
UG, of investing in a portfolio constructed using model j relative to a portfolio built
using the constant model, that is,

UG j =
T

∑
t=R

[
r

p
j,t,t+4 −

(ς −1)
2

w
′
j,t ∑ j,t,t+4

wj,t

]
−

T

∑
t=R

[
r

p
c,t,t+4 −

(ς −1)
2

w
′
c,t ∑c,t,t+4

wc,t

]
(2.7)

where j = SMRF,CP, LN, SMRF +CP, SMRF +LN,CP+LN, SMRF +CP+LN

and c refers to the constant model. The utility gain can be interpreted as the
portfolio management fee that an investor would be willing to pay to have access to
the additional information available in a predictive regression model relative to the
information in the historical average of the bond premium alone.

Another frequently used measure of performance in mean-variance analysis is
the Sharpe ratio. In this paper, I follow Sharpe (1994) and compute a modified
version of the original ratio known as Information ratio (IR), which is defined as the
ratio of portfolio returns above the benchmark (the constant) to its volatility, that is,

5Results using quadratic utility are not qualitatively different.
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IR j =
1

T −R

T

∑
t=R

(
r

p
j,t,t+4 − r

p
c,t,t+4

)

√
var
(

r
p
j,t,t+4 − r

p
c,t,t+4

) (2.8)

However, while Sharpe ratios are commonly used, they exhibit some drawbacks.
Abnormalities like excess kurtosis, outliers or skewness on the distribution of returns
can be problematic for the statistic, as standard deviation computation does not have
the same effectiveness when these problems exist. Also they can be manipulated
in various ways (Goetzmann et al., 2007). As an alternative, I follow Thornton
and Valente (2012) and Goetzmann et al. (2007) and also compute a measure of
risk-adjusted performance of predictors’ based portfolios relative to the constant
strategy,

GISW j =
1

(2− ς)



log


 1

T −R

T

∑
t=R

(
r

p
j,t,t+4

1+ y1
t+4

)2−ς




− log


 1

T −R

T

∑
t=R

(
r

p
c,t,t+4

1+ y1
t+4

)2−ς



(2.9)

2.4 Empirical results

2.4.1 Data and preliminary results

Yields are obtained from the Fama-Bliss data set for maturities up to five-years and
from the Gürkaynak, Sack, and Wright (2007) (GSW) data set for maturities from
six to ten years. The sample spans the period 1968:Q4 - 2011:Q4.6 As data from
the Survey of Professional Forecasters and the Michigan Survey that are needed to
construct the SMRF factor of De Rezende (2014) are released by the middle of the
quarter, I use yields for the end of the second month of each quarter.7

Table 2.1 - Panel B shows descriptive statistics for the 1-year yield and the
2-year to 10-year excess bond returns. Notice that the average term structure of
excess returns is positively sloped and standard deviations increase with maturities,
suggesting that investors require higher premia for investing in longer (riskier) bonds.
In addition, returns are negatively skewed and exhibit positive excess kurtosis. The
Robust Jarque-Bera test of normality, however, does not reject the null hypothesis

6For the period 1968Q4 - 1971Q3 yields for maturities from eight to ten years were obtained by
extrapolating the Gürkaynak, Sack and Wright (2007) data set using Svensson’s (1997) parametrization and
the estimated parameters provided by the authors.

7The Michigan Survey is conducted at a monthly frequency beginning from January 1978.
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of normality for excess returns, which also show high persistence as indicated by
the first order autocorrelation coefficients.

The preliminary exploration of the data is completed by performing in-sample
predictions over the sample 1968–2011. For this exercise, the SBIC selected the first,
fourth and sixth macro risk factors, and the first, second and sixth macro factors,
forming the vectors MRFt = (MRF1t ,MRF4t ,MRF6t)

′
and MRFt = (F1t ,F2t ,F6t)

′
,

respectively. Results are shown in Table 2.2 and Table 2.3. As documented by
Cochrane and Piazzesi (2005, 2008), CP captures a large portion of variation in
expected excess returns with R2s ranging from 0.21 to 0.32. The LN and the SMRF
factors also show high explanatory power with R2s ranging from 0.17 to 0.21 and
0.21 to 0.31, respectively, and highly significant estimates.

When CP regressions are augmented with SMRF, notice that both variables
reveal strong statistically significant predictive power, with R2s increasing substan-
tially and reaching 0.40 for the 10-year return. As documented by Ludvigson and
Ng (2009), including LN to CP regressions increase R2s to levels ranging from
0.35 to 0.41. Regressions with SMRF and LN together also reveal a very good
fit with R2s increasing substantially when SMRF or LN are included as additional
predictors. For example, R2s increase from 0.17 to 0.38 for the 10-year return when
adding SMRF to the LN regression, whereas we observe an increase from 0.21 to
0.33 for the 2-year return when adding LN.

I also test regressions that include all three single factors jointly. In this case,
R2s are even higher and range from 0.38 to 0.46. Notice from Table 2.3 that R2s
increase whenever any additional factor is added and statistical significance is, in
general, maintained. These results suggest that the three factors capture somewhat
independent information about bond risk premia variation.

2.4.2 Statistical predictability

We now verify whether the in-sample predictability verified above holds in an out-of-
sample setting. As observed from Table 2.4 - Panel A, beating the constant model is
not an easy task. All predictors, except LN, fail to forecast rxn for shorter maturities.
Results change as we move our attention to longer maturities though. While CP
continues to perform poorly, the LN and SMRF factors show impressive results,
with higher accuracy being achieved by SMRF. In this case, R2

ooss turn positive from
rx5 (rx3) in the sample period of 1990-2011 (1990-2007) and reach 0.292 (0.278)
for the 10-year bond return. Notice also that LN and SMRF outperform the constant
model with high statistical significance according to both CW and MC tests.

Combining different predictors also improves regressions’ predictive power
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substantially. Models SMRF+CP+LN and SMRF+LN, in particular, are the most
successful ones and generate R2

ooss ranging from 0.20 to 0.36 and from 0.22 to
0.26, respectively, indicating that the expectations hypothesis is also rejected in an
out-of-sample setting.

Table 2.4 - Panel B shows results of tests verifying whether the higher accuracy
obtained from including SMRF in predictive regressions is statistically significant.
Notice that augmenting regressions with SMRF improves predictability remarkably
with highly statistically significant results according to both CW and MC tests.
Notice that improvements are quite large for longer maturities with differences in
R2

ooss reaching 0.296 and 0.319 for CP and LN regressions, respectively. This is
also true for regressions that include all the three predictors together. In this case,
notice that R2

ooss are positive from the 5-year maturity and are highly statistically
significant.

In order to check the stability of these results over time Figure 2.1 - Panel A
shows R2

ooss computed recursively against the constant model of no-predictability.
Notice that, the levels of predictive power for most models show high stability
and statistical significance over the full period of evaluation. Some exceptions
are found though. For instance, the models which include the CP factor among
predictors show decreasing levels of predictive power. The LN model performed not
so well up to the early 2000’s, from when R2

ooss start increasing substantially. SMRF
regressions as well as models that include SMRF as an additional predictor, on the
other hand, show quite high R2

ooss over the full period of evaluation. In general, the
most successful model is SMRF+CP+LN.

These results reveal that the in-sample predictability can be somewhat replicated
in an out-of-sample framework. The LN and SMRF factors show high degrees of
predictive power and predictability is especially strong when combining different
predictors, which are shown to capture somewhat different information about bond
risk premia variation. An exception is the CP factor alone. Although CP shows high
predictive power in-sample, this is not verified out-of-sample. This result is in line
with the findings of Thornton and Valente (2012) who show, from an asset allocation
perspective, that forward-rate models do not successfully beat a constant model
of no-predictability. My results, on the other hand, reveal that this result holds for
forward-rate models only. Factors based on macroeconomic variables as well as on
indicators of macroeconomic risks are able to generate out-of-sample predictability.
This result holds when models are evaluated economically, as discussed in the next
subsection.



74 ESSAYS ON MACRO-FINANCIAL LINKAGES

2.4.3 Economic predictability

Results for the asset allocation assessment are shown in Table 2.5. As observed,
predictors that provide consistent economic value in terms of utility gains relative
to the constant model are SMRF and LN only, or models in which one of these
variables is present. SMRF alone performs quite well and is superior to LN when
ς = 3, with utility gains of 2.6 compared 2.46. Utility gains of an investor who
had relied on the CP model is negative though, a result that is consistent with the
findings of Thornton and Valente (2012).8 Notice also that utility gains always
increase when augmenting regressions with SMRF or LN. Although the model
SMRF+CP+LN performs quite well, the model that performs best is SMRF+LN
with utility gains achieving 3.71 and 3.23, depending on the degree of RRA.

When we analyze the risk-adjusted measure of portfolio performance, GISW,
results remain in line with those obtained with the utility gain approach, except for
the fact that the portfolio formed with the SMRF strategy performs better than the
one formed using LN, independently of the degree of RRA. Positive GISWs are not
obtained when augmenting CP regressions with SMRF, even though we see some
big improvements. Augmenting it with LN, on the other hand, delivers GISW. As
observed in the utility gain approach, the model that performs best is SMRF+LN.
Results with Information ratios are similar to the ones obtained with GISW, except
for the fact that the LN regression is superior than all the others

The stability of these results over time is verified in Figure 2.1 - Panel B, which
shows utility gains computed recursively. For the sample 1990Q1:2011Q4 results
show that the economic predictability of models that include SMRF as predictor
are quite stable. For instance, the SMRF portfolio delivers high and more stable
utility gains when compared to other predictors. Utility gains for portfolios that
include LN are less stable and are downward trended. Notice, however, that the
model SMRF+LN is the one that generates the highest levels of recursive utility
gains to the investor, as also suggested by Table 2.5.

To sum up, we observe that SMRF and LN regressions are able to generate
quite high utility gains and risk-adjusted measures of portfolio performance. Fur-
thermore, augmenting regressions with both SMRF and LN always improves their
respective portfolios’ performances. In addition, I find that the portfolio based on
the SMRF+LN specification is the one that performs best. These results confirm
the evidence of out-of-sample bond return predictability described in the subsection
2.4.2.

8Notice that, differently from Thornton and Valente (2012), the values for Util. Gains and GISW shown
in Table 2.5 are in percentage points.
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2.4.4 Real-time macro data

It is well known that macroeconomic data are subject to publication delays and
revisions, meaning that the information set available to market participants at the
time forecasts are made is not the necessarily the same implied by the use of final
revised macroeconomic data. This raises the question of whether the predictive
information contained in ex ante macroeconomic risks is due to the use of final
revised data.9 In order to examine this issue, in this subsection, I re-assess the
predictive power of SMRF constructed on the basis of a truly real-time exercise,
where I consider only data available at the time forecasts are generated.

For this analysis, I collected advance real-time macro data vintages from the
Federal Reserve Bank of Philadelphia database. While they are subject to greater
measurement error, the use of advance vintages makes more sense, as the other
variables used in this study are available by the end of the second month of each
quarter, which is exactly the month the Bureau of Economic Analysis (BEA)
makes its advance estimates available to the public. Due to the unavailability
of a large macroeconomic data set in real-time, I only provide results for the
SMRF and CP factors. In order to take into account the misalignments between
macroeconomic and financial data that may occur due to publication lags in the
former, I use the “jumping-off point” strategy of Faust and Wright (2012) and
treat the SPF current-quarter forecast (nowcast) as the last observation available for
macro variables. Besides permitting the alignment of data and, consequently, an
easier forecast comparison among models with different data structures, Faust and
Wright (forthcoming) show that using the “jumping-off point” strategy can improve
out-of-sample inflation forecasts generated from a large number of econometric
models. For this analysis, I take their findings as given and apply their approach to
the other macro variables as well.

Results are shown in Table 2.6. Panels A and B provide results for the statistical
exercise and results for the economic evaluation are provided by Panel C. Although
some of the forecasting power is lost when considering real-time data, SMRF still
shows high predictive power, in particular, for longer maturities. Regardless of the
evaluation period, notice that positive and highly statistically significant R2

ooss are
obtained for the 5- to 10-year excess returns when compared to the constant model.
In addition, observe that although R2

ooss obtained from SMRF regressions are nega-

9In a recent paper, Ghysels, Horan and Moench (2012) re-assessed the predictive power of the macro
factors of Ludvigson and Ng (2009) using a real-time large macroeconomic data set. Although the time
period and variables entering their data set are not the same as in Ludvigson and Ng (2009), the authors
document that the additional predictive information of factors extracted from revised macroeconomic data
largely disappears in a truly real-time out-of-sample forecasting exercise.
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tive for the 2- and 3-year maturities, the MSPE-adjusted test of CW still indicates
statistically significant results. When we analyze the improvements obtained from
augmenting CP regressions with SMRF observe that, as in the previous analysis
with final revised data, R2

ooss are always positive and highly significant.
When we move our attention to the economic evaluation, results are very good

and, in general, slightly superior to the ones obtained with final revised data. SMRF
regressions generate utility gains ranging from 3% to 3.56% when compared to
the constant model. Information ratios are bit lower than before, but still high and
ranging from 0.41 to 0.46. When we analyze the Goetzmann et al. (2007) measure,
GISW, results are also quite high and in line with those obtained with the utility
approach. These results indicate that an investor who had relied on the SMRF
regression to invest in a portfolio of US government bonds during the period from
1990Q1 to 2011Q4 (2007Q4) would had obtained high utility gains and risk-adjusted
returns when compared to the historical average. In addition, notice that augmenting
CP regressions with SMRF improves their economic performances substantially
with utility gains and information ratios turning even positive. Recursive R2

ooss and
utility gains were also computed and are provided by Figure 2.2. The stability of
results over time are comparable to those shown in Figure 2.1.

2.5 Conclusions

I investigate the out-of-sample predictability of bond excess returns using different
sources of risk premia variation. I assess the statistical and economic significance
of the forecasting ability of empirical models based on forward interest rates,
macroeconomic variables and risks in macroeconomic outcomes. Although no
predictive power is found for the forward rate factor, results suggest that factors
based on macroeconomic variables and risks in macroeconomic outcomes are able to
outperform a constant model of no-predictability. The macro risk factor is up to 29%
more accurate than the constant model, while the macro factor delivers prediction
errors that are up to 12% smaller. More interestingly, the combination of the two
(three) factors generates improvements ranging from 15% to 35% (20% to 37%),
providing further evidence that the three factors capture somewhat independent
information about bond risk premia variation (De Rezende, 2014). These results
are confirmed economically using a classical portfolio choice problem in which I
analyze the performance of bonds portfolios chosen optimally by an investor who
exploits the predictive power of factors.

I also investigate whether the predictability found is maintained when factors
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are constructed using macroeconomic data available in real-time, which reflect the
information available to market participants when predictions are made. Results
indicate that most of the predictive power of risks in macroeconomic outcomes is
preserved, suggesting that the predictability of Treasury returns is not driven by
data revisions.
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Table 2.1: Descriptive statistics

Notes: This table shows summary statistics for the 1-year yields and 2-year to 10-year excess bond returns.
The statistics reported are the mean, standard deviation, skewness, excess kurtosis, the p-value of a Robust
Jarque-Bera (RJB) test for normality and the 1st and 4th sample autocorrelations. Critical values for the RJB
test were obtained empirically through 4000 Monte-Carlo simulations. Mean values are in percentage point
basis.

Mean Std. Dev. Skewness Exc. Kurtosis pv-RJB ρ1 ρ4

y1 5.840 2.918 0.378 0.434 0.014 0.936 0.794

rx2 0.595 1.714 −0.244 0.331 0.214 0.754 0.202

rx3 1.038 3.121 −0.277 0.324 0.233 0.749 0.151

rx4 1.424 4.324 −0.260 0.385 0.284 0.756 0.138

rx5 1.548 5.232 −0.183 0.171 0.575 0.742 0.099

rx6 1.964 6.287 −0.157 0.300 0.624 0.752 0.077

rx7 2.031 7.144 −0.135 0.486 0.459 0.747 0.056

rx8 2.168 8.028 −0.115 0.615 0.264 0.746 0.038

rx9 2.273 8.900 −0.093 0.738 0.149 0.746 0.023

rx10 2.354 9.765 −0.068 0.847 0.076 0.745 0.010

Table 2.2: In-sample predictability - SMRF, CP and LN factors 1

Notes: This table shows the predictive power of the CP, LN and SMRF factors. t-stats computed using
Newey-West standard errors with six truncation lags are reported in parentheses and R

2
refers to the adjusted-

R2. 95% confidence intervals for estimated coefficients and R
2

s are reported in square brackets. These were
obtained through a residual-based block bootstrap with 4999 replications and overlapping blocks of size
equal to six. Confidence intervals for coefficients were obtained using an asymptotic refinement based on the
t-stat (percentile-t method) with bootstrapped t-stats computed using Newey-West standard errors with six
lags. Regressions in which LN is included in the set of predictors are estimated using the sample 1968Q4 -
2007Q4.

SMRF R
2

CP R
2

LN R
2

rx2

0.241 0.210 0.242 0.214 0.304 0.213

(4.664) − (5.204) − (4.957) −
[0.12;0.36] [0.01;0.35] [0.15;0.34] [0.08;0.37] [0.16;0.44] [0.05;0.36]

rx3

0.461 0.233 0.468 0.242 0.545 0.208

(5.063) − (5.338) − (5.104) −
[0.25;0.67] [0.02;0.36] [0.28;0.65] [0.10;0.39] [0.31;0.77] [0.05;0.35]

rx5

0.843 0.278 0.814 0.260 0.863 0.189

(6.078) − (5.159) − (5.595) −
[0.52;1.16] [0.04;0.40] [0.48;1.13] [0.12;0.42] [0.53;1.21] [0.04;0.33]

rx7

1.194 0.299 1.185 0.296 1.182 0.188

(6.470) − (5.669) − (5.579) −
[0.78;1.61] [0.05;0.43] [0.74;1.62] [0.15;0.45] [0.73;1.63] [0.03;0.33]

rx10

1.667 0.313 1.686 0.321 1.559 0.172

(6.423) − (6.018) − (5.012) −
[1.08;2.22] [0.06;0.45] [1.08;2.25] [0.17;0.48] [0.90;2.20] [0.03;0.30]
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Figure 2.1: Recursive estimates of R2
oos and utility gains

Notes: Panel A: charts show recursive R2
oos computed for the period 1995Q1-2011Q4. Asterisks indicate

statistical significance at 5% according to the MSPE-adjusted statistic of Clark and West (2007). Panel B:
charts show recursive utility gains accrued by an investor investing in a portfolio of US government bonds.
R2

oos and utility gains are computed against a constant model of no-predictability.
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Figure 2.2: Recursive estimates of R2
oos and utility gains in real-time

Notes: Panel A: charts show recursive R2
oos computed for the period 1995Q1-2011Q4 in a fully real-time

exercise. Asterisks indicate statistical significance at 5% according to the MSPE-adjusted statistic of Clark
and West (2007). Panel B: charts show recursive utility gains accrued by an investor investing in a portfolio
of US government bonds. R2

oos and utility gains are computed against a constant model of no-predictability.
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Chapter 3

Re-examining the predictive power of

the yield curve with quantile regression1

Rafael B. De Rezende Mauro S. Ferreira

ABSTRACT. We use quantile regression to re-examine the predictive power of the term spread
with respect to GDP growth and future recessions. The term spread is a better predictor of lower
and intermediate conditional GDP growth, confirming its usefulness for predicting economic
activity. Changes in the predictive relationship towards longer horizons and structural breaks at
upper percentiles suggest the Fed started to respond tougher and in greater advance to inflationary
pressures resulted from excessive growth after the mid-1980’s. Motivated by these findings we use
quantile regression to forecast GDP growth and recessions probabilities in an out-of-sample scheme.
Quantile models deliver more accurate forecasts than competitors in both exercises. Superiority
against professional forecasters is found for mid and longer horizons, but higher accuracy in shorter
horizons is also observed in the period prior the 2008/2009 recession. The predictive power of the
yield curve remains.

Keywords: Quantile regression; term spread; forecasting; GDP growth; recessions.
JEL Classifications: E32; E37; E43; E44

3.1 Introduction

The relationship between economic activity and the term structure of interest rates
has been widely studied in the last decades. A large number of studies has concen-

1We would like to thank Magnus Dahlquist, Jonathan Wright and Enrique Sentana for comments
that significantly improved this paper. We also thank seminar participants at the Stockholm School of
Economics, the European Meeting of the Econometric Society 2012, the North American Summer Meeting
of the Econometric Society 2012 and the Brazilian Time Series and Econometrics School 2013 for further
comments and suggestions. Rafael B. De Rezende kindly thank the Swedish Bank Research Foundation
(BFI) for financial support.
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trated on the predictive power of the difference between long and short yields (the
term spread or yield curve slope) regarding future GDP growth (Laurent, 1988);
Harvey, 1988, 1989; Estrella and Hardouvelis, 1991), among several others). Others
have verified whether the term spread informs about the probabilities of future
recessions (Estrella and Hardouvelis, 1991; Estrella and Mishkin, 1998; Bernard
and Gerlach, 1998; Wright, 2006), among others).

Despite some evidence that movements in bond premia may be linked to eco-
nomic activity (Ludvigson and Ng, 2009; Joslin, Priebsch and Singleton, forthcom-
ing; Rudebusch and Swanson, 2012), the rationale behind the predictive ability of
the term spread rests mainly on the forward looking behaviour of market participants
that anticipate future reactions of the central bank (Ang, Piazzesi and Wei, 2006;
Rudebusch, Sack and Swanson, 2007). A likely future recession implies the central
bank will aggressively reduce interest rates to counteract GDP contractions and
disinflationary pressures. By anticipating such scenario, current long rates become
smaller than short ones, resulting in a negative spread in the present. Indeed, de-
spite some evidence that parameter instability has weakened the predictive power
of the yield curve regarding future output growth since the mid-1980’s (Estrella,
Rodrigues, and Schich, 2003; Stock and Watson, 2003; Giacomini and Rossi, 2006),
the term spread has predicted every recession after the mid-1960s, with only one
“false alarm” (an yield curve inversion that was not followed by a recession). This
performance justifies its use as one of the most important leading indicators.

In this paper we re-examine the predictive ability of the term spread with respect
to GDP growth by studying the entire conditional distribution of the latter variable
using quantile regression methods. One of our main concerns is that the term
spread - output growth relationship may be subject to asymmetries. Although some
papers have explored asymmetries between the term spread and output growth
through threshold models (Galbraith and Tkacz, 2000; Duarte, Venetis and Paya,
2005), quantile regression provides information on a different type of asymmetry,
as discussed by Koenker and Hallock (2001), Koenker and Xiao (2004, 2006) and
Ferreira (2011). Under this method it is possible, for instance, to verify how each
conditional percentile of the dependent variable is explained by a set of regressors.
In this paper we verify a yet not documented (to our knowledge) asymmetry between
our variables of interest: the term spread is able to better predict lower conditional
GDP growth, which discourage the use of the term spread as a reasonable variable
to predict probability of booms, while confirms its ability to assess the probability
of recessions and moderate GDP growth.

We also verify the stability of predictive regressions across percentiles. We
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apply the structural break tests proposed by Qu (2008) and Oka and Qu (2011), and
identify changes happening mostly in the second quarter of 1984, which is consistent
with previous research focusing on conditional mean regressions. More interestingly,
the breaks were mostly found at higher conditional percentiles, associated to larger
GDP growth. This may explain why models focused on providing recessions
forecasts, which are commonly associated to negative future GDP growth, have
performed decently despite the break usually found in conditional mean models.

Since we verify the existence of (conditional) asymmetries in the GDP growth -
term spread relationship, it seems natural to rely on nonstandard probability distri-
butions to computing the probability of future recessions. Contrasting with most
of the works in this literature that relies on standard probit regressions (assuming
conditional normality of the GDP growth), we estimate these probabilities from
quantile regressions. The advantage relies on the flexibility of the approach as we
estimate one quantile equation for each percentile of output growth, meaning that
probabilities of future recessions can be computed from empirical distributions,
which may follow a Gaussian pattern, but can also assume nonusual shapes. Our
analyses also suggest that the existence of conditional asymmetries may lead OLS
estimators to deliver biased GDP growth point forecasts, suggesting the use of more
robust methods such as the median estimators. Given the evidence of instability of
regression quantiles in mid and high percentiles we conduct this exercise using two
samples - 1955-2011 and 1985-2011 - while we forecast recessions using the full
sample only.

In our work, we were also cautious about specification. In particular, we incor-
porated nonlinearities that have been previously found by studies using threshold
regression models. For instance, Galbraith and Tkacz (2000) and Duarte, Venetis
and Paya (2005) verified that the positive output growth - term spread relation-
ship weakens if the spread exceeds a certain value. Following Koenker (2005) in
the context of quantile regression, we capture this nonlinearity using a quadratic
specification, which allows reaching similar conclusion.

Our study thus builds on two main exercises: the study of the conditional
distribution of GDP growth accross percentiles and the out-of-sample forecasting
of GDP growth and recessions probabilities using quantile regressions. When
forecasting GDP growth results show that (i) conditional median models are highly
more accurate than similar OLS regressions for almost all horizons and than an
autoregressive benchmark for mid and long horizons; (ii) including a quadratic
spread variable increase forecasting power; (iii) for the post-1985 data, higher
accuracy is obtained for longer horizons. When forecasting recessions results
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reveal that (i) quantile models are more accurate than probits for a large number of
specifications and horizons; (ii) the quadratic spread variable does not necessarily
increase accuracy, but a lagged GDP growth variable does. In both exercises we
also verify that quantile models are more accurate than professional forecasters for
mid and longer horizons, but higher accuracy in shorter horizons was also obtained
in the period prior the late 2000’s recession. These results indicate the continuing
predictive power of the yield curve.

This study is part of a large literature on the predictive power of the slope of
the yield curve (Harvey, 1988, 1989; Estrella and Hardouvelis, 1991; Estrella and
Mishkin, 1998; Bernard and Gerlach, 1998; Stock and Watson, 2003; Wright, 2006,
among several others). Our paper, however, goes beyond by proposing forecasting
models based on quantile regressions. We also innovate by providing a more
complete analysis of the relationship between the term spread and GDP growth as
we look at the entire conditional distribution of the latter variable.

We also add to a debate aiming at verifying a possible change in the Fed’s
reaction function after the Volcker’s presidency. Among several studies pursuing
this task, it is worthwhile mentioning the works by Clarida, Galí and Gertler (2000),
Sims and Zha (2002), Kim and Nelson (2006), and Boivin, Kiley and Mishkin
(2010), who verified that output became less responsive to changes in the fed funds
after the mid-1980’s. Kim and Nelson (2006) suggest that this change may be due
to the Fed being more responsive to inflation during this period. The structural
break tests we apply indicate shifts occurring mostly in the second quarter of 1984
and at higher percentiles of the conditional distribution of GDP growth. In addition,
we identify changes in the predictive relationship towards longer horizons. These
results are consistent with the view that the Fed started to respond tougher and in
greater advance to inflationary pressures resulted from excessive growth after the
mid-1980’s

Another related strand of research aims at measuring macroeconomic risks.
Our approach allows computing probabilities that GDP growth will fall in certain
intervals, from which we measure recession risks. In a similar spirit, Kitsul and
Wright (2012) rely on CPI based options to construct probability densities for
inflation and use them to measure deflation and high inflation risks. Gaglianone
and Lima (2012) use quantile regression to construct density forecasts for macro
variables and use them to estimate risks of high unemployment rates. Christensen,
Lopez and Rudebusch (2011) rely on Treasury Inflation Protected Securities to
measure deflation probabilities.

The remaining of the paper is organized as follows. In the next section we
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revisit the term spread - GDP growth relationship using quantile regressions; the
third section presents the out-of-sample framework; the fourth section describes the
forecasting results; and the last section concludes.

3.2 The term spread - GDP growth relationship

In this section we revisit the term spread - GDP growth relationship. Our main
variable of interest is the quarterly (annualized) real GDP growth between quarters
t and t −1, which we denote by yt and is computed according to

yt = 400× [log(GDPt)− log(GDPt−1)] (3.1)

Following the literature, real GDP growth can be predicted by estimating the
following equation by OLS

yt = α0 +α ′Xt−h +ut (3.2)

where u is a random shock, α is a k×1 vector of coefficients and Xt−h is a k×1 vec-
tor of covariates, which include the term spread, but may also include other variables
such as lagged GDP growth that is commonly used to deal with autocorrelation in
yt .2

In our specifications we also allow for a quadratic term spread variable. Its
inclusion is motivated by previous findings, such as those of Galbraith and Tkacz
(2000) and Venetis, Paya and Peel (2003), revealing that the intensity of the positive
relation between GDP growth and the term spread diminishes if the former crosses
a certain threshold. The quadratic spread variable is used to approximate such
nonlinearity, as suggested by Koenker (2005) in a general context of quantile
regression. When modeling yt , we thus allow for four different specifications:
(i) Xt−h = (Spreadt−h), implying in α = α1, (ii) Xt−h = (Spreadt−h,Spread2

t−h),
so that α = (α1,α2), (iii) Xt−h = (Spreadt−h,yt−h) with α = (α1,α3), and (iv) a
specification with all covariates included, Xt−h = (Spreadt−h,Spread2

t−h,yt−h).3 To
be consistent with threshold models, one should expect α1 > 0 and α2 < 0, resulting
in a concave relation between the spread and future GDP growth.

While OLS regression models are often used to approximate the conditional

2Stock and Watson (2003), Hamilton and Kim (2002) and Ang, Piazzesi and Wei (2006) are among some
authors that also use lagged GDP growth in their forecasting equations.

3We also tested specifications with the Federal Funds rate or the 3-month Treasury Bill rate as regressors.
The estimated coefficients on both variables showed very small values and no significance was achieved for
any forecast horizon. Moreover, the regressions showed poor performance in the out-of-sample forecasting
exercise.
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mean of yt , quantile regression models are suitable to approximate its conditional
quantiles. Following the linear specification in (3.2) and denoting Qu (τ) as the τ-th
quantile of u, the τ-th quantile of yt , conditioned on Xt−h, can be obtained by

Qyt (τ|Xt−h) = α0 (τ)+α (τ)′Xt−h (3.3)

where, α0(τ) = α0 +Qu(τ) and α(τ) can be estimated according to Koenker and
Basset (1978). In particular, the conditional median of yt is approximated after
setting τ = 0.5.

3.2.1 Mean and median regressions

We collect yield data from the FRED database. As in the extant literature the
term spread series is computed as the difference between the 10-year Treasury
Bond and the 3-month Treasury Bill interest rates. The quarterly frequency is
obtained by averaging the monthly spread over each quarter. For the in-sample
analyses performed in this section we use real GDP data collected from the Fed of
Philadelphia. More specifically, we use the vintage that became available on the
third quarter of 2011 and we decided to work with two samples normally used in this
literature: a full sample ranging from 1955Q1 to 2011Q2, and a subsample ranging
from 1985Q1 to 2011Q2. This subsample coincides with the Great Moderation
period and is justified by several works reporting a breakdown in the predictive
ability of the term spread after the mid-1980s (see Estrella, Rodrigues, and Schich,
2003; Stock and Watson, 2003; Giacomini and Rossi, 2006).

In Table 3.1 we report predictive results for OLS and QR(0.5) regressions. In
order to save space, we only show results for specifications (iii) and (iv), which
incorporate yt−h as covariate. As commonly found in the literature the spread keeps
a strong and positive relation with future GDP growth. Estimates are generally
highly significant and indicate that the spread is able to predict GDP growth for a
number of horizons over the two samples considered. Interestingly, the significance
of the quadratic spread variable indicates the existence of a nonlinear relationship
between our two variables of interest. Similar to Galbraith and Tkacz (2000) and
Venetis, Paya and Peel (2003), we verify a concave relationship with α1 > 0 and
α2 < 0, indicating that its intensity diminishes after a certain level of the spread is
crossed. Notice also that the quadratic spread regressions show superior fitting than
their counterparts as indicated by the smaller Akaike Information Criterion (AIC)
statistics.

Results also indicate the ability of the spread to signal about future economic ac-
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tivity with greater advance after the mid-1980’s. While significant spread estimates
are observed from h = 1 to h = 6 in the full sample, significance is verified from
h = 4 in the subsample. This result is robust regardless the estimation method and
specification. In addition, coefficients linking the spread to future GDP growth are
larger for horizons up to four quarters ahead in the full sample, while the largests
coefficients are found for longer horizons when using post-1985 data. These results
indicate the continuing predictive power of the yield curve.4

3.2.2 A more complete analysis: the conditional distribution of GDP

growth

Analyzing the conditional distribution of GDP growth across percentiles provides a
more complete picture of its relation with the term spread. In each box of Figure 3.1
we plot quantile regression estimates using the two samples considered previously.
The first row brings estimates of the spread variable in the standard linear model
and the second and third rows present estimates in a quadratic model. In both cases
we allowed for the presence of lagged growth among the regressors. Figure 3.2
shows the goodness of fit of models by presenting the adjusted R1(τ) statistics of
Koenker and Machado (1999) computed across percentiles.5

Results in Figure 3.1 reinforce previous findings. The term spread keeps a
strong relation with future output growth and this is shown over almost the whole
conditional distribution of the latter variable. In addition, for horizons up to h = 4,
we verify that the spread is significantly related to larger ranges of the conditional
distribution of GDP growth when using the full sample. Contrary, for the period
1985-2011, statistical significance is largely observed across percentiles from h = 4.
These patterns occur in the linear and in the quadratic models, but are stronger
once we deal with nonlinearity. Results in Figure 3.2 reinforce these conclusions.
In addition, they indicate the ability of the spread to predict a large portion of the
conditional distribution of economic activity with greater advance when using the
post-1985 data.

Equally interesting is the fact that figures 3.1 and 3.2 also reveal the existence
of a strong asymmetric relationship between our variables of interest. While the
spread is able to predict negative, low and intermediate GDP growth, it informs little

4Haubrich and Dombrosky (1996) and Aguiar-Conraria, Martins and Soares (2012), despite of recognizing
a change in the intensity of the relationship, also found information content in the yield spread about future
economic activity during the Great Moderation.

5The R1(τ) statistic of Koenker and Machado (1999) is similar in nature to R2, as it informs (for each
percentile) the goodness of a fit compared to a regression on the intercept α0(τ). The closer R1(τ) is to 1,
the better the adjustment.



92 ESSAYS ON MACRO-FINANCIAL LINKAGES

about high conditional output growth. This result is evident for all specifications
and explains why the spread has been a more successful predictor of probability of
recessions than of output growth.6

In order to verify the stability of regressions across percentiles we also applied
the structural break tests proposed by Qu (2008) and Oka and Qu (2011). Table
3.2 shows results for the statistic SQ, which tests the null hypothesis of no break
in a specific quantile equation. Table 3.3 shows results for the statistic DQ, which
tests the null of no break in multiple quantiles. SQ(1) and DQ(1) are used to test for
the absence of only one break, while SQ(2|1) and DQ(2|1) test for the absence of a
second break given the first one was found. In both tests we allowed for a maximum
of two breaks.7 When rejecting H0, the tests also estimate the break date.

Table 3.2 reveals that most of the detected breaks happen at higher percentile
equations. The smallest percentile in which breaks were detected was τ = 0.35
when forecasting 4 quarters ahead with the linear model. For the linear model
with h = 8 and the quadratic with h = 4, breaks were found only in regressions for
τ ≥ 0.65. In the case of the quadratic model and h = 8, breaks were verified for
τ ≥ 0.5. In line with the existing literature, most of the estimated break dates occur
in the mid-1980’s. Out of the 19 breaks found, 9 were in 1984Q2 and 1 in 1984Q1.
The test that searches for breaks in multiple equations detected breaks in 1984Q2.

These results suggest the spread started to signal about future economic activity
in a different manner around 1984. Besides indicating a change in the predictive
ability of the spread towards longer horizons, this shift happened for higher con-
ditional GDP growth, which is consistent with a market view that the Fed would
respond tougher and in greater advance to inflationary pressures resulted from
excessive growth. Additionally, the fact that breaks were not observed at lower
percentile equations suggest that the conduct of monetary policy was not expected
to be modified in the presence of future adverse cycles.

Accordingly, most of the literature focused on changes in the conduct of mone-
tary policy after the Volcker’s presidency describes the Fed being tougher to inflation.
Boivin, Hiley, and Mishkin (2010) discuss that a more intense and faster reaction
of output gap to movements in short-rates was the pattern during 1962-1979, but a
less intense, slower and more persistent reaction was observed from 1984 to 2008.
Kim and Nelson (2006) suggest that this change may be due to the Fed being more
responsive to inflation during this period. Similar conclusions were also reached by

6See Wheelock and Wohar (2009) for a survey on the predictive power of the term spread regarding
future GDP growth and recessions.

7Following the previous analyses, these tests were conducted for specifications with the presence of a
lagged GDP growth among covariates.
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Clarida, Galí and Gertler (2000), Galí, Lopez-Salido, and Valles (2003), Boivin and
Giannoni (2006) and Galí and Gambetti (2009).

Our results also validate the use of the entire sample to estimate probability of
future recessions, given the absence of breaks in low percentile equations. This
explains why binary models focused on estimating probabilities of future recessions
conditioned on current spread have been more stable over time, as found by Estrella,
Rodrigues, and Schich (2003) and emphasized by Rudebusch and Williams (2009).
It seems, however, that similar exercise to estimate probability of booms, or even
intermediate growth, would be more problematic since breaks were identified at
central and higher percentiles.

3.3 Out-of-sample forecasting

Since we verify the existence of (conditional) asymmetries in the GDP growth -
term spread relationship, it seems natural to rely on nonstandard probability distri-
butions to computing the probability of future recessions. Contrasting with most
of the works in this literature that relies on standard probit regressions (assuming
conditional normality of the GDP growth), we estimate these probabilities from
quantile regressions. The advantage relies on the flexibility of the approach as
we estimate one quantile equation for each percentile of output growth, meaning
that probabilities of future recessions can be computed from empirical distribution,
which may follow a Gaussian pattern, but can also assume nonusual shapes.

Our analyses also suggest that the existence of conditional asymmetries may
lead OLS estimates to deliver biased GDP growth point forecasts, suggesting the
use of more robust methods such as the median estimators. Given the evidence of
instability of regression quantiles in mid and high percentiles we forecast recessions
using the full sample only, but conduct output growth predictions using the post-
1985 data as well.

We conduct forecasting analyses using real-time and final revised real GDP
data collected from the Fed of Philadelphia. For the real-time data we decided to
work with the advance data, which is the Bureau of Economic Analysis’ (BEA)
first estimate for the previous quarter. While advance data are subject to greater
measurement error, their use makes more sense as we are also willing to address
comparisons to forecasts reported by professional forecasters in the Survey of
Professional Forecasters (SPF henceforward), who know the advance data when
submitting their projections.8

8This happens because the Fed of Philadelphia sends its survey questionnaires right after the advance
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The forecasts presented in this work will be contrasted to the final revised data
consisting of the vintage that became available on the third quarter of 2011. At
this quarter the BEA released an extensive revision that incorporated important
methodological changes in the way it estimates national accounts, so we consider
this vintage a good proxy for our final revised data.

3.3.1 Real GDP growth

Real GDP growth point forecasts can be readily computed from prediction models
(3.3) and (3.4). More specifically, given the OLS estimates α̂0 and α̂ , mean
forecasts of yt in t +h, conditioned on Xt , can be computed as

E (yt+h|Xt) = α̂0 + α̂ ′Xt (3.4)

Similarly, median forecasts of yt in t +h can be obtained using

Q̂yt+h
(0.5|Xt) = α̂0 (0.5)+ α̂ (0.5)′X t (3.5)

where α̂0(τ) and α̂(τ) are estimated according to Koenker and Basset (1978). In this
paper, OLS and QR(0.5) forecasts are confronted against each other, against mean
and median forecasts reported in the SPF, and also against a direct autoregressive
model, ŷt+h = α̂0 + α̂1yt .

3.3.2 Recessions

When it comes to forecasting recessions, we first have to define what a recession
is in our study. We follow Rudebusch and Williams (2009) and use the following
rule linking real GDP changes to recessions: the economy is in recession at quarter
t, implying Rt = 1, if a negative quarterly real GDP growth (yt < 0) is observed;
Rt = 0, otherwise. The reason for not using the NBER recession series is that NBER
recessions are observed ex-post, meaning that it is not suitable for our real-time
exercise. Nevertheless, our rule produces 22 recessionary quarters that match the 34
NBER recession quarters in the period 1955Q1-2011Q2, with only 11 false alarms.9

Given each forecast Q̂yt+h
(τ|Xt), ∀τ ∈ [τ,τ], the probability of a recession in

t +h computed using quantile regressions can then be obtained as follows

estimates become public. Since these questionnaires must be returned within the following two or three
weeks, which is before the release of the next revision, professional forecasters’ information set, when
submitting their projections, include the advance data.

9As stated by the NBER (2003): “The NBER considers real GDP to be the single measure that comes clos-

est to capturing what it means by ‘aggregate economic activity’. The [NBER] therefore places considerable

weight on real GDP and other output measures”.
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P̂
QR
t (Rt+h = 1) = P̂

QR
t (yt+h ≤ 0) = sup

{
τ ∈ [τ,τ] : Q̂yt+h

(τ|Xt)≤ 0
}

When Q̂yt+h
(τ|Xt)> 0, ∀τ ∈ [τ,τ], the model indicates P̂

QR
t (Rt+h = 1)= P̂

QR
t (yt+h ≤

0)= 0.10 In order to estimate these probabilities, we set τ ∈ [τ = 0.0025,τ = 0.9975]
and allow for our four sets of covariates. In addition, we avoid crossings of
Q̂yt+h

(τ|Xt) across percentiles through the “rearrangement” procedure of Cher-
nozhukov, Fernandez-Val and Galichon (2010).

As it is the standard procedure in this literature, we also forecast recession
probabilities from Probit models as below

P̂PR
t (Rt+h = 1) = Φ

(
θ̂0 + θ̂ ′Xt

)
(3.6)

where Φ is the standard normal cumulative distribution function.
QR forecasts are compared to Probit forecasts with same specifications, SPF

recession forecasts and to a simple probit model, P̂PR
t (Rt+h = 1) = Φ

(
θ̂0 + θ̂1yt

)
.

3.3.3 Assessing the accuracy of forecasts

Real GDP growth point forecasts are compared using the Root Mean Squared
Forecast Error (RMSFE) measure. When comparing recessions probabilities we
follow Diebold and Rudebusch (1989) and employ two different measures: the Root
Quadratic Probability Score (RQPS) and the Log Probability Score (LPS). Letting
T be the number of out-of-sample forecasts, and i a particular model, these two last
score measures are respectively computed as

RQPSi =

√
1
T

T

∑
t=1

[
P̂i

t (Rt+h = 1)−Rt+h

]2

LPSi =− 1
T

T

∑
t=1

[
(1−Rt+h) ln

(
1− P̂i

t (Rt+h = 1)
)
+Rt+hln

(
P̂i

t (Rt+h = 1)
)]

A more rigorous comparison between each model, however, can be assessed by
relying on the Harvey, Leybourne and Newbold (1997) test (HLN henceforward),
which allows verifying if the difference between the average forecast errors of two
competing models is statistically significant. HLN test is based on a modification

10Here we define any event in which yt 6 0 as a recession. The use of the operator ≤ instead of < does
not really make any difference in our results.
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of the Diebold and Mariano (DM, 1995) statistic that corrects for its tendency to
be over-sized in finite samples, in particular. The adjustment consists of estimating
the variance of the mean loss differentials using the rectangular lag window with
a lag truncation parameter equal to h−1 and then multiplying the DM statistic by√

(T +1−2h+T−1h(h−1))/T . Through a Monte Carlo experiment, the authors
show that the modified statistic performs considerably better than the original one,
providing important size corrections.

Although the HLN test was originally designed for non-nested models, Clark
and McCracken (2012), when comparing the use of alternative HAC estimators in
nested models, find that comparing the HLN test statistic to standard normal critical
values delivers a test that has size fairly close to the nominal level in both population
and finite-samples. In this study we thus follow Harvey, Leybourne and Newbold
(1997) approach.11 As suggested by these authors, we compare the HLN statistic
to critical values from a tT−1 distribution. Our assessments indicated that the tT−1

distribution yields results that are a bit more conservative also when comparing
nested models.

In order to pursue such analysis, we rely on D
i, j
t+h, which is the loss differentials

between models i and j of forecasting errors made at t + h. We compute the
sample loss differentials, according to RMSFE, RQPS and LPS, using the following
equations:

D̂
i, j
t+h (MSFE) =

(
ŷi

t+h − yt+h

)2 −
(

ŷ
j
t+h − yt+h

)2

D̂
i, j
t+h (QPS) =

(
P̂i

t (Rt+h = 1)−Rt+h

)2 −
(

P̂
j

t (Rt+h = 1)−Rt+h

)2

D̂
i, j
t+h (LPS) =−(1−Rt+h)

[
ln
(
1− P̂i

t (Rt+h = 1)
)
− ln

(
1− P̂

j
t (Rt+h = 1)

)]
−

−Rt+h

[
ln
(
P̂i

t (Rt+h = 1)
)
− ln

(
P̂

j
t (Rt+h = 1)

)]

Models i and j perform equally if the mean loss differential is zero; H0 : E
(

D
i, j
t

)
=

0, ∀t. As we are interested in verifying whether model i delivers more accurate out
of sample forecasts than model j, we state the alternative as H1 : E

(
D

i, j
t

)
< 0, ∀t.12

The tests just described are not suitable for real-time data though. Clark and

11This test is also used by Faust and Wright (forthcoming) when forecasting inflation.
12The HLN test is not available for a RMSFE (RQPS) loss function, so we report the results from the

MSFE (QPS) version of the test.
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McCracken (2009) recently proposed an alternative test of equal predictive accuracy
for real-time data, the construction of which requires further assumptions on the
nature of the data revisions and evidence that these assumptions are met in the
real-time data. This test is not designed for recursive forecasts and could not be
applied in our context even if our real-time data satisfied the assumptions of Clark
and McCracken (2009). As an alternative we apply the accuracy tests on ex-post
(our final) revised data, but we also report tests’ results for the real-time forecasts.

3.4 Forecasting results

Tables 3.4, 3.5, and 3.6 summarize our findings, where we report the statistical
significance of the several tests we conduct. Asterisks indicate superiority of median
forecasts against those carried by the OLS estimator. The symbol ◦ indicates
statistical significance against a common benchmark that follows an AR structure.
Superiority of quadratic specification against similar linear model is indicated by †,
and • shows if the model analyzed delivered superior forecasts than those of SPF.

3.4.1 GDP Growth

Full sample

Table 3.4 shows results using the full sample. We report the ratio of the RMSFE of
each model relative to the benchmark. The forecasting exercise is carried according
to the recursive method, meaning that each forecast model is re-estimated after
incorporating the newest data. For real-time data, we used the most recent vintage
available in each recursion. The first estimation window ranges from 1955Q1 to
1985Q4 when using final revised data, and up to 1986Q1 when relying on real-time
data.

Table 3.4 reveals several interesting results. First, the spread shows higher
accuracy than the benchmark autoregressive model. This is true for horizons from
h = 4, but results are stronger for h = 5, when statistical significance is achieved
for median regressions only. More interestingly, however, is the fact that median
regressions are highly superior than OLS regressions for almost all the horizons
and regression specifications. Notice that statistiscal significance is achieved for a
large number of horizons - from h = 1 to h = 5, more specifically - which shows
the advantage of relying on median models when performing GDP growth point
forecasts.

Another appealing result we found is that adding the quadratic spread variable
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to both mean and median regressions improves forecasting performance of models
substantially. Notice that for h = 1, ...,6 quadratic regressions are always superior
to its counterparts with statistical superiority being achieved for h = 1, ...,5 and
various models. These results are in line with those reported in Table 3.1 showing
statistically significant coefficients on spread2 at short and mid horizons. Also,
in accordance to Table 3.1, models which include the lagged GDP growth among
covariates perform better than their counterparts for h = 1,2. For h ≥ 3, its inclusion
deteriorates prediction power.

Results described above show that the conditional median brings important
accuracy gains to traditional GDP growth - term spread models, which suggests
that the existence of the conditional asymmetries diagnosed in Section 3.2 may be
problematic to traditional OLS predictive regressions. Additionally, taking into
account nonlinearities in the form of quadratic regressions reduces forecast errors.

Post-1985 sample

Motivated by our findings in Section 3.2 we also check the forecasting performances
of models using the sub-sample 1985Q1-2011Q2. This period, referred to as
"Great Moderation", has been characterized by a increased stability of various
macroeconomic variables and some authors have attributed the observed decline in
the predictive power of the spread to a change in the conduct of monetary policy
after the Volcker’s presidency (Stock and Watson, 2003; Estrella, Rodrigues, and
Schich, 2003; D’Agostino, Giannone and Surico, 2006).13

We show post-1985 results in Table 3.5. The first window used to estimate
parameters is 1985Q1-1991Q4. We start verifying smaller RMSFE ratios against
the benchmark when h = 4, but significance was only achieved for h = 8, for both
estimation methods (QR and OLS). Notice also that the higher accuracy of the
conditional median compared to the conditional mean is maintained for almost all
horizons and models’ specifications, even though statistical significance is only
achieved for QR 2 at h = 8 . In general, the most accurate model is QR 1.

Again, if we relied on the traditional linear OLS, the conclusion would be in
accordance to several studies documenting a breakdown in the forecasting perfor-
mance of the term spread after the mid-1980’s (Stock and Watson, 2003; Estrella,

13Notice that we consider the post-2007 period part of the “great moderation”. As Clark (2009) points out,
the higher volatility of several macro variables during the recent crisis was mostly driven by temporary large
shocks to oil prices and financial markets, which did not mark the end of the great moderation period. In
addition, despite having the Fed switching its main instrument of monetary policy from short-term policy
rate to large-scale asset purchases since the crisis, the use of such unconventional monetary policy has not
changed its degree of transparency and credibility, which are associated to the macroeconomic stability
observed since the mid 1980’s.
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Rodrigues and Schich, 2003; D’Agostino, Giannone and Surico, 2006 among oth-
ers). Differently, our results indicate that the forecasting power of the yield curve
remains, despite a shift towards longer horizons. This is in accordance with the
results in Table 3.1 which also indicate the ability of the spread to predict output
growth with greater advance in the 1985-2011 period.

Comparison with professional forecasters

We now compare forecasts of econometric models with those of SPF. For this
survey, panelists are asked to provide forecasts for the current quarter and to one to
four quarters ahead. Note that at the time answers are reported panelists know the
advance BEA report.

Results are shown in the last two columns of tables 3.4 and 3.5. From Table
3.4 we observe that professional forecasters provide very accurate GDP growth
forecasts in short horizons, delivering smaller forecasts erros than all the spread
based models. Notice, however, that forecasters accuracy diminish monotonically
with the forecast horizon. For instance, from h = 4 we already observe superiority
of median models over both mean and median SPF forecasts. Results are stronger
for h = 5 with several mean and median specifications showing lower forecast errors.
Notice that statistical significance was only achieved by QR 1 and QR 2 models
though. When using post-1985 data, median models were able to beat the SPF for
h = 5, but results are not statistically significant.

We also verified how these forecasts performed over time in a recursive fore-
casting scheme. Results for the full sample are shown in Figure 3.3, with asterisks
indicating statistical significance against professional forecasts at the 10% level.
The first observation that comes up is how results contrast to those reported in Table
3.4. Although Table 3.4 reveals that professional forecasters were substantially
superior than econometric models in short horizons, Figure 3.3 draws a different
picture when we look for the period before the last great recession of 2008-2009.
For instance, for h = 2 spread based models and forecasters performed compara-
tively well. When h = 3, however, several models were able to outperform SPF
forecasts, with statistical significance being achieved by QR 2. In the case of h = 5,
econometric models resulted in smaller forecast errors since 1990, with statistical
significance observed in most quarters.

This robustness check reveals how our conclusions, at least for h = 2,3,4, would
have changed had we not included the last recession in our sample. In particular,
during at least a decade one would perform a better forecast if using either models
2 and 4, and even more so if relying on QR median forecasts.
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3.4.2 Probability of recession

Full sample

Results are shown in Table 3.6, where we report RQPS and LPS statistics computed
for each model relative to the probability inferred by a simple probit model. As in
the GDP growth exercise, the first window used to estimate parameters is 1955Q1-
1985Q4. Then, at each recursion models are re-estimated using the new information
available.

Table 3.6 reveals several interesting results. First, spread based models show
higher accuracy than the benchmark probit from h= 2 when using real-time data and
from h = 3 when using final revised data, with statistical significance being achieved
from h= 3. More interestingly, however, is the fact that quantile models show higher
accuracy than probits for almost all horizons and regression specifications, which
shows the advantage of relying on the flexibility of quantile models for forecasting
recessions even though statistical superiority is not observed.

Another result we observe is that, although models including the quadratic
spread do not deliver superior forecasts, specifications which include lagged GDP
growth perform considerably better than its counterparts when h = 1,2,3. This is
especially true for quantile models, as QR 4 shows, in general, higher accuracy than
other models for these particular horizons.

A natural question that may arise is the ability of our models to predict the great
recession of 2008/2009. Figure 3.4 provides a good visualization of this exercise by
showing dispersions for GDP growth forecasts in real time for the period 2003Q1-
2011Q2. Given the very similar performances of models, we show results generated
when Xt = (Spreadt ,Spread2

t ), for h = 2,4,6,8. Notice that GDP growth downside
risks considerably before and during the recession period, indicating a higher
probability of negative output growth. For h = 3 the model misses the recession a
little by anticipating it, while for h = 4,6,8 it certainly hits the NBER recession
with high accuracy, indicating that our very simple spread-based QR model was
able to warn about risks of a recession occurring in 2008/2009 with at least two
years in advance.

Another interesting feature observed in Figure 3.4 is that while forecasts of
high GDP growth barely modify, the same is not true for lower conditional output
growth. This result is basically capturing a conditional asymmetric behavior in
the term spread - GDP growth relationship. This asymmetry also reveals a type of
heterokedasticity that is not normally identified by standard time series models.
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Comparison with professional forecasters

We now report comparisons against the SPF. Results are also shown in Table 3.6
and are stronger than when forecasting GDP growth. Relying on the term spread
results in statistically more accurate forecasts than those reported by professional
forecasters for h = 4,5. Opposite results are observed for h = 1,2,3, with the
exception of model QR 1 for h = 3, when evaluated by LPS.

In order to verify the stability of these results Figure 3.5 reports RQPS and LPS
statistics computed recursively for quantile models, the standard probit AR and the
SPF. Similarly to what was found for GDP growth, Figure 3.5 reveals that for the
period before the last recession QR models were more accurate than professional
forecasters. For instance, for h = 2 QR models show higher accuracy over the whole
2000’s when evaluated using RQPS and since the early 1990’s when evaluated using
LPS, although statistical significance was not observed. For h = 3, however, the
higher accuracy of QR models was statistically significant since the early 1990’s
and the same is observed for h = 5.

In line with Rudebusch and Williams (2009), which conduct the same analysis
using a simple probit model, these results indicate the high accuracy of spread
models when forecasting recessions. As shown, this is also true when forecasting
GDP growth and reinforce our findings regarding the continuing predictive power
of the yield spread.

3.5 Conclusions

We use quantile regression to re-examine the term spread ability to predict recessions
and GDP growth by studying the whole conditional distribution of the latter variable.
Our analyses reveal a yet not documented asymmetry between our variables of
interest: while the spread is able to predict negative and lower GDP growth, it
informs little about high output growth. We also verify changes in the predictive
relationship towards longer horizons after the mid-1980’s and identify structural
breaks happening mostly at intermediate and higher quantiles. This is consistent
with a market view that the Fed started to respond tougher and in greater advance to
inflationary pressures resulted from excessive growth around 1984, which is in line
with a large literature verifying a change in the reaction function of the Fed towards
inflation after the Volcker’s presidency.

Since we verify the existence of (conditional) asymmetries in the GDP growth -
term spread relationship we then use quantile regressions to forecast GDP growth
and probabilities of future recessions. Contrasting with most of the works that
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relies on standard probit regressions (assuming conditional normality of the GDP
growth), quantile regressions offer greater flexibility as recessions probabilities can
be computed from empirical distributions. In addition, the existence of conditional
asymmetries may lead OLS estimates to deliver biased GDP growth point forecasts,
suggesting the use of median estimators.

Results reveal that quantile models deliver more accurate forecasts than competi-
tors in both exercises. For the post-1985 data, results indicate higher accuracy in
longer horizons, which is consistent with a more forward looking Fed. We also find
superiority against professional forecasters for mid and longer horizons, but higher
accuracy in shorter horizons is also observed in the period prior the 2008/2009
recession. All together, our findings suggest that the predictive power of the yield
curve remains.
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Table 3.1: OLS and QR(0.5) regressions results

Notes: Standard errors (in parentheses) for OLS coefficients are computed by the heteroskedasticity and
autocorrelation consistent (HAC) covariance matrix estimator of Andrews and Monahan (1992). Standard
errors for QR are computed by paired bootstrap using 2000 replications. ⋆ denotes statistical significance at
(⋆⋆⋆)1%, (⋆⋆)5% and (⋆)10%, respectively.

Sample
OLS QR(0.5)

spreadt−h spread2
t−h yt−h AIC spreadt−h spread2

t−h yt−h AIC

h = 1
0.476⋆⋆
(0.196)

0.335⋆⋆⋆
(0.075)

1196.9 0.199
(0.156)

0.295⋆⋆⋆
(0.103)

1183.3

1.204⋆⋆
(0.333)

−0.311⋆⋆⋆
(0.104)

0.325⋆⋆⋆
(0.080)

1191.3 1.758⋆⋆
(0.722)

−0.484⋆⋆
(0.210)

0.231⋆⋆⋆
(0.089)

1175.6

h = 2
0.719⋆⋆⋆
(0.217)

0.194⋆⋆
(0.083)

1202.7 0.537⋆⋆
(0.212)

0.178⋆⋆
(0.071)

1183.5

1.825⋆⋆⋆
(0.279)

−0.476⋆⋆⋆
(0.092)

0.181⋆⋆
(0.076)

1187.6 1.984⋆⋆⋆
(0.415)

−0.528⋆⋆⋆
(0.117)

0.161⋆⋆⋆
(0.055)

1162.1

1955−2011 h = 4
0.688⋆⋆⋆
(0.255)

−0.007
(0.079)

1205.8 0.382⋆⋆
(0.198)

−0.010
(0.071)

1186.0

1.350⋆⋆
(0.621)

−0.286
(0.201)

−0.015
(0.078)

1202.2 2.101⋆⋆⋆
(0.601)

−0.514⋆⋆⋆
(0.166)

−0.020
(0.174)

1171.8

h = 6
0.419⋆⋆
(0.199)

−0.034
(0.074)

1203.0 0.255
(0.161)

−0.019
(0.063)

1179.5

0.646⋆⋆
(0.304)

−0.100
(0.106)

−0.037
(0.075)

1204.4 0.832⋆
(0.440)

−0.223
(0.149)

−0.041
(0.060)

1179.6

h = 8
0.171
(0.276)

−0.076
(0.081)

1194.9 0.060
(0.209)

−0.028
(0.079)

1169.7

0.446
(0.651)

−0.124
(0.202)

−0.080
(0.080)

1195.9 0.730
(0.664)

−0.236
(0.196)

−0.072
(0.073)

1169.1

h = 1
0.061
(0.135)

0.482⋆⋆⋆
(0.152)

479.8 0.020
(0.177)

0.307⋆⋆⋆
(0.116)

469.6

0.366
(0.580)

−0.091
(0.161)

0.484⋆⋆⋆
(0.142)

481.6 −0.414
(0.946)

0.128
(0.251)

0.303⋆⋆
(0.120)

471.4

h = 2
0.173
(0.158)

0.417⋆⋆⋆
(0.097)

486.9 0.056
(0.206)

0.300⋆⋆
(0.116)

469.7

0.481
(0.623)

−0.092
(0.184)

0.420⋆⋆⋆
(0.092)

488.7 1.011
(0.819)

−0.255
(0.213)

0.300⋆⋆⋆
(0.106)

470.3

1985−2011 h = 4
0.441⋆
(0.262)

0.146
(0.114)

500.6 0.293
(0.234)

0.038
(0.090)

480.0

1.807⋆⋆⋆
(0.629)

−0.409⋆⋆
(0.191)

0.157
(0.113)

498.3 1.570⋆⋆
(0.076)

−0.398⋆⋆
(0.199)

0.057
(0.104)

474.3

h = 6
0.713⋆⋆
(0.354)

0.051
(0.067)

495.6 0.453⋆⋆
(0.210)

0.023
(0.066)

476.6

2.285⋆⋆
(1.077)

−0.479⋆
(0.269)

0.055
(0.064)

491.7 2.180⋆
(1.139)

−0.499⋆
(0.298)

−0.039
(0.059)

473.9

h = 8
0.725⋆
(0.370)

0.043
(0.077)

495.7 0.423⋆
(0.220)

0.071
(0.075)

477.2

3.535⋆⋆
(1.328)

−0.867⋆⋆
(0.347)

0.042
(0.068)

477.4 1.999⋆⋆⋆
(0.738)

−0.511⋆⋆
(0.198)

0.023
(0.062)

460.2
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Table 3.2: Breaks in regression quantiles - SQ test

Notes: This table shows estimated statistics for the break test of Qu (2008). SQ(1) refers to the test statistic for
the presence of 1 break in the specified quantile regression. SQ(2|1) tests for the existence of a second break
given the first one was found. ⋆⋆ denotes significance at the 5% level. The sample period is 1955Q1-2011Q2.

Quantiles 0.1 0.2 0.35 0.5 0.65 0.8 0.9

Linear

h = 4

SQ(1) 1.112 1.408 1.771⋆⋆ 1.610⋆⋆ 1.962⋆⋆ 1.995⋆⋆ 2.083⋆⋆

SQ(2|1) − − 1.788⋆⋆ 1.653⋆⋆ 1.793⋆⋆ 1.058 0.855

Break Date 62:4,08:2 84:2,08.3 84:2,08.3 84:2 84:2

h = 8

SQ(1) 1.077 1.157 1.345 1.463 1.816⋆⋆ 1.688⋆⋆ 2.015⋆⋆

SQ(2|1) − − − − 1.520⋆⋆ 1.479 0.986

Break Date − − − − 66:1,00:2 84:2 84:2

Quadratic

h = 4

SQ(1) 1.079 1.160 1.173 1.262 1.821⋆⋆ 1.995⋆⋆ 2.197⋆⋆

SQ(2|1) − − − − 1.143 1.096 1.060

Break Date − − − − 84:2 84:2 84:1

h = 8

SQ(1) 1.158 1.349 1.376 1.706⋆⋆ 1.723⋆⋆ 1.542 1.878⋆⋆

SQ(2|1) − − − 1.200 1.994⋆⋆ − 1.035

Break Date − − − 07:2 66:1,00:2 − 84:2

Table 3.3: Breaks in regression quantiles - DQ test

Notes: This table shows estimated statistics for the break test of Oka and Qu (2011), allowing for a maximum
of two breaks. DQ(1) refers to the test statistic of 1 break in multiple regression quantiles. DQ(2|1) tests for
the existence of a second break given the first was detected. ⋆⋆ denotes significance at the 5% level. The
sample period is 1955Q1-2011Q2.

Specification Linear Model Quadratic Model

h = 4 h = 8 h = 4 h = 8

DQ(1) 1.035⋆⋆ 0.918⋆⋆ 0.952⋆⋆ 0.920

DQ(2|1) 0.940 0.905 0.914 −
Break Date 84:2 84:2 84:2 −
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Figure 3.4: Forecasting the great recession in real-time

Notes: This figure shows forecasted GDP growth dispersions in real-time. We show results for τ =
0.02,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.98, h = 2,4,6,8 and specification Xt = (Spreadt ,Spread2

t ).
The red line refers to median forecasts. The sample period is 1955Q1-2011Q2.
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Chapter 4

Modeling and forecasting the yield

curve by an extended Nelson-Siegel

class of models: a quantile

autoregression approach1

Rafael B. De Rezende Mauro S. Ferreira

ABSTRACT. This paper compares the in sample fitting and the out of sample forecasting perfor-
mances of four different Nelson-Siegel type of models: Nelson-Siegel, Bliss, Svensson, and a five
factor model we propose in order to enhance fitting flexibility. The introduction of the fifth factor
resulted in superior adjustment to the data. For the forecasting exercise the paper contrasts the
performances of the term structure models in association to the following econometric methods:
quantile autoregression evaluated at the median, VAR, AR, and a random walk. The quantile
procedure delivered the best results for longer forecast horizons.

Keywords: yield curve, in-sample fitting, out-of-sample forecasts, Nelson-Siegel, quantile
autoregression

JEL Classifications: C53; E43; E47

1This is an early version of the paper “Modeling and Forecasting the Yield Curve by an Extended
Nelson-Siegel Class of Models: A Quantile Autoregression Approach”, Journal of Forecasting, v.32, n.2,
pp.111-123, 2013. We would like to thank seminar participants at the Universidade Federal de Minas
Gerais, Forecasting in Rio, Latin American Meeting of the Econometric Society 2008, Brazilian Meeting of
Econometrics 2008 and the Brazilian Meeting of Finance 2008 for comments and suggestions.
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4.1 Introduction

The yield curve plays a central role in macroeconomics and finance. For macroe-
conomists, it carries information on a variety of variables, such as expected inflation
and future GDP (Estrella and Hardouvelis, 1991 and Estrella and Mishkin, 1996,
1998). In finance, the yield curve allows marking to market, pricing derivatives,
hedging, among other uses. Thus, it is not surprising the substantial research effort
in estimating and forecasting the yield curve.

The three most popular estimation approaches are: the affine equilibrium models
(Vasicek, 1977, Cox et al., 1985, Duffie and Kan, 1996), no-arbitrage models
(Hull and White, 1990, Heath et al., 1992), and statistical and parametric models
(McCulloch, 1971, 1975; Fisher et al., 1995; Vasicek and Fong, 1982; Nelson
and Siegel, 1987; Svensson, 1994; Bliss, 1997). The first two have not been
very successful in terms of forecasting. According to Duffee (2002), equilibrium
models only pay attention to instantaneous short rates, resulting in poor yield curve
predictions. The same is true for arbitrage-free models, as they are specialized in
fitting yield curves at a particular point in time, leaving aside their dynamics.

The Nelson-Siegel class of parametric models, on the other hand, has delivered
good estimation and forecasting properties, which has increased its popularity
among users. The Bank for International Settlements (BIS, 2005) reports that nine
of the thirteen main central banks of the world rely on the Nelson and Siegel (1987)
model (NS, hereafter) and/or on the Svensson (1994) model (SV, hereafter) for
yield curve estimation, while Gürkaynak et al. (2007) suggest the use of the SV
by the Federal Reserve Board. For forecasting purposes, Diebold and Li (2006)
show that a dynamic version of the NS model predicts the US yield curve more
accurately than other competing models, especially at longer horizons. Möench
(2008) partially confirms these results, while Bolder (2006) shows the superiority
of the NS when compared to affine equilibrium and other parametric models.

Motivated by the practical use of the Nelson-Siegel models, this paper compares
the in-sample fitting and the out-of-sample predictive power of some of these models:
NS, Bliss (1987) (BL, henceforth), SV and a five-factor model (FF, hereafter) we
propose. The decision to include a fifth factor as an extension to the SV model is
an attempt to enhance its flexibility in order to improve in-sample fitting and its
predictive power.

The paper also innovates when compares the forecasting performance of a
first order quantile autoregressive model - QAR, estimated at the median, to other
standard procedures: AR(1), VAR(1), and a random walk (RW) applied directly
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on the term structure yields. The use of a robust estimation method, such as QAR,
reduces estimation bias provoked by outliers which normally affects out of sample
forecasting performance. This robustness seems particularly attractive when dealing
with financial variables that normally suffer from wide oscillations, even more in
emerging markets.

We conduct the analysis for the Brazilian zero-coupon data, which characteristics
are described in the next section. Although most of the term structure literature
focuses on data for the richest countries, the international investors’ increasing
interest in the high yields of emerging economies, which has been accentuated
due to their recent conquest of macroeconomic and institutional stability, naturally
requires a better comprehension of such financial markets. This paper takes a step in
this direction when analyzing the Brazilian case, one of the most popular destinies
for international investors seeking high returns in the emerging world.

In the third section we present three standard term structure models before
introducing the FF model. The fourth section describes the in sample and the out of
sample estimation procedures while the fifth section discusses the results. The sixth
and last section brings our concluding remarks.

We anticipate the main results of our study: (i) the FF shows superior in-sample
fitting; (ii) for the out of sample exercise, both the SV and BL are more accurate;
(iii) among the econometric forecasting procedures, QAR is superior to AR and to
VAR; (iv) the random walk beats QAR for 1 day ahead prediction, but (v) QAR
shows superior performance for 1 and 3 months horizons.

4.2 The data

We use daily data on the implicit yield curves extracted from swap operations
between the Brazilian Interbank Deposit rate and the Predetermined Interest, which
is a fixed coupon rate. The Interbank Deposit rate is a weighted average of daily
rates on the interbank lending operations. This swap, referenced by ID-PRE, is
probably the most important and liquid instrument of the Brazilian fixed-income
market. The contract has the same characteristics of a risk-free zero-coupon since
BM&FBOVESPA provides full assurance.

Our sample ranges from March 16 of 2000 to October 15 of 2007, constituting
1883 business days. Because very long maturity contracts have only recently
become more liquid, we decided to work with the following 15 vertices: 1, 2, 3, 4,
5, 6, 7, 8, 9, 12, 18, 24, 36, 48 and 60 months (in running days). Figure 4.1 provides
a three-dimensional picture of the data. Table 4.1 reports descriptive statistics for
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the yields and for the empirical factors: level, slope and curvature. Data reveals
the average yield curve is positively sloped and volatility increases with maturities.
For all maturities, yields are highly persistent over time. They also seem to depart
from a normal distribution, as suggested by the positive skewness, either high or
low excess kurtosis, and also by the low p-values obtained from a Jarque-Bera test
of normality. This last pattern is also observed for all empirical factors. The level,
however, presents higher persistency and volatility than the slope and the curvature.

In order to familiarize the readers with the data, we contrast, in Figure 4.2, the
time series of the empirical factors (left scale) with the Brazilian risk premium
(right scale), measured in basis point by the Emerging Markets Bond Index for
Brazil (EMBI Brazil), which is computed by the JP Morgan. It is straightforward to
visualize the close comovements between these series, reflecting how the Brazilian
interest rate policy was strongly affected by the country risk perception. This pattern,
observed in several emerging markets, has been studied by Uribe and Yue (2006).
Following an adverse shock (normally a contagion, a default or even an increase in
the political uncertainty), investors take their money out of the country, provoking a
huge currency depreciation that passes through to the local inflation rates. Central
banks following an inflation targeting regime, which is the Brazilian situation, react
by increasing the policy interest rate, which ends up oscillating according to the
country risk perception.

This is the explanation for why the empirical factors and the EMBI Brazil varied
so abruptly from the beginning of 2001 until the middle of 2003. During this period
Brazil suffered contagion from the Argentine’s sovereign default in December of
2001 and from the increase in the international risk aversion following the 9/11
attack. The country also had to deal with a local political uncertainty during the
presidential election in October 2002, since the leading candidate, Lula, and his
Labor Party had announced before they would deviate from orthodox economic
policies. The analysis of Uribe and Yue (2006) also explains the coincident decline
in the risk premium and the empirical factors. As Lula positively surprised by
honoring debt contracts, increasing budget surplus and maintaining the inflation
targeting framework, the risk premium declined, attracting foreign investors back to
Brazil and appreciating the local currency, which helped lowering the inflation. As
a result, the level of term structure of interest rates declined with the perspective
that the Central Bank of Brazil would reduce further the interest rate.



CHAPTER 4 117

4.3 Nelson-Siegel class models

Basic definitions

The term structure of interest rates can be described in terms of the spot (or zero-
coupon) rate, the discount rate and the forward rate. A forward rate f (τ,τ∗) is the
interest rate of a forward contract on an investment that will be initiated τ periods
in the future and will mature τ∗ periods beyond the start date of the contract. The
instantaneous forward rate f (τ) is defined as limτ∗→0 f (τ,τ∗) = f (τ), from which
one obtains the forward curve, f (τ). The spot rate y(τ), implicit in a zero-coupon
bond with maturity τ , is defined as y(τ) = 1

τ

´ τ
0 f (x) .dx, from which one gets

the spot curve (or zero-coupon curve), y(τ). The discount curve, formed by the
present value of a zero-coupon bond paying the nominal value of $1.00 after τ

periods, is obtained as the following: d (τ) = e−y(τ)τ . It is then straightforward to
move from one curve to another using the relations d (τ) = exp

[
−
´ τ

0 f (x) .dx
]

and

f (τ) =−d′(τ)
d(τ) .

Three factor Nelson-Siegel (1987) model

Nelson and Siegel (1987) fitted a zero-coupon curve at a particular point in time
using the following model:

y(τ) = β1 +β2

(
1− e−λτ

λτ

)
+β3

(
1− e−λτ

λτ
− e−λτ

)
+ ετ (4.1)

Later, Diebold and Li (2006) introduced dynamics to this model by regressing,
period by period, yields y(τ) on the exponential components of (4.1), which
resulted in time series for its coefficients β1, β2, and β3. Following Litterman and
Scheinkman (1991), Diebold and Li (2006) interpreted them as latent factors of
level (β1t), slope (β2t) and curvature (β3t), while the exponential terms (inside
parentheses of equation (4.1)) were interpreted as factor loadings whose shapes
depend on the decaying parameter (λt). For matters of simplicity, Diebold and
Li (2006) fixed λt at λ = 0.0609 for every t, which allowed (4.1) to be estimated
by OLS. In Figure 4.3(a) we show the shapes these exponential components can
assume.

Despite its importance, the Nelson-Siegel model has gone through several
modifications to enhance flexibility in order to capture a wider variety of curve
shapes. These improvements were mainly done by incorporating additional factors
and decaying parameters.
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Bliss (1997) three factor model

Bliss (1997) tried to improve the term structure fitting by incorporating two different
decaying parameters: λ1and λ2. The spot curve at each time t is then given by

yt (τ) = β1t +β2t

(
1− e−λ1tτ

λ1tτ

)
+β3t

(
1− e−λ2tτ

λ2tτ
− e−λ2tτ

)
+ ετ (4.2)

The factor loadings of equation (4.2) are shown in Figure 4.3(b).

Svensson (1994) four factor model

Svensson (1994) included another exponential term in the model that is similar to
the third one, but with a different decaying parameter. The SV four factor model in
its dynamic form can be written as:

yt (τ) = β1t +β2t

(
1− e−λ1tτ

λ1tτ

)
+β3t

(
1− e−λ1tτ

λ1tτ
− e−λ1tτ

)
+ (4.3)

β4t

(
1− e−λ2tτ

λ2tτ
− e−λ2tτ

)
+ ετ

The fourth component can be interpreted as a second curvature. The factor loadings
of equation (4.3) are shown in Figure 4.3(c).

Five factor model

We propose a five factor model (FF) is a natural extension of the SV and includes a
term that resembles the second loading, but with a different decaying parameter.

yt (τ) = β1t +β2t

(
1− e−λ1tτ

λ1tτ

)
+β3t

(
1− e−λ2tτ

λ2tτ

)
+ (4.4)

β4t

(
1− e−λ1tτ

λ1tτ
− e−λ1tτ

)
+β5t

(
1− e−λ2tτ

λ2tτ
− e−λ2tτ

)
+ ετ

The third factor loading, shown in Figure 4.3(d), can be interpreted as a second
slope. We expect the FF model to enhance the fitting of more complex and twisted
curves.
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4.4 Estimation method

The in-sample fitting

The models presented in the previous section can be nested in the following repre-
sentation:

Yt = Xtβt + εt (4.5)

where Yt = [yt (τ1) ,yt (τ2) , ...,yt (τN)]
′ is a N x 1 column vector representing the

term structure of N interest rates at time t; Xt is the N x F matrix of factor loadings
with F being the number of factors in each model; βt is the F x 1 vector of latent
factors; and εt is the N x 1 vector of errors with typical element εnt , for n =

1, ...,N, satisfying εnt ∼ iid N
(
0,σ2

n

)
. Fitting the term structure according to (4.6)

requires, for each period t, estimating the vector and the decaying parameters λt ,
λ1t , and λ2t . Following Nelson and Siegel (1987) and Diebold and Li (2006), we
keep these last parameters constant for all t, i.e. λt = λ , λ1t = λ1, and λ2t = λ2.
Diebold and Li (2006) decided to fix λ at the 30 months maturity, but we adopted
a less arbitrary strategy. For choosing the decaying parameter for the NS model,
we initially constrained the range of λ between 0.03 and 0.42, as these values
correspond to a maximum of the curvature loadings at the 5-year and 0.05-year
(0.6 months) maturities, respectively. Given these boundaries, we then constructed
the set Ω = {0.029+0.001l}391

l=1. Given λ ∈ Ω and the correspondent matrix of
factor loadings Xt , the vector βt is estimated by OLS at each period t. We chose the
optimal decaying factor that minimizes the average of the Root Mean Squared Error
(RMSE). More specifically, λ̂ is the solution of the following problem:

λ̂ = arg min
λ∈Ω

{
1
N

N

∑
n=1

√
1
T

T

∑
t=1

(
yt (τn)− ŷt

(
τn,λ , β̂t

))2
}

(4.6)

where T is the number of yield curves in the sample. In the case of the BL, SV
and FF we solved a similar problem, but now we had to find the values

(
λ̂1, λ̂2

)

from the set Λ = {(λ1,λ2) |λ1 ∈ Ω,λ2 ∈ Ω} i.e., the cartesian product Ω×Ω. Thus,(
λ̂1, λ̂2

)
solves the following problem:

(
λ̂1, λ̂2

)
= arg min

(λ1,λ2)∈Λ

{
1
N

N

∑
n=1

√
1
T

T

∑
t=1

(
yt (τn)− ŷt

(
τn,λ1,λ2, β̂t

))2
}

(4.7)
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Table 4.2 shows the optimal values of the decaying parameters for each model.

The out-of-sample forecasting

We use the first T ∗ yield curves to set λ̂ and
(

λ̂1, λ̂2

)
based on the procedure

described in the previous subsection. As the algorithm selects the optimal values
for the decaying parameters, it simultaneously defines a time series of estimated
factors β̂ f ,t for t = 1, ...,T ∗ and f = 1, ...,F . Given these time series we estimate
the equation

β̂ f ,t = µ f +φ f β̂ f ,t−h + v f ,t (4.8)

where h is the forecast horizon, µ f and φ f are parameters to be estimated and v f ,t is
the residual whose restrictions we will comment on later.

Let m = 0, ...,(T −T ∗− h). Given λ̂ and
(

λ̂1, λ̂2

)
, equations (4.5) and (4.8)

can then be used to forecast each factor in the following iteratively manner: i) use
the data available up to T ∗+m and estimate the parameters µ̂

(T ∗+m)
f and φ̂

(T ∗+m)
f

according to (4.8), where the indexed superscript indicates the last observation used
in the regression; ii) obtain β̃ f ,T ∗+h+m|T ∗+m = µ̂

(T ∗+m)
f + φ̂

(T ∗+m)
f β̂ f ,T ∗+m, where

β̃ f ,T ∗+h+m|T ∗+m is the h steps ahead forecasted value of β̂ f ,T ∗+h+m, given the infor-
mation available at T ∗+m; iii) forecast the vector of yields ŶT ∗+h+m|T ∗+m using

ŶT ∗+h+m|T ∗+m = X̂
(

λ̂
)

β̃T ∗+h+m|T ∗+m or ŶT ∗+h+m|T ∗+m = X̂
(

λ̂1, λ̂2

)
β̃T ∗+h+m|T ∗+m.

We are particularly interested in contrasting the forecasting power of the follow-
ing autoregressive models: AR(1), VAR(1), and QAR(1). When equation (4.8) is

estimated according to an AR(1), v f ,t ∼ iid N
(

0,σ2
v f

)
, for each f . In the case of

a QAR(1), we only assume independence of v f ,t over t. In both cases, we assume
independence of the errors across regressions, i.e., v f1,t ⊥ v f2,t , for any f1 6= f2. This
last assumption is dropped in the case of the VAR(1) estimates, in which case (4.8)
needs to be rewritten so that, instead of estimating µ f , φ f and σ2

v f
, we respectively

estimate the matrices M, Φ, and Ω. The VAR(1) is represented by

β̂t = M+Φβ̂t−h + vt (4.9)

where β̂t is an F x 1 vector of all factors; M is an F x 1 vector representing the
intercept of each equation; Φ is an F x F matrix; vt is an F x 1 vector of serially
uncorrelated residuals; and Ω is the F x F variance-covariance matrix where it is
allowed cov

(
v f ,vg

)
6= 0 for any v f 6= vg. We compare the forecasting performance

of each combination of term structure model / econometric method against each
other and also against the predictions of a random walk applied directly on the
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yields: Ŷτn,T ∗+h+m|T ∗+m = Ŷτn,T ∗+m.

4.5 Empirical results

The forecasting exercise is carried for horizons h = 1 , h = 21 (1 month), and
h = 63 (3 months). We have a sample of T=1883 yield curves, from which we
set T ∗ = 1400. Table 4.2 shows the values for λ̂ and

(
λ̂1, λ̂2

)
that are used in the

in-sample and in the out-of-sample exercises.

In-sample fitting

Table 4.3 brings the RMSE for all four term structure models. The first thing to
observe is that the FF has the smallest RMSE in all maturities analyzed. In some
cases it is only a bit smaller than the results of the SV model, which also always
delivers smaller RMSE than those reached by NS and BL. Incorporating the fifth
factor resulted in large improvement for the shortest (1 month) and longest (60
months) maturities, exactly those considered the most difficult to fit. For these two
vertices, the SV delivered an RMSE that was, respectively, 75% and 170% higher
than the FF model. In the same direction, the SV resulted in much smaller RMSEs
at these extreme vertices than the BL and NS. It is strongly suggested that more
flexibility improves the curve adjustment, especially at extreme maturities.

In order to compare the performance of each model over time, we computed
the RMSE for the entire curve of yields at each period t. The FF delivered smaller
RMSE than the SV in 84.65% of the sample. The superiority against BL and NS
occurred 99.78% and 99.31% of the sample, respectively. Figure 4.4(a) presents
the time series of these RMSE, from which we observe FF normally reaching the
smallest value.

We also computed a time series of Bayesian Information Criterion (BIC) to
verify whether the greater flexibility that resulted in smaller RMSE compensates
for losing degrees of freedom due to addition of extra parameters. Again, the result
favors the FF in 65.90% of time when compared to the SV model. The BIC of the
FF was also smaller than those of BL and NS in 89.33% and 91.82% of our sample,
respectively. Figure 4.4(b) presents the BIC time series, from where we can inspect
the superiority of the FF model.

To gain better intuition for why more flexible models have delivered better
results, we verify, in Figure 4.5, their fitting against different yield curve shapes.
Figures 4.5(a), 4.5(b) and 4.5(c) show that all models perform similarly well when
facing less twisted curves. However, for curves presenting at least one inflection
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point, as indicated by Figures 4.5(d), 4.5(e), and 4.5(f), the most flexible models
(SV and FF) do a better adjustment. In these last three figures we also observe that
FF performs better than SV when exposed to more twisted curves.

Out-of-sample forecasting

Table 4.4 reports forecasting RMSEs for each term structure model and forecasting
method (equation 4.8, for AR and QAR; equation 4.9 for VAR). Table 4.5 reports
similar statistics for the random walk applied directly on yield levels. These tables
need to be read together. Shaded boxes indicate the best forecasting model at each
maturity; bold values, only present in Table 4.4, indicate outperformance over the
RW forecasts.

As a pattern we observe the random walk reaching the lowest RMSEs for the 1-
day horizon and all maturities, except the 24- and 60-month. For these two vertices,
the best models were SV-AR and SV-QAR, respectively. The BL-QAR delivered
the lowest RMSEs for the 1-month horizon and all maturities, expect the 1- and
60-month, in which the best models were NS-QAR and SV-QAR, respectively.
Finally, the SV-QAR reached the lowest RMSEs for the 3-month horizon and all
maturities.

The results show that the various combinations of term structure model/econometric
method rarely delivered lower RMSEs than those of the random walk. For the 1-day
horizon, the RW was outperformed in three occasions only: the 24-month maturity
when using SV-AR and SV-QAR and the 60-month maturity when using SV-QAR.
For the 1- and 3-month horizons, the random walk delivered smaller RMSEs than
almost all forecasts based on the AR and VAR models. The only exception hap-
pened for the 1-month maturity, in which case all the four term structure models
had smaller RMSEs when relying on VAR.

Results are quite different when we use QAR to predict 1 and 3 months ahead.
For these horizons the random walk showed larger RMSEs than those computed
by at least one of the term structure models. NS-QAR and BL-QAR had smaller
RMSEs than RW for all maturities, expect the 60-month when forecasting 1 and 3
months ahead, respectively. The use of SV-QAR resulted in smaller RMSEs than
that of the RW when forecasting 3-months ahead. SV-QAR also delivered smaller
RMSEs when forecasting the 24 and the 60-month maturities 1 day and 1 month
ahead. This advantage of the QAR model certainly has to do with the robustness of
the median that is not affected by the presence of outliers and extreme values that
are commonly observed in financial data.

When we simply compare the models against themselves, we find that the BL-



CHAPTER 4 123

QAR generates, on average, 1 month ahead forecasts that are 40% more accurate
than the best non-QAR model, the NS-AR. Similar comparison shows SV-QAR
generating 3 month ahead predictions that are 32% more accurate than the FF-AR,
which was the best non-QAR method.

It also interesting to note that the gain in terms of in-sample fitting obtained with
the inclusion of the second slope term in the FF model was not translated into better
forecasting performance. In general, the FF resulted in higher RMSEs, which may
have been caused by overparameterization (Diebold and Li, 2006).

In Table 4.6 we present forecasts RMSE ratios for the RW, SV-QAR and BL-
QAR. We only compare BL-QAR and SV-QAR against RW and against each other
because these were the most accurate models for the 1-month and 3-month horizons,
respectively. The SV-QAR also had the smallest RMSEs on average for the 1-day
horizon.

Table 4.6 also shows the results for the Diebold and Mariano (1995) test, which
compares the forecasting accuracy based on the null hypothesis that both models
generate equal forecast mean squared errors. Asterisks indicate the DM test rejects
the null at 1% (***), 5% (**), and 10% (*) significance levels. It is also important
to note when comparing models SV-QAR and BL-QAR with the RW that values
smaller than one indicate that these models outperform the RW by showing smaller
RMSEs. When contrasting SV-QAR against BL-QAR, values smaller than one
indicates that SV-QAR outperforms BL-QAR.

1-day ahead forecasting

The RW was superior than SV-QAR when forecasting the 1, 6 and 12-month
maturities, if we consider a 1% confidence level, but the DM test does not allow
concluding superiority of the RW forecasts for 3, 24 and 60-month maturities.
Comparing to BL-QAR, the random walk is not superior only when predicting the
3-month maturity yield. When confronting SV-QAR against BL-QAR results are
mixed but the DM test indicates superiority of SV-QAR when forecasting the 1, 6,
24 and 60-month maturities. BL-QAR seems superior only when predicting the
12-month yield and the DM test does not reject the null in the case of the 3-month
maturity.

1-month ahead forecasting

The superiority of BL-QAR over RW is confirmed as the DM test rejects the null in
favor of a smaller RMSE for the BL-QAR for all maturities, but 60-month. Opposite
result was found when confronting SV-QAR against the RW. The RW delivered
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more accurate forecasts for all maturities, except for the 24 and 60-month maturities.
When comparing SV-QAR and BL-QAR the test indicates the last model is more
accurate for all maturities, except the 24 and 60-month. For the 24-month maturity
the test did not reject the null, but for 60-month rejection happened at 5%, indicating
superiority of SV-QAR.

3-month ahead forecasting

When comparing SV-QAR with RW, the test rejected the null for all maturities, but
60-month, indicating superior forecasting performance of SV-QAR. For the longest
maturity the test did not reject the null. The DM test also did not reject the null at
any maturity when confronting BL-QAR with RW. In the case of SV-QAR against
BL-QAR the test favored the SV-QAR for 1, 3, 12, and 60-month maturity. For the
6 and 24-month maturities there was no rejection of the null.

4.6 Conclusions

We compare, for the Brazilian yield curve data, the in-sample adjustment and the
out-of-sample forecasting performances of four different Nelson-Siegel type of
models, following Diebold and Li (2006). In order to improve the ability to fit more
twisted curves very commonly observed in term structures of emerging markets
we propose a new five factor (FF) model, which is a natural extension of Svensson
(1994). We also innovate by using quantile autoregression (QAR), evaluated at the
median, to forecast the yields.

The FF model delivered the best results in terms of in-sample fitting. Visual
inspection of a few very twisted curves suggests this superiority arriving from better
adjustment at the most extreme yields. The FF performed poorly in out of sample
forecasting, which may be due to overparameterization (Diebold and Li, 2006).

For 1 day ahead forecasting, no combination of term structure model/forecasting
method beat the random walk applied directly on yield levels. The Diebold and
Mariano test, however, indicated no superiority of the random walk forecasts against
the Svensson‘s model (SV) combined with a QAR, for the 3, 24 and 60 months
maturity.

For one month ahead forecasting, we found the Bliss model (BL)-QAR de-
livering superior results than the random walk for all maturities, but 60 months,
for which we found no difference between the two methods. For three months
ahead forecasting the best model was SV-QAR, which beat the random walk for all
maturities, but the 60-month.
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While the best term structure model to beat the random walk depends on the
prediction horizon, the forecasts based on QAR evaluated at the median were
consistently superior. The robustness of quantile regression method against outliers
probably justifies our findings, especially because we have dealt with very volatile
financial data, characterized by the presence of extreme values that tend to bias
mean estimators.

The analysis of this paper can be extended in at least three directions. First,
no-arbitrage restrictions (Christensen et al., 2007) could be applied to more flexible
models such as FF, SV and BL. Second, macroeconomic variables could be used to
improve the in sample adjustment and the out of sample forecasting performances
of models, as suggested by Diebold et al. (2006). Finally, quantile regression,
or any other robust estimation procedure, could be included among our standard
forecasting methods menu.
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Table 4.2: Optimal parameters λ

Notes: This table shows the optimal parameters λ obtained for the in-sample and out-of-sample exercises.
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Table 4.4: RMSEs of out-of-sample forecasts – NS class models

Notes: This table shows the RMSEs of the out-of-sample forecasts generated from combinations of term
structure models (NS, BL, SV and FF) and forecasting methods (AR(1), VAR(1) and QAR(1)). Bold values
indicate which models beat the RW and shaded-boxes indicate the best forecasting model for each maturity.
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Table 4.5: RMSE of out-of-sample forecasts – RW model

Notes: This table shows the RMSEs of the out-of-sample forecasts generated from a random-walk model.
Shaded-boxes indicate the best forecasting model for each maturity.
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Figure 4.1: ID x PRE Swap Yield Curves

Notes: This figure shows the ID x PRE swap yield curves. The sample ranges from March 16, 2000 to
October 15, 2007 and the maturities are (in months): 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 24, 36, 48, and 60.
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Figure 4.2: Empirical Factors and EMBI – Brazil

Notes: Empirical factors are left scaled and the EMBI Brazil is right scaled. The level is defined as the
60-month yield, the slope as the 60-month less 1-month yield and the curvature as twice the 1-year yield less
the sum of the 1-month and 60-month yields.
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Figure 4.3: Loadings of the NS Class Models

Notes: This figure shows factor loadings for the NS, Bl, SV and FF models computed considering λ = 0.097,
λ1 = 0.048 and λ2 = 0.114, λ1 = 0.084 and λ2 = 0.222, λ1 = 0.042 and λ2 = 0.320, respectively.
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Figure 4.4: Fitting RMSE and BIC – NS Class Models

Notes: This figure shows fitting RMSE and BIC statistics estimated for each day of the sample that ranges
from March 16, 2000 to October 15, 2007.
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Figure 4.5: Fitted Yield Curves in specific days

Notes: This figure shows observed and fitted yield curves for the following days: (a) June 4, 2004; (b) May
21, 2007; (c) January 15, 2004; (d) September 18, 2007; (e) April 4, 2000; and (f) August 7, 2007.
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