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Abstract 

 

Essays on Networks of Influence � Discovering Insight through Social Network Analysis 

 

Kevin D. Mentzer 

 

Chair of the Supervisory Committee: 

Professor Dominique Haughton 

Department of Mathematical Sciences and Global Studies 

 

 

Social network analysis (SNA) is a set of methods used for the examination of the relations 

found in social structures. While SNA has been used to study business for over 100 years, 

with early work showing the structure of organizational charts, it has experienced resurgent 

interest recently with the advances in computing power that allow for much more complex 

examination of these networks.  

This research demonstrates how the use of SNA yields novel insights in three 

different situations. In study 1 we apply SNA to take a fresh look at U.S. State gubernatorial 

power. We introduce and implement a weighted network model by which state agency 

appointments can be examined. Instead of taking a governor-centric approach, as has been 

the practice, we construct and examine the whole appointment network. Our work shows 

that continuing with the existing practices will yield misleading results; we propose an 

alternative and more holistic view of these networks which better illustrates the changing 

nature of the structure of state government. In study 2 we explore and compare interlocked 

corporate boards in the U.S. and Europe over a period of 10 years (2001-2010). This 

longitudinal study examines, through the lens of the interlocked board network, whether 

the Mizruchi hypothesis, according to which the power of the corporate elite is 

disintegrating, holds. In study 3, we continue with the theme of interlocked boards but now 

consider the problem of how to test for statistical significance in network change over time. 

Our proposed model extends a Bayesian model beyond a pairwise analysis and allows for 

testing over a multi-year period. We apply and test our model with the interlocked director 

network in the U.S. over a period of 10 years (2001-2010), but this model is domain 

independent and can be applied anywhere a network is being examined longitudinally.  
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1 Introduction 
 

1.1 Overview 

 

Business Analytics is the combination of data and the tools and techniques that provide 

insight into that data. This insight is in the form of new understanding gained through the 

results of the analytics process. This insight could be at a very low level, such as 

�✁✂✄☎✆✝✞✁✟✠ ✡☛☞✡ ✌☎✍✞ ✄✍✂✡☎✎✝✞✂ �☎✟✏✡ ✄☞✞✝ ✑☎✞ ☞ ✒☞✞✡✁✄✍✓☞✞ ✄☎✓☎✞ ✂✄☛✝✎✝ ☎✑ ✌☎✍✞ ✒✞☎�✍✄✡✔

or at an industry-wide level which may challenge a widely-held sentiment that has been 

driving the industry. New contributions to academic knowledge and practical insights can 

be gained through the introduction of new data or applying new analytical techniques to 

existing data. This dissertation is an exploration of what new knowledge and insights could 

be gained through one such toolset, social network analysis.  

Scholars working in the area of analytics are well familiar with the speed and 

frequency at which new tools and techniques become available. These tools are being 

applied in a cross-disciplinary fashion, and analytics researchers frequently support 

analysis as members of research teams in a broad area of domains. The analytics researcher 

needs to be comfortable with picking up new tools and applying them to existing context 

to see if new knowledge emerges.  

Social network analysis (SNA) is a set of methods used for the examination of the 

relations found in social structures. While SNA has been used to study business for over 

100 years, with early work showing the hierarchical nature of genealogy (Hobson, 1919), 

it has experienced resurgent interest recently with the advances in computing power that 

allow for a much more complex examination of these networks (Barabási & Albert, 1999). 

Always building on a foundation of empirical data, SNA uses statistical and computational 
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techniques to produce insights through measurements of the structural nature of actors and 

their relations as well as through graphical imagery (Freeman, 2004).  

As highlighted through the editorial criteria for the journal Social Networks, 

�✁✂✄☎✆✝✞✄✆✁✂✟ ✄✁ ✟✁�✆✠✡ ✂☛✄☞✁☎✌ ✠✂✠✡✍✟✆✟ ✎☎✠✂✏☛ ✑☎✁✒ ✠✝✟✄☎✠�✄✓ ✑✁☎✒✠✡ ✒✠✄✔☛✒✠✄✆�✠✡

derivation✟ ✄✁ �✁✂�☎☛✄☛✓ ✕☛✟�☎✆✖✄✆✗☛ �✠✟☛ ✟✄✞✕✆☛✟ ✁✑ ✖✠☎✄✆�✞✡✠☎ ✟✁�✆✠✡ ✂☛✄☞✁☎✌✟✘✙ Insights 

through SNA can be gained either through the analysis of the myriad of measures that are 

available, such as node centrality and network density, or through the visualizations that 

can be obtained by graphically displaying the social network. 

  

Figure 1-1 Research Map 
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My work is divided into three papers, which are all connected in several ways, as 

highlighted in Figure 1.1. All of the work applies SNA in a domain specific context. This 

has allowed me to explore SNA, as used in social sciences, in depth, whether it was 

justifying a weighting scheme for a weighted network as in paper 1, or finding statistical 

significance in longitudinal studies of networks as in paper 3. My journey has been 

circuitous in nature. I begin by looking at geographically diverse networks as applied to 

U.S. States in paper 1. I then expanded the geographic context by comparing interlocked 

board networks in the U.S. to those in Europe in paper 2. Building on the move to 

interlocked boards, I then expand this work to look at the implications of studying those 

networks longitudinally in paper 3. This leads to a need to address a recognized limitation, 

resulting in a novel method for studying time series of networks. I then demonstrate that 

future work could include bringing that novel method back into the gubernatorial power 

context of paper 1.  

Looking more closely at this work, I begin in paper 1 �✁ ✂✄☎✂✆✝✞ ✂✟✄ ✆✠✆✡☛ ☞✌ ✍✆✎✂ure 

✆☎ ✏✡✑✂✟ ✒ ✂✟✡✓☎✒✝✠ ✏✡✑✠☎✔✕ Using a dataset that has not yet been explored through social 

network analysis, namely the index of formal powers of U.S. state governors, I create 

visualizations to better understand the administrative changes occurring within state 

government. I show that the existing weighting method is inadequate and needs to be 

adjusted in order to convert the data to a social network. This brings a new weighted dataset 

into the Social Network domain. Not only am I able to replicate knowledge that had been 

gained previously not using this toolset, but the study also highlights that some states are 

adopting structures that the legacy model would have mis-identified as a move away from 

centralization of power.  
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Visualizations alone are only part of the story. A strong component of social 

network analysis is the set of various statistical measures available to the researcher. These 

could be at the individual level, which I explore in paper 1 as I apply measures to 

gubernatorial power, or at the network level as I do in paper 2 when comparing whole 

network characteristics of networks of boards of directors. Paper 1 highlights that measures 

used at an individual level ma� ✁✂✄ ☎✂✆✝ ✞✁ ✄✂✟✠�✡☛ ☞✂✌✍✎✏✑ ✒✂✓✏✆✁✌✏✁✄ ✏✁✓✞✆✂✁✌✏✁✄✔

Paper 2 shows that whole network measures can bring insight when comparing 

international networks.  

Limitations of existing social network tools led to an important methodological 

contribution. These limitations emerged when analyzing networks longitudinally. In paper 

3, I make a methodological contribution by introducing a new Bayesian model for 

measuring statistical significance of change to a social network over a multi-year period. 

While I apply this method to the same dataset used in paper 2, namely the interlocked board 

member network of the companies that make up the DOW Jones Industrial 30, this same 

new approach could also be applied to the state government data to rapidly detect 

statistically significant changes in administrative arrangements within state government. 

This would allow us to quickly hone in on the specific state/year combinations where 

change is occurring. This would be a logical follow-up study to this work. 

In summary, this work reports the results of a multi-study research program on SNA 

through an interdisciplinary perspective using real network data. This dissertation 

empirically examines data from the domains of interlocking boards of directors and 

gubernatorial power in the U.S. states. It proposes and tests a network weighting scheme 

for appointment power while at the same time expanding the network to include all actors 
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involved in the process. Methodologically, it proposes a new model that allows us to 

determine if network change in the longitudinal analysis of a network is statistically 

significant.  

The key contributions of this dissertation are as follows: 

1) Demonstration of applicability of SNA to two new contexts; 

2) Significant domain-specific findings in the areas to which the research applied 

SNA; and 

3) The expansion of SNA with a new Bayesian model for longitudinal networks. 

 

1.2 Background 

This work explores two different domains through social network tools. In the first domain 

we consider gubernatorial power within U.S. state government. We introduce the novel 

approach of modeling gubernatorial power utilizing social network tools. In the second 

domain, interlocking corporate boards of directors, we look at a domain that has a long 

history of utilizing social network analysis; we bring new insight to this established field 

through the introduction of global comparisons of data, covered in paper 2, and a new 

model for testing for longitudinal significant change, covered in paper 3. This work thus 

contributes new applications to social network analysis, as well as new techniques in well-

established domains.  

The topic of gubernatorial power has long been of interest to the research 

community with the Formal Powers Index (FPI) introduced by Schlesinger in 1965 and 

maintained by Beyle since then. This index, which has gone through several revisions and 

additions, scores the power of the governor along several components including budget 

power, tenure potential, gubernatorial party control, separately elected officials, and 
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appointment power. Even though the index is now 50 years old, it has had staying power 

and continues to drive new research. However, it has not been without criticism. Krupnikov 

and Shipman (2012) show that when considered longitudinally there are flaws in the FPI 

related to budget power and stress that all components of the index should be looked at 

more closely.  

This work heeds the call issued by Krupnikov and Shipman (2012) by being the 

first to re-examine the appointment power component of the index. We show that the 

manner in which the components of the FPI are measured is quite similar to the way 

measures of centrality are defined in network analysis. This supports the idea of utilizing 

network analysis as a suitable tool to re-examine this measure. However, we will further 

show that there are issues when attempting to directly convert the FPI weighting to a social 

network weighting and, as a result, we propose a new weighting scheme that allows for a 

full network model. To this effect, we take one component of the index, namely the 

appointment power, and convert it to a social network.  

This work is of interest to political scientists because it expands the depth of 

understanding about appointment power within U.S. states. This expansion is achieved 

through the consideration of all actors who participate in the appointment process, not just 

the governor, which is a limitation of the FPI. Network visualization techniques highlight 

changes occurring over time and demonstrate that the governor is not operating in isolation.  

Those who might have dismissed appointment power in the past will also be 

interested in this work. This work shows that appointment power cannot be fully 

understood through a single value attributed to the governor. The appointments happen in 
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an environment in which many actors participate and changes indirectly related to the 

governor may be at play in different states. 

Finally, this work is of interest to social network researchers and will show that 

new life can be given to old data. It opens up a new field of study for network researchers, 

namely gubernatorial power, something that has seen little interest to date. While this work 

addresses appointment power, other components of the FPI such as budget power, are also 

ripe for reexamination using these same techniques.  

Papers 2 and 3 both contribute to the much-researched area of interlocking 

corporate boards. Paper 2 explores the question of what knowledge can be gained by 

comparing interlocking boards in the U.S. to those in Europe. This novel study is the first 

that compares interlock networks for a stock market index in the U.S. directly with that of 

an index in Europe in an effort to understand the differences that may exist. While others 

have explored U.S. and European interlock networks in the past, no one has to date 

performed a side by side comparison to look at differences.  

One of the challenges often cited when comparing different networks is the 

challenge of using different sized networks, which leads to incomparable measures. We 

sidestep this challenge by comparing trends in density of different sized networks. So while 

the DOW 30 is comprised of 30 different companies, each having varying size boards, and 

the CAC-40 is comprised of 40 different companies, also each having varying sized boards, 

we are able to do comparisons by looking at how a single measure, density, changes within 

each network over time.  

This work is of interest to policy makers who are interested in affecting external 

pressures in order to reduce the risk of collusion through interlocked boards. While the U.S. 
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and European markets have experienced different institutional pressures, we can look to 

see if either market is realizing greater change over time. 

In addition to policy makers, this work is also of interest to those who study 

interlocked directorates. This is a well-formed group of scholars who regularly publish 

special issues and run program tracks on interlocked boards at conferences.  

Paper 3 addresses one of the biggest challenges facing those who study social 

networks, namely, how to test for statistically significant change in networks over time. 

Through the use of Bayesian versions of random effects extensions of the P1 model of 

Holland and Leinhardt (1981), others have been able to perform pairwise comparisons of 

a network across two years (Adams, Carter, Hadlock, Haughton, & Sirbu, 2008; Gill & 

Swartz, 2004). We extend this Bayesian model to allow for multi-year comparison and 

show how to apply it to interlocked board networks. We provide the source code, written 

in OpenBUGS, which will allow other researchers to apply this same technique to their 

own social networks. 

Frequently the nodes in the network change over time. This is true in the case of 

the interlock board network of the DOW 30 corporations for example and this has added 

to the challenge of studying the network longitudinally. We will propose the notion of a 

�✁✂✄✄☎ ✆✁✝✆ ✞✟eates a level of node stability over the time period being analyzed.  

1.3 Social Network Analysis 

Social Network Analysis (SNA) is the study of actors (individuals or aggregates of 

individuals such as organizations, departments, boards, etc.) and their connections with 

each other (Easley & Kleinberg, 2010). Why study networks? When we arrange our data 

in a network form that consists of actors (called nodes) and interactions (called edges) we 
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are then forced to look at the relations between those actors that comprise the system (called 

the network) in light of the characteristics (called attributes) of the actors and interactions. 

When considering the relationship between two nodes, this is called a dyad. It is common 

for researchers to extract network variables to be used as independent variables in their 

models. 

Modern social network analysis consists of these four features (Freeman, 2004): 

1. A foundation of systematic empirical data. 

2. Structural knowledge generated from social actors and the connections 

between those social actors. 

3. Reliance on knowledge emerging through graphical imagery. 

4. Established in mathematical and/or computational models. 

SNA can be performed at multiple levels of analysis: at the node level, where we 

may evaluate the centrality level of an individual to see if they more likely to get a 

promotion or raise; at the dyad level, where the pair of nodes is considered and we might 

evaluate whether two companies, based on their attributes, might form a partnership; and 

at the network level, where we may look at knowledge transfer and ask whether knowledge 

travels more quickly in a dense (many edges and paths between nodes) versus a sparse 

network. Deciding the boundary edges, which nodes to include and which to exclude, is 

called the boundary specification (Borgatti & Halgin, 2011).  

When considering theories that network analysis is built upon, two main avenues 

emerge. The first, and more common approach, is the consideration that network constructs 

are independent variables where network variable X leads to outcome Y. The emphasis in 

this type of research is to focus on the output available in the social network analysis and 

to apply that output as part of the model development process. This type of research falls 
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under the Network Theory umbrella (Borgatti & Lopez-Kidwell, 2011). For example, 

Calvo-Armengol and Jackson (2004) �✁✂✄✂☎✆ ✝✞✟✠✡☛✆✁✁✆✞☞✌ ✍✁✞✆✠✎✁✏ ✡✑ ✒✆✟✓ ✔✂✆✌ ✔✏✆✡✞✕

(1973) to evaluate employment prospects based on their social network. While it is 

generally understood that job opportunities are more apt to come from weak ties (M. 

Granovetter, 1981), Calvo-Armengol and Jackson (2004) show that unemployment 

extends when those weak ties are also unemployed and therefore are less likely to pass job 

opportunities to others in their social network. This approach is typically based on an ego 

network. An ego network is one by which a key actor has been identified and all other 

relations are built out based on that key actor. 

The second approach considers network properties as dependent variables and is 

called the Theory of Networks (Borgatti & Lopez-Kidwell, 2011). This latter approach 

considers the influence that other variables have on the structure and makeup of the 

network, with the primary goal being one of understanding the characteristics of the 

network better. For example, Miles and Snow (1978) discuss the environment in which 

new organizational forms emerge. They highlight that changes in organizational structure 

enable the pursuit of new competitive strategies. This approach is typically based on a 

whole network. A whole network is one by which a network is developed in order to answer 

research questions that are not based on any one particular actor.  

1.4 Types of Networks 

There is some key terminology that needs to be defined since it will be used throughout 

this document. We begin with terms that are used when discussing networks in general. 

Table 1-1 lists these terms as well as identifying the papers in this document where you 
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will encounter that network feature. Figure 1-2 gives a graphical representation of several 

types of networks in order to help clarify the meaning. 

 Table 1-1 Summary of Network Topics by Paper 

 

Figure 1-2 Examples of Network Types 

  Dimensionality Reciprocity Strength # Link Types 

  Simply 
Bi-

Partite 
Undirected 

Bi-
Directional 

Equal 
Weight

ed 
Weighted Single Multiplicity 

Paper 1 � �    �   �

Paper 2 �   � � �   
Paper 3   �   � �   �   
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Simple Versus Bipartite Networks: A network is considered simple if all nodes are of the 

same type and could potentially be connected. However, there are cases where researchers 

need to model more than one node type. For instance, in a situation where people who 

engage in conversation with other people at different events, people and events would both 

be nodes. However, each node type would only be connected to the other node type, that 

is, a person is only connected to another person through an event and one event would 

never be directly connected to the other event. Such networks are called bipartite networks. 

It is understood that when two individuals jointly participate in shared events, then that 

activity reinforces personal ties. This bipartite network could consist of people joined 

through social events (Breiger, 1974), co-authors in research papers (Small, 1973), or 

�✁✂✄✁✂☎✆✝ ✞✁☎✂✟ ✠✝✠✞✝✂✡ ☛☞✁ ✄☎✂✆✌�✌✄☎✆✝ ✌✍ ✠✎✏✆✌✄✏✝ �✁✂✄✁✂☎✆✌✁✍✡✑ ✞✁☎✂✟✡ ✁✒ ✟✌✂✝�✆✁✂✡

(Mizruchi, 1996). This last example is that of the interlocking directorate network and is 

the focus of papers 2 and 3.  

Reciprocity: When network researchers model two people who are connected through a 

kinship, the connection, or edge, is considered bi-directional or undirected. In this case the 

two people are related and that relationship is reciprocated. It would make no sense to say 

that Person A is related to Person B, but Person B is not related to Person A. However, 

reciprocity often does not hold. For example, researchers who study legitimate power 

(French Jr, 1956) often need to identify who holds the power in the relationship such as in 

a manager/employee relationship. These networks are considered directed and are drawn 

with an arrow on the edge indicating the direction of the power (as shown in network (iii) 

in Figure 1-2). Paper 1 utilizes directed graphs when modeling the appointment network in 
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U.S. State government, while papers 2 and 3, which look at corporate directors who share 

common directorships with others, employ undirected graphs. 

Weighted versus Unweighted Networks: Strength within social networks refers to the 

weighting of the tie that connects two nodes. In simpler networks the weights are equal and 

set to one. However, scholars are increasingly interested in understanding more complex 

relations between nodes which go beyond the simple question of whether there is a 

connection or not, and instead looks at some weighting of each connection. In social 

networks these weights may measure relations such as frequency of communication, 

duration of activity, level of intimacy, or the amount of services exchanged (M. S. 

Granovetter, 1973). For example, weighted networks have been used in co-authorship 

studies to measure the number of publications two authors have collaborated on (Barrat, 

Barthelemy, Pastor-Satorras, & Vespignani, 2004). 

In paper 1, we show that the legacy approach of measuring appointment power 

actually transfers to a weighted network quite well. In the case of appointments, researchers 

have claimed that it is more valuable to have the power to appoint the position than it is to 

approve the position. In paper 3, we utilize weighted networks as a mechanism to reduce 

the bi-partite network down to a unimodal one by replacing individual board members with 

a weighted connection directly between the two boards. 

Multiplicity: Social networks may be multi-relational, where more than one type of 

relationship may exist between two nodes. This is called multiplicity. Multiplicity allows 

researchers to add additional layers of relational types to the social network analysis, which, 

in turn, allows the researcher to explore the important questions of how and why different 

types co-exist (Faust, 2011). Often grouped with multiplicity, a network is called a 
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pseudograph when nodes can be tied to themselves. Researchers have used multiplicity to 

examine different social acts in animal social networks (Hemelrijk, 1990; Seyfarth & 

Cheney, 1986), different communication techniques in cyber-communities (Garton, 

Haythornthwaite, & Wellman, 1997) and power structures in government (Laumann & 

Knoke, 1987) to name just a few. We explore the issue of multiplicity in chapter 2 where 

we explore two different tie types in regards to political appointments: the power to appoint, 

and the power to approve. These graphs are also considered pseudographs since an agency 

may self-appoint their own agency head. 

1.5 Common Network Measurements 

In this section we will explore some of the more common measurements used in analyzing 

networks. The purpose is not to produce an exhaustive list, but instead highlights some of 

the measurements used throughout this dissertation. 

Degree: The degree of a node is the number of connections that directly join this node to 

other nodes within the network. The degree may be as low as 0 if the node is not connected 

to any other nodes, or as high as the total number of nodes if the node is directly related to 

all other nodes. The degree of a node is often denoted as d(ni). For example, Facebook 

users can be considered to have a degree equal to the number of friends that they have in 

the social network. When an account is first created, the degree would be 0, and then the 

degree changes over time as friends are added and removed. When dealing with weighted 

networks, nodes have both a degree and a weighted degree. The weighted degree is the 

sum of all adjacent connections, where a link with a weight of 2, for instance, would count 

as 2 connections. 
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Centrality: One of the core sets of measurements of network analysis, centrality was 

originally introduced by Bavelas (1948) and Leavitt (1951) and measured the distance of 

each node in relation to all others within the network. They used this measurement to 

explain individual performance and morale within organizations. Since that time, many 

other measurements of centrality have been developed including closeness centrality 

(Sabidussi, 1966), degree centrality (Nieminen, 1974), and betweenness centrality 

(Freeman, 1979) to name just a few. In fact, the literature in the area of centrality 

measurements in the social sciences �✁✂ ✂✄✄☎ ✂✆✝✞☎✟ ✟✝✞✠✆� ✂✡☎☛✄ ✆�✄ ☞✌✍✎✏✂ (Freeman, 

2008).  

Density: A measure by which the interconnectedness of a network is determined, density 

is measured by the overall number of ties present in the network relative to the maximum 

number of potential ties. With a directed network, the maximum number of potential ties 

is n(n-1) while for an undirected network it would be n(n-1) / 2 (Borgatti & Everett, 1997). 

However, when dealing with bipartite networks, this measurement is not appropriate since, 

by the very nature of bipartite graphs, there is no possibility for connecting between nodes 

of the same type. In this case, the maximum potential connections would be when all nodes 

of one type are connected to all nodes of the other type. Note that these equations are for 

an unweighted network. In the case of a weighted network, one must calculate density 

using the sum of all weights of all ties divided by the maximum possible weight per tie 

times the total number of possible ties. 

Distance: While many measures, such as measures of degree, focus on the relationship 

between two adjacent nodes, the embeddedness of nodes within the context of the network 

is more complex than this. One way to measure how embedded a node is in relation to the 
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other nodes is through the measure of distance, or how many nodes one must travel through 

in order to make contact with a non-adjacent node. When considered at a network level, 

distance is a measure used to determine how long it would take for information or resources 

to diffuse across all nodes. Distance is often used in heat maps to color code the farthest 

reachable points within the network from any given node. 

Diameter: The diameter of a network is the longest distance between any two nodes in the 

network (Wasserman, 1994). When considering transmission within a network, if we 

assume that messages will travel along the shortest route, we can guarantee that the 

transmission between two nodes can be no greater than the network diameter.  

1.6 Research Map 

The next three chapters represent studies exploring SNA in the context of gubernatorial 

power and interlocking directorates. In this section we summarize the main direction of 

these studies. 

Study 1 - Gubernatorial Appointment Power 

Establishing quantitative measures for gubernatorial power has been of interest since 

Schlesinger (Schlesinger, 1965) published his index of the Formal Power of the Governors 

in 1965. The index scored the governor of each state on four measures (1) gubernatorial 

budget power, (2) appointment power, (3) veto power, and (4) tenure potential. Budget, 

appointment, and tenure powers were all scored on a 5 point scale and veto was scored on 

a 4 point scale. The result was an overall score ranking from 4-19. In 1965 the lowest 

scoring states, with a score of 7, were Mississippi, South Carolina, Texas, and North 

Dakota, while the state of New York was the state with the highest score at 19. Figure 1-3 

is an example of the type of network that can be visualized when a part of the index is 
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converted over to a social network. In this example, it is clear that the governor is at the 

center of this network and has direct control with most of the agencies visualized in the 

network. 

 

Figure 1-3 Gubernatorial Appointment Power 

Over the years many have worked with this index, none more than Thad Beyle who, 

as early as 1968, using both the original Book of the States data along with survey data, 

replicated the findings of Schlesinger (Beyle, 1968). This model has been used to explain 

the effectiveness at which policy change can be enacted at the state level (Barrilleaux, 1999; 

Erikson, Wright Jr, & McIver, 1989) as well as to explain conflict between the governor 

and legislature (Clarke, 1998). 

However the model has not been without its critics. Dometrius (Dometrius, 1987) 

was particularly critical of the appointment power measure, arguing that as states have 

evolved and become more complex, the power has shifted away from some of the early 

agencies however the index does not take these changes into account. He goes so far as to 

say �✁✂� ✄� ✄☎ ✆✝✞✟✠✡☛☞✂�✄✌ �✟ ✄✍✌✡✎✏☛ �✁☛ ✄✍✏☛✑✒ ✟✞ ✂✍✓ ✟✔ ✄�☎ ✌✟☞✝✟✍☛✍�☎✒ ✄✍ �✁☛ ✂✍✂✡✓☎☛☎ ✟✔

✌✟✍�☛☞✝✟✞✂✞✓ ✕✟✖☛✞✍✟✞☎✁✄✝✗✘ In this dissertation, we address the deficiencies and argue 
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that more modern techniques that shed light on the entirety of the appointment network can 

be employed to better understand the governor�s power in this network.  

 

Study 2 - Global Interlocking Corporate Boards 

While considerable work has been done testing the impact of interlocked boards, there has 

not been as much attention to the network structure, beyond simple averages, when viewed 

as a network of linked entities over time. This study begins by looking at the network 

characteristics of the interlocked boards of the companies that make up the DOW 30 in 

comparison with the Paris CAC 40. We show that while the level of connectedness, when 

measured through network density, is decreasing in the CAC 40, it appears to remain stable 

in the DOW 30 network. We explore the DOW in more detail by creating networks that 

represent the non-changing node of the network, as well as a network that includes all 

companies that were part of the DOW 30 at any time, over the period of the analysis. We 

are then able to show that the level of connectedness of the core companies is increasing 

over this period while at the same time the extended network connectedness is decreasing. 

Figure 1-4 is a visual representation of one of these networks. In this network we have 

color coded the nodes with green nodes representing companies that were added to the 

DOW 30 index in that year, red nodes represent those that were removed, and the grey 

nodes represent companies that remained constant.  
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Figure 1-4 DOW 30 Interlocked Boards 

 

 

 

Study 3 - Measuring Network Change over Time 

While much work has been done with social networks, one of the primary challenges facing 

the research community has been the ability to detect statistical significance when 

examining networks over time. Using the data on interlocking directorates that was 

discussed in paper 2, we begin by presenting three alternative networks that represent the 
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DOW 30 over the period of 2001-2010. The three networks include one in which 

companies simply replace other companies as they are added and dropped from the DOW 

30 index. This network has 30 nodes throughout the period, but over three years (2004, 

2008, and 2009) some of the companies, represented by those nodes, have changed. Our 

second network considers just the 23 companies that remained in the DOW 30 over the 

entire period of study; we call this network the core hull. Finally, our third network includes 

all companies that were part of the DOW 30 at any time over the years of interest; we call 

this network the extended hull. This final network is comprised of 38 companies. While 

there appear to be some differing trends in these three networks, we were confronted with 

the question as to whether the trend is statistically significant. We therefore extend the 

Bayesian P1 model to account for multiple years in order to test for significance. This work 

builds on prior Bayesian models of social networks (Adams et al., 2008; Snijders, 1996; 

Wasserman & Iacobucci, 1988) with random effects which allow for the time-sensitive 

dependence of edges present in the network. 

These three studies provide insight into how SNA can be applied in both domains 

that have not had much exposure to SNA as well as domains that have a well-established 

SNA body of work. The studies show that the field is ripe for researchers who are looking 

for a fresh perspective. The next three chapters cover each of the papers while the final 

chapter provides a wrap-up summarizing the work and discussing the future direction for 

the work. 
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Networks provide novel tools to address concerns about organizations and power. 

Previous studies on power have been conducted as in-depth case studies, however 

computational methods could further reveal patterns of power within organizations (M. L. 

Markus, Dax D. Jacobson, Quang "Neo" Bui, Kevin Mentzer, & Olivier Lisein, 2013a; M. 

L. Markus, Dax D. Jacobson, Quang "Neo" Bui, Kevin Mentzer, & Olivier Lisein, 2013b; 

Markus & Robey, 1983; Robey & Boudreau, 1999; Salancik, 1977). The study of networks 

particularly lends itself to computational analysis, due to the fact that the relational aspects 

of large data sets enable observations across time and many groups (Sundararajan et al., 

2013). This paper introduces specific methods for converting existing government data to 

social networks. 

One way in which researchers have analyzed power within state government has 

been through the lens of gubernatorial power, in an attempt to find a correlation between 

gubernatorial powers and the ability of the governor to enact change. Political scientists 

�✁✂✄☎✆✁ ✝☎✞✁✆✟✂✠✡✆☛✂☞ ✌✡✍✁✆ ☎✄☛✟✝ ✎✏✑☞✁✄☛✟✝✁✆✒✄ ✓✟✔✁✕ ✡✖ ✠✑✁ ✗✡✆�✂☞ ✘✡✍✁✆✄ ✡✖ ✠✑✁

Governor (Schlesinger 1965). Called the Formal Power Index (FPI), this index quantifies 

governor power along four dimensions (1) gubernatorial budget power, (2) appointment 

power, (3) veto power, and (4) tenure potential. However, each of these dimensions looks 

at gubernatorial power in a vacuum, without consideration of other actors who may be 

involved in each dimension. For example, in the case of appointment power, the FPI gives 

the governor a score based on his/her direct appointments, but fails to score others involved 

in the appointment of key personnel. The result is a score that could mean quite different 

things based on whether or not someone else scores higher than the governor. For example, 

two governors may have the same score but in one state the remaining appointment power 
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is dispersed among so many other parties that the governor still has the greatest power in 

the state. While in the other state the remaining power may be concentrated with one other 

party, who is viewed as having much more influence than the governor. Social networking 

analysis seems to be an ideal method for understanding how other actors are involved in 

gubernatorial power. This paper argues that power within U.S. state government can be 

explained using methods that extend the single stakeholder perspective (i.e. the governor) 

to a network perspective. Analytics is in a position to provide the holistic picture needed 

to understand power within state government. 

We base our analysis on data on gubernatorial power taken from The Book of the 

States, which has been used in past political science studies (Beyle, 1968; Ferguson, 2012; 

Schlesinger, 1965). These data were originally designed to describe administrative 

differences between US territories and states, by identifying who had the power to appoint 

and approve the various heads of state agencies. However, this data were reduced down by 

Schelsinger for the use in the index of formal power of the governor, by converting the 

appointment to a score based on the ability of the governor to appoint and approve. As a 

result, the existing measures show observable differences that cannot be explained 

(Dometrius, 1987), due to either transfers of power outside of those identified in the Book 

of the States, or due to a lack of understanding who else, besides the governor, had these 

appointment powers. We compare the states that experienced the greatest differences in 

gubernatorial appointment power between 1992 and 2012, namely Texas and 

Massachusetts in an effort to explain these differences. We also consider the data from an 

agency perspective across all states. We do this by examining which agencies were closest 



25 
 

to, and furthest away from, the control of the governor, specifically how the Information 

Systems and Energy agencies changed over time.  

Through the use of social network analysis, we expand the power discussion to 

include other actors involved in state activities, and thereby demonstrate power dynamics 

within state government. The power structure within state government consists of both 

formal powers, such as the ability to approve budgets, appoint positions, etc., and informal 

powers, such as political capital and party support. This paper demonstrates how social 

network a�✁✂✄☎✆☎✝ ✞☎✆�✟ ✠�✡ ☛✡✁☎✞☞✡ ✠✌ ✍✎✏✂✡☎✂✆�✟✡☞✑☎ ✒✓✔✝ �✁☛✡✂✄ ✕✏✡ ✖✠✗✡☞ ✕✠ ✁✖✖✠✆�✕

department heads in state agencies, can expand the discussion beyond a single numeric 

measure into a broader discussion of how power has shifted over time. Through specific 

state examples we show that measurements available through social network analysis 

(SNA) allow us to not only produce similar results as the FPI technique produces, but also 

to produce measures related to other actors in the appointment process, as well as to 

produce network level measures that demonstrate the overall characteristics of the entire 

network. We show that changes occurring within states cannot be adequately explained 

using the legacy technique, and that we are able to glean additional insight through SNA 

that clarify the changes occurring within the states. 

In order to understand the changes occurring within state government we look at 

the states of Massachusetts and Texas, and compare those states and their changes from 

1992 to 2012. These states were chosen because the formal power index in 1992 would 

have ranked the governor of Texas as having the least appointment power, suggesting a 

decentralized structure, and the governor of Massachusetts with the highest appointment 

power, suggesting a centralized structure. However, over the 20 year period in which the 
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often summed or averaged into a general composite index (the FPI), or are used 

individually, based on the topic being studied. 

This model has allowed researchers to make comparisons over a more than 60-year 

time period (1960 to 2012). The index has been used to explain the effectiveness with 

which policy change can be enacted at the state level (Barrilleaux, 1999; Erikson et al., 

1989), conflict between the governor and legislature (Clarke, 1998), policy success 

(Ferguson, 2003), and confidence in state government (Kelleher & Wolak, 2007), to name 

just a few. 

However, the model has not been without its critics. Dometrius (1987) was 

particularly critical of the appointment power measure, arguing that as states have evolved 

and become more complex, power has shifted away from some of the early agencies, but 

that the index could not address these changes. He goes so far as to say that it is 

�✁✂✄☎✆✝✞✟✠✡☛ ✠✄ ✡☞☛✆✌✍✝ ✠✎✝ ✡☞✍✝✏✑ ✄✂ ✟☞✒ ✄✓ ✡✠✔ ☛✄✞✁✄☞✝☞✠✔✑ ✡☞ ✠✎✝ ✟☞✟✆✒✔✝✔ ✄✓ ✠✎✝

☛✄☞✠✝✞✁✄✂✟✂✒ ✕✄✖✝✂☞✄✂✔✎✡✁✗✘  

While others (Krupnikov & Shipan, 2012) have proposed different ways to calculate 

these measures, we are not aware of any who have expanded the calculations beyond the 

✔✄✆✝ ✟☛✠✄✂ ✄✓ ✠✎✝ ✕✄✖✝✂☞✄✂✗ ✙✔ ✚✞✡✠✎ ✝✠ ✟✆✗ ✔✠✟✠✝✑ �✁✄✛✝✂ ✡✔ ✡☞✎✝✂✝☞✠✆✒ ✟ ✔✠✂✌☛✠✌✂✟✆

✁✎✝☞✄✞✝☞✄☞ ✛✎✝✂✝ ✄☞✝ ✟☛✠✄✂✜✔ ✡☞✓✆✌✝☞☛✝ ✄✖✝✂ ✟☞✄✠✎✝✂ ☞✝✝✍✔ ✠✄ ☎✝ ☛✄☞✔✡✍✝✂✝✍ ✛✡✠✎✡☞ ✟

✛✡✍✝✂ ☞✝✠✛✄✂✢ ✄✓ ✂✝✆✟✠✡✄☞✔✎✡✁✔✘ (Smith et al., 2014). To this end, we suggest that the scope 

✄✓ ✠✎✝ ✆✝✕✟☛✒ ✡☞✍✝✏ ☞✝✝✍✔ ✠✄ ☎✝ ✝✏✁✟☞✍✝✍ ✠✄ ✡☞☛✆✌✍✝ ✠✎✝ �✛✡✍✝✂ ☞✝✠✛✄✂✢ ✄✓ ✂✝✆✟✠✡✄☞✔✎✡✁✔,✘

which can be accomplished using social network analysis. 
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2.3.2 Social Network Analysis 

A social network perspective provides a novel means of evaluating research questions 

through an analysis of the network structure (Wasserman, 1994). Modern social network 

analysis consists of these four features (Freeman, 2004): 

1. A foundation of systematic empirical data. 

2. A structural knowledge generated from social actors and the connections between 

those social actors. 

3. A reliance on knowledge emerging through graphical imagery. 

4. Established mathematical and/or computational models. 

Social networks allow us to emphasize the relationships among actors that comprise 

the social system (Borgatti, Everett, & Johnson, 2013). These actors are called nodes and 

have attributes (for example, name, gender, age, tenure, etc.) that can distinguish each node 

from another. The relationship between the actors, or nodes, is called a link or edge. Edges 

can either be weighted or non-weighted. An example of a weighted network might employ 

the frequency of interaction between the two nodes, or, as we will use, the relative power 

of the link. Edges can also be directed or non-directed. A non-directed edge means that the 

link is equally valuable to each node, while a directed edge would indicate that the edge 

has a sender or originator, and a receiver.  

A key concept in social networks is the notion of centrality. Centrality, in general, 

means the relative importance of one node over the other nodes in the network (Borgatti, 

2005; Borgatti, Mehra, Brass, & Labianca, 2009; Wasserman, 1994). One measure of 

centrality is degree centrality, which is a measure of the number of nodes directly 
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the head of the department, while a c�✁✂ �✄ ☎✆✝ ✞✂✟✠✡ ☛☞✟☛ ☛☞✂ ✟✌✂✠✍✎ ✡✂✏✄-appoints their 

head. 

State or 

other 

jurisdiction 

Administratio

n 

Agricultur

e 

Bankin

g 

Budge

t 

Commerc

e 

Communit

y affairs 

Alabama (a-17) CE GS A G G 

Alaska GB A A (b) GB GB 

Arizona GS GS GS (a-26) GS A 

Arkansas (a-16) B BG CS (a-12) (a-32) 

California (c) GS GS (a-16) GS G 

Colorado GS GS CS G ✑ CS 

Connecticu

t 

GE GE GE CS 
(a-12) A 

Delaware GS GS G GS (a-2) ✑ 

Florida G CE (a-9) G G G 

Table 2-1 Sample Book of the States Appointment Power 

Following the process employed by Schlesinger, and using the same legacy 

appointment power encoding (see Table 2-2), we were able to calculate the legacy governor 

appointment power for each state from 1992 and 2012.  

2.4.2 Legacy Weighting converted to Social Network 

Code Description 

5 Governor has sole discretion to appoint position 

4 Governor appoints position but it is approved by others 

3 Governor shares appointment power 

2 Other party appoints position and governor approves the 

appointment 

1 Governor plays no formal role in the appointment 

Table 2-2 Legacy Appointment Power Encoding 

The FPI appointment power scoring is, in essence, an ego network with the governor being 

the focal node. Because of this, we can easily take the legacy values and convert them over 

as weighted edges between the governor and each agency head. Figure 2-1 shows the 
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resulting network for the states of Massachusetts and Texas. The labels have been omitted 

to allow for readability, but the central node is the governor and the remaining nodes are 

the agency heads. Three rings of circles emerge around the governor node. The inner most 

ring, including 7 nodes in Texas and 19 nodes in Massachusetts, represents the set of 

strongest connections � those agencies where the governor has sole discretion to appoint 

the agency head. The next ring of nodes, including 2 for Texas and 19 for Massachusetts, 

represents the set of agency heads that are appointed by someone other than the governor 

but for which the governor has approval authority. The final ring, including 33 in Texas 

and 8 in Massachusetts, represents the set of agency heads in which the governor plays no 

role in the appointment or approval. Coincidentally both Massachusetts and Texas only 

display 3 of the 5 potential values (from table 2-2), while other states might feature up to 

five rings, with the closest ring representing those connections weighted at 5 and the 

outermost ring representing those connections weighted at 1. 

 By building the network in this manner we are able to reproduce the legacy FPI 

figure for appointment power by using the average weighted degree for the governor node. 

However, while these networks are attractive in the way they appear, they do give a false 

sense of the governor as the central figure. This is because with the legacy weighting, even 

if the governor is not involved in the appointment, s/he is still given a weight of 1 in 

connection to those nodes. Therefore in Texas, although the governor is only involved (at 

any level) with the appointment of 9 of the 42 agencies, 33 agencies still surround the 

governor albeit at a distance. 
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(i) Texas 2012 Ego Network (ii) Massachusetts 2012 Ego Network 

Figure 2-1 Appointment Network Viewed as Ego-Network 

Next, we convert the legacy encoding into values that we could use for a whole 

network, rather than an ego network. Our vision here is that, in order to fully understand 

appointment power, we need to show that the governor does not operate in a vacuum and 

additional insight can be gained by including all nodes involved in the appointment process. 

Therefore we want to apply the legacy weighting scheme to all nodes that had either 

appointing or approval power. To do this we broke out each of the 5 possible combinations 

into their own scenario. We present the five scenarios in Figure 2-2 and cover each in depth 

next. 

 In the scenarios (see Figure 2-2) used to present this work, all nodes are the same 

size, while the arrows depicting the edges are sized according to their weight (so a wider 

arrow indicates a higher authority value, which has been interpreted as more appointment 

power). We started with the first scenario, in which the governor has sole appointment and 

approval power. In the legacy encoding this would have a weight of 5, so in our network 
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we are able to envision it appearing as seen in Figure 2-2, where the node representing the 

governor is connected to the node of the Head of the Agency with an edge that has a weight 

of 5. 

To round out the remaining scenarios, scenario 2 covers the weighting when the 

governor has appointment power and another party has the ability to approve that 

appointment. Scenario 3 yields the weighting when the appointment and approval power 

are shared between two parties. Scenario 4 covers the weighting when someone else 

appoints the position and the governor approves that appointment. The 5th and final 

scenario covers the situation when the governor plays no formal role in appointing or 

approving the position. 

When we envision extending this encoding strategy to include all actors as nodes 

in the appointment and approval process a few issues immediately emerge. First, in 

scenario 1, in which a single person has both appointment and approval authority, that 

person has a weight of 5, while in scenarios 2, 3, and 4 the combined weighting for the 

appointment and approval is 6. This suggests that scenario 1 may be underweighted (or 2, 

3, and 4 are over-weighted). Second, in scenario 5 we are giving a weight of 1, even in the 

case where the governor plays no role in the process. We highlighted this issue earlier and, 

along with the issue of making the governor seem more involved than s/he actually is, if 

we adopt this across all nodes then each will be attached to each other with at least a weight 

of 1, which does not seem to make sense since it would imply that all nodes participate in 

the appointment of every agency head. Third, there are scenarios around shared 

responsibilities that are not covered in this model. For example, if the governor shares the 
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responsibility for approval, we have no direction as to how to weight that using the legacy 

encoding. 

 

Figure 2-2 Scenarios with Legacy Weighting 

2.4.3 Revised Weighting 

Because of these challenges, we propose a revised weighting scheme (see Figure 2-3) that 

attempts to conform as closely as possible to the legacy weightings, while at the same time 

making sense from a social network perspective. We employ a strategy in which an 
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appointment is afforded a weight of 3 and an approval is afforded a weight of 1. We also 

give no weight to nodes that are not directly involved in the process. We then apply these 

to all of our scenarios, and extend these scenarios to all actors involved in the appointment 

process. In the case of shared responsibility, we simply divided the weight by the number 

of individuals involved with that activity. For example, if the governor is only involved in 

the approval process, which is scenario 4, but shares that approval with someone else, then 

they would each only receive half of that weighting, in this case .5 each.  

 

Figure 2-3 Scenarios with Proposed Weighting 
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2.4.4 Network Creation 

Using this weighting scheme we can now create the whole network. To create the network 

we need the nodes and the edges. In the context of the state appointment network, the nodes 

will be any person, identified by their title, who is either appointed or participates in the 

appointment process though recommending or approving the appointment.  

The edges represent the appointing or approving action. For example, if the 

Governor is responsible for filling the position overseeing the Energy Agency, but the 

appointment requires approval from the Secretary of State, then we would have 3 nodes 

(Governor, Head of Energy, and Secretary of State) and 2 edges (one linking Governor 

with the Head of Energy, and the other linking the Secretary of State with the Head of 

Energy). 

Node Name 

1 Voting Public 

2 Governor 

3 Lieutenant 

Governor 

4 Secretary of State 

5 Attorney General 

6 Treasurer 

7 Adjutant General 

8 Administration 

9 Agriculture 

10 Auditor 

11 Banking 

Table 2-3 Partial List of Nodes 
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The nodes are identified in a two-step process. First we create a node for each head 

of agency identified in The Book of the States. This yields 51 initial nodes. We then use 

the coding scheme from the Book of the States to identify any additional nodes that are not 

listed as agency heads, but who have appointment or approval authority. This yields an 

additional 7 nodes.  

Finally, we have an indicator that some agency heads are neither appointed or 

approved, but rather are elected positions. We view the election process as an appointment 

and approval by the general public, so we create � ✁✂✄�☎ ✄✆✝✞ ✟�☎☎✞✝ ✠✡✆☛✂✄☞ ✌✍✎☎✂✟✏ ☛✆

account for this scenario. This gives us a final tally of 60 nodes. A partial list of nodes can 

be seen in Table 2-3. 

From 

Node 

To 

Node 

Edge 

Weight 

2 11 4 

2 12 4 

2 13 4 

14 14 4 

2 15 4 

To create the edges we take all the codes in the Book of the States and convert these 

✟✆✝✞✑ ☛✆ ✞✝☞✞ ✒✞✂☞✓☛✂✄☞✑✔ ✕✆✖ ☛✓✞ ✒✞✂☞✓☛✂✄☞ ✗�☎✍✞ ✒✞ ✍✑✞ ☛✓✞ ✠✖✞✗✂✑✞✝ ✒✞✂☞✓☛✂✄☞✑✏

identified earlier. A partial list of edges can be seen in Table 2-4 in which each row 

corresponds to 1 edge. The first two columns refer to the nodes and the third column refers 

to the edge weight. For example, the first row indicates that node #2, which is the governor, 

has an edge to node #11, which is the head of the Banking agency, with a weight of 4, 

meaning the governor both appoints and approves that position.  

Table 2-4 Partial List of Edges 
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2.5.1 Massachusetts 

From Table 2-5 we see that the appointment power of the governor of Massachusetts was 

the highest of any governor in 1992, yet also dropped the most from 1992-2012. What the 

FPI is not able to tell us is where that power went, only that it appeared to be taken away 

from the governor. We begin with the appointment network of Massachusetts in 1992 as 

seen in Figure 2-4. What is shown appears to tell a story of centralized power, with the 

governor responsible for appointing most of the agency heads. Only 5 of the 46 agencies, 

or 10.9% of all agencies, appointed their own head of the agency. While there are some 

minor actors in the appointive process, none come close to challenging the power the 

governor wields.  

However, based on the decrease in FPI score, we suspect that significant changes 

occurred in Massachusetts between 1992 and 2012, with power being taken away from the 

governor. Figure 2-5 displays the appointment network for Massachusetts for 2012. 

Contrary to the notion that power is being stripped from the governor, it appears that the 

governor has delegated the appointment authority to his cabinet secretary, while still 

retaining the approval authority for almost all appointments. There is no indication of any 

�✁✂✄ ☎✆ ✂☎✝✄✞ ✟✠✡✆� ☎☛�✟✡☞✄ ☎✆ �✠✄ ✌☎✍✄✞✎☎✞✏✟ ☎✆✆✡✑✄✒ ✎or is power decentralizing. In fact, 

none of the 5 agencies that appointed their own agency head in 1992 were still doing so in 

2012. All 5 agencies are now appointed by the cabinet secretary and approved by the 

governor.  

Table 2-6 presents quantitative centrality measures for key nodes in the 

Massachusetts appointment network for 1992 and 2012. We can see that, when you 

combine the average degree centrality (column 3) of the governor and cabinet secretary, 



40 
 

the appointment power actually increased from 1992 to 2012. This contradicts the finding 

of the legacy FPI. 

 

 

 1992 2012 

Position Legacy 

Appointm

ent Power 

Weighted 

Degree 

Centrality 

Degree 

Centralit

y / # 

Agencies 

Legacy 

Appointme

nt Power 

Weighted 

Degree 

Centrality 

Degree 

Centrality 

/ # 

Agencies 

Governor 3.96 136 2.96 3.07 99 2.15 

Cabinet 

Secretary 

n/a 0 0 n/a 58 1.26 

Voting 

Public 

n/a 24 .52 n/a 36 .78 

Boards n/a 0 0 n/a 12 .26 

Secretary 

of State 

n/a 8 .17 n/a 0 0 

Administra

tion 

n/a 8 .17 n/a 0 0 

Table 2-6 SNA Centrality Measures for Massachusetts 
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Figure 2-4 Appointment Network; Massachusetts, 1992 

 

Figure 2-5 Appointment Network; Massachusetts, 2012 
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2.5.2 Texas 

Using the FPI figures, the appointment power of the governor of Texas ranked lowest of 

any state in both 1992 and 2012, but the increase in governor power over that time 

suggested a move toward centralization in our analysis. First we look at the appointment 

network for 1992, which is presented in Figure 2-6. We can see that 9 agencies, 

representing 20% of all agencies, appoint their own head. The governor indeed does not 

appear to have much power, playing a role in appointing only 3 agency heads, and in each 

of those cases the appointment needs to be approved by the senate. By 2012 (see Figure 2-

7) the governor appoints 8 positions with none needing approval. The number of agencies 

appointing their own agency head has decreased from 9 to 6. So, even though Texas ranked 

lowest in gubernatorial power over both time periods, we are seeing a move toward 

centralizing that power.  
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Figure 2-6 Appointment Network; Texas, 1992 

 

Figure 2-7 Appointment Network; Texas, 2012 
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2.5.3 Agencies 

In selecting which agencies to analyze we followed the same process as we did with the 

states. We looked at the combined 50-state gubernatorial power for each agency, for the 

years 1992 and 2012, and selected the agencies that appear to have the strongest move 

toward and away from the governor. Figure 2-8 shows the 45 agencies that were identified 

in both the 1992 and 2012 Book of the States, ordered by the governor power to appoint 

values using the original FPI values. The bars represent the change between 1992 and 2012, 

with a green bar indicating a move toward the governor (i.e. higher appointment power in 

2012 versus 1992) and a red bar indicating a move away from the governor. Overall, 12 of 

the 45 agencies (or 26.67%) moved away from the governor and 33 of the 45 agencies 

(73.33%) moved toward the governor. Table 2-7 lists the top and bottom 5 agencies, when 

ranked by their value change from 1992-2012. Information Systems displayed the strongest 

move toward the governor, while Energy displayed the strongest move away from the 

governor. 

Agency 

Governor 

FPI 

change  

Energy -0.48 

Higher education -0.29 

Public library development -0.27 

Purchasing -0.25 

Election administration -0.24 

� 

Administration 0.66 

Economic development 0.70 

Social services 0.71 

Commerce 0.89 

Information systems 1.23 

Table 2-7 Change in Governor Agency Appointment Power 
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If we pivot the legacy appointment data to consider it by agency across all states, 

instead of across agencies for a single state, as we have done in Figure 2-8, we can observe 

a collective move toward or away from the governor, but we cannot see whom that power 

was taken from or whom it was given to. This highlights the limitation of looking at this 

data from an ego (governor) only point of view. However, by taking advantage of the full 

network that we created in section 2.4.4, we are able to show much more detail about 

changes at the agency level, including how state governments across all 50 states have 

changed who appoints any given agency head.  

We begin with the agency that had the greatest move toward the governor from 

1992 to 2012, the Information Systems agency. Figure 2-9 displays the network for 

appointing the head of the Information Systems agency for all 50 states in 1992 and 2012. 

The nodes are sized according to their appointment power, using our new weighting 

scheme, and represent who is responsible for appointing the agency head across all 50 

states. The Information Systems node in 1992 is quite large in comparison to the other 

 

 

 

a) Information Systems Network, 1992 b) Information Systems Network, 2012 
Figure 2-9 Appointment Network - Information Systems Agency 
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nodes. This is because the agency self-appoints its own head in 26 states in 1992, while the 

Governor only appoints the agency head in 6 states, representing a decentralized structure. 

However, by 2012 the Information Systems agency only appoints its own head in 15 states, 

while the Governor appoints the head in 25 states. 

Next we turn to the agency which had the greatest move away from the governor 

over our period of study, the Energy agency. Figures 2-10 displays the Energy agency in 

1992 and 2012. Although we can see a slight decrease in the size of the governor node, if 

we consider delegated responsibility to the lieutenant governor and to the cabinet secretary, 

then the overall strength of the governor has actually increased over this time period. We 

recall that this agency appeared to have the strongest move away from the governor using 

the FPI. These figures show us that the appointment power move away from the governor 

has been transferred to a variety of other agencies such as the Planning and Environmental 

Protection agencies. Several states have also moved this position over to be appointed 

through a civil service process. 

 Figure 2-10 Appointment Network - Energy Agency 

  

a) Energy Network, 1992 b) Energy Network, 1992 
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the benefits of utilizing SNA in this manner. In addition, we have shown that there is a 

benefit to seeing the entire appointment network across all 50 states, especially when 

considering the agency level trends across all states. 

This method can also be used to evaluate changes in state agencies. The trend 

toward giving the governor the power to appoint the agency head certainly suggests that 

Information Systems has moved into a more prominent role over this time period. The 

purpose of this paper is not to make conclusions about the implications of such a change; 

but rather, to highlight the benefits of using network analysis in analyzing the structure of 

state government. 

�✁✂✄☎✆✝ ✞✁✟✄ ✠✡ ☛✂☞☞✌✁✆✍✎ ✏✡✑✂ ✏☞✁✠✑✂☞✎ ✡✏ ✎✡✟☎✁✒ ✆☞✠✓✡✂✄ ✁✆✁✒✔✎☎✎ ✓☞ ✕✁✖☞✗ 

a) Used data from the Book of the States to populate our network, employing a 

uniform weighting strategy to arrive at an unbiased measurement of centrality, 

which is applied to all nodes in the network in the same manner. 

b) Shown that, if one accepts that there is power in the appointment of key 

personnel, this power is shifting within states in different ways, beyond what 

can be accounted for by looking only at the power of the governor in isolation. 

c) Provided the graphics that highlight these changes and emphasize these 

structural changes in ways that are harder to understand through tables alone.  

d) Provided the measures that are also visually represented.  

2.6.1 Limitations 

This work is based on results from a few key states and agencies. A continuation of this 

research, including a comprehensive view across all 50 states, will help clarify whether the 
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We begin by establishing a level of understanding of these networks by comparing 

the interlocked boards of the DOW 30 companies with the Paris CAC 40 companies. These 

two indexes were chosen since they represent the elite of the elite. If we are able to see 

change in these indexes, it will suggest that the core of elite power is changing. Since there 

are significant financial incentives for a corporation to be in a stock index, especially the 

DOW 30 and CAC 40, it strengthens our analysis to use these indexes due to these 

incentives. The elite have financial incentives to have the companies on the boards of which 

they serve, added to the index when openings occur. They are also incentivized to try to 

keep companies on whose boards they serve in the index. Consequently, we claim that if 

there is an elite group that is not fragmented, we should at least see stability in the level of 

interlockedness, if not an increase in interlockedness over time. The fact that the CAC40 

and DOW are the elite of the elite is a good justification for us studying them since they 

are likely to be very influential. 

On the other hand, it is long believed to be in �✁✂✄☎✆✝✞� best interest to reduce the 

level of board interlockedness. Interlocked boards have been of public interest for more 

than 100 years, since the Clayton Act of 1914 prohibited companies who compete in the 

same market from sharing directors. It was believed, at the time, that collusion would lead 

to price fixing. Therefore, in defense of the public and to limit this type of collusion, the 

Clayton Act was passed to reduce the level of interlockedness. In general, interlocks are 

viewed by policy makers as something that should be avoided since there is evidence that 

they lead to price fixing (Baker & Faulkner, 1993), contribute to the rapid rise in CEO pay 

(Hallock, 1997), and promote a lack of diversity among those controlling the elite firms of 
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the world (Useem, 1984). As a result of these pressures, if the elite is indeed fragmenting, 

then we would expect to see a decrease in the level of interlockedness.  

This first level of analysis, which looks at network density over time, will show that 

the level of interlockedness is decreasing in the CAC 40 but is remaining stable in the 

�✁✂ ✄☎✆ ✂✝✞✟✠ ✡✝✠☛✠ ✞☞ ☞✡✌✍✞✟✞✡✎ ✞✏ ✡✝✠ ✞✏✡✠☛✟✑✒✓✠✔ ✏✠✡✕✑☛✓ ✑✖ ✡✝✠ �✁✂ ✄☎✗ ✕✠ ☞✡✞✟✟ ✔✑✏✘✡

have enough clarity to understand exactly how the network is remaining stable. During the 

period of our analysis (2001 through 2010), there were three sets of changes in which a 

total of 8 companies were added and removed from the DOW 30. So we next pull in ✙✚☛✡✘☞

theory (Burt, 2000) on network decay to examine the DOW 30 in more detail to shed light 

on whether the interlock network is in fact changing at all or if it is remaining stable. Burt 

shows that network decay, which is the tendency of relationships to weaken and disappear, 

✞☞ ✌✛✜✟✞✖✞✠✔ ✑☛ ✟✠☞☞✠✏✠✔ ✔✚✠ ✡✑ ✌✢ ✡✝✠ ☞✡☛✠✏✣✡✝ ✑✖ ✜☛✞✑☛ ☛✠✟✌✡✞✑✏☞✝✞✜☞✗ ✍✢ ✡✝✠ ✤✟✞✌✍✞✟✞✡✎ ✑✖

✏✠✕✏✠☞☞✗✥ ✌✏✔ ✒✢ ✡✝✠ ☞✡✌✍✞✟✞✡✎ ✑✖ ✠✛✍✠✔✔✠✔✏✠☞☞✆ Using this theory, we expand our analysis 

of the DOW 30 to encompass two adjusted networks. The first, which we have termed the 

core hull, consists of those 23 companies that remained in the DOW 30 throughout our 

period of analysis. The second, which we have called the extended hull, includes all 38 

companies that were part of the DOW 30 at any time during the period of study. 

Our results show that the density of the extended hull decreased over the period of 

study, lending support to the theory of decay. However, the core hull unexpectedly 

experienced a rise in density, suggesting that the strength of prior relationships among 

board members may play an important role. These findings suggest that the corporate elite 

may have the power to get themselves appointed to the boards of companies in the index, 
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There are conflicting views of whether our society benefits or not from having an 

elite class. On one hand, there are vocal public groups, such as Occupy Wall Street (OWS), 

who argue against having an elite group of individuals in control of our society. They argue 

that this elite group (termed the 1%) has driven our society to extreme division in wealth 

distribution, resulting in severe economic inequality between the 1% and the 99%. On the 

other hand some, including Mark Mizruchi (2013), argue that much of the dysfunction we 

�✁✁ ✂✄ ☎✆✝✞✟✠� �✆✡✂✁☎✟ ✂� ✞ ☛✁�☞✌☎ ✆✍ ✞ ✎✁✞✏✁✄✂✄✑ ✁✌✂☎✁ ✡✌✞��✒ ✓✁ ✞☛✑☞✁� ☎✔✞☎ ✔✞✕✂✄✑ ✞ ✡✆✔✁�✂✕✁

group responsible for shaping society benefits society as a whole, since World War II, this 

elite group has, however, been fracturing and no longer retains that singular voice. 

In selecting which boards to examine we turn to the various stock market indexes, 

specifically the DOW Jones Industrial Average index in the U.S. (DOW 30) and the 

Cotation Assistée en Continu index in France (CAC 40), which represent two of the most 

respected indexes in the world. The DOW 30 has a lengthy history beginning in 1896 when 

it was created by the Wall Street Journal editor and DOW Jones & Company co-founder, 

Charles Dow, as a way to show how 30 of the most respected U.S. companies fared on the 

stock market for any given trading day. Today, the 30 companies that make up the DOW 

30 range in market value from approximately $34B to $554B, with a total market value of 

$5.43T (which is roughly $17,000 per person in the U.S.). 





58 
 

issues and for their �✁✂✂✁✄☎✄✆✝✝ ✞✟ ✠✆✝✟✂✡✆ ✟☛✠ ☞✟✄☞✆✠✄✝ �✁✞✌✟☛✞ ✞✌✆ ✄✆✆✍ ✎✟✠ ✂✁✞✁☎✏✞✁✟✄✑ 

(Leibowitz, 2009).  

Inter-firm dependence occurs when one firm is reliant on the other firm, and 

therefore the latter firm has a vested interest in keeping a close eye on the operations of the 

reliant firm, and is more likely to want a seat on the board of directors. Therefore the 

number of financial firms in any index would theoretically increase the level of inter-firm 

dependence due to the fact that, by their nature, firms are more dependent on the financial 

institutions. Legitimacy signaling occurs when a lesser known firm is trying to gain 

prestige by having board members from prominent firms on their board. Finally, when 

firms compete for board members, but there is a limited pool to draw from, the constraint 

of limited resources occurs. For example, Stokman, et al. (1988) found that in the 

Netherlands, firms were pulling board members from a limited number of available director 

talent.  

As a result, other than legislation aimed at reducing competition suppression, which 

differs in the U.S. and Europe, it can be expected that each of the remaining factors 

presented by Bouwman would apply to both European and U.S. markets. 

While much has been done in looking at the impact of interlocking directorates on 

issues related to the firm, there is little longitudinal research on how the interlocked 

network is evolving. Lluch and Salvaj (2014) examine Argentinian firms over an 80 year 

period. They find that the number of isolated firms increased from 23% in 1937 to 60% in 

2000 while the percentage of interlockers as board members decreased from 18.6% to 8.5% 

over that same period. Maman (1999) looked at interlocking ties of Israeli business groups 

over the period of 1974-1987 and found that the level of interlocking remained relatively 



59 
 

constant over this period. It is interesting to note that the period of most change in the Lluch 

and Salvaj study was between the years 1970 and 1990 which is close to the same period 

in the Maman study where very little change was observed. 

Over time the member companies of the DOW 30 change as companies are added 

and removed from the index. Being added to an index has a significant positive impact on 

the stock price of the company, while being removed has a significant negative impact on 

the stock (Chang, Hong, & Liskovich, 2014). Those who benefit from changes in the stock 

price of these companies, therefore, have a financial incentive to try to influence which 

companies are added and/or removed from an index. Therefore, while there are external 

pressures to reduce the level of board interlockedness, there are unseen pressures being 

exerted to add specific companies to the index. We can hypothesize that the power elite 

identified by Mills (Mills, 1956) hold board positions of DOW 30 companies and have 

interests that would benefit financially by having other companies, on whose boards they 

serve, added to the DOW index. The result is a hidden pressure to actually increase the 

level of interlockedness, regardless of which companies actually make up the DOW 30 

index in any given year. 

Turning to the literature on social networks, Burt (2000) proposes the term decay 

to explain the tendency of relationships to weaken and disappear over time. He finds three 

primary reasons why decay occurs in one network while not in another. First, the strength 

of prior relationships is correlated with the level of decay. Strong prior relationships reduce 

�✁✂✄☎✆ ✝✁✂✞✟�✠ ✡☛✁ ☞✌✍✄✎✍✌✍✡☎ ✞✏ ✟✁✑✟✁✒✒✓ ✁✔✕✌✄✍✟✒ ✡☛✄✡ ✟✁✑ ✡✍✁✒ ✄✖✁ ✗✘✂☛ ✗✞✖e likely to 

weaken and disappear, while this propensity decreases as the age of the relation increases. 

Finally, embedded stability measures how stable the node is in the network; disruptions to 
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the embedding lead to faster decay. Therefore, decay could be considered a friend to those 

trying to reduce the level of interlocked boards. As old interlocks are disrupted, the board 

members are either replaced with new board members who are not interlocked, which adds 

pressure on the network as a whole to reduce the number of ties, or, if they are replaced 

with alternative interlocking members, then those relationships are fragile due to their 

newness and subject to a higher risk of severing. 

Therefore, it is to be expected that changes to the DOW through company additions 

will suffer the same liability of newness. That is, new companies are prone to rapid 

relationship decay. Furthermore, with the addition and removal of companies to the DOW, 

disruptions to embeddedness are realized, exerting more pressure for decay over the entire 

network. We are able to test whether this decay is occurring by looking at network density. 

Since density measures the level of connection between all nodes in the network, any decay 

should be seen through a decrease in density. This leads us to hypothesize that the DOW 

30 network will experience periods of decreased density following periods in which 

companies are added and removed from the index. 

Our evidence gives us reason to believe that there may be a higher level of 

interlocked boards in Europe, versus the U.S., primarily due to a) legislation in the U.S. 

prohibiting shared board members across competitors and b) a limited pool of resources 

for qualified board members in Europe. 

We know from prior r�✁�✂✄☎✆ ✝✆✂✝ ✞✟ ✝✆� ✠✡☛☞✌✁ ✝✆� ✂✍�✄✂✎� ✏✞✄�☎✝✑✄ ✑✒ ✂ ✓�✏✞✂✟

Fortune 500 board sat on 7 other Fortune 500 boards (Davis, 1996). But what about the 

average number of interlocks per firm for some subsets of industries? Since the Clayton 

Act prohibited competing companies from sharing directors, researchers have analyzed 
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our efforts with those of researchers at the Université Paris Dauphine who are supplying 

the data for the Paris CAC 40 index. 

For the DOW 30 we are utilizing the database supplied by BoardEx, which tracks 

board members from over 800,000 organizations internationally. �✁✂ ✄☎✆✝✞✟✠ ✡✞✆☛✆☞✆✌✂✍

is a series of 66 Excel files that break out companies, individuals related to companies, and 

demographics. The information related to directors for a single company is spread out over 

dozens of files. Each of these files individually maximizes the amount of data that one can 

load into Excel. As such, the data needed to be trimmed down to a manageable size; we 

outline this process in the next section.  

3.3.1 Data Selection 

We have selected the DOW 30 and CAC 40 indexes as our basis on which to measure 

whether there is a disintegration of the elite class. We will do this primarily through the 

measure of network density of the interlocked networks of these companies. We believe 

that these 30 companies in the U.S. will provide the evidence needed to either support or 

refute the claim by Mizruchi that the (corporate) elite is fragmenting. These 30 companies 

make up the 30 of the most heavily owned and traded companies. Since we are concerned 

with the power of the elite, it would make sense that members of the elite would rather be 

a board member of one of the DOW 30 companies versus a board member of smaller and 

lesser known companies. As such, the elite as a whole would look to maintain control of 

these companies. If fracturing is occurring, and it has reached the inner core, then we will 

see evidence of it through the density of the interlocked network. 

While the emphasis on the sectors that make up of the DOW 30 has changed over 

the years, with diminished emphasis on industrial sectors such as manufacturing and 
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greater emphasis on financial and technology sectors, we argue that overall the DOW 30 

have represented those most admired public companies in the U.S. regardless of sector. As 

such, the elite would wish to retain control of these companies regardless of the sectors 

they represent. As a result, the changing companies and sectors they represent provide us 

a healthy sample of companies to validate that the elite retain enough control to make these 

changes. 

We bring in the CAC 40 interlocked network as a point of comparison by which to 

gauge the change, or lack of change, in the U.S. Through the comparison of these networks 

we are able to better understand the global nature of the elite and whether region specific 

influences (such as the Occupy Movement in the U.S.) are having an impact on these 

networks. 

3.3.2 Preparation 

Over the 128-year history3 of the Dow Jones Industrial Average the companies that make 

up the index have changed 53 times. The index started in 1884 with 12 companies. This 

list expanded to 20 companies in 1916 and expanded again in 1928 to include a total of 30 

companies where it stands today. Our period of interest was from 2001 through 2010 and 

included a total of 38 companies, because of additions and subtractions over this period. A 

full list of these 38 companies, along with their time in the DOW 30 related to this study, 

is located in Appendix A. 

                                                           
3 
http://www.djindexes.com/mdsidx/downloads/brochure_info/Dow_Jones_Industrial_Average_Historical
_Components.pdf accessed 1/4/2015 
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Having identified the 38 companies of interest, our next step was to filter the list of 

directors down to just those directors who served on the boards of these companies. This 

allowed us to condense all of the directors of interest into a single file.  

The data from BoardEX provide a row for each director who overlapped with 

another director in the same firm for some period of time (the overlap period). A new row 

is created if either director changes positions within the firm, or changes director roles. The 

overlap period was difficult to work with, and had to be segmented with a start and end 

date. Eventually we were able to get the file down to a unique list of directors for each firm 

during only the period of interest.  

From this list we were able to create our nodes and edges. We started by creating 

nodes for both the companies, as well as the directors, and then creating the edges between 

them. This allowed us to see demographics on specific directors (age, gender, tenure, role, 

etc.), which allowed us to manually spot check our data using director lists found in the 

annual reports of these companies. We had to rely on these demographics, instead of board 

member names, due to the absence of names in the BoardEX database. Our network, at this 

stage, can be visualized in Figure 3-2 with the nodes sized on the basis of their degree 

centrality (note that we are displaying all 30 companies regardless of whether they had a 

shared board member, but we have filtered out board members that were not considered 

interlocked to keep the graph as easy to read as possible). This is called a bipartite, or 2-

mode, graph because we have two types of nodes, companies and directors. 

Next, in Figure 3-3, we have stripped out the individual board members and have 

replaced them with weighted connections between the two companies, converting our 2-

mode network into a 1-mode representation. As can be seen in Figure 3-3, General Electric 
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and Microsoft have one common board member so an edge with a weight of 1 was created 

between GE and Microsoft, while GE and Home Depot share two board members, which 

resulted in an edge with a weight of 2 between GE and Home Depot. The final network for 

the DOW 30 companies in 2001 can be seen in Figure 3-3. 

So how does this network compare with the European Indexes? Figure 3-4 shows 

the one-mode interlocked board network for the Paris CAC-40 index in 2001. We can 

observe that the companies that make up the CAC-40 appear to be far more interlocked 

than the companies comprising the DOW-30. However, it is difficult to know from these 

graphs whether the level of interconnectedness is greater in the CAC 40 due primarily to 

the increase in the number of nodes in the network. To get a deeper understanding we have 

to look at the network statistics, which we cover in the next section. 
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Figure 3-2 Interlocked Network showing Interlocked Board Members, 2001 
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Figure 3-3 DOW 30 Interlocked Boards Network. 2001 
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while Table 3-2 provides these same measures for the CAC-404. We can see that over this 

period the average DOW 30 company was connected to a low of 2.667 (2009), and a high 

of 3.4 (2004), other DOW 30 companies through at least one interlocked member, while in 

the CAC-40 network the average company was connected to a low of 3.905 (2010), and a 

high of 6.714 (2002), companies. The average weighted degree for the DOW-30 ranged 

from 2.8 (2009) to 4.067 (2004), while for the CAC-40 this range was from 4.412 (2010) 

to 8.001 (2002). The difference in the average degree versus the weighted average 

degree is based on the number of interlocks that have more than one shared director.  

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Average 

# Nodes 30 30 30 30 30 30 30 30 30 30 30 

# Edges 46 46 48 51 47 46 48 44 40 50 46.6 

Average Degree 3.067 3.067 3.200 3.400 3.133 3.067 3.200 2.933 2.667 3.333 3.107 

Average Weighted 

Degree 
3.933 3.867 3.867 4.067 3.533 3.533 3.467 3.200 2.800 3.667 3.593 

Network Diameter 7 7 5 5 5 6 5 6 7 5 5.8 

Graph Density 0.106 0.106 0.110 0.117 0.108 0.106 0.110 0.101 0.092 0.115 0.107 

Modularity 0.497 0.478 0.437 0.441 0.402 0.454 0.433 0.529 0.465 0.447 0.458 

Connected 

Components 
3 3 4 3 3 2 2 1 3 3 2.7 

Average 

Clustering 

Coefficient 

0.226 0.169 0.324 0.336 0.168 0.212 0.197 0.292 0.263 0.235 0.242 

Average Path 

Length 
3.071 2.934 2.584 2.495 2.54 2.845 2.645 3.062 3.114 2.514 2.780 

Table 3-1 Key Network Level Measures DOW-30, 2001-2010 

If Companies A and B share two different directors (and do not share directors with 

any other companies) then the degree of A and B will be 1 while the weighted degree of A 

                                                           
4 Note that the slight differences in the number of companies in the CAC 40 over time are due to the 
fashion in which time was recorded in the CAC 40 database; at each event of a company joining or leaving 
the index, rather than on December 31st of each year as was done for the DOW 30. 
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and B will be 2. It follows that while there is some occurrence of multiple shared directors, 

it does not occur frequently. Dividing the average weighted degree by the average degree 

results in 1.16 for the DOW and 1.15 for the CAC, indicating that the frequency by which 

multiple board members overlap is roughly the same for both indexes. 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Average 

# Nodes 40 42 42 42 43 44 43 42 41 42 42.1 

# Edges 109 141 133 113 117 102 98 111 103 82 110.9 

Average Degree 5.450 6.714 6.333 5.381 5.442 4.636 4.558 5.286 5.024 3.905 5.273 

Average Weighted 

Degree 
6.593 8.001 7.406 6.183 6.179 5.243 5.133 5.945 5.684 4.412 6.078 

Network Diameter 5 5 4 4 5 6 6 7 7 6 5.5 

Graph Density 0.140 0.164 0.154 0.131 0.130 0.108 0.109 0.129 0.126 0.095 0.129 

Modularity 0.394 0.372 0.370 0.366 0.361 0.364 0.388 0.360 0.344 0.448 0.377 

Connected 

Components 
4 4 2 5 4 5 3 2 3 4 3.6 

Average Clustering 

Coefficient 
0.674 0.619 0.610 0.604 0.557 0.455 0.466 0.448 0.348 0.448 0.523 

Average Path 

Length 
2.414 2.206 2.287 2.368 2.392 2.629 2.685 2.620 2.650 2.911 2.516 

Table 3-2 Key Network Level Measures CAC-40, 2001-2010 

 

The network diameter is the measure of the longest shortest path between any two 

nodes in the network. In other words, for those nodes that are connected the furthest 

distance, when traveling the shortest route, is the network diameter. Somewhat surprisingly, 

even though the CAC has more nodes, the network diameter is shorter in the CAC (5.5) 

than it is in the DOW (5.8), �✁✂✂✄�☎✆✝✂ ☎✞✟☎ ✆☎ ✠✡✁☛☞✝✌☎ ☎✟✍✄ ✟� ☛✡✝✂ ✎✡✏ ✆✝✎✡✏✑✟☎✆✡✝ ☎✡ ✒✟��

through this network.  

Another useful measure is network density, which represents the proportion of 

connections to the potential number of connections. As we can see in Table 3-1, the DOW 

30 network density ranged from .092 to .117, while the CAC 40 network density ranged 
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we have used a network that swapped companies as they were replaced in the DOW. Next 

we compare those results with a network including all 38 companies that participated in the 

DOW 30 at any time since 2001 (the extended hull), as well as the 23 companies that 

remained in the DOW 30 throughout this 10-year period (the core hull).  

We begin by considering the visualizations of the extended hull network with nodes 

color coded according to whether they are added (green), removed (red), or remained (grey) 

in the DOW 30 for the visualized year. Recall that there were 3 periods (2004, 2008, and 

2009) when companies were added and removed from the index; Figure 3-6 shows the 

network layout using the classical Fruchterman Reingold layout (Fruchterman & Reingold, 

1991) for those three years.  

In 2004, two of the three companies that were removed were interlocked with 4 

others DOW 30 companies. The third was interlocked with only one other DOW 30 

company. All combined, the removed companies were interlocked with 9 companies. Of 

the three companies that were added, Verizon was interlocked with 5 other companies, 

Pfizer with 3, and AIG with 2, for a total of 10 companies.  
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(i) Extended Hull; 2004 

 
(ii) Extended Hull; 2008 
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(iii) Extended Hull; 2009 

Figure 3-6 Extended Hull with Exits in Red and Entrants in Green 

It is interesting to note that from the visualizations it is not obvious, based on 

network connections, which nodes would be added or removed. In other words, we cannot 

claim that the companies that were dropped from the DOW 30 had no (or fewer) connections 

with the other DOW 30 components, or that the companies that were added were obviously 

better connected than other companies. This suggests that either a) the interlockedness of a 

company is not related to whether they are added or removed from the DOW 30 index, or 

b) as companies are replaced they are replaced with similarly connected companies to, 

perhaps, provide stability to the DOW through these periods of change. One item that we 

did observe is that the number of financial institutions remained consistent throughout the 

period of study, which included the years of the subprime mortgage crisis. During the crisis 
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two financial firms (AIG and Citigroup) were replaced with two alternative financial firms 

�✁✂✄☎ ✆✝ ✞✟✠✡☛☞✂ ✂✄✌ ✍✡✂✎✠✏✠✡✑✒✓ ✔✠✕✏✏ ✡✠✎☛✑☛✖ ✖✗☛✑ ✖✆✘☛☞ ☛✄ ☞✗✂✘✖✠✡ ✙. 

We now move beyond the visualizations to look at the core network statistics. Tables 

3-3 and 3-4 report on the key network measures for the core and extended hulls, 

respectively. While the average degree and average weighted degree are higher in the 

extended hull, this is to be expected due to the increase in the number of companies 

comprising the network. A better measure to consider is network density.  

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Average 

# Nodes 23 23 23 23 23 23 23 23 23 23 23 

# Edges 24 26 30 31 30 29 32 30 29 34 30 

Avg Degree 2.087 2.261 2.609 2.696 2.609 2.522 2.783 2.609 2.522 2.957 2.566 

Avg Weighted 

Degree 
2.696 2.783 3.130 3.130 2.783 2.696 2.870 2.696 2.696 3.217 2.870 

Network 

Diameter 
6 7 5 5 5 5 5 6 5 5 5.400 

Graph Density 0.095 0.103 0.119 0.123 0.119 0.115 0.126 0.119 0.115 0.134 0.117 

Modularity 0.505 0.450 0.412 0.396 0.374 0.425 0.433 0.466 0.349 0.422 0.423 

Connected 

Components 
5 4 4 4 4 3 3 2 3 3 3.500 

Avg Clustering 

Coefficient 
0.036 0.044 0.142 0.233 0.173 0.312 0.310 0.379 0.118 0.320 0.207 

Avg Path Length 2.476 3.089 2.516 2.437 2.421 2.595 2.548 2.779 2.752 2.545 2.616 

Table 3-3 Core Hull Network Statistics 

 We can see from Table 3-3 that the density is increasing over time. This is supported 

by the number of connected components, which represent the number of subgroups, which 
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is decreasing, indicating that the nodes in the core hull are getting more connected over 

time. This is further supported when the average clustering coefficient is considered.  

 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Average 

# Nodes 38 38 38 38 38 38 38 38 38 38 38 

# Edges 70 68 67 65 57 55 61 56 48 61 60.8 

Average Degree 3.684 3.579 3.526 3.421 3.000 2.895 3.211 2.947 2.526 3.211 3.200 

Average Weighted 

Degree 
5.053 4.895 4.597 4.211 3.474 3.421 3.421 3.158 2.684 3.632 3.855 

Network Diameter 7 6 5 5 6 7 6 6 7 5 6.0 

Graph Density 0.100 0.097 0.092 0.085 0.081 0.078 0.087 0.080 0.068 0.087 0.086 

Modularity 0.506 0.494 0.496 0.489 0.468 0.505 0.473 0.507 0.437 0.453 0.483 

Connected 

Components 
2 3 5 5 5 3 3 4 6 7 4.3 

Average 

Clustering 

Coefficient 

0.301 0.182 0.278 0.253 0.162 0.174 0.141 0.232 0.102 0.231 0.206 

Avg Path Length 2.994 2.833 2.544 2.614 2.677 3.146 2.944 3.027 3.233 2.493 2.851 

Table 3-4 Extended Hull Network Statistics 

Table 3-5 displays the network statistics for the extended hull. In this network we 

see that density is decreasing, the connected components is increasing, and the average 

clustering coefficient is decreasing. Each of these results support the belief that the network 

is getting less connected over time. 

Figure 3-7 displays the density over time for the core and extended hulls, along with 

the original DOW 30 graph we introduced in Figure 3-5. As previously discussed, the 

density of the DOW 30, in which companies were replaced over time, remained flat. It 
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directors to gain insight into who the board members are that are participating as 

interlocking agents. 
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4 Understanding the Evolution of Networks over Time � A Bayesian 

Analysis 

4.1 Introduction 

In chapter 3 we discussed the challenges of analyzing a network in which nodes are added 

and removed during the period of study. We developed the concept of the core hull to 

represent the network including just those participants that were members of the network 

throughout the period of study, and the extended hull to represent all participants who were 

part of the network at any given time. We were then able to show that trends in density can 

assist in understanding the impact that the additions and subtractions were having on the 

network. In this chapter we explore this in more depth to tease out those differences. Our 

analysis is motivated by the claim by Mizruchi (2013) ✁✂✄✁ ✁✂☎ ✆✝✞✟✠✞✟✄✁☎ ☎✡☛✁☎ ☛☞

✌☛☞☛✍✁☎✎✟✄✁☛✍✎✏✑ 

Indeed, in The Fracturing of the American Corporate Elite (Mizruchi, 2013), 

Mizruchi makes the claim that a disintegration of power is occurring within the corporate 

elite. He asserts that since World War II the voice of the American corporate elite has 

diminished to the point where it is now ineffectual. This shift in the role of the corporate 

elite has had an impact not only on the corporations it oversees but on the entire business 

system (Scott, 1991; Useem, 1984). 

We argue that if this is occurring, then there should be evidence of such change in 

the power networks of members of the corporate elite. One way in which to identify the 

corporate elite is to look at corporate boards of directors. Building on the work of Mills 

(1956), extensive research about the power elite has been conducted, including 

investigations of the influence of board members on issues related to executive 
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compensation and firm performance. Wong et al. (2015) show that the level of board 

interlocking contributes to the level of executive pay.  

In this paper, we focus on interlocked boards - boards that share at least one director. 

A premise to our study is to consider the density of an interlock network as a proxy for 

cohesive power within the corporate elite.  

Employing a Bayesian analysis in which we test for significance in network change 

over time, we show that there is little evidence that degradation in the cohesiveness of the 

network is occurring within the elite of the elite. We use the Dow Jones 30 (DOW 30) group 

�✁ ✂�✄☎�✄✆✝✞�✟✠ ✝� ✄✡☎✄✡✠✡✟✝ ✝☛✡ ☞✡✌✞✝✡ �✁ ✝☛✡ ✡✌✞✝✡✍ ✆✟✎ �✏✄ ☎✡✄✞�✎ �✁ ✠✝✏✎✑ ✞✠ ✒✓✓✔-2010. 

This result suggests that the Dow Jones 30 forms a very robust core that is rather impervious 

to degradation from outside forces. 

We thus demonstrate how to apply a Bayesian model to better understand changes 

over time in an interlocked corporate board network. This work builds on the Bayesian 

version of the P1 model introduced by Wong (1987), extended by Gill and Swartz (2004), 

and applied by Adams et al. (2008) to changes in the density of collaborative networks over 

two periods of time. This extended P1 model includes random effects allowing for some 

network internal dependency (see also Goldenberg et al. (2010) for a useful review paper). 

In this paper, we report on successive pairwise comparisons of the hull networks 

defined in chapter 3, and then contribute a method to perform a full longitudinal analysis. 

We test this longitudinal analysis over the 10 year period of this study. 

4.2 Literature review  

In The Power Elite, C. Wright Mills (1956) discusses the structural changes occurring 

✕✞✝☛✞✟ ✝☛✡ ✖✟✞✝✡✎ ✗✝✆✝✡✠ ✞✟ ✝☛✡ ✔✘✙✓✚✠ ✆✟✎ ✔✘✛✓✚✠ ✝☛✆✝ ✜✆✢✡ ✄✞✠✡ ✝� ✝☛✡ ☎�✕✡✄ ✡✌✞✝✡✣ ✤✡
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identifies three changes that make this rise in power possible: 1. the increasing dominance 

of corporations, 2. the expansion of the federal government, and 3. the emergence of a large 

military body following World War II. However, Mizruchi, in many articles but most 

visibly in (Mizruchi, 2013), argues that while the corporate elite was prominent in helping 

to direct the public agenda through World War II, since that time its voice has become 

fragmented and has lost its power. 

Researchers often use interlocked board membership as the identifying 

characteristic to represent the corporate elite. It has been argued that members of 

interlocked boards are able to move in and out of not only board rooms but also of civic 

arenas to spread their beliefs. Their board prominence also gives them the recognition to 

be seen as senior statesmen in their communities.  

�✁✂✄ ☎✂✆✆✝✞ ✟✂✞✟✠✝✡ ☛✁☞✄ ✌✍✄✄✝✄✄✝✄ ✎ ✁✂✏✁✝✞ ✠✝✑✝✠ ✍✒ ✌✍✠✂☛✂✟✎✠ ✂✆✒✠☞✝✆✟✝ ✎✆✓ ✄✍✟✂✎✠

cohesion (Useem, 1984). This implication has led to the realization that corporations do 

not exist in isolation, but instead are part of a societal power establishment through 

individuals including interlocked board members (Carroll & Sapinski, 2011). 

The similarities of powers obtained by the corporate elite are not the only 

similarities. Others (Stanworth & Giddens, 1975; Whitley, 1974) have shown that 

demographic similarities can be observed within these members as well. They found that, 

when considering education and social characteristics, interlocked members have become 

more similar over time. One might therefore expect that these elite members will express 

similar opinions regarding societal directions, in turn helping to contribute to the singular 

voice of the elite. 
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Board member turnover is low, with the average board member tenure being 

approximately 12 years (Whitley, 1974)� ✁✂✄☎✆✝✂ ✞✟ ✠✡☛✝ ☞✂ ✌✞✍✎✠ ✂✏✑✂✄✠ ✠✞ ✝✂✂ ✝☛✒✍☛✟☛✄☎✍✠

change in the interlocked network on a year-by-year basis. However, we would not be 

surprised if events related to the Clayton Act of 1914, which prohibits U.S. firms that 

compete with one another from sharing board members, could result in periods of disruption 

in the interlock network. 

In this paper, we investigate interlock networks under the lens of Social Network 

Analysis (SNA). A link occurs between corporations when they share a board member, or 

between directors where they serve on the same board. Such a network is often referred to 

as a bipartite network. 

4.3 Data 

In this paper we use the same data source (BoardEx) that was used in Paper 2 to establish 

the interlocked DOW 30 network for the years 2001 through 2010. The data are then 

converted to an adjacency matrix for each year. Table 4-1 shows the adjacency matrix for 

the first year (2001) of our analysis of the DOW 30. The rows and columns of this matrix 

represent the set of entities (in this case, corporations), and each entry in the matrix is 1 if 

the companies are interlocked, 0 if not. This network is non-directional, meaning that if 

company i and j have a common director then there is an edge between those companies 

with no directionality present. This implies that the row and column pairing is the same as 

column and row pairing, that matrix in Table 4-1 is thus symmetric. 
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0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 4-1 Adjacency Matrix Interlocked Boards 2001 
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4.4 Model 

1 =1k

ijY if i and j are connected, 0 otherwise 

0 =1k

ijY if i and j are not connected, 0 otherwise 

0ln ( =1) =k k

ij ijP Y �  

1ln ( =1) =k k k k k

ij ij i jP Y ✁ ✂ ✄ ✄☎ ☎ ☎  

Figure 4-1 Model for Probability of Links 

Our model continues the evolution of the P1 model (Figure 4-1) introduced by Holland and 

Leinhardt in 1977 (1977). This model is a continuous-time model utilizing Markov chains. 

The goal of the model is to understand network change over time. Change in this model is 

assumed to be continuous, with network observations available only at discrete points in 

time. Therefore, the network occur at random points in time between the observed moments 

(Snijders, 2001). The model allows for the measurement of alphas and thetas. The alphas, 

measured for each node in the network, represent the propensity for that node to form a tie 

within the network. The thetas represent the overall propensity for links to occur within the 

network. The P1 model was extended by Gill and Schwartz (2004) in 2004 to allow for the 

Bayesian version with random alphas and thetas. In 2008 Adams et al. (2008) extended the 

model to allow for pairwise years comparisons.  

Our model extends the P1 model by expanding it to allow for multiple time-period 

evaluation (see Appendix B for the OpenBUGS source code for our full model). This 

allows us to use the information from all prior time periods to estimate alphas and thetas. 

Testing for statistical significance over time has been of interest to the social network 

research community due to the complexities faced, including link dependency. In addition 
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to link dependency, snapshots of the network over time are typically also dependent and, 

therefore, traditional means that require independent observations cannot be employed.  

The index k denotes the time period and indices i and j refer to two corporations. 

Because each pair of corporations (i, j) can either share or not share a board member, the 

matrix 0

k

ijY  is a simple opposite of the matrix 1

k

ijY  in the sense that 0

k

ijY  can be obtained from 

1

k

ijY  by replacing zeros with ones and ones with zeros. The matrix 1

k

ijY  is often referred to as 

the sociomatrix, with its ones indicating where a link occurs. The probability 1( =1)k

ijP Y  

represents the probability of an interlock link occurring between corporations i and j, at 

time k, and 0( =1)k

ijP Y represents the probability that no such link exists. The parameter 

k
� represents the overall propensity for links to occur in the network at time k, and the 

parameters 
k

i✁ represent the propensity for corporation i to share board members with other 

corporations in the network at time k. Prior distributions are defined on each parameter, 

making the model Bayesian. 

The advantage of this approach to modelling links in a sequence of networks is that 

it allows for links to not be independent (via the random effects 
k

i✁ ) at a given point in time 

and also allows for parameters to exhibit a timewise correlation: for example, it is quite 

likely that the 
k

� and the 
k

i✁ are correlated over time. In Adams et al. (2008) this approach 

was used successfully to examine changes in network parameters over two time periods.  

Our DOW 30 components change over time, which presents a unique challenge to 

modeling the network. We have several years of stability where the same 30 companies are 
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present, but in other years some companies are replaced with others. Over the 10 year 

period under study the following changes to the DOW 30 have occured: 

a) In 2004 AT&T Corporation, Eastman Kodak, and International Paper were all 

removed while American International Group Inc, Pfizer, and Verizon were added. 

b) In 2008 Altria, American International Group, and Honeywell were replaced with 

Bank of America, Chevron, and Kraft Foods. 

c) In 2009 Citigroup and General Motors were replaced with Cisco Systems and 

Travelers. 

It follows that using the technique in Adams et al. (Adams et al., 2008), we could 

compare years within each group 2001-2003, 2004-2007, and 2009-2010, but since the 

companies within the network have changed, comparisons across these time periods would 

present a challenge. 

4.5 Analysis and Results 

We begin by employing our Bayesian model to investigate whether the trends in chapter 3 

are confirmed through an examination of the posterior distribution of the difference in 

cohesiveness between 2001 and 2002, and then between all other successive pairs of years, 

ending in 2009-2010. Table 4-2 presents posterior descriptive statistics for the first pairwise 

comparison (2001 � 2002). 

 

 Mean Std Dev MC 
Error 

2.5% Value Median 97.5% 
Value 

Diff -0.0774 0.1716 0.003 -0.253 0.075 0.426 

Rho 0.9169 0.0329 0.000 0.837 0.923 0.964 
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Sigma[1,1] 0.9185 0.2629 0.002 0.527 0.878 1.456 

Sigma[1,2] 0.8935 0.2585 0.002 0.508 0.854 1.508 

Sigma[2,1] 0.8935 0.2585 0.002 0.508 0.854 1.508 

Sigma[2,2] 1.0360 0.3050 0.003 0.585 0.987 1.763 

Theta[1] 2.3750 0.2932 0.009 2.974 -2.369 1.807 

Theta[2] 2.4530 0.3209 0.010 3.122 -2.446 1.834 

Table 4-2 Posterior Statistics for the first Pairwise Comparison (2001-2002) 

The posterior mean of the difference between 2001 and 2002 is -0.0774, with a 2.5% 

- 97.5% credible interval of (-0.253, 0.426) encompassing zero. The positive value of the 

posterior mean of the difference indicates a decrease in the cohesiveness of the network 

between 2001 and 2002, but this difference is a posteriori essentially as likely to be positive 

as to be negative. A more pronounced difference would have its posterior density shifted 

away from zero. Figure 4-2 shows the posterior mean of the difference between successive 

year pairs for the core and extended hulls. 

 

 

Figure 4-2 Posterior Mean of the Difference for Core and Extended Hull 
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Next we present the findings from the Markov Chain Monte Carlo (MCMC) 

analysis of the model outlined in the previous section. Appendix B includes the full results 

from our model for both the core hull and extended hull. These statistics were generated 

using OpenBUGS (Spiegelhalter, Thomas, Best, & Gilks, 1996) in which we generated 

200,000 iterations of the MCMC procedure where the first 50,000 were allocated as the 

�✁✂✄☎-✆☎✝ ✆✞✟✄✠✞✆✡☎☛
5.  

One of the main advantages of our Bayesian model is to provide more reliable 

estimates of the variance of the model parameters, namely the propensity to form interlocks 

for the network as a whole and for the individual corporations, as well as an estimate of the 

entire covariance (and therefore correlation) matrix of the vector of these parameters over 

the 10 years of our study. The covariances are denoted by the sigmaa[i,j] in the output in 

Appendix B. The availability of these variances and covariances is what makes it possible 

to handle investigations of statistical significance of changes in the networks. From these 

estimates, we are in a position to compute the autocorrelation function for both the 

propensities (the thetas) to form interlocks and their successive differences, and to graph 

these functions in Figures 4.3 and 4.4 for the core hull and in Figures 4.5 and 4.6 for the 

extended hull.  

For both the core and extended hulls, it is clear from the shape of the autocorrelation 

functions in Figures 4.3 ☞ 4.6 that the propensity to form links is essentially a random walk, 

not stationary but with random differences. 

                                                           
5 The model required a significant burn-in to eliminate bimodality in posterior distributions. 
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In paper 2 we found significant time trends for the network densities for both hulls 

over this period of time, but we are finding here that the overall network propensity to form 

links is a random walk. This would seem to imply that the trends observed in paper 2 may 

be coming from the movement of the individual corporations, instead of general trends in 

the network. Another strong advantage of our model is that it provides posterior estimates 

of the propensities to form links (the alphas) for the individual corporations, complete with 

standard deviations. 

 

Figure 4-3 Autocorrelation of Theta by Lag; Core Hull 
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Figure 4-4 Autocorrelation of Diffs by Lag; Core Hull 

 

 

Figure 4-5 Autocorrelation of Theta by Lag; Extended Hull 
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Figure 4-6 Autocorrelation of Diffs by Lag; Extended Hull 

 

 

We are able to graph the alphas and their standard deviation over time for individual 

corporations See Appendix D for a complete set of alpha graphs for all the DOW 30 

extended hull companies). The standard deviation gives us a level of confidence in the 

alphas by indicating the accuracy of the estimation. For example, in Figure 4-7, we can see 

�✁✂� ✄☎✆☎✝✂✞ ✟✞☎✠�✝✡✠☛☞ ✌✝✍✌☎✆☞✡�✎ �✍ ✏✍✝✑ ✞✡✆✒☞ ✡✆✠✝☎✂☞☎✓ ✔✝✂✓✕✂✞✞✎ ✕✆�✡✞ ✖✗✗✘ ✂✆✓

decreased a little after 2006. 
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Figure 4-7 General Electric Alphas 

Next we turn to those companies that were directly involved in the subprime mortgage 

crises that occurred in 2007-2008. Within the DOW 30 there was one insurer (American 

International Group) and 3 banks (Bank of America, Citigroup, and JP Morgan Chase) that 

were directly involved in the crisis. The alphas for each are presented in figure 4-8. Leading 

up to the financial crisis, it would appear that both AIG and Bank of America were 

increasing in their propensity to form ties within the DOW 30 network, while Citigroup 

and JP Morgan Chase both appear flat or slightly decreasing in their propensity to form 

ties. AIG and Citigroup both were dropped from the DOW 30 index after the financial 

crisis while Bank of America was added (along with The Travelers Group, an insurer who 

was not as involved in the financial crisis as AIG and Citigroup were). 
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Three of the four companies had a drop in their alphas from 2007 to 2008 

suggesting that interlocked board members were either self-selecting to remove themselves 

from the boards of these troubled companies, or the companies were actively reducing their 

level of interlockedness by replacing interlocked board members with non-interlocked 

members. 
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Figure 4-8 Financial Sector Alphas 
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The other sector heavily represented in the DOW 30 is the technology sector. This 

sector had just come off of their own financial crisis of the dot com crash that occurred in 

1999-2000. Five of the companies examined in our study are classified as technology 

companies and include Hewlett Packard, Intel, IBM, and Microsoft (see Figure 4-9) who 

were all present for our entire period of study, and Cisco Systems which was added in 2009. 
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Figure 4-9 Technology Sector Alphas 

For the most part, with the exception of IBM, the technology sector stocks had a 

lower propensity to form interlocks in comparison to the remainder of the companies; this 

�✁ ✂✄�☎✂✆✝✂☎ ✞✟ ✠✡✄�✆☛ ✆✂☛✡☞�✄✂ ✡✌✍✠✡✁ ✎✄✂✏✡✌✌✑ ✒✂ ☎✎✆✓☞ ✁✂✂ ✡✆✟ ☎✏✡✔✡☞�✝ ✁✠�✕☞✁ �✆ ✡✆✟ ✎✕

the companies over time, suggesting that the market was stable. The low propensity to form 

interlocks could be a result of technology firms attracting younger talent that may not be 

interested in serving or be able to serve, on other DOW 30 boards. 

While we saw some movement with regards to the financial institutions around the 

t�✔✂ ✎✕ ☞✠✂ ✕�✆✡✆✝�✡✌ ✝✏�✁�✁✖ ✗✂ ☎✎✆✓☞ ✁✂✂ ✡✆✟ ✌✡✁☞�✆☛ ✂✕✕✂✝☞ ✎✕ ☞✠✂ ☎✎☞ ✝✎✔ ✞✘✞✞✌✂ ✎✆

technology companies. This could be due to the fact that the dot com crash impacted 

smaller firms much more than the well-established ones. The implication is that while the 

financial crisis and dot com crash were both considered significant events with regard to 

the economy, it would appear that the financial crisis had a broader impact on companies. 
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Another avenue to consider is whether being added to or removed from the DOW 

has an impact on the organization. Both actions have a significant impact to the stock of a 

company, since funds that invest in indexes would either have to sell off stock, in the case 

the company is removed from the index, or buy stock as in the case when a company is 

added to the index. Because of this financial incentive, it is reasonable to assume that those 

who hold stock, or whose job evaluation is tied to stock performance, have incentive to see 

the company either stay in, or be added to, the index. 

We begin by looking at the impact of being removed from the DOW 30. Figure 4-

10 show the alphas for the companies that were removed from the DOW 30 index from 

2001 through 2010. The charts display green for those years the company was part of the 

index and red for the years the company was not part of the index. During this time, 8 

companies were removed from the index. In 6 of the 8 companies, the alpha shows a 

marked decrease in the year following their removal. One company remained relatively 

flat (Eastman Kodak), and one company had an increase (Honeywell). Overall, this 

�✁✂�✄☎✆✝✞ ✞✟✠✠✡☛✆ ☞✡☛ ✌✟☛✆✍✞ ✆✎✝✡☛✏ ✡☞ ✁✝✆✑✡☛✒ ✂✝✄☎✏ ✞�✁✄✝ ☛✝✓✡✔☎✕ ☞☛✡✓ ✆✎✝ �✁✂✝✖ ✕✝✂ ✆✡ ☎

reduction in network ties.  
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Figure 4-10 Alphas of Companies Removed from DOW 30 

 Next we look at the companies that were added to the DOW 30. Figure 4-11 shows 

the alpha graphs for the 8 companies that were added to the DOW 30. Again, the green 
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periods of the charts represent the years the company was not part of the DOW 30. When 

looking at these 8 charts we are focused on the period of transition from red to green 

indicating the year the company was added to the DOW 30. In 6 of the 8 cases, being added 

�✁ �✂✄ ☎✆✝ ✞✟ ✠✁✡✡✄☛☞✁✌✍✄✍ ✎✏�✂ ✑✌ ✏✌✠✡✄✑☛✄ ✏✌ �✂✄ ✠✁✒☞✑✌✓✔☛ ☞✡✁☞✄✌☛✏�✓ �✁ ✕✁✡✒ ✖✏✌✗☛

with the other DOW 30 companies.  
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Figure 4-11 Alphas of Companies Added to the DOW 30 
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4.6 Discussion 

This paper has introduced an approach that can be employed to compare network change 

over time using the interlocked board network as an example. The model allows for 

detecting change at the network level, through a measure of the thetas, and at an individual 

node level through a measure of alphas. Of particular interest is the ability to measure 

standard deviation of change at both the network and node levels of analysis. 

Our analysis of the DOW 30 network reveals several interesting findings. First, the 

thetas give us no evidence that there is a general move toward or away from interlocking 

boards from 2001 through 2010. This finding held for both the core hull and the extended 

hull, which is surprising since there were shocks to the network in 2004, 2008, and 2009 

�✁ ✂✄☎✆�✝✞✟✁ ✠✟✡✟ �☛☛✟☛ �✝☛ ✡✟☎✄☞✟☛ ✌✡✄☎ ✍✎✟ ✏✑✒ ✓✔✕ ✖✗✡✍✘✁ ✍✎✟✄✡✙ ✄✌ ☛✟✂�✙ ✆✄✁✞✍✁

that these shocks should have led to a decrease in the number of interlocking boards, but 

we saw no such decrease. Second, being removed from the DOW 30 does tend to lead to a 

decrease in the level of interlockedness for that particular firm. This indicates support for 

the theory of decay at the individual node level. Third, being added to the DOW 30 index 

appears to contribute to an increase in the level of interlockedness for that firm. 

We have additional findings when considering sector specific stocks that are part 

of the DOW 30 index. Three of the four financial sector stocks saw a decrease in their 

alphas from 2007 to 2008 which corresponds to the subprime mortgage crisis. The fourth 

firm (Bank of America) experienced an increase at that time, and also happened to be the 

one financial firm added to the index around the time of the crisis. What is interesting to 

note is that the financial firms in general were fairly stable throughout the crisis in regards 

✍✄ ✍✎✟✞✡ ✆✡✄✆✟✝✁✞✍✙ ✍✄ ✌✄✡☎ ✞✝✍✟✡✚✄✂✛✁ ✠✞✍✎ ✄✍✎✟✡ ✂✄☎✆�✝✞✟✁✕ ✒✟ ✠✄✗✚☛✝✘✍ ✎�☞✟ ✜✟en 
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surprised to see a flight away from these firms as board members tried to distance 

themselves away from these companies, during the mortgage crisis, but we have no 

evidence to support this. The firms we examined in the technology sector as a whole tended 

to be fairly stable and we see no evidence of any long term consequences of the dot com 

bubble that burst just prior to our period of study.  

Overall we conclude that the elite, as measured by the level of interlockedness, 

appear to prefer to form interlocks with companies that are in the DOW 30 index, and will 

move away from those firms who are removed from the index. We see no sign of a 

weakening elite overall during this period.  
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ability to highlight changes occurring within state government that the existing techniques 

would fail to recognize. Our network weighting scheme is one that others could 

immediately deploy, and which has the benefit of applying to both governor-centric studies 

as well as studies that are looking more holistically at changes occurring within state 

government.  

However, we caution that a straight conversion to utilizing degree centrality as a 

measure of gubernatorial power still exposes the research to the issue of delegated authority 

that we uncovered in Massachusetts and suspect is occurring in other states as well. In order 

to account for this we suggest that researchers either re-think their research question to be 

more holistic, i.e. using more than just a measure of centrality for the governor, or to 

consider the �✁✂✄☎✆✁☎✝✞ ✁✟✟✠✡✄ ☛✞ ☛ ✞☞✌�☎✁☞✍✎ we discuss these ideas in section 5.4. 

In addition, our work has shown that changes at the agency level, across all 50 

states, can also be uncovered with our weighted whole network. This allows us to highlight 

national trends that are occurring within state government, and policy areas that are either 

�☛✠✆✠✆� ✁☎ ✏✁✞✠✆� ✑✒✄ ☛✑✑✄✆✑✠✁✆ ✁✟ ✑✒✄ �✁✂✄☎✆✁☎✞✝ ✁✟✟✠✡✄✓ 

Papers 2 and 3 contribute both to the literature in the area of interlocking boards 

and to SNA methodology. We add to this discussion through interesting and sometimes 

unexpected trends when comparing interlocked boards in the U.S. with those in Europe. 

These insights are valuable to policymakers that design policies with the goal of reducing 

the level of interlockedness occurring within corporate boards. In addition, we provide a 

valuable extension to the Bayesian model, allowing for the ability to test for significance 

when networks are evaluated longitudinally. This extension has far-reaching implications 

since it is domain agnostic. We introduce the concept of a Hull in evaluating networks that 
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others, this still does not address the issue that agencies gain and lose power over time. We 

propose that, through a combination of appointment power and budget, we can begin to 

shed more light on this issue. For example, our model treats the appointment of the head 

of a smaller agency equally with that of a larger one. To address this issue we propose 

sizing nodes based on their budget. This would add valuable information into the 

visualizations for each state. In order to gain better network statistics, we would weigh 

appointment power on the basis of both the level of participation as well as the budget 

power of that agency. We believe this would be an important next step to further our 

understanding of power within state government.  

Part of the criticism in the analysis of the surrounding activity at the agency level 

is due to the fact that the Book of the State tracks only a limited number of agencies across 

all 50 states. It has been argued that other agencies, which are not covered by the Book of 

the States data, may be usurping power from those which are tracked. With the next step 

outlined above, we can also determine what the level of budgetary power covered by those 

agencies represented in the model. This would allow us to better understand how much of 

the overall budgetary power is accounted for within the agencies in the network. This will 

highlight when we need to consider adding agencies not covered by the Book of the States, 

either because budgets have dropped below some overall threshold (budget is slowly 

siphoning to agencies outside our network), or we have seen a large shift (a rapid shift of 

significant funds to an outside agency) �✁✂� ✄☎✆✝� ✂✞✞✟✠✆�✡☛ ☞✟✌ ✄✆ ✟✠✌ ✍✟☛✡✎✏ 

Clearly combining the work of paper 3 with the data from paper 1 could be 

invaluable to those studying state government. Giving researchers the ability to see when 

significant change is occurring within states would aid researchers performing longitudinal 
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studies across states. Instead of the need to evaluate each state for each year of the study, 

researchers could focus on why change occurred at a particular time. For example, the 

original index includes party control as one of the measures of gubernatorial power. This 

measures �✁✂ ✄☎✆� ✁✝ ✞ ✄✞✟✁✠✡☛☞ ☛�✌ ✍✁✎✌✠✏✁✠✑✒ ✓✞✠☛☞ �olds in the state legislature. 

However, we do not have a good quantitative measure by which we can identify strong 

governor versus strong legislature states. This is particularly important in states where the 

party control is very low, indicating that one party controls the ✍✁✎✌✠✏✁✠✑✒ office while the 

other controls the legislature. We believe that by looking at significant change over time, 

and using the party control measure, we could unravel whether the state possess a strong 

governor versus a strong legislature. For example, let us say that one party controls both 

☛�✌ ✍✁✎✌✠✏✁✠✑✒ ✁✝✝✡✆✌ ✞✏✔ ☛�✌ ✕✌✍✡✒✕✞☛☎✠✌ ✖☎☛ that we then see a change in the party control 

measure. If this change is quickly followed by a change in appointment power away from 

the governor, this may indicate a strong legislature state. However, if we do not observe 

such a change then it may be an indication of a strong governor state.  

In order to apply the model we developed in paper three to the Book of the States 

data several tasks would need to be done. First, we would convert all states, in all years, 

over to social networks. While the data are available, the challenge exists of codes changing 

year by year, and careful attention would need to be taken to convert those codes over to 

nodes and edges. However, this is a task that would only need to be performed once, and 

once available, could then be used by others in their own work. Second, we would reduce 

the weighted networks down to 2 non-weighted networks; one for whether the person 

appoints or not, and the other for whether the person approves the appointment or not. This 

would allow us to utilize the new model from paper 3 with no changes. This would allow 
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us to detect major change within each state such as the one experienced in Massachusetts 

as the governor delegated appointment responsibility. Finally, we would extend the model 

to allow for weighted networks that would allow for a finer level of detail than the model 

currently allows. This would allow us to detect more nuanced changes occurring within 

states with regards to shared responsibilities. 

As we have indicated, one of the limitations of this work in regards to state 

government is the fact that we have not presented a better measure of gubernatorial power 

when the governor delegates this authority. Clearly, while delegating reduces power to 

�✁✂✄ ☎✄✆✝✄✄✞ ✟✠ ✟� ✡✁✠ ✠☛✄ �☞✂✄ ☞� ✂✁✌✟✡✆ ✠☛✄ ✍✁✎✄✝ ✁✏✠�✟☎✄ ✁✑ ✠☛✄ ✆✁✌✄✝✡✁✝✒� ✁✑✑✟✓✄✔ ✕✡

order to account for this, we propose the creation of subgroups within our network 

accounting for everyone in the ✆✁✌✄✝✡✁✝✒� office, followed by the measurement of degree 

from the subgroup as a measure for gubernatorial power. By comparing the power of the 

subgroup with the power of the governor we can measure how much of that power has 

been delegated, which would avoid the issue of failing to detect this delegated authority. 

Finally, in regards to state government, there is evidence in the literature that strong 

ties can promote efficiency (due to homophily), while innovation can come from weak ties. 

By combining the work of Markus et al. (2013a) with this work, we can begin to test 

whether this is the case in state government. This can lead to questions such as, in states 

where the governor delegates appointment authority (moving from a strong tie to a weaker 

one), do we see both a decrease in efficiency yet also an increase in innovation? 

The work on interlocking boards has several avenues for future research as well. 

First and foremost would be to extend the period of study beyond the 10 years covered in 

these papers. To more extensively test the Mizruchi hypothesis would require building the 
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work beyond 2010. While we have captured the years of the subprime mortgage crisis in 

the U.S., it is reasonable to expect its impact to boards of directors to lag a certain number 

of years. As such, we may not have captured the true impact of the subprime mortgage 

crisis in this work. 

Second, the extension of the Bayesian model has the limitation of working only 

with un-weighted networks. In order to take advantage of the weighting from paper 1, this 

model will have to be extended again to allow for weighted networks. This extension, 

which allows for weighted networks, would be very valuable and would allow us to better 

model the power networks in paper 1. While such research is out of the scope of this 

dissertation, we outline how it could proceed here. Extending the model to directed 

networks is straightforward enough (see (Gill & Swartz, 2004)). To take weights into 

account we would need to define 8 different types of links, in each direction, and each with 

appropriate weight, and then model the logarithm of the probability for each of the eight 

types of links, as well as the probability that no link at all occurs. It would be 

computationally heavier than our models for paper 3 (which took 3-6 hours to run on a 

well-appointed laptop), but is quite feasible. The output would include graphs, such as the 

✛✍✆✙✎✍ ☞☎✍✙✎☛✜ ✙☎✄☛✄✁✂✄✠ �✁ ✞✎✍✙✂✄☎ ✢, displaying, for example, governor power over time 

✣ complete with standard deviations.  

Finally, this work only considers the interlocked boards of a small number of elite 

companies. To understand trends within the market as a whole, this work would have to be 

extended to include many more companies. It would be interesting to compare trends 
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became apparent what was changing in Massachusetts. An earlier version of this work was 

presented at the AMCIS in Puerto Rico in the summer of 2015. 

This work then led to my joining a team a researchers working on understanding 

interlocked boards. That team had begun to explore the European markets, while I brought 

in the U.S. perspective through the acquisition and conversion of the DOW 30 data. I also 

contributed the idea of testing the Mizruchi hypothesis using this data. An earlier version 

of this work was presented at the International Conference on Advances in Social Network 

Analysis and Mining (ASONAM) in Paris in the summer of 2015. 

When presenting this work, I was challenged repeatedly with the question as to 

whether our findings had statistical significance. This led to the work in paper 3. I explored 

how to test for statistical significance in longitudinal network analysis, and discovered that 

this was an opportunity for me to make a contribution to the field of SNA. While pairwise 

comparisons had been conducted, no model was readily available to analyze more than two 

years of data at a time. The authors of the work by Adams et al. (2008) were gracious 

enough to share their WinBUGS code for pairwise year comparisons. I was able to extend 

that program, and hence the Bayesian model, to conduct a multi-year comparison. Earlier 

versions of this work was presented at the INFORMS Annual Meeting in Philadelphia in 

the fall of 2015 and the 12th Annual International Conference on Operations Research in 

Havana, Cuba in the spring of 2016. 
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Appendix A - DOW Companies by Year 
 

  DOW 30 Components at End of Year 

Company Years  2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Added Removed Notes 

3M Company 2001-2010 X X X X X X X X X X   
Minnesota Mining & Manufacturing prior to 
1/27/2003 

Alcoa Inc 2001-2010 X X X X X X X X X X    

Altria Group Incorporated 2001-2007 X X X X X X X - - -  2/19/2008 
Phillip Morris Companies Inc prior to 
1/27/2003 

American Express Co. 2001-2010 X X X X X X X X X X    

American International 
Group Inc 2004-2007 - - - X X X X - - - 4/8/2004 9/22/2008  

AT&T Corp 2001-2003 X X X - - - - - - -  4/8/2004  

AT&T Inc 2001-2010 X X X X X X X X X X   SBC Communications Prior to 11/21/2005 

Bank of America 2008-2010 - - - - - - - X X X 2/19/2008   

Boeing 2001-2010 X X X X X X X X X X    

Caterpillar 2001-2010 X X X X X X X X X X    

Chevron 2008-2010 - - - - - - - X X X 2/19/2008   

Cisco Systems 2009-2010 - - - - - - - - X X 6/8/2009   

Citigroup 2001-2008 X X X X X X X X - -  6/8/2009 Travelers Group prior ro 11/1/1999 

The Coca-Cola Company 2001-2010 X X X X X X X X X X    

DuPont 2001-2010 X X X X X X X X X X    

Eastman Kodak Company 2001-2003 X X X - - - - - - -  4/8/2004  
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ExxonMobil 2001-2010 X X X X X X X X X X   Exxon Corporation prior to 1/27/2003 

General Electric 2001-2010 X X X X X X X X X X    

General Motors 2001-2008 X X X X X X X X - -  6/8/2009  

Hewlett Packard Company 2001-2010 X X X X X X X X X X    

The Home Depot Inc 2001-2010 X X X X X X X X X X    

Honeywell International Inc 2001-2007 X X X X X X X - - -  2/19/2008 AlliedSignal Incorporated prior to 1/27/2003 

Intel 2001-2010 X X X X X X X X X X    

IBM 2001-2010 X X X X X X X X X X    

International Paper Company 2001-2003 X X X - - - - - - -  4/8/2004  

Johnson & Johnson 2001-2010 X X X X X X X X X X    

JPMorgan Chase 2001-2010 X X X X X X X X X X    

Kraft Foods Inc 2008-2010 - - - - - - - X X X 9/22/2008   

McDonalds 2001-2010 X X X X X X X X X X    

Merck & Co 2001-2008 X X X X X X X X     Delisted 11/2009 

Merck & Co 2009-2010         X X   Schering-Plough prior to 11/2009 

Microsoft 2001-2010 X X X X X X X X X X    

Pfizer 2004-2010 - - - X X X X X X X 4/8/2004   

Procter & Gamble 2001-2010 X X X X X X X X X X    

The Travelers Companies 2009-2010 - - - - - - - - X X 6/8/2009   

United Technologies 
Corporation 2001-2010 X X X X X X X X X X    

Verizon Communications 2004-2010 - - - X X X X X X X 4/8/2004   
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Walmart 2001-2010 X X X X X X X X X X    

The Walt Disney Company 2001-2010 X X X X X X X X X X    
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Appendix B - OpenBUGS Model 
model { 
   

# This model will load 10 years worth of network/graph information and compare the years  
# to determine if the network has statistically changed over that time period. 
# Our data is defined in am adjacency matrix with the naming y00x where y00 represents  
# the positive matrix # and the x is replaced by the year. So y003 represents the positive  
# graph for 2003.  
# 
# The graphs named y11x represent the inversed matrices of the y00x matrices. 
# Since Bayesian networks cannot be weighted (need to verify this) - the data has been  
# dichotimized. In other words, any weight greater than 1 has been set equal to 1. This  
# gives us binary data to work with. 
# 
# Since our connections are undirected, the matrix is symmetric across the diagonal. 
 
# g1 is defined in the data file and represents the number of nodes in the network 
# In the case of the DOW 30 Hull data this equals 23 or 38 dependng on Hull 
# The outer for loop will iterate the variable i from 1 to 22 or 37 depending on Hull  
 
for (i in 1:g1-1)  
{  
 # This inner loop will iterate variable j from i+1 to 23 (or 38 depending on Hull used) 
 # The result of these two loops will be that we will traverse through the upper (lower)  
 # portion of the network.  
 
 for (j in i+1:g1)  

    {   
  # You can identify stochastic nodes by the presence of these three components: 
  #       > The name of the random quantity is on the left hand side of the equations 
  #       > The ~ symbol in the middle, and 
  #       > A function name on the right representing a distribution 
  # 
  # You can identify logical nodes by the presence of these three components: 
  #       > The name of the variable on the left hand side of the equation 
  #       > The symbol <- (arrow) in the middle, and 
  #       > The mathematical operation on the right hand side of the equation 
  #  
  # dbern is a Bernoulli distribution (anything starting with the "d" represents a  
  # distribution).  
  # A Bernoulli trial is an experiment with 2 and only 2 outcomes. 
  # The p001[i,j] is the probability of success 
 

    y001[i,j] ~ dbern(p001[i,j])      
    log(p001[i,j]) <- lambda1[i,j]   

 
  y111[i,j] ~ dbern(p111[i,j]) 

    log(p111[i,j]) <- lambda1[i,j] + theta[1] + a[i,1] + a[j,1]  
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   lambda1[i,j] <- -log(1 + exp(theta[1] + a[i,1] + a[j,1]))  
        # The above block of code is then repeated 9 more times to cover the other 9  
   # years. 

 
  # Year 2002      
  y002[i,j] ~ dbern(p002[i,j])  
  log(p002[i,j]) <- lambda2[i,j] 

      
  y112[i,j] ~ dbern(p112[i,j]) 

   log(p112[i,j]) <- lambda2[i,j] + theta[2] + a[i,2] + a[j,2]  
    
   lambda2[i,j] <- -log(1 + exp(theta[2] + a[i,2] + a[j,2] ))  
          

  # Year 2003 
         y003[i,j] ~ dbern(p003[i,j])  

    log(p003[i,j]) <- lambda3[i,j] 
   

  y113[i,j] ~ dbern(p113[i,j]) 
            log(p113[i,j]) <- lambda3[i,j] + theta[3] + a[i,3] + a[j,3]  
    
   lambda3[i,j] <- -log(1 + exp(theta[3] + a[i,3] + a[j,3] ))     

     
  # Year 2004 
      y004[i,j] ~ dbern(p004[i,j])  

     log(p004[i,j]) <- lambda4[i,j] 
    

  y114[i,j] ~ dbern(p114[i,j]) 
     log(p114[i,j]) <- lambda4[i,j] + theta[4] + a[i,4] + a[j,4]  
    
   lambda4[i,j] <- -log(1 + exp(theta[4] + a[i,4] + a[j,4] ))   

     
  # Year 2005   
      y005[i,j] ~ dbern(p005[i,j])  

      log(p005[i,j]) <- lambda5[i,j] 
      

  y115[i,j] ~ dbern(p115[i,j]) 
     log(p115[i,j]) <- lambda5[i,j] + theta[5] + a[i,5] + a[j,5]  
    
   lambda5[i,j] <- -log(1 + exp(theta[5] + a[i,5] + a[j,5] ))       

   
  # Year 2006   
      y006[i,j] ~ dbern(p006[i,j])  

    log(p006[i,j]) <- lambda6[i,j] 
      

y116[i,j] ~ dbern(p116[i,j]) 
   log(p116[i,j]) <- lambda6[i,j] + theta[6] + a[i,6] + a[j,6]  
     

lambda6[i,j] <- -log(1 + exp(theta[6] + a[i,6] + a[j,6] ))      
     
      # Year 2007 
      y007[i,j] ~ dbern(p007[i,j])  
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      log(p007[i,j]) <- lambda7[i,j] 
     

  y117[i,j] ~ dbern(p117[i,j]) 
     log(p117[i,j]) <- lambda7[i,j] + theta[7] + a[i,7] + a[j,7]  
    
   lambda7[i,j] <- -log(1 + exp(theta[7] + a[i,7] + a[j,7] ))     

   
  # Year 2008   
      y008[i,j] ~ dbern(p008[i,j])  

      log(p008[i,j]) <- lambda8[i,j] 
     

  y118[i,j] ~ dbern(p118[i,j]) 
     log(p118[i,j]) <- lambda8[i,j] + theta[8] + a[i,8] + a[j,8]  
    
   lambda8[i,j] <- -log(1 + exp(theta[8] + a[i,8] + a[j,8] ))     

   
  # Year 2009   
      y009[i,j] ~ dbern(p009[i,j])  

      log(p009[i,j]) <- lambda9[i,j] 
     

  y119[i,j] ~ dbern(p119[i,j]) 
     log(p119[i,j]) <- lambda9[i,j] + theta[9] + a[i,9] + a[j,9]  
    
   lambda9[i,j] <- -log(1 + exp(theta[9] + a[i,9] + a[j,9] ))     

   
  # Year 2010   
         y0010[i,j] ~ dbern(p0010[i,j])  

      log(p0010[i,j]) <- lambda10[i,j] 
     

  y1110[i,j] ~ dbern(p1110[i,j]) 
     log(p1110[i,j]) <- lambda10[i,j] + theta[10] + a[i,10] + a[j,10]  
    
    lambda10[i,j] <- -log(1 + exp(theta[10] + a[i,10] + a[j,10] ))     

}         
 }       

  
 for (j in 1:g1-1) 

{  
 for (i in j+1:g1)  

    {   
  y001[i,j] ~ dbern(p001[i,j])  

    log(p001[i,j]) <- lambda1[i,j] 
       

  y111[i,j] ~ dbern(p111[i,j]) 
     log(p111[i,j]) <- lambda1[i,j] + theta[1] + a[i,1] + a[j,1]  
    
   lambda1[i,j] <- -log(1 + exp(theta[1] + a[i,1] + a[j,1]))  
         

  y002[i,j] ~ dbern(p002[i,j])  
    log(p002[i,j]) <- lambda2[i,j] 
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  y112[i,j] ~ dbern(p112[i,j]) 
     log(p112[i,j]) <- lambda2[i,j] + theta[2] + a[i,2] + a[j,2]  
    
   lambda2[i,j] <- -log(1 + exp(theta[2] + a[i,2] + a[j,2] ))  

     
      y003[i,j] ~ dbern(p003[i,j])  

   log(p003[i,j]) <- lambda3[i,j] 
      

y113[i,j] ~ dbern(p113[i,j]) 
     log(p113[i,j]) <- lambda3[i,j] + theta[3] + a[i,3] + a[j,3]  
    
   lambda3[i,j] <- -log(1 + exp(theta[3] + a[i,3] + a[j,3] ))     

     
    y004[i,j] ~ dbern(p004[i,j])  

   log(p004[i,j]) <- lambda4[i,j] 
      

y114[i,j] ~ dbern(p114[i,j]) 
     log(p114[i,j]) <- lambda4[i,j] + theta[4] + a[i,4] + a[j,4]  
    
   lambda4[i,j] <- -log(1 + exp(theta[4] + a[i,4] + a[j,4] ))   

     
     
    y005[i,j] ~ dbern(p005[i,j])  

   log(p005[i,j]) <- lambda5[i,j] 
      

y115[i,j] ~ dbern(p115[i,j]) 
     log(p115[i,j]) <- lambda5[i,j] + theta[5] + a[i,5] + a[j,5]  
    
   lambda5[i,j] <- -log(1 + exp(theta[5] + a[i,5] + a[j,5] ))       

     
  y006[i,j] ~ dbern(p006[i,j])  

    log(p006[i,j]) <- lambda6[i,j] 
      

y116[i,j] ~ dbern(p116[i,j]) 
     log(p116[i,j]) <- lambda6[i,j] + theta[6] + a[i,6] + a[j,6]  
    
   lambda6[i,j] <- -log(1 + exp(theta[6] + a[i,6] + a[j,6] ))      

     
  y007[i,j] ~ dbern(p007[i,j])  

    log(p007[i,j]) <- lambda7[i,j] 
      

y117[i,j] ~ dbern(p117[i,j]) 
     log(p117[i,j]) <- lambda7[i,j] + theta[7] + a[i,7] + a[j,7]  
    
   lambda7[i,j] <- -log(1 + exp(theta[7] + a[i,7] + a[j,7] ))     

     
  y008[i,j] ~ dbern(p008[i,j])  

    log(p008[i,j]) <- lambda8[i,j] 
      

y118[i,j] ~ dbern(p118[i,j]) 
     log(p118[i,j]) <- lambda8[i,j] + theta[8] + a[i,8] + a[j,8]  
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   lambda8[i,j] <- -log(1 + exp(theta[8] + a[i,8] + a[j,8] ))     

     
  y009[i,j] ~ dbern(p009[i,j])  

   log(p009[i,j]) <- lambda9[i,j] 
      

y119[i,j] ~ dbern(p119[i,j]) 
     log(p119[i,j]) <- lambda9[i,j] + theta[9] + a[i,9] + a[j,9]  
     

lambda9[i,j] <- -log(1 + exp(theta[9] + a[i,9] + a[j,9] ))     
     
  y0010[i,j] ~ dbern(p0010[i,j])  

    log(p0010[i,j]) <- lambda10[i,j] 
      

y1110[i,j] ~ dbern(p1110[i,j]) 
     log(p1110[i,j]) <- lambda10[i,j] + theta[10] + a[i,10] + a[j,10]  
    
   lambda10[i,j] <- -log(1 + exp(theta[10] + a[i,10] + a[j,10] ))     
            
 }  }     

# Priors are defined here  
  
for (l in 1:9) 
{  
 diff[l]<-theta[l]-theta[l+1] 
} 
 
for (i in 1:g1)  
{  
 a[i,1:10] ~ dmnorm(zero[],prec.a[,])  
} 
 
for (k in 1:10)  
{ 
 zero[k] <- 0 
} 
 
prec.a[1:10,1:10] ~ dwish(b[,],nu) 
nu<-10 
 
for (k in 1:10)  
{ 
 b[k,k] <- 1 
} 
 
for (k1 in 1:9)  
{ 
 for (k2 in k1+1:10)  
 { 
  b[k1,k2]<-0 
 } 
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} 
 
for (k2 in 1:9)  
{ 
 for (k1 in k2+1:10)  
 { 
  b[k1,k2]<-0 
 } 
} 
 
theta[1:10]~ dmnorm(zero[],prec.a[,])  
sigmaa[1:10,1:10] <- inverse(prec.a[,]) 
 
}   # End of Model 
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Appendix C - Hull Results 

Core Hull Results 

 mean sd MC_error val2.5% median val97.5% start sample 
diff[1] -0.1371 0.2878 0.01325 -0.4283 0.1337 0.6837 50000 150001 
diff[2] -0.004976 0.3108 0.01448 -0.5648 -0.00705 0.6761 50000 150001 
diff[3] -0.001492 0.2985 0.01375 -0.6197 0.009119 0.5633 50000 150001 
diff[4] 0.01953 0.2732 0.01261 -0.5708 -0.02601 0.5396 50000 150001 
diff[5] -0.02565 0.3339 0.01549 -0.6133 0.01342 0.737 50000 150001 
diff[6] -0.2637 0.2882 0.01348 -0.3085 0.2598 0.8355 50000 150001 
diff[7] 0.2921 0.2586 0.01109 -0.8249 -0.286 0.1984 50000 150001 
diff[8] -0.1237 0.2665 0.01172 -0.3918 0.1188 0.6641 50000 150001 
diff[9] -0.3759 0.3175 0.01423 -0.2388 0.3667 0.9988 50000 150001 
sigmaa[1,1] 1.443 0.5485 0.01149 0.6839 1.342 2.792 50000 150001 
sigmaa[1,2] 1.219 0.4582 0.007395 0.5805 1.135 2.345 50000 150001 
sigmaa[1,3] 1.371 0.5085 0.008578 0.6648 1.28 2.613 50000 150001 
sigmaa[1,4] 1.363 0.5154 0.008159 0.6422 1.272 2.625 50000 150001 
sigmaa[1,5] 1.307 0.5082 0.008152 0.5938 1.216 2.553 50000 150001 
sigmaa[1,6] 1.068 0.4698 0.006544 0.3881 0.9894 2.203 50000 150001 
sigmaa[1,7] 0.855 0.4035 0.005789 0.2587 0.7904 1.826 50000 150001 
sigmaa[1,8] 0.9288 0.4461 0.00622 0.2612 0.8595 1.997 50000 150001 
sigmaa[1,9] 0.8976 0.4078 0.005353 0.2958 0.8326 1.885 50000 150001 
sigmaa[1,10] 0.6733 0.3181 0.004107 0.2008 0.6222 1.438 50000 150001 
sigmaa[2,1] 1.219 0.4582 0.007395 0.5805 1.135 2.345 50000 150001 
sigmaa[2,2] 1.303 0.4941 0.009625 0.6308 1.209 2.524 50000 150001 
sigmaa[2,3] 1.247 0.4635 0.006181 0.5962 1.163 2.39 50000 150001 
sigmaa[2,4] 1.197 0.4682 0.006426 0.5353 1.114 2.345 50000 150001 
sigmaa[2,5] 1.118 0.4534 0.00583 0.467 1.04 2.226 50000 150001 
sigmaa[2,6] 0.8928 0.4253 0.00499 0.2504 0.8265 1.92 50000 150001 
sigmaa[2,7] 0.7022 0.3645 0.004009 0.1354 0.65 1.57 50000 150001 
sigmaa[2,8] 0.7777 0.4088 0.004766 0.1385 0.7201 1.744 50000 150001 
sigmaa[2,9] 0.774 0.3753 0.004127 0.2005 0.7177 1.666 50000 150001 
sigmaa[2,10] 0.6391 0.3037 0.003705 0.1865 0.5912 1.365 50000 150001 
sigmaa[3,1] 1.371 0.5085 0.008578 0.6648 1.28 2.613 50000 150001 
sigmaa[3,2] 1.247 0.4635 0.006181 0.5962 1.163 2.39 50000 150001 
sigmaa[3,3] 1.628 0.5978 0.01121 0.8021 1.517 3.097 50000 150001 
sigmaa[3,4] 1.543 0.5657 0.008768 0.758 1.439 2.927 50000 150001 
sigmaa[3,5] 1.497 0.5609 0.008695 0.7196 1.395 2.88 50000 150001 
sigmaa[3,6] 1.251 0.5204 0.007379 0.5089 1.16 2.518 50000 150001 
sigmaa[3,7] 1.011 0.4466 0.006402 0.3646 0.9351 2.093 50000 150001 



136 
 

sigmaa[3,8] 1.08 0.4892 0.006698 0.3616 1.001 2.257 50000 150001 
sigmaa[3,9] 0.9984 0.438 0.00562 0.358 0.9268 2.056 50000 150001 
sigmaa[3,10] 0.6849 0.3339 0.004297 0.1816 0.6343 1.478 50000 150001 
sigmaa[4,1] 1.363 0.5154 0.008159 0.6422 1.272 2.625 50000 150001 
sigmaa[4,2] 1.197 0.4682 0.006426 0.5353 1.114 2.345 50000 150001 
sigmaa[4,3] 1.543 0.5657 0.008768 0.758 1.439 2.927 50000 150001 
sigmaa[4,4] 1.829 0.6885 0.01459 0.8938 1.697 3.528 50000 150001 
sigmaa[4,5] 1.707 0.6353 0.01158 0.8338 1.588 3.274 50000 150001 
sigmaa[4,6] 1.561 0.6183 0.01127 0.7082 1.445 3.08 50000 150001 
sigmaa[4,7] 1.271 0.5251 0.009151 0.5391 1.175 2.56 50000 150001 
sigmaa[4,8] 1.368 0.572 0.009451 0.5634 1.264 2.778 50000 150001 
sigmaa[4,9] 1.215 0.5021 0.007613 0.5036 1.126 2.449 50000 150001 
sigmaa[4,10] 0.6964 0.3475 0.004405 0.1653 0.645 1.52 50000 150001 
sigmaa[5,1] 1.307 0.5082 0.008152 0.5938 1.216 2.553 50000 150001 
sigmaa[5,2] 1.118 0.4534 0.00583 0.467 1.04 2.226 50000 150001 
sigmaa[5,3] 1.497 0.5609 0.008695 0.7196 1.395 2.88 50000 150001 
sigmaa[5,4] 1.707 0.6353 0.01158 0.8338 1.588 3.274 50000 150001 
sigmaa[5,5] 1.853 0.7219 0.0162 0.8819 1.713 3.628 50000 150001 
sigmaa[5,6] 1.622 0.6375 0.01141 0.7424 1.503 3.186 50000 150001 
sigmaa[5,7] 1.328 0.5438 0.009737 0.5745 1.229 2.66 50000 150001 
sigmaa[5,8] 1.433 0.5986 0.01093 0.5971 1.325 2.91 50000 150001 
sigmaa[5,9] 1.259 0.5196 0.008572 0.5307 1.168 2.538 50000 150001 
sigmaa[5,10] 0.6936 0.3494 0.004441 0.1619 0.6416 1.529 50000 150001 
sigmaa[6,1] 1.068 0.4698 0.006544 0.3881 0.9894 2.203 50000 150001 
sigmaa[6,2] 0.8928 0.4253 0.00499 0.2504 0.8265 1.92 50000 150001 
sigmaa[6,3] 1.251 0.5204 0.007379 0.5089 1.16 2.518 50000 150001 
sigmaa[6,4] 1.561 0.6183 0.01127 0.7082 1.445 3.08 50000 150001 
sigmaa[6,5] 1.622 0.6375 0.01141 0.7424 1.503 3.186 50000 150001 
sigmaa[6,6] 1.905 0.767 0.01737 0.8767 1.751 3.799 50000 150001 
sigmaa[6,7] 1.519 0.6017 0.01164 0.7007 1.403 3.005 50000 150001 
sigmaa[6,8] 1.673 0.6539 0.01194 0.7745 1.548 3.289 50000 150001 
sigmaa[6,9] 1.414 0.5503 0.008688 0.6454 1.314 2.759 50000 150001 
sigmaa[6,10] 0.7668 0.3612 0.004357 0.2247 0.7107 1.628 50000 150001 
sigmaa[7,1] 0.855 0.4035 0.005789 0.2587 0.7904 1.826 50000 150001 
sigmaa[7,2] 0.7022 0.3645 0.004009 0.1354 0.65 1.57 50000 150001 
sigmaa[7,3] 1.011 0.4466 0.006402 0.3646 0.9351 2.093 50000 150001 
sigmaa[7,4] 1.271 0.5251 0.009151 0.5391 1.175 2.56 50000 150001 
sigmaa[7,5] 1.328 0.5438 0.009737 0.5745 1.229 2.66 50000 150001 
sigmaa[7,6] 1.519 0.6017 0.01164 0.7007 1.403 3.005 50000 150001 
sigmaa[7,7] 1.489 0.5955 0.01338 0.6967 1.37 2.973 50000 150001 
sigmaa[7,8] 1.519 0.5873 0.011 0.7155 1.408 2.973 50000 150001 
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sigmaa[7,9] 1.289 0.4929 0.0077 0.6062 1.199 2.504 50000 150001 
sigmaa[7,10] 0.7487 0.3293 0.00402 0.2681 0.6939 1.542 50000 150001 
sigmaa[8,1] 0.9288 0.4461 0.00622 0.2612 0.8595 1.997 50000 150001 
sigmaa[8,2] 0.7777 0.4088 0.004766 0.1385 0.7201 1.744 50000 150001 
sigmaa[8,3] 1.08 0.4892 0.006698 0.3616 1.001 2.257 50000 150001 
sigmaa[8,4] 1.368 0.572 0.009451 0.5634 1.264 2.778 50000 150001 
sigmaa[8,5] 1.433 0.5986 0.01093 0.5971 1.325 2.91 50000 150001 
sigmaa[8,6] 1.673 0.6539 0.01194 0.7745 1.548 3.289 50000 150001 
sigmaa[8,7] 1.519 0.5873 0.011 0.7155 1.408 2.973 50000 150001 
sigmaa[8,8] 1.874 0.7304 0.016 0.8857 1.732 3.687 50000 150001 
sigmaa[8,9] 1.515 0.5667 0.009213 0.7284 1.412 2.904 50000 150001 
sigmaa[8,10] 0.8964 0.3773 0.004895 0.3533 0.8323 1.814 50000 150001 
sigmaa[9,1] 0.8976 0.4078 0.005353 0.2958 0.8326 1.885 50000 150001 
sigmaa[9,2] 0.774 0.3753 0.004127 0.2005 0.7177 1.666 50000 150001 
sigmaa[9,3] 0.9984 0.438 0.00562 0.358 0.9268 2.056 50000 150001 
sigmaa[9,4] 1.215 0.5021 0.007613 0.5036 1.126 2.449 50000 150001 
sigmaa[9,5] 1.259 0.5196 0.008572 0.5307 1.168 2.538 50000 150001 
sigmaa[9,6] 1.414 0.5503 0.008688 0.6454 1.314 2.759 50000 150001 
sigmaa[9,7] 1.289 0.4929 0.0077 0.6062 1.199 2.504 50000 150001 
sigmaa[9,8] 1.515 0.5667 0.009213 0.7284 1.412 2.904 50000 150001 
sigmaa[9,9] 1.518 0.56 0.01038 0.7467 1.415 2.896 50000 150001 
sigmaa[9,10] 0.8853 0.3513 0.004287 0.3848 0.8247 1.74 50000 150001 
sigmaa[10,1] 0.6733 0.3181 0.004107 0.2008 0.6222 1.438 50000 150001 
sigmaa[10,2] 0.6391 0.3037 0.003705 0.1865 0.5912 1.365 50000 150001 
sigmaa[10,3] 0.6849 0.3339 0.004297 0.1816 0.6343 1.478 50000 150001 
sigmaa[10,4] 0.6964 0.3475 0.004405 0.1653 0.645 1.52 50000 150001 
sigmaa[10,5] 0.6936 0.3494 0.004441 0.1619 0.6416 1.529 50000 150001 
sigmaa[10,6] 0.7668 0.3612 0.004357 0.2247 0.7107 1.628 50000 150001 
sigmaa[10,7] 0.7487 0.3293 0.00402 0.2681 0.6939 1.542 50000 150001 
sigmaa[10,8] 0.8964 0.3773 0.004895 0.3533 0.8323 1.814 50000 150001 
sigmaa[10,9] 0.8853 0.3513 0.004287 0.3848 0.8247 1.74 50000 150001 
sigmaa[10,10] 0.924 0.335 0.005151 0.4615 0.8629 1.748 50000 150001 
theta[1] -2.522 0.452 0.02143 1.721 2.49 3.474 50000 150001 
theta[2] -2.385 0.4018 0.01882 1.638 2.382 3.183 50000 150001 
theta[3] -2.38 0.4761 0.02284 1.485 2.371 3.352 50000 150001 
theta[4] -2.378 0.5084 0.02431 1.454 2.353 3.518 50000 150001 
theta[5] -2.398 0.4895 0.02316 1.502 2.382 3.444 50000 150001 
theta[6] -2.372 0.4909 0.02268 1.5 2.345 3.4 50000 150001 
theta[7] -2.108 0.4118 0.01933 1.342 2.094 2.948 50000 150001 
theta[8] -2.4 0.4626 0.02143 1.545 2.372 3.34 50000 150001 
theta[9] -2.277 0.4153 0.01937 1.493 2.265 3.139 50000 150001 



138 
 

theta[10] -1.901 0.3421 0.01557 1.229 1.898 2.595 50000 150001 
 

Extended Hull Results 

 mean sd MC_error val2.5% median val97.5% start sample 
diff[1] 0.08786 0.1619 0.007245 -0.218 0.08525 0.4151 50000 150001 

diff[2] 0.1343 0.1821 0.008417 -0.2088 0.1287 0.4994 50000 150001 

diff[3] 0.003791 0.1936 0.008508 -0.3862 0.003696 0.3799 50000 150001 

diff[4] 0.1474 0.1828 0.008416 -0.193 0.1421 0.514 50000 150001 

diff[5] 0.06878 0.2388 0.01121 -0.3991 0.0693 0.5464 50000 150001 

diff[6] -0.1609 0.1977 0.00906 -0.538 -0.1678 0.2424 50000 150001 

diff[7] 0.0802 0.209 0.009336 -0.3226 0.07759 0.5004 50000 150001 

diff[8] 0.3916 0.219 0.009953 -0.0153 0.3866 0.8496 50000 150001 

diff[9] -0.2961 0.2432 0.01093 -0.7784 -0.2881 0.1807 50000 150001 

sigmaa[1,1] 0.8893 0.2413 0.003634 0.5239 0.854 1.461 50000 150001 

sigmaa[1,2] 0.8671 0.2379 0.003169 0.5055 0.8321 1.427 50000 150001 

sigmaa[1,3] 0.9399 0.2588 0.003514 0.5456 0.9018 1.55 50000 150001 

sigmaa[1,4] 0.9033 0.2503 0.00315 0.5239 0.8664 1.494 50000 150001 

sigmaa[1,5] 0.817 0.2405 0.002954 0.4469 0.783 1.382 50000 150001 

sigmaa[1,6] 0.6555 0.2308 0.002875 0.2913 0.6253 1.195 50000 150001 

sigmaa[1,7] 0.5628 0.2147 0.002633 0.2195 0.5362 1.063 50000 150001 

sigmaa[1,8] 0.536 0.212 0.002471 0.1913 0.5108 1.025 50000 150001 

sigmaa[1,9] 0.6675 0.26 0.003236 0.2489 0.6357 1.268 50000 150001 

sigmaa[1,10] 0.5862 0.2445 0.003029 0.1883 0.557 1.15 50000 150001 

sigmaa[2,1] 0.8671 0.2379 0.003169 0.5055 0.8321 1.427 50000 150001 

sigmaa[2,2] 1.007 0.2813 0.00473 0.5837 0.9641 1.673 50000 150001 

sigmaa[2,3] 1.015 0.2814 0.00409 0.5888 0.9734 1.681 50000 150001 

sigmaa[2,4] 0.9729 0.2715 0.003755 0.5617 0.9322 1.613 50000 150001 

sigmaa[2,5] 0.9039 0.2646 0.003566 0.501 0.866 1.53 50000 150001 

sigmaa[2,6] 0.7485 0.2546 0.0035 0.3546 0.7128 1.347 50000 150001 

sigmaa[2,7] 0.6483 0.2361 0.003097 0.2777 0.6173 1.199 50000 150001 

sigmaa[2,8] 0.6187 0.2332 0.003033 0.2489 0.5889 1.162 50000 150001 

sigmaa[2,9] 0.7618 0.2853 0.003707 0.3106 0.7248 1.424 50000 150001 

sigmaa[2,10] 0.6733 0.2694 0.003682 0.2441 0.6381 1.297 50000 150001 

sigmaa[3,1] 0.9399 0.2588 0.003514 0.5456 0.9018 1.55 50000 150001 

sigmaa[3,2] 1.015 0.2814 0.00409 0.5888 0.9734 1.681 50000 150001 

sigmaa[3,3] 1.211 0.3392 0.006341 0.7007 1.16 2.013 50000 150001 

sigmaa[3,4] 1.097 0.3048 0.004706 0.6392 1.051 1.817 50000 150001 

sigmaa[3,5] 1.034 0.2972 0.004409 0.5829 0.9894 1.737 50000 150001 

sigmaa[3,6] 0.8719 0.2842 0.004011 0.4341 0.8314 1.539 50000 150001 

sigmaa[3,7] 0.7736 0.2675 0.003923 0.3615 0.7366 1.403 50000 150001 

sigmaa[3,8] 0.7153 0.2591 0.003481 0.3082 0.6805 1.32 50000 150001 
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sigmaa[3,9] 0.8857 0.3167 0.004242 0.3885 0.8434 1.627 50000 150001 

sigmaa[3,10] 0.8057 0.3026 0.00439 0.3312 0.7645 1.517 50000 150001 

sigmaa[4,1] 0.9033 0.2503 0.00315 0.5239 0.8664 1.494 50000 150001 

sigmaa[4,2] 0.9729 0.2715 0.003755 0.5617 0.9322 1.613 50000 150001 

sigmaa[4,3] 1.097 0.3048 0.004706 0.6392 1.051 1.817 50000 150001 

sigmaa[4,4] 1.169 0.3264 0.005712 0.6823 1.119 1.942 50000 150001 

sigmaa[4,5] 1.057 0.3001 0.004604 0.6036 1.011 1.768 50000 150001 

sigmaa[4,6] 0.9234 0.2915 0.004443 0.4811 0.8807 1.612 50000 150001 

sigmaa[4,7] 0.8228 0.2718 0.004029 0.4078 0.7837 1.462 50000 150001 

sigmaa[4,8] 0.7678 0.2636 0.003654 0.3584 0.7314 1.383 50000 150001 

sigmaa[4,9] 0.9331 0.3216 0.004504 0.4358 0.8877 1.686 50000 150001 

sigmaa[4,10] 0.7984 0.2973 0.004326 0.3316 0.7574 1.493 50000 150001 

sigmaa[5,1] 0.817 0.2405 0.002954 0.4469 0.783 1.382 50000 150001 

sigmaa[5,2] 0.9039 0.2646 0.003566 0.501 0.866 1.53 50000 150001 

sigmaa[5,3] 1.034 0.2972 0.004409 0.5829 0.9894 1.737 50000 150001 

sigmaa[5,4] 1.057 0.3001 0.004604 0.6036 1.011 1.768 50000 150001 

sigmaa[5,5] 1.205 0.3421 0.006509 0.6954 1.153 2.023 50000 150001 

sigmaa[5,6] 1.101 0.326 0.005552 0.6156 1.05 1.878 50000 150001 

sigmaa[5,7] 1.005 0.304 0.004958 0.5488 0.9594 1.73 50000 150001 

sigmaa[5,8] 0.9574 0.2982 0.004912 0.5106 0.9125 1.665 50000 150001 

sigmaa[5,9] 1.176 0.3679 0.006376 0.6241 1.119 2.053 50000 150001 

sigmaa[5,10] 1.023 0.3373 0.005591 0.514 0.9733 1.82 50000 150001 

sigmaa[6,1] 0.6555 0.2308 0.002875 0.2913 0.6253 1.195 50000 150001 

sigmaa[6,2] 0.7485 0.2546 0.0035 0.3546 0.7128 1.347 50000 150001 

sigmaa[6,3] 0.8719 0.2842 0.004011 0.4341 0.8314 1.539 50000 150001 

sigmaa[6,4] 0.9234 0.2915 0.004443 0.4811 0.8807 1.612 50000 150001 

sigmaa[6,5] 1.101 0.326 0.005552 0.6156 1.05 1.878 50000 150001 

sigmaa[6,6] 1.319 0.4009 0.009127 0.7339 1.254 2.283 50000 150001 

sigmaa[6,7] 1.163 0.3496 0.006843 0.6486 1.107 1.999 50000 150001 

sigmaa[6,8] 1.125 0.3389 0.006314 0.6222 1.072 1.928 50000 150001 

sigmaa[6,9] 1.349 0.4116 0.007764 0.7342 1.285 2.326 50000 150001 

sigmaa[6,10] 1.185 0.3814 0.007257 0.6167 1.126 2.094 50000 150001 

sigmaa[7,1] 0.5628 0.2147 0.002633 0.2195 0.5362 1.063 50000 150001 

sigmaa[7,2] 0.6483 0.2361 0.003097 0.2777 0.6173 1.199 50000 150001 

sigmaa[7,3] 0.7736 0.2675 0.003923 0.3615 0.7366 1.403 50000 150001 

sigmaa[7,4] 0.8228 0.2718 0.004029 0.4078 0.7837 1.462 50000 150001 

sigmaa[7,5] 1.005 0.304 0.004958 0.5488 0.9594 1.73 50000 150001 

sigmaa[7,6] 1.163 0.3496 0.006843 0.6486 1.107 1.999 50000 150001 

sigmaa[7,7] 1.201 0.3684 0.008242 0.666 1.14 2.085 50000 150001 

sigmaa[7,8] 1.074 0.3268 0.00614 0.5882 1.023 1.851 50000 150001 

sigmaa[7,9] 1.282 0.3913 0.007132 0.6972 1.222 2.214 50000 150001 
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sigmaa[7,10] 1.134 0.3655 0.006918 0.5902 1.075 2.009 50000 150001 

sigmaa[8,1] 0.536 0.212 0.002471 0.1913 0.5108 1.025 50000 150001 

sigmaa[8,2] 0.6187 0.2332 0.003033 0.2489 0.5889 1.162 50000 150001 

sigmaa[8,3] 0.7153 0.2591 0.003481 0.3082 0.6805 1.32 50000 150001 

sigmaa[8,4] 0.7678 0.2636 0.003654 0.3584 0.7314 1.383 50000 150001 

sigmaa[8,5] 0.9574 0.2982 0.004912 0.5106 0.9125 1.665 50000 150001 

sigmaa[8,6] 1.125 0.3389 0.006314 0.6222 1.072 1.928 50000 150001 

sigmaa[8,7] 1.074 0.3268 0.00614 0.5882 1.023 1.851 50000 150001 

sigmaa[8,8] 1.205 0.3683 0.008039 0.6611 1.146 2.084 50000 150001 

sigmaa[8,9] 1.351 0.4105 0.008031 0.74 1.286 2.328 50000 150001 

sigmaa[8,10] 1.196 0.3778 0.007218 0.6369 1.136 2.096 50000 150001 

sigmaa[9,1] 0.6675 0.26 0.003236 0.2489 0.6357 1.268 50000 150001 

sigmaa[9,2] 0.7618 0.2853 0.003707 0.3106 0.7248 1.424 50000 150001 

sigmaa[9,3] 0.8857 0.3167 0.004242 0.3885 0.8434 1.627 50000 150001 

sigmaa[9,4] 0.9331 0.3216 0.004504 0.4358 0.8877 1.686 50000 150001 

sigmaa[9,5] 1.176 0.3679 0.006376 0.6241 1.119 2.053 50000 150001 

sigmaa[9,6] 1.349 0.4116 0.007764 0.7342 1.285 2.326 50000 150001 

sigmaa[9,7] 1.282 0.3913 0.007132 0.6972 1.222 2.214 50000 150001 

sigmaa[9,8] 1.351 0.4105 0.008031 0.74 1.286 2.328 50000 150001 

sigmaa[9,9] 1.786 0.5572 0.01289 0.9655 1.697 3.116 50000 150001 

sigmaa[9,10] 1.53 0.4784 0.009387 0.8231 1.455 2.674 50000 150001 

sigmaa[10,1] 0.5862 0.2445 0.003029 0.1883 0.557 1.15 50000 150001 

sigmaa[10,2] 0.6733 0.2694 0.003682 0.2441 0.6381 1.297 50000 150001 

sigmaa[10,3] 0.8057 0.3026 0.00439 0.3312 0.7645 1.517 50000 150001 

sigmaa[10,4] 0.7984 0.2973 0.004326 0.3316 0.7574 1.493 50000 150001 

sigmaa[10,5] 1.023 0.3373 0.005591 0.514 0.9733 1.82 50000 150001 

sigmaa[10,6] 1.185 0.3814 0.007257 0.6167 1.126 2.094 50000 150001 

sigmaa[10,7] 1.134 0.3655 0.006918 0.5902 1.075 2.009 50000 150001 

sigmaa[10,8] 1.196 0.3778 0.007218 0.6369 1.136 2.096 50000 150001 

sigmaa[10,9] 1.53 0.4784 0.009387 0.8231 1.455 2.674 50000 150001 

sigmaa[10,10] 1.623 0.5212 0.01205 0.8677 1.535 2.884 50000 150001 

theta[1] -2.423 0.2988 0.01423 -2.972 -2.44 -1.781 50000 150001 

theta[2] -2.511 0.3136 0.01507 -3.068 -2.532 -1.814 50000 150001 

theta[3] -2.646 0.3602 0.01748 -3.305 -2.663 -1.861 50000 150001 

theta[4] -2.649 0.3503 0.01653 -3.287 -2.672 -1.906 50000 150001 

theta[5] -2.797 0.3362 0.01609 -3.415 -2.809 -2.059 50000 150001 

theta[6] -2.866 0.3342 0.01609 -3.483 -2.87 -2.163 50000 150001 

theta[7] -2.705 0.318 0.01514 -3.343 -2.7 -2.095 50000 150001 

theta[8] -2.785 0.3201 0.01527 -3.38 -2.793 -2.143 50000 150001 

theta[9] -3.176 0.371 0.01781 -3.921 -3.188 -2.454 50000 150001 

theta[10] -2.88 0.3569 0.01695 -3.574 -2.859 -2.218 50000 150001 
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Appendix D - Company Alphas 
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