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Chapter 1

Introduction

1.1 Motivation and structure of the thesis

In this thesis new results are given for instrumental variables (IV) regression models, and

a class of sampling methods is introduced and explored. These sampling methods, which

make use of neural network approximations to posterior densities, can quickly simulate

draws from posterior distributions in many models. In this section the relevance of the

research is stressed, and the structure of the thesis is explained.

1.1.1 Instrumental variables

Measuring the effect of education on income, the (monetary) return on education, is a

matter of great importance for several decision processes. For example, the results of such

analysis are relevant for government agencies responsible for compulsory schooling laws,

for school districts considering changes in school entrance policies and also for parents

deciding when to enroll their children to school. However, a problem is that intellectual

capabilities, which are usually not observed, not only influence education but also directly

affect income. Therefore, a simple regression of income on the number of years of education

may lead to incorrect conclusions. For example, smarter students find school less difficult

and may choose to obtain more schooling to signal their high ability. So, even if extra

years of education have no effect on income, people with higher education will on average

have higher incomes because of their higher abilities. Therefore, one may expect that an

ordinary regression of income on the years of education leads to an upward bias, i.e. an
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overestimated effect of education on income.1 Another problem is the measurement error

in reported education. First, usually only the completed number of years of education

is reported. Second, people may misreport their education spell.2 If the measurement

error would be the only problem, one would expect that a simple regression of income on

education would result in a downward bias, i.e. an underestimated effect of education on

income, as the part of the variation in education that is merely due to measurement error

does not lead to variation in income.

A method for solving these problems is the use of instrumental variables; these instru-

mental variables must be correlated with education but uncorrelated with latent capabil-

ities (and measurement errors). Intuitively, in this way one focuses on the direct effect of

education on income, while other effects on income are filtered out. However, it is hard to

find variables that are correlated with education but uncorrelated with intellectual capa-

bilities. Angrist and Krueger (1991) use American data and suggest using quarter of birth

to form instrumental variables. These instruments exploit that students born in different

quarters have different average education. This results since most school districts require

students to have turned age six by a certain date, a so-called ‘birthday cutoff’ which is

typically near the end of the year, in the year they enter school, whereas compulsory

schooling laws compel students to remain at school until their sixteenth, seventeenth or

eighteenth birthday. This asymmetry between school-entry requirements and compulsory

schooling laws compels students born in certain months to attend school longer than stu-

dents born in other months: students born earlier in the year enter school at an older age

and reach the legal dropout age after less education. Hence, for students who leave school

as soon as the schooling laws allow for it, those born in the first quarter have on average

attended school for three quarters less than those born in the fourth quarter.

Angrist and Krueger (1991) use three data sets on men born in three decades, empha-

sizing results for the data set on 329509 men born in the years 1930-1939. This data set

contains the number of completed years of education and the logarithm of weekly earnings

in 1979. Figure 1.1 illustrates the difference between simply regressing income on educa-

tion and using quarter of birth to form an instrumental variable. The left panel shows

1The intellectual capabilities of the persons in the sample may not be the only reason for an over-

estimated effect of education on income. The (often unobserved) intellectual capabilities, income and

education level of their parents may also cause an upward bias, as these characteristics of their parents

may also influence their education level and have a direct effect on their income; for example, it may be

the case that children of more intelligent and higher educated parents on average learn more at home.
2Siegel and Hodge (1968) find that the correlation between individuals’ education reported in two

surveys is only 0.933.
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Figure 1.1: Measuring the effect of education on income: simple regression of (logarithm

of) income on education (left), or using quarter of birth as an instrumental variable (right)

how the effect of education on income is estimated by simple regression. The estimate is

the steepness of the regression line, the line which minimizes the sum of squared (vertical)

deviations of points from this line. For all data of the US this estimate is 0.0709: each

added year of education results on average in a 7.09% increase in income. However, this

method may overestimate or underestimate the effect of education on income because of

latent intellectual capabilities or measurement errors, respectively. The right panel illus-

trates how the effect of schooling on earnings can be estimated using quarter of birth as

an instrument. The average education spell for men born in the first quarter is 12.6881

years, while for men born in other quarters the average education spell is 12.7969. So,

the schooling laws imply that men born in the first quarter on average have 0.1088 years

less education than men born in the other quarters. Further, for men born in the first

quarter the average logarithm of income is 0.0111 (= 5.9027− 5.8916) less than for those

born in other quarters. In other words, men born in the first quarter have on average an

income that is (approximately) 1.11% lower than men born in the other quarters. The

key assumption is now that quarter of birth only influences income because of its effect

on education, so that we may interpret the 1.11% difference in average income as a result

of the difference in average education spell of 0.1088 years: each added year of education

results on average in a 10.20% (= 0.0111/0.1088) increase in income. So, at first sight
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it seems that if any bias exists in the simple regression, then this is a downward bias:

measurement errors in reported years of education may have caused an underestimation

of the return on education. However, in the abovementioned approaches we have only

obtained estimates of the effect of education spell on income, but we have no measure of

the uncertainty on these estimates: we have no lower and upper bounds between which

the effect of education on income lies (with a certain probability). In order to obtain

such a probability interval we must specify a model; this will be done in the sequel of this

section.

First note that if the average education spell is exactly the same for those born in the

first quarter and the others, then the approach using quarter of birth as an instrument does

not work. In that case one can not identify the difference in income per year of education,

as this leads to a division by zero. This illustrates that in instrumental variables models

the problem of local non-identification may occur: if the instrument (quarter of birth)

has no effect on the explanatory variable (education), then one can not identify the effect

of the explanatory variable on the variable that is to be explained (income) using this

instrument. Furthermore, if the average education spell is almost equal for those born in

the first quarter and the others, then there is obviously much uncertainty on the estimated

return on education. For in this case some changes of education and/or income for a few

persons would result in a quite different estimate of the return on education. This kind

of situation in which instruments only explain a small fraction of the variation in (some

of) the explanatory variables, is usually referred to as the case of weak instruments. In

fact, the difference in average education spell of 0.1088 years is small as compared to the

variation in education spells across individuals (with education spells varying between

0 and 20 years, having a standard deviation of 3.28 years), so that the uncertainty on

the estimate of the return on education is obviously much larger in the approach using

quarter of birth as an instrument than in the simple regression. In other words, much

information is lost by merely using the averages of education and income for the two

quarter-of-birth groups; in the extreme case where the average education spell would be

exactly the same for both groups, no information on return on education would be left.

So, although the systematic error (of over- or underestimation) due to latent capabilities

or measurement errors is avoided by using instruments, the weakness of the instruments

may cause probability intervals for the return on education that are so wide that they are

of little practical use.



1.1. MOTIVATION AND STRUCTURE OF THE THESIS 5

Before specifying a model, it should be noted that the main approach of making

inference in this thesis is the Bayesian approach. Only in chapter 5 the results from

Bayesian methods will be compared with results from classical approaches. In the classical

approach probabilities are objective: probability is defined as the fraction of occurrences,

or frequency, when a process is repeated infinitely often. Hence, the classical approach

is also known as the frequentist approach. In the classical framework, testing is based

on comparing the value of a test statistic (that is computed using the observed data)

with the corresponding distribution of the test statistic resulting from an infinitely large

hypothetical data set from a certain ‘true’ data generating process. If the realization of

the test statistic is unlikely for the assumed ‘true’ data generating process, the underlying

hypothesis is rejected. In the classical approach, parameters are considered as unknown

constants that have to be estimated, typically using the method of maximum likelihood.

In the Bayesian approach the parameters of a model are considered as random vari-

ables. The prior density of these parameters, reflecting one’s prior beliefs before observ-

ing data, is updated by the likelihood function, reflecting the information in the data,

resulting in the posterior density. In the Bayesian framework probabilities are subjective:

probability distributions reflect beliefs which may differ between persons. In the Bayesian

framework no assumption is made that one can hypothetically repeat the process of in-

terest infinitely many times.

A possible advantage of Bayesian analysis over classical inference is that it may be

easier to assess the uncertainty of results in the Bayesian framework, especially in small

samples. For example, the distribution of the maximum likelihood estimator depends

on the ‘true’ values of the parameters which are unknown. In the Bayesian framework

one specifies a prior density for the parameters, after which a kernel proportional to the

posterior density is given by the prior multiplied with the likelihood function. If this

kernel corresponds to a proper density function in the sense that it integrates to a finite

number, one can use integration methods in order to evaluate characteristics such as

standard deviations or intervals containing 95% of the probability mass for the posterior

distribution of the parameter(s) of interest.

We now consider a simple, illustrative model for the returns to schooling. First define

Dquarter,i as the following 0/1 variable: Dquarter,i = 1 if person i is born in quarter 2,3 or
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4, and Dquarter,i = 0 if person i is born in quarter 1. The model is as follows:

log wagei = β educationi + εi (1.1)

educationi = π Dquarter,i + vi (1.2)

for i = 1, 2, . . . , T , where log wage, education and Dquarter are taken in deviation from

their means, so that no constant terms occur in (1.1) and (1.2). The parameter β is the

average effect of one extra year of education on income: on average, one more year of

schooling results in an increase of income of 100β %. The parameter π is the difference in

the mean education spell between men born in quarter 2, 3 or 4 and men born in quarter

1. This is the case of exact identification in which there are as many instruments (only

Dquarter) as explanatory endogenous variables (only education). The error terms εi and

vi are assumed to be independent across observations and normally distributed:
(

εi

vi

)
∼ N(0, Σ), Σ =

(
σ11 σ12

σ12 σ22

)
.

We specify the following non-informative prior density kernel of Drèze (1976):

p(β, π, Σ) ∝ |Σ|−h/2 with h > 0. (1.3)

Drèze (1976, 1977) gives the joint posterior kernel of (π, β) and the marginal posterior

kernel of β that follow from the prior specification in (1.3). Figure 1.2 shows the shapes

of the joint posterior kernel of (π, β) and the marginal posterior kernel of β (for the choice

of h = 3) on bounded domains for several data sets: data of all states of the US, data of

the state of New York, and data of the states of Kentucky, Tennessee and Arkansas.

First it should be noted that in this case of exact identification, both the joint posterior

of (π, β) and the marginal posterior of β under the flat prior (1.3) are improper on R2

and R, respectively: the integrals of the joint and marginal posterior density kernel are

infinite. This results since in the joint posterior kernel of (π, β) a nonintegrable asymptote

is present around π = 0. Although improper on R2, the joint posterior of (π, β) can be

made proper by restricting β and/or π to a certain area. In that case it depends on the

data y, x and z, whether the behavior for π = 0 still dominates the analysis. For example,

for data of all states of the US and for data of Kentucky, Tennessee and Arkansas the joint

posterior of (π, β) has a clear peak away from π = 0. This indicates that a sufficiently

large difference in average education spell exists between men born in the first quarter

and the others, so that valuable results on the returns to schooling can be obtained. In

these cases the marginal posterior of β seems to have a bell-shape (with a peak around
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β = 0.10). On the other hand, for data of the state of New York the joint posterior kernel

(π, β) displays a ridge around π = 0. In New York there is no or little difference in average

education spell between the two quarter-of-birth groups, so that the instrumental variable

(IV) approach gives no or little information on returns to schooling. The parameter π

can take values close to 0, and for these values of π the parameter β can take a wide

range of values; this reflects the local non-identification of β for π = 0. This leads to a

marginal posterior of β with fat tails. Notice that the data set of New York even has

somewhat more observations than the data set of Kentucky, Tennessee and Arkansas,

so that it is not the size of the data set that causes the difference in the posterior of

β. The only reason is the huge difference in strength of the quarter-of-birth instrument

between the states. In chapter 5 of this thesis a more advanced model for the returns

to schooling is considered. It allows for differences in average education spell between

all quarters (instead of merely permitting a difference between the first quarter and the

rest). Furthermore, these differences in education between quarters are allowed to differ

between years and states of birth. Also a direct effect of state and year of birth on income is

allowed. This model is also considered by Angrist and Krueger (1991), who conclude that

there is little bias in the ordinary least-squares (OLS) estimate and that, if anything, the

conventional OLS estimate is biased slightly downward. Note that the latter corresponds

with the results from the simple regression and the instrumental variables approach in

the aforementioned simple example. Angrist and Krueger (1991) only apply a classical

method, two-stage least-squares (2SLS), and consider only results for the whole data set of

all states of the US. In chapter 5 of this thesis the research by Angrist and Krueger (1991)

is extended. Results are examined for both classical and Bayesian methods. Furthermore,

it is considered how results vary between subsets of the data corresponding to regions of

the US. We divide the US into four regions that are also used by the US Census Bureau,

the source of the data. The states and numbers of observations in each region are given

by Table 1.1. The strength of the quarter-of-birth instruments greatly differs between the

Census regions; this can be seen from Figure 1.3, which shows for the four Census regions

the marginal posterior of β, the effect of education on income, under a non-informative

prior, the Jeffreys prior.3 The marginal posterior distribution of β for the US under the

Jeffreys prior is almost completely determined by the region South; the difference between

the posterior of β for the US and for the South is small, whereas the 95% posterior density

intervals are relatively large for the other regions. This indicates that the quarter-of-birth

3For the derivation of (an accurate approximation of) the marginal posterior of β under the Jeffreys

prior, the reader is referred to Kleibergen and Zivot (2003).
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Table 1.1: US Census Bureau Regions

Census number of number of

region observations states states (including D.C)

1. Northeast 84484 9 Connecticut, Maine, Massachusetts, New Hampshire, New Jersey,

New York, Pennsylvania, Rhode Island, Vermont.

2. Midwest 102267 12 Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri,

Nebraska, North Dakota, Ohio, South Dakota, Wisconsin.

3. South 114391 17 Alabama, Arkansas, Delaware, D.C., Florida, Georgia, Kentucky,

Louisiana, Maryland, Mississippi, North Carolina, Oklahoma,

South Carolina, Tennessee, Texas, Virginia, West Virginia.

4. West 28367 13 Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana,

Nevada, New Mexico, Oregon, Utah, Washington, Wyoming.

USA 329509 51

instruments are much stronger in the region South than in the other regions.4 This is

illustrated by Figure 1.4, which reflects the results of the multiple F-test in the first stage

regression, the regression of education on dummy variables that are based on the quarter

of birth, for data of one state. The three states with p-value smaller than 0.001, Arkansas,

Kentucky and Tennessee, are neighboring states in the region South. If the effect of the

return on education is different for the other regions, which can not a priori be ruled out

given the large economic differences between these regions, inference using data of the

US is not representative for the average returns on education across the US. One should

therefore be careful when drawing such conclusions.

In chapter 5 the well-known criticism of Bound, Jaeger and Baker (1995) is also con-

sidered. Bound, Jaeger and Baker (1995) have concluded that the interaction between

compulsory school attendance laws and quarter of birth, which is the basis of the models

of Angrist and Krueger (1991), does not give much usable information concerning the

causal effect of education on wages for two main reasons. First, the weakness of the in-

struments may lead to large inconsistencies in the 2SLS estimator even if there is only

a weak relationship between the instruments and the error in the structural equation;

Bound, Jaeger and Baker (1995) mention evidence casting doubt on the assumption that

no such correlation is present. Moreover, Bound, Jaeger and Baker (1995) even report

that differences in family income at time of birth would seem to account for virtually all

of the association between quarter of birth and wages: they argue that the difference in

4It is shown in Hoogerheide, Kleibergen and Van Dijk (2006) that Bayesian analysis using the Jeffreys

prior, similar to the limited information maximum likelihood (LIML) estimator, focusses on the strongest

available instruments.
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Figure 1.3: Marginal posterior of return on education β under Jeffreys prior for US

(solid), Northeast (solid-plusses), Midwest (dashed), South (dash-dot), West (solid with

stars).

Figure 1.4: p-value of multiple F-test in first stage regression, regression of education on

dummy variables that are based on quarter of birth, for data of individual states: p-value

< 0.001: dark grey, p-value < 0.01: grey, p-value < 0.1: light grey.

(AR = Arkansas, AZ = Arizona, GA = Georgia, KS = Kansas, KY = Kentucky, SC =

South Carolina, TN = Tennessee, TX = Texas)
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income between those born in the first quarter and those born during the rest of the year

can almost completely be explained by differences in family income at time of birth and

an intergenerational correlation. Second, the 2SLS estimates reported by Angrist and

Krueger (1991) may suffer from substantial finite sample biases because of the weakness

of the instruments (despite the large sample size).

However, the second problem can be solved by using the Bayesian approach under

the Jeffreys prior instead of the classical 2SLS method; or another alternative to the

2SLS estimator is the limited information maximum likelihood (LIML) estimator which

is approximately median unbiased in this case. Furthermore, it is shown in chapter 5 that

one may still obtain a rather tight posterior for β if one allows for a direct effect of birth

during the first quarter on income. So, it seems that the conclusion of Bound, Jaeger

and Baker (1995) concerning the use of instruments based on the quarter of birth is too

strong, as a model of Angrist and Krueger (1991) (or a slightly modified version) can give

usable information on the causal effect of education on income in (regions of) the US.

The difference between the posteriors for data of New York and data of Kentucky,

Tennessee and Arkansas in Figure 1.2 illustrates that in instrumental variable regression

models the shape of the posterior density may greatly differ between cases of relatively

weak and strong instruments. In chapter 4 of this thesis, it is shown in a systematic

manner how the shapes of posteriors depend on both the strength of the instrumental

variables and the level of endogeneity under two diffuse prior specifications: the flat prior

of Drèze (1976, 1977) and the Jeffreys prior. Bayesian analysis of the instrumental variable

(IV) regression model under the flat prior has the following two peculiar properties. First,

the joint posterior of (π, β) has an asymptote at π = 0, which is nonintegrable in the case

of exact identification. Second, the tail behavior of the marginal posterior of β depends

on the number of instruments in the sense that its tails become thinner when (possibly

irrelevant) instruments are added to the model.5 In the IV regression model, the Jeffreys

prior can be considered as a ‘regularization prior’ in the sense that it ‘remedies’ these two

peculiar properties of the posterior under the flat prior. In chapter 4 of this thesis, the

effect of the Jeffreys prior is examined and illustrated in a systematic way; although the

Jeffreys prior remedies certain peculiar properties, it may still lead to highly non-elliptical

posteriors.

5This result appeared in an informal way in Maddala (1976), commenting on Drèze (1976).
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1.1.2 Neural network sampling methods

Evaluating integrals is a crucial ingredient in Bayesian inference. The reason is that one

starts with a kernel of the joint posterior density of all parameters occurring in the model,

which is obtained by multiplying the prior density kernel with the likelihood function,

whereas one is typically interested in the posterior means and standard deviations of

(some of) the parameters, or in the posterior probability that a parameter lies in a certain

interval. For these purposes one has to integrate the joint posterior density kernel with

respect to all parameters.

The range of models and prior densities for which the integration of the joint posterior

density kernel can be performed analytically is very restricted. In many cases numerical

integration methods are required. Basically there are two numerical approaches: deter-

ministic integration and Monte Carlo integration. Deterministic integration consists of

evaluating the integrand at a set of many fixed points, and approximating the integral by a

weighted average of the function evaluations. Monte Carlo integration is based on the idea

that the posterior mean of a parameter can be approximated by the sample mean of a set

of draws of the parameter from the posterior distribution. At a first glance, deterministic

integration may always seem a better idea than Monte Carlo integration, as no extra un-

certainty (caused by the required random variables) is added to the procedure. However,

in deterministic integration the number of required function evaluations increases expo-

nentially with the dimension of the integration problem k, the number of parameters over

which one has to integrate. Therefore, deterministic integration approaches like quadra-

ture methods become unworkable if k exceeds, say, three. So, in many cases one has to

make use of Monte Carlo integration. However, for many models (and prior densities) it

is impossible to directly draw from the posterior distribution. Then one has to use in-

direct sampling algorithms, for example importance sampling or the Metropolis-Hastings

algorithm.

Importance sampling, due to Hammersley and Handscomb (1964), was introduced in

econometrics and statistics by Kloek and Van Dijk (1978). Roughly speaking, importance

sampling consists of drawing a set of points from a candidate density, also known as

the importance function, and approximating the mean of the (posterior) distribution of

interest by the weighted average of the sampled values, where the weights (adding to one)

are proportional to the ratio of the ‘target’ (posterior) density and the candidate density.

In this way the sample of points drawn from the candidate is ‘corrected’: points in regions

(of the parameter space) where the candidate is low and the posterior is high get high



1.1. MOTIVATION AND STRUCTURE OF THE THESIS 13

weights, whereas points in regions where the target (posterior) density is neglectable, get

neglectable weights and are practically deleted from the sample.

The Metropolis-Hastings (MH) algorithm is a Markov chain Monte Carlo (MCMC)

approach that has been introduced by Metropolis et al. (1953) and generalized by Hastings

(1970). Markov chain Monte Carlo methods construct a Markov chain converging to a

target distribution, in our case the posterior distribution of interest. After a burn-in

period, which is required to make the influence of initial values negligible, draws from

the Markov chain are considered as (correlated) draws from the target distribution itself.

In the independence chain MH algorithm a candidate draw is sampled independently

from the current state. The candidate draw is either accepted in which case the next

state in the Markov chain is the candidate draw, or rejected in which case the next state

in the Markov chain is the same as the current state.6 In this way the sample of points

drawn from the candidate density is ‘corrected’: points in regions (of the parameter space)

where the candidate density is low and the (posterior) target density is high, are repeated

several times in the Markov chain (as they are accepted themselves after which several

other candidate draws are rejected). On the other hand, points in regions where the

posterior is neglegible are always rejected: these points are removed from the sample.

In a ‘standard’ case of importance sampling or the independence chain MH algorithm,

the candidate distribution is unimodal; a common choice is a normal or Student-t distri-

bution. This ‘standard’ approach works well for (nearly) elliptical target distributions,

unimodal distributions that are ‘close’ to the normal or Student-t distribution, for which

in the two-dimensional case the lines in a contour plot, consisting of points for which the

target density is equal, are (almost) ellipses. However, if the target (posterior) distribu-

tion is very different from the normal or Student-t distribution, the convergence behavior

of these ‘standard’ Monte Carlo integration methods is rather uncertain. For example,

consider the joint posterior of π and β for data of New York in Figure 1.2 (where β is

restricted to lie in the interval [-2,2]; without restricting the domain of β (and/or π) the

integral of the joint posterior kernel is infinite).7 If we now use a tight normal distribution

around the posterior mode (at π ≈ 0.03, β ≈ −0.1) as the candidate distribution in IS or

6The probability that the candidate draw is accepted depends on the ratio of the target density and

the candidate density. If this ratio is larger at the candidate draw than at the current state, then the

candidate draw is always accepted. Otherwise, the probability is given by the ratio of these ratios.
7It should be noted that in this case one can analytically integrate with respect to π. Furthermore,

deterministic integration would be preferable to Monte Carlo integration in this 2-dimensional case.

However, as indicated above, these methods are in general impossible (or too slow) in higher dimensions,

so that a sampling method such as IS or MH is required.
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the MH algorithm, then parts of the ridge around π = 0 with (in absolute sense) large

values of β may be missed. In that case the uncertainty on β, the effect of education on

income, is underestimated. Then IS or the MH method yields an estimate of the 95%

posterior density interval of β that is far too tight, so that there is a large probability

that this interval does not contain the true effect of education on income. In other words,

the specification of a poor candidate density may lead to the incorrect conclusion that

there is much information on the returns on education present in the data of New York,

even though these data contain hardly any information on the causal effect of schooling

on income. Of course, one could solve this problem by increasing the scale of the normal

candidate distribution: if one chooses a large enough standard deviation for β, one also

samples (in absolute sense) large β values. However, increasing the scale of the normal

candidate distribution would imply that many points are drawn in areas with negligible

posterior probability mass; for example, in our case such regions are the areas around the

points (π, β) = (0.05, 1) and (π, β) = (0.05,−1). Further, (relatively too) few points are

drawn close to the mode; these points therefore get huge IS weights. These disadvantages

imply that either conclusions are unreliable or at least many draws are required, when

using a normal or Student-t candidate distribution in the case of highly non-elliptically

shaped posteriors. In the latter case enormous amounts of computing time may be re-

quired, especially in certain high-dimensional highly non-elliptical distributions, even on

a modern computer. This may be a problem in many situations, especially in certain

financial applications where computations should be ‘real time’, as quick decisions are

often required. For example, when deciding whether or not to adjust a portfolio on the

basis of a Bayesian analysis of a complex non-linear model, a difference in computing time

between 15 minutes and 2 hours may be very relevant. So, for highly non-elliptical target

distributions one mostly needs to look for a more appropriate candidate distribution than

a normal or Student-t distribution in IS or the MH algorithm (or for a different Monte

Carlo integration method). Geweke (1989) stresses that in general for quick convergence

of the sampling results the candidate density should be ‘close’ to the target density, and

that it is important that the tails of the candidate distribution should not be thinner than

those of the target.

One alternative to a ‘standard’ IS or MH approach is the class of methods proposed by

Bauwens et al. (2004), adaptive radial-based direction sampling (ARDS) methods, where

sampling does not take place in the k-dimensional parameter space directly, but in an

(k − 1)-dimensional subspace of directions. The kth dimension, a distance measure, is

drawn from the target distribution itself (conditional on the directions). In this way the
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shape of the posterior density is perfectly taken into account along the sampled directions.

A disadvantage of the ARDS methods is that evaluations of the target density kernel are

required for a grid of points on a line along each sampled direction.

Geweke (1989) proposes a class of split normal or split Student-t distributions: loosely

speaking, these are adapted versions of normal or Student-t distributions where (after

a normalization of mean and covariance) a different ‘standard deviation’ is allowed for

positive or negative values of each variable. So, for a k-variate split normal density one

needs to specify 2k ‘standard deviations’. Disadvantages of the split normal and split

Student-t distribution are that these are necessarily unimodal, and that certain types of

shapes involving ridges like the one in the posterior for data of New York in Figure 1.2

can not be well approximated by a split normal or split Student-t distribution.

In chapters 2 and 3 of this thesis, methods are proposed in which neural network func-

tions are used as candidate densities. In fact, the main type of neural network function

that is considered in this thesis, is another ‘adapted version of the Student-t density’: a

mixture, or convex combination, of Student-t densities. Like the split Student-t distri-

bution of Geweke (1989), a mixture of Student-t distributions can provide a candidate

density with substantial skewness (and high kurtosis). Furthermore, it can deal with mul-

timodality and with non-elliptical shapes due to asymptotes like the ridge around π = 0

in the posterior of (π, β) in Figure 1.2 for data of New York.

Mixtures of Student-t densities are natural candidate densities for several reasons.

First, they can provide an accurate approximation to a wide variety of target densities.8

Second, this approximation can be constructed by a quick, iterative procedure that is pro-

posed in chapter 2 of this thesis. Third, a mixture of Student-t densities is easy to sample

from. Fourth, the Student-t distribution has fatter tails than the normal distribution;

especially if one specifies Student-t distributions with few degrees of freedom, the risk is

small that the tails of the candidate are thinner than those of the target distribution.

Although the mixture of t densities can be considered as a feed-forward neural network

function, one could still ask why the term ‘neural network sampling methods’ is used

throughout this thesis instead of ‘mixture sampling methods’. There are basically two

reasons for this. First, this stresses that the approximation capabilities are a key property

of the mixture of t densities; for it is well-known that several types of neural network

functions have a ‘universal approximation property’. Second, the mixture of t densities

8Zeevi and Meir (1997) show that under certain conditions any density function may be approximated

to arbitrary accuracy by a convex combination of ‘basis’ densities; the mixture of Student t densities falls

within their framework.
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is not the only type of neural network function that is proposed as a candidate density

in (chapter 2 of) this thesis. Two other types of neural networks are considered: the

exponent of a linear combination of piecewise linear functions, and a linear combination

of arctangents (of linear combinations of inputs). However, as is shown in an example

in chapter 2, the sampling methods using these two types of networks are considerably

slower than the methods based on a mixture of t densities. On the other hand, it should

be noted that the latter network, the linear combination of arctangents, has a special

property. The arctangent function can be analytically integrated infinitely many times;

in chapter 2 formulas are derived for the integrals of the arctangent function. Using these

formulas one can analytically evaluate the marginal densities and the moments of a set of

random variables of which the density is given by the arctangent-based neural network.

Therefore, if one has obtained an arctangent-based network that gives an (almost) perfect

approximation to a target density, then one can compute the marginal target densities

and moments of the target distribution without requiring any sampling. The formulas for

the integrals of the arctangent, that are derived in chapter 2, may also be useful in other

applications, for example for the evaluation of derivatives in finance.

In order to illustrate the approximation capabilities of mixtures of t densities, we now

consider an example of a highly non-elliptical posterior distribution. Consider the fol-

lowing static 2-regime mixture model in which the variable yt, the (percentage) quarterly

growth rate of the real gross national product (GNP) in the US, has two different mean

levels:

yt =

{
β1 + εt with probability p

β2 + εt with probability 1 − p
, t = 1, 2, . . . , T, (1.4)

where εt (t = 1, 2, . . . , T ) are independent, normally distributed error terms εt ∼ N(0, σ2),

and where the (non-informative) prior density kernel is specified as 1/σ. For identification

it is assumed that β1 < β2, so that β1 and β2 can be interpreted as the mean growth rates

during recessions and expansions, respectively. The parameter p is interpreted as the

probability of a recession; the probability of an expansion is 1 − p.

Figure 1.5 shows the shape of a (conditional) highest posterior density (HPD) credible

set for (β1, β2, p) where σ2 is fixed at its posterior mode; this HPD credible set con-

tains points (β1, β2, p) for which the posterior density (for quarterly data of the period

1959-2001, shown in Figure 3.2) is higher than at any point outside the set. Like in the

instrumental variables regression model, the phenomenon of local non-identification can

also be found in this model; again this results in a highly non-elliptical posterior distri-

bution, as can be seen in Figure 1.5. If p = 0 then β1 is not identified. Intuitively, this
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Figure 1.5: Highest posterior density (HPD) credible set (left) and ‘highest candidate

density’ set (right) for a candidate mixture of 5 Student t distributions for parameters

(β1, β2, p) in 2-regime mixture model for US real GNP growth rate (conditional on σ =

0.79, the value of σ at the posterior mode of (β1, β2, σ, p))

reflects that if a recession never occurs, then one cannot identify the mean growth rate

during a recession. In a similar fashion, if p = 1 then β2 is not identified. For p ≈ 0 a

wide range of values of β1 is possible. This reflects that if a recession occurs only rarely,

so that one has only few observations on recessions, then there is much uncertainty about

the mean growth rate during recessions. In a similar fashion, for p ≈ 1 a wide range of

values of β2 is possible.

The shape of a ‘highest candidate density’ set in Figure 1.5, containing points for

which the (mixture of t) candidate density is higher than at any point outside the set,

now illustrates the ability of mixtures of t densities to provide reasonable approximations

to a wide variety of densities. For the shape of the ‘highest candidate density’ set is similar

to that of the HPD credible set. The candidate distribution in Figure 1.5 is a mixture

of 5 Student-t distributions. Actually, a mixture of 3 Student-t distributions can already

provide a reasonable approximation to the shape of the posterior distribution. This can

be seen in Figure 1.6, which illustrates the iterative procedure by which a (mixture of t)

candidate distribution is constructed. The procedure starts with a Student-t distribution

around the posterior mode. After that, Student-t distributions are iteratively added to the

mixture. Each new Student-t distribution is located in an area where the current candidate
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Figure 1.6: ‘highest candidate density’ sets for a candidate Student-t distribution around

the posterior mode (left), a candidate mixture of 2 Student-t distributions (middle), and a

candidate mixture of 3 Student-t distributions (right) for parameters (β1, β2, p) in 2-regime

mixture model for US real GNP growth rate (conditional on σ = 0.79, the value of σ at

the posterior mode of (β1, β2, σ, p))

density, that has been obtained in the previous step of the algorithm, is too low in the

sense that the ratio of the target density and the current candidate density is relatively

very high. The iterative method, which starts with a Student-t distribution around the

posterior mode, implies that the class of mixtures of t densities is not only useful in

extreme cases of highly non-elliptically target (posterior) distributions. If the target is

somewhat closer to a normal distribution, then the algorithm may quickly terminate at

a mixture of only 2 or 3 Student-t components, which may still provide a substantial

improvement over a simple Student-t candidate distribution in IS or the MH procedure.

More (technical) details of the iterative construction procedure are given in chapters 2

and 3.

The use of a neural network function, such as a mixture of t densities, as a candidate

density can be seen as an investment of computing time, required for the construction of

the neural network approximation to the target density, in the quality of the candidate

density. This higher quality of the candidate implies a quicker convergence of sampling

results and more reliability that no areas with posterior probability mass are ‘missed’.

This implies that neural network sampling methods are especially useful if one desires

very precise estimates of characteristics of the posterior and/or if the posterior is highly

non-elliptical. In chapter 3 this result is illustrated, and improvements of (technical details

of) the procedure are given which make it even quicker and more reliable.
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Figure 1.7: Overlap of the three main areas in which the research discussed in this thesis

is performed

1.1.3 Structure of the thesis

The research discussed in this thesis concerns areas that can roughly be described by three

keywords: neural networks, sampling methods and instrumental variables (IV) regression

models. The highly non-elliptical shapes that may occur in posterior distributions in the

IV regression model, and the possible usefulness of neural network sampling methods in

such cases, explain the overlap of neural networks, sampling methods and IV models as

depicted in Figure 1.7.

Chapters 4 and 5 on instrumental variables constitute part II of this thesis. In part

II several methods for making inference in instrumental variable regression models are

considered and compared in several situations. In part I, consisting of chapters 2 and 3

on neural network sampling methods, the focus is completely different: the (posterior)

distribution of interest is treated as given, and the target is to sample from it efficiently,

in the sense of yielding reliable results as fast as possible. Hence, the division of this thesis

into Part I and Part II.
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1.2 Contributions of the thesis

The contributions of this thesis consist of four types of results:

1. A theoretically perfect candidate density. A class of neural network functions is

introduced that can approximate a wide variety of density functions, and that are

easy to sample from (when considered as density functions).

It should be mentioned that two well-known characteristics of neural networks, that

are often seen as disadvantages, are as follows. First, a neural network is a ‘black

box’ in the sense that the working is not completely clear: the values of individual

parameters/weights in the network have no straightforward interpretation. Sec-

ond, neural networks may suffer from ‘overfitting’, the situation where not only the

structural process is captured, but also random noise is ‘fitted’. However, in our

case these two properties are no disadvantages, as only a good approximation to a

target density is required, no interpretation of the neural network parameters is de-

sired; and the data used in the learning process consist of (target density) function

evaluations without random noise.

2. An operational procedure for the construction of a useful candidate density, a good

approximation to a (possibly highly non-elliptical) target density, in practice. A quick

and reliable algorithm is proposed that constructs a useful candidate distribution, a

mixture of t distributions that gives a good approximation to the target distribution

for a wide variety of target distributions.

3. A systematic analysis of the posterior of the parameters in the instrumental variables

(IV) regression model under several diffuse prior specifications. It is shown how the

shapes of the posterior distribution depend on instrument strength and the level

of endogeneity for several prior specifications. It is illustrated that, although the

Jeffreys prior remedies certain peculiar properties that occur under the flat prior,

it may still lead to highly non-elliptical posteriors. Further, the hierarchical prior

of Chamberlain and Imbens (1996), which also remedies certain peculiar properties

that occur under the flat prior, is briefly discussed and compared with the Jeffreys

prior. The approach of Chamberlain and Imbens (1996) requires the ‘tuning’ of a

prior variance. The sensitivity of posterior results to the choice of this prior variance

clearly suggests that the use of the Jeffreys prior is preferable in most situations.
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4. New empirical results on the (monetary) returns to education:

– It is shown that the results on returns to education for the USA of Angrist and

Krueger (1991) are completely determined by the region South. If the effect

of the return on education is different for the other regions, which can not a

priori be ruled out given the large economic differences between these regions,

inference using data of the US is not representative for the average returns on

education across the US. One should therefore be careful when drawing such

conclusions.

– Bound, Jaeger and Baker (1995) have concluded that the models of Angrist

and Krueger (1991) do not give much usable information concerning the causal

effect of education on wages. It is shown that this conclusion of Bound, Jaeger

and Baker (1995) is too strong, as a model of Angrist and Krueger (1991) (or

a slightly modified version) can give usable information on the causal effect of

education on income in (regions of) the US.

– It is shown that quarter of birth is a stronger instrument for education for

people with at most 8 or at least 14 years of education than for people with

9-13 years of education. This suggests that quarter of birth does not only affect

the number of completed years of schooling for those who leave school as soon

as the law allows for it, which is suggested by Angrist and Krueger (1991), as

these persons are (mostly) contained in the group with 9-13 years of education.

Therefore, if one intends to increase the understanding of the working of the

quarter-of-birth instruments, it is a better idea to focus on differences between

states in school entry requirements and/or compulsory schooling laws for chil-

dren of age 5-7 than to concentrate on the differences in compulsory schooling

laws for students of age 16-18.

1.3 Outline of the thesis

The outline of this thesis is as follows. In Chapters 2 and 3 it is investigated how a

neural network can be used as an importance function in importance sampling or as a

candidate density in the Metropolis-Hastings algorithm. Neural networks are natural

candidate densities as they can approximate a great variety of functions, and can be

specified in such a way that they are easy to sample from, for example as the mixture of t

densities mentioned above. In Chapter 2 three types of neural networks and the sampling
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methods based on these networks are considered and the performance of these methods is

examined in some simple examples. One of the methods that are introduced in Chapter

2 is the AdMit (Adaptive Mixture of t) method, in which a mixture of t distributions

approximating the target posterior distribution is first iteratively constructed and then

used as the candidate distribution. Chapter 2 is based on Hoogerheide, Kaashoek and

Van Dijk (2003a, 2003b, 2004, 2006). In Chapter 3 some improvements of the AdMit

method are discussed, and it is applied to the aforementioned posterior distribution in

a switching model for the US real GNP. Further, it is illustrated that neural network

sampling methods can be especially useful when high precision estimates of posterior

characteristics of interest are desired. Chapter 3 is based on Hoogerheide and Van Dijk

(2006a).

It should be noted that the applications of neural network sampling methods to IV

regression models in Chapters 2 and 3 are mainly for illustrative purposes, that is, to show

how the methods can deal with ‘extreme’ distributions (e.g. with two modes that are far

apart). So, the focus is on illustrating the (capabilities of the) sampling methods, not on

whether the non-standard characteristics of the posterior distribution could (or should)

be circumvented by choosing a different, ‘better’ model or prior distribution. In other

words, in Chapters 2 and 3 the (posterior) distribution of interest is treated as given, and

the target is to sample from it efficiently, in the sense of yielding reliable results as fast

as possible. In Chapters 4 and 5 the focus is completely different: different methods of

performing inference in IV regression models are considered.

In Chapter 4 shapes of posterior distributions in IV regression models are considered

for several prior distributions, the flat prior and the Jeffreys prior (for different levels of

endogeneity and strength of instruments). Further, a hierarchical prior is briefly discussed

and compared with the Jeffreys prior. Chapter 4 is based on Hoogerheide, Kaashoek and

Van Dijk (2004, 2006).

In Chapter 5 one of the instrumental variable regression models of Angrist and Krueger

(1991) is examined. The differences are considered between the results for data concerning

different regions of the US. It also gives a closer examination of some of the assumptions

made by Angrist and Krueger (1991). Chapter 5 is based on Hoogerheide, Kleibergen

and Van Dijk (2006) and Hoogerheide and Van Dijk (2006b).

In Chapter 6 a summary is given of the main findings in this thesis, and topics for

further research are discussed.
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Chapter 2

Neural networks as candidate

densities in importance sampling or

the Metropolis-Hastings algorithm

Chapter 2 is based on Hoogerheide, Kaashoek and Van Dijk (2003a, 2003b, 2004, 2006).

2.1 Introduction

Econometric models may be described by the joint probability distribution, known upto

a parameter vector θ, of y = {y1, . . . , yN}, the set of N available observations on the

endogenous variable yi, where yi may be a vector itself. There are two ways of performing

inference on an econometric model: classical and Bayesian inference. In the classical

approach the parameters θ are considered as unknown constants that have to be estimated,

typically by maximizing the likelihood function L(θ) = p(y|θ), the probability density of

the data y given a particular value of θ. Bayesian inference proceeds from the likelihood

L(θ) and a prior density p(θ) reflecting prior beliefs on the parameters before the data

set has been observed. So, in the Bayesian approach the parameters θ are considered as

random variables of which the prior density p(θ) is updated by the information contained

in the data, incorporated in the likelihood function L(θ), to obtain the posterior density

p(θ|y). This process is formalized by Bayes’ theorem:1

p(θ|y) =
p(θ)p(y|θ)

p(y)
, (2.1)

1Note that this is merely a result of rewriting the identity p(y)p(θ|y) = p(θ)p(y|θ), the two ways of

decomposing the joint density p(y, θ) into a marginal and a conditional.
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which can be rewritten as:

p(θ|y) ∝ p(θ)p(y|θ), (2.2)

where the symbol ∝ means “is proportional to”, i.e. the left-hand side is equal to the right-

hand side times a scaling constant (1/p(y) = 1/
∫

p(θ)p(y|θ)dθ) that does not depend on

the parameters θ.

Typically one is interested in the posterior moments of (and correlations between) the

elements of θ, and in the probability that θ belongs to a region D of the parameter space.

These characteristics of interest can be expressed as the expectation of a function g(θ)

under the posterior:

E[g(θ)|y] =

∫
g(θ) p(θ|y)dθ =

∫
g(θ)p(θ)p(y|θ)dθ∫

p(θ)p(y|θ)dθ
. (2.3)

From (2.3) it is clear that evaluating integrals is a crucial ingredient in Bayesian inference.

The range of models and prior densities for which the integration in (2.3) can be performed

analytically is very restricted. In many cases numerical integration methods are required.

Basically there are two numerical approaces: deterministic integration and Monte Carlo

integration. Deterministic integration consists of evaluating the integrand at a set of

many fixed points, and approximating the integral by a weighted average of the function

evaluations. Monte Carlo integration is based on the idea that E[g(θ)|y], the mean of g(θ)

under the posterior, can be approximated by its ‘sample counterpart’, the sample mean
1
n

∑n
i=1 g(θi), where θ1, . . . , θn are drawn from the posterior distribution.

At a first glance, deterministic integration may always seem a better idea than Monte

Carlo integration, as no extra uncertainty (caused by the required random variables) is

added to the procedure. However, in deterministic integration the number of required

function evaluations increases exponentially with the dimension of the integration prob-

lem, which is in our case (2.3) the dimension k of the vector θ. Therefore, deterministic

integration approaches like quadrature methods become unworkable if k exceeds, say,

three. So, in many cases one has to make use of Monte Carlo integration.2 However, only

for a very limited set of models and prior densities it is possible to directly draw random

variables from the posterior distribution. Then one may use indirect sampling algorithms,

for example importance sampling or the Metropolis-Hastings algorithm.

Importance sampling, due to Hammersley and Handscomb (1964), was introduced in

econometrics and statistics by Kloek and Van Dijk (1978). Roughly speaking, importance

2In models with latent variables, the likelihood is itself an integral; if this integral can not be evaluated

analytically, one may need Monte Carlo integration in classical inference in these models.
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sampling consists of drawing a set θ1, . . . , θn from a candidate density q(θ), also known

as the importance function, and approximating E[g(θ)|y] by the weighted average of

g(θ1), . . . , g(θn) with weights (adding to one and) proportional to w(θi) with w(θ) ≡
p(θ|y)/q(θ), where p(θ|y) may be the kernel L(θ)p(θ) of the posterior density; it does not

have to be the posterior density itself:

ĝIS =

∑n
i=1 g(θi)w(θi)∑n

i=1 w(θi)
. (2.4)

Importance sampling is based on the relationship:

E[g(θ)|y] =

∫
g(θ)p(θ|y)dθ∫

p(θ|y)dθ
=

∫
g(θ)w(θ)q(θ)dθ∫

w(θ)q(θ)dθ
=

E[g(θ̃)w(θ̃)]

E[w(θ̃)]
, (2.5)

where θ̃ is a random variable with density q(.), the candidate density. Under certain

conditions ĝIS in (2.4) is a consistent estimator of E[g(θ)|y] in (2.5).

The Metropolis-Hastings (MH) algorithm is a Markov chain Monte Carlo (MCMC)

approach that has been introduced by Metropolis et al. (1953) and generalized by Hastings

(1970). Markov chain Monte Carlo methods construct a Markov chain converging to a

target distribution, in our case the posterior distribution of interest. After a burn-in

period, which is required to make the influence of initial values negligible, draws from the

Markov chain are considered as (correlated) draws from the target distribution itself.

In the MH algorithm a Markov chain of length n is constructed by the following

procedure. First, one chooses a feasible initial state θ0. Then one repeats the following

steps n times (for i = 1, . . . , n). A candidate value θ̃i is drawn from the candidate

transition density q(θi−1, .) = q(.|θi−1), and a random variable U is drawn from the uniform

distribution U(0, 1). Then the acceptance probability (or transition probability)

α(θi−1, θ̃i) ≡ min

{
p(θ̃i|y)q(θ̃i, θi−1)

p(θi−1|y)q(θi−1, θ̃i)
, 1

}
(2.6)

is computed. If U < α(θi−1, θ̃i) then the transition to the candidate value is accepted:

θi = θ̃i. Otherwise the transition is rejected, and the next state is again θi−1, that is

θi = θi−1.

The candidate transition density q can be specified in several ways. For two com-

mon specifications the MH algorithm yields an independence chain or a random walk

chain. In the independence chain MH algorithm the candidate θ̃i is drawn independently

from the current state θi−1; the candidate density is the same for each i = 1, . . . , n:
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q(θi−1, θ̃i) = q(θ̃i). In this case the acceptance probability is given by α(θi−1, θ̃i) =

min{w(θ̃i)/w(θi−1), 1}, where the occurrence of the importance weights w(θ) ≡ p(θ|y)/q(θ)

shows a link between the independence chain MH algorithm and importance sampling.

In the random walk MH algorithm the candidate transition step θ̃i − θi−1 is drawn

instead of the candidate state θ̃i: q(θi−1, θ̃i) = q(θ̃i − θi−1). A common choice for the dis-

tribution of the candidate step is a normal or Student-t distribution with mode 0. For a

more elaborate overview of numerical integration methods, both deterministic and Monte

Carlo integration methods, the reader is referred to Van Oest (2005). An overview of

Monte Carlo integration methods can also be found in Hoogerheide, Van Dijk and Van

Oest (2006). Extensive discussions on solely deterministic integration methods are given

by Stoer and Bulirsch (1993) and Cheney and Kincaid (1994).

For both importance sampling and the independence chain MH algorithm it holds that

the candidate density should be ‘close’ to the target density, and it is especially important

that the tails of the candidate should not be thinner than those of the target.

For importance sampling, Geweke (1989) shows that the optimal importance density

for estimating E[g(θ)|y] has kernel |g(θ)−E[g(θ)|y]| p(θ|y), where optimal means having

the minimal (asymptotically valid) variance. However, this result is of limited practical

relevance for three reasons. First, one would need to obtain a preliminary estimate of

E[g(θ)|y] using a different, less efficient method. Second, a different importance function

(and a corresponding set of draws) would be required for each different characteristic of

interest E[g(θ)|y]. Finally, a method for sampling from this optimal importance density

would have to be devised. On the other hand, the expression for the optimal importance

density does imply that an importance density with tails thicker than the posterior density

might be more efficient than the posterior density itself, as the tails of the density with

kernel |g(θ) − E[g(θ)|y]| p(θ|y) decay slower than the tails of p(θ|y).

Although the optimal importance density depends on both the posterior density and

the characteristic of interest, it is impractical to choose a different importance density

for each characteristic of interest; Geweke(1989) suggests that when considering a class

of possible importance densities q(θ̃) it is a reasonable objective to choose the one that

minimizes E[w(θ̃)2] ∝
∫

p(θ̃|y)2/q(θ̃)dθ̃.

In a ‘standard’ case of importance sampling or the independence chain MH algorithm,

the candidate is unimodal; a common choice is a normal or Student-t distribution. If the

target (posterior) distribution is bimodal then a second mode may be completely missed
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in the MH approach and some draws may have huge weights in importance sampling. So,

for certain non-elliptical target distributions the convergence behavior of these ‘standard’

Monte Carlo integration methods is rather uncertain. In these cases one needs to look for

either different Monte Carlo integration methods or a more appropriate candidate density

than a normal or Student-t distribution.

One such alternative to a ‘standard’ importance sampling or MH approach is the class

of methods proposed by Bauwens et al. (2004), adaptive radial-based direction sampling

(ARDS) methods, where sampling does not take place in the k-dimensional parameter

space directly, but in an (k − 1)-dimensional subspace of directions. The kth dimension,

a distance measure, is drawn from the target distribution itself (conditional on the direc-

tions). In this way the shape of the posterior density is perfectly taken into account along

the sampled directions.

Geweke (1989) proposes a class of split normal or split Student-t distributions: loosely

speaking, these are adapted versions of normal or Student-t distributions where (after

a normalization of mean and covariance) a different ‘standard deviation’ is allowed for

positive or negative values of each variable. So, for a k-variate split normal density one

needs to choose 2k ‘standard deviations’ for the k elements of θ.

In this chapter we propose methods in which neural network functions are used as

candidate densities. In fact, one of the proposed types of neural networks is another

‘adapted version of the Student-t density’: a mixture of Student-t densities. Like the split

Student-t distribution of Geweke (1989) a mixture of Student-t distributions can provide

a candidate density with skewness (and high kurtosis); furthermore, it can deal with

multimodality. This is exactly why neural networks are natural candidate densities; they

have a ‘universal approximation’ property, which means that neural network functions

can approximate a great variety of ‘non-standard’ density functions. Moreover, neural

networks can be specified in such a way that they are easy to sample from.

Section 2.2 gives a short overview of neural networks in general. Section 2.3 describes

three types of neural networks that are easy to sample from, and ways to construct neural

network approximations to a target density. In section 2.4 the performance of these neural

networks is compared in a simple example. In section 2.5 some neural network sampling

methods are applied to an illustrative example, in which their performance is compared

with other algorithms such as importance sampling using a Student-t candidate, a random

walk Metropolis-Hastings algorithm and Gibbs sampling. Section 2.6 contains concluding

remarks.
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2.2 Neural networks

2.2.1 What is a neural network?

An obvious, simple question one could ask is “what is a neural network?”. However,

although this is a clear, simple question, it is not so easy to give an answer about which

every researcher would agree, as there exists no precise definition that is generally accepted

among researchers. A reason for this is that the field of neural networks has evolved

independently in and among many sciences such as neurobiology, mathematics, computer

science and psychology.3

First of all, it should be noted that neural networks are either biological or artifi-

cial neural networks; a biological neural network is a system of physically interconnected

neurons such as the (human) brain, while an artificial neural network (ANN) is a math-

ematical model or artificially created (computer) system that is merely inspired by the

working of the human brain. In the human brain, a neuron (i.e. a cell in the nervous

system) collects signals from others through a system of fine structures called ‘dendrites’.

When a neuron receives sufficiently large input, it sends a spike of activity down a long,

thin cable-like part called the ‘axon’. Neurons have only one axon, but this axon may

undergo extensive branching, enabling communication with many target cells. At the

end of each branch a structure called ‘synapse’ transforms the signal from the axon into

effects that may cause activity in a connected neuron. Whether or not a neuron sends a

signal to connected neurons depends on whether the sum of these effects coming from the

synapse goes above a certain threshold (which differs between neurons); this principle is

called ‘neural summation’. Learning occurs by changing the effectiveness of the synapses

so that the influence of neurons on each other changes.

Biological neurons communicate with multiple types of signals, both chemical and

electrical; moreover, their electrical output usually consists of complex sequences of spikes

instead of a simple potential. It should also be noted that the knowledge about the working

of neurons is still incomplete. Therefore artificial neural networks are necessarily (gross)

simplifications of biological neural networks.

3One consequence is that entering ‘define:Neural network’ at www.google.com yields 20 neural network

definitions; between some of these definitions there are huge differences: for example, in different defini-

tions a neural network is said to be an ‘interconnected group of neurons’,‘method for optimizing’, ‘member

of a class of software’, or ‘modeling technique’. One of these definitions comes from the Wikipedia site

en.wikipedia.org/wiki/Neural network where also much information about several specific types of

neural networks can be found.
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In this thesis only artificial neural networks will be considered. However, also for

artificial neural networks there is no generally accepted definition, as will be discussed

below. In the literature the ‘artificial’ is often dropped as it is mostly perfectly clear from

the context whether or not one refers to artificial neural networks. Throughout the rest

of this thesis this convention is followed: the term ‘neural network’ is used, and always

denotes an artificial neural network.

Stergiou and Siganos (1996) give a definition of an (artificial) neural network as an

information processing paradigm that is inspired by the way biological nervous systems

(such as the brain) process information, in the sense that it consists of a number of

interconnected processing elements working together to solve specific problems, and in

the sense that it ‘learns by example’: each neural network is configured for a specific

application through a ‘learning process’.

The Defense Advanced Research Projects Agency (DARPA) Neural Network Study

(1988) gives the following definition of a neural network: “a neural network is a system

composed of many simple processing elements operating in parallel whose function is

determined by network structure, connection strength, and the processing performed at

computing elements or nodes.”

The first definition nicely summarizes some of the typical neural network character-

istics in a sentence. The latter definition tells some of the ‘building blocks’ that make

up a neural network. The latter approach is extended by Fiesler (1994) who elaborately

discusses the ‘ingredients’ that generally make up a neural network, resulting in a broad

neural network definition, broad enough to encompass both simple biological neural net-

works, and essentially all artificial neural networks. Fiesler gives a definition of a neural

network as a set of 4 characteristics:

1. topology. The topology concerns the frame(work) and the interconnection struc-

ture of the neural network. The frame(work) is defined by the number of clusters

(i.e. groups of neurons, the elements of the network, into which the network may be

divided), and the number of neurons in each cluster. The interconnection structure

is the set of relations between neurons: this does not only define which neurons

are connected, but also whether connections are symmetric (i.e. bidirectional, hav-

ing the same weight/interconnection strenght in either direction) or asymmetric

(i.e. unidirectional, where the weight is only used for propagation in one direction),

and whether the clusters of the network are ‘slabs’ (clusters that have a similar

function or hierarchical level) or ‘layers’ (clusters that have a natural ordering).
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Another neural network characteristic that is part of the interconnection structure

is the ‘order’ of connections. A high(er) order connection combines inputs of several

neurons by another way than (weighted) summation, usually by multiplication;

the number of inputs that is combined in a non-linear way is the ‘order’ of the

connection. The order of a neural network is the highest order of the connections

in it. Most (traditional) neural networks are first order neural networks, i.e. neural

networks in which any non-linearity only occurs by means of application of a non-

linear (activation) function to the weighted sum of inputs in the neuron.4 Moreover,

it should be noted that because of the principle of ‘neural summation’ in biological

neural networks, by which artificial neural networks are inspired, one could argue

that a high(er) order network does not really belong to the class of neural networks.

2. constraints. The constraints define the value ranges for the weights of the connec-

tions, and the thresholds and activation values of the neurons: for example, one may

want to restrict (certain) weights to lie within a certain interval or set of integers.

3. initial state. The initial state is the set of initial values for weights, thresholds,

and (input neuron) activations. These are the values before the ‘learning process’

has started.

4. transition functions. There are four types of transition functions:

(i) activation functions (also known as neuron functions or transfer functions),

which specify the output of a neuron given its inputs;

(ii) learning rules, defining how weights (and thresholds) will be updated during

the learning process;

(iii) clamping functions, determining if and when certain neurons retain their present

activation value during the learning process;

(iv) ontogenic functions, specifying changes in the neural network topology.

The types of functions (i) and (ii) occur in almost all neural networks, while the

types (iii) and (iv) can be only found in specific networks. The networks used in

this thesis contain functions of the types (i), (ii) and (iv).

4In a well-known popular class of neural networks, radial basis function (RBF) neural networks, the

output of certain neurons is a (non-linear) function of the sum of squared deviations of inputs from

weights. However, considering these as neural networks in which certain neurons only get one input

signal and yield a squared deviation as output, these are also first order neural networks.
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This definition encompasses several types of neural networks. One extreme type is the

‘plenary neural network’, a neural network in which all neurons are connected with each

other. The plenary neural network is a special (extreme) case of a ‘feedback neural net-

work’, a network in which signals travel in different directions, so that its ‘state’ contin-

uously changes until it reaches an equilibrium point. The opposite of a feedback network

is the ‘feed-forward neural network’, in which signals are allowed to travel in only one

way, from input(s) to output(s): there is no feedback in the sense of ‘loops’. In feed-

forward networks outputs can be calculated as explicit functions of inputs and weights;

in fact, feed-forward networks can be considered as a general framework for representing

(non-linear) functional mappings between a set of input variables and a set of output

variables.

In this thesis we only make use of certain layered first order feed-forward (artificial)

neural networks: feed-forward (artificial) neural networks in which neurons are grouped

in three or four layers of neurons5 that are naturally ordered from input to output, and

in which any non-linearity stems from activation functions that are applied to weighted

sums of inputs.

Confining ourselves to (layered) feed-forward (artificial) neural networks makes it eas-

ier to find an agreed definition. Crespin (1995) gives a definition in terms of three elemen-

tary concepts: a feed-forward neural network is parametric composition of layers, where

a layer is a parametric product of neurons, where a neuron is a parametric map. These

three concepts are defined as follows:

• A parametric map with domain X, range Y and with parameters in parameter space

W is a function f : W × X → Y .

Note that in the first order neural network, the most common network, the function

f should satisfy f(w, x) = f̃(
∑

i wixi) with parameters w ∈ W , input x ∈ X and

the summation over all elements in w, x for some function f̃ : R → Y .

• The parametric product of n parametric maps fj : Wj × X → Yj (j = 1, . . . , n),

all with common input x ∈ X, is the map Π̂n
j=1fj : W1 × · · · × Wn × X → Y1 ×

· · ·× Yn defined as Π̂n
j=1fj(w1, w2, . . . , wn; x) = (f1(w1, x), . . . , fn(wn, x)). Note that

a parametric product of parametric maps is a parametric map itself.

5We follow the convention of counting layers of neurons. There is also another convention, used in

for example Bishop (1995), in which layers of (adaptive) weights instead of neurons are counted; in that

sense we use networks of two or three layers.
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• The parametric composition of p parametric maps fk : W k × Xk → Xk+1 (k =

1, . . . , p) is the map ©̂p

k=1f
k defined recursively by

(©̂
p

k=1f
k)(w1, . . . , wp, x1) = f p(wp, (©̂

p−1

k=1f
k)(w1, . . . , wp−1, x1)).

We conclude that for a (layered) feed-forward artificial neural network it is possible

to give a much simpler definition.

Although the definition in terms of ‘building blocks’ of Fiesler (1994) is well formulated

and rather general, it may be intuitively less appealing than the first of the definitions at

the beginning of this section. Likewise, a biologist may not be satisfied with an overview

of body parts as an answer to the question what a monkey is. We end this subsection

with a definition that is at least as general as Fiesler’s, and that tries to say what a neural

network is instead of just summing up ‘ingredients’. A neural network is a mathematical

model or artificially created (computer) system (in case of an artificial NN), or group of

physical neurons (in case of a biological NN) that has the following characteristics:

• A neural network consists of (many) interconnected elements.

• A neural network has to be trained for a specific application: it ‘learns by example’.

Except for the most trivial networks, one can not a priori choose plausible values for

its connection strengths (or weights) and thresholds based on for example economic

theory, unlike coefficients in certain linear models which may be expected to equal

a certain value from theory.

• A neural network stores its processing capability in the connection strengths between

its elements.

• In each neuron the sum of the effects caused by signals from other neurons de-

termines whether the neuron sends a signal itself (and also what kind of signal it

sends). There are researchers who use neural networks with high(er) order con-

nections, in which (functions of) inputs may be combined in a different way than

summation. However, these networks are exceptions, and one could argue that these

are not truly neural networks. Therefore, we conclude that the additive structure is

a typical property of a neural network .

The fact that neural networks have been used (and are still used) in several different

sciences has not only caused the existence of many different definitions; there also exist

several names for some of the ‘ingredients’ in neural networks. Table 2.1 gives the names
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for ‘building blocks’ in neural networks that will be used throughout (the rest of) this

thesis and some synonyms.

Table 2.1: Terms used throughout (the rest of) this thesis and some synonyms that are

used in neural network literature

name used throughout synonyms

the rest of this thesis

activation function neuron function, transfer function

input independent variable, point in domain

layer cluster∗

neuron cell, node, processing unit, processor, unit

output dependent variable, image point

weight parameter, control, connection strength

∗actually the term ‘cluster’ is more general, as clusters are either

slabs or layers, where the latter have some (natural) ordering.

2.2.2 Why and when can a neural network be useful?

After trying to answer the question “what is a neural network?” in the previous subsec-

tion, this subsection aims to answer the question “why and when can a neural network

be useful?”. In general, because they are inspired by the human brain, neural network

based computer programs are able to solve some problems that people are good at solving,

but at which other computer programs perform poorly. One such application is given by

pattern recognition, for example handwritten word recognition, recognition of speakers in

communications, facial recognition, or 3-dimensional object recognition (e.g. interpreting

sonar traces).

The strength of neural networks is that the interaction of the (large number of) el-

ements of the network can generate very complex maps from inputs to outputs. As a

result, neural networks are able to approximate a great variety of functions. This ‘uni-

versal approximation property’ is the reason why neural networks are used in this thesis,

as we want to find candidate density functions that in some sense approximate target

density functions. In this thesis several neural network specifications will be used. These

specifications result in different capabilities and the proofs of these capabilities have been
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given in different publications. Therefore, references for these proofs will be given after

the specific neural networks have been described.

Like all models, the class of neural networks also has some drawbacks; we mention

three well-known disadvantages of neural networks that are often discussed in literature.

First, a neural network is a ‘black box’ in the sense that the working is not completely

clear: the values of individual parameters have no straightforward interpretation and, even

in the case of simple, monotonous activation functions, neural networks can generate

very complex maps from inputs to outputs. Second, neural networks may suffer from

‘overfitting’, the situation where not only the structural process is captured, but also

random noise is ‘fitted’. This problem may also be present in linear models, but in neural

networks preventing it is more difficult, as one may increase the number of parameters by

adding (hidden) neurons that do not correspond with inputs or outputs, without adding

extra data on inputs or outputs. Third, the ‘learning process’ of the neural network may

require large computational power.

In the neural network applications in this thesis the disadvantages have the following

implications. The first drawback is not so much of a disadvantage in our case; only

a good approximation to a target density is required, no interpretation of the neural

network parameters. However, a neural network’s ability to generate complex patterns

implies that one should check the network’s behaviour for other input values than those for

which it is ‘trained’, as it may be dangerous to simply extrapolate (or even interpolate)

neural network behaviour. The second drawback, the danger of ‘overfitting’, implies

no problems at all in our application, as the data used in the learning process consist

of (target density) function evaluations without random noise. The third disadvantage

has obviously become a smaller problem over time, as the computer capabilities have

enormously increased. However, also other computer programs profit from the higher

computing speed, of course; so it is of interest to compare the speed of neural network

based programs with other methods, as will be done in the sequel of this chapter.

Finally, as mentioned by Stergiou and Siganos (1996), a number of scientists argue

that ‘consciousness’ is a mechanical property and that ‘conscious’ artificial neural networks

are a realistic possibility. If this would be theoretically possible, increased insight in the

working of the human brain and better computational facilities may enable researchers to

accomplish this some day, which is arguably the most exciting application of an artificial

neural network one could think of.
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2.3 Neural networks that are easy to sample from

Consider a certain distribution, for example a posterior distribution, with density kernel

p̃(θ) with θ ∈ Rk. Notice that in section 2.1 the notation p(θ|y) is used to indicate a

posterior density (kernel) in order to stress its meaning and the difference with the prior

density and likelihood function; here we denote the target density kernel by p̃(θ) as only

one (target) density function of θ appears in this section, and also because the exposed

methods can be applied to other distributions than posteriors as well. Suppose the aim is

to investigate some of the characteristics of p̃(θ), for example the mean and/or covariance

matrix of a random vector θ ∼ p̃(θ). The approach followed in this thesis consists of the

following steps:

1. Find a neural network approximation nn : Rk → R to the target density kernel p̃(θ).

2. Obtain a sample of draws from the density (kernel) nn(θ).

3. Perform importance sampling or the (independence chain) Metropolis-Hastings al-

gorithm using this sample in order to obtain estimates of the characteristics of p̃(θ).

Consider a 4-layer feed-forward neural network with functional form:

nn(θ) = eG2 (CG1(Aθ + b) + d) + f, θ ∈ Rk, (2.7)

where A is H1 × k, b is H1 × 1, C is H2 × H1, d is H2 × 1, e is 1 × H2 and f ∈ R. The

integers H1 and H2 are interpreted as the numbers of neurons in the first and second

hidden layer of the neural network, respectively. The functions G1 : RH1 → RH1 and

G2 : RH2 → RH2 are defined by

G1(v) = (g1(v1), · · · , g1(vH1))
′, G2(z) = (g2(z1), · · · , g2(zH2))

′, v ∈ RH1 , z ∈ RH2

(2.8)

where g1 : R → R and g2 : R → R are the activation functions. The network with

functional form in (2.7) is a first order network, i.e. a network in which each (non-linear)

activation function is only applied to a linear combination of the inputs of a neuron.

Figure 2.1 shows (for the case with k = 2, H1 = 2, H2 = 2) the network diagram

representing this 4-layer feed-forward neural network: there is a 1-to-1 correspondence

between components of the function (2.7) and elements of the diagram. The circles in

the input layer represent the k input variables and a ‘bias’ term which is simply an extra

input variable whose value is permanently set at 1; this bias implies that the capabilities
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of the neural network does not depend on the mean of the input variables. There is also a

bias term in each hidden layer. Each black (filled) circle in the hidden layers represents a

hidden neuron which gives as output a (possibly non-linear) activation function evaluated

at the weighted sum of its inputs. For the H1 (H2) neurons in the first (second) hidden

layer this activation function is given by g1 (g2). The circle in the output layer obviously

represents the output nn(θ) of the neural network, the function (2.7) evaluated at θ.

The arrows show which neurons influence which other neurons and the coefficients at

the arrows indicate the magnitude of this influence (i.e. the weight in the weighted sum of

inputs). This network has connections from every neuron in one layer to every neuron in

the next layer, but no other connections are allowed. This is a popular way of specifying

a feed-forward network, as it is relatively easy to analyze and implement.

In this thesis the number of layers of neurons is counted, and non-linear transforma-

tions are only allowed in hidden layer neurons. However, it should be noted that there is

also another convention, used in for example Bishop (1995), in which non-linear transfor-

mations are also allowed in the output layer, and layers of (adaptive) weights instead of

neurons are counted; in that sense the network in Figure 2.1 is a 3-layer network. It can

also be denoted as a double hidden-layer network to prevent misunderstandings.
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Figure 2.1: Network diagram corresponding to the four-layer neural network function

(2.7) in case of k = 2 inputs, H1 = 2 neurons in the first hidden layer, H2 = 2 neurons

in the second hidden layer. Black (filled) circles represent hidden layer neurons in which

non-linear processing takes place. White circles represent input neurons, output neurons

or ‘bias terms’.



2.3. NEURAL NETWORKS THAT ARE EASY TO SAMPLE FROM 39

❥
❥
❥

③
③
❥

❥
✲

✲ ✲✟✟✟✟✟✯

✟✟✟✟✟✯

❍❍❍❍❍❥

�
�

�
�

�✒

✟✟✟✟✟✯

❍❍❍❍❍❥

θ1

θ2

1 1

scaled
arctangent

input
layer

hidden
layer

output
layer

A11

c1

c2

b1

b2 d

nn(θ1, θ2)

Figure 2.2: Network diagram corresponding to the Type 1 neural network in case of k = 2

inputs and H1 = 2 neurons in the hidden layer.

The following three specifications of (2.7) allow for easy sampling (when this neural

network function is considered as a density kernel):

Type 1 neural network: A standard three-layer feed-forward neural network (in the

notation of (2.7): H2 = 1, e = 1, f = 0 and g2 is the identity g2(x) = x, x ∈ R). As

activation function g1 in (2.8) we take the scaled arctangent function:

g1(x) =
1

π
arctan(x) +

1

2
, x ∈ R. (2.9)

The reason for choosing the arctangent function is that it can be analytically integrated

infinitely many times. We show in subsection 2.3.2, that this property makes the neural

network, in the role of a density kernel on a bounded region, easy to sample from. The

scaling is merely done because it is common practice to use activation functions that take

values in the unit interval. Figure 2.2 shows (for the case with k = 2, H1 = 2) the network

diagram representing the Type 1 neural network. Such a multi-layered feed-forward net-

work having either sigmoidal or threshold activation functions is known as a multi-layer

perceptron (MLP); multi-layer perceptrons are generalizations of the perceptron of Rosen-

blatt (1962), a 3-layer network in which only the second layer of weights was updated

during the learning process, that was mostly used for the classification (‘perception’) of

binary images of characters.

Type 2 neural network: A simplified four-layer network with the second hidden layer

consisting of only one neuron (H2 = 1, e = 1, f = 0), g2 the exponential function and
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Figure 2.3: Network diagram corresponding to the Type 2 neural network in case of k = 2

inputs and H1 = 2 neurons in the hidden layer.

activation function g1 in (2.8) equal to the following piecewise-linear function plin:

plin(x) =






0 x < −1/2

x + 1/2 −1/2 ≤ x ≤ 1/2

1 x > 1/2

, x ∈ R. (2.10)

We show in subsection 2.3.2 that these activation functions make Gibbs sampling (see

Geman and Geman (1984)) possible. To allow for easy sampling it is sufficient to specify

a function g2 which is positive-valued and has an analytical expression for its primitive

that is analytically invertible; see subsection 2.3.2. Another example of such a function

is the logistic function. Figure 2.3 shows (for the case with k = 2, H1 = 2) the network

diagram representing the Type 2 neural network.

Type 3 neural network: A mixture of Student t distributions:

nn(θ) =

H∑

h=1

ph t(θ|µh, Σh, ν), (2.11)

where ph (h = 1, . . . , H) are the probabilities (satisfying ph ≥ 0,
∑H

h=1 ph = 1) of the

Student t components and where t(θ|µh, Σh, ν) is a k-variate t density with mode vector

µh, scaling matrix Σh, and ν degrees of freedom:

t(θ|µh, Σh, ν) =
Γ((ν + k)/2)

Γ(ν/2)(πν)k/2
|Σh|−1/2

(
1 +

(θ − µh)
′Σ−1

h (θ − µh)

ν

)−(ν+k)/2

. (2.12)

The reason for this choice is that a mixture of t distributions is easy to sample from,

and that the Student t distribution has fatter tails than the normal distribution. Note
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that this mixture of t densities is a four-layer feed-forward neural network (with parameter

restrictions) in which we have, in the notation of (2.7), H2 = H (the number of t densities),

H1 = Hk, activation functions

g1(x) = x2 and g2(x) = x−(ν+k)/2, x ∈ R,

with weights f = 0 and

A =




Σ
−1/2
1
...

Σ
−1/2
H


 , b =




−Σ
−1/2
1 µ1

...

−Σ
−1/2
H µH


 , C =




ι′k/ν 0 · · · 0

0 ι′k/ν
...

...
. . . 0

0 · · · 0 ι′k/ν




, d = ιH ,

eh = ph |Σh|−1/2 cν,k (h = 1, . . . , H) with cν,k ≡ Γ((ν + k)/2)

Γ(ν/2)(πν)k/2
,

where ιm denotes a m × 1 vector of ones. Notice that (θ − µh)
′Σ−1

h (θ − µh) is the sum of

the squared elements of Σ
−1/2
h (θ − µh). Figure 2.4 shows (for the case with k = 2, H = 2

so that H1 = Hk = 4, H2 = H = 2) the network diagram representing the Type 3 neural

network.

The Type 3 network can also be interpreted as a 3-layer network of order h, containing

H hidden neurons transforming θ into t(θ|µh, Σh, ν) for h = 1, . . . , H .6 Figure 2.5 shows

(for the case with k = 2, H = 2) the corresponding network diagram. The Type 3

network is a (3-layer) Radial Basis Function (RBF) neural network, a network in which the

activation of hidden neurons is determined by the distance between the input vector and

a certain vector of weights, possibly allowing for a pre-multiplication of the input vector

taking care of the covariance between the inputs. The output of a RBF network is a linear

combination of its basis functions; the Type 3 network has basis functions t(θ|µh, Σh, ν).

Note that, similar to the Type 3 network, all RBF networks can be considered as first

order networks (with restrictions on certain weights).

During the past 50 years many results on the approximation capabilities of neural

networks have been published. The theorem of Kolmogorov (1957) is often seen as a

basis for the (approximation) capabilities of first order 4-layer feed-forward networks.

6Recall from the introduction to this chapter that the order of a neural network is the highest order

of the connections in the network; for a high order (i.e. an order higher than 1), the order of a connection

is the number of inputs combined in a different way than (applying an activation function to) a weighted

sum.
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Figure 2.4: Network diagram corresponding to the Type 3 neural network in case of k =

2 inputs and H = 2 mixture components, interpreted as a first order 4-layer network

with H1 = Hk = 4 and H2 = H = 2 neurons in the first and second hidden layer,

respectively. The weights between input layer and hidden layer 1 are elements of either

Σ
−1/2
h or −Σ

−1/2
h µh (h = 1, 2); cν,k is given by cν,k ≡ Γ((ν + k)/2)/{Γ(ν/2)(πν)k/2}.
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Figure 2.5: Network diagram corresponding to the Type 3 neural network in case of k = 2

inputs and H = 2 mixture components, interpreted as a high-order 3-layer Radial Basis

Function (RBF) network

Kolmogorov’s theorem says that (for a closed and bounded input domain) any continuous

mapping f̃ from k input variables xi to an output variable y = f̃(x1, . . . , xk) can be

represented exactly by a certain 4-layer network with k(2k +1) and 2k +1 neurons in the

first and second hidden layer, respectively; the functional form of this network is:

y = nn(x1, . . . , xk) =

2k+1∑

j=1

g

(
k∑

i=1

λi hj(xi)

)

with constants 0 < λi < 1 (i = 1, . . . , k), continuous function g that depends on the

function f̃ , and functions hj (j = 1, . . . , 2k + 1) that do not depend on f̃ . Although Kol-

mogorov’s theorem gives a nice illustration of the representation/approximation power of

neural networks, it is hardly relevant in practical situations because of the following lim-

itations. First, Kolmogorov (1957) did not describe a method to construct the functions

g and hj ; in fact, no examples of functions g and hj are known. Second, in practice one

mostly uses fixed activation functions and only adjusts the weights and the number of

hidden neurons. Intuitively speaking, it is easier to search through spaces of real numbers

than to search through function spaces.

For the three specific configurations of neural networks that are considered in this

thesis the theoretical foundations of the approximation capabilities are as follows. Hornik

et al. (1989) show that 3-layer feed-forward networks with an activation function that is

an arbitrary sigmoid function, a continuous, non-decreasing scalar function taking values

in a bounded interval, can approximate any square integrable function (given sufficiently

many hidden neurons); this is a generalization of the result of Gallant and White (1988),
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who show this result for a specific sigmoid function (the ‘cosine squasher’). The Type 1

network is a 3-layer network with sigmoid activation function.

Intuitively, one would expect the Type 2 network to have the same approximation

capabilities as the Type 1 network (as long as one desires to approximate non-negative

functions), as its output is the exponent of the output from a 3-layer network with sig-

moidal activation. Moreover, Stinchcombe and White (1989,1990) show that activation

functions in multi-layer networks do not have to be sigmoidal: they give sufficient condi-

tions that are satisfied by a much larger class of functions than merely sigmoids (although

for example not by polynomials).

The Type 3 network is a radial basis function (RBF) neural network. Many proofs

of approximation properties for RBF networks can be found in literature. However, the

restrictions ph ≥ 0, (h = 1, . . . , H),
∑H

h=1 ph = 1 make that the Type 3 network does

not automatically have all these RBF network capabilities. However, Zeevi and Meir

(1997) show that under certain conditions any density function may be approximated to

arbitrary accuracy by a convex combination of ‘basis’ densities; the mixture of Student t

densities in (2.11) falls within their framework.

Table 2.2 gives an overview of the reasons for which we have chosen these particular

specifications. The implications shown in this table will be clarified in the sequel of this

chapter.

Throughout this thesis we use the term ‘neural network’ to denote the classes of

functions described above; it should be mentioned here that in part of the literature,

see e.g. Hastie et al. (2001), such methods are termed ‘adaptive basis function methods’

or ‘dictionary methods’. A key ingredient of these methods is a search mechanism that

constructs a linear combination of (nonlinear) basis functions that are chosen from a

(possibly infinite) set or ‘dictionary’ of candidate basis functions.
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Table 2.2: Motivation of the particular neural network specifications that are considered

in this chapter

specification special properties consequences of special

of nn(θ) of nn(θ) properties of nn(θ)

Type 1 - Activation g1 is analytically integrable ⇒ - Direct sampling from

(3-layer) infinitely many times. nn(θ) is possible.

- Activation g1 is piecewise-linear.

- Gibbs sampling

- Activation g2 is positive valued and ⇒ from nn(θ) is

Type 2 analytically integrable, and its primitive possible.

(4-layer) is analytically invertible.

- Activation g2 is the ⇒ - Auxiliary variable Gibbs

exponential function. sampling from nn(θ) is possible.

Type 3 - nn(θ) is a mixture of ⇒ - Direct sampling from

(4-layer) multivariate t densities. nn(θ) is possible.

2.3.1 Constructing a neural network approximation to a density

Type 1 (3-layer) or Type 2 (4-layer) neural network approximation

We suggest the following procedure to obtain a Type 1 or Type 2 neural network approxi-

mation to a certain target density kernel p̃(θ). First, obtain a set of draws θi (i = 1, . . . , N)

from the uniform distribution on the bounded region to which we restrict the random vari-

able θ ∈ Rk to take its values. Then approximate the target density kernel p̃(θ) with a

neural network by minimizing the sum of squared residuals:

SSR(A, b, c, d) =
N∑

i=1

(
p̃(θi) − nn

(
θi
∣∣A, b, c, d

))2
, (2.13)

where the notation c instead of C is used, since in our Type 1 and 2 networks this is a

(1×H1) vector.7 We choose the most parsimonious neural network, i.e. the one with the

7This optimization method, or learning process, is a back-propagation algorithm. In the neural network

literature several algorithms are denoted by back-propagation. In these methods the derivatives of the

error function (in our case the sum of squared residuals) with respect to the weights are analytically

derived, where first the derivatives with respect to the last layer of weights is computed, after which one

iteratively works backwards through the layers of the network using the chain-rule for partial derivatives

in a clever way in order to minimize the required number of function evaluations.
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least hidden neurons, that still gives a ‘good’ approximation to the target distribution.

One could define a ‘good’ approximation as one with a high enough squared correlation,

R2, between p̃ and nn at the points θi (i = 1, . . . , N).

Next, check the squared correlation R2 between nn and p̃ for a larger set of points

than the ‘estimation set’. If this R2 is also high enough, then we may conclude that the

network does not only provide a good approximation to p̃ in the points θi (i = 1, . . . , N)

but also in between, so that the approximation is really accurate. Otherwise, increase the

number of points N and start all over again; for example, make the set twice as large.

This process continues until the set is large enough to allow the neural network to ‘feel’

the shape of the target density accurately.

In the case of a Type 1 (three-layer) neural network, we also have to deal with the

problem that the neural network function is not automatically non-negative for each θ. In

order to establish this a penalty term is added to (2.13), for example −M
∑N

i=1 I{nn(θi) <

0} nn(θi) where M is a constant large enough to make nn positive (or only slightly neg-

ative) in all points θi (i = 1, . . . , N). Notice that if the minimum of nn(θ) is an (in

absolute sense) very small negative value, one can simply subtract this negative value

from the network’s constant d, so that nn(θ) becomes non-negative for each θ. It should

be mentioned that, since a neural network can have a surface that looks like a bed of

nails, one should be very careful when checking the non-negativity. For example, one can

look for the (global) minimum of nn(θ) by running a minimization procedure starting

with several initial values. In our Type 2 (simplified four-layer) neural network the expo-

nential function implies that non-negativity is automatically taken care of.

Type 3 (mixture of t) neural network approximation

We suggest the following procedure to obtain a Type 3 neural network approximation

– an adaptive mixture of t densities (AdMit) – to a certain target density kernel p̃(θ).

First, compute the mode µ1 and scale Σ1 of the first Student t distribution in the

mixture as µ1 = argmaxθ p̃(θ), the mode of the target distribution, and Σ1 as minus

the inverse Hessian of log p̃(θ) evaluated at its mode µ1. Then draw a set of points θi

(i = 1, . . . , N) from the ‘first stage neural network’ nn(θ) = t(θ|µ1, Σ1, ν), with small ν to
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allow for fat tails.8 After that add components to the mixture, iteratively, by performing

the following steps:

Step 1: Compute the importance sampling weights w(θi) = p̃(θi)/nn(θi) (i = 1, . . . , N). In

order to determine the number of components H of the mixture we make use of a

simple diagnostic criterion: the coefficient of variation, i.e. the standard deviation

divided by the mean, of the IS weights w(θi) (i = 1, . . . , N). If the relative decrease

in the coefficient of variation of the IS weights caused by adding one new Student-t

component to the candidate mixture is small, e.g. less than 10%, then stop: the

current nn(θ) is the Type 3 neural network approximation.9 Otherwise, go to step

2.

Step 2: Add another Student t distribution with density t(θ|µh, Σh, ν) to the mixture with

µh = argmaxθ w(θ) = argmaxθ{p̃(θ)/nn(θ)} and Σh equal to minus the inverse

Hessian of log w(θ) = log p̃(θ) − log nn(θ) evaluated at its mode µh. Here nn(θ)

denotes the mixture of (h − 1) Student t densities obtained in the previous itera-

tion of the procedure. An obvious initial value for the maximization procedure for

computing µh = argmaxθ w(θ) is the point θi with the highest weight w(θi) in the

sample {θi|i = 1, . . . , N}. The idea behind this choice of µh and Σh is that the new

t component should ‘cover’ a region where the weights w(θ) are relatively large:

the point where the weight function w(θ) attains its maximum is an obvious choice

for the mode µh, while the scale Σh is the covariance matrix of the local normal

approximation to the distribution with density kernel w(θ) around the point µh.

If the region of integration of the parameters θ is bounded, it may occur that w(θ)

attains its maximum at the boundary of the integration region; in this case minus

the inverse Hessian of log w(θ) evaluated at its mode µh may be a very poor scale

matrix; in fact this matrix may not even be positive definite. In that case µh and Σh

8Throughout this thesis we use Student t distributions with ν = 1. There are two reasons for this.

First, it enables the methods to deal with fat-tailed target (posterior) distributions. Second, it makes it

easier for the iterative procedure by which the Type 3 neural network approximation is constructed to

detect modes that are far apart. One could also choose to optimize the degree of freedom of the Student

t distributions and/or allow for different degrees of freedom in different Student t distributions. This is

a topic for further research.
9Notice that nn(θ) is a proper density, whereas p̃(θ) is merely a density kernel. So, the Type 3

neural network does not provide an approximation to the target density kernel p̃(θ) in the sense that

nn(θ) ≈ p̃(θ), but nn(θ) provides an approximation to the density of which p̃(θ) is a kernel in the sense

that the ratio p̃(θ)/nn(θ) has relatively little variation.
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are obtained as estimates of the mean and covariance matrix of a certain ‘residual

distribution’ with density kernel:

res(θ) = max{p̃(θ) − c̃ nn(θ), 0}, (2.14)

where c̃ is a constant; we take max{., 0} to make it a (non-negative) density kernel.

These estimates of the mean and covariance matrix of the ‘residual distribution’ are

easily obtained by importance sampling with the current nn(θ) as the candidate

density, using the sample θi (i = 1, . . . , N) from nn(θ) that we already have. The

weights wres(θ
i) and scaled weights w̃res(θ

i) (i = 1, . . . , N) are:

wres(θ
i) =

res(θi)

nn(θi)
= max{w(θi) − c̃, 0} and w̃res(θ

i) =
wres(θ

i)
∑N

i=1 wres(θi)
, (2.15)

and µh and Σh are obtained as:

µh =

N∑

i=1

w̃res(θ
i)θi Σh =

N∑

i=1

w̃res(θ
i)(θi − µh)(θ

i − µh)
′. (2.16)

There are two issues relevant for the choice of c̃ in (2.14) and (2.15). First, the

new t density should appear exactly at places where nn(θ) is too small (relative to

p̃(θ)), i.e. the scale should not be too large. Second, there should be enough points

θi with w(θi) > c̃ in order to make Σh nonsingular. A procedure is to calculate Σh

for c̃ equal to 100 times the average value of w(θi) (i = 1, . . . , N); if Σh in (2.16) is

nonsingular, accept c̃; otherwise lower c̃.

Step 3: Choose the probabilities ph (h = 1, . . . , H) in the mixture nn(θ) =
∑H

h=1 ph t(θ|µh, Σh, ν)

by minimizing the (squared) coefficient of variation of the importance sampling

weights. First, draw N points θi
h from each component t(θ|µh, Σh, ν) (h = 1, . . . , H).

Then minimize E[w(θ)2]/E[w(θ)]2, where:

E[w(θ)k] =
1

N

N∑

i=1

H∑

h=1

ph w
(
θi

h

)k
(k = 1, 2), w

(
θi

h

)
=

p̃(θi
h)∑H

l=1 pl t(θi
h|µl, Σl, ν)

.

(2.17)

Step 4: Draw a sample of N points θi (i = 1, . . . , N) from our new mixture of t distribu-

tions, nn(θ) =
∑H

h=1 ph t(θ|µh, Σh, ν), and go to step 1; in order to draw a point

from the density nn(θ) first use a draw from the U(0, 1) distribution to determine

which component t(θ|µh, Σh, ν) is chosen, and then draw from this multivariate t

distribution.
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It may occur that one is dissatisfied with diagnostics like the coefficient of variation of

the IS weights corresponding to the final candidate density resulting from the procedure

above. In that case one may start all over again with a larger number of points N . The

idea behind this is that the larger N is, the easier it is for the method to ‘feel’ the shape

of the target density kernel, and to specify the t distributions of the mixture adequately.

Note that an advantage of the Type 3 network, as compared to the Type 1 and 2

networks, is that its construction does not require the specification of a certain bounded

region where the random variable θ ∈ Rk takes its values.

2.3.2 Sampling from a neural network density

Type 1 (3-layer) neural network density

Suppose the joint density kernel of a certain θ ∈ Rk is given by our Type 1 neural

network:

nn(θ) =
H∑

h=1

ch

π
arctan(a′

hθ + bh) +
1

2

H∑

h=1

ch + d, (2.18)

where each element θj is restricted to a certain finite interval [θj, θ̄j ] (j = 1, . . . , k). The

arctangent is analytically integrable infinitely many times; its integrals are given by The-

orem 1:

Theorem 1: The n-th integral Jn(x) (n = 1, 2, . . .) of the arctangent function, Jn(x) ≡
∫
· · ·
∫

arctan(x)dx · · ·dx with x ∈ R, is given by

Jn(x) = pn(x) arctan(x) + qn(x) ln(1 + x2) + rn(x), x ∈ R, (2.19)

where pn and qn are polynomials of degree n and n − 1, respectively:

pn(x) = pn,0 + pn,1 x + · · · + pn,n−1 xn−1 + pn,n xn,

qn(x) = qn,0 + qn,1 x + · · ·+ qn,n−1 xn−1,

with coefficients pn,k (k = 0, 1, . . . , n) and qn,k (k = 0, 1, . . . , n − 1) given by:

pn,k =






(−1)(n−k)/2

(n−k)!k!
if n − k is even;

0 if n − k is odd;

qn,k =






(−1)(n−k+1)/2

2(n−k)!k!
if n − k is odd;

0 if n − k is even.

The polynomial rn (of degree at most n − 1) plays the role of the integration constant.
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Proof: By induction; see appendix 2.A.1.10

A kernel of the cumulative distribution function of θ ∼ nn(θ) with nn in (2.18) is given

by:

CDFθ(θ1, . . . , θk) =

(
1

2

H∑

h=1

ch + d

)
(θ1 − θ1) · · · (θk − θk)

+

H∑

h=1

ch

πah1ah2 · · ·ahk

1∑

D1=0

· · ·
1∑

Dk=0

(−1)D1+···+Dk Jk

(
k∑

j=1

ahjθj,Dj
+ bh

)
, (2.20)

where we define θj,0 = θj and θj,1 = θj (j = 1, 2, . . . , k), the upper and lower bounds of

the integration intervals; the primitive Jk(·) is given by (2.19) in Theorem 1.

The marginal distribution functions CDFθj
(θj) (j = 1, . . . , k) are now obtained by

taking θl = θ̄l ∀l = 1, . . . , k; l 6= j in (2.20). The conditional density kernel of (θ1, . . . , θj)

given (θj+1, . . . , θk) is simply obtained by substituting the values θj+1, . . . , θk into (2.18);

a kernel of the conditional CDF is given by (2.20) with
∑k

l=j+1 ahlθl + bh instead of bh

(and j instead of k).

Sampling a random vector θ from the density kernel nn(θ) is easily done by drawing

U(0, 1) variables and numerically inverting the distribution functions; it seems that taking

a few steps of the bisection method followed by the Newton-Raphson method works well

in practice. A more detailed description is given in appendix 2.A.2.

Type 2 (4-layer) neural network density

Suppose the joint density kernel of a certain θ ∈ Rk is given by the Type 2 neural network:

nn(θ) = exp

(
H∑

h=1

ch plin(a′
hθ + bh) + d

)
, (2.21)

where each element θj is restricted to a certain finite interval [θj , θ̄j] (j = 1, . . . , k). It is

easy to perform Gibbs sampling from this distribution, as one can divide the domain of

each θj (j = 1, . . . , k) into a finite number of intervals on which the conditional neural

network density is just the exponent of a linear function; the obvious reason for this is

that a linear combination of piecewise-linear functions of θj is itself a piecewise-linear

function of θj . Therefore we can analytically integrate the conditional neural network

10For a particular value of n the validity of Theorem 1 can also be verified by the online Mathematica

integration program of Wolfram Research, Inc. on http://integrals.wolfram.com
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density, and draw from it by analytically inverting the conditional CDF. Note that the

three properties of g2 mentioned below formula (2.10) are used here explicitly. A more

detailed description of this procedure can be found in appendix 2.B.1.

Another possible method to draw from the Type 2 neural network density is auxiliary

variable Gibbs sampling, which is a Gibbs sampling technique developed by Damien et

al. (1999). The method is based on work of Edwards and Sokal (1988). In this method a

vector of latent variables u is introduced in an artificial way in order to facilitate drawing

from the full set of conditional distributions of θj (j = 1, . . . , k). In the case of our Type

2 neural network the vector of latent variables u is (H × 1) where conditionally on θ the

uh (h = 1, . . . , H) are independently drawn from uniform distributions:

uh|θ ∼ U

(
0, exp

[
ch plin

(
k∑

j=1

ahjθj + bh

)])
, h = 1, . . . , H. (2.22)

The elements θj (j = 1, . . . , k) are drawn conditionally on u and θ−j , the set of all other

elements of θ, from the uniform distribution on the interval [θj,LB(u, θ−j), θj,UB(u, θ−j)],

where:

θj,LB(u, θ−j) = max

{
θj, max

1≤h≤H

{
1

ahj

(
log(uh)

ch
− 1

2
−
(

k∑

l=1,l 6=j

ahlθl + bh

))∣∣∣∣∣

chahj > 0, 0 <
log(uh)

ch
< 1

}}
, (2.23)

θj,UB(u, θ−j) = min

{
θ̄j , min

1≤h≤H

{
1

ahj

(
log(uh)

ch

− 1

2
−
(

k∑

l=1,l 6=j

ahlθl + bh

))∣∣∣∣∣

chahj < 0, 0 <
log(uh)

ch

< 1

}}
. (2.24)

The derivations of these conditional distributions are given in appendix 2.B.2. Using

auxiliary variable Gibbs sampling, we do not have to restrict ourselves to the piecewise-

linear function plin when specifying the activation function g1; it allows for well-known

activation functions such as the logistic and scaled arctangent functions.

Type 3 (mixture of t) neural network approximation

As we already remarked in the previous subsection, sampling from a Type 3 network,

a mixture of t densities, only requires a draw from the U(0, 1) distribution to determine

which component is chosen, and a draw from the chosen multivariate t distribution.
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2.3.3 Neural network sampling algorithms

Once we have obtained a sample of random draws from the neural network density (kernel)

nn(θ), we use this sample in order to estimate those characteristics of the target density

(kernel) p̃(θ) that we are interested in. Two methods that we can use for this purpose

are importance sampling and the (independence chain) Metropolis-Hastings algorithm,

discussed in the introduction to this chapter. Note that in the case of a Type 2 (4-

layer) neural network we need Gibbs sampling in order to obtain the sample, so that the

consecutive draws are not independent. This case can be dealt with using a Metropolis-

Hastings within Gibbs algorithm, in which a MH step is considered after each time an

element θi is drawn from its conditional neural network distribution. So, we have the

following eight ‘neural network based’ algorithms at hand:

• Neural Network Importance Sampling (NNIS) and Neural Network Metropolis-

Hastings (NNMH) in which IS or MH is performed using random vectors that are

(directly) drawn from a 3-layer neural network;

• Gibbs Neural Network Importance Sampling (GiNNIS) and Gibbs with Auxiliary

Variables Neural Network Importance Sampling (GiAuVaNNIS) in which IS is per-

formed using random vectors that are drawn from a 4-layer neural network by Gibbs

sampling (possibly with auxiliary variables);

• Gibbs Neural Network Metropolis-Hastings (GiNNMH) and Gibbs with Auxiliary

Variables Neural Network Metropolis-Hastings (GiAuVaNNMH) in which Metropolis-

Hastings within Gibbs is performed using random vectors that are drawn from a

4-layer neural network by Gibbs sampling (possibly with auxiliary variables);

• IS or MH using random vectors that are (directly) drawn from an Adaptive Mixture

of t distributions (AdMit-IS or AdMit-MH).

Table 2.3 gives an overview.
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Table 2.3: Overview of neural network based sampling algorithms

Importance Metropolis-

sampling Hastings

Type 1 (3-layer)

neural network: NNIS NNMH

direct sampling

Type 2 (4-layer)

neural network: Gi(AuVa)NNIS Gi(AuVa)NNMH

(auxiliary variable)

Gibbs sampling

Type 3

neural network

(adaptive mixture AdMit-IS AdMit-MH

of t densities):

direct sampling

2.4 Comparison of performance of different neural

networks

In this section we consider an illustrative bivariate distribution in order to show the

feasibility of the neural network approach and to compare the performance of the different

neural network based methods. In the notation of the previous sections we have θ =

(X1, X2)
′.

Let X1 and X2 be two random variables, for which X1 is normally distributed given

X2 and vice versa. Then the joint distribution, after location and scale transformations

in each variable, can be written as (see Gelman and Meng (1991)):

p(x1, x2) ∝ exp

(
−1

2

[
Ax2

1x
2
2 + x2

1 + x2
2 − 2Bx1x2 − 2C1x1 − 2C2x2

])
, (2.25)

where A, B, C1 and C2 are constants. We consider the symmetric case in which A = 1,

B = 0, C1 = C2 = 3, with conditional distributions

X1|X2 = x2 ∼ N

(
3

1 + x2
2

,
1

1 + x2
2

)
X2|X1 = x1 ∼ N

(
3

1 + x2
1

,
1

1 + x2
1

)
. (2.26)
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Figure 2.6: Contour plots: conditionally normal bivariate distribution in (2.26) (left),

and its Type 1 (second), Type 2 (third), and Type 3 (right) neural network approximation

For the Type 1 and 2 networks, we restrict the variables X1 and X2 to the interval

[-2.5,7.5], i.e. we only consider the region

{(X1, X2)| − 2.5 ≤ X1 ≤ 7.5,−2.5 ≤ X2 ≤ 7.5} . (2.27)

This restriction does not affect our estimates, as the probability mass outside this region

is negligible.

The contourplots of the neural network approximations11 are given by Figure 2.6,

together with the contourplot of the target density. These contourplots confirm that the

three classes of neural networks are able to provide reasonable approximations to the

target density. Figure 2.7 illustrates how the AdMit procedure iteratively constructs an

approximating (mixture of t) candidate density in four steps.

After we have constructed neural network approximations, we sample from these net-

works and use the samples in IS or the (independence chain) MH algorithm. Many diag-

nostic checks have been developed for assessing the convergence of the IS or MH method;

see e.g. Geweke (1989) for the IS method and Cowles and Carlin (1996) and Brooks and

Roberts (1998) for MCMC methods. Here we use the following simple heuristic rule to ob-

tain estimates of the means with a precision of 1 decimal: for each algorithm we construct

two samples, and we say that convergence has been achieved if the difference between the

11We constructed a Type 1 network with H1 = 50 hidden neurons, R2 = 0.9966 on its training set

of 1000 points, and R2 = 0.9936 on its test set of 5000 points. We obtained a Type 2 network with

H1 = 13, R2 = 0.9944 on its training set of 1000 points, and R2 = 0.9756 on its test set of 5000 points;

the H1 = 13 hidden neurons result from deleting the (almost) irrelevant hidden neurons from a network

of H = 25 neurons. We also constructed a mixture of H = 4 Student t distributions with a sample of

1000 IS weights with coefficient of variation equal to 0.840 (and in which the 5% most influential points

have 11.6% weight).
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Figure 2.7: Illustration of the AdMit procedure for constructing a Type 3 (mixture of

t) neural network approximation to a target (posterior) density: in four steps a can-

didate density is constructed; the cross denotes the point at which the weight function

p(x1, x2)/nn(x1, x2) corresponding to the displayed candidate density nn(x1, x2) attains

its maximum. For the four shown candidate densities the coefficient of variation of the

importance sampling weights is 4.01, 1.39, 0.93, 0.87, respectively.

two estimates of E(X1) and the difference between the two estimates of E(X2) are both

less than 0.05.12 The results are in Table 2.4. Note that the eight neural network sam-

pling algorithms all yield estimates of E[X1] and E[X2] differing less than 0.05 from the

real values. The table shows numerical standard errors and the corresponding relative

numerical efficiency (RNE), see Geweke (1989). The numerical standard errors are esti-

mates of the standard deviations of the IS estimators of E[X1] and E[X2]. The RNE is

the ratio between (an estimate of) the variance of an estimator based on direct sampling

and the IS estimator’s estimated variance (with the same number of draws). The RNE is

an indicator of the efficiency of the chosen importance function; if target and importance

density coincide the RNE equals one, whereas a very poor importance density will have

an RNE close to zero.

The total weight of the 5% most influential points is below 15% for the three IS

algorithms and the values of the RNE are rather high, confirming the quality of the

importance density. The rather high MH acceptance rates above 50% indicate the quality

of the neural network as a candidate density in the MH algorithm.

If we look at the computing times (on an AMD AthlonTM 1.4 GHz processor) required

for generating the samples, we conclude that AdMit-IS and AdMit-MH are the winners in

this example. In AdMit-IS or AdMit-MH the construction of the network, the sampling,

12The number of draws required may depend on an initial value such as the seed of the random number

generator; for each algorithm the experiment has been repeated several times and the results are robust

in the sense that in most cases convergence had been reached after the reported number of draws.
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Table 2.4: Neural network based sampling results for the conditionally normal bivariate

distribution in (2.26)

Type 1 NN Type 2 NN Type 3 NN

real NNIS NNMH GiNNIS GiNNMH GiAuVa GiAuVa AdMit AdMit

values NNIS NNMH IS MH

E(X1) 1.459 1.487 1.504 1.472 1.433 1.468 1.477 1.464 1.467

(num. std. error) (0.019) (0.015)

[RNE] [0.896] [0.649]

E(X2) 1.459 1.450 1.434 1.444 1.490 1.454 1.436 1.459 1.458

(num. std. error) (0.019) (0.016)

[RNE] [0.885] [0.619]

σ(X1) 1.234 1.239 1.247 1.233 1.229 1.239 1.237 1.236 1.245

σ(X2) 1.234 1.239 1.235 1.223 1.244 1.233 1.234 1.242 1.235

ρ(X1, X2) -0.760 -0.764 -0.766 -0.755 -0.757 -0.758 -0.757 -0.759 -0.759

total time 257.0 s 257.0 s 66.5 s 79.9 s 81.3 s 85.6 s 2.0 s 2.0 s

time construction NN 225.2 s 225.2 s 62.6 s 62.6 s 62.6 s 62.6 s 1.1 s 1.1 s

time sampling 31.8 s 31.8 s 3.9 s 17.3 s 18.7 s 23.0 s 0.9 s 0.9 s

draws 5000 5000 10000 40000 80000 80000 10000 10000

time/draw 6.4 ms 6.4 ms 0.39 ms 0.43 ms 0.23 ms 0.29 ms 0.09 ms 0.09 ms

5% weights 6.3 % 7.2 % 7.2 % 12.9 %

coeff. var. weights 0.382 0.239 0.251 0.840

acc. rate 84.6% 90.0 % 92.7 % 52.7 %

serial corr. X1 0.15 0.65 0.73 0.90 0.92 0.45

serial corr. X2 0.14 0.67 0.72 0.84 0.86 0.45

and the IS or MH method require altogether 2.0 seconds, whereas the other methods take

much more time to construct a network and to generate an adequate sample.

The NNIS and NNMH algorithms are relatively slow, as relatively many hidden neu-

rons (H = 50) are required to provide a reasonable Type 1 neural network approximation,

which makes optimization rather time consuming; also sampling from a Type 1 network

is rather slow as this requires a numerical method, such as the Newton-Raphson method,

in order to perform the inverse transformation method.

The GiAuVaNNIS and GiAuVaNNMH algorithms are slightly slower than the GiNNIS

and GiNNMH methods; although drawing a point takes more time in the latter methods,

the introduction of the auxiliary variables increases the serial correlation in the Gibbs

sequence in such a way that many more draws are required to reach convergence.

We conclude that the Type 3 (mixture of t) network clearly outperforms the other two

networks, both in the construction and sampling process. The result that the optimization
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(or learning) process of the Type 3 network, a Radial Basis Function (RBF) network, takes

less time than those of the Type 1 and 2 networks, a Multi-Layer Perceptron (MLP) and

a network whose output is the exponent of a MLP’s output, is typical. The reason is that

in RBF networks the optimization process is usually cleverly divided into different phases

concerning different (groups of) weights, whereas in MLP’s all weights are generally jointly

optimized/learned.

The methods using Type 2 networks, especially the GiNNIS procedure (importance

sampling using the Gibbs sampler without auxiliary variables), may be competitive if

(much) better optimization techniques are used. Several different optimization methods

than back-propagation have been discussed in literature. For example, White (1989)

shows that a particular back-propagation implementation is not efficient and discusses a

two-step procedure that has better convergence properties. Application of optimization

techniques that are specifically designed for neural network learning to the Type 1 and 2

networks is a topic for further research.

The possibility of including auxiliary variables in the Gibbs sampler of the Type 2

network may seem useless given the results of the experiment in this section. However,

the auxiliary variable Gibbs sampler could also be used in a network whose output is the

exponent of a certain ‘full’ 4-layer network (with multiple neurons in both the first and

second hidden layer), using the piecewise-linear activation function in the first hidden

layer and an arbitrary (analytically invertible) sigmoid (e.g. the logistic or arctangent

function) in the second hidden layer. This possibility, which may be especially interesting

when combined with specific neural network learning methods, is left as another topic for

further research.

The Type 1 network has the interesting property that the integral of its functional form

can be evaluated analytically. Next to that also the moments can be derived analytically,

see appendix 2.A.3. This means that if one can construct a Type 1 neural network that

provides an (almost) perfect fit to the target density, then one can analytically evaluate

the moments of the target distribution without the use of any Monte Carlo integration

procedure. This approach is considered by Hoogerheide, Kaashoek and Van Dijk (2003b).

However, in practice it will often be extremely difficult and/or time consuming to to find

a network with almost perfect fit.

Still, an interesting question is whether a useful deterministic integration method could

be based on this Type 1 neural network function; for example by dividing the region of

integration into suitable subregions, constructing a Type 1 network that (approximately)

interpolates the integrand on each subregion, and adding the analytically evaluated inte-
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grals on the subregions. Note that the same kind of idea is the foundation of well-known

deterministic integration rules such as the trapezoid rule and Simpson’s rule, in which

the integrals of interpolating polynomial for subregions are added. Notice that for the

Type 1 network the integrand does not have to be a density; basically, it can be used to

approximate any (square) integrable function.

2.5 Comparison of performance of neural networks

with other methods

In the previous section the performance of the three types of neural networks was com-

pared. The Type 3 neural network sampling method – in which an adaptive mixture of t

densities (AdMit) was constructed – clearly outperformed the methods based on the other

two methods. In this section we consider the posterior distributions in some instrumental

variable (IV) regression models for simulated data in order to compare the performance

of the AdMit procedure with some other sampling methods. Consider the following possi-

bly overidentified IV model, also known as the incomplete simultaneous equations model

(INSEM). Following Zellner et al. (1988), let:

y1 = y2β + ε (2.28)

y2 = Xπ + v (2.29)

where y1 is a (T × 1) vector of observations on the endogenous variable that is to be

explained, y2 is a (T × 1) vector of observations on the explanatory endogenous variable,

X is a (T ×k) matrix of weakly exogenous variables; β is a scalar structural parameter of

interest, π is a (k × 1) vector of reduced form parameters. Assume that the rows of the

matrix of error terms (ε v) are independently normally distributed with (2×2) covariance

matrix Σ with elements σij (i, j = 1, 2). The following non-informative prior density is

specified:

p(β, π, Σ) ∝ |Σ|−h/2 with h > 0, (2.30)

where the value h = 3 is chosen, which leads to the following joint posterior kernel of

(β, π):

p(β, π|y1, y2, X) ∝
∣∣∣∣∣

(y1 − y2β)′(y1 − y2β) (y1 − y2β)′(y2 − Xπ)

(y2 − Xπ)′(y1 − y2β) (y2 − Xπ)′(y2 − Xπ)

∣∣∣∣∣

−T/2

. (2.31)
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The IV model and the properties of the prior and posterior densities given above will be

discussed more elaborately in chapters 4 and 5. Note that in the notation of the previous

sections the parameters of interest are given by θ = (β, π); the number of elements of θ is

k + 1 instead of k.

First, consider the joint posterior of π and β in (2.31) for a data set simulated from

the model (2.28) - (2.29) with k = 1 instrument, T = 100 observations, ‘true’ values

of parameters β = 0, π = 0.1 (weak identification), σ11 = σ22 = 1, σ12 = 0.99 (strong

endogeneity); the elements of x are i.i.d. N(0,1) draws. This posterior density is truncated

to the region13

{(π, β)| − 0.25 ≤ π ≤ 0.25,−10 ≤ β ≤ 10} . (2.32)

The left panel of Figure 2.8 shows its contour plot on this region (2.32). The contour

plot of the Type 3 neural network approximation14 is given by the middle panel of this

figure; this contour plot confirms that this class of neural networks is able to provide

reasonable approximations to a wide class of (possibly multi-modal) target densities. In

this example the Gibbs sampler failed: the Gibbs sequence remained in one of the two

ridges for at least 100 million draws, yielding a scatter plot like the right panel of Figure

2.8. Of course, one can draw from the other ridge by choosing a different initial value,

but it is not a trivial issue how to weight the results from the two ridges, i.e. it is not

trivial to determine which part of the posterior probability mass is contained in each of

both ridges.

Second, consider the joint posterior of π = (π1, π2)
′ and β in (2.31) for T = 50

simulated data points from the model (2.28) - (2.29) with β = 0, σ11 = σ22 = 1, π1 =

π2 = 0.1 (weak identification) and σ12 = 0.99 (strong endogeneity), with k = 2 vectors of

instruments consisting of i.i.d. N(0,1) draws, truncated to the region

{(π1, π2, β)| − 0.5 ≤ πi ≤ 0.5 (i = 1, 2),−10 ≤ β ≤ 10} . (2.33)

Figure 2.9 shows the shape of a highest posterior density (HPD) credible set of (π1, π2, β)

in the region (2.33) for this simulated data set.

We use our AdMit procedure to construct a Type 3 neural network approximation,

a mixture of 15 Student t distributions (using N = 5000 points in the construction

process), and use 1000000 draws from it in IS and MH; see Table 2.5. The reported

13For this exactly identified case, using the prior in (2.30), it is necessary to restrict the posterior

density to a certain region, as otherwise the kernel in (2.31) corresponds to an improper density.
14We constructed a mixture of 8 Student t distributions with a corresponding sample of IS weights

with coefficient of variation of 2.1.
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Figure 2.8: Contour plots in the π × β plane: joint posterior of π and β in IV model

for simulated data set with π = 0.1, ρ = 0.99 (left), and its Type 3 neural network

approximation (middle); scatter plot of sample obtained by the Gibbs sampler (right)

computing times correspond to an AMD AthlonTM 1.4 GHz processor. We have repeated

the algorithms 20 times; Table 2.5 shows the standard deviations of the 20 estimates

of E(π1), E(π2) and E(β). The table also shows numerical standard errors and the

corresponding relative numerical efficiency (RNE), see Geweke (1989) (or the previous

section for a short explanation).

The performance of AdMit-IS (in the same computing time) is compared with IS using

a unimodal importance density, the Student t distribution with ν = 1 degree of freedom.

In order to give the unimodal density a fair chance, the mode and scale are first iteratively

updated four times as the estimated mean and covariance matrix of the target distribution

in the previous step. The results are in Table 2.5. AdMit-IS gives standard deviations of

the 20 estimates of E(π1), E(π2), E(β) that are 2.3, 2.0, 2.2 times as small, respectively,

while the numerical standard errors are 1.9, 1.9, 3.4 times as small for AdMit-IS. Also

notice the huge differences between the RNEs (especially for the estimate of E(β)), the

total weights of the 5% most influential points and the coefficients of variation of the

weights in the two IS methods.

We compare the performance of AdMit-MH with the independence chain MH algo-

rithm using a Student t distribution with ν = 1 degree of freedom, and with the random

walk (RW) Metropolis-Hastings algorithm with candidate steps from a t1 distribution.

The scale (and mode) are first iteratively updated 4 times as the estimated covariance

matrix (and mean) of the target distribution in the previous step. The results are in Table

2.5. AdMit-MH yields standard deviations of the 20 estimates of E(π1), E(π2), E(β) that

are 1.9, 1.9, 3.6 times smaller than t1 (independence chain) MH, and 1.6, 1.5, 1.3 times
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Figure 2.9: HPD credible set for parameters π1, π2, β in IV model (2.28) - (2.29) for

a simulated data set from this model with strong endogeneity (ρ = 0.99) combined with

weak identification (π1 = π2 = 0.1; left), and a ‘highest candidate density’ set for the

mixture-of-t candidate density (right).

smaller than RW MH. Also note that AdMit-MH has much higher acceptance rate and

lower (first order) serial correlations in the MH chain.

Comparing the standard deviations of the estimates of E(π1), E(π2), E(β) in the

five algorithms, AdMit-IS performs best: its standard deviations are about 1.5 times

smaller than those of AdMit-MH, and at least twice as small as IS/MH with a t1 impor-

tance/candidate density or the RW MH algorithm.

The Gibbs sampler failed in this example: the Gibbs sequence remained in one of the

two ridges for 25000000 draws (taking 1039 s).

We conclude that in this example the AdMit approach outperforms four competing

algorithms.

Finally, consider the joint posterior of π and β in (2.31) for a data set simulated from

the model (2.28) - (2.29), with k = 1 instrument, similar to the first simulated data set in

this section; however, with ‘true’ values of parameters π = 1 (strong identification) and

σ12 = 0 (no endogeneity). The posterior in (2.31) is truncated to the region

{(π, β)| − 0.5 ≤ π ≤ 1.5,−10 ≤ β ≤ 10} . (2.34)

Figure 4.1 shows its contour plot, which shows an elliptical shape. We construct a Type

3 neural network approximation, a mixture of two Student t distributions. The same

simple heuristic rule as in the previous section is used to obtain estimates of the means
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Table 2.5: Sampling results for the non-elliptically shaped posterior distribution in the IV

regression (2.28) - (2.29) with k = 2 instruments for simulated data with π = (0.1, 0.1)′

(weak identification), σ12 = 0.99 (strong endogeneity)

true AdMit AdMit adaptive adaptive adaptive

values IS MH t1 IS t1 MH RW MH

E(π1) 0.0199 0.0200 0.0195 0.0203 0.0193 0.0206

(st.dev. 20×) (1.2 10−4) (1.9 10−4) (2.8 10−4) (3.7 10−4) (2.9 10−4)

(num. std. error) (1.6 10−4) (3.1 10−4)

[RNE] [0.3622] [0.0032]

E(π2) 0.0157 0.0158 0.0153 0.0161 0.0152 0.0165

(st.dev. 20×) (1.4 10−4) (2.0 10−4) (2.8 10−4) (3.7 10−4) (3.0 10−4)

(num. std. error) (1.6 10−4) (2.9 10−4)

[RNE] [0.3586] [0.0034]

E(β) 0.6404 0.6357 0.6531 0.6327 0.6291 0.6121

(st.dev. 20×) (0.0070) (0.0110) (0.0154) (0.0394) (0.0141)

(num. std. error) (0.0065) (0.0220)

[RNE] [0.2211] [0.0006]

σ(π1) 0.0946 0.0945 0.0943 0.0946 0.0945 0.0946

σ(π2) 0.0935 0.0934 0.0934 0.0935 0.0938 0.0935

σ(β) 3.0643 3.0745 3.0713 3.0682 3.0447 3.0816

total time 927 s 927 s 1067 s 1160 s 1138 s

time construction NN 598 s 598 s

time adapting scale 88 s 106 s 83 s

time sampling 329 s 329 s 979 s 1054 s 1055 s

draws 1 106 1 106 30 106 30 106 50 106

time/draw 0.33 ms 0.33 ms 0.03 ms 0.04 ms 0.02 ms

coeff. var. IS weights 1.47 21.6

5% largest IS weights 27.3 % 99.999 %

acceptance rate MH 32.5 % 0.4 % 2.3 %

serial corr. π1 0.66 0.995 0.994

serial corr. π2 0.66 0.995 0.994

serial corr. β 0.72 0.996 0.996
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Table 2.6: Sampling results for the elliptically shaped posterior distribution in the IV

regression (2.28) - (2.29) with k = 1 instrument for simulated data with π = 1 (strong

identification) and σ12 = 0 (no endogeneity)

true AdMit AdMit Gibbs RW MH IS MH IS MH

values IS MH t1 t1 normal normal

E(π) 0.908 0.908 0.911 0.910 0.908 0.908 0.911 0.909 0.909

(num. std. error) (0.004) (0.004) (0.001)

[RNE] [0.691] [0.691] [0.910]

E(β) -0.028 -0.025 -0.029 -0.029 -0.029 -0.025 -0.032 -0.026 -0.027

(num. std. error) (0.004) (0.004) (0.002)

[RNE] [0.668] [0.668] [0.863]

σ(π) 0.089 0.093 0.089 0.091 0.090 0.093 0.088 0.087 0.087

σ(β) 0.106 0.105 0.102 0.104 0.105 0.105 0.105 0.102 0.102

corr(π, β) 0.017 0.041 -0.013 0.086 0.021 0.041 0.015 -0.019 -0.020

total time 20.8 s 20.9 s 0.03 s 0.64 s 0.03 s 0.11 s 0.11 s 0.12 s

time construction NN 20.7 s 20.7 s

time sampling 0.05 s 0.16 s 0.03 s 0.64 s 0.03 s 0.11 s 0.11 s 0.12 s

draws 1000 2500 1000 40000 1000 2500 4000 4000

time/draw 0.05 ms 0.06 ms 0.03 ms 0.02 ms 0.03 ms 0.04 ms 0.03 ms 0.03 ms

coeff. var. IS weights 0.797 0.797 0.163

5% largest IS weights 11.1 % 11.1 % 7.5 %

acceptance rate MH 58.6 % 39.0 % 60.5 % 93.5 %

serial corr. π 0.40 -0.02 0.85 0.38 0.11

serial corr. β 0.39 -0.04 0.85 0.36 0.14
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with (roughly) a precision of 2 decimals: for each algorithm we construct two samples, and

we say that convergence has been achieved if the difference between the two estimates of

E(π) and the difference between the two estimates of E(β) are both less than 0.005.15 The

results are in Table 2.6. We compare AdMit’s performance with the Gibbs sampler, the

random walk MH algorithm with candidate steps from a t1 distribution with scale matrix

equal to minus the inverse Hessian of the log-posterior kernel evaluated at its mode, and

IS/MH with a t1 or normal candidate density around the mode of the target distribution.

In this case of an elliptical target distribution the Gibbs sampler and the methods using

a unimodal candidate density all perform well. Although the neural network approach is

feasible in this example, it is slower than several competing algorithms. This emphasizes

that different sampling methods dominate in different cases; the neural network approach

is especially useful for target densities with highly non-elliptical contours.

2.6 Conclusions

Evaluating integrals is a crucial step in Bayesian inference. In case one desires or needs

to use importance sampling (IS) or the (independence chain) Metropolis-Hastings (MH)

algorithm, it is important that the target (posterior) density is roughly mimicked by the

candidate density. If the target distribution is highly non-elliptical (e.g. displaying multi-

modality), a unimodal, elliptical candidate distribution such as the normal or Student-t

distribution may yield results very slowly or may even be unreliable in the sense that

certain modes are completely ‘missed’.

In order to perform IS or the MH algorithm in cases of highly non-elliptical target (pos-

terior) distributions, we have introduced a class of neural network sampling algorithms.

In these algorithms neural network functions are used as an importance or candidate

density in IS or the MH algorithm. Neural networks are natural importance or candidate

densities, as they have a universal approximation property and are easy to sample from.

We have shown how to sample from three types of neural networks. One can sample

directly from a certain 3-layer network. Using a 4-layer network one can, depending on

the specification of the network, either use a Gibbs sampling approach or sample directly

from a mixture of distributions. A key step in the proposed class of methods is the

15Like in the example of the previous section, the number of draws required may depend on an initial

value such as the seed of the random number generator; for each algorithm the experiment has been

repeated several times and the results are robust in the sense that in most cases convergence had been

reached after the reported number of draws.
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construction of a neural network that approximates the target density accurately. The

methods have been tested on an illustrative example; the 4-layer network specified as the

mixture of t distributions performed the best among the proposed sampling procedures.

In another experiment concerning a bimodal posterior distribution in an IV regression for

a simulated data set the approach using a mixture of t distributions provided (in the same

computing time) more accurate results than IS with a unimodal importance density or

a random walk Metropolis-Hastings algorithm, whereas the Gibbs sampler failed in this

example. These results indicate the feasibility and the possible usefulness of the neural

network approach.

We end this chapter with some remarks on how to apply and to extend the proposed

techniques. First, one may use these results in model selection and model averaging

and investigate the effect of using accurate non-elliptical credible sets instead of naive or

asymptotic sets.

Second, one may consider other ways of specifying and estimating neural networks.

We mention here the following possible extensions. One may pursue the construction of

well-behaved neural networks with other activation functions which are more smooth than

the piecewise-linear one. We noted in section 2 that it is possible to perform auxiliary

variable Gibbs sampling from a 4-layer neural network density with a logistic function or

scaled arctangent instead of the piecewise-linear function. One may also investigate the

effects of substituting the exponential function in the second hidden layer by a different

function such as the logistic function. One may also, as a first step, transform the posterior

density function to a more regular shape. This line of research is recently pursued by e.g.

Bauwens et al. (2004) in a class of adaptive direction sampling methods using radial-

basis functions (ARDS). A combination of ADS and neural network sampling may be of

interest. In practice, one also encounters cases where only part of the posterior density

is ill-behaved. Then one may combine the neural network approach for the ‘difficult

part’ with a Gibbs sampling approach for the regular part of the model. Another area

of further research is to consider different flexible candidate density functions involving

Hermite polynomials, see e.g. Gallant and Tauchen (1993) and the references cited there.

Also, more sophisticated Monte Carlo methods like bridge sampling, see e.g. Meng and

Wong (1996) and Frühwirth-Schnatter (2004), may be explored in combination with neural

networks.

Third, more experience is needed with empirical econometric models like the models of

local average treatment effects, see Imbens and Angrist (1994), or the business cycle mod-

els as specified by Hamilton (1989) and Paap and Van Dijk (2003), or stochastic volatility
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models as given by Shephard (1996), and dynamic panel data models; see Pesaran and

Smith (1995).

Fourth, the neural network approximations proposed in this chapter may be useful for

modelling such processes as volatility in financial series, see e.g. Donaldson and Kamstra

(1997), and for evaluating option prices, see Hutchinson, Lo and Poggio (1994).

2.A Derivations for Type 1 (3-layer) neural network

Appendix 2.A.1 gives analytical expressions for the integrals of the arctangent function.

Appendix 2.A.2 shows how these expressions are used in order to sample from the Type

1 (3-layer) neural network distribution. In appendix 2.A.3 these expressions are used

to obtain analytical expressions for the moments of the Type 1 (3-layer) neural network

distribution.

2.A.1 Analytical expression for the integrals of the arctangent

function

Theorem A.1: The n-th integral of the arctangent function Jn(x)

Jn(x) ≡
∫
· · ·
∫

arctan(x)dx · · · dx

is given by

Jn(x) = pn(x) arctan(x) + qn(x) ln(1 + x2) + rn(x), (2.35)

where pn and qn are polynomials of degree n and n − 1, respectively:

pn(x) = pn,0 + pn,1 x + · · · + pn,n−1 xn−1 + pn,n xn

qn(x) = qn,0 + qn,1 x + · · ·+ qn,n−1 xn−1

The coefficients pn,k (k = 0, 1, . . . , n) and qn,k (k = 0, 1, . . . , n − 1) are given by:

pn,k =






(−1)(n−k)/2

(n−k)!k!
if n − k is even

0 if n − k is odd

qn,k =






(−1)(n−k+1)/2

2(n−k)!k!
if n − k is odd

0 if n − k is even

(2.36)

The polynomial rn (of degree at most n − 1) plays the role of the integrating constant.
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Proof: We will prove this theorem by induction. First, note that for n = 1 the proposition

holds, as we have by partial integration:
∫

arctan(x)dx = x arctan(x) − 1

2
ln(1 + x2), (2.37)

Now suppose that our proposition holds for a certain positive integer n. Then we have to

show that this implies that the proposition also holds for n + 1.

First, note that for any non-negative integer k partial integration yields:
∫

xk arctan(x)dx =
1

k + 1
xk+1 arctan(x) − 1

k + 1

∫
xk+1

1 + x2
dx,

(2.38)
∫

xk ln(1 + x2)dx =
1

k + 1
xk+1 ln(1 + x2) − 2

k + 1

∫
xk+2

1 + x2
dx.

Second, notice that a partial fraction decomposition yields:

∫
xm

1 + x2
dx =






(−1)m/2 arctan(x) +
∑(m−2)/2

i=0
(−1)i

m−1−2i
xm−1−2i if m is even,

(−1)(m−1)/2 ln(1+x2)
2

+
∑(m−3)/2

i=0
(−1)i

m−1−2i
xm−1−2i if m is odd.

(2.39)

We may omit the polynomials in (2.39), since these would eventually be absorbed by the

irrelevant polynomial rn in formula (2.35), anyway. The induction assumption is that for

a certain n it holds that:

Jn(x) = (pn,0 + pn,1 x + . . . + pn,n xn) arctan(x)

+
(
qn,0 + qn,1 x + . . . + qn,n−1 xn−1

)
ln(1 + x2) (2.40)

where the coefficients pn,k (k = 0, 1, . . . , n) and qn,k (k = 0, 1, . . . , n − 1) are given by

(2.36). It follows from (2.38) and (2.39) that:

Jn+1(x) =

∫
Jn(x)dx

=

(
pn+1,0 + pn,0 x +

pn,1

2
x2 + . . . +

pn,n

n + 1
xn+1

)
arctan(x)

+
(
qn+1,0 + qn,0 x +

qn,1

2
x2 + . . . +

qn,n−1

n
xn
)

ln(1 + x2)

Note that Jn+1(x) has the shape of formula (2.35) with pn+1,k = pn,k−1/k (k = 1, . . . , n+1)

and qn+1,k = qn,k−1/k (k = 1, . . . , n). Combining this with the induction assumption, it is

easy to see the validity of the formulas for pn+1,k and qn+1,k for k ≥ 1. Now we only have

to prove that pn+1,0 and qn+1,0 are also given by (2.36). From (2.38) and (2.39) we have:

pn+1,0 =
∑

{k|1≤k≤n;k odd}

−(−1)(k+1)/2

k + 1
pn,k +

∑

{k|0≤k≤n−1;k even}

−2(−1)(k+2)/2

k + 1
qn,k. (2.41)
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If n is even, all pn,k’s and qn,k’s in the two summations of (2.41) are equal to zero, so that

in that case pn+1,0 = 0. If n is odd, we have:

pn+1,0 =
∑

{k|1≤k≤n;k odd}

− (−1)(n+1)/2

(n − k)!(k + 1)!
+

∑

{k|0≤k≤n−1;k even}

− (−1)(n+3)/2

(n − k)!(k + 1)!
, (2.42)

which can be rewritten as:

pn+1,0 =
(−1)(n+1)/2

(n + 1)!

n∑

k=0

(−1)k

(
n + 1

k + 1

)
=

(−1)(n+1)/2

(n + 1)!
, (2.43)

where the last equality of (2.43) follows from Newton’s binomium. The proof for qn+1,0

is similar. We conclude that pn+1,0 and qn+1,0 are also given by (2.36), so that we have

proved the theorem by induction. Q.E.D.

2.A.2 Marginal and conditional CDF of the Type 1 (3-layer)

neural network density

Suppose the random vector X = (X1, . . . , Xn)
′ has the following density p(x1, . . . , xn):

p(x1, . . . , xn) =






nn(x1, . . . , xn) if xi ≤ xi ≤ x̄i ∀ i = 1, . . . , n

0 else

(2.44)

where [xi, x̄i] is the interval to which the variable xi (i = 1, 2, . . . , n) is restricted, and

where nn(x1, . . . , xn) is the following three-layer neural network function:

nn(x1, . . . , xn) =
H∑

h=1

ch

π
arctan(a′

hx + bh) +
1

2

H∑

h=1

ch + d. (2.45)

Then the cumulative distribution function of X is given by:

CDFX(x̃1, . . . , x̃n) =

∫ x̃n

xn

· · ·
∫ x̃2

x2

∫ x̃1

x1

nn(x1, . . . , xn)dx1dx2 · · · dxn

=
H∑

h=1

ch

π

∫ x̃n

xn

· · ·
∫ x̃2

x2

∫ x̃1

x1

arctan(a′
hx + bh)dx1dx2 · · ·dxn

+

(
1

2

H∑

h=1

ch + d

)
x1x2 · · ·xn. (2.46)
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Using the fact that dx1 = d(a′
hx + bh)/ah1 (for constant values of x2, . . . , xn), we make

the following change of variables:

∫ x̃1

x1

arctan(a′
hx + bh)dx1 =

1

ah1

∫ ah1x̃1+a′

h,−1x−1+bh

ah1x1+a′

h,−1x−1+bh

arctan(a′
hx + bh)d(a′

hx + bh)

=
1

ah1

[
J1(ah1x̃1 + a′

h,−1x−1 + bh) − J1(ah1x1 + a′
h,−1x−1 + bh)

]
,

where we define ah,−1 = (ah2, . . . , ahn)′ and x−1 = (x2, . . . , xn)′. If we continue in this

way, we obtain the following formula:

∫ x̃n

xn

· · ·
∫ x̃2

x2

∫ x̃1

x1

arctan(a′
hx + bh)dx1dx2 · · ·dxn = (2.47)

=
1

ah1ah2 · · ·ahn

1∑

D1=0

· · ·
1∑

Dn=0

(−1)D1+D2+···+Dn Jn(ah1x1,D1 + · · ·+ ahnxn,Dn + bh)

where we define xi,0 = x̃i and xi,1 = xi (i = 1, 2, . . . , n), the upper and lower bounds of

the integration intervals. The primitive Jn(x) is given by Theorem A.1 in appendix A.1.

Substituting (2.47) into (2.46) yields:

CDFx(x̃1, . . . , x̃n) =

(
1

2

H∑

h=1

ch + d

)
x1x2 · · ·xn+

+

H∑

h=1

ch

πah1ah2 · · ·ahn

1∑

D1=0

· · ·
1∑

Dn=0

(−1)D1+···+Dn Jn

(
n∑

i=1

ahixi,Di
+ bh

)
. (2.48)

The marginal distribution functions CDFXj
(xj) (j = 1, . . . , n) are now obtained by taking

x̃i = x̄i ∀i = 1, . . . , n; i 6= j:

CDFXj
(xj) = CDFx(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄n). (2.49)

The conditional CDF of Xj given Xj+1, . . . , Xn is derived in a similar way, simply by

substituting
∑n

i=j+1 ahixi + bh for bh and treating the neural network as a function of

x1, . . . , xj .

As we have explicit formulas for the marginal and conditional distribution functions, it

is easy to sample a random vector from a three-layer neural network density with (scaled)

arctangent activation function. We can use the numerical inverse transformation method

in the following way:

Step 1: Draw n independent U(0,1) variables U1, U2, . . . , Un.
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Step 2: Draw Xn from its marginal distribution by computing the value of Xn such that

CDFXn(Xn) = Un (using, for example, the bisection method).

Step 3: For j = n − 1, n − 2, . . . , 1 iteratively draw Xj from its conditional distribution on

Xj+1, . . . , Xn by computing the value of Xj such that CDF (Xj|Xj+1, . . . , Xn) = Uj .

2.A.3 Moments of the Type 1 (3-layer) neural network distri-

bution

Suppose the vector X = (X1, . . . , Xn)
′ has the three-layer neural network density p(x1, . . . , xn)

given by (2.44) and (2.45). Then the expectation of Xk
n (k = 1, 2, . . .) is given by:

E(Xk
n) =

=

∫ x̄n

xn

∫ x̄n−1

xn−1

· · ·
∫ x̄1

x1

xk
n nn(x1, . . . , xn)dx1 · · ·dxn−1dxn

=
H∑

h=1

ch

πah1 · · ·ah,n−1

1∑

D1=0

· · ·
1∑

Dn−1=0

[
(−1)D1+···+Dn−1× (2.50)

×
∫ x̄n

xn

xk
n Jn−1

(
n−1∑

i=1

ahixi,Di
+ ahnxn + bh

)
dxn

]

+

(
1

2

H∑

h=1

ch + d

)
1

k + 1
(x̄1 − x1) · · · (x̄n−1 − xn−1)(x̄

k+1
n − xk+1

n ),

where we define xi,0 = x̄i and xi,1 = xi (i = 1, 2, . . . , n − 1), the upper and lower bounds

of the integration intervals. We now make use of the following theorem:

Theorem A.2: If the n-th integral of a certain function f : R → R is given by Jn : R → R,

then it holds for ah, x ∈ Rn, bh ∈ R and k = 0, 1, 2, . . . that:

∫
xk

i Jn(a′
hx + bh)dxi =

1

ahi

k∑

m=0

(
− 1

ahi

)m
k!

(k − m)!
xk−m

i Jn+1+m(a′
hx + bh). (2.51)

Proof: We will prove this theorem by induction with respect to k. First, note that for

k = 0 we have:
∫

Jn(a′
hx + bh)dxi =

1

ahi

∫
Jn(a′

hx + bh)d(a′
hx + bh) =

1

ahi
Jn+1(a

′
hx + bh),

which clearly corresponds to Theorem A.2 for k = 0. Now suppose that our proposition

holds for a certain nonnegative integer k. Then we have to show that this implies that

the proposition also holds for k + 1.
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Partial integration with xk+1
i as the factor to be differentiated yields:

∫
xk+1

i Jn(a′
hx + bh)dxi = xk+1

i

1

ahi
Jn+1(a

′
hx + bh)−

k + 1

ahi

∫
xk

i Jn+1(a
′
hx + bh)dxi. (2.52)

The induction assumption is that Theorem A.2 holds for the value k. Using this induction

assumption we rewrite the second term of (2.52) as:

− 1

ahi
(k + 1)

∫
xk

i Jn+1(a
′
hx + bh)dxi =

=
1

ahi

k+1∑

j=1

(
− 1

ahi

)j
(k + 1)!

(k + 1 − j)!
xk+1−j

i Jn+1+j(a
′
hx + bh) (2.53)

Adding (2.53) to the first term of (2.52) yields:

∫
xk+1

i Jn(a′
hx + bh)dxi =

1

ahi

k+1∑

j=0

(
− 1

ahi

)j
(k + 1)!

(k + 1 − j)!
xk+1−j

i Jn+1+j(a
′
hx + bh)

which is just equation (2.51) with k + 1 instead of k. We conclude that we have proved

Theorem A.2 by induction. Q.E.D.

Substituting equation (2.51) of Theorem A.2 into (2.50) now yields E(Xk
n), which can be

easily adjusted to the general case of E(Xk
i ) (i = 1, 2, . . . , n) by taking ahi and xi instead

of ahn and xn:

E(Xk
i ) =

H∑

h=1

ch

πah1 · · ·ahn

1∑

D1=0

· · ·
1∑

Dn=0

[
(−1)D1+···+Dn× (2.54)

×
k∑

m=0

(
− 1

ahi

)m
k!

(k − m)!
xk−m

i Jn+m

(
n∑

i=1

ahixi,Di
+ bh

)]

+

(
1

2

H∑

h=1

ch + d

)
1

k + 1
(x̄k+1

i − xk+1
i )

n∏

j=1;j 6=i

(x̄j − xj)
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In a similar fashion it can be derived that E(XiXj) (i, j = 1, 2, . . . , n; i 6= j) is equal to:

E(XiXj) =
H∑

h=1

ch

πah1 · · ·ahn

1∑

D1=0

· · ·
1∑

Dn=0

(−1)D1+···+Dn ×

×
[
xixjJn

(
n∑

i=1

ahixi,Di
+ bh

)

−ahixi + ahjxj

ahiahj
Jn+1

(
n∑

i=1

ahixi,Di
+ bh

)
(2.55)

+
1

ahiahj
Jn+2

(
n∑

i=1

ahixi,Di
+ bh

)]

+

(
1

2

H∑

h=1

ch + d

)
1

4
(x̄2

i − x2
i )(x̄

2
j − x2

j )

n∏

k=1;k 6=i,j

(x̄k − xk).

Using formulas (2.54) and (2.55), one can easily compute statistics of a three-layer feed-

forward neural network distribution, such as mean, variance, skewness, kurtosis, covari-

ances and correlations.

2.B Derivations for Type 2 (4-layer) neural network

Appendix 2.B.1 discusses how to draw from the Type 2 (4-layer) neural network distri-

bution using Gibbs sampling. Appendix 2.B.2 shows another way to draw from the Type

2 (4-layer) neural network: auxiliary variable Gibbs sampling.

2.B.1 Gibbs sampling from the Type 2 (4-layer) neural network

distribution

Suppose a density kernel of X ∈ Rn is given by

p(x) =

{
nn(x) if xi ∈ [xi, x̄i] ∀i = 1, . . . , n

0 else
(2.56)

where [xi, x̄i] is the interval to which Xi (i = 1, . . . , n) is restricted. Suppose the function

nn(x) corresponds to the following four-layer feed-forward neural network with n inputs

xi (i = 1, . . . , n), and H hidden neurons:

nn(x) = exp

(
H∑

h=1

ch plin

(
n∑

i=1

ahixi + bh

)
+ d

)
, (2.57)
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where plin : R → R is the following piecewise-linear function:

plin(x) =






0 x < −1/2

x + 1/2 −1/2 ≤ x ≤ 1/2

1 x > 1/2

(2.58)

We rewrite the neural network density nn(x) = nn(xj , x−j) as

nn(xj , x−j) ∝ exp

(
H∑

h=1

ch plin

(
ahjxj +

n∑

i=1,i6=j

ahixi + bh

))
,

which is a kernel of the conditional density of xj given x−j . For each hidden neuron h

(h = 1, . . . , H) there are two points xj where its input a′
hx + bh moves from one of the

intervals (−∞,−1/2), [−1/2, 1/2] and (1/2,∞) to another one:

ahjxj +
n∑

i=1,i6=j

ahixi + bh = ±1

2
⇔ xj =

1

ahj

(
±1

2
−

n∑

i=1,i6=j

ahixi − bh

)
. (2.59)

Consider only those ‘changing points’ x̃j,k (k = 1, . . . , m with m ≤ 2H) that are in the

interval of interest [xj, x̄j ], and order these m points such that:

x̃j,1 < x̃j,2 < · · · < x̃j,m−1 < x̃j,m

If we define x̃j,0 = xj and x̃j,m+1 = x̄j , we have m+1 intervals [x̃j,k, x̃j,k+1] (k = 0, 1, . . . , m)

on which a kernel of the conditional density of Xj given X−j is given by:

nn(xj , x−j) ∝ exp(ãkxj + b̃k) (2.60)

for certain constants ãk and b̃k (k = 0, 1, . . . , m). The primitive of (2.60) is given by

∫
exp(ãkxj + b̃k)dxj =






1
ãk

exp(ãkxj + b̃k) + Ck if ãk 6= 0

exp(b̃k)xj + Ck if ãk = 0.

where Ck (k = 0, 1, . . . , m) are integration constants that we specify in such a way that

the CDF starts at the value 0 and is continuous in xj . After this kernel of the conditional

CDF has been obtained, Xj is drawn from its conditional distribution using the inverse

transformation method: one draws U ∼ U(0, 1) and computes:

Xj =
log [ãk (S U − Ck)] − b̃k

ãk
or Xj =

S U − Ck

exp(b̃k)

depending on whether Xj falls in a region with ãk = 0 or not; S is the ‘scaling constant’

of the kernel, which is computed as the value of the kernel of the conditional CDF at x̄j .

Since it is easy to draw Xj conditional on X−j (j = 1, . . . , n), it is easy to perform

Gibbs sampling from the Type 2 (4-layer) neural network distribution.
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2.B.2 Auxiliary variable Gibbs sampling from the Type 2 (4-

layer) neural network distribution

Suppose a density kernel of X ∈ Rn is given by

p(x) =

{
nn(x) if xi ∈ [xi, x̄i] ∀i = 1, . . . , n

0 else
(2.61)

where [xi, x̄i] is the interval to which Xi (i = 1, . . . , n) is restricted. Suppose the function

nn(x) corresponds to the following four-layer feed-forward neural network with n inputs

xi (i = 1, . . . , n), and H hidden neurons:

nn(x) = exp

(
H∑

h=1

ch g

(
n∑

i=1

ahixi + bh

)
+ d

)
, (2.62)

where g : R → R is a monotonically increasing function taking its values in [0,1], which

is invertible on the interval (x, x̄) where it takes its values in (0,1). We will denote this

invertible function by g̃ : (x, x̄) → (0, 1) with inverse g̃−1 : (0, 1) → (x, x̄). Note that the

interval (x, x̄) may be equal to (−∞,∞). Examples of such a function g are the logistic,

the piecewise-linear and the scaled arctangent function.

Auxiliary variable Gibbs sampling is possible if the density kernel p can be decomposed

as follows:

p(x) ∝ π(x)
K∏

k=1

lk(x), (2.63)

where π is a density kernel from which sampling is easy, and lk (k = 1, . . . , K) are non-

negative functions of x ∈ Rn. The trick is that a set U = (U1, . . . , UK) of auxiliary

variables is introduced such that a kernel of the joint density of X and U is given by:

p(x, u) ∝ π(x)
K∏

k=1

I {0 < uk < lk(x)} . (2.64)

It is easily seen that (2.63) is a marginal density kernel corresponding to the joint density

(2.64). Therefore one can sample X ∼ p(x) by sampling both X and U from (2.64) and

forgetting U .

Kernels from the conditional distributions of X and U are easily obtained from the

joint density kernel:

p(x|u) ∝ π(x)I {lk(x) > uk, k = 1, . . . , K} (2.65)

p(u|x) ∝
K∏

k=1

I {0 < uk < lk(x)} (2.66)
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It follows from (2.65) and (2.66) that an iteration of the auxiliary variable Gibbs sampler

consists of drawing X from a truncated version of an ‘easy’ distribution with density

kernel π, and sampling Uk (k = 1, . . . , K) from K independent uniform distributions.

We rewrite (2.61) as:

p(x) ∝
n∏

i=1

I {xi < xi < x̄i}
H∏

h=1

exp

(
ch g

(
n∑

i=1

ahixi + bh

))
. (2.67)

which has the shape of (2.63) with

π(x) =
n∏

i=1

I {xi < xi < x̄i} , (2.68)

lh(x) = exp

(
ch g

(
n∑

i=1

ahixi + bh

))
for h = 1, . . . , H. (2.69)

where π(x) is the ‘easy’ density kernel of n independent variables Xi (i = 1, . . . , n) with

distribution U(xi, x̄i).

Drawing U conditionally on the values of X is straightforward. Combining (2.66) and

(2.69), it follows that the elements Uh (h = 1, . . . , H) are drawn independently from the

distributions:

Uh|X = x ∼ U

(
0, exp

[
ch g

(
n∑

i=1

ahixi + bh

)])
(2.70)

Drawing X conditionally on the values of U is a little harder. We choose to break up X

and sample the elements Xi (i = 1, . . . , n) conditionally on the values of U and the set of

all other elements X−i. Combining (2.65), (2.68) and (2.69), we derive a density kernel

of the conditional distribution of Xi given X−i and U :

p(xi|u, x−i) ∝ I {xi < xi < x̄i} I {lh(xi, x−i) > uh, h = 1, . . . , H} (2.71)

We now take a closer look at the inequalities lh(xi, x−i) > uh (h = 1, . . . , H). First,

we can rule out that ch = 0 or ahi = 0 for any h, since in that case we just delete the

involved hidden neuron. If we consider lh(xi, x−i) as a function of xi for given values of

x−i, denoted by lh,x−i
(xi), then the inverse l−1

h,x−i
(if it exists) is given by:

l−1
h,x−i

(uh) =
1

ahi

(
g̃−1

(
log(uh)

ch

)
−
(

n∑

j=1,j 6=i

ahjxj + bh

))
. (2.72)

Note that this inverse exists only if log(uh)/ch ∈ (0, 1), and that the cases in which the

inverse l−1
h,x−i

does not exist are the cases in which hidden neuron h implies no restriction
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for xi. Also notice that this implies an upper bound for xi if chahi > 0 and a lower bound

if chahi < 0.

We conclude that (2.71) is a density kernel of the distribution

Xi|U = u, X−i = x−i ∼ U(xi,LB(u, x−i), xi,UB(u, x−i)), (2.73)

with

xi,LB(u, x−i) = max

{
max

1≤h≤H

{
l−1
h,x−i

(uh)

∣∣∣∣chahi > 0,
log(uh)

ch
∈ (0, 1)

}
, xi

}

xi,UB(u, x−i) = min

{
min

1≤h≤H

{
l−1
h,x−i

(uh)

∣∣∣∣chahi < 0,
log(uh)

ch
∈ (0, 1)

}
, x̄i

}
,

where l−1
h,x−i

(uh) is given by (2.72), and where [xi, x̄i] is the interval to which Xi (i =

1, . . . , n) is a priori restricted.

The auxiliary variable Gibbs sampling procedure is now given by:

Initialization: Choose feasible x0 = (x0
1, . . . , x

0
n).

Do for j = 1, 2, . . . , m

Do for h = 1, 2, . . . , H

Obtain uj
h ∼ Uh|X = xj−1 from (2.70).

Do for i = 1, 2, . . . , n

Obtain xj
i ∼ Xi|U = uj, X−i = xj−1

−i from (2.73).

Here xj−1
−i denotes

xj−1
−i = xj

1, . . . , x
j
i−1, x

j−1
i+1 , . . . , xj−1

n ,

the set of all components except xi at their current values. Note that this procedure only

requires drawing from uniform distributions, which is done easily and fast.



Chapter 3

Neural network sampling methods:

improvements and strategies

Chapter 3 is based on Hoogerheide and Van Dijk (2006a).

3.1 Introduction

In chapter 2 a class of neural network sampling methods was proposed. It was shown

that in an illustrative example the AdMit method, in which an Adaptive Mixture of

t distributions is used as a candidate distribution, performed best among the neural

network procedures. After that an example was given of a distribution for which the

AdMit method outperformed competing methods, importance sampling and (both) the

(independence chain and random walk) Metropolis-Hastings algorithm with a Student-t

candidate and Gibbs sampling, where the latter got stuck in one of two far spaced modes

for millions of draws. This chapter considers some changes that greatly improve the

performance of the AdMit method and discusses the situations in which neural network

sampling methods can be useful in general.

Section 3.2 discusses some improvements in both the construction and sampling parts

of the AdMit procedure; the changes make the algorithm both faster and more reliable

(in the sense of a quicker detection of distant modes). The effects of the improvements

are illustrated in the example of a bimodal 3-dimensional posterior in an IV model for

simulated data, previously considered in section 2.5. In section 3.3 the improved AdMit

methods are applied to a 4-dimensional posterior distribution in a static 2-regime mixture

model for US real GNP growth rates. The performance of the AdMit methods is compared
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with two Gibbs sampling approaches, Gibbs sampling with data augmentation and the

griddy Gibbs sampler. In section 3.4 it is illustrated that neural network sampling methods

can especially be useful if one desires estimators of posterior characteristics with high

precision. Secton 3.5 contains concluding remarks, among which some suggestions to

extend the AdMit procedure.

3.2 Neural network sampling: some improvements

In section 2.5 a 3-dimensional example of a bimodal posterior target distribution in an

instrumental variable (IV) regression model for simulated data was considered. The com-

puting times (on an AMD AthlonTM 1.4 GHz processor) of importance sampling (IS) and

the (independence chain) Metropolis-Hastings (MH) algorithm with Type 3 neural net-

work candidate density were reported in Table 2.5, together with the computing times of

IS and independence chain MH with a unimodal candidate and a random walk chain MH

algorithm. These Adaptive Mixture of t procedures (AdMit-IS and AdMit-MH) outper-

formed the competing methods in the sense that they gave estimates of posterior means

with less variation (given the same amount of computing time).

In this section it is discussed how much computing time is required by the individual

steps of the AdMit-IS method, i.e. both the steps of the construction of an approximation,

a mixture of H Student-t densities qH(θ), to the target density (kernel) p̃(θ) and the

sampling method, where θ is a k × 1 vector containing the parameters of interest of

which one desires to evaluate properties such as the (posterior) mean and variance. This

information is used to improve the AdMit procedure in such a way that it becomes both

faster and more reliable in the sense of a higher probability that convergence to a ‘proper’

candidate density has been achieved at the end of the construction procedure. Note that

when the AdMit procedure is applied to a multimodal target with huge distances between

the modes, there is a chance that the resulting candidate will ‘miss’ certain modes, for

example as the algorithm that is used to optimize the weight function (upon which the

location of a new component in the candidate mixture is based) may get stuck in a

(globally suboptimal) local optimum. The improvements discussed in this section cause

a decrease of the chance that modes are ‘missed’ by the candidate density.
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Table 3.1: Computing times of steps in Adaptive Mixture of t densities (AdMit) construc-

tion procedure

computing time

procedure of improved

step chapter 2 procedure

0 initialization 0.1 s 0.7 s

1 evaluate (quality of) IS weights 11.0 s 74.6 s

2 determine mode µh, scale Σh of new component 0.6 s 50.3 s

3 optimize probabilities ph of components 585.7 s 34.5 s

4 draw points from candidate mixture 0.9 s 23.3 s

total 598.3 s 183.4 s

3.2.1 Improvements in the construction of an approximation to

the target density

Table 3.1 shows how the computing time required for the construction of a (mixture of

t) approximation to the non-elliptical 3-dimensional target density from section 2.5 is

divided between the individual steps of the procedure. These reported computing times

are the sums of the computing times required in the 15 iterations (yielding a mixture of 15

Student-t components). Note that a huge amount of time (98% of all computing time) is

required for optimizing the probabilities of the components in the candidate mixture, the

ph (h = 1, . . . , H), where H takes the values H = 2, . . . , 15 in the consecutive iterations of

the algorithm. The reason is that this concerns the optimization of a non-linear function

of ph (h = 1, . . . , H), E[w(θ)2]/E[w(θ)]2 where E[w(θ)] and E[w(θ)2] are given by:

E[w(θ)k] =
1

N

N∑

i=1

H∑

h=1

ph w
(
θi

h

)k
(k = 1, 2), w

(
θi

h

)
=

p̃(θi
h)∑H

l=1 pl t(θi
h|µl, Σl, ν)

. (3.1)

Evaluating the function E[w(θ)2]/E[w(θ)]2 itself already requires N H evaluations of the

target density (kernel) p̃(θi
h) (i = 1, . . . , N ; h = 1, . . . , H) and N H2 evaluations of the

t density t(θi
h|µl, Σl, ν) (i = 1, . . . , N ; h, l = 1, . . . , H); the computation of (analytically

evaluated) derivatives of E[w(θ)2]/E[w(θ)]2 with respect to ph (h = 1, . . . , H) takes even

more time.

One way to reduce the amount of computing time required for the construction of a

(mixture of t) approximation, is to use different numbers of draws in different steps. One
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can use a relatively small sample of N1 draws for the optimization of the ph’s, and a large

sample of N2 draws in order to evaluate the quality of the current candidate mixture at

each iteration (in the sense of the coefficient of variation of the corresponding IS weights)

and in order to obtain an initial value for the algorithm that is used to optimize the weight

function (that yields the mode of a new Student-t component in the mixture).

Notice that if one would simply use a small sample of N draws in each step, the pro-

cedure would have huge difficulties to detect distant modes in the case of multi-modality,

and the evaluation of the quality of the candidate mixture would be less reliable. In that

case it is quite uncertain whether the procedure has converged to a candidate density that

is ‘close’ to the target density, when the algorithm stops. Therefore we only reduce the

sample used in order to optimize the ph’s, while augmenting the sample used in the other

steps.

Note that it is not necessary to find the globally optimal values of the ph’s; a ‘good’

approximation to the target density is all that is required. Furthermore, if the ph’s would

result in a poor candidate, then this will show up in the next steps in which a large sample

of N2 points is drawn from the candidate mixture and the variation of the corresponding

IS weights is investigated.1 Moreover, the use of a large number of draws is especially

important to prevent the algorithm from stopping too early (yielding either a very bad

candidate density or a candidate that could have been hugely improved by taking a few

more steps of the algorithm, adding a few components to the candidate mixture) and to

detect distant modes in the case of a multi-modal target density. Therefore, not only the

speed but also the reliability of the procedure is improved when using different numbers

of draws in different steps in a clever way.

Another change that improves the algorithm’s ability to detect distant modes of a

multi-modal target density p̃(θ) is to try several initial values (instead of one initial value,

the draw from the candidate mixture qH−1(θ) obtained in the previous iteration with

the highest IS weight) for the algorithm that optimizes the weight function, and – if

the optimization algorithm yields different optima for different initial values – to use the

point corresponding to the highest value of the weight function among the optima as the

mode µH of the new component in the candidate mixture. We suggest the following two

extra initial values: the draw with the highest IS weight in a set of N2 drawings from a

1In order to make the stopping criterion stricter in the sense of a lower probability of stopping the

method too early, the percentage of 10% (of relative change in the coefficient of variation of the IS weights

that is required to make the algorithm proceed in the sense of adding another component) can be changed

to lower values, e.g. 5%.
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unimodal Student-t candidate qStudent,l(θ) (l = 1, 2) with 1 degree of freedom with mode

& scale equal to the estimated mean & covariance of the target, estimated either (1)

using the latest candidate mixture qH−1(θ), or (2) using the unimodal Student-t density

qStudent,1(θ) that is used in order to find initial value (1).2 The idea behind these initial

values is that the scale of the candidate mixture qH−1(θ) may be too small (as compared

with the target density). Sequentially adapting the mode and scale of a unimodal Cauchy

candidate density may enable one to properly augment the scale and thereby find (possibly

distant) regions with target probability mass that where not yet ‘covered’ by candidate

mixture.

The effects of the improvements that are described above on the results of the AdMit

method in the 3-dimensional example of section 2.5 are as follows. In section 2.5 we used

N = 5000 draws in each step. We now decide to use N1 = 1000 draws for optimizing the

ph (h = 1, . . . , H), and N2 = 100000 draws in the other steps. The resulting computing

times are in the last column of table 3.1. First of all it should be noted that this improved

procedure constructs a mixture of less components (13 instead of 15), explaining partly

the smaller amount of required computing time. This mixture of 13 Student-t densities

provides a somewhat better approximation to the target density in the sense of a smaller

coefficient of variation of a sample of 100000 IS weights (1.37 instead of 1.47). The

reason for the smaller number of required components (and the slightly better quality of

the approximation) is that the modes of the components are better located. Figure 3.1

shows the locations of the modes µh (h = 1, . . . , H) in the π1 × β space. The AdMit

method of chapter 2 locates the first 8 modes µ1, µ2, . . . , µ8 all in the same (bottom-right)

ridge, whereas the improved procedure immediately finds the other (top-left) region of

relatively high posterior density values. We conclude that the improved method is clearly

more reliable in the sense of a lower probability of stopping the construction process at

an iteration when not all regions with relative much target probability mass are ‘covered’

by probability mass of the candidate mixture.

The smaller number of iterations is certainly not the only reason why the improved

AdMit method has become faster; less computing time is required per iteration. The use

2Of course, the unimodal Student-t densities qStudent,l(θ) (l = 1, 2) may be very different from the

candidate mixture qH−1(θ). Therefore, the point θ with highest IS weight p̃(θ)/qStudent,l(θ) does not

necessarily have a high IS weight p̃(θ)/qH−1(θ) when using the latest mixture qH−1(θ) as a candidate.

However, this implies no problem, as this point is only used as an ‘extra’ initial value in the optimiza-

tion algorithm (applied to the weight function p̃(.)/qH−1(.)) and only the best of the outcomes of the

optimization algorithm will be used.
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Figure 3.1: Locations of modes µh (h = 1, 2, . . . , H) in the π1 × β plane of components of

the candidate mixture in the AdMit procedure of chapter 2 (left) and the improved version

(right)

of N2 = 1000 instead of N = 5000 draws has caused a huge decrease of the computing

time of step 3, the optimization of the ph’s. On the other hand the use of N2 = 100000

instead of N = 5000 draws (and the use of several initial values in the algorithm for

optimization of the weight function p̃(.)/qH−1(.)) has resulted in only relatively small

increases of the computing time of the other steps.3 The AdMit construction method has

become 598.3/183.4 = 3.26 times faster.

3Note that sampling from the candidate mixture requires only very little time in case the same number

of draws is used in each step, as in this case one can use the draws from the Student-t components that

have already been generated in order to optimize the variation of the IS weights with respect to the ph

(h = 1, . . . , H). Note that such ‘recycling’ of draws during the construction of an approximation to the

target density does not imply problems for the convergence of the AdMit-IS/MH estimates, as a new set

of draws from a fixed candidate density is used to base the eventual estimates upon. The only thing that

matters for the AdMit candidate construction phase is that it results in a candidate that is ‘close’ to the

target. (The AdMit-MH method is not an ‘adaptive Markov chain Monte Carlo’ method for which the

transition probabilities change during the sampling process.)
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3.2.2 Improvements in the sampling procedure

Table 3.2 shows how the computing time required for importance sampling with target

density from section 2.5 using n = 1000000 draws from a mixture of t candidate density is

divided between the individual steps of the procedure. Note that a large amount of time

(70% of all computing time) is required for evaluating the candidate density. The reason

is that the AdMit program only required routines for the target density p̃(θ) and the

basis density, the density of the mixture components, as a function of a single θ to be pro-

grammed, thereby allowing for an easier switch to other basis densities. However, for the

Student-t density t(θ|µh, Σh, ν) one can easily program a routine that quickly transforms

a matrix of rows θ′i (i = 1, . . . , n) into a vector of elements t(θi|µh, Σh, ν) (i = 1, . . . , n).4

The effect of this improvement on the AdMit method in the 3-dimensional example of

section 2.5 is as follows. The resulting computing times are in the last column of table

3.2. First of all recall that the improved construction procedure resulted in a mixture

of less components (13 instead of 15), explaining partly the smaller amount of required

computing time for the evaluation of the candidate density. But the smaller number of

components is certainly not the only reason why the improved AdMit method has become

faster; less computing time is required per component. The AdMit importance sampling

method has become 328.7/123.9 = 2.65 times faster. The improvements discussed in this

section have caused the total AdMit-IS procedure, consisting of both the construction

of a candidate mixture and sampling from it, to become (598.3+328.7)/(183.4+123.9) =

927.0/307.3 = 3.0 times faster.

In the previous subsection it is mentioned that the changed AdMit method yields

a somewhat better approximation to the target density than the method of chapter 2

in the sense of a smaller coefficient of variation of a sample of 100000 IS weights (1.37

instead of 1.47). Table 3.3 shows some sampling results for both methods. The numerical

standard errors, relative numerical efficiencies (RNEs) and the influence of the 5% largest

IS weights are all slightly better for the changed IS method, confirming the better quality

of this changed AdMit-IS method. The acceptance rate and the serial correlation in the

4The sampling method that is used in order to obtain the results in chapter 2 required a ‘for loop’

over both n draws and H components, i.e. a ‘for loop within a for loop’. However, using the matrix of

rows θ′i (i = 1, . . . , n) and a matrix of squares and cross products of the elements of θ′i (i = 1, . . . , n) one

can compute the vector of elements t(θi|µh, Σh, ν) (i = 1, . . . , n) by matrix operations, so that only one

‘for loop’ over the H components is needed.
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Table 3.2: Computing times of steps in Adaptive Mixture of t densities (AdMit) sampling

procedure (using 1000000 draws)

computing time

procedure of improved

step chapter 2 procedure

1 sampling 36.9 s 30.6 s

2 evaluating target 13.2 s 13.2 s

3 evaluating candidate 231.7 s 33.7 s

4 evaluating IS weights 46.9 s 46.4 s

total 328.7 s 123.9 s

MH Markov chain indicate that the changed method yields a somewhat beter candidate

density in the (independence chain) MH algorithm.5

5The reported computing times for the MH algorithm are the same as for IS, whereas the MH algorithm

requires an additional ‘for loop’; however, the computing time for this is negligible as compared to the

computing time of the rest of the method.
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Table 3.3: Sampling results for the non-elliptically shaped posterior distribution in the IV

regression (2.28) - (2.29) with k = 2 instruments for simulated data with π = (0.1, 0.1)′

(weak identification), σ12 = 0.99 (strong endogeneity)

procedure of chapter 2 improved procedure

true AdMit AdMit AdMit AdMit

values IS MH IS MH

E(π1) 0.0199 0.0200 0.0195 0.0198 0.0199

(num. std. error) (1.6 10−4) (1.6 10−4)

[RNE] [0.3622] [0.3651]

E(π2) 0.0157 0.0158 0.0153 0.0156 0.0157

(num. std. error) (1.6 10−4) (1.5 10−4)

[RNE] [0.3586] [0.3707]

E(β) 0.6404 0.6357 0.6531 0.6426 0.6415

(num. std. error) (0.0065) (0.0057)

[RNE] [0.2211] [0.2893]

σ(π1) 0.0946 0.0945 0.0943 0.0945 0.0944

σ(π2) 0.0935 0.0934 0.0934 0.0935 0.0934

σ(β) 3.0643 3.0745 3.0713 3.0622 3.0684

total time 927.0 s 927.0 s 307.3 s 307.3 s

time construction NN 598.3 s 598.3 s 183.4 s 183.4 s

time sampling 328.7 s 328.7 s 123.9 s 123.9 s

draws 1 106 1 106 1 106 1 106

time/draw 0.33 ms 0.33 ms 0.12 ms 0.12 ms

coeff. var. IS weights 1.47 1.37

5% largest IS weights 27.3 % 25.1 %

acceptance rate MH 32.5 % 34.4 %

serial corr. π1 0.66 0.65

serial corr. π2 0.66 0.65

serial corr. β 0.72 0.69
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3.3 Example: mixture model for real US GNP growth

In this section the improved neural network sampling methods are applied to another

non-elliptical target density p̃(θ), a 4-dimensional posterior density in a 2-regime mixture

model for the US real GNP growth rate. The performance of the neural network sam-

pling methods is compared with two Gibbs sampling methods, Gibbs sampling with data

augmentation and the griddy Gibbs sampler, which do not get stuck in one of two far

apart modes in this example.

Like in the example of the previous section, there are some bounds on the param-

eter values. However, in this section the bounds do not only exclude ‘extreme’ values

(in the sense of relatively huge absolute values). Some of the bounds directly result

from the nature of the parameters in the model. In the previous section the mode µH

and scale ΣH of the H-th component of the candidate mixture are obtained by the fol-

lowing steps. First, the weight function p̃(θ)/qH−1(θ) is optimized, where qH−1(θ) is

the candidate mixture obtained in the previous iteration of the algorithm. If the value

θmax ≡ argmaxθ p̃(θ)/qH−1(θ) does not occur at a boundary, then µH is given by θmax, and

ΣH is minus the inverse of the Hessian of the logarithm of the weight function, evaluated

at θmax. If θmax occurs at a boundary, µH and ΣH are computed as the estimated mean

and covariance matrix resulting from importance sampling with a ‘residual’ target density

kernel res(θ) = p̃(θ) − c̃ qH−1(θ) and candidate qH−1(θ), where c̃ is a positive constant.

However, if the parameter bounds do not only exclude some ‘extreme’ values, but play

a more important role in the model, one may expect that the maximum of the weight

function p̃(θ)/qH−1(θ) will often be located at a boundary. Therefore, we choose to speed

up the construction of the candidate mixture by skipping the optimization of the weight

function p̃(θ)/qH−1(θ) and immediately computing µH and ΣH as importance sampling

results for a ‘residual distribution’.6

In models for the growth rate of the real gross national product (GNP) one often allows

for separate regimes for periods of recession and expansion. In this section a simple 2-

regime model is considered, a static 2-regime mixture model. The data that are used are

6Note that this method in which the mode and scale matrix of components are based on importance

sampling instead of optimization and the evaluation of a Hessian is not only a possibly useful alternative

in the case of bounded domains; for example, if the evaluation of the Hessian of the logarithm of the

weight function is difficult or very time consuming, this method may provide a large improvement in

terms of required computing time.
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Figure 3.2: Real GNP of the USA in billions of dollars (above), and its quarterly growth

rate in % (below). Source: Economagic.

the quarterly growth rates of the real US GNP in the period 1959-2001. The data are

shown in Figure 3.2.

In this model the (percentage) growth rate yt, defined as 100 times the first difference

of the logarithm of real GNP, has two different mean levels:

yt =

{
β1 + εt with probability p

β2 + εt with probability 1 − p
, t = 1, 2, . . . , T, (3.2)

where εt ∼ N(0, σ2). For identification we assume that β1 < β2, so that β1 and β2 can be

interpreted as the mean growth rates during recessions and expansions, respectively. For

the parameters (β1, β2, σ, p) the prior kernel is specified as 1/σ for β1 < β2, 0 ≤ p ≤ 1,

and 0 elsewhere. Furthermore β1 and β2 are restricted to the intervals [−3, 2] and [0, 3],

respectively.

It should be noted that this model is merely used as an example to illustrate the (im-

proved) neural network sampling methods in the case of a non-elliptical target distribution

on a bounded domain, and to compare these with (Gibbs sampling with) data augmenta-

tion and the griddy Gibbs sampler. The assumption that the ‘state’ (recession/expansion)

is independent over (quarterly) observations is obviously unrealistic.

We use both (improved) neural network algorithms AdMit-IS and AdMit-MH (with

N1 = 1000, N2 = 100000) in order to obtain estimates of the posterior mean and standard

deviation of β1, β2, σ and p. First, a candidate mixture of 5 Student-t distributions is
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constructed. Figure 3.3 shows the shape of a highest posterior density (HPD) region

of (β1, β2, p) conditional on σ = 0.79, the value of σ at the posterior mode (β1, β2,

σ, p)7, and the shape of a ‘highest candidate density region’ of (β1, β2, p) conditional

on σ = 0.79. This illustrates once more that mixtures of t distributions can provide

reasonable approximations to a wide variety of target distributions.8 Table 3.4 shows

the sampling results of AdMit-IS and AdMit-MH. For AdMit-MH the posterior mean and

standard deviation of each parameter are estimated as the average and standard deviation

of the draws; for AdMit-IS the weighted analogues are reported.

Figure 3.5 shows histograms, scaled so that these can be interpreted as estimates of

marginal densities, of draws of β1, β2, σ, p obtained by the AdMit-MH method. Note the

bimodality in the marginal posteriors of β1 and p. The modes at β1 ≈ −1 and p ≈ 0.05

correspond with the probability mass at the bottom of the left panel of Figure 3.3, whereas

the modes at β1 ≈ 0.7 and p ≈ 1 correspond with the probability mass at the top of the

left panel of Figure 3.3. At the first region of the parameter space β1 has the interpretation

of the mean GNP growth rate during recessions which take place with low probability p.

At the latter region of the parameter space β1 has the interpretation of the mean GNP

growth rate during periods of low or medium growth which occur with large probability p,

while β2 has the meaning of the mean GNP growth rate during ‘exceptional expansions’

(periods of very high growth rates) occuring with low probability 1 − p. Notice that for

p = 0 (or p = 1) the parameter β1 (or β2) is not identified. This local non-identification

is reflected by Figure 3.3, in which for low values of p a wide spectrum of β1 values is

contained in the HPD credible set, whereas for high values of p the HPD region contain

wide intervals of β2 values. It is the latter situation that causes the modes at β1 ≈ 0.7

and p ≈ 1 in the marginal posteriors.

It should be noted that one can also choose to identify β1 and β2 in another fashion than

by imposing the restriction β1 < β2. One can instead impose the restrictions β1 < 0 and

β2 > 0. In that case a less ill-behaved posterior results, as shown by Figure 3.4. However,

this manner of identifying β1 and β2 is much more restrictive, as in that case only periods

of negative (expected) growth are considered as recessions, whereas in practice periods of

small, but positive growth rates are often also denoted as recessions. Further, although

the posterior is less ill-behaved in that case, neural network sampling methods can still be

7The mode of the joint posterior of (β1, β2, σ, p) is (−1.00, 0.93, 0.79, 0.05).
8Note that the approximation is certainly not perfect; however, a better approximation requires (pos-

sibly much) more computing time in both the construction and sampling phase: there is a trade-off

between the quality of the candidate mixture density and the speed of the construction and sampling.
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Figure 3.3: Highest posterior density (HPD) credible set (left) and ‘highest candidate

density’ set (right) for a candidate mixture of 5 Student-t distributions for parameters

(β1, β2, p) in 2-regime mixture model for US real GNP growth rate (conditional on σ =

0.79, the value of σ at the posterior mode of (β1, β2, σ, p))

useful in cases of such posterior distributions that show somewhat non-elliptical shapes.

A mixture of only 2 or 3 Student-t components, providing a good approximation to

the posterior, can be quickly constructed, and importance sampling (or the Metropolis-

Hastings algorithm) using this approximation as a candidate may outperform competing

approaches. Finally, it should be noted that the main purpose of the 4-dimensional

example in this section is to show the capabilities of neural network sampling methods in

case of a highly non-elliptical posterior distribution.

In this model we can perform the method of Gibbs sampling with data augmentation

of Tanner and Wong (1987). Data augmentation is used in order to sample from models

with latent variables Z, in which directly sampling the parameters θ seems very difficult,

but sampling θ given Z is straightforward. In this algorithm, the parameters θ are drawn

conditionally on the latent variables Z, and the latent variables Z are drawn conditionally

on θ. Forgetting the values of Z, this procedure yields a valid Markov chain for the

parameters θ. In our model we define the latent variables Zt (t = 1, . . . , T ) as:

Zt =

{
1 if period t is a recession period

0 if period t is an expansion period
t = 1, 2, . . . , T. (3.3)
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Figure 3.4: Highest posterior density (HPD) credible set for parameters (β1, β2, p) in 2-

regime mixture model for US real GNP growth rate (conditional on σ = 0.79, the value of

σ at the posterior mode of (β1, β2, σ, p)) under identification restrictions β1 < 0, β2 > 0

(instead of β1 < β2)

Conditionally on these latent variables Z (and each other), β1 and β2 are normally dis-

tributed, while σ2 and p have an inverted gamma and a beta distribution, respectively.

Conditionally on the values of the parameters, the latent variables Zt (t = 1, . . . , T ) have

a Bernoulli distribution.9

Another Gibbs sampling approach that can be applied in this example is the griddy

Gibbs sampling approach of Ritter and Tanner (1992). In this approach draws from the

conditional distributions are obtained by applying the inversion method to a piecewise

linear approximation to the conditional cumulative distribution function (CDF) that is

computed using density (kernel) evaluations for a grid of input values.

9The distribution of (β1, β2) conditional on latent variables Z and on σ, p is given by βi ∼ N(ȳi, σ/
√

Ti )

(i = 1, 2) truncated to the region with β1 < β2, where T1 =
∑T

t=1 Zt is the number of recession observa-

tions, T2 = T −T1 is the number of expansion observations, ȳ1 and ȳ2 are the average of the GNP growth

rates yt for recession (Zt = 1) and expansion (Zt = 0) observations, respectively. It may occur, and in

fact does occur for this dataset, that either T1 = 0 or T2 = 0 during the data augmentation sampling

process; if β1 and β2 would not be restricted to bounded intervals, the data augmentation procedure

would ‘crash’. And if these intervals for β1 and β2 would be chosen too wide, the procedure would get

‘stuck’ in a sequence of ‘extreme’ values for β1 or β2 (and p = 0 or p = 1).
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Figure 3.5: Histograms of draws of β1, β2, σ, p in AdMit-MH, scaled so that these can be

interpreted as estimates of marginal densities
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Table 3.4 shows sampling results for data augmentation and the griddy Gibbs sampler

(that uses grids of 50 points for all four parameters). Again, the posterior mean and

standard deviation of each parameter are estimated as the average and standard devi-

ation of the draws.10 The AdMit procedures beat the Gibbs samplers in the sense of

yielding estimates with less variation in the same (or actually even somewhat less) com-

puting time, where AdMit-IS outperforms AdMit-MH. Notice the huge serial correlation

(especially the serial correlation of 0.993 for p) in the Gibbs sequence of the data augmen-

tation method, which is even much higher than for the griddy Gibbs sampler: the extra

elements Zt (t = 1, 2, . . . , T ) in the Gibbs sequence introduced by the data augmentation

cause a large increase of the serial correlation. This huge serial correlation implies that

the data augmentation estimates of the posterior means have a higher standard deviation

(estimated by repeating the simulation 20 times) than the AdMit methods, even though

AdMit-IS and AdMit-MH require the construction of a candidate mixture and the sam-

pling takes somewhat more time per draw (0.14 ms versus 0.11 ms). Further notice that

the evaluation of the target density over grids of points causes the griddy Gibbs sampler

to be relatively very slow as compared to the AdMit methods and data augmentation:

the griddy Gibbs sampler takes much more time per draw.

Finally, note that the data augmentation method requires more knowledge about the

model in the sense of the specification of latent variables and derivation of conditional

distributions, whereas the AdMit neural network methods (and the griddy Gibbs sampler)

only require the evaluation of the posterior density kernel.

10It should be noted that the average of the draws is not the best estimate of the mean. It is better

to use Rao-Blackwellization (e.g., see Casella and George (1990) or Lancaster (2004)), which in this

case amounts to using the average of the conditional means given draws of the other parameters. The

average of the conditional means has less simulation noise than the average of the draws. Although

Rao-Blackwellization is more natural in a Gibbs sampling approach, it is also possible to use the draws

obtained in the AdMit-IS or AdMit-MH approach in order to compute Rao-Blackwellized estimates of

the means and standard deviations. In principle, estimating the posterior mean of a parameter using

Rao-Blackwellization is possible whenever one is able to obtain draws from the posterior distribution (of

the other parameters) and knows the conditional posterior density of the parameter. In this section the

average of the draws is used as an estimate for the mean, because of the simplicity of this approach,

and because this method enables one to directly use the results of Geweke (1989) to compute numerical

standard errors (and the corresponding relative numerical efficiency).
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Table 3.4: Sampling results for the 2-regime mixture model

Admit Admit Data Griddy

IS MH Augmentation Gibbs

mean s.d. mean s.d. mean s.d. mean s.d.

β1 -0.1795 0.8449 -0.1794 0.8427 -0.1681 0.8500 -0.1974 0.8491

(st.dev. 20×) (0.0024) (0.0038) (0.0070) (0.0260)

(num. std. error) (0.0022)

[RNE] [0.1431]

β2 1.0353 0.2841 1.0342 0.2817 1.0374 0.2849 1.0306 0.2754

(st.dev. 20×) (0.0011) (0.0017) (0.0024) (0.0071)

(num. std. error) (0.0012)

[RNE] [0.0570]

σ 0.8388 0.0675 0.8390 0.0673 0.8395 0.0675 0.8369 0.0670

(st.dev. 20×) (0.0002) (0.0003) (0.0002) (0.0012)

(num. std. error) (0.0002)

[RNE] [0.1455]

p 0.2788 0.3045 0.2777 0.3040 0.2856 0.3086 0.2729 0.3016

(st.dev. 20×) (0.0009) (0.0015) (0.0038) (0.0105)

(num. std. error) (0.0009)

[RNE] [0.1123]

total time 204 s 204 s 264 s 251 s

time construction NN 64 s 64 s

time sampling 140 s 140 s 264 s 251 s

draw 1000000 1000000 2500000 20000

time/draw 0.14 ms 0.14 ms 0.11 ms 12.6 ms

coeff. of var IS weights 2.55

5% largest weights 44.2 %

acceptance rate MH 21.1 %

serial corr. β1 0.79 0.90 0.76

serial corr. β2 0.83 0.80 0.63

serial corr. σ 0.79 0.55 0.43

serial corr. p 0.80 0.993 0.87

3.4 When can neural network sampling methods be

useful?

The examples of the 3-dimensional (highly non-elliptical) posterior distribution in the IV

model and the 4-dimensional posterior in the mixture model for the US real GNP growth

show estimators of posterior means with very small standard deviation, or equivalently

very high precision (inverted variance). Neural network sampling methods yield these

high precisions in a certain amount of time in which competing methods yield estimators

with larger variance; in other words, competing methods require more computing time to

reach the high precision resulting from the neural network approaches. However, if one
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Figure 3.6: Precision (1/variance) of IS estimator of posterior mean of β for Student-t

candidate density with scale and mode adapted to target density (dashed line) and for

AdMit (mixture of t) candidate density (solid line) in the 3-dimensional bimodal posterior

distribution in an IV model for simulated data, discussed in sections 2.5 and 3.2

would only require estimators of the posterior means with relatively low precision, then

competing methods would outperform the neural network methods: IS with a unimodal

Student-t candidate density (with mode and scale adapted to the target) in the IV model,

and the data augmentation method in the mixture model. The reason for this is that

the construction of a (mixture of t) approximation to the target distribution requires a

certain amount of time; in (less than) this amount of time the IS approach with Student-t

candidate or data augmentation has already started the sampling process and is therefore

able to produce an estimator of the posterior mean (or other characteristics of interest),

while the neural network approach is still in the ‘candidate construction phase’. In other

words, using an amount of time for the construction of a good candidate distribution is

an ‘investment’ that is especially ‘profitable’ if one requires estimates with a very high

precision, as the more draws are required from the candidate the relatively less ‘expensive’

is the investment in the construction of the candidate.

For the 3-dimensional non-elliptical posterior in the IV model this idea of the con-

struction of a good candidate as an ‘investment’ is illustrated in Figure 3.6. Until 183.4

seconds the (improved) AdMit method is only constructing a candidate, while after 88
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seconds (required for iteratively adapting the mode and scale to the target density) the IS

approach with Student-t candidate is already sampling. Once the AdMit-IS method starts

sampling, it soon outperforms IS with Student-t candidate: the lines cross at 184.2 s, at

a precision of 1/var(Ê(β)) = 203.1 (or at a standard deviation of st.dev(Ê(β)) = 0.07).

AdMit-IS only requires 0.8 s to catch up with the 95 s of sampling of the IS with t can-

didate; the ‘increase of precision per second of sampling’ is about 120 times larger for

AdMit-IS. The ‘increase of precision per second of sampling’ for the IS estimator of the

mean of θj , the j-th element of θ, is given by:

∂[1/var(Ê(θj))]

∂t
=

#draws per s

var(θj)
RNEE(θj) (3.4)

where the RNE (relative numerical efficiency) is the ratio between the (estimated) pre-

cision of the IS estimator of E(θj) and (an estimate of) the precision of an estimator of

E(θj) based on direct sampling (with the same number of draws), see Geweke (1989). In

the example of the non-elliptical posterior in the IV model the ‘increase of precision per

second of sampling’ for the posterior mean of β is therefore given by

∂[1/var(Ê(β))]

∂t
=

1/(0.12 · 10−3)

(3.0622)2
0.2893 = 257.1

and
∂[1/var(Ê(β))]

∂t
=

1/(0.03 · 10−3)

(3.0622)2
0.0006 = 2.1

for AdMit-IS and IS with a Student-t candidate, respectively; note that we use the same

(AdMit-IS) estimate of st.dev(β) of 3.0622 in both formulas. So, if one desires to obtain

an estimator of the posterior mean of β with standard deviation st.dev(Ê(β)) larger than

0.07, then IS with t candidate is a better choice than AdMit-IS in the sense of requiring

less computing time; if one needs an estimator of the posterior mean of β with standard

deviation st.dev(Ê(β)) smaller than 0.07, then AdMit-IS is the better choice as in this

case AdMit-IS needs (possibly much) less computing time.

Whether neural network sampling methods can be useful does not only depend on

the desired precision of the estimators of the characteristics of interest of the posterior

distribution. This also depends on whether the posterior (target) distribution is (nearly)

elliptical or (highly) non-elliptical. Neural network sampling methods outperformed com-

peting methods in the two examples of highly non-elliptical target distributions in sections

2.5 and 3.3 with HPD credible sets in Figure 2.9 (consisting of two far apart parts) and
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Figure 3.3 (consisting of one highly curved shape). In both examples the reason for the

non-elliptical shape is local non-identification: for certain values of some of the parameters

other parameters in the model are not identified. This suggests that neural network sam-

pling methods can be especially useful in models with local non-identification. However,

local non-identification does not always imply a (highly) non-elliptical posterior distribu-

tion, as the effect of certain tiny ridges or second modes with little probability mass may

be neglectable. For example, section 2.5 also shows sampling results for (simulated data

in) an IV model with strong instruments. In this case the neural network methods are

slower than competing methods like Gibbs sampling or IS/MH with a normal or Student-

t candidate distribution. However, often one does not know the shape of the posterior

density in advance. Therefore it often seems a good idea to apply the following procedure.

First, construct a neural network (mixture of t) approximation to the target distribution.

Second, ‘prune’ the neural network in the sense of dropping components that hardly im-

prove the quality of the candidate density, and optimize the degrees of freedom of the

Student-t components of candidate mixture (possibly consisting of only one component).

Third, use the resulting candidate density in IS or the MH algorithm. This way the

neural network samping method only takes a fixed amount of extra computing time at

the beginning, but is at least as good as IS (or the MH algorithm) using a normal or

Student-t candidate during the sampling process.

Note that the possible usefulness of ‘pruning’ is not restricted to cases of (nearly)

elliptical target distributions. In general, one can check the usefulness of each component

in the candidate mixture between the construction and sampling phases. The choice of

whether or not to drop a component can be based on the trade-off between the extra

time it requires during the sampling process and the loss of quality of the candidate

density (represented in formula (3.4) by the number of draws per second and the RNE,

respectively).

Finally, if it is possible to divide target density of the parameters θ = (θa, θb) into

a marginal target density of θa for which an explicit formula p̃(θa) is available and a

conditional p̃(θb|θa) that is easy to sample from, then it is obviously a good idea to apply

a neural network sampling method to draw from the marginal density p̃(θa) and use the

true conditional density p̃(θb|θa) to sample θb. For example, if we would not restrict the

parameters π in the IV model (with flat prior) to a certain bounded area, an explicit

formula for the marginal density of β is known, while the conditional distribution of π

given β is simply Student-t.
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3.5 Concluding remarks

In chapter 2 a class of neural network sampling methods was proposed. It was shown that

the AdMit method, in which a mixture of Student-t distributions is used as a candidate

distribution, performed best among the neural network procedures, and an example was

given of a distribution for which the AdMit method outperformed competing methods,

importance sampling and (both) the (independence chain and random walk) Metropolis-

Hastings algorithm with a Student-t candidate and Gibbs sampling, where the latter got

stuck in one of two far spaced modes for millions of draws. This chapter discussed some

large improvements in the AdMit method; these improvements make the method faster

(about three times as fast in an example of a 3-dimensional bimodal target distribution)

and more reliable (in the sense of a quicker detection of distant modes). The improved

AdMit methods are applied to the 4-dimensional posterior distribution in a mixture model

for US real GNP growth rates. The AdMit methods outperform two Gibbs sampling

approaches, Gibbs sampling with data augmentation and the griddy Gibbs sampler; in

this case the Gibbs sequences did not get stuck in one of two modes – in fact the joint

posterior density is unimodal in this example – but the high serial correlation in the

Gibbs sequences caused the Gibbs samplers to yield estimators of posterior moments

with larger standard deviations than those resulting from the neural network methods

(in the same computing time). Finally, it is illustrated that neural network sampling

methods can especially be useful if one desires estimators of posterior characteristics with

high precision.

We end this chapter with some remarks on how to extend the proposed methods. A

straightforward alternative is to use a neural network function as a candidate density in

rejection sampling instead of importance sampling or the Metropolis-Hastings algorithm.

Another extension that is more difficult to implement, but much more interesting for

practical purposes is to build a neural network method within a Gibbs sampling procedure

(or a ‘MH within Gibbs’ algorithm). If it is hard to draw from one of the conditional

distributions, say the conditional distribution of θa given θb with θ = (θa, θb) where θa

and θb both consist of multiple elements, two options are to use a ‘MH within Gibbs’

step or to use several steps of the griddy Gibbs sampler. For a ‘MH within Gibbs’ step a

candidate density is required. An option is to approximate the conditional target density

of θa given θb with a mixture of Student-t densities. However, the disadvantage is that in

each iteration (for each different value of θb) a new approximation has to be constructed,

which can result in a very time consuming algorithm. In order to keep the computing
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time for obtaining approximations to conditional target densities relatively small, one can

store both the θb’s and the approximations to the conditional densities of θa given θb.

In each iteration one can use as an initial point the (mixture of t) approximation for

the value of θb that is closest to the current value of θb (taking into account the scales

and correlations of the elements of θb) among the set of previous θb’s in the Markov

chain. After that, one may add one or more components to the candidate mixture and

drop (almost) useless components in order to prevent ending up with mixtures of huge

numbers of components. Nevertheless, the resulting algorithm will still be rather slow.

However, a ‘MH withing Gibbs’ step with a poor candidate distribution may result in

a very low acceptance probability, resulting in very slow convergence of the estimators,

or even an unreliable algorithm in which certain regions of the domain of θ that contain

substantial probability mass may be ‘missed’. And the use of several griddy Gibbs steps

also yields a slow algorithm, in which the division of the sampling of θa into individual

steps for sampling the elements of θa may seriously increase the serial correlation in the

Gibbs sequence. Therefore, the combination of neural network sampling methods and the

Gibbs sampler (or the ‘MH within Gibbs’ algorithm) is an interesting topic for further

research.
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Instrumental variables





Chapter 4

Bayesian analysis of the instrumental

variables regression model under a

flat, Jeffreys or hierarchical prior

Chapter 4 is based on Hoogerheide, Kaashoek and Van Dijk (2004, 2006).

4.1 Introduction

In this chapter we consider Bayesian analysis of instrumental variables regression models

under three priors: the flat prior, the Jeffreys prior and a hierarchical prior proposed by

Chamberlain and Imbens (1996). In section 4.2 we consider shapes of posterior densities

and credible sets under the flat prior and Jeffreys prior for several levels of endogeneity

and instrument strength. Some explanations for these shapes are given in the simple case

of one endogenous explanatory variable and one instrument. In section 4.3 the behavior

of the marginal posterior of the structural parameter of interest is investigated in the case

of many irrelevant instruments: the performance of the hierarchical prior is compared

with that of the flat and Jeffreys prior. Section 4.4 contains concluding remarks.
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4.2 Shapes of posterior densities in instrumental vari-

ables regression model with several degrees of en-

dogeneity and instrument quality

Consider the following possibly overidentified Instrumental Variables (IV) model, also

known as the incomplete simultaneous equations model (INSEM). Following Hausman

(1983), let:

y = xβ + ε (4.1)

x = ZΠ + v (4.2)

where y is a (T × 1) vector of observations on the endogenous variable that is to be

explained, x is a (T × 1) vector of observations on the explanatory endogenous variable,

Z is a (T × k) matrix of weakly exogenous variables; β is a scalar structural parameter of

interest, Π is a (k × 1) vector of reduced form parameters.1 The restricted reduced form

corresponding to the structural form (4.1)-(4.2) is given by:

y = ZΠβ + u (4.3)

x = ZΠ + v (4.4)

where u ≡ vβ + ε. The error terms in the structural form and the restricted reduced form

have covariance matrix Σ and Ω, i.e. (εi, vi)
′ ∼ N(0, Σ) and (ui, vi)

′ ∼ N(0, Ω), with

Σ =

(
σ11 σ12

σ21 σ22

)
,

Ω =

(
ω11 ω12

ω21 ω22

)
=

(
1 β

0 1

)
Σ

(
1 0

β 1

)
=

(
σ11 + 2σ12β + σ22β

2 σ12 + σ22β

σ12 + σ22β σ22

)
.

A well-known example is the wage regression where y is the logarithm of wage and x

denotes the number of years of education which is possibly endogenous owing to the

omission of a variable measuring (unobservable) ability. The problem is that potential

instruments for x are hard to find as these variables must be correlated with education but

uncorrelated with unobserved ability. Angrist and Krueger (1991) suggest using quarter

of birth to form instrumental variables since quarter of birth affects the age at school

entry. This model will be considered in chapter 5.

1A different convention is to use the notation y1, y2, X instead of y, x, Z (see e.g. Zellner et al. (1988)).
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In this section we consider the shapes of posteriors in the instrumental variables regres-

sion model for simulated data for different levels of endogeneity and instrument strength.

Subsections 4.2.1 and 4.2.2 contain results for the flat and Jeffreys prior, respectively.

4.2.1 Posteriors and credible sets under flat prior

In this subsection we specify the following non-informative prior density of Drèze (1976):

p(β, Π, Σ) ∝ |Σ|−h/2 with h > 0. (4.5)

Given the model (4.1)-(4.5), one can easily derive the likelihood function and the posterior

density kernel of (β, Π, Σ). Using properties of the inverted Wishart distribution (see

Zellner (1971) and Bauwens (1990)) in order to integrate Σ out of the joint posterior,

and choosing h = 3 in the prior density kernel (4.5) leads to the following joint posterior

kernel of (β, Π):2

p(β, Π|y, x, Z) ∝
∣∣∣∣∣

(y − xβ)′(y − xβ) (y − xβ)′(x − ZΠ)

(x − ZΠ)′(y − xβ) (x − ZΠ)′(x − ZΠ)

∣∣∣∣∣

−T/2

. (4.6)

For Π = 0 the posterior kernel in (4.6) reduces to the (non-zero) constant ((y′y)(x′x) −
(y′x)2)−T/2, so that for Π = 0 the conditional posterior density of β is improper. For

Π 6= 0 the integral
∫
p(β, Π|y, x, Z)dβ is finite; however, when Π → 0 this integral in-

creases at a rate of (Π′Z ′MxZΠ)−1/2, so for the just identified case of k = 1 the integral
∫∫

p(β, Π|y, x, Z)dβdΠ is not finite. For details, see Propositions 3 and 4 below. So, in

the exact identified case the joint density of β and Π is improper on Rk+1. Although

improper on Rk+1, the posterior in (4.6) can be made proper by restricting β and/or Π

to a certain area. In that case it depends on the data y, x and Z, whether the behavior

for Π = 0 still dominates the analysis.

For illustrative purposes, the posterior kernel in (4.6) is calculated for simulated data

sets from (4.1) - (4.2) with k = 1, T = 100, β = 0, σ11 = σ22 = 1 for nine cases. In each

case we use the same vector of instruments denoted by z, where the elements of z are

2This prior with h = 3 slightly differs from the prior used by Drèze (1976) which would have h = 4

in this case. A reason for the choice of h = 3 is that the specification with h = 3 leads to a marginal

posterior of (β, Π) that is equal to the concentrated likelihood function for (β, Π), so that the shapes of

the marginal posterior of (β, Π) can immediately also be interpreted as the shapes of this concentrated

likelihood function. Further, it should be noted that in this case with T = 100 data the differences

in shapes between h = 4 and h = 3 are only minor, as this merely amounts to a difference between

−(T + 1)/2 and −T/2 in the exponent of (4.6).
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i.i.d. N(0,1) draws. Three different cases of identification (or quality of instruments) are

considered: non identification/irrelevant instruments (Π = 0); weak identification/weak

instruments (Π = 0.1); strong identification/strong instruments (Π = 1). These cases

are combined with three cases of endogeneity, i.e. three different values of the correlation

ρ ≡ σ12/
√

σ11σ22 between the error terms ε and v: strong (ρ = 0.99), medium (ρ = 0.5)

and no (ρ = 0) degree of endogeneity. Figure 4.1 shows contour plots of the joint posterior

kernel of β and Π in (4.6) for our nine simulated data sets; the posterior kernels are

normalized over the displayed range. The contour plots reveal that there are three typical

shapes of the graph of the joint posterior of β and Π: bell-shape, bimodality and elongated

ridges.3 Table 4.1 gives an overview of the possible shapes of the joint posterior kernel of

β and Π in this simple IV regression model with k = 1 instrument for different cases of

simulated data.4

Note that in the three cases of simulated data sets with strong instruments (Π = 1),

the contour plots do not show a high-level ridge at Π = 0; the value of the joint posterior

kernel for Π = 0 is relatively very small as compared to the value of the joint posterior

kernel at its mode. In the just identified model (with k = 1) the mode is given by

(β̂2SLS = y′z/x′z, Π̂OLS = x′z/z′z), and the ratio between the posterior kernel in (4.6) for

Π = 0 (and arbitrary β) and the value at its mode (β̂2SLS, Π̂OLS) is:

p(β, Π = 0|y, x, Z)

p(β̂2SLS, Π̂OLS|y, x, Z)
=

[
1 −

r2
x,z + r2

y,z − 2ry,zrx,zry,x

1 − r2
y,x

]T/2

, (4.7)

where rx,z ≡ x′z/
√

x′x z′z, etc. In the three cases of strong instruments (with large r2
x,z)

as well as in the case of weak instruments and strong endogeneity (with r2
y,x close to one)

the ratio (4.7) is small (< 10−9). Also in the case of irrelevant instruments and strong

endogeneity 1 − r2
y,x is small; however, as ry,z and rx,z are both small and ry,z ≈ rx,z, the

numerator on the right-hand side of (4.7) is even much smaller, so that in this case the

contour plot displays a high-level ridge at Π = 0.

If we consider the contour plot of the posterior kernel (4.6) raised to the power 1/20,

so that the contour plot also shows the contours for much lower values of the posterior

3The same types of shapes of posterior distributions also occur in the vector error correction model

(VECM) under cointegration, another reduced rank regression model. The VECM under cointegration

is mathematically equivalent to the IV regression model. A comparison of classical tests in both models

is provided by Hoogerheide and Van Dijk (2001).
4We have repeated the experiment ten times with different seeds of the random number generator. In

five of the nine cases bimodality showed up in the contour plot in two simulations; this is indicated as

‘possibly bimodality’. Repeating the simulation with a different value of β yields the same shapes. For

some related graphs we refer to Van Dijk (2003).
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kernel, we observe also in the case of strong identification the presence of bimodality or

an elongated ridge around the line Π = 0; see Figure 4.2. The origin of these hyperbolic

contour lines becomes intuitively clear if we consider the fact that the structural form

(4.1)-(4.2) is equivalent with the orthogonal structural form (see Zellner et al. (1988)):

y = xβ + vφ + η (4.8)

x = ZΠ + v (4.9)

where φ = σ12/σ22; η and v are mutually independent, i.i.d. Gaussian error terms. The

equation (4.8) is equivalent with

y = xγ1 + Zγ2 + η (4.10)

where γ1 = β +φ, γ2 = −Πφ, so that γ2 = Π(β −γ1), and in the case of k = 1 instrument

β = γ1 +γ2/Π. In the just identified model the set of points (β, Π) for which the posterior

kernel in (4.6) scaled by the value at its mode, p(β̂2SLS, Π̂OLS|y, x, Z), has a certain value

C ∈ (0, 1] is given by

{β = γ̂1 + γ̂2/Π ±
√

pC(Π)/Π, pC(Π) ≥ 0, Π 6= 0} (4.11)

where (γ̂1, γ̂2) are the OLS estimators in (4.10), and pC(Π) is a polynomial of degree 2

that is non-negative on the interval with bounds Π̂OLS ± sx

sz

√
(1 − r2

x,z)(C
−2/T − 1) with

sx ≡
√

x′x, which includes Π = 0 for C small enough; so there are hyperbolic contour lines

in a neighborhood of Π = 0 for any level of endogeneity/instrument strength, although

the level of endogeneity/instrument strength determines the relative level of the posterior

around Π = 0. In the three cases of a strong instrument Π̂OLS is far from zero (with t-

value of Π̂OLS larger than 10), resulting in (nearly) elliptical shapes far away from Π = 0.

In the cases of no/weak identification Π̂OLS is small (with t-value smaller than 1). In

these cases the shapes depend on γ̂2: if (the t-value of) γ̂2 is close to zero, the contour

plot shows connected ridges around Π = 0; otherwise it displays two disconnected ridges

on both sides of Π = 0 (and on both sides of β = γ̂1 where γ̂1 ≈ 1 for this simulated data

set). The squared t-value of γ̂2, the F-statistic, is equal to

t2γ̂2
= (T − 2)

(
(1 − r2

y,x)(1 − r2
x,z)

(ry,z − rx,zry,x)2
− 1

)−1

,

which is large in the case of weak identification and strong endogeneity as (1 − r2
y,x) is

small and the weak influence of z on x causes a certain difference between ry,z and rx,z;
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Table 4.1: Shape of the posterior density kernel of β and Π in the IV regression model

(4.1)-(4.2) with one instrument and weak prior (4.5) for nine situations

Degree of endogeneity

strong medium no

Level of no ridges and ridges and ridges and

identifi- possibly bimodality possibly bimodality possibly bimodality

cation/ weak ridges and ridges and ridges and

Quality bimodality possibly bimodality possibly bimodality

of instru- strong nearly elliptical elliptical

ments elliptical

then the expression (1 − r2
y,x)(1 − r2

x,z)/(ry,z − rx,zry,x)
2, which is always larger than 1, is

close to 1 so that t2γ̂2
is relatively large.

As can be seen from Figure 4.2 and formula (4.11), even in the presence of strong

instruments and no/medium endogeneity the contours are, strictly speaking, not elliptical.

However, if one restricts the region of integration to a certain bounded area the influence

of these tiny ridges on inference is negligible; then one may for practical purposes consider

the joint posterior distribution of β and Π as elliptical.

So, the posterior density kernel of β and Π may show highly non-elliptical shapes if

instruments are weak. Drèze(1976, 1977) and Kleibergen and Van Dijk (1994b, 1998)

present theoretical results on the conditional and marginal distributions of β and Π cor-

responding to this joint density kernel. We reformulate and illustrate their results for the

simple IV regression model (4.1)-(4.5), and give explanations for some shapes of marginal

distributions.
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Figure 4.1: Contour plots in the Π × β plane: joint posterior kernel of Π and β in (4.6)

in IV model under flat prior for nine simulated data sets; three cases of identification

(Π = 0, 0.1, 1 corresponding to no, weak, strong identification) are combined with three

levels of endogeneity (ρ = 0.99, 0.5, 0 corresponding to strong, medium, no endogeneity)
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Figure 4.2: Contour plots in the Π × β plane: joint posterior kernel of β and Π in

(4.6) raised to the power 1/20 in IV model for three simulated data sets; the case of

strong identification (Π = 1) combined with three levels of endogeneity (ρ = 0.99, 0.5, 0

corresponding to strong, medium, no endogeneity)

Weak and strong structural inference

Drèze (1976, 1977) derives the conditional posterior density of β given Π and the marginal

posterior density of β. We summarize and reformulate his results in two propositions:

Proposition 1: Conditional posterior of β given Π: In the IV regression model

(4.1)-(4.2) with prior (4.5) the conditional posterior density of β given Π (with Π 6= 0)

is a Student t density with mode β̂ ≡ (x′Mvx)−1(x′Mvy), scale s2
β̂
(x′Mvx)−1 and (T − 1)

degrees of freedom:

p(β|Π, y, x, Z) =
c√

s2
β̂
(x′Mvx)−1

[
1 +

1

T − 1

(β − β̂)2

s2
β̂
(x′Mvx)−1

]−T/2

(4.12)

where (T − 1)s2
β̂
≡ (y − xβ̂)′Mv(y − xβ̂) and c is a constant that only depends on T ;

Mv ≡ I − v(v′v)−1v′ with v ≡ x − ZΠ, i.e. v is a function of the parameter Π (and the

data x, Z) instead of the vector of actual error terms.

For Π → 0 the conditional posterior variance of β tends to ∞ as in this case x′Mvx → 0

(if Π = 0 then v ≡ x − zΠ = x). For Π = 0 the conditional posterior density of β is

improper. For Π 6= 0 conditional HPD credible sets of β are elliptical; in this case the

conditional mean is equal to the OLS estimator of β in the orthogonal structural form
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equation (4.8).

Proposition 2: Marginal posterior of β: In the IV regression model (4.1)-(4.2)

with prior (4.5) the marginal posterior density of β is proportional to the following ratio

of two Student t kernels:

p(β|y, x, Z) ∝ [(y − xβ)′(y − xβ)]−(T−1)/2

[(y − xβ)′MZ(y − xβ)]−(T−k−1)/2
, (4.13)

known as the 1-1 ratio or poly t density.

Structural inference on β depends on the level of identification. Moments exist up to

the order of overidentification (k−1). The marginal posterior of β tends to a bell-shaped

function as long as the number of instruments k becomes large enough, which seems to

be a paradoxical result: the presence of many (possibly irrelevant) instruments gives a

bell-shaped function. In other words, even if the quality of the instruments is poor, a

large number of instruments still yields a bell-shaped marginal posterior of β. This result

appeared in an informal way in Maddala (1976), commenting on Drèze (1976). It should

be noted that the location of the bell-shape in the case of many irrelevant instruments

(and strong/medium endogeneity) is different from the case of a strong instrument: many

irrelevant instruments yield a bell-shape around β̂OLS, which is far away from the true

value of β = 0 (for our simulated data set) in the case of strong/medium endogeneity,

whereas a strong instrument yields a bell-shape in the neighborhood of β = 0. Hooger-

heide, Kaashoek and Van Dijk (2006) provide some graphical illustrations of this.

Figure 4.3 shows the marginal posterior of β in (4.13) for our nine simulated data sets;

the posterior kernels are normalized over the displayed range. Notice that the graphs

display fat tails in the cases of no identification, combined with a sharp peak in the

case of strong endogeneity; in these cases the kernel (4.13) is approximately equal to

[(y − xβ)′(y − xβ)]−k/2 as MZy ≈ y, MZx ≈ x. Also note the bimodality in the case of

the weak instrument and strong endogeneity; this results from the term

[
(y − xβ)′MZ(y − xβ)

(y − xβ)′(y − xβ)

](T−k−1)/2

=

[
1 − x′PZx (β − β̂2SLS)2

y′Mxy + x′x(β − β̂OLS)2

](T−k−1)/2

(4.14)

with PZ ≡ Z(Z ′Z)−1Z ′, which is equal to


1 −

r2
x,z

(
β−β̂2SLS

sy/sx

)2

1 − r2
y,x +

(
β−β̂OLS

sy/sx

)2




(T−2)/2

(4.15)
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with sy ≡ √
y′y in the case of k = 1 instrument. In the case of one weak instrument

and strong endogeneity β̂2SLS and β̂OLS are in general far apart, while r2
x,z is small and

r2
y,x is close to one, so that (4.15) takes very small values near β = β̂OLS (≈ 1 for our

simulated data set from the model with β = 0), whereas on both sides of β̂OLS there is an

interval where (4.15) is not negligible. In the cases with a strong instrument the graphs

show a bell-shape; in these cases the term (4.15), converging to the very small constant

(1 − r2
x,z)

(T−2)/2 when β becomes large (in absolute sense), makes the graph seem to be

bell-shaped; also in these cases (4.15) is very small near β = β̂OLS if β̂2SLS and β̂OLS are

far apart, but the large value of r2
x,z causes (4.15) to be only large on one relatively small

interval around β = β̂2SLS, so that the graphs do not display bimodality. For a more

detailed analysis comparing Bayesian and classical inference in an instrumental variable

regression model we refer to Kleibergen and Zivot (2003). The highly non-normal shapes

of the posterior of β in the case of weak instruments is also illustrated by Lancaster (2004).

Restricted reduced form inference

Kleibergen and van Dijk (1994b, 1998) derive the conditional posterior density of Π given

β and the marginal posterior density kernel of Π. We summarize their results in two

propositions:

Proposition 3: Conditional posterior of Π given β: In the IV regression model

(4.1)-(4.2) with prior (4.5) the conditional posterior density of Π given β is a Student t

density with mode Π̂ ≡ (Z ′MεZ)−1(Z ′Mεx), scale s2
Π̂
(Z ′MεZ)−1 and (T − k) degrees of

freedom:

p(Π|β, y, x, Z) = c2 |s2
Π̂
(Z ′MεZ)−1|−1/2 ×

×
[
1 +

1

T − k
(Π − Π̂)′(s2

Π̂
(Z ′MεZ)−1)−1(Π − Π̂)

]−T/2

(4.16)

where (T − k)s2
Π̂
≡ (x − ZΠ̂)′Mε(x − ZΠ̂) and c2 is a scaling constant that only depends

on T and k; Mε ≡ I − ε(ε′ε)−1ε′, with ε ≡ y − xβ.

For all values of β this density exists. HPD credible sets are elliptical.
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Figure 4.3: Marginal posterior kernel of β in (4.13) in IV model for nine simulated data

sets; three cases of identification (Π = 0, 0.1, 1 corresponding to no, weak, strong identi-

fication) are combined with three levels of endogeneity (ρ = 0.99, 0.5, 0 corresponding to

strong, medium, no endogeneity)
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Proposition 4: Marginal posterior of Π: In the IV regression model (4.1)-(4.2) with

prior (4.5) the marginal posterior density of Π is proportional to the ratio of a product of

two Student t kernels in the numerator and one Student t kernel in the denominator:

p(Π|y, x, Z) ∝ [(x − ZΠ)′(x − ZΠ)]−(T−1)/2 (Π′Z ′M[y x] ZΠ)−(T−1)/2

(Π′Z ′MxZΠ)−(T−2)/2
(4.17)

= [(x − ZΠ)′(x − ZΠ)]−(T−1)/2 ×

×(Π′Z ′MxZΠ)−1/2

(
Π′Z ′MxZΠ

Π′Z ′M[y x] ZΠ

)(T−1)/2

, (4.18)

known as the 2-1 poly t density.

For the overidentified case the marginal posterior distribution of Π is proper. However,

for the just identified case the density kernel in (4.18) is not integrable over neighbor-

hoods around Π = 0 (because of the term (Π′Z ′MxZΠ)−1/2), so that this is not a proper

density. Given this non-integrability, reduced form inference on Π is not possible. This

result does not depend on the quality of the instruments nor on the endogeneity in the

data. Only if the restriction that x is not an endogenous regressor, σ12 = 0, is imposed

on the model beforehand we obtain a proper marginal density of Π. For example, spe-

cifying p(β, Π, σ11, σ22) ∝ σ
−1/2
11 σ

−1/2
22 and integrating out σ11 and σ22 using properties of

the inverted Gamma distribution (see Zellner (1971)) yields the joint posterior of β and

Π given by p(β, Π|y, x, Z) ∝ [(y − xβ)′(y − xβ)]−T/2[(x − ZΠ)′(x − ZΠ)]−T/2, i.e. β and

Π have independent Student t distributions with T − 1 and T − k degrees of freedom,

respectively.

So, for the just identified case in the model (4.1)-(4.5) forecasting future values of

x using posterior moments of Π is not possible if one uses the restricted reduced form,

unless the region of integration of Π is truncated, the effect of which is not known a priori.

However, it may occur that the data are such that the asymptote will not be noticed in

the computations; this may happen if the mode of the joint posterior of (β, Π) occurs far

away from Π = 0. Figure 4.4 shows the marginal posterior density kernel of Π in (4.18)

for our nine simulated data sets. Note that each plot reveals an asymptote at Π = 0;

however, for the cases of strong identification the spike near Π = 0 is very narrow and

relatively far away from the bell-shaped part of the graph around Π = Π̂OLS (≈ 0.9 for

this simulated data set).

It may seem paradoxical that if equation (4.1) is excluded from the model, forecasting

based on (4.2) is standard, whereas adding the extra information in equation (4.1), y =
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Figure 4.4: Marginal posterior kernel of Π in (4.17) in IV model for nine simulated data

sets; three cases of identification (Π = 0, 0.1, 1 corresponding to no, weak, strong identi-

fication) are combined with three levels of endogeneity (ρ = 0.99, 0.5, 0 corresponding to

strong, medium, no endogeneity). An asymptote at Π = 0 occurs in each figure.
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xβ + ε with ε possibly correlated with v, makes this impossible. However, as Kleibergen

and van Dijk (1994a) and Chao and Phillips (1998) point out, the flat prior for (β, Π)

implies a highly informative prior for the parameters (Π1, Π) of the restricted reduced

form

y = ZΠ1 + v1, (4.19)

x = ZΠ + v. (4.20)

where Π1 = Πβ and v1 = vβ + ε; in the just identified model (k = 1) there exists a

1-1 relationship between (β, Π) and (Π1, Π), so that in that case it is easily derived that

p(Π1, Π) ∝ p(β, Π) |∂(β, Π)/∂(Π1, Π)| = |Π|−1: the prior for (Π1, Π) is far from non-

informative for Π, as it gives infinite density to the point Π = 0.

Finally, consider the joint posterior of Π = (π1, π2)
′ and β in (4.6) for T = 50 simulated

data points from the model (4.1) - (4.2) with β = 0, σ11 = σ22 = 1, and ρ = 0.99

(strong endogeneity), with k = 2 vectors of instruments consisting of i.i.d. N(0,1) draws.

Figure 4.5 shows the shape of an HPD credible set of (π1, π2, β) for simulated data sets

with π1 = π2 = 0 (no identification), π1 = π2 = 0.1 (weak identification) and π1 =

π2 = 1 (strong identification). Note that the same shapes that showed up in the 2-

dimensional distributions (ridges, bimodality and nearly elliptical shapes) also occur in

these 3-dimensional distributions. The bimodal posterior distribution in the case of weak

identification is used in order to illustrate neural network sampling methods in chapters

2 and 3.

4.2.2 Posteriors and credible sets under Jeffreys prior

In the previous subsection it was discussed that the posterior distribution of β and Π

under the flat prior has some peculiar properties. Two of these properties are that the

marginal posterior of Π has an asymptote at Π = 0 (because of the term (Π′Z ′MxZΠ)−1/2),

which is non-integrable in the case of exact identification; and that the tail behavior of

the marginal posterior of β depends on the number of instruments in the sense that the

marginal posterior of β is improper in the case of exact identification and its tails become

thinner when (possibly irrelevant) instruments are added to the model. In this subsection

we consider the posterior distribution in the simple instrumental variable regression model

(4.1)-(4.5) under a different prior specification, the Jeffreys prior.
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Figure 4.5: Credible sets for parameters π1, π2, β in IV model (4.1) - (4.2) under flat

prior for simulated data sets from this model with strong endogeneity (ρ = 0.99) combined

with either no (π1 = π2 = 0), weak (π1 = π2 = 0.1) or strong (π1 = π2 = 1) identification,

respectively.

For the model (4.1)-(4.5) with one explanatory endogenous variable the Jeffreys prior,

the square root of the determinant of the information matrix, is given by:

p(β, Π, Σ) ∝ |Σ|−2(Π′Z ′ZΠ)1/2σ
−1/2(k−1)
22.1 (4.21)

with σ22.1 ≡ σ22 − σ2
12/σ11 for the structural form (4.1)-(4.2) or equivalently by:

p(β, Π, Ω) ∝ |Ω|−2(Π′Z ′ZΠ)1/2((β : 1)Ω−1(β : 1)′)1/2(k−1) (4.22)

for the corresponding restricted reduced form (4.3)-(4.4); see for example Appendix A of

Hoogerheide, Kleibergen and Van Dijk (2006) for a derivation of this Jeffreys prior.

The factor (Π′Z ′ZΠ)1/2 is 0 for Π = 0, which reflects that in the restricted reduced form

β only occurs in the product Πβ, so that for Π = 0 the model contains no information on

β. Hence for Π = 0 the likelihood is constant over values of β, so that the first and second

order derivatives of the log-likelihood with respect to β are zero, and the determinant of

the information matrix, minus the expectation of the Hessian of the log-likelihood, is 0

for zero values of Π.

Intuitively speaking, the term (Π′Z ′ZΠ)1/2 in the prior ‘cancels’ the asymptote of the

posterior at Π = 0 so the posteriors are proper even in case of a just identified model. The

((β : 1)Ω−1(β : 1)′)1/2(k−1) factor in the prior influences the tail behavior of the marginal

posterior of β and makes it independent of the number of instruments such that it has

Cauchy type tails.
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Note that for k = 1 instrument the Jeffreys prior (4.21) reduces to

p(β, Π, Σ) ∝ |Σ|−2|Π|, (4.23)

which is simply the flat prior of Drèze (1976) in (4.5) with h = 4 multiplied with |Π|.
A strange interpretation of this Jeffreys prior would be to say that one a priori expects

Π to be large (in absolute sense). An intuitively more appealing explanation is that this

Jeffreys prior is just a ‘regularization prior’ that does not immediately reflect prior beliefs

but in combination with the likelihood function yields posteriors with desirable properties

(in the sense that the peculiar properties resulting from the flat prior do not occur).

Notice that also for k > 2 the factor (Π′Z ′ZΠ)1/2 in the prior takes high values for

(in absolute sense) large elements of Π, while in this case the ((β : 1)Ω−1(β : 1)′)1/2(k−1)

factor takes high values for (in absolute sense) large values of β. In the likelihood of the

(restricted reduced form of) the IV model it is the product Πβ that causes points (Π, β)

with Π and β both attaining (extremely) large values to have small posterior probability.

Figure 4.6 shows the joint posterior of (Π, β) under the Jeffreys prior for the same

nine simulated data sets that are used in the previous subsection in order to illustrate the

shapes of posteriors under the flat prior. This is the case with k = 1 instrument, where

the posterior of (Π, β) under the Jeffreys is given by the posterior under the flat prior

multiplied by the absolute value of Π (and with exponent −T/2 changed into −(T +1)/2).

In the case of a strong instrument there seems to be little difference between the posterior

under the Jeffreys or flat prior. Obviously, the |Π| factor implies that there is less posterior

probability mass in neighborhoods of Π = 0 than under the flat prior, which clearly affects

the posterior in the six cases of weak or no identification. In these cases the contour plots

show bimodality with posterior probability mass on both sides of the line Π = 0. The

factor |Π| implies that the marginal posterior of Π has no asymptote at Π = 0. However,

it should be noted that for example in the case of a weak instrument and no endogeneity

the marginal posterior of Π does not drop in neighborhoods of Π = 0 either: for Π → 0

the lower values of the posterior density kernel p(Π, β|y, x, Z) are compensated by the fact

that for Π → 0 the posterior p(Π, β|y, x, Z) becomes less sensitive with respect to changes

in β, as β only occurs in the likelihood in the product Πβ. In other words, the marginal

posterior probability mass of Π does not decrease for Π → 0, this posterior probability

mass is just spread over a wider range of values for β. This phenomenon is reflected by

the contour plot in the second row and third column of Figure 4.6.
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Figure 4.6: Contour plots in the Π × β plane: joint posterior kernel of Π and β in

IV model under Jeffreys prior for nine simulated data sets; three cases of identification

(Π = 0, 0.1, 1 corresponding to no, weak, strong identification) are combined with three

levels of endogeneity (ρ = 0.99, 0.5, 0 corresponding to strong, medium, no endogeneity)
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Figure 4.7: Marginal posterior of β under Jeffreys prior for simulated data set with weak

identification (Π = 0.1) and strong endogeneity (ρ = 0.99)

Figure 4.7 shows the marginal posterior of β under the Jeffreys prior in the case of a

weak instrument and strong endogeneity: this shows that the tails are thinner than under

the flat prior, reflecting that this is a proper posterior, while the posterior under the flat

prior is not. The bimodality shows that the Jeffreys prior may still result in a bimodal

marginal posterior of β.

The Jeffreys prior ‘cures’ some of the peculiar properties of posterior distributions

under the flat prior, the asymptote of the marginal posterior of Π at Π = 0 and the

dependence of the tail behavior of the marginal posterior of β on the number of (possibly

irrelevant) instruments. However, posterior distributions under the Jeffreys prior may

still show non-elliptical shapes such as bimodality.

For the case of one explanatory endogenous variable an explicit formula exists for the

marginal posterior of β, see e.g. Kleibergen and Zivot (2003). If there are m explanatory

endogenous variables with m > 1, then sampling methods are required. Kleibergen and

van Dijk (1998) and Kleibergen and Paap (2002) have derived specific importance sam-

pling and Metropolis-Hastings algorithms for models in which a reduced rank restriction is

imposed on a parameter matrix, for example the instrumental variables regression model

and the vector error correction model (VECM). However, these may require the evaluation

of a determinant of a (m+1)k×(m+1)k Jacobian matrix, which may be numerically cum-

bersome, especially in the case of many instruments. If these sampling methods are not

applicable in certain cases, the possibility of (highly) non-elliptical shapes of the posterior

distributions under the Jeffreys prior implies that neural network sampling methods may

be useful tools in a Bayesian analysis of an IV model under the Jeffreys prior, possibly

after some parameter transformations. This is left as a topic for further research.
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4.3 Hierarchical prior of Chamberlain and Imbens

(1996)

In the previous section some peculiar properties are considered of posterior distributions

under the flat prior, and an intuitive explanation is given of how the Jeffreys prior ‘reme-

dies’ some of these properties. In this sense the Jeffreys prior is a ‘regularization prior’ that

‘cures’ strange properties occurring under the flat prior. In this section we briefly discuss

the hierarchical prior of Chamberlain and Imbens (1996), which can also be considered as

a ‘regularization prior’. This prior specification is inspired by the drawback of inference

under the flat prior that many irrelevant instruments result in a tight marginal posterior

of β, even though no information on β is present in the data. Kleibergen and Zivot (2003)

also consider the behavior of the marginal posterior of β under the flat and Jeffreys prior

in the case of many irrelevant instruments, and show that the posterior under the Jeffreys

prior is (relatively) insensitive to the addition of many irrelevant instruments. First, we

summarize the prior specification suggested by Chamberlain and Imbens (1996); then we

compare it to the Jeffreys prior.

Chamberlain and Imbens (1996) argue as follows. Consider the IV model with struc-

tural form (4.1)-(4.2) and restricted reduced form (4.3)-(4.4). When k, the number of

instruments in Z, is large, a choice for a flat prior distribution is in fact very informative,

because the prior distribution dogmatically asserts that the instrumental variables Z are

collectively very powerful predictors of the explanatory endogenous variable x. In this

case it is therefore important to restrict the variability of the parameters Π. Therefore a

structure is imposed on the prior distribution in the form of a hierarchical (nested) model.

It is assumed that the elements of the vector Π, πj (j = 1, . . . , k), obey the distribution:

πj |α, σ2
π

i.i.d.∼ N(α, σ2
π) (j = 1, . . . , k) (4.24)

where α and σ2
π are hyperparameters. For β, Ω and the hyperparameter α improper priors

are specified:5

p(Π, β, Ω, α, σ2
π) ∝ p(Π|α, σ2

π)p(σ2
π)|Ω|−(k+3)/2, (4.25)

5The model we describe is a slight modification of the model used by Chamberlain and Imbens (1996).

Chamberlain and Imbens (1996) consider a model containing also exogenous variables that are included

in all equations; the parameters of these exogenous variables are included in the πj , such that πj (j =

1, . . . , k) and α are vectors and σ2
π is replaced by a covariance matrix. This is possible and plausible in

their particular example, since and these included and excluded exogenous variables correspond to the

same ‘units’.
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where the prior density p(σ2
π) is given by an inverted Wishart density:

(σ2
π)−1 ∼ Wishart(h, H),

which is an inverted Gamma distribution in this case of a scalar. A Gibbs sampler can be

used to sample from the posterior resulting from this hierarchical prior, see the appendix

of Chamberlain and Imbens (1996). A conventional diffuse, but improper, prior for σ2
π

would correspond to h = 0, H−1 = 0. However, Chamberlain and Imbens (1996) show

that this results in an improper posterior in which the event σ2
π = 0 has probability one.

Therefore a proper prior is required. The value of h is chosen as the smallest value such

that there is probability one that σ2
π is nonsingular, that is h = 1. The value of H−1 is

chosen as H−1 = C · h· cov(π̂), where cov(π̂)=
∑k

j=1(π̂j − ¯̂π)′(π̂j − ¯̂π)/k, ¯̂π =
∑k

j=1 π̂j/k

with π̂j (j = 1, . . . , k) OLS estimates in the first stage regression. (The use of the data

dependent cov(π̂) is not essential; it is merely a convenient normalization.)

The choice of the positive constant C is crucial for obtaining useful results from this

hierarchical model: if C is chosen very large, this corresponds essentially to a flat prior

on Π, and results will be similar to the Drèze approach, yielding misleadingly small HPD

regions in the case of many superfluous instruments. On the other hand, if C is too small,

the posterior distribution of β will have misleadingly large variance when the ‘true’ πj

(j = 1, . . . , k) have non-zero values on both sides of 0, but are 0 on average. For in that

case, the instruments contain information, but restricting the πj (j = 1, . . . , k) to be all

approximately equal – by imposing a prior on σ2
π that strongly favors very small σ2

π –

prevents the method to use the information in the instruments. (Note that if the ‘true’

values of the πj (j = 1, . . . , k) would have a non-zero average, a non-zero value of α could

cause the posterior of Π to be located away from 0, thus yielding a tight posterior of β

despite the (unwisely chosen) prior on σ2
π.)

The constant C should therefore be chosen in such a way that it puts prior mass

both close to zero (to guard against misleading inference in the case of many superfluous

instruments) and on large values of σ2
π (to guard against loss of information contained in

the instruments). In specific applications, the choice of C may be based on the relative

concern with both cases. A careful ‘tuning’ of the choice of C (using a simulated data

set containing relevant instruments and a simulated data set containing only irrelevant

instruments) is therefore necessary.

It is immediately clear that the ‘tuning’ of the choice of C in the hierarchically based

prior in the approach of Chamberlain and Imbens (1996) is a major disadvantage as
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compared to the approach under the Jeffreys prior, which does not require such ‘tuning’.

Further, under the Jeffreys prior one does not make the assumption of normally distributed

elements of Π; it is not immediately clear that this assumption does not have undesired

effects on the results.

It should be noted that the approach of Chamberlain and Imbens (1996) has the ad-

vantage that the hierarchical prior is not necessarily data dependent, while the Jeffreys

prior generally is (because of Z ′Z occurring in it); and that a straightforward Gibbs sam-

pler can be used to sample from its posterior. However, the two disadvantages mentioned

above clearly seem to outweigh these advantages.

4.4 Concluding remarks

In this chapter we have considered how shapes of posteriors in the IV model under the flat

or Jeffreys prior depend on the level of endogeneity and instrument strength. Further,

it is considered how the Jeffreys prior ‘remedies’ two of the peculiar properties of the

posterior under the flat prior, the asymptote of the marginal posterior of Π at Π = 0

and the dependence of the tail behavior of the marginal posterior of β on the number of

instruments in the sense that the marginal posterior of β is improper in the case of exact

identification, whereas its tails become thinner when (possibly irrelevant) instruments are

added to the model.

For the case of one explanatory endogenous variable an explicit formula exists for the

marginal posterior of β under the Jeffreys prior, see e.g. Kleibergen and Zivot (2003). If

there are m explanatory endogenous variables with m > 1, then sampling methods are

required. Kleibergen and van Dijk (1998) and Kleibergen and Paap (2002) have derived

importance sampling and Metropolis-Hastings algorithms that are specifically designed

for reduced rank regression models such as the IV regression model. However, in the

case of many instruments these may require the evaluation of a determinant of a huge

Jacobian matrix, which may be numerically cumbersome. If these sampling methods

are not applicable in certain cases, the possibility of (highly) non-elliptical shapes of

the posterior distributions under the Jeffreys prior implies that neural network sampling

methods may be useful tools in a Bayesian analysis of an IV model under the Jeffreys

prior, possibly after some parameter transformations. This is left as a topic for further

research.

Finally, the hierarchical prior of Chamberlain and Imbens (1996) is briefly discussed,

which can also be considered as a ‘regularization prior’ that ‘cures’ strange posterior
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properties occurring under the flat prior. Unlike the approach under the flat prior, the

approach of Chamberlain and Imbens (1996) is also capable of only resulting in tight HPD

regions for β in the case of data sets that contain information on β, just like the approach

using the Jeffreys prior. The hierarchically based prior in the approach of Chamberlain

and Imbens (1996) requires the ‘tuning’ of some prior variance (or covariance matrix),

which is obviously a major disadvantage as compared to the approach under the Jeffreys

prior. It should be noted that the approach of Chamberlain and Imbens (1996) has the

advantage that the hierarchical prior is not necessarily data dependent, while the Jeffreys

prior generally is, and that a straightforward Gibbs sampler can be used to sample from

the corresponding posterior. However, the disadvantage of the ‘tuning’ of a prior variance,

and the sensitivity of posterior results to the choice of this prior variance, clearly suggests

that the use of the Jeffreys prior is preferable in most situations.



Chapter 5

An instrumental variables regression

model for return on education:

Angrist-Krueger reconsidered

Chapter 5 is based on Hoogerheide, Kleibergen and Van Dijk (2006) and Hoogerheide and

Van Dijk (2006b).

5.1 Introduction

In this chapter we consider an instrumental variables regression model due to Angrist and

Krueger (1991) for the effect of education on income. Because of the endogeneity of the

years of education and income, Angrist and Krueger use instruments that are obtained

from the quarter of birth. It is hard to find instruments that are correlated with education

but uncorrelated with unobserved ‘ability’ which explains both the education and income.

Estimating the return on education is therefore a non-trivial matter. The instruments

that are based on the quarter of birth exploit that students born in different quarters have

different average education. This results since most school districts require students to

have turned age six by January 1 of the year they enter school and compulsory schooling

laws compel students to remain at school until their sixteenth, seventeenth or eighteenth

birthday. This asymmetry between school-entry requirements and compulsory schooling

laws compels students born in certain months to attend school longer than students born

in other months: students born earlier in the year enter school at an older age and reach

the legal dropout age after less education. Hence, for students who leave school as soon
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as the schooling laws allow for it, those born in the first quarter have on average attended

school for three quarters less than those born in the fourth quarter.1

For quarter of birth to be a valid instrument it should only influence income through

its effect on education. This is a plausible assumption, as one’s birthday is unlikely to

be correlated with personal attributes other than age at school entry.2 Moreover, Angrist

and Krueger (1991) do not find evidence of an effect of quarter of birth on the years

of education for college graduates. Compulsory schooling laws do not compel persons to

attend school beyond high school, so if such evidence were found it would mean that there

were also different reasons (like characteristics of one’s family or personal attributes such

as intelligence or ‘ability’ in general) causing an effect of quarter of birth on education,

and probably also a direct effect of quarter of birth on income. The fact that no such

evidence was found strengthens the idea that quarter of birth only influences education

through the compulsory school attendance, and has no direct influence on income.

The strength of these instruments clearly depends on the fraction of students that

immediately leave school when it is permitted. This is, however, only a small part of the

total population of students since most students do not immediately leave school when

it is allowed and some leave school before they attain the legal dropout age. Angrist

and Krueger (1991) mention several factors that influence the size of the latter group.

Compulsory schooling laws allow certain officers to take children into custody and/or

punish a child’s parents if a child does not attend school; and child labor laws restrict or

prohibit children of compulsory school age from participating in the work force, the main

alternative to attending school. There are, however, exemptions to compulsory schooling

laws: students are exempt from compulsory school attendance if they have a high school

degree; and in many states there are exemptions for children suffering from physical or

mental disabilities, or if they live far from school.

Alongside that the quarter of birth only affects the years of education for a small

fraction of the student population, its influence is also limited since it only implies a

1The assumption that the birthday cutoff is January 1 is not crucial; the main point is that children

with different birthdays are allowed to leave school after different amounts of education. Angrist and

Krueger (1992) mention the different cutoffs for several states in 1955, which influenced a different group

of children than our data set. If these cutoffs would be the same in the period 1936-1945 as in 1955, this

would still not be alarming. The only influence of the exact birthday cutoff is that instruments based on

quarter of birth are obviously somewhat more powerful when the birthday cutoff is at the beginning/end

of a quarter.
2Bound, Jaeger and Baker (1995) criticized this assumption; the criticism of Bound, Jaeger and Baker

(1995) will be discussed in section 5.5.
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maximum difference of one year over the different quarters which is small compared to

the overall variation in the education spell. Quarter of birth is therefore expected to be

a weak instrument. Bound, Jaeger and Baker (1995), for example, show that randomly

generated instruments, designed to match the data of Angrist and Krueger (1991), yield

results remarkably similar to those based on the actual instruments. Staiger and Stock

(1997) also show that inference on the return on education is strongly affected by the

weakness of the quarter of birth instruments. Hence, although the quarter of birth seems

a plausible source for constructing instruments, we should be careful with interpreting

the results because of the weakness of the instruments.

Section 5.2 describes the particular model and data that we use. In section 5.3 and 5.4

classical and Bayesian results are given, respectively. In sections 5.2 - 5.4 it is assumed that

the assumptions made Angrist and Krueger (1991) are satisfied by the data. In section

5.5 some assumptions made by Angrist and Krueger (1991) are investigated. Section 5.6

gives conclusions.

5.2 Model and data

Angrist and Krueger (1991) use data sets concerning men born in the USA in the years

1920-1929, 1930-1939 or 1940-1949, and consider several model specifications. We use a

subset of the data used by Angrist and Krueger (1991): a data set on income, years of

education and state/quarter/year of birth consisting of 329,509 men born in the USA in

the years 1930-1939.3 We use the following model:

ỹi = x̃iβ +
∑9

j=1 Dy
j,i δy

j +
∑S−1

t=1 Ds
t,i δs

t + π1 + ε̃i i = 1, . . . , T (5.1)

x̃i =
∑9

j=1 Dy
j,iγ

y
j +

∑S−1
t=1 Ds

t,iγ
s
t + π2

+
∑S

t=1

∑4
h=2 Ds

t,iD
q
h,i πsq

th +
∑9

j=1

∑4
h=2 Dy

j,iD
q
h,i πyq

jh + ṽi

(5.2)

where ỹi is the logarithm of the weekly wage of person i in 1979, x̃i is the number of

completed years of education by person i, and the parameter of interest is the return on

education β. The dummy variables Ds
t,i, Dy

j,i, Dq
h,i are equal to 1 if individual i was born

in state t, year 1929+j, quarter h, and equal to 0 otherwise, respectively. S is the number

of states of birth, i.e. S = 51 (including the District of Columbia) if we use all states.

We however also consider four subsamples for which we divide the US into four regions

that are also used by the US Census Bureau, the source of the data. The states and

3The source of the data is the 1980 Census, 5 percent Public Use Sample.
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Table 5.1: US Census Bureau Regions

Census number of number of

region observations states states (including D.C.)

1. Northeast 84484 9 Connecticut, Maine, Massachusetts, New Hampshire,

New Jersey, New York, Pennsylvania, Rhode Island,

Vermont.

2. Midwest 102267 12 Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota,

Missouri, Nebraska, North Dakota, Ohio,

South Dakota, Wisconsin.

3. South 114391 17 Alabama, Arkansas, Delaware, D.C., Florida, Georgia,

Kentucky, Louisiana, Maryland, Mississippi,

North Carolina, Oklahoma, South Carolina, Tennessee,

Texas, Virginia, West Virginia.

4. West 28367 13 Alaska, Arizona, California, Colorado, Hawaii, Idaho,

Montana, Nevada, New Mexico, Oregon, Utah,

Washington, Wyoming.

USA 329509 51

numbers of observations in each region are given by Table 5.1. The coefficients π1 and π2

are the constant terms; ε̃i and ṽi are disturbances that are assumed to be jointly normal

distributed and independent across individuals.

The state and year dummies Ds
t,i and Dy

j,i are included in both equations since state

and year of birth both influence the education spell and income. The year dummies in

the wage equation (5.1) incorporate the effect of age (measured in years) on income.

The exogenous variables that are excluded from the wage equation (5.1) are the in-

teractions of state and quarter of birth dummies, and interactions of year and quarter of

birth dummies. The interacted state and quarter of birth dummies reflect that the influ-

ence of the quarter of birth on education may differ between states which results since

compulsory education laws differ between states. The legal dropout age varies between

16, 17 and 18 years and in some states students have to finish the school term. The rules

concerning exemptions from the compulsory school attendance vary as well across states.

The average number of years of education that students desire also differs between states

(see Tables 5.2 and 5.3, which show that on average men born in the Southern region in

the period 1930-1939 have less education than men born in the other regions); the more

years of education that students on average want to attend, the smaller the fraction of
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students that leave school as soon as the law allows it, and the smaller the coefficients

at the interacted state and quarter of birth dummies. Note that πsq
th is interpreted as the

effect of the h-th (h = 2, 3, 4) quarter on education in state s in 1939, i.e. the difference

in the years of education between men born in the h-th quarter and the first quarter in

1939 (on average).

The interacted year and quarter of birth dummies reflect that the influence of the

quarter of birth on education may change over time. For example, the average number

of years of education that students desire may change over time. In fact the average

number of years of education has increased from 1930 to 1939, see Table 5.4.4 Note that

πyq
jh (j = 1, . . . , 9;h = 2, 3, 4) is interpreted as the difference in the effect of the h-th

(h = 2, 3, 4) quarter on education between the year 1929 + j and 1939, i.e. the difference

between the differences in years of education between men born in the h-th quarter and

the first quarter between the year 1929 + j and 1939 (on average).

Model (5.1)-(5.2) reads in matrix notation:

ỹ = WΠ1 + X̃β + ε̃ (5.3)

X̃ = WΠ2 + Z̃Π + Ṽ (5.4)

where ỹ = (ỹ1, . . . , ỹT )′, X̃ = (x̃1, . . . , x̃T )′, ε̃ = (ε̃1, . . . , ε̃T )′, Ṽ = (ṽ1, . . . , ṽT )′; W is the

T × (S + 9) matrix of year and state of birth dummies and a constant term with rows

Wi = (Dy
1i, . . . , D

y
9i, D

s
1i, . . . , D

s
S−1,i, 1), Z̃ is the T×3(S+9) matrix with rows Zi containing

the state-and-quarter of birth and year-and-quarter of birth interactions Ds
tiD

q
hi, Dy

jiD
q
hi

(t = 1, . . . , S; h = 2, 3, 4; j = 1, . . . , 9). The parameter vectors are the (S + 9)× 1 vectors

Π1 = (δy
1 , . . . , δ

y
9 , δ

s
1, . . . , δ

s
S−1, π1)

′, Π2 = (γy
1 , . . . , γ

y
9 , γ

s
1, . . . , γ

s
S−1, π2)

′ and the 3(S +9)×1

vector Π containing the coefficients πsq
th , πyq

jh (t = 1, . . . , S; h = 2, 3, 4; j = 1, . . . , 9).

We respecify (5.3)-(5.4) as:

y = Xβ + ε (5.5)

X = ZΠ + V (5.6)

where y, X, Z (and the error terms ε, V ) contain the residuals of ỹ, X̃, Z̃ (and ε̃, Ṽ )

after regression on W ; that is, the observations are ‘corrected’ for differences in mean

4Angrist and Krueger (1991) conclude that as average income in 1979 is approximately equal across

birth years 1930-1939, age has no or little influence on income for men between 40 and 49 years old.

However, as the average education has increased over years of birth 1930-1939, age may very well have a

positive effect that is (on average) compensated by the lower level of education. Note that this does not

immediately imply that the variable age should be included in the model, as the year dummies already

incorporate the effect of age (measured in years).
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Table 5.2: Summary statistics of education and wage per region

Census number of education∗ log weekly wage

region observations average st.dev. % ≤ 9 % ≤ 10 average st.dev.

1. Northeast 84484 13.27 3.12 9.4% 14.2% 5.96 0.65

2. Midwest 102267 13.06 2.99 10.0% 14.6% 5.97 0.66

3. South 114391 11.93 3.52 22.0% 28.0% 5.77 0.71

4. West 28367 13.63 3.01 6.5% 10.1% 6.00 0.65

USA 329509 12.77 3.28 13.7% 18.7% 5.90 0.68
∗In most states people born in 1930-1939 were obliged to enter school at age 5 or 6

and allowed to leave school at age 16 having completed 9 or 10 years of education.

across years and states.5 The restricted reduced form corresponding to the structural

form (5.5)-(5.6) is given by:

y = ZΠβ + u (5.7)

X = ZΠ + V (5.8)

where u ≡ V β + ε. The error terms in the structural form and the restricted reduced

form have covariance matrix Σ and Ω, i.e. (εi, vi)
′ ∼ N(0, Σ) and (ui, vi)

′ ∼ N(0, Ω), with

Σ =

(
σ11 Σ12

Σ21 Σ22

)
,

Ω =

(
ω11 Ω12

Ω21 Ω22

)
=

(
1 β ′

0 I

)
Σ

(
1 0

β I

)
=

(
σ11 + 2Σ21β + β ′Σ22β β ′Σ22 + Σ12

Σ22β + Σ21 Σ22

)
.

Section 5.3 shows results for two classical methods, two-stage least squares (2SLS) and

limited information maximum likelihood (LIML). In section 5.4 the results are given for

Bayesian methods, using either a flat or Jeffreys prior.

5In classical inference the Frisch-Waugh-Lovell theorem implies the equivalence of the results from

(5.3)-(5.4) and (5.5)-(5.6). In Bayesian inference this results since specifying a flat prior for Π1 and Π2

and integrating out Π1 and Π2 in the model (5.3)-(5.4) yields the same posterior as considering the model

(5.5)-(5.6) (upto some factor that is neglectable if the number of observations T is much larger than S+9,

the dimension of Wi, as is the case throughout this chapter).
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Table 5.3: Summary statistics of education and wage per state of birth

number of education log weekly wage

state observations average st.dev. % ≤ 9 % ≤ 10 average st.dev.

Alabama 8536 11.71 3.46 23.1 29.5 5.72 0.76

Alaska 78 13.47 3.12 7.7 15.4 6.09 0.83

Arizona 1066 13.11 3.27 11.5 16.0 5.96 0.62

Arkansas 5794 11.85 3.41 21.4 27.8 5.77 0.70

California 11078 13.87 2.93 4.6 7.8 6.04 0.65

Colorado 2818 13.32 3.11 9.1 12.8 5.95 0.65

Connecticut 3844 13.31 3.08 9.7 14.3 5.96 0.63

Delaware 598 12.30 2.94 15.7 21.2 5.85 0.61

D.C. 1237 13.83 3.12 6.4 10.6 6.01 0.65

Florida 3913 12.68 3.35 14.4 19.9 5.78 0.69

Georgia 8411 11.50 3.51 24.8 31.4 5.68 0.72

Hawaii 246 13.23 3.06 10.2 14.2 5.97 0.69

Idaho 1599 13.54 3.02 7.5 11.1 5.95 0.64

Illinois 18375 13.35 3.00 8.0 12.6 6.03 0.65

Indiana 8918 12.77 2.87 10.8 16.0 5.94 0.63

Iowa 6699 13.14 2.96 9.3 12.5 5.91 0.70

Kansas 4807 13.44 2.96 7.7 10.5 5.91 0.67

Kentucky 8933 11.27 3.55 30.7 36.8 5.80 0.70

Louisiana 5975 12.07 3.61 20.0 25.6 5.84 0.71

Maine 2424 12.35 3.10 17.0 22.0 5.75 0.64

Maryland 4139 12.44 3.27 16.7 23.4 5.88 0.67

Massachusetts 9955 13.47 3.16 8.9 13.1 5.95 0.64

Michigan 14077 13.00 2.89 9.4 14.9 6.03 0.62

Minnesota 7170 13.19 3.03 10.0 13.5 5.97 0.67

Mississippi 5864 11.49 3.73 25.9 32.6 5.68 0.75

Missouri 9274 12.69 3.18 14.8 19.6 5.90 0.69

Montana 1407 13.38 3.01 8.0 12.2 5.91 0.70

Nebraska 3488 13.34 2.96 7.5 11.1 5.92 0.70

Nevada 308 13.48 2.95 8.1 11.0 5.99 0.73

New Hampshire 1200 12.59 3.15 16.6 21.0 5.80 0.64

New Jersey 8964 13.43 3.11 8.3 13.1 6.00 0.66

New Mexico 1325 12.59 3.41 15.1 19.9 5.85 0.61

New York 29015 13.70 3.16 7.1 11.4 6.01 0.66

North Carolina 10798 11.70 3.43 24.0 30.5 5.66 0.71

North Dakota 2028 12.94 3.28 15.4 19.5 5.93 0.70
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Table 5.3 (continued)

number of education log weekly wage

state observations average st.dev. % ≤ 9 % ≤ 10 average st.dev.

Ohio 17070 12.95 2.95 10.1 15.4 5.97 0.63

Oklahoma 6950 13.00 3.11 11.4 15.9 5.90 0.66

Oregon 2127 13.65 2.86 5.2 8.9 5.99 0.62

Pennsylvania 26385 12.84 2.97 10.8 16.3 5.93 0.62

Rhode Island 1698 12.91 3.21 15.1 20.8 5.85 0.67

South Carolina 5245 11.30 3.58 27.3 34.6 5.61 0.75

South Dakota 1754 13.18 3.23 12.8 15.3 5.90 0.67

Tennessee 8335 11.54 3.51 27.0 32.8 5.75 0.71

Texas 15932 12.67 3.62 15.5 20.1 5.87 0.70

Utah 1999 13.94 3.04 5.5 9.7 6.01 0.61

Vermont 999 12.40 3.18 18.2 22.4 5.73 0.67

Virginia 7319 11.47 3.62 27.3 34.0 5.73 0.71

Washington 3610 13.66 2.90 5.4 8.7 6.04 0.64

West Virginia 6412 11.81 3.16 22.5 28.9 5.85 0.64

Wisconsin 8607 12.96 2.94 10.2 14.5 5.93 0.66

Wyoming 706 13.60 3.02 6.9 10.9 5.99 0.68

Table 5.4: Summary statistics of education and wage per year of birth

number of education log weekly wage

year observations average st.dev. % ≤ 9 % ≤ 10 average st.dev.

1930 33602 12.46 3.44 17.2 22.6 5.90 0.69

1931 30583 12.59 3.38 15.8 20.8 5.91 0.69

1932 32211 12.63 3.40 15.9 21.1 5.90 0.69

1933 30751 12.69 3.35 14.9 20.1 5.90 0.68

1934 31916 12.72 3.32 14.4 19.7 5.90 0.69

1935 32773 12.78 3.26 13.7 18.6 5.89 0.69

1936 32676 12.84 3.20 12.6 17.6 5.90 0.67

1937 33969 12.90 3.17 11.7 16.5 5.90 0.66

1938 35223 12.99 3.15 11.1 15.8 5.90 0.67

1939 35805 13.03 3.13 10.6 15.5 5.90 0.66
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5.3 Classical approaches

In this section we first briefly summarize two well-known classical single equation estima-

tors for β, two-stage least squares (2SLS) and limited information maximum likelihood

(LIML); for extensive discussions of classical single equation procedures the reader is

referred to Hausman (1983) or Phillips (1983). After that the results are discussed of

applying the 2SLS and LIML methods to the Angrist-Krueger IV model for data of the

US and the four Census regions.

In the two-stage least squares method, due to Theil (1953) and Basmann (1957), an

estimator of β is obtained by the following two steps. First, an estimate of Π in (5.6) is

obtained by OLS: Π̂OLS = (Z ′Z)−1Z ′X. Second, an estimate of β is obtained by OLS of y

on ZΠ in (5.7) with Π replaced by Π̂OLS: β̂2SLS = (X ′Z (Z ′Z)−1Z ′X)−1X ′Z (Z ′Z)−1Z ′y.

The 2SLS estimator β̂2SLS is a consistent estimator of β that is asymptotically normal

distributed with covariance matrix (1/T )σ11(Π
′ΣZΠ)−1, where ΣZ = plimT→∞(1/T )Z ′Z,

under the conditions that β is identified and instruments are not too weak. Staiger and

Stock (1997) explore a case of weak instruments, defined as Π = C/
√

T where C is

fixed (so that Π′Z ′ZΠ converges to a constant as the sample size T grows), where β̂2SLS is

asymptotically biased. In finite samples β̂2SLS is less biased than βOLS, the OLS estimator

of β in (5.5). The tails (and bias) of the finite sample distribution of β̂2SLS depend on

the degree of overidentification, the number of instruments excluded from the structural

equation minus the dimension of β; the moments of the finite sample distribution exist

up to/including this degree of overidentification.

In the method of limited information maximum likelihood, due to Anderson and Rubin

(1949) and Hood and Koopmans (1953), the estimator for β is the value of β for which

the likelihood function of (5.5)-(5.6), concentrated with respect to Π and Σ, takes its

maximum. It is computed by computing the smallest root λ of the determinantal equation

|λ(Y X)′(Y X) − (Y X)′Z(Z ′Z)−1Z ′(Y X)| = 0 and the corresponding eigenvector,

after which multiplying this eigenvector with minus the inverse of its first element yields

(−1, β̂LIML)′. Staiger and Stock (1997) show that in their case of weak instruments β̂LIML

is an inconsistent estimator of β. However, in finite samples β̂LIML is (approximately)

median unbiased if instruments are not too weak. Staiger and Stock (1997) show several

cases in which the LIML estimator is approximately median unbiased whereas the 2SLS

estimator suffers from huge biases, which makes Staiger and Stock (1997) conclude that

estimator bias is less of a problem for LIML than for 2SLS, so that they suggest using

LIML rather than 2SLS point estimates. The tails of the finite sample distribution of
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β̂LIML are Cauchy-type (no matter the degree of overidentification), so that β̂LIML has

no finite moments.

Angrist and Krueger (1991) report the 2SLS estimate of β in the model (5.5)-(5.6):

β̂2SLS = 0.0928 with an asymptotic standard error of 0.0093 (column (2) of Table VII).

Next to that they report the OLS estimate of β in (5.5): 0.0673 (with standard error of

0.0003; column (1) of Table VII).

Table 5.5 shows the results of 2SLS and OLS for the Census regions. This suggests

that the 2SLS estimate for the US is almost completely determined by the region South:

the difference between the 2SLS estimates for the US and the South is small, and the

asymptotic standard error for the South is not much larger than that for the US. An

explanation for this result is that the average education level for men born in 1930-1939

is lower in the region South than in the other regions, see Table 5.2. The influence of

compulsory schooling laws is therefore larger for the South, as more students desire to

leave school as soon as it is allowed. Therefore the influence of quarter of birth is larger

in the Southern region, so that the instruments are strongest in the South.

One problem that the 2SLS estimator may suffer from is that it is biased in the case of

weak instruments; this is illustrated by the last column of Table 5.5, which shows the mean

of 10,000 2SLS estimators for 10,000 data sets simulated from (5.5)-(5.6) with parameter

values chosen as β = β̂2SLS, Π = Π̂OLS and Σ the covariance matrix of the residuals. The

five means are all biased in the direction of the corresponding OLS estimator where the

relative bias, the difference between the mean of the 2SLS estimates and the true β in

the simulations divided by the difference between the OLS estimate and the true β, is

smaller for the US and the Southern region than for the other three regions. In fact it is

smaller for the South than for the US, which reflects that the addition of superfluous (or

very weak) instruments results in a 2SLS estimator with smaller variance but larger bias.

Table 5.6 shows LIML estimates for the four Census regions, and quantiles of the

estimated finite sample distribution, where maximum likelihood estimates substituted

for β, Π and Σ in the finite sample density of β̂LIML for the case of one explanatory

endogenous variable that is given by Kleibergen (2000) and Kleibergen and Zivot (2003).

Again the results are dominated by the Southern region: the difference between the LIML

estimates for the US and the South is small, and the 95% and 50% density intervals for

the South are not much larger than those for the US. Since LIML is known to focus on

the strongest available instruments, this confirms that the instruments are much stronger



5.3. CLASSICAL APPROACHES 133

in the South than in the other regions. Also notice that the median of the finite sample

distribution of the LIML estimator is approximately equal to the ‘true value’, the ML

estimate, which reflects that the LIML estimator is approximately median unbiased. So,

Tables 5.5 and 5.6 illustrate that the LIML estimator is a better point estimator than

the 2SLS estimator, although in this case the 2SLS estimator is also ‘smart enough’ to

indicate that the strongest instruments stem from the region South.

The results for the four Census regions suggest that a further division of the data

set into states (or groups of states) may be interesting. We first take a closer look at

the first stage regression, the OLS results in model (5.5). Table 5.7 shows the estimated

coefficients π̂sq
th at the interactions of state and quarter of birth, which are interpreted as

the effect of the quarter of birth (as compared with the first quarter) in the year 1939. It

shows t-values larger than 3 for Arkansas, Kentucky and Tennessee (and t-values larger

than 2 for Alabama, Arizona, California, Colorado, Georgia, Illinois, Louisiana, Maryland,

Massachusetss, Mississippi. North Carolina, North Dakota, Texas, Virginia). The effect of

quarter of birth on education should be on average smaller than 0.75, which is not satisfied

by the estimated coefficients of Alaska, Hawaii and Nevada; this is obviously caused by the

small numbers of observations for these states. Table 5.8 shows the estimated coefficients

π̂yq
jh at the interactions of year and quarter of birth. This shows that the influence of quarter

of birth is clearly strongest for men born in 1930. One explanation is that men born in

1930 have on average less education than men born in 1931-1939, so that compulsory

schooling laws are more important for this group. Another, more specific, reason could

be that these men attain age 16 in 1946, right after World War II when there is arguably

a lot of work for young men.

Another way to look at the strength of the quarter of birth instruments for each

state is to consider the p-value of the multiple F-test in the first stage regression when

considering only data of one state. These F-statistics (and corresponding p-values) are

given by Table 5.9, which also shows the estimated concentration parameter Π′Z ′ZΠ/σ2
22

(with σ2
22 = var(vi); see Basmann(1963)), where Π̂OLS and the variance of the residuals

in the first stage regression are substituted for Π and σ2
22.

Table 5.9 shows that three states in the Census region South, Arkansas, Kentucky

and Tennessee, have the largest concentration parameter, and the smallest p-values in the

multiple F-test (p < 0.001). For Kansas the p-value in the multiple F-test is smaller than

0.01. We have p < 0.1 for Arizona and three Southern states, Georgia, South Carolina

and Texas.
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The results of the multiple F-test in the first stage regression for data of one state are

graphically illustrated by Figure 5.1. The three states with p-value smaller than 0.001,

Arkansas, Kentucky and Tennessee, are neighboring states in the region South.

Kentucky has the highest concentration parameter (and smallest p-value at the F-

test); it is no coincidence that for men born in 1930-1939 those born in Kentucky have

the lowest education on average, so that the influence of compulsory schooling laws is

relatively large in Kentucky. Arkansas and Tennessee also have relatively low average

education levels. However, Virginia and Mississippi have lower average education levels;

for Tennessee the states of Alabama and West Virginia also have lower average education.

This suggests that the average amount of education desired by people is not the only

factor influencing the strength of the quarter of birth instruments: there are also other

factors playing a role, which may include the power of government agencies enforcing

schooling laws and the exemptions from these schooling laws that vary between states.

Tables 5.5 and 5.6 show the results of 2SLS and LIML for data of men born in Ken-

tucky, Arkansas or Tennessee. Notice that the uncertainty in the LIML estimator, re-

flected by the 95% and 50% density intervals of the (estimated) finite sample distribution,

increases by a relatively small amount, as compared with the US. The width of the 95%

and 50% density intervals are only 1.93 and 1.92 times larger than for the US while the

whole data set of the US has over 14 times as many observations (329509 vs. 23062).

Further, these 95% and 50% density intervals are tighter for the data set of Kentucky,

Arkansas and Tennessee than for the region Northeast, Midwest or West. This stresses

the importance of the observations on men born in the states of Arkansas, Kentucky and

Tennessee for the inference on return on education.
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Table 5.5: OLS and 2SLS estimates for β in (5.5)-(5.6) for data of US and Census regions

OLS 2SLS 2SLS (10000 simulations)

Region β̂OLS (st.error) β̂2SLS asympt. std.error mean β̂2SLS relative bias

USA 0.0673 (0.0003) 0.0928 (0.0093) 0.0858 0.275

1 Northeast 0.0738 (0.0007) 0.0707 (0.0234) 0.0721 0.452

2 Midwest 0.0621 (0.0007) 0.0796 (0.0224) 0.0724 0.411

3 South 0.0691 (0.0006) 0.0931 (0.0120) 0.0874 0.238

4 West 0.0559 (0.0012) 0.0506 (0.0206) 0.0530 0.453

Kentucky, 0.0653 (0.0013) 0.0970 (0.0168)

Arkansas &

Tennessee

Table 5.6: LIML estimates for β in (5.5)-(5.6) for data of US and Census regions

Quantile finite sample dist. β̂LIML

Region β̂LIML median 2.5% 97.5% 25% 75%

USA 0.1064 0.106 0.0877 0.1256 0.0999 0.1129

1 Northeast 0.0650 0.065 0.0163 0.1124 0.0487 0.0810

2 Midwest 0.1298 0.128 0.0836 0.1825 0.1135 0.1468

3 South 0.1071 0.107 0.0828 0.1324 0.0986 0.1156

4 West 0.0449 0.045 0.0014 0.0874 0.0302 0.0593

Kentucky, 0.1046 0.104 0.0694 0.1420 0.0922 0.1170

Arkansas &

Tennessee
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Table 5.7: Estimated coefficients π̂sq
th at interactions of state and quarter of birth in first

stage regression

State Second quarter Third quarter Fourth quarter

coefficient (t-value) coefficient (t-value) coefficient (t-value)

Alabama 0.0087 (0.0799) 0.2339 (2.1891) 0.2591 (2.4017)

Alaska 2.0370 (1.9631) 1.6165 (1.4696) -0.0412 (-0.0342)

Arizona 0.6195 (2.2070) -0.1240 (-0.4569) -0.2899 (-1.0466)

Arkansas -0.2182 (-1.6787) 0.0271 (0.2175) 0.4230 (3.3300)

California 0.2272 (2.3296) 0.1102 (1.1609) 0.1029 (1.0606)

Colorado 0.2718 (1.5384) 0.3377 (1.9393) 0.3958 (2.2194)

Connecticut 0.2548 (1.6819) 0.0123 (0.0807) 0.0875 (0.5661)

Delaware 0.4562 (1.2199) 0.5355 (1.4456) 0.0847 (0.2232)

D.C. -0.4522 (-1.7005) -0.4764 (-1.8166) -0.4318 (-1.6783)

Florida 0.2481 (1.6166) 0.1023 (0.6891) 0.2073 (1.4024)

Georgia -0.2805 (-2.5634) -0.0438 (-0.4112) 0.0417 (0.3827)

Hawaii -0.0748 (-0.1191) 1.4881 (2.6138) 0.7564 (1.3884)

Idaho 0.1301 (0.5699) -0.0874 (-0.3848) 0.1135 (0.4925)

Illinois 0.0294 (0.3604) -0.1606 (-2.0227) 0.0464 (0.5712)

Indiana -0.0111 (-0.1038) -0.0385 (-0.3720) 0.0140 (0.1315)

Iowa -0.0846 (-0.7066) -0.1300 (-1.1160) 0.0574 (0.4814)

Kansas 0.2322 (1.6350) 0.2251 (1.6784) 0.1554 (1.1369)

Kentucky 0.0492 (0.4631) 0.2550 (2.4374) 0.5142 (4.8730)

Louisiana 0.0434 (0.3328) 0.1172 (0.9531) 0.2686 (2.1695)

Maine -0.0241 (-0.1276) 0.1437 (0.7740) 0.0746 (0.3942)

Maryland 0.3283 (2.2095) 0.3100 (2.1400) 0.2962 (2.0239)

Massachusetts 0.0894 (0.8809) 0.0678 (0.6789) 0.2404 (2.3322)

Michigan 0.1278 (1.4397) 0.0133 (0.1521) 0.1005 (1.1230)

Minnesota -0.2100 (-1.8148) -0.2733 (-2.3791) -0.1192 (-1.0244)

Mississippi 0.0230 (0.1813) 0.1199 (0.9743) 0.3059 (2.4262)

Missouri -0.1274 (-1.2029) -0.0186 (-0.1827) -0.0304 (-0.2922)

Montana -0.0333 (-0.1376) 0.0058 (0.0234) 0.3234 (1.3071)

Nebraska -0.1431 (-0.8979) -0.2160 (-1.3662) -0.1432 (-0.8997)

Nevada -0.1005 (-0.1757) -0.0600 (-0.1113) 0.7544 (1.3369)

New Hampshire -0.1475 (-0.5482) -0.0027 (-0.0104) 0.1464 (0.5420)

New Jersey 0.0372 (0.3524) -0.0448 (-0.4308) 0.1848 (1.7262)

New Mexico 0.1925 (0.7601) 0.0274 (0.1052) 0.4056 (1.6175)

New York 0.0571 (0.8143) -0.0631 (-0.9140) -0.0776 (-1.1021)

North Carolina -0.0857 (-0.8653) 0.0385 (0.3969) 0.2136 (2.1662)

North Dakota -0.4979 (-2.4204) -0.3019 (-1.4854) -0.1407 (-0.6779)
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Table 5.7 (continued)

State Second quarter Third quarter Fourth quarter

coefficient (t-value) coefficient (t-value) coefficient (t-value)

Ohio -0.0847 (-1.0210) -0.0583 (-0.7150) 0.0232 (0.2794)

Oklahoma -0.0800 (-0.6610) 0.0400 (0.3501) 0.2066 (1.7793)

Oregon 0.0550 (0.2705) -0.0238 (-0.1208) 0.0233 (0.1145)

Pennsylvania -0.0288 (-0.3996) -0.0959 (-1.3526) 0.0174 (0.2408)

Rhode Island -0.3987 (-1.8053) 0.0585 (0.2624) 0.1230 (0.5475)

South Carolina -0.1087 (-0.8025) -0.0978 (-0.7348) 0.2983 (2.2239)

South Dakota 0.2971 (1.3435) 0.1932 (0.8849) 0.5111 (2.2999)

Tennessee -0.1076 (-0.9929) 0.0848 (0.7879) 0.4465 (4.0963)

Texas -0.0935 (-1.0690) 0.1063 (1.2806) 0.2505 (2.9811)

Utah -0.0264 (-0.1254) -0.2249 (-1.0941) -0.2249 (-1.0827)

Vermont 0.1709 (0.5889) 0.3196 (1.0907) 0.2557 (0.8531)

Virginia 0.0300 (0.2608) 0.1905 (1.6867) 0.2881 (2.4945)

Washington 0.1001 (0.6368) 0.0280 (0.1802) 0.0009 (0.0054)

West Virginia -0.0901 (-0.7396) -0.0093 (-0.0774) 0.2320 (1.9120)

Wisconsin 0.1516 (1.4148) -0.1032 (-0.9689) 0.0702 (0.6479)

Wyoming 0.0806 (0.2302) 0.1759 (0.5205) -0.1905 (-0.5308)

Table 5.8: Estimated coefficients π̂yq
jh at interactions of quarter and year of birth in first

stage regression (1939 = reference year)

State Second quarter Third quarter Fourth quarter

coefficient (t-value) coefficient (t-value) coefficient (t-value)

1930 0.1538 (2.2272) 0.1881 (2.7767) 0.2191 (3.1690)

1931 -0.0378 (-0.5337) 0.1470 (2.1176) -0.0472 (-0.6650)

1932 0.0804 (1.1494) 0.0977 (1.4301) 0.0962 (1.3841)

1933 -0.0677 (-0.9584) 0.0681 (0.9805) -0.0989 (-1.4070)

1934 0.0792 (1.1212) 0.0574 (0.8356) 0.0340 (0.4865)

1935 0.1162 (1.6620) 0.1856 (2.7248) 0.0170 (0.2433)

1936 0.0274 (0.3931) 0.1067 (1.5671) 0.0209 (0.3009)

1937 0.0120 (0.1729) 0.1372 (2.0335) 0.0472 (0.6843)

1938 0.0396 (0.5765) 0.0291 (0.4354) -0.0348 (-0.5096)
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Table 5.9: Summary statistics of first-stage regression for data of individual states

concentration p-value

State parameter R2 F-stat. # obs. F-stat.

Alabama 18.68 0.0022 0.62 8536 0.9463

Arizona 45.64 0.0426 1.52 1066 0.0365

Arkansas 60.06 0.0103 2.00 5794 0.0009

California 35.93 0.0032 1.20 11078 0.2107

Colorado 31.68 0.0113 1.06 2818 0.3836

Connecticut 38.25 0.0100 1.27 3844 0.1448

Delaware 29.74 0.0506 0.99 598 0.4814

D.C. 27.64 0.0226 0.92 1237 0.5892

Florida 36.19 0.0093 1.21 3913 0.2031

Georgia 41.29 0.0049 1.38 8411 0.0827

Hawaii 27.70 0.1185 0.92 246 0.5853

Idaho 22.57 0.0143 0.75 1599 0.8309

Illinois 32.74 0.0018 1.09 18375 0.3341

Indiana 27.12 0.0030 0.90 8918 0.6169

Iowa 25.64 0.0038 0.85 6699 0.6931

Kansas 52.35 0.0109 1.75 4807 0.0072

Kentucky 68.54 0.0076 2.28 8933 0.0001

Louisiana 31.18 0.0052 1.04 5975 0.4071

Maine 24.15 0.0100 0.80 2424 0.7645

Maryland 34.10 0.0083 1.14 4139 0.2777

Massachusetts 36.02 0.0036 1.20 9955 0.2080

Michigan 23.78 0.0017 0.79 14077 0.7818

Minnesota 15.82 0.0022 0.53 7170 0.9841

Mississippi 30.43 0.0052 1.01 5864 0.4442

Missouri 28.46 0.0031 0.95 9274 0.5460

Montana 26.99 0.0194 0.90 1407 0.6233

Nebraska 30.94 0.0089 1.03 3488 0.4189

Nevada 25.42 0.0866 0.85 308 0.6988

New Hampshire 25.18 0.0212 0.84 1200 0.7147

New Jersey 31.73 0.0035 1.06 8964 0.3803

New Mexico 26.10 0.0199 0.87 1325 0.6690

New York 38.23 0.0013 1.27 29015 0.1440

North Carolina 40.10 0.0037 1.34 10798 0.1033

North Dakota 30.95 0.0153 1.03 2028 0.4191
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Table 5.9 (continued)

concentration p-value

State parameter R2 F-stat. # obs. F-stat.

Ohio 32.16 0.0019 1.07 17070 0.3601

Oklahoma 36.85 0.0053 1.23 6950 0.1822

Oregon 20.37 0.0097 0.68 2127 0.9054

Pennsylvania 27.70 0.0011 0.92 26385 0.5862

Rhode Island 33.96 0.0201 1.13 1698 0.2850

South Carolina 50.91 0.0097 1.70 5245 0.0102

South Dakota 38.39 0.0219 1.28 1754 0.1428

Tennessee 64.06 0.0077 2.14 8335 0.0003

Texas 50.01 0.0031 1.67 15932 0.0125

Utah 31.85 0.0160 1.06 1999 0.3761

Vermont 36.54 0.0367 1.22 999 0.1960

Virginia 28.61 0.0039 0.95 7319 0.5384

Washington 18.54 0.0052 0.62 3610 0.9487

West Virginia 34.36 0.0054 1.15 6412 0.2673

Wisconsin 27.27 0.0032 0.91 8607 0.6090

Wyoming 29.27 0.0421 0.98 706 0.5050

Figure 5.1: p-value of multiple F-test in first stage regression for data of individual states:

p-value < 0.001: dark grey, p-value < 0.01: grey, p-value < 0.1: light grey.

(AR = Arkansas, AZ = Arizona, GA = Georgia, KS = Kansas, KY = Kentucky, SC =

South Carolina, TN = Tennessee, TX = Texas)
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5.4 Bayesian approaches

In this section we first briefly discuss the posterior distributions under two commonly

used prior density kernels, the flat prior of Drèze (1976) and the Jeffreys prior. For an

extensive discussion of these Bayesian approaches (and their relations to the 2SLS and

LIML estimators) the reader is referred to Kleibergen and Zivot (2003). After that the

results are discussed of applying these Bayesian methods to the Angrist-Krueger IV model

for data of the US and the four Census regions.

Drèze (1976) specifies the following flat prior on the parameters of the structural form

(5.5)-(5.6):

p(β, Π, Σ) ∝ |Σ|−1/2 (k+m+2) (5.9)

where k is the number of instruments in Z and m is the number of explanatory endogenous

variables in X. The primary motivation of this flat prior is that it has an invariance

property in the sense that the prior on the structural form implies the same kind of prior

on the parameters of the restricted reduced form (which is proportional to |Σ|−1/2 (k+m+2)).

The marginal posterior of β resulting from the prior (5.9) is given by:

p(β|y, X, Z) ∝
(

(y − Xβ)′MZ(y − Xβ)

(y − Xβ)′(y − Xβ)

)T/2

(y − Xβ)′(y − Xβ)−k/2, (5.10)

where MZ ≡ I − Z(Z ′Z)−1Z ′. The tails of this posterior of β become thinner when

(possibly superfluous) instruments are added to the model, see e.g. Maddala (1976) and

Kleibergen and Zivot (2003). Further, the location of the posterior mode moves towards

the OLS estimator when superfluous instruments are added. Bayesian inference under

the flat prior of Drèze (1976) shares these properties with the small sample distribution of

the 2SLS estimator which made Kleibergen and Zivot (2003) conclude that this approach

has more in common with 2SLS than with LIML.

The Jeffreys prior, the square root of the determinant of the information matrix, is

given by:

p(β, Π, Σ) ∝ |Σ|−(m+1)|Π′Z ′ZΠ|1/2|Σ22.1|−1/2(k−m) (5.11)

with Σ22.1 ≡ Σ22 − Σ21σ
−1
11 Σ12 for the structural form (5.5)-(5.6) or equivalently by:

p(β, Π, Ω) ∝ |Ω|−(m+1)|Π′Z ′ZΠ|1/2|(β : Im)Ω−1(β : Im)′|1/2(k−m) (5.12)

for the corresponding restricted reduced form (5.7)-(5.8); see for example Appendix A of

Hoogerheide, Kleibergen and Van Dijk (2006) for a derivation of this Jeffreys prior. In
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the case of m = 1 and for moderate values of T (T > 20), an accurate approximation of

the marginal posterior of β can be obtained by

p(β|Ω, y, X, Z) ∝ [(β − φ)2ω−1
11.2 + ω−1

22 ]−1

×
∞∑

j=0

Γ[(k + 2j + 1)/2]

j! Γ[(k + 2j)/2]

(
(β : 1)Ω−1Φ̂′Z ′ZΦ̂Ω−1(β : 1)′

2[(β − φ)2ω−1
11.2 + ω−1

22 ]

)j

(5.13)

where Ω = (y : X)′(y : X)/T is substituted for Ω, and where φ ≡ ω21/ω22, ω11.2 ≡
ω11 − ω2

21/ω22, Φ̂ = (Z ′Z)−1Z ′(y : X), see Kleibergen and Zivot (2003). The primary mo-

tivation of the Jeffreys prior is its universal invariance property with respect to parameter

transformations. Kleibergen and Zivot (2003) show that Bayesian analysis using a Jeffreys

prior leads to, when there is only m = 1 explanatory endogenous variable, a functional

expression of the marginal posterior of β that is identical to the finite sample density of

the LIML estimator. Just like the finite sample distribution of the LIML estimator, the

posterior based on the Jeffreys prior retains Cauchy type tails when (possibly irrelevant)

instruments are added, and the location of the mode is insensitive to the addition of

superfluous instruments.

Table 5.10 shows some summary statistics of the posterior distribution of β under the

flat or Jeffreys prior. Just like the results for the 2SLS and LIML estimators, the posterior

distribution of β for the US under the flat or Jeffreys prior is almost completely determined

by the region South; the difference between the means or medians for the US and the

South is small, and the posterior standard deviation and 95% and 50% posterior density

intervals for the South are not much larger than those for the US, whereas the posterior

density intervals are relatively large for the other regions.6 It is shown in Hoogerheide,

Kleibergen and Van Dijk (2006) that Bayesian analysis using the Jeffreys prior, similar

to the LIML estimator, focusses on the strongest available instruments. So, the posterior

results under the Jeffreys prior once more indicate that the quarter of birth instruments

are strongest in the South. Figure 5.2 shows the graphs of the posterior densities under

the flat and Jeffreys prior, respectively.

For all four approaches that have been considered in this chapter, the two classical

methods as well as the two Bayesian approaches, inference on the return to education for

6These 95% and 50% posterior density intervals are not equal to 95% and 50% Highest Posterior

Density (HPD) regions, although the differences are small in these cases of unimodal, almost symmetric

distributions.



142 CHAPTER 5. ANGRIST-KRUEGER RECONSIDERED

the US is almost completely determined by the returns to education in the South. If the

effect of the return on education is different for the other regions, which can not a priori

be ruled out given the large economic differences between these regions, inference using

data of the US is not representative for the average returns on education across the US.

One should thus be careful when drawing such conclusions.

Notice that the results for the flat prior are remarkably similar to those for the 2SLS

estimator: for each region the posterior mean of β is close to the 2SLS estimator β̂2SLS and

the posterior standard deviation is close to the asymptotic standard error. This agrees

with the conclusions of Kleibergen and Zivot (2003) that Bayesian analysis using the flat

prior is closer to 2SLS than to LIML. Also note that the results for the Jeffreys prior

are similar to those for the LIML estimator: the posterior median of β is close to the

LIML estimator β̂LIML, and for US and the region South the difference in the 95% and

50% intervals between the methods is close, although for the other three Census regions

the 95% and 50% posterior intervals under the Jeffreys prior are somewhat larger than

the corresponding intervals for the (estimated) finite sample distribution of the LIML

estimator.

We also consider the posterior of β under the flat and Jeffreys prior based on only the

observations on men born in the states of Arkansas, Kentucky and Tennessee. Table 5.10

shows summary statistics of these posteriors. Notice that the uncertainty in the posterior

under the Jeffreys prior, reflected by the 95% and 50% density intervals of the (estimated)

finite sample distribution, increases by a relatively small amount, as compared with the

US. The width of the 95% and 50% posterior density intervals are only 1.63 and 1.56

times larger than for the US while the whole data set of the US has over 14 times as

many observations (329509 vs. 23062). Further, these 95% and 50% posterior density

intervals are tighter for the data set of Kentucky, Arkansas and Tennessee than for the

region Northeast, Midwest or West. Figure 5.3 illustrates the relative strength of the

quarter of birth instruments in the states of Arkansas, Kentucky and Tennessee. If we

divide the data set of the US in three subsamples, Arkansas-Kentucky-Tennessee (23062

observations), the other 14 states of region South (91329 observations) and the other

three Census regions (215118 observations), then the resulting posteriors of β under the

Jeffreys prior are about as tight for these three subsamples. These results again stress

the importance of the states of Arkansas, Kentucky and Tennessee for the inference on

return on education: to a large extent inference on education for the US is determined by

the return on education for men born in these three states.
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Figure 5.2: Marginal posterior of return on education β under flat prior (above) or Jeffreys

prior (below) for US (solid), Northeast (solid-plusses), Midwest (dashed), South (dash-

dot), West (solid with stars).
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Table 5.10: Posterior results under flat or Jeffreys prior for US and regions

Posterior β under flat prior Quantile posterior β under Jeffreys prior

Region mean st.dev. median 2.5% 97.5% 25% 75%

USA 0.092 0.009 0.106 0.083 0.129 0.098 0.114

1 Northeast 0.071 0.023 0.064 -0.024 0.150 0.037 0.092

2 Midwest 0.081 0.023 0.129 0.041 0.246 0.099 0.163

3 South 0.095 0.012 0.107 0.077 0.138 0.096 0.117

4 West 0.051 0.020 0.044 -0.018 0.105 0.024 0.065

Kentucky, 0.095 0.016 0.104 0.068 0.143 0.092 0.117

Arkansas &

Tennessee
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Figure 5.3: Marginal posterior of return on education β under Jeffreys prior for US

(solid), region South (17 states, dash-dot), Kentucky-Tennessee-Arkansas (solid with

plusses), rest of region South (14 states, dashed), other three Census regions (34 states,

solid with stars).
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Figure 5.4: Empirical cumulative distribution function (CDF) of (completed years of)

education for men born in different quarters: difference between CDF for men born in

second quarter (circle)/ third quarter (plus)/ fourth quarter (star) and CDF for men born

in first quarter.

5.5 Investigation of some of the assumptions made

by Angrist and Krueger (1991)

Angrist and Krueger (1991) make the assumption that the only reason for the influence

of quarter of birth on education is the asymmetry between the school-entry requirements

and compulsory schooling laws: a child’s birthday determines whether the school district

allows the child to enter school at age 5 or age 6, whereas compulsory schooling laws

generally allow students to immediately leave school when they reach a certain age (mostly

16, sometimes 17 or 18). Reasoning in this way, the quarter of birth should only yield

valuable instruments for education for those individuals who have completed 9 - 13 years

of education, as all persons who have left school as soon as the law allowed for it should

be contained in this group.

We first inspect the empirical cumulative distribution function (CDF) of years of

education for the four quarters of birth. If quarter of birth would only affect the education

spell for those who leave school as soon as the law allows for it, the CDF of education

should only differ for the range 9 ≤ education ≤ 13. Figure 5.4 shows the difference
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Table 5.11: First stage regressions for subsamples of the region South: R2, F-statistic of

multiple F-test and corresponding p-value

R2 F-statistic obs. p-value

region South 0.0023 3.3333 114391 0.0000

education ≤ 8 0.0045 1.1034 19214 0.2495

9 ≤ education ≤ 13 0.0019 1.5519 63637 0.0013

education ≥ 14 0.0029 1.1790 31540 0.1339

education ≤ 8 or 0.0043 2.8060 50754 0.0000

education ≥ 14

between the empirical CDF of education between quarter 2/3/4 and quarter 1. This

shows that also for education ≤ 8 and for education ≥ 14 the CDF substantially differs

between the quarters of birth. Notice the negative values reflecting that men born in

the first quarter have completed less years of education on average (also conditional on

education ≤ 8 or education ≥ 14).

In order to investigate the importance of the observations with education ≤ 8 or

education ≥ 14 for the results in the IV model we now divide the data set of the Southern

region (that determines the results for the US) into a subsample of men with 9 - 13 years

of education and subsamples of men with at most 8 years or at least 14 years of education.

Figure 5.5 shows the number of observations per years of education in the region South.

Table 5.11 shows the R2 and F-statistic of the multiple F-test in the first stage regression

for several subsamples of the region South based on education levels. Notice that the

R2 is even lower for 9 ≤ education ≤ 13 than for the groups with education ≤ 8 and

education ≥ 14, suggesting quarter of birth instruments are even stronger for people with

education outside the interval 9 - 13 than inside this interval. If we look at the group

with either education ≤ 8 or education ≥ 14, which consists of a number of observations

comparable to the group with 9 ≤ education ≤ 13, then we see that the p-value at the

multiple F-statistic is also smaller for men with years of education outside the interval 9

- 13. This suggests that the influence of compulsory schooling laws on students who want

to leave school as early as possible is certainly not the only factor causing the effect of

quarter of birth on (average) education spell.

This is further illustrated by the posterior of β under the Jeffreys prior in Figure 5.6.

The posterior under the Jeffreys prior is tighter for observations with education outside
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the interval 9-13 than inside this interval. In fact, this posterior is even tighter than

for the region South or the US; intuitively speaking, this is possible since not only one’s

knowledge on β is updated by the extra observations, but also on Π (which occurs as

the product Πβ in the restricted reduced form of the model) and Ω. That the posterior

is much tighter for the group with less than 9 or more than 13 years of education and

that the posterior for all observations of the South is much closer to this posterior than

to the posterior for data on men with 9 ≤ education ≤ 13, suggests that instruments are

truly (much) stronger for men with education ≤ 8 and education ≥ 14. For completeness,

Figure 5.7 shows the posterior under the flat prior, which shows approximately the same

shapes. These results suggest that quarter of birth does not only affect years of schooling

for those who leave school as soon as it is allowed.

A possible explanation is that the probability that a student leaves school during a

quarter depends not only on the number of quarters of schooling that the student has

already had, but also (positively) on age (measured in quarters of years): children born in

the first quarter enter school at a later age (measured in quarters), so that in each cohort

the students born in the first quarter are the oldest. Reasoning in this way, the influence

of quarter of birth on age at school entry is enough to cause exogenous variation in years

of education, even without requiring laws keeping (a certain percentage of) students at

school until they reach a certain age. In other words, quarter of birth influences the

age at school entry, so that it causes an exogenous variation in education level as long

as students with different ages (with age measured in quarters of years) have a different

‘hazard rate’ of quitting school after a certain amount of education. So, the results

suggesting that the influence of quarter of birth on education is certainly not restricted

to men who have completed 9-13 years of education does not imply that the model is

useless. It only suggests that the strength of the quarter of birth instruments is not

so much caused by the asymmetry between school entry requirements and compulsory

schooling laws keeping students at school until they reach a certain age; the value of

the quarter of birth instruments seems to stem to a larger extent from the school entry

requirements in combination with the dependence of the ‘hazard rate’ of leaving school

on age (measured in quarters).

Bound, Jaeger and Baker (1995) criticize the assumptions of Angrist and Krueger

(1991). They draw attention to two problems associated with the use of the 2SLS estima-

tor in the case of weak instruments. First, the use of weak instruments may lead to large
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Figure 5.6: Marginal posterior of return on education β under Jeffreys prior for US

(solid), South (17 states,dash-dot), South for education ≤ 8 or education ≥ 14 (solid-

plusses), South for 9 ≤ education ≤ 13 (dashed).
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Figure 5.7: Marginal posterior of return on education β under flat prior for US (solid),

South (17 states,dash-dot), South for education ≤ 8 or education ≥ 14 (solid-plusses),

South for 9 ≤ education ≤ 13 (dashed).

inconsistencies in the 2SLS estimator even if there is only a weak relationship between

the instruments and the error in the structural equation.7 Second, in finite samples, the

2SLS estimator is biased in the same direction as the OLS estimator, where the bias of

the 2SLS estimator approaches that of the OLS estimator as the R2 between instruments

and explanatory endogenous variable approaches 0.

We first consider the problem of the finite-sample bias. Bound, Jaeger and Baker

(1995) show that the 2SLS estimators of Angrist and Krueger (1991) may suffer from

substantial finite-sample bias even with the large sample size, because the correlation

between quarter of birth and years of education is only small. The simulations in table

5.5 confirm this; the 2SLS estimators for the US and the Census regions seem to have

biases between 0.2 and 0.5 times the bias of the OLS estimator. However, the LIML

estimator seems to be approximately median unbiased in these cases, suggesting that the

7Bound, Jaeger and Baker (1995) consider the case of weak instruments in the sense of instruments

explaining little of the variation in the endogenous explanatory variable(s); this differs from the weak

instrument defined as Π = C/
√

T where C is fixed (so that Π′Z ′ZΠ converges to a constant as the sample

size T grows) considered by Staiger and Stock (1997).



150 CHAPTER 5. ANGRIST-KRUEGER RECONSIDERED

problem of the finite-sample bias caused by the weakness of the instruments could be

solved by using LIML instead of 2SLS in order to obtain a point estimate of β.

We now consider the problem of large inconsistencies even if there is only a weak

relationship between the instruments and the error in the structural equation. Bound,

Jaeger and Baker (1995) argue that a weak correlation between quarter of birth and wage

(independent of the effect of quarter of birth on education) exists and that this correla-

tion is large enough to have substantial effects on the estimates of Angrist and Krueger

(1991). Bound, Jaeger and Baker (1995) mention several publications containing evidence

suggesting that quarter of birth directly influences wages for four reasons: there is some

evidence that (1) quarter of birth influences a student’s performance at school, for example

performance in reading, writing and arithmetic; (2) quarter of birth affects the probability

that an individual will suffer from certain mental or physical diseases/disabilities such as

schizophrenia, multiple sclerosis, manic depression and dyslexia; (3) there are regional

patterns in birth seasonality; (4) children born in families with high incomes are are less

likely to be born in winter months. Therefore, Bound, Jaeger and Baker (1995) conclude

that it is questionable whether the assumption of no direct effect of quarter of birth on

income is justified.

At points (2) it should be noted that men with no income in 1979 are excluded from

the data set of Angrist and Krueger (1991), so that some of the men suffering from the

mentioned diseases/disabilities may be excluded from the data set. At point (3) it should

be noticed that part of the regional patterns in birth seasonality are ‘filtered’ by the state

dummies that are included in the wage equation. However, these two factors obviously

do not take away the doubt on the assumption of no direct effect of quarter of birth on

income.

This doubt and the finite-sample bias of the 2SLS estimator made Bound, Jaeger

and Baker (1995) conclude that ‘the “natural experiment” afforded by the interaction

between compulsory school attendance laws and quarter of birth does not give much usable

information concerning the causal effect of education on earnings’.

Bound, Jaeger and Baker (1995) even report that differences in family income at time

of birth (point (4)) would seem to account for virtually all of the association between

quarter of birth and wages, which results from the following reasoning. It is argued that

the difference in mean log per capita income between those born in the first quarter and

the others is at least -0.0238, as this difference of -0.0238 is observed for men born in

more recent years and the seasonal variation in fertility has declined since the 1930s (in

which the men of our data set are born). Further, Solon (1992) and Zimmerman (1992)
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both found an intergenerational correlation in long-run income of at least 0.4, so that men

born in the first quarter are expected to earn about 0.95% more than those born during

the rest of the year. Bound, Jaeger and Baker (1995) report that for men born during

the 1930s, those born in the first quarter earn 1.1% lower wages on average, hardly more

than the 0.95% resulting from differences in family income at birth.

We now take a closer look at this result that differences in family income at birth

between those born in the first quarter and those born during rest of the year would seem

to explain all of the effect of quarter of birth on income. First, for men born in the region

South (who determine the results for the US of both the classical and Bayesian methods

used in this chapter) the difference between those born in first quarter and the rest is

higher: 1.65% (measured as difference in mean log income). For men born in Arkansas,

Kentucky, Tennessee (who have a substantial influence on the results within the region

South) this difference is even 1.99%. Of course, the difference in family income at birth

and/or the intergenerational correlation may also be larger for these regions; this is a

topic for research.

Second, the phenomenon that those born in rich families are less likely to be born

in winter months can be modelled by including a dummy variable indicating whether a

person is born in the first quarter in the wage equation of the model (and dropping one of

the interactions of state and quarter dummies from the set of instruments). We consider

this model for observations on men born in Arkansas, Kentucky or Tennessee.8 In the

second stage regression of 2SLS the first quarter dummy has an insignificant (and even

positive) estimated coefficient of 0.0028 (with standard error 0.0111). The results of 2SLS

and LIML are given by Tables 5.12 and 5.13, where the quantiles of the finite-sample

distribution of the LIML estimator are estimated by substituting the ML estimates into

the formula for this finite-sample density in Kleibergen (2000) and Kleibergen and Zivot

(2003). Table 5.14 gives the results of Bayesian inference under the flat and Jeffreys prior.

For the Jeffreys prior Figure 5.8 shows the marginal posterior of β. This shows that the

uncertainty in the classical estimators and the posteriors under a flat or Jeffreys prior

8There are two reasons for confining ourselves to data of Arkansas, Kentucky and Tennessee, the three

states for which the quarter-of-birth instruments are strongest, in this case. First, the addition of extra

variables in the wage equation substantially increases problems of multicollinearity, which are smaller

when considering less states and hence less state-of-birth dummies and interacted state-and-quarter-of-

birth dummies. Second, the assumption that if a direct effect of quarter of birth on wages exists, that

this effect is constant across states, seems to be more realistic for a region of three neighboring states

than for other (sub)samples.
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does not increase much by including a first quarter dummy in the wage equation. In

other words, a rather tight posterior for β is obtained using quarter-of-birth information,

even if we drop assumption of no influence of first quarter on income.

We can also go somewhat further in the sense of including three quarter-of-birth

dummies in the wage equation, so that not only a difference between the first quarter and

quarters 2-4 is allowed, but differences are permitted between all four quarters. Tables

5.12, 5.13 and 5.14, and Figure 5.8 also show the results for this model. The inclusion of

two more dummies clearly increases the uncertainty in the estimators and posteriors for β

as the instruments are weaker in this case. Intuitively, this can be explained as follows: in

this adapted model the strength of the instruments depends on the variation between the

effects of quarters of birth across states (and years) instead of the size of these effects. For

example, if the effect of quarter 2-4 versus quarter 1 is substantial but (approximately)

the same for all states, then the instruments Z (residuals in the regression of Z̃ on W )

will be (almost) superfluous in this adapted model, while the instruments may be rather

strong in the original model.

Including quarter-of-birth dummies in the wage equation may result in (much) wider

posterior intervals. Next to that, if a direct effect of quarter of birth on income exists,

this may not be constant across states/years; in that case more terms should be added to

the wage equation. So, an important question remains if such terms should be included

in the wage equation and if so, how these should be specified. We leave this as a topic for

further research.

Still, it should at least be noted that if there exists a direct effect of quarter of birth

on income, it is not likely that the factors causing this effect differ between states/years

in the same way as compulsory schooling laws and the degree to which these are enforced.

So, even if there exists a direct effect of quarter of birth on income which varies across

states/years, the difference between these effects and the effect of compulsory schooling

laws may be exploited, so that the model may still give usable information on the causal

effect of education on income.

Notice that since we can use the (approximately median unbiased) LIML estimator

instead of the (biased) 2SLS estimator, and since we may still obtain a rather tight

posterior for β if we allow for a direct effect of birth during the first quarter on income,

it seems that the conclusion of Bound, Jaeger and Baker (1995) that the interaction

between compulsory school attendance laws and quarter of birth does not give much

usable information concerning the causal effect of education on earnings may have been

too strong.
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Table 5.12: 2SLS estimates for β for data of Kentucky, Arkansas and Tennessee

2SLS

Model β̂2SLS asympt. std.error

original model 0.0970 (0.0168)

+ dummy for first quarter of birth in wage equation 0.0986 (0.0182)

+ 3 dummies for quarters of birth in wage equation 0.0928 (0.0274)

Table 5.13: LIML estimates for β for data of Kentucky, Arkansas and Tennessee

Quantile finite sample dist. β̂LIML

Model β̂LIML median 2.5% 97.5% 25% 75%

original model 0.105 0.104 0.069 0.142 0.092 0.117

+ 1st quarter dummy 0.109 0.108 0.070 0.149 0.095 0.121

+ 3 quarter dummies 0.121 0.121 0.065 0.187 0.101 0.141

Table 5.14: Posterior results under flat or Jeffreys prior for data of Kentucky, Arkansas

and Tennessee

Posterior β under flat prior Quantile posterior β under Jeffreys prior

Model mean st.dev. median 2.5% 97.5% 25% 75%

original model 0.095 0.016 0.104 0.068 0.143 0.092 0.117

+ 1st quarter dummy 0.097 0.018 0.108 0.068 0.152 0.094 0.122

+ 3 quarter dummies 0.090 0.026 0.121 0.043 0.220 0.094 0.150
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Figure 5.8: Marginal posterior of return on education β under Jeffreys prior for data

of Kentucky, Arkansas and Tennessee: original model (solid), model with first quarter

dummy in wage equation (dash-dot), model with three quarter dummies in wage equation

(dashed).

Finally, Bound, Jaeger and Baker (1995) note that random instruments yield results

similar to those for real data for four model specifications. For each specification the

(mean) asymptotic standard error (over 500 simulations) of the 2SLS estimator for β is

only somewhat larger for random data than for real data: 2.3, 1.3, 1.7 and 1.4 times larger.

For our specification the asymptotic standard error of the 2SLS estimator for β is also only

1.5 times larger for random instruments than for real instruments (for the whole data set

of the US). However, the 95% posterior interval under the Jeffreys prior is 3.0 times wider

for random instruments than for real instruments, so the use of the Jeffreys prior shows

a clear difference between results for random and real data. This reflects the relative

insensitivity of Bayesian analysis under the Jeffreys prior to the addition of irrelevant

instruments as compared to the flat prior (and the 2SLS estimator), as mentioned by

Kleibergen and Zivot (2003).
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5.6 Conclusions

We have shown results of two classical methods, the two-stage least squares (2SLS)

and limited information maximum likelihood (LIML) estimators, and two Bayesian ap-

proaches, using the flat prior of Drèze (1976) and the Jeffreys prior, for an IV regression

model of Angrist and Krueger (1991) for the return on education. It is shown that for

these four methods the results for the US crucially depend on the results for the Census

region South. A possible explanation for this is that the average education spell for men

born in 1930-1939 is lower in the South, implying a larger influence of compulsory school-

ing laws as these do not concern education above a certain number of years, and hence

a stronger effect of quarter of birth on education. A further division shows that results

for the South substantially depend on three states: Kentucky, Tennessee and Arkansas.

This suggests that the average level of education is not the only factor influencing the

strength of the instruments, as men born in Alabama, Mississippi, Virginia and West

Virginia have on average completed less years of education than those born in Tennessee:

there are also other factors playing a role, which may include the power of government

agencies enforcing schooling laws and the exemptions from these schooling laws, which

vary across states.

If the effect of the return on education differs between the four Census regions, which

may not a priori be ruled out given the large economic differences between these regions,

inference using data of the US is not representative for the average returns on education

across the US. Therefore one should be careful when drawing such conclusions.

We have further shown that quarter of birth is a stronger instrument for education for

people with at most 8 or at least 14 years of education than for people with 9-13 years

of education, which suggests that quarter of birth does not only affect the number of

completed years of schooling for those who leave school as soon as it is allowed, as these

are (mostly) contained in the group with 9-13 years of education. This suggests that the

strength of the quarter of birth instruments is not so much caused by the asymmetry

between school entry requirements and compulsory schooling laws keeping students at

school until they reach a certain age; the value of the quarter of birth instruments seems

to stem to a larger extent from the school entry requirements in combination with the

dependence of the ‘hazard rate’ of leaving school on age (measured in quarters). There-

fore, if one intends to increase the understanding of the working of the quarter-of-birth

instruments, it is probably a better idea to pay more attention to school entry require-
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ments and/or compulsory schooling laws for children of age 5-7 than to concentrate on

the differences between compulsory schooling laws for students of age 16-18.

Finally, Bound, Jaeger and Baker (1995) have concluded that the interaction between

compulsory school attendance laws and quarter of birth does not give much usable infor-

mation concerning the causal effect of education on wages for two main reasons. First,

the weakness of the instruments may lead to large inconsistencies in the 2SLS estimator

even if there is only a weak relationship between the instruments and the error in the

structural equation; Bound, Jaeger and Baker (1995) mention evidence casting doubt on

the assumption that no such correlation is present. Moreover, Bound, Jaeger and Baker

(1995) even report that differences in family income at time of birth would seem to account

for virtually all of the association between quarter of birth and wages: they argue that

the difference in income between those born in the first quarter and those born during

the rest of the year can almost completely be explained by differences in family income at

time of birth and an intergenerational correlation. Second, the 2SLS estimates reported

by Angrist and Krueger (1991) may suffer from substantial finite sample biases because

of the weakness of the instruments (despite the large sample size). However, we can use

a Bayesian approach under the Jeffreys prior or the LIML estimator, which is approx-

imately median unbiased in this case, instead of the 2SLS estimator. Furthermore, we

may still obtain a rather tight posterior for β if we allow for a direct effect of birth during

the first quarter on income. It should be noted that including quarter-of-birth dummies

in the wage equation may result in (much) wider posterior intervals, and that if a direct

effect of quarter of birth on income exists, this may not be constant across states/years;

in that case more terms should be added to the wage equation. So, an important question

remains whether the inclusion of such terms in the wage equation is necessary and if so,

how these should be specified. This is left as a topic for further research. Still, it should

at least be noted that if there exists a direct effect of quarter of birth on income, it is not

likely that the factors causing this effect differ between states/years in the same way as

compulsory schooling laws and the degree to which these are enforced. So, even if there

exists a direct effect of quarter of birth on income which varies across states/years, the

difference between these effects and the effect of compulsory schooling laws may be ex-

ploited, so that the resulting model may still give usable information on the causal effect

of education on income in (regions of) the US.

So, it seems that the conclusion of Bound, Jaeger and Baker (1995), that the interac-

tion between compulsory school attendance laws and quarter of birth does not give much

usable information concerning the causal effect of education on earnings, may have been
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too strong, as the model of Angrist and Krueger (1991) (or a slightly modified version)

may give usable information on the causal effect of education on income in (regions of)

the US.

We end this chapter mentioning two topics for further research. First, an obvious

question is whether the results reported in this chapter can also be found for other model

specifications considered by Angrist and Krueger (1991). Second, an interesting idea is

to apply the approaches used in this chapter under the assumption that the disturbances

obey a different distribution than the normal, and thus investigate whether the results in

this chapter are robust with respect to this distributional assumption.





Chapter 6

Summary and further research

In this thesis a class of neural network sampling methods is introduced and analyzed, and

several issues concerning instrumental variables regression models are investigated. In

this chapter the main findings of this thesis are summarized and some topics for further

research are mentioned.

In Chapter 2 a class of neural network sampling algorithms is introduced that can

be useful when one needs to evaluate high-dimensional integrals in cases of highly non-

elliptical target (posterior) distributions. In these algorithms a neural network function

is used as an importance or candidate density in the importance sampling (IS) or (in-

dependence chain) Metropolis-Hastings (MH) algorithm. Neural networks are natural

importance or candidate densities, as they have a universal approximation property and

are easy to sample from. We have shown how to sample from three types of neural net-

works. One can sample directly from a certain 3-layer network. Using a 4-layer network

one can, depending on the specification of the network, either use a Gibbs sampling ap-

proach or sample directly from a mixture of distributions. A key step in the proposed class

of methods is the construction of a neural network that approximates the target density

accurately. The methods have been tested on an illustrative example; the 4-layer network

specified as the mixture of t distributions performed the best among the proposed sam-

pling procedures. In another experiment concerning a bimodal posterior distribution in

an IV regression for a simulated data set, the approach using a mixture of t distributions

provided (in the same computing time) more accurate results than IS with a unimodal

importance density or a random walk Metropolis-Hastings algorithm. The Gibbs sampler

failed in this example, as it got stuck in one of the modes. These results indicate the

feasibility and the possible usefulness of the neural network approach.
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The proposed techniques can be extended in the following ways. First, one may use

these results in model selection and model averaging and investigate the effect of using

accurate non-elliptical credible sets instead of naive or asymptotic sets.

Second, one may consider other ways of specifying and estimating neural networks.

One may also, as a first step, transform the posterior density function to a more regular

shape. This line of research is recently pursued by e.g. Bauwens et al. (2004) in a class of

adaptive direction sampling methods using radial-basis functions (ARDS). A combination

of ADS and neural network sampling may be of interest. In practice, one also encounters

cases where only part of the posterior density is ill-behaved. Then one may combine the

neural network approach for the ‘difficult part’ with a Gibbs sampling approach for the

regular part of the model. Another area of further research is to consider different flexible

candidate density functions involving Hermite polynomials, see e.g. Gallant and Tauchen

(1993) and the references cited there. Also, more sophisticated Monte Carlo methods like

bridge sampling, see e.g. Meng and Wong (1996) and Frühwirth-Schnatter (2004), may

be explored in combination with neural networks.

Third, more experience is needed with empirical econometric models like the models of

local average treatment effects, see Imbens and Angrist (1994), or the business cycle mod-

els as specified by Hamilton (1989) and Paap and Van Dijk (2003), or stochastic volatility

models as given by Shephard (1996), and dynamic panel data models; see Pesaran and

Smith (1995).

Fourth, the neural network approximations proposed in this thesis may be useful for

modelling such processes as volatility in financial series, see e.g. Donaldson and Kamstra

(1997), and for evaluating option prices, see Hutchinson, Lo and Poggio (1994).

Chapter 3 discussed some large improvements in the AdMit method, in which an

Adaptive Mixture of t distributions is used as a candidate distribution in the IS or MH

method; these improvements make the method faster (about three times as fast in an

example of a 3-dimensional bimodal target distribution) and more reliable (in the sense

of a quicker detection of distant modes) as compared to the method proposed in Chapter

2. The improved AdMit methods are applied to a 4-dimensional posterior distribution

in a mixture model for US real GNP growth rates. The AdMit methods outperform two

Gibbs sampling approaches, Gibbs sampling with data augmentation and the griddy Gibbs

sampler; in this case the Gibbs sequences did not get stuck in one of two modes – in fact

the joint posterior density is unimodal in this example – but the high serial correlation in

the Gibbs sequences caused the Gibbs samplers to yield estimators of posterior moments
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with larger standard deviations than those resulting from the neural network methods

(in the same computing time). Finally, it is illustrated that neural network sampling

methods can especially be useful if one desires estimators of posterior characteristics with

high precision.

The proposed techniques can be extended in the following ways. A straightforward

alternative is to use a neural network function as a candidate density in rejection sampling

instead of importance sampling or the Metropolis-Hastings algorithm. Another extension

that is more difficult to implement, but much more interesting for practical purposes is

to build a neural network method within a Gibbs sampling procedure (or a ‘MH within

Gibbs’ algorithm). If it is hard to draw from one of the conditional distributions, say

the conditional distribution of θa given θb with θ = (θa, θb) where θa and θb both consist

of multiple elements, two options are to use a ‘MH within Gibbs’ step or to use several

steps of the griddy Gibbs sampler. For a ‘MH within Gibbs’ step a candidate density is

required. An option is to approximate the conditional target density of θa given θb with

a mixture of Student-t densities. However, the disadvantage is that in each iteration (for

each different value of θb) a new approximation has to be constructed, which can result

in a very time consuming algorithm. In order to keep the computing time for obtaining

approximations to conditional target densities relatively small, one can store both the

θb’s and the approximations to the conditional densities of θa given θb. In each iteration

one can use as an initial point the (mixture of t) approximation for the value of θb that

is closest to the current value of θb (taking into account the scales and correlations of

the elements of θb) among the set of previous θb’s in the Markov chain. After that, one

may add one or more components to the candidate mixture and drop (almost) useless

Student-t components in order to prevent ending up with mixtures of huge numbers of

components. Nevertheless, the resulting algorithm will still be rather slow. However, a

‘MH withing Gibbs’ step with a poor candidate distribution may result in a very low

acceptance probability, resulting in very slow convergence of the estimators, or even an

unreliable algorithm in which certain regions of the domain of θ that contain substantial

probability mass may be ‘missed’. And the use of several griddy Gibbs steps also yields

a slow algorithm, in which the division of the sampling of θa into individual steps for

sampling the elements of θa may seriously increase the serial correlation in the Gibbs

sequence. Therefore, the combination of neural network sampling methods and the Gibbs

sampler (or the ‘MH within Gibbs’ algorithm) is an interesting topic for further research.
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In Chapter 4 it has been considered how shapes of posteriors in the instrumental

variables (IV) regression model under the flat or Jeffreys prior depend on the level of

endogeneity and instrument strength. Further, it is considered how the Jeffreys prior

‘remedies’ two of the peculiar properties of the posterior under the flat prior, the asymp-

tote of the marginal posterior of Π at Π = 0 and the dependence of the tail behavior

of the marginal posterior of β on the number of instruments in the sense that its tails

become thinner when (possibly irrelevant) instruments are added to the model. For the

case of one explanatory endogenous variable an explicit formula exists for the marginal

posterior of β under the Jeffreys prior, see e.g. Kleibergen and Zivot (2003). If there are

m explanatory endogenous variables with m > 1, then sampling methods are required.

Kleibergen and van Dijk (1998) and Kleibergen and Paap (2002) have derived importance

sampling and Metropolis-Hastings algorithms that are specifically designed for reduced

rank regression models such as the IV regression model. However, in the case of many

instruments these may require the evaluation of a determinant of a huge Jacobian matrix,

which may be numerically cumbersome. If these sampling methods are not applicable in

certain cases, the possibility of (highly) non-elliptical shapes of the posterior distributions

under the Jeffreys prior implies that neural network sampling methods may be useful

tools in a Bayesian analysis of an IV model under the Jeffreys prior, possibly after some

parameter transformations. This is left as a topic for further research.

Finally, the hierarchical prior of Chamberlain and Imbens (1996) is briefly discussed,

which can also be considered as a ‘regularization prior’ that ‘cures’ strange posterior

properties occurring under the flat prior. Unlike the approach under the flat prior, the

approach of Chamberlain and Imbens (1996) is also capable of only resulting in tight HPD

regions for β in the case of data sets that contain information on β, just like the approach

using the Jeffreys prior. The hierarchically based prior in the approach of Chamberlain

and Imbens (1996) requires the ‘tuning’ of some prior variance (or covariance matrix),

which is a major disadvantage as compared to the approach under the Jeffreys prior. It

should be noted that the approach of Chamberlain and Imbens (1996) has the advantage

that the hierarchical prior is not necessarily data dependent, while the Jeffreys prior

generally is, and that a straightforward Gibbs sampler can be used to sample from the

corresponding posterior. However, the disadvantage of the ‘tuning’ of a prior variance,

and the sensitivity of posterior results to the choice of this prior variance, clearly suggest

that the use of the Jeffreys prior is preferable in most situations.
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Finally, in Chapter 5 the results are shown of two classical methods, the two-stage

least squares (2SLS) and limited information maximum likelihood (LIML) estimators,

and two Bayesian approaches, using the flat prior of Drèze (1976) and the Jeffreys prior,

for an IV regression model of Angrist and Krueger (1991) for the return on education, in

which quarter of birth is used to construct instrumental variables. It is shown that for

these four methods the results for the US (for men born in 1930-1939) crucially depend

on the results for the Census region South. A possible explanation for this is that the

average education spell for men born in 1930-1939 is lower in the South, implying a larger

influence of compulsory schooling laws as these do not concern education above a certain

number of years, and hence a stronger effect of quarter of birth on education. A further

division shows that results for the South substantially depend on three states: Kentucky,

Tennessee and Arkansas. This suggests that the average level of education is not the only

factor influencing the strength of the instruments, as men born in Alabama, Mississippi,

Virginia and West Virginia have on average completed less years of education than those

born in Tennessee: there are also other factors playing a role, which may include the

power of government agencies enforcing schooling laws and the exemptions from these

schooling laws, which vary across states.

If the effect of the return on education differs between the four Census regions, which

may not a priori be ruled out given the large economic differences between these regions,

inference using data of the US is not representative for the average returns on education

across the US. Therefore one should be careful when drawing such conclusions.

We have further shown that quarter of birth is a stronger instrument for education for

people with at most 8 or at least 14 years of education than for people with 9-13 years

of education, which suggests that quarter of birth does not only affect the number of

completed years of schooling for those who leave school as soon as it is allowed, as these

are (mostly) contained in the group with 9-13 years of education. This suggests that the

strength of the quarter of birth instruments is not so much caused by the asymmetry

between school entry requirements and compulsory schooling laws keeping students at

school until they reach a certain age, which is the reason suggested by Angrist and Krueger

(1991). The value of the quarter of birth instruments seems to stem to a larger extent from

the school entry requirements in combination with the dependence of the ‘hazard rate’

of leaving school on age (measured in quarters). Therefore, if one intends to increase the

understanding of the working of the quarter-of-birth instruments, it is probably a better

idea to pay more attention to school entry requirements and/or compulsory schooling
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laws for children of age 5-7 than to concentrate on the differences between compulsory

schooling laws for students of age 16-18.

Finally, the criticism of Bound, Jaeger and Baker (1995) is discussed. Bound, Jaeger

and Baker (1995) have concluded that the interaction between compulsory school atten-

dance laws and quarter of birth does not give much usable information concerning the

causal effect of education on wages for two main reasons. First, the weakness of the in-

struments may lead to large inconsistencies in the 2SLS estimator even if there is only

a weak relationship between the instruments and the error in the structural equation;

Bound, Jaeger and Baker (1995) mention evidence casting doubt on the assumption that

no such correlation is present. Moreover, Bound, Jaeger and Baker (1995) even report

that differences in family income at time of birth would seem to account for virtually

all of the association between quarter of birth and wages: they argue that the difference

in income between those born in the first quarter and those born during the rest of the

year can almost completely be explained by differences in family income at time of birth

and an intergenerational correlation. Second, the 2SLS estimates reported by Angrist and

Krueger (1991) may suffer from substantial finite sample biases because of the weakness of

the instruments (despite the large sample size). However, we can use a Bayesian approach

under the Jeffreys prior or the LIML estimator, which is approximately median unbiased

in this case, instead of the 2SLS estimator. Furthermore, we may still obtain a rather tight

posterior for β if we allow for a direct effect of birth during the first quarter on income.

It should be noted that including quarter-of-birth dummies in the wage equation may

result in (much) wider posterior intervals, and that if a direct effect of quarter of birth

on income exists, this may not be constant across states/years; in that case more terms

should be added to the wage equation. So, an important question remains whether the

inclusion of such terms in the wage equation is necessary and if so, how these should be

specified. This is left as a topic for further research. Still, it should at least be noted that

if there exists a direct effect of quarter of birth on income, it is not likely that the factors

causing this effect differ between states/years in the same way as compulsory schooling

laws and the degree to which these are enforced. So, even if there exists a direct effect of

quarter of birth on income which varies across states/years, the difference between these

effects and the effect of compulsory schooling laws may be exploited, so that the resulting

model may still give usable information on the causal effect of education on income in

(regions of) the US.

So, it seems that the conclusion of Bound, Jaeger and Baker (1995), that the interac-

tion between compulsory school attendance laws and quarter of birth does not give much
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usable information concerning the causal effect of education on earnings, may have been

too strong, as the model of Angrist and Krueger (1991) (or a slightly modified version)

may give usable information on the causal effect of education on income in (regions of)

the US.

An obvious question is whether the results reported in this chapter can also be found

for other model specifications considered by Angrist and Krueger (1991). Another inter-

esting idea is to apply the approaches used in Chapter 5 under the assumption that the

disturbances obey a different distribution than the normal, and thus investigate whether

the results in this chapter are robust with respect to this distributional assumption. These

issues are left as two topics for further research.





Samenvatting

(Summary in Dutch)

Het onderzoek in dit proefschrift betreft ruw gesteld drie onderwerpen: neurale netwerken,

simulatie methoden en regressie modellen met instrumentele variabelen (IV). Er bestaat

een verband tussen deze onderwerpen, dat hieronder uitgelegd zal worden. Eerst dient

opgemerkt te worden dat, hoewel in hoofdstuk 5 de resultaten van de Bayesiaanse benade-

ring vergeleken worden met die van klassieke methoden, in dit proefschrift de nadruk ligt

op de Bayesiaanse benadering van econometrie/statistiek. In de Bayesiaanse benadering

is het in het algemeen noodzakelijk om integralen van de posterior kansdichtheid over de

parameters van het model te berekenen. Als deze integralen niet analytisch geëvalueerd

kunnen worden, en de dimensie van het integratie probleem groter is dan 3 of 4, zodat de

mogelijkheid van toepassing van deterministische integratie methoden wegvalt, dan heeft

men Monte Carlo integratie methoden nodig.

Twee bekende Monte Carlo integratie methoden zijn importance sampling (IS) en het

Metropolis-Hastings (MH) algoritme. In deze methoden worden trekkingen gedaan uit

een zekere kandidaat verdeling, en het verschil tussen deze kandidaat verdeling en de

posterior kansverdeling waarin men gëınteresseerd is wordt ‘gecorrigeerd’ door trekkingen

te wegen (in IS), of door een Markov keten te construeren waarbij bepaalde kandidaat

trekkingen verworpen worden en andere trekkingen een aantal keer geaccepteerd worden

(in het MH algoritme). De kansen op verwerping/acceptatie worden hierbij zo gekozen

dat de kansverdeling van de elementen in de Markov keten convergeert naar de posterior

kansverdeling.

Een gebruikelijke keuze voor een kandidaat verdeling is een normale of Student-t ver-

deling. Echter, als het verschil tussen de kandidaat en posterior kansdichtheid groot is,

bijvoorbeeld als de schaal en/of de locatie van de modus veel verschillen, dan kunnen de

IS en MH methoden langzaam zijn of onbetrouwbare resultaten geven: er kunnen veel

trekkingen nodig zijn om tot convergentie te komen van de schattingen van de eigen-
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schappen van de posterior kansverdeling waarin men gëınteresseerd is, of in het geval van

multi-modaliteit kan het voorkomen dat er een modus ‘gemist’ wordt. Als de posterior

kansverdeling (sterk) niet-elliptisch is, bijvoorbeeld in het geval van multi-modaliteit, dan

heeft men dus in sommige gevallen een andere kandidaat verdeling nodig, bij voorkeur

een kandidaat verdeling die (bij benadering) dezelfde afwijkende eigenschappen als de

posterior kansverdeling heeft.

Een typische reden voor sterk niet-elliptische posterior kansverdelingen is de aanwezig-

heid van locale non-identificatie, het verschijnsel dat voor bepaalde waarden van sommige

parameters andere parameters niet gëıdentificeerd zijn. In dit proefschrift worden twee

modellen beschouwd waarin locale non-identificatie een rol speelt, het IV regressie model

en een model met 2 regimes.

In het geval van een sterk niet-elliptische posterior kansverdeling kan een verstandig

gekozen niet-elliptische kandidaat verdeling een grote verbetering betekenen ten opzichte

van een normale of Student-t kandidaat verdeling. In zulke gevallen kan het gebruik van

neurale netwerken als kandidaat dichtheid nuttig zijn.

De simulatie methoden op basis van neural netwerken die in dit proefschrift gëıntrodu-

ceerd worden bestaan uit twee stappen. Eerst wordt een neuraal netwerk geconstrueerd

dat de posterior verdeling benadert, waarna dit neurale netwerk gebruikt wordt als kan-

didaat kansdichtheid in de IS of MH methode. Dit betekent dat we neurale netwerken

moeten gebruiken waaruit, wanneer deze netwerken als kansdichtheid beschouwd wor-

den, eenvoudig trekkingen gedaan kunnen worden. De klasse van neurale netwerken die

wij beschouwen bevat convexe combinaties van Student-t verdelingen, waaruit eenvoudig

trekkingen gedaan kunnen worden. Uit deze convexe combinaties van Student-t verde-

lingen kan niet alleen eenvoudig getrokken worden, deze klasse van verdelingen is ook

zeer flexibel in de zin dat een breed spectrum van (posterior) kansdichtheden door deze

verdelingen benaderd kan worden.

Sterk niet-elliptische posterior kansverdelingen kunnen voorkomen in IV regressie mo-

dellen, wat het bovengenoemde verband tussen simulatie methoden op basis van neurale

netwerken en IV regressie modellen verklaart. De vorm van de posterior kansverdeling in

het IV regressie model onder een platte prior of Jeffreys prior hangt af van de verklarende

kracht van de instrumentele variabelen, en van de mate van endogeniteit in het model.

Sterk niet-elliptische posterior kansverdelingen worden vooral verkregen in het geval van

zwakke instrumentele variabelen.
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In dit proefschrift is verder uitgebreid aandacht besteed aan het bekende IV regressie

model van Angrist en Krueger (1991) voor het effect van (het aantal jaren) onderwijs

op het inkomen van individuen. Kennis over dit effect is onder andere relevant voor

overheden die besluiten nemen over de wetten betreffende de leerplicht. Vanwege de

endogeniteit van onderwijs en inkomen gebruiken Angrist en Krueger (1991) instrumentele

variabelen die geconstrueerd zijn op basis van het kwartaal waarin iemand geboren is. Het

is moelijk om instrumenten te vinden die gecorreleerd zijn met het aantal jaren onderwijs

dat iemand voltooid heeft, maar ongecorreleerd met niet waargenomen ‘capaciteiten’ die

zowel invloed hebben op onderwijs als op inkomen. Het schatten van het daadwerke-

lijke effect van onderwijs op inkomen is daarom een niet-triviale zaak. De instrumenten,

die gebaseerd zijn op het kwartaal waarin iemand geboren is, maken gebruik van het

verschil in de gemiddelde hoeveelheid onderwijs tussen mensen geboren in verschillende

kwartalen. Angrist en Krueger (1991) redeneren als volgt. De meeste school districten

in de Verenigde Staten van Amerika eisen dat kinderen 6 jaar zijn op 1 januari van

het jaar waarin ze voor het eerst naar school gaan, terwijl kinderen op school moeten

blijven tot hun zestiende, zeventiende of achttiende verjaardag. Deze asymmetrie tussen

toelatingseisen van scholen en leerplicht wetten voor tieners zorgt ervoor dat scholieren die

in bepaalde maanden geboren zijn, langer verplicht zijn naar school te gaan dan scholieren

die in andere maanden geboren zijn: scholieren die eerder in het jaar geboren zijn, gaan

op een hogere leeftijd voor het eerst naar school en bereiken de leeftijd waarop ze van

school mogen gaan na minder onderwijs. Daarom geldt voor scholieren die van school

gaan zodra het wettelijk toegestaan is, dat degenen die in het eerste kwartaal geboren

zijn, gemiddeld genomen drie kwartalen minder onderwijs hebben gehad dan degenen die

in het vierde kwartaal geboren zijn.

In dit proefschrift worden de resultaten beschouwd van een Bayesiaanse benadering

met een platte of Jeffreys prior, en van klassieke benaderingen met de twee-staps kleinste

kwadraten schatter of de maximale aannemelijkheids schatter. Er wordt getoond dat de

resultaten van deze vier benaderingen voor data van de V.S. gedomineerd worden door

de data van de zuidelijke staten. Als het effect van onderwijs op inkomen verschilt tussen

de regio’s van de V.S., wat mogelijk niet a priori uitgesloten mag worden gezien de grote

economische verschillen tussen deze regio’s, dan is het geschatte effect van onderwijs op

inkomen niet representatief voor het gemiddelde effect van onderwijs op inkomen over de

V.S. Daarom moet men voorzichtig zijn bij het trekken van dergelijke conclusies.

Bound, Jaeger en Baker (1995) hebben geconcludeerd dat de interactie tussen de leer-

plicht wetten en kwartalen waarin personen geboren zijn, de basis van de modellen van
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Angrist en Krueger (1991), niet veel bruikbare informatie over het effect van onderwijs

op inkomen geeft. Als redenen hiervoor worden aangevoerd dat in het geval van dergelijk

zwakke instrumenten de twee-staps kleinste kwadraten schatter onzuiver is, en dat in dit

geval een kleine correlatie tussen de instrumenten en de storingsterm in de structurele

vergelijking voor grote inconsistenties zorgt. Daarbij worden redenen gegeven om te twij-

felen aan de afwezigheid van een dergelijke correlatie; vooral wordt in twijfel getrokken

dat het verschil in inkomen tussen personen die in het eerste kwartaal geboren zijn en

degenen die in de andere drie kwartalen geboren zijn, uitsluitend door verschillen in on-

derwijs veroorzaakt is. Echter, we kunnen in plaats van de twee-staps kleinste kwadraten

schatter gebruik maken van een Bayesiaanse methode op basis van de Jeffreys prior of de

maximale aannemelijkheids schatter die in dit geval (bij benadering) mediaan zuiver is.

Bovendien kunnen we ook een plausibele posterior kansverdeling met een tamelijke kleine

spreiding verkrijgen voor het effect van onderwijs op inkomen, als we een direct effect van

geboorte in het eerste kwartaal op het inkomen toelaten. Dit suggereert dat de conclusie

van Bound, Jaeger en Baker (1995) te sterk is, omdat het model van Angrist en Krueger

(1991) (of een licht aangepaste versie) bruikbare informatie kan geven over het causale

effect van onderwijs op inkomen in (regio’s van) de V.S.
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