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ABSTRACT

ESSAYS ON SERVICE INFORMATION, RETRIALS

AND GLOBAL SUPPLY CHAIN SOURCING

Shiliang Cui

Morris Cohen

Senthil Veeraraghavan

In many service settings, customers have to join the queue without being fully aware of the

parameters of the service provider (for e.g., customers at check-out counters may not know

the true service rate prior to joining). In such “blind queues”, customers typically make

their decisions based on the limited information about the service provider’s operational

parameters from past experiences, reviews, etc. In the first essay, we analyze a firm serving

customers who make decisions under arbitrary beliefs about the service parameters. We

show, while revealing the service information to customers improves revenues under certain

customer beliefs, it may however destroy consumer welfare or social welfare.

When consumers can self-organize the timing of service visits, they may avoid long queues

and choose to retry later. In the second essay, we study an observable queue in which

consumers make rational join, balk and (costly) retry decisions. Retrial attempts could

be costly due to factors such as transportation costs, retrial hassle and visit fees. We

characterize the equilibrium under such retrial behavior, and study its welfare effects. With

the additional option to retry, consumer welfare could worsen compared to the welfare

in a system without retrials. Surprisingly, self-interested consumers retry too little (in

equilibrium compared to the socially optimal policy) when the retrial cost is low, and retry

too much when the retrial cost is high. We also explore the impact of myopic consumers

who may not have the flexibility to retry.
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In the third essay, we propose a comprehensive model framework for global sourcing location

decision process. For decades, off-shoring of manufacturing to China and other low-cost

countries was a no-brainer decision for many U.S. companies. In recent years, however, this

trend is being challenged by some companies to re-shore manufacturing back to the U.S.,

or to near-shore manufacturing to Mexico. Our model framework incorporates perspectives

over the entire life cycle of a product, i.e., product design, manufacturing and delivering,

and after-sale service support, and we use it to test the validity of various competing theories

on global sourcing. We also provide numerical examples to support our findings from the

model.
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CHAPTER 1 : INTRODUCTION

This dissertation contains two essays on modeling consumer behavior in service operations

management and one essay on global operations and supply chain management.

The goal of the first two essays is to model consumer decision-making in queueing settings,

and study their effect on congestion, revenues and welfare. Much of the Service Operations

literature in queueing does not include psychological considerations in consumer decisions.

Our research project seeks to fill this gap, by demonstrating such decision-making process

can significantly influence queue outcomes. In particular, we consider two distinct settings:

First, we consider settings when consumers join queues with biased information – we call

them “blind queues”. Second, we consider “retrial queues” based on the observation that

consumers often postpone their decisions based on several considerations. Both of these

decision-making issues have not been considered in the queueing literature.

Much of the traditional operations literature on queues assumes that the service parameters

(service time distributions, etc.) are common knowledge and fully known to consumers when

making their decisions. While this is acceptable in the operations literature, in reality, it

is likely that only the service firm knows its capacity, and the consumers may not be

fully informed of the service capacity. In fact, it is even likely that consumers could be

misinformed about a firm’s service capacity. In such blind queues, consumers typically

make their decisions based on the limited information and the biases they arrive with.

For instance, a customer might have visited a restaurant or an amusement park only once

or twice. It is conceivable that his estimate of the service time will be strongly dependent

on the bias formed based from previous service experience. In some cases, consumers

might augment their information using feedback from external acquaintances, but even

such information is likely to be a smaller sample than what is needed to know the full

service distribution (which is often assumed to be known accurately in the literature).
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On the other hand, almost all queueing models have focused on consumers’ join and balk

decisions – with customers not making forward looking decisions. In reality, when the queue

is very long, consumers may not be willing to wait, rather they choose to retry later (as

opposed to balking). For instance, consider a customer who arrives at the package pick-

up service at a post office, or a customer who goes to have his parking permit renewed.

Upon seeing the status of the queue, i.e., the number of consumers that are already in

the queue, this customer can either decide to join the queue or to leave only to return

back at a later more convenient time. In scenarios such as the post office and the parking

permit renewal examples, and in many other real-life queues such as discretionary shopping

decisions, postponing is a commonly used practice among consumers.

In a blind queue, it is important to understand if the service firm is motivated to reveal

its private service information to the customers to alleviate costs of biases, or just want

to remain blind. In a retrial queue, it is important to understand if retrials can make the

consumers, the firm, and/or the society better off.

We will pursue modeling work based on the classical queueing model by Naor (1969) but

extend it in two ways. Naor (1969) studies a single-server system with an observable queue

where rational consumers (who know the service parameters) make join or balk decisions. In

contrast, we will model consumers with decision biases, who may have arbitrarily different

(even misled) beliefs about the service rate in the blind queues, and then allow the consumers

to postpone their join or balk decision at later time period with a retrial cost in the retrial

queues. This retrial cost can be an external cost incurred by the customer, but not collected

by the server (for e.g., costs associated with transportation back and forth, or a retrial

“hassle” cost such as rescheduling other activities, which may cause irrational deviations)

or an internal fee collected by the server (for e.g., a toll for entering the system, such as

visit fees and copays in insurance services).

The third essay will look at emerging issues on global supply chain re-structuring. For

decades, a dominant strategy in manufacturing has been to outsource to low labor-cost
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countries such as China. This has led to the transfer of manufacturing jobs and development

activities out of the U.S. to these low labor-cost countries. Today, however, this trend is

being challenged by a movement by some companies to move back their manufacturing to

the U.S. (i.e., “re-shoring”), or moving it to Mexico (i.e., by “near-shoring”). At the same

time many firms continue to select offshore locations for outsourcing of material inputs and

services. Our research aims to study the drivers and impact of these outsourcing, re-shoring

and near-shoring decisions.

In a recent review, we found over 50 cases where major U.S. and global companies have

announced significant re-structuring decisions to their global supply chain in the past three

years. Among them, 19 companies have increases outsourcing by shifting production to an

off-shore location. In contrast, 19 other companies have re-shored by bringing production

back to their home country. Well-known examples include decisions by Apple to invest

$100 million in producing some of its Mac computers in the U.S., and General Electronics to

invest $1 billion into domestic appliances manufacturing capabilities at Louisville, Kentucky.

There is also evidence that some companies are near-shoring by bringing production to a

country that is closer to major customers, and that others are investing in manufacturing

technology (e.g., the adoption of robots).

A popular theory for the re-shoring phenomenon is called the “Tipping Point Theory”,

which comes from the observation of rising wages in low labor-cost countries. Take China

for example. Chinese wages are growing at a rate of 15 percent annually, as opposed 2

percent in the U.S. As a result, the landed-cost advantage of producing a product in China

is diminishing, and could be eliminated in a few years. The Tipping Point Theory thus

argues that when this advantage falls below a critical level, more and more manufacturers

will re-shore to the U.S.

There exist competing theories other than the Tipping Point Theory raised by scholars

to explain companies’ changes on their global supply chain manufacturing decisions. The

perspectives of these theories include cost of ownership, real options, product development

3



and innovation, information technology and automation, government policies and supply

chain risks, etc.

Existing global sourcing literature has mainly focused on the impact of costs on sourcing

decisions. We, however, propose a comprehensive model that will incorporate perspectives

from product design, manufacturing and after-sale service support in order to test the

various theories noted above. To the best of our knowledge, this research will be the first

to conduct a life cycle analysis of global sourcing strategy.

The rest of this dissertation contains the three essays:

Chapter 2: Blind Queues: The Impact of Consumer Beliefs on Revenues and Congestion

(under the supervision of Prof. Senthil Veeraraghavan).

Chapter 3: A Model of Rational Retrials in Queues (under the supervision of Prof. Xuan-

ming Su & Prof. Senthil Veeraraghavan).

Chapter 4: Manufacturing Sourcing in a Global Supply Chain: A Life Cycle Analysis (under

the supervision of Prof. Morris Cohen).
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CHAPTER 2 : BLIND QUEUES: THE IMPACT OF CONSUMER BELIEFS ON

REVENUES AND CONGESTION

2.1. INTRODUCTION

Almost all the literature on queues assumes that service parameters are common knowledge

and fully known to customers when making their decisions. In reality, it is likely that only

the service firm knows its capacity, and customers may not be fully informed of the service

capacity. It is even possible that customers could be systematically misinformed about a

firm’s service capacity. Hence, it is important to understand if the firm is motivated to

reveal its private information on service rate to the customers, and if the firm does reveal

the information, whether the information would increase consumer welfare or firm revenues.

While there are papers that have focused on firms announcing (real time) delay information

in terms of queue and waiting time information to its customers, those models also typically

assume that the firm’s service parameters are known to the customers.

We expect that customers that have had limited past interactions with a service provider

will not be able to accurately predict its true service rate. For instance, a customer might

have visited a restaurant or an amusement park only once or twice, and it is conceivable

that her best estimate of the service capacity will be based on the service times she had

experienced (in the absence of other inputs). In some cases, customers might augment their

information using feedback from external acquaintances, but even such information is likely

to be a smaller sample than what is needed to know the full service distribution (which is

often assumed to be known accurately in the literature). In line with many real-life services,

but in contrast to the existing literature, we allow for the customers to not know the service

parameters accurately, unless they are informed about it by the firm. We term such queues

blind queues.

Our approach to the analysis is general, i.e., individual customers can have arbitrarily

different beliefs about the service rate. It might be possible that the population is correct

5



on average but individual customers may be idiosyncratically misinformed. We also consider

the possibility that the population as a whole is mis-informed systematically.

In observable queues, when customers arrive with different beliefs about the true service

rate, they exhibit different balking behaviors due to their beliefs. For instance, a customer

may join the queue when he ought not to (if he overestimates the service rate), and con-

versely, an impatient misinformed customer may balk from the queue when he should not.

Note that customers’ internal beliefs about the service rate are not observable; Typically,

the server only observes customers’ joining/balking decisions. Hence, we work with the

observable balking threshold distribution that results from the original service-rate belief

distribution. There is some recent empirical evidence (see Lu et al. (2013) that uses queueing

data from a Deli), supporting the approach that customers in observable queues may rely

primarily on the length of the queue to make their purchasing/joining decisions. Thus, by

understanding the impact of balking thresholds on system performance, our results could

be further implemented to models where service values and waiting costs are heterogeneous.

2.1.1. Related Literature

The literature on queueing models with strategic customers dates back to the seminal

paper of Naor (1969), who studies a single-server system with an observable queue. In

Naor’s model, homogeneous customers (who know the service parameters) observe the queue

length upon arrival before making a decision to join the system. Because of homogeneity,

customers have identical balking thresholds.

In our paper, customers are not aware of the true service parameters. We allow them to

have arbitrarily distributed heterogeneous beliefs over the service rate. Thus, our work is

also closely related to the classical queueing papers with heterogeneous customers (with full

information), in addition to those papers that examine the effect of delay announcements.

Following Naor (1969), queues with heterogeneous service values and time costs have been

studied, as seen in the comprehensive review by Hassin and Haviv (2003).
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There is a large volume of literature that examines the provision of fixed or variable delay

information (i.e. queue length or real-time waiting time, etc.) to arriving customers. In the

context of call-centers, there are several papers that study the provision of current delay

information. For instance, see Armony and Maglaras (2004a,b) and Jouini et al. (2011).

We refer the reader to an excellent review by Akşin et al. (2007) of the call center literature,

on the role of delay information on customers’ balking behavior. Nevertheless, the service

capacity and arrival information is often assumed to be known to all customers in these

papers.

Hassin (1986) considers a revenue-maximizing server who may hide queue lengths to improve

revenue. Whitt (1999) shows that customers are more likely to be blocked in a system

where the delay information is not provided to a system where it is provided. Guo and

Zipkin (2007) studies an M/M/1 queue extension with three modes of information: no

information, partial information (the queue length) and full information (the exact waiting

time). Economou and Kanta (2008) and Guo and Zipkin (2009) study models where some

partitioned queue information (such as range of queue-lengths) is available to customers

to make their decisions. However, in all the aforementioned papers (including the no-

information cases), customers are aware of the service rate parameter.

Thus, there are very few papers that treat service information as a firm’s private information

about which customers are either not informed or have incorrect beliefs. Besbes et al. (2011)

and Debo and Veeraraghavan (2014) analyze customers’ equilibrium joining behaviors in

queues with limited information on service rate. In Hassin (2007), the true service rate is

either fast or slow. While the probabilities of the service rate being fast or slow is known to

customers, the server can choose to reveal or not to reveal the realized rate. In Guo et al.

(2011), partial distributional information is conveyed to the customers, who then employ

the max-entropy distribution in deciding whether to join or balk from the queues. In these

papers, individual customers have correct distributional information over the service rate.

In contrast, we do impose any such condition, i.e., individual customers could have incorrect
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information. We study the impact of announcing service information in such cases in both

observable and unobservable queue settings. To the best of our knowledge, we are not

aware of other papers that deal with customer decisions when the service provider has not

provided any information about its service parameters to the customers.

Finally, our approach complements the perspective in Besbes and Maglaras (2009) and Ha-

viv and Randhawa (2012), where the service firm does not fully know the demand (volume)

information. Instead, we study a system where customers do not know a firm’s service

information. We focus only on the decision whether the firm should reveal the unknown

information to the customers.

The main theoretical contributions of our paper can be summarized as follows:

1. Customers may have arbitrary balking thresholds due to their beliefs and decision

frameworks. We characterize those beliefs under which the firm will gain revenues

from revealing its service information.

2. We show that as customer balking threshold beliefs become less dispersed in the pop-

ulation, the firm improves its revenues. If the customer population systematically

underestimates the service capacity, the service provider should always reveal its ser-

vice rate information.

3. The welfare effects of information revelation are mixed. Typically, system congestion

(both queue lengths and wait times) increases with information revelation. Individual

consumer welfare thus typically declines with more information, especially when a

firm with a high service rate releases its information.

4. We find that social welfare may fall with more information, in both observable and

unobservable queue settings, because the improvement in revenues may be insufficient

to overcome the consumer welfare loss.

5. Our approach on blind queues is general and does not depend on the origin of the initial
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belief distributions, which may emerge from bounded rationality, sampling, learning

from past experiences, etc. We show that sampling from finite data creates consumer

optimism, but will lead to true-learning asymptotically. We show that Quantal re-

sponse beliefs (bounded rational errors) can be biased, but are not consistent with

learning by sampling.

The paper is structured as follows. Section 2.2 introduces the model and characterizes the

system performance in terms of belief distributions. In Section 2.3, we analyze customer

populations with different beliefs. In Section 2.4, we investigate the impact of the revelation

of service information on revenues, congestion, and welfare. In Section 2.5, we incorporate

our belief structures into different cognitive models in the literature. In Section 2.6, we

extend the model and results to unobservable queues. All technical proofs are deferred to

the appendix.

2.2. MODEL

We focus on a single-server queueing system. (All results extend to a multi-server system.)

Customers arrive to the queue according to a Poisson process at rate λ > 0 per unit time.

The service time is exponentially distributed with service rate µ > λ. Let ρ , λ/µ < 1

denote the traffic intensity. Arriving customers line up at the server if the server is busy,

and the queue discipline is first-come first-served (FCFS). Every arriving customer observes

the number of the customers already waiting in the system before making an irrevocable

join or balk decision (i.e, there is no reneging). On joining, all customers incur a linear

waiting cost of c per unit time when they wait. The server provides a service of value v.

Thus, all customers are homogeneous in their service valuation and in their waiting costs.

The firm charges an exogenous price p for its service.

Upon arrival, the customers decide whether to join the queue based on the net value they

expect to receive from the service (i.e., v − p) and their expected waiting cost. Suppose

the customers knew the true service rate µ. Then, a customer arriving when there are n
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customers already in the system, would join the queue when v− p− (n+1)c/µ ≥ 0, or balk

otherwise. This is the model described in Naor (1969).

Model of Customer (mis-)Information: In contrast to the existing literature, we relax

the assumption that customers are aware of the service time distribution or the service

rate. We posit that customers typically will not have complete information on the true

distribution. For instance, customers with limited or idiosyncratic past interactions with

the server, may have widely varying service rate beliefs.

In this paper, we use the superscript ˜ (tilde) to describe customer beliefs. Customers may

have heterogeneous beliefs regarding the service rate, and their beliefs could differ arbitrarily

from the true service rate µ. We denote customer service rate beliefs by µ̃ ∈ (0,∞) with

some cumulative distribution function (cdf) Gµ̃ across the entire population. Note that

every customer has a deterministic belief. The beliefs form a random distribution because

customers with different beliefs arrive to the system randomly.

If the mean of the random variable, µ̃, is equal to the true µ, i.e., the service rate belief of

the population is “correct” on average, we describe the service rate beliefs of the population

as being consistent. If the mean of µ̃ is not the true µ, we address the service rate beliefs as

being biased. Specifically, if the population mean is greater (less) than µ, the service rate

beliefs are optimistic (pessimistic), i.e., the population is on average optimistic (pessimistic)

on the speed of the server.

Upon arrival, a customer with belief µ̃ who observes n customers currently waiting in the

system (including the person who is under the service, if any) makes the following decision:















v − p ≥ (n+1)c
µ̃ : The customer joins the queue;

otherwise: The customer balks from the queue.

Throughout the paper, we will assume v − p ≥ c
µ̃ a.s. to eliminate trivial outcomes and

ensure that customers will join an empty queue.
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Balking Threshold Beliefs: Define Ñ , ⌊ µ̃(v−p)
c ⌋, i.e., Ñ is an integer such that Ñ ≤

µ̃(v−p)
c < Ñ + 1. Intuitively, Ñ describes the balking threshold belief for a customer with

service rate belief µ̃: the customer who arrives to see n customers waiting in the system will

join if n+1 ≤ Ñ and balks, otherwise. Each customer has a deterministic balking threshold

as a result of his (internally-held) service rate belief, and will make a deterministic decision

upon seeing the queue length.

Let FÑ be the cdf that characterizes the random variable Ñ . The balking thresholds are

random because customers appear at random at the queue. Note that customers’ beliefs

about the service rate may be drawn from the continuous distribution Gµ̃, whereas the

balking threshold beliefs are drawn from a discrete distribution FÑ (n) = Pr[Ñ ≤ n]. Since

v − p ≥ c
µ̃ , we have Ñ ∈ {1, 2, . . .}. In essence, we translate the (uncountable) customer

beliefs regarding the service rate to actions dictated by beliefs about balking thresholds

(which is countable). For notational convenience, we suppress the subscript Ñ in FÑ and

denote FÑ simply as F wherever unambiguous.

Note that the server only observes customers’ joining/balking decisions, but not their service

rate beliefs. Hence, we will directly analyze the balking threshold beliefs Ñ . Our terminol-

ogy on biases in beliefs (pessimism, optimism and consistency) also appropriately applies

to balking threshold beliefs. Biases in service rate beliefs typically follow the same direction

as the biases in the corresponding balking threshold beliefs, but not always, because of the

floor function in the mapping from µ̃ to Ñ .

System Evolution under Threshold Beliefs: We have a population comprised of cus-

tomers who are heterogeneous in their joining behavior due to varying individual balking

threshold beliefs. Since Ñ ∈ {1, 2, . . .}, we have a queuing system with state-dependent

arrivals - a system whose buffer size equal to the maximum balking threshold (possibly

infinity, in which case we have an M/M/1 system). In contrast, note that when customers

fully know µ, we get the classical M/M/1/N system with state-independent arrivals that

emerges in Naor (1969) where N , ⌊µ(v−p)
c ⌋.
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Let the state of system be denoted by i where i is the number of customers in the system

(including the customer at the server). Since λ < µ, this queueing system is recurrent, and

long-run steady state probabilities exist. Let πi denote the long-run probability that the

system is in state i. Now consider state i: among all arrivals, only those customers who

have the balking threshold greater than or equal to i + 1 will join the queue. Thus, the

effective joining probability at state i is given by Pr[Ñ ≥ i + 1] = Pr[Ñ > i] = F̄ (i) (by

letting F̄Ñ (·) = 1− FÑ (·)). The effective arrival rate at any state i is λF̄ (i).

From the steady state rate balance equations, we have πi+1 = ρF̄ (i)πi for i ∈ {0, 1, 2, ...},

which gives πi = ρiπ0
i−1
∏

n=0
F̄ (n) for i ∈ {1, 2, 3, ...}. Since ρ < 1, it follows from

∞
∑

i=0
πi = 1

that

π0 = 1

/(

1 +
∞
∑

i=1

ρi
i−1
∏

n=0

F̄ (n)

)

. (2.1)

The average number of customers in the system, denoted by L, is given by

L =
∞
∑

i=0

iπi =
∞
∑

i=1

iπi = π0

∞
∑

i=1

iρi
i−1
∏

n=0

F̄ (n)

=
∞
∑

i=1

iρi
i−1
∏

n=0

F̄ (n)

/(

1 +
∞
∑

i=1

ρi
i−1
∏

n=0

F̄ (n)

)

. (2.2)

By convention, we set all empty products to 1. For instance,
−1
∏

n=0
F̄ (n) = 1. Then,

L =

∞
∑

i=0

iρi
i−1
∏

n=0

F̄ (n)

/(

∞
∑

i=0

ρi
i−1
∏

n=0

F̄ (n)

)

. (2.3)

The long-run revenue rate at the server, denoted by R, is given by pµ(1 − π0), e.g., see

Larsen (1998). It follows that the long-run effective arrival rate at the system, denoted by

λeff , is:

λeff = µ(1− π0) < λ (2.4)
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Also note that, πi+1 = ρF̄ (i)πi for i ∈ {0, 1, 2, ...}. Summing up over i ≥ 0, we get,

∞
∑

i=0

πi+1 =
∞
∑

i=0

ρF̄ (i)πi ⇔
∞
∑

i=1

πi = ρ
∞
∑

i=0

F̄ (i)πi ⇔ (1− π0) = ρ

∞
∑

i=0

F̄ (i)πi. (2.5)

Alternatively, λeff is given by
∞
∑

i=0
πiλF̄ (i), and we have

λeff = λ

∞
∑

i=0

F̄ (i)πi = µ · ρ
∞
∑

i=0

F̄ (i)πi = µ(1− π0) (from Condition (2.5)). (2.6)

Finally, let W denote the average time a customer spends in the system, i.e, his waiting

time in the queue plus his service time. By Little’s Law,

W =
L

λeff
=

π0
∞
∑

i=1
iρi

i−1
∏

n=0
F̄ (n)

µ(1− π0)
(from conditions (2.2) and (2.6))

=
1

µ

π0
1− π0

∞
∑

i=1

iρi
i−1
∏

n=0

F̄ (n). (2.7)

Recall from (2.1) that π0 = 1

/(

1 +
∞
∑

i=1
ρi

i−1
∏

n=0
F̄ (n)

)

, hence, π0
1−π0

= 1

/(

∞
∑

i=1
ρi

i−1
∏

n=0
F̄ (n)

)

.

Plugging in (2.7), we have

W =
∞
∑

i=1

iρi
i−1
∏

n=0

F̄ (n)

/(

µ
∞
∑

i=1

ρi
i−1
∏

n=0

F̄ (n)

)

. (2.8)

Thus, as long as we can characterize the balking threshold beliefs Ñ , we can derive the

performance measures for the queueing system through its cdf F . This allows us to compare

any two systems with populations that differ arbitrarily in their beliefs. To this end, in the

next section, we set up a sequence of systems with customer beliefs that are stochastically

ordered in some sense.
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2.3. CUSTOMER BELIEFS UNDER THE LACK OF SERVICE INFORMATION

When µ is fully known to customers, the balking threshold distribution is a one-point distri-

bution (i.e., all customers have identical balking threshold). In contrast, balking thresholds

are distributed arbitrarily when customers are not fully informed. Recall that when there is

optimistic (pessimistic) bias, the average balking threshold is higher (lower) than the true

threshold. In §2.3.1, we consider balking threshold belief distributions that have bias. In

§2.3.2, we compare populations with consistent beliefs, where the average balking threshold

beliefs are accurate, but there is arbitrary variability on the individual thresholds. Our

analysis in these sections assists us in pinning down the performance differences among

queueing systems that differ in their customer beliefs.

We will focus on the system in which the customers’ balking threshold beliefs are distributed

over a finite interval in §2.3.1 and §2.3.2, i.e, a system in which there is no customer in the

population who has infinite patience to always join the queue. However, all of our results

extend to multiple servers (see §2.3.3) and beliefs with infinite support (see §2.3.4).

2.3.1. Population with Biased Beliefs

We first compare systems under beliefs Ñ and Ñ ′ that differ in their mean.

Definition 1 First Order Stochastic Dominance (FOSD): (Quirk and Saposnik, 1962) Let

F and G be the cdf ’s of random variables X and Y . X is said to be smaller than Y with

respect to the first-order stochastic order (written X ≤st Y ) if F(t) ≥ G(t) for all real t, or

equivalently, if F̄(t) ≤ Ḡ(t) for all real t.

FOSD is also termed as the usual stochastic order by Müller and Stoyan (2002), and fre-

quently called the stochastic order. It is well known that variables ordered by FOSD have

different means (e.g., see Theorem 1.2.9/(a) in Müller and Stoyan (2002)). Through the

FOSD relation, we can compare two threshold beliefs with respect to their ‘biases’. Essen-

tially, pessimistic threshold beliefs are stochastically dominated by more optimistic beliefs.
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We use λeff,Ñ , RÑ , LÑ , WÑ to denote the long-run effective arrival (rate), the long-run

revenue (rate) at the firm, the average number of customers and the average time a customer

spends in the system when the balking threshold beliefs of the population are characterized

by Ñ . The following Theorem 1 compares the performance metrics of two systems under

beliefs ordered by FOSD.

Theorem 1 If Ñ ≤st Ñ ′, then (i) λeff,Ñ ≤ λeff,Ñ ′ (RÑ ≤ RÑ ′); (ii) LÑ ≤ LÑ ′; (iii)

WÑ ≤ WÑ ′.

Proof of Theorem 1 follows directly by comparing the stochastics of two queues and by

taking expectations of the distribution of the corresponding performance metrics (e.g., see

Theorem 1 in Bhaskaran (1986)). Also see Berger and Whitt (1992) which compares two

queues each with a single balking threshold. In our model, there are multiple balking

thresholds in the same queue depending on the individual customer beliefs.

Theorem 1 states that if customers become more patient (higher balking thresholds), the

firm serves more customers and receives higher revenue, at the same time incurring a higher

system congestion. Note that the results from Theorem 1 are distribution-free, i.e., the

performance metrics of queues can be ordered for any balking threshold belief distribution,

as long as the underlying distributions can be (first-order) stochastically ordered. Also,

note that the ordering of performance metrics is invariant to the true service rate of the

system.

2.3.2. Population with Consistent Beliefs

In this section, we consider mean-preserving spreads to examine balking threshold belief

distributions that have the same mean as the “true” balking threshold, but differ in how

the individual balking thresholds are distributed. If all customers knew the service rate

exactly, then every customer would use the same “true” balking threshold N , which is a

special consistent belief distribution. We use the notion of Single Mean Preserving Spread

to order belief distributions that are consistent.

15



Definition 2 Single Mean Preserving Spread (SMPS): (Rothschild and Stiglitz, 1970) Let

F and G be the cdf’s of two discrete random variables X and Y whose common support

is a sequence of real numbers a1 < a2 < ... < an. Suppose the probability mass functions

f and g describe X and Y completely: Pr(X = ai) = fi and Pr(Y = ai) = gi where
n
∑

i=1
fi =

n
∑

i=1
gi = 1. Suppose fi = gi for all but four i, say i1, i2, i3 and i4 where ik < ik+1.

Define γik = gik − fik . Then we say that Y differs from X by a single Mean Preserving

Spread (written F ≤SMPS G) if γi1 = −γi2 ≥ 0, γi4 = −γi3 ≥ 0 and
4
∑

k=i

aikγik = 0.

The notion of mean preserving spread (MPS) is often employed to model risk order of two

random variables that may have the same mean but different variability. If two distributions

F and G describe the returns of two risky investments, and F ≤MPS G, then the distribution

F is considered less risky. SMPS in Definition 2 is a stricter condition than MPS: F ≤SMPS

G ⇒ F ≤MPS G.

Consider consistent balking threshold beliefs Ñ , i.e., E[Ñ ] equals the balking threshold N

(when the service parameters are fully known to the customers). We seek to compare the

performance metrics under beliefs Ñ to the metrics if the true parameters of the system

were known. To that end, we create a sequence of random variables ordered by SMPS

that begin at an initial belief distribution. Using a fairly general but intuitive construction

technique, we will show that the sequence (generated using our construction) will terminate

at a specific “final” distribution within a finite number of steps, regardless of the initial

distribution. We then characterize an ordering of the performance metrics for the entire

sequence. This construction not only allows us to compare the performance under the

initial belief distribution to the canonical system with fully informed customers, but it also

facilitates a comparison between any two arbitrary (consistent) balking threshold belief

distributions.

Let our initial beliefs be characterized by some random variable Ñ0. In Construction 1,

we create a sequence of random variables {ÑK}K≥0 (the K-th term in the sequence is

distributed with the cdf FK), and discuss the properties of the sequence. The cdf FK has
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support over some finite sequence of natural numbers aK1 < aK2 < ... < aKn . We denote

by fK its probability mass function (pmf) such that fK(aKi
) > 0 for i ∈ {1, 2, ..., n} and

n
∑

i=1
fK(aKi

) = 1.

Consider the transformation of ÑK to ÑK+1 in the following Construction 1. The succeeding

random variable in the sequence, ÑK+1, is constructed from the preceding random variable

ÑK by taking an equal probability mass from both ends of the distribution FK and adding

those weights to the “middle” of the support.

Construction 1

When aKn−1 > aK1+1,







































































fK+1(aK1) = fK(aK1)−min{fK(aK1), fK(aKn)}

fK+1(aK1 + 1) = fK(aK1 + 1) + min{fK(aK1), fK(aKn)}

fK+1(x) = fK(x) ∀ x ∈ {aK1 + 2, aK1 + 3, ..., aKn − 2}

fK+1(aKn − 1) = fK(aKn − 1) + min{fK(aK1), fK(aKn)}

fK+1(aKn) = fK(aKn)−min{fK(aK1), fK(aKn)}

fK+1 = 0 otherwise.

When aKn − 1 = aK1 + 1,











































fK+1(aK1) = fK(aK1)−min{fK(aK1), fK(aKn)}

fK+1(aK1 + 1) = fK(aK1 + 1) + 2min{fK(aK1), fK(aKn)}

fK+1(aKn) = fK(aKn)−min{fK(aKK1
), fK(aKn)}

fK+1 = 0 otherwise.

Stop the sequence when ÑT is such that aTn − 1 < aT1 + 1.
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We illustrate Construction 1 with an example. Consider ÑK ∈ {3, 4, 5, 7, 9}, with pmf

fK(x) = {0.1, 0.3, 0.2, 0.1, 0.3} for x = {3, 4, 5, 7, 9} respectively. To form ÑK+1, Con-

struction 1 requires 0.1 = min{0.1, 0.3} of the probability mass at the “ends” of the sup-

port to be re-allocated towards the “middle”, i.e., from “3” to “4”, and also from “9” to

“8”. This results in ÑK+1 ∈ {4, 5, 7, 8, 9}, with pmf fK+1(x) = {0.4, 0.2, 0.1, 0.1, 0.2} for

x = {4, 5, 7, 8, 9}. In the next step, applying the transformation from Construction 1 would

lead to ÑK+2 ∈ {4, 5, 7, 8}, with pmf fK+2(x) = {0.2, 0.4, 0.1, 0.3} for x = {4, 5, 7, 8}.

With Construction 1, we create the sequence {Ñ0, Ñ1, . . . , ÑT }, beginning from an initial

belief distribution Ñ0, with the corresponding cdf’s {F0, F1, . . . , FT }. Thus, we have a

sequence of random variables that describe the customer threshold beliefs that are ordered

in some sense. In the following Lemma 1, we show that T is finite and the distributions are

mean-preserving spreads.

Lemma 1 Consider a sequence {ÑK} from Construction 1. (i) The sequence terminates

at some finite K = T . (ii) FK ≤SMPS FK−1 for K ∈ {1, 2, . . . , T}.

Lemma 1 states that all the distributions along the sequence built through Construction 1

have the same mean (i.e., they obey the mean preserving property). As long as the first

balking threshold belief distribution is consistent, all the belief distributions in Construction

1 will be consistent. Furthermore, every succeeding distribution in the sequence is domi-

nated (under the SMPS criterion) by the preceding distribution, i.e., every distribution in

the sequence is followed by another distribution that has a lower “spread”.

We now show in Lemma 2 that, for all initial belief distributions that have the same mean,

the sequence always terminates at the same distribution ÑT . Depending on the parameters

of the initial distribution (support etc.), the number of steps taken to reach ÑT may differ.

Thus, T depends on the initial distribution, but ÑT does not.

Lemma 2 Given any Ñ0, the sequence {FK} terminates at the same FT with the random

variable ÑT ∈ {⌊E(Ñ0)⌋, ⌈E(Ñ0)⌉} such that E(ÑT ) = E(Ñ0).
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Now that we have a sequence of random variables ordered SMPS by Construction 1, we can

compare the performance metrics of the queueing system under different balking threshold

beliefs along the sequence. Using the notation introduced earlier, we denote λeff,ÑK
, RÑK

,

LÑK
and WÑK

the effective arrival, the firm revenue, the average queue length, and the

average waiting time, corresponding to ÑK in the sequence of belief distributions {ÑK}K≥0.

Lemma 3 Let {ÑK} be any sequence from Construction 1. (i) λeff,ÑK
< λeff,ÑK+1

(RÑK
<

RÑK+1
) for all ρ; (ii) If ρ ≤ 1

2

(
√

(
aKn

aKn−1)
2 + 4− aKn

aKn−1

)

, then LÑK
< LÑK+1

; and (iii) If

ρ ≤ 1
2

(√

(
aKn−1
aKn−2)

2 + 4− aKn−1
aKn−2

)

, then WÑK
< WÑK+1

.

Recall that Construction 1 builds a sequence of belief distributions with decreasing spreads,

while maintaining consistency (i.e., identical means). It follows from Lemma 3/(i) that,

regardless of the traffic in the system, the revenues at the firm improve as the customers’

belief distributions become less spread out (or narrower). This result is not due to Jensen’s

inequality.1

Revenue improvements along the sequence emerge from the following two mechanisms:

(i) Customer beliefs are gradually altered along the sequence in the construction which

changes the long-run probabilities for all states. (ii) Along the construction path, the

balking threshold increases for some customers, and decreases for some others. We prove

that the throughput/revenue from increased joining of customers with improved balking

thresholds compensates for the decreased joining of those customers with reduced balking

thresholds. This is proven for any prior belief distribution.

Using similar proof arguments, Lemma 3/(ii) and (iii) provide distribution-free sufficient

conditions for LÑK
< LÑK+1

and WÑK
< WÑK+1

, respectively. It is possible to derive

1Consider a belief Ñ0 with cdf F0, pmf f0 and some integer mean E(Ñ0). Jensen’s inequality would imply

R
E(Ñ0)

>
∞
∑

n=0

f0(n)Rn where R
E(Ñ0)

and Rn are revenues when all customers use the balking threshold E(Ñ0)

and n respectively. Lemma 3 states that R
E(Ñ0)

> RÑ0
= pµ(1−π0) where π0 = 1

/(

1 +
∞
∑

i=1

ρi
i−1
∏

n=0

F̄0(n)

)

(from Equation (2.1)) which is not related to
∞
∑

n=0

f0(n)Rn.
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stronger distribution-specific conditions for each inequality. Unlike revenues, which always

increase as beliefs become less spread out, expected queue lengths and/or expected waiting

times can increase or decrease. We provide numerical examples below to support this

observation.

Numerical Illustration: We explore the performance metrics as the balking threshold

belief ÑK is transformed into ÑK+1 according to Construction 1. Since λeff,ÑK
< λeff,ÑK+1

(from Lemma 3/(i)), following Little’s Law, it is impossible to have LÑK
> LÑK+1

and

WÑK
< WÑK+1

at the same time. All three other cases are possible: (i) LÑK
< LÑK+1

and WÑK
< WÑK+1

, (ii) LÑK
< LÑK+1

and WÑK
> WÑK+1

, and, (iii) LÑK
> LÑK+1

and

WÑK
> WÑK+1

.

For example, consider the random variable ÑK ∈ {3, 4, 5}, such that its pmf fK(x) =

{0.2, 0.6, 0.2} for x = {3, 4, 5} respectively. Following Construction 1, we have ÑK+1 such

that Pr(ÑK+1 = 4) = 1, which is also the last step. Let µ = 1 in all cases below.

Case (i): When ρ = 0.4,

LÑK
= 0.609 < LÑK+1

= 0.615 and WÑK
= 1.551 < WÑK+1

= 1.562,

Case (ii): When ρ = 0.825,

LÑK
= 1.617 < LÑK+1

= 1.621 and WÑK
= 2.265 > WÑK+1

= 2.262.

Case (iii): When ρ = 0.9,

LÑK
= 1.793 > LÑK+1

= 1.790 and WÑK
= 2.380 > WÑK+1

= 2.368.

Having illustrated the comparative statics for the sequence of beliefs in Lemma 3, we can now

compare the performance metrics of (any) initial belief with the terminal belief distribution.

This is captured in Theorem 2. It turns out that, when customers’ balking threshold beliefs

become more accurate, the firm always improves its revenues. On the other hand, customers

have to wait longer on average, if the traffic is lighter than some threshold level.
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Theorem 2 Let Ñ be any balking threshold belief and ÑT be the last term from Construc-

tion 1 initiated at Ñ0 = Ñ . Then, (i) λeff,Ñ < λeff,ÑT
(RÑ < RÑT

) for all ρ; (ii) ∃ ρL

s.t. LÑ < LÑT
∀ ρ ≤ ρL; and (iii) ∃ ρW s.t. WÑ < WÑT

if ρ ≤ ρW .

Theorem 2 indicates that revenue at the server always improves when balking thresholds

become less spread-out. Essentially, some customers with high balking threshold become

less patient, and some others with low balking thresholds become more patient. Due to

the PASTA property, the system occupancy when customers arrive is more likely to be low

(recall ρ < 1). As a result, there is increased joining of customers leading to higher revenues.

The effect on congestion and waiting times depends on the traffic ρ. When the traffic

intensity ρ is small, beliefs that are less spread-out can increase congestion (L or W ). This

could be understood through externalities imposed by joining/balking customers as beliefs

become less spread out.

At low queue-lengths, more customers join (as beliefs become less spread out) causing

increased negative externalities for future arrivals. At high queue-lengths, fewer customers

join decreasing the negative externalities at those states. The net effect of the negative

extenalities imposed depends on the likelihood of the low queues lengths to high queue

lengths.

When ρ is small, the queue typically resides at low states and visits higher states less often.

Thus when ρ is small, the increased negative externalities imposed by customers joining at

low states exceed any benefit from reduced negative externalities at high states. As a result,

the expected wait times and queue lengths are higher when the beliefs are less spread out.

When ρ is large, the higher states are relatively more likely to be visited as opposed to

when ρ is small. Thus, it is possible that the benefits accrued at higher states can overcome

the negative externalities imposed at lower states. For instance, see Numerical Illustration

cases (ii) and (iii). Thus, in low traffic, as balking threshold beliefs become more accurate,

customers wait longer and suffer higher disutility. This result is intriguing because for a
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given population of consumers, a faster server announcing its true service rate is more likely

to result in welfare loss due to increased congestion.

Lower Bounds: We can use the analytical properties of the bounds along the sequence

to derive distribution-free bounds (with respect to Ñ) on ρL and ρW that hold for any

arbitrary customer belief. The lower bounds ρ
L
and ρ

W
are such that ρL ≥ ρ

L
= 0.5 and

ρW ≥ ρ
W

= 0.414 respectively. We defer the details of the derivation to the appendix.

We now extend our theoretical findings to the case of a firm with multiple servers (in §2.3.3)

and consumer beliefs that have infinite support (in §2.3.4).

2.3.3. Beliefs with Multiple Server Queues

We begin by characterizing the evolution of the queue when there are s identical servers

each with service rate parameter µ (M/M/s model). Assume that sµ > λ so the traffic

ρ = λ/sµ < 1. All other aspects of the model are the same as in the single-server setting.

Let Ñ ∈ {1, 2, 3, . . . }, whose cdf is F , describe consumers’ balking beliefs. As in the single

server case, we assume that every consumer will join the system on arrival if one of the

servers is idle. Thus we associate a consumer j’s balking threshold belief Ñj ∈ {1, 2, 3, . . . }

in the M/M/s system in the following way: Consumer j with Ñj , will join the M/M/s

system upon arrival, if and only if she observes less than Ñj + s − 1 consumers already

in the system.2 This specification ensures that no-one balks when a server is idle, and is

consistent with the single-server model when s = 1.

Let {0, 1, 2, . . .} be the states of the M/M/s system (number of consumers in the system),

and {πi : i = 0, 1, 2, . . .} be the corresponding steady-state probabilities. From the rate

2For example, consider consumer j with the strictest balking threshold, i.e., Ñj = 1. This consumer will
join the system if and only if she observes less than s (= Ñj + s− 1) consumers in the system, i.e., at least
one of the servers is idle.
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balance equations, we have:

πi =















ρi

i! π0 for i = 1, 2, . . . , s− 1, s.

ρi

s!

i−s
∏

n=0
F̄ (n)π0 for i = s, s+ 1, s+ 2, . . .

(2.9)

Note that when i = s the two cases in Equation (2.9) provide the same result, i.e., ρi

i! π0 =

ρi

s!

i−s
∏

n=0
F̄ (n)π0, because F̄ (0) = 1. Let a ∧ b , min{a, b} and let empty products, if any, be

equal to 1, then from (2.9) we have

πi =
ρi

(i ∧ s)!

i−s
∏

n=0

F̄ (n)π0 for i = 1, 2, 3, . . . (2.10)

From (2.10), we derive expressions for performance metrics for the M/M/s system under

the consumer beliefs Ñ with cdf F :

π0 = 1

/(

s−1
∑

i=0

ρi

i!
+

ρs−1

s!

∞
∑

i=1

ρi
i−1
∏

n=0

F̄ (n)

)

(2.11)

RÑ = p · µ[s− (sπ0 + (s− 1)π1 + . . .+ 2πs−2 + 1πs−1)] (2.12)

LÑ =

∞
∑

i=0

iπi =

∞
∑

i=0

iρi

(i ∧ s)!

i−s
∏

n=0

F̄ (n)

/

∞
∑

i=0

ρi

(i ∧ s)!

i−s
∏

n=0

F̄ (n) (2.13)

WÑ =
LÑ

λe
=

∞
∑

i=1

iρi

(i ∧ s)!

i−s
∏

n=0

F̄ (n)

/

µ
∞
∑

i=1

(i ∧ s)
ρi

(i ∧ s)!

i−s
∏

n=0

F̄ (n) (2.14)

Note that all expressions from (2.11) to (2.14) coincide with the corresponding expressions

for the M/M/1 system when s = 1. We now recover the results of Theorem 1 and Theorem

2 for consumer beliefs in multi-server queues. The proofs can be found in the appendix.

Theorem 1’ Consider consumer beliefs Ñ and Ñ ′ at an M/M/s queue. If Ñ ≤st Ñ ′, then

(i) λeff,Ñ ≤ λeff,Ñ ′ (RÑ ≤ RÑ ′), (ii) LÑ ≤ LÑ ′ and (iii) WÑ ≤ WÑ ′.
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Theorem 2’ Let Ñ be any balking threshold beliefs distribution for the M/M/s queue. Let

ÑT be the last term from Construction 1 initiated at Ñ0 = Ñ . Then, λeff,Ñ ≤ λeff,ÑT

(RÑ ≤ RÑT
); (ii) ∃ ρL s.t. LÑ < LÑT

∀ ρ ≤ ρL; and (iii) ∃ ρW s.t. WÑ < WÑT
if ρ ≤ ρW .

2.3.4. Beliefs over an Infinite Support

We further relax the assumption that the balking threshold beliefs have finite support. Re-

call that Theorem 1 in §2.3.1 states that when consumers have two sets of balking threshold

beliefs Ñ and Ñ ′ (which have finite supports) such that Ñ ≤st Ñ ′, then λeff,Ñ ≤ λeff,Ñ ′

(RÑ ≤ RÑ ′), LÑ ≤ LÑ ′ and WÑ ≤ WÑ ′ . It is clear that the approach used in the proof

of Theorem 1 continues to hold when Ñ and Ñ ′ have infinite support. Thus we have the

following theorem.

Theorem 1” Consider consumer beliefs Ñ and Ñ ′ that may be distributed on an infinite

support. If Ñ ≤st Ñ ′, then (i) λeff,Ñ ≤ λeff,Ñ ′ (RÑ ≤ RÑ ′), (ii) LÑ ≤ LÑ ′ and (iii)

WÑ ≤ WÑ ′.

However, to extend Theorem 2 to the infinite support case, we need additional preparatory

groundwork. Recall that for consistent beliefs Ñ with finite support, Theorem 2 states that

RÑ < RÑT
for all ρ, LÑ < LÑT

and WÑ < WÑT
for small ρ, where ÑT is the terminal

distribution in the sequence formed by Construction 1 initiated from Ñ . Lemma 2 shows

that ÑT ∈ {⌊E(Ñ)⌋, ⌈E(Ñ)⌉} such that E(ÑT ) = E(Ñ).

Now we relax the assumption on the finite support and allow Ñ to take values from a

countable set within {1, 2, 3, . . .} with finite mean E(Ñ). Our approach is to develop a new

sequence of random variables ÑK , in Construction 2, each with finite support and mean

E(Ñ). We then show that the sequence {ÑK} converges to Ñ in probability, i.e., ÑK p→ Ñ .

Construction 2 Let Ñ ∈ {1, 2, 3, . . .} with E(Ñ) < ∞. For each K, let ÑK be a random

variable that takes values only in {1, 2, . . . ,K − 1,K} ∪ {⌊E[Ñ |Ñ > K]⌋, ⌈E[Ñ |Ñ > K]⌉}
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such that when E[Ñ |Ñ > K] is an integer,











Pr(ÑK = n) = Pr(Ñ = n) for n ∈ {1, 2, . . . ,K − 1,K}

Pr(ÑK = E[Ñ |Ñ > K]) = Pr(Ñ > K)

Otherwise,



























Pr(ÑK = n) = Pr(Ñ = n) for n ∈ {1, 2, . . . ,K − 1,K}

Pr(ÑK = ⌊E[Ñ |Ñ > K]⌋) = (⌈E[Ñ |Ñ > K]⌉ − E[Ñ |Ñ > K]) Pr(Ñ > K)

Pr(ÑK = ⌈E[Ñ |Ñ > K]⌉) = (E[Ñ |Ñ > K]− ⌊E[Ñ |Ñ > K]⌋) Pr(Ñ > K)

Construction 2 replaces the tail of the distribution of Ñ (the portion where Ñ > K), with

a single or two finite probability mass points that take on the corresponding conditional

mean E[Ñ |Ñ > K]. It then can be easily verified that E(ÑK) = E(Ñ). Thus Construction

2 provides a mean-preserving transformation, i.e., the consistency of beliefs is preserved.

Let {ÑK}K=1,2,3,... be built from Ñ using Construction 2. Note that Pr(Ñ 6= ÑK) ≤

Pr(Ñ > K) and lim
K→∞

Pr(Ñ > K) = 0. So {ÑK} converges to Ñ in probability which

also implies the convergence in distribution. It immediately follows that lim
K→∞

RÑK = RÑ ,

lim
K→∞

LÑK = LÑ , lim
K→∞

WÑK = WÑ . For each K, ÑK is a random variable with mean

E(Ñ) and a finite support. By Theorem 2 (for the finite support case), we have (for each

K), RÑK < RÑT
for all ρ, LÑK < LÑT

and WÑK < WÑT
for small ρ. By letting K → ∞,

we can extend Theorem 2 to the case when Ñ takes an infinite support.

Theorem 2” Let Ñ be any balking threshold beliefs distribution that may have an infinite

support. Let ÑT ∈ {⌊E(Ñ)⌋, ⌈E(Ñ)⌉} such that E(ÑT ) = E(Ñ). Then, (i) λeff,Ñ ≤ λeff,ÑT

(RÑ ≤ RÑT
); (ii) ∃ ρL s.t. LÑ ≤ LÑT

∀ ρ ≤ ρL; and (iii) ∃ ρW s.t. WÑ ≤ WÑT
if

ρ ≤ ρW .

Thus, we recover the conclusions from Theorems 1 and 2, when applying our results to

beliefs that have infinite supports. The lower bounds derived on ρ
L
and ρ

W
in §2.3.2 also
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continue to hold.

2.4. IMPACT OF REVEALING SERVICE INFORMATION

In the previous section, we compared performance metrics when customers had different

balking threshold distributions. In this section, we calibrate the impact of a firm revealing

its true service rate µ, by comparing revenues and system congestion under two balking

threshold distributions corresponding to the firm revealing or not revealing its service in-

formation.

When customers are uninformed, they may have arbitrary beliefs about the service rate,

and balking thresholds may be distributed according to some Ñ . When the firm chooses

to inform its customers of the true service rate, customers will follow identical balking

thresholds. In the M/M/1 queue, the balking threshold beliefs are given by Ñ = ⌊ µ̃(v−p)
c ⌋

and true balking threshold is given by N = ⌊µ(v−p)
c ⌋. Since the native beliefs could be

arbitrary, it is unclear when a firm should reveal its service rate. We examine this question

in the following Proposition.

Proposition 1 When E(Ñ) ≤ N , the firm benefits from revealing service information

(R ↑). In addition, when traffic ρ is small, the average queue length and the average

customer waiting time in the system both increase on revelation (L,W ↑).

From the Proposition, we find that, when customer balking beliefs are pessimistic or even

consistent, i.e., E(Ñ) ≤ N , it is always in the firm’s interest to reveal its service rate,

since the firm sees more revenue as the announcement is made. When ρ is small, system

congestion (average queue length and average customer waiting time) increases on customers

knowing the true information.

Note that in Proposition 1 we have stated customer pessimism in terms of balking thresholds

rather than internally held service-rate beliefs. This is mainly because, when the service firm

investigates whether to reveal service information to its customers, it cannot directly observe
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customers’ service rate beliefs. Instead, the firm can infer the balking distribution from

customers’ joining/balking decisions. However, a pessimistic service rate belief distribution

usually leads to a pessimistic balking threshold distribution.3

Moreover, these results are distribution-free and also parameter-free, i.e., it is sufficient for

the firm to only know that the beliefs are pessimistic or consistent (with respect to the

balking thresholds), before the decision to reveal true information is made. Under such

cases, the exact distribution of beliefs does not influence the decision to reveal information.

To intuit this result, we consider a population with beliefs Ñ . Let {Ñ0, Ñ1, . . . , ÑT } be a

sequence of balking threshold beliefs from Construction 1 starting with Ñ0 = Ñ . Theorem

2 states that R ↑ and L,W ↑ (for small ρ) when customers adopt ÑT instead of Ñ . Now

suppose the beliefs are pessimistic or consistent, i.e., E(Ñ) ≤ N , it then follows that ÑT ≤st

N . So by Theorem 1, upon revealing µ, we have R ↑ and L,W ↑. Thus, combining Theorems

1 and 2, when E(Ñ) ≤ N , we have R ↑ and L,W ↑ (for small ρ).

Now suppose that customers have optimism bias (N < E(Ñ)). Again, we construct the

sequence {Ñ0, Ñ1, . . . , ÑT } using Construction 1 starting with Ñ0 = Ñ . We have RÑ <

RÑ1
< . . . < RÑT

by Theorem 2. On the other hand, N < E(Ñ) implies N <st ÑT , so by

Theorem 1 we have RN < RÑT
. Depending on Ñ , we may have RN < RÑ or RN > RÑ .

Recall that {Ñ0, Ñ1, . . . , ÑT } is a sequence of beliefs that have progressively lower spreads.

So we conclude that when customers population is optimistic, the firm may still reveal its

service information as long as it observes high variance in customers’ balking behaviors. We

provide numerical examples to support this observation in the following section.

2.4.1. Revenue and Welfare Effects of Service Information Revelation under Bias

We now examine specific cases where our findings will apply by studying M/M/1 queues

under different beliefs in the population. In all cases, we set the service value v = $8,

price p = $2, and customer linear waiting cost at c = $4/hr. customers are not aware of

3The exceptions are created when the floor function is involved to transfer µ̃ into the corresponding Ñ
shifts the mean threshold by one.
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the provider’s true service rate, µ and their beliefs are uniformly distributed over [2, 8] per

hour, i.e., µ̃ ∼ U [2, 8] with mean E(µ̃) = 5. As a result, customers’ balking threshold beliefs,

Ñ = ⌊ µ̃(v−p)
c ⌋ = ⌊3µ̃/2⌋, is a discrete uniform distribution taking values {3, 4, . . . , 11} with

mean E(Ñ) = 7.

We examine three scenarios where the true threshold N associated with the true service

rate µ is (i) greater than, (ii) equal to or (iii) less than E(Ñ). These three instances

correspond to pessimism, consistency and optimism in beliefs. For each case, we examine

the firm’s revenue, the average queue length and the average customer waiting time, as well

as consumer welfare and social welfare.

The first line in each table that follows corresponds to the situation in which the firm hides

the service rate information from its customers (customers adopt balking threshold beliefs

Ñ); the last line of each table corresponds to the situation in which the firm reveals the

service rate information to its customers (customers thus adopt balking threshold beliefs

N). All rows in between the first and the last rows communicate the terms in the sequence

in Construction 1. The percentage change in a parameter (compared to the original beliefs

Ñ , first line) is noted in parenthesis.

Pessimistic Beliefs: The arrival rate is λ = 5/hr and the true service rate is µ = 6/hr.

Note that µ = 6 > E(µ̃) = 5 and N = 9 > E(Ñ) = 7. Therefore, customers have pessimistic

beliefs.

Beliefs Firm Revenue Avg. Queue Length Avg. Waiting Time Consumer Welfare Social Welfare

Uninformed Ñ = Ñ0 8.75 1.86 0.42 18.81 27.56

Construction:Ñ1 8.87 (+1.41%) 1.94 (+4.32%) 0.44 (+2.87%) 18.86 (+0.26%) 27.73 (+0.62%)

Ñ2 9.03 (+3.23%) 2.08 (+11.94%) 0.46 (+8.44%) 18.77 (-0.21%) 27.80 (+0.88%)

Ñ3 9.17 (+4.88%) 2.24 (+20.47%) 0.49 (+14.86%) 18.57 (-1.28%) 27.75 (+0.68%)

Ñ4 = ÑT 9.23 (+5.47%) 2.29 (+23.35%) 0.50 (+16.95%) 18.52 (-1.58%) 27.74 (+0.66%)
Informed N 9.52 (+8.83%) 2.84 (+52.78%) 0.60 (+40.38%) 17.21 (-8.52%) 26.73 (-3.01%)

In this case, revealing the true service rate increases the firm’s revenue by 8.83% but also

increases the average queue length by 52.78% and the average waiting time by 40.38%. The

firm thus benefits from revealing its service rate information (in line with Proposition 1),

but the increased benefit is not sufficient to overcome the loss in consumer welfare (-8.52%).
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As a result, overall social welfare drops by 3.01%.

Consistent Beliefs: Let λ = 4/hr, µ = 5/hr. Note that µ = E(µ̃) = 5 and N = E(Ñ) = 7.

Therefore beliefs are consistent in the population. Nevertheless, the individual customer

beliefs vary uniformly from 2 to 8.

Belief Type Firm Revenue Avg. Queue Length Avg. Waiting Time Consumer Welfare Social Welfare

Uninformed Ñ = Ñ0 7.08 (+0.00%) 1.74 (+0.00%) 0.49 (+0.00%) 14.29 (+0.00%) 21.37 (+0.00%)

Construction Ñ1 7.18 (+1.43%) 1.82 (+4.37%) 0.51 (+2.89%) 14.29 (+0.00%) 21.47 (+0.47%)

Ñ2 7.31 (+3.24%) 1.95 (+11.89%) 0.53 (+8.37%) 14.15 (-0.97%) 21.46 (+0.43%)

Ñ3 7.43 (+4.86%) 2.09 (+20.19%) 0.56 (+14.62%) 13.92 (-2.61%) 21.34 (-0.13%)

Ñ4 = ÑT 7.47 (+5.46%) 2.14 (+23.12%) 0.57 (+16.75%) 13.84 (-3.15%) 21.31 (-0.30%)

Informed N = ÑT 7.47 (+5.46%) 2.14 (+23.12%) 0.57 (+16.75%) 13.84 (-3.15%) 21.31 (-0.30%)

In the consistent beliefs case, revealing the true service rate still improves revenues (by

5.46%) in line with Proposition 1. On the other hand, the average queue length and the

average waiting time both increase significantly (by 23.12% and 16.75% respectively). The

firm benefits from revealing the service rate, almost fully at the expense of consumer welfare

(-3.15%), but the overall social welfare does not fall significantly (-0.30%) due to the increase

in throughput (i.e., number of customers served).

Optimistic Beliefs: Let λ = 3/hr and µ = 4/hr. Note µ = 4 < E(µ̃) = 5 and N = 6 <

E(Ñ) = 7. Hence, population beliefs are optimistic.

Beliefs Firm Revenue Avg. Queue Length Avg. Waiting Time Consumer Welfare Social Welfare

Uninformed Ñ = Ñ0 5.40 (+0.00%) 1.57 (+0.00%) 0.58 (+0.00%) 9.93 (+0.00%) 15.33 (+0.00%)

Construction: Ñ1 5.48 (+1.45%) 1.64 (+4.39%) 0.60 (+2.90%) 9.89 (-0.41%) 15.37 (+0.25%)

Ñ2 5.58 (+3.22%) 1.75 (+11.65%) 0.63 (+8.17%) 9.72 (-2.11%) 15.30 (-0.23%)

Ñ3 5.66 (+4.76%) 1.88 (+19.48%) 0.66 (+14.04%) 9.48 (-4.54%) 15.14 (-1.26%)

Ñ4 = ÑT 5.69 (+5.34%) 1.92 (+22.37%) 0.68 (+16.16%) 9.39 (-5.43%) 15.08 (-1.64%)
Informed N 5.57 (+3.03%) 1.70 (+8.31%) 0.61 (+5.13%) 9.90 (-0.31%) 15.46 (-0.86%)

Although customers are optimistic about the service rate, revealing the true service rate

would still increase firm’s revenue by 3.03%. Examining the second column of the table

(firm’s revenue column) reveals what we have discussed for the optimism bias case: When

customers’ optimistic balking threshold beliefs are more dispersed (as in the example the

original belief Ñ), it is beneficial for the firm to reveal service rate.

In this example, we see that, if customers’ balking beliefs is characterized by Ñ or Ñ1, then

the firm increases its revenue by revealing the true service rate. As in the previous cases,

the revenue accrual comes at the expense of increased queue lengths and waiting times for
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customers. On the contrary, if customer beliefs are less dispersed, (for e.g., if the beliefs

were Ñ3), the firm does not gain from revealing its service rate. In this case, customers are

better off in both expected queue lengths and wait times.

To summarize, while the revenues improve with more information, the welfare effects are

mixed. Typically the firm benefits from revealing service information, to the detriment of

welfare. The gains in revenues are usually, but not always, lower than the loss in consumer

welfare. Thus typically, social welfare is reduced, as a consequence of more information in

the system. However, it is also possible that both the firm revenues and consumer welfare

improve upon service information revelation (even with consistent beliefs). This can occur

when the traffic is very high and customers’ prior beliefs are almost deterministic. One such

example is given by Case (iii) of the numerical illustration in §2.3.2 where λeff ↑ and L ↓.

2.5. APPLYING OUR FINDINGS TO SPECIFIC BELIEF MODELS

While our results hold for any general belief structure, it is helpful to evaluate what our

findings imply under some specific belief considerations that have been examined in the

literature. In this context, it is germane to consider the following issue: If consumers

arrive to a queue endowed with some pre-existing beliefs, how do these different beliefs

form? In the following section, we consider some behavioral/operational antecedents to

belief structures, show our analysis apply to those cases and derive conclusions from those

applications.

2.5.1. Quantal Response Errors

Quantal response models are used to model deviations from optimal consumer decisions in

the absence of full information. For instance, in queues, consumers may make “errors” in

their estimate of the true service rate due to cognitive limitations following Quantal Choice

Theory (Luce, 1959), which argues that decision makers do not always choose the “correct”

alternative, but better alternatives (i.e., alternatives with smaller errors) are chosen with

a higher probability than the alternatives that are worse. Quantal choice approach has
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been employed to model bounded rationality in the newsvendor contexts by Su (2008), and

subsequently in queueing settings by Huang et al. (2013).

If consumer population made i.i.d. belief draws from a distribution that align with Quantal

Choice Theory, a large fraction of the population will have small errors in their beliefs about

the true service rate, and a diminished fraction of customers make arbitrarily large errors

in their beliefs. Furthermore, the mode of such a belief distribution will coincide with the

true service parameter.

For a consumer j, let the belief on the true service rate (µ) be µ̃j . We use [|µ̃j −µ|+1]−1 ∈

(0, 1] to indicate the accuracy of her belief.4 Assuming i.i.d. customers, we could use a

logit model – the mostly commonly used Quantal response distribution – for µ̃, to model

the accuracy of consumer beliefs. Then, the pdf for the belief distribution µ̃ is given by:

fµ̃(x) =
exp{[β(|x− µ|+ 1)]−1}

x=µ̄
∫

x=µ
exp{[β(|x− µ|+ 1)]−1}dx

where β is a cognitive parameter that measures “distance” from perfect rationality. As

β → ∞, µ̃ ∼ U [µ, µ̄] (consumers are totally uninformed and make ‘random’ errors), and

when β → 0, Pr(µ̃ = µ) = 1 (consumers are fully informed and we recover Naor’s model in

this context). When the belief distribution is symmetric, i.e., µ = (µ+ µ̄)/2, we note that

as β decreases from ∞ to 0, the underlying consumer beliefs undergo the transformation

described in Construction 1.

Quantal response choices only require that the zero-error choice is chosen with the highest

probability, and therefore are not necessarily consistent beliefs. For example, consumer

beliefs can be optimistic (if µ < (µ + µ̄)/2) or pessimistic (if µ > (µ + µ̄)/2). Quantal

response beliefs are examples of beliefs where the results of our paper apply. Although

Quantal response beliefs can explain some deviations from the optimal/true choice, they do

not inform how these beliefs form. We examine some specific causes (e.g., past experiences)

4Other measures of accuracy could be employed without altering our conclusions.
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in the following sections.

2.5.2. Learning by Sampling Past Experiences

In many service instances, consumers have limited and infrequent interactions with the

service provider. In such cases, consumers could use their past service experience as samples

to learn more about the service rate. This sampling helps consumers to arrive at their beliefs

and eventually make their decisions. Suppose that all consumers in a sufficiently large

population, use only their past service experience to estimate the service rate. Specifically,

let us examine a case in which all consumers have visited the server s times, (s ≥ 1) or only

remember the past s service time experiences. We assume that consumers are homogeneous

in s in this section, but relax the assumption in §2.5.3.

Consider a consumer with the following service time samples {τ1, τ2, . . . , τs}. A rational

consumer who knows the service distribution, but not the exact parameters, will use the

observed samples to arrive at an estimate that maximizes the likelihood of observing those

s samples. Simply, a rational consumer would use Maximum Likelihood Estimator (MLE)

for calculating the parameters of the service distribution. Suppose the service times are

i.i.d. exponential, then it is well known that the MLE for the service rate is given by

µ̂|(τ1, τ2, . . . , τs) = s

/

s
∑

i=1

τi . (2.15)

This is the point estimate for the service rate for the consumer with samples {τ1, τ2, . . . , τs}.

Thus, consumers will have different beliefs (estimates) based on their individual samples.

Define µ̃s to be the random variable associated with the belief distribution, when all con-

sumers use s samples to arrive at their beliefs through MLE. We note that
s
∑

i=1
τi in equation

(2.15) has an Erlang distribution with shape parameter s and rate parameter µ. It follows

that over the population, the individual consumer beliefs µ̃s are distributed Inverse-Gamma

with shape parameter s and scale parameter sµ, i.e., µ̃s ∼ Inv-Gamma(s, sµ). The pdf for
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µ̃s is given by

fµ̃s(x) =
(sµ)s

Γ(s)
x−s−1 exp(−sµ

x
) for x > 0 (2.16)

where Γ denotes the upper incomplete gamma function. Furthermore, if the service times

are independent, the estimate remains unchanged if these samples are collected on a single

visit or over multiple visits.
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Figure 1: As consumers remember more service experiences (s ↑ ∞), their estimates of the
service rate become consistent with the true service rate. That is, (i) E(µ̃s) ↓ µ, and (ii)
Var(µ̃s) ↓ 0.

In Figure 1, we illustrate µ̃s for different sampling sizes s. Since E(µ̃s) = s
s−1µ and

Var(µ̃s) =
s2

(s−1)2(s−2)
µ, we note that for any finite s, the population mean is higher than

the true µ. Thus the population is optimistically biased. Further, as s increases, consumer

beliefs get less noisy (i.e., Var(µ̃s) → 0 as s ↑ ∞), as reflected in the distributions getting

less spread-out in Figure 1. Eventually, as the number of samples approaches infinity in

(2.16), the distribution of µ̃s approaches a one-point distribution at µ, i.e., Pr(µ̃ = µ) = 1.

As consumers learn service rate through sampling, they remain optimistic but diminish-

ingly so, as they collect more samples. Thus MLE derived through sampling is biased but

asymptotically consistent.

Finally, for any s, the mode of the belief distribution µ̃s does not coincide with the true

33



service rate µ (s = ∞ line). Therefore, the beliefs that emerge from learning through

sampling, are not Quantal choice beliefs. Hence, sampling distributions are another distinct

example of our belief distribution results.

Learning through Waiting Times. Note that for a given s, as long as the service times

are i.i.d., it does not matter whether a consumer’s MLE is built from her own service times,

or from her observations of service times for other consumers. In some cases, consumers

may not be able to observe all other service times, due to limited cognitive attention to the

sequence of events, or due to system environment. As an example, consider ticket queues

(see Xu et al. (2007)) where a consumer learns only her own wait time and ticket number.

Another similar setting occurs at emergency room queues, where consumers learn their own

total wait time but not the exact service times of everyone in the queue.

Suppose that a consumer only knows her total wait time Ws and the number of customers

during the wait, s (for e.g., queue length), but does not observe the individual service times

(τ1, τ2, . . . , τs) during the wait. Her service time belief is based on the observed waiting time,

i.e., τ̂ |Ws = Ws/s and the corresponding service rate belief is µ̂|Ws = [τ̂ |Ws]
−1 = s/Ws.

This estimate µ̂|Ws is identical to the MLE in equation (2.15) for a consumer who observed

individual service times which sum up to Ws. The overall belief distribution using the

waiting time estimate Ws is thus identical to the MLE case with s samples.

2.5.3. Consumer Heterogeneity in Learning

So far, we limited consumer sampling to be homogeneous across the entire population. How-

ever, it is possible that consumers differ in s. Typically, there is some underlying distribution

of s in the population, based on how consumers accumulate information or are exposed to it.

For instance, consumers may consider external reviews or auxiliary information from other

consumers. We denote this sampling heterogeneity by a discrete random variable S taking

values in {1, 2, . . .} with pdf fS . When S is a one-point distribution, we retain homogeneity

in learning. With (2.16) in hand, we can write the continuous unconditional distribution of
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beliefs denoted by µ̃ in the population, through the following pdf:

fµ̃(x) =
∑

s∈S

(sµ)s

Γ(s)
x−s−1 exp(−sµ

x
)fS(s) for x > 0. (2.17)

We now consider two different ways to model the learning heterogeneity, fS(s).

Sampling through Poisson Arrivals. One natural distribution of sampling in the pop-

ulation could be based on what consumers observe when they arrive to a queue. Applying

PASTA property (Wolff, 1982), when consumers arrive according to a Poisson process to

the server, their sampling distribution follows the steady state distribution of the queu-

ing system. In an M/M/1 queue, a customer who arrives at the state s − 1 observes

s samples in total. With traffic intensity ρ = λ/µ, the sampling distribution would be

fS(s) = (1− ρ)ρs−1, s ≥ 1. Clearly, if the queue is a system with limited buffer size, then

the sampling distribution is on finite support, and therefore the population becomes more

optimistic, following our previous discussion.

Limited Recall/External Reviews. Consumers may come across information (for e.g.,

reviews on bulletin boards or websites), but may not recall all observed information due to

cognitive limitations. When subjected to an increasing amount of information, a consumer

may remember only a limited amount of information, and forget an amount that is pro-

portional to the information she is exposed to. We examine such a sampling system, using

the model of limited memories due to Nelson (1974). We assume that consumers confront

reviews according to a Poisson Process with rate r and they also forget a review at a rate

that is directly proportional to the number of reviews a person remembers. Let a be the

constant of the proportionality. We denote the state n ∈ {0, 1, 2, . . .} as the number of re-

views that a particular customer remembers in the long run. The fraction of customers who

remember n reviews is given by steady-state probability distribution {πn : n = 0, 1, 2, . . .}.

We then have πn = (r/a)ne−r/a/n! for n ∈ {0, 1, 2, . . .}.

Suppose that consumers form their beliefs only after reading at least one review or service
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experience. Then, the fraction of consumers who remember s reviews among the population

is given by

fS(s) =
πs

1− π0
=

(r/a)n

n!

e−r/a

1− e−r/a
for s = 1, 2, . . .

The fraction fS(s) use s reviews to arrive at their belief µ̃s. We can then use fS to build

the distribution of consumer beliefs in the queue through equation (2.17).

Regardless of how we model the sampling heterogeneity fS , we conclude that consumer

population will tend to be optimistic, even though all reviews/service experiences are as-

sumed to be accurate. This is because, using MLE, each consumer class is optimistic. Thus,

learning through sampling can lead to optimism bias even in heterogenous populations. We

briefly examine how pessimistic beliefs can emerge.

From a behavioral point of view, consumers may have availability bias (Tversky and Kah-

neman, 1973) when processing information. Under availability bias, consumers remember

unusual experiences saliently, in forming their beliefs. In the case of exponential servers,

when consumers have finite sample sizes, short service times are much likely to be present

in their sample than long service times. Thus, consumers recall longer-than-usual service

times more vividly. As a result, availability bias could lead to tempered optimism or even

pessimism in the population beliefs, i.e., E(µ̃) < µ. Another cause of pessimistic bias, can

be due to Prospect Theory (Kahneman and Tversky, 1979), where longer (worse) service

times affect updating more significantly. See Gaur and Park (2007) for such asymmetric

consumer learning in inventory context.

2.6. UNOBSERVABLE QUEUES

In this section, we analyze settings where consumers cannot observe the queue lengths upon

arrival. Recall that in the observable model, the customers arrive with some service rate

belief (µ̃). When arriving customers observe the state of the queue n, they immediately

form beliefs about their expected waiting time (n+1)/µ̃, from which they can make joining

or balking decisions. Each customer’s decision is fully determined by his belief over the
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service rate and by the queue length he sees. In other words, his decision does not depend

in any way on other customers’ decisions, i.e., there is no gaming or coordination among

customers.

However, in unobservable settings, a customer is not only unaware of the queue length

information, but also has no additional information about the system to make his decision.

His decisions (and hence the impact on revenues and welfare) depend on the nature of beliefs

he arrives with.

If the customer arrives with some beliefs on the expected wait time (or, if his expected wait

time is revealed to him by the firm on his arrival), he can make his best decision without

requiring any additional information regarding others’ decisions (just as he would in the

observable setting). We analyze the effect of such beliefs in §2.6.1.

On the other hand, if he arrives only with service rate beliefs, he cannot make join/balk

decisions without additional information or beliefs. In the observable setting, seeing the

queue length on arrival provides the necessary additional information to the customer to

make his decision. Absent such additional information, he would need to convert his be-

lief on service rate into an estimate on the expected waiting time. This estimation requires

guessing/inferring information about other customers’ decisions or beliefs, because their de-

cisions affect his expected wait time and consequently his optimal decision. Such estimation

involves gaming and equilibriating, which we examine in §2.6.2.

2.6.1. Unobservable Settings with Waiting Time Beliefs

We examine the same single-server system analyzed earlier in the paper, except that queue

lengths are now not visible. Consider a customer who arrives with belief w̃ about the

expected waiting time in system to complete his service. The belief w̃ (perhaps based on

his past experience, etc.) can be arbitrarily different from the true expected waiting time.
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Absent other information, he makes the following rational decision:















v − p ≥ cw̃ : The customer joins the queue;

otherwise: The customer balks from the queue.

As in the observable model, v − p here represents the value of service net of price, and c

denotes the cost of waiting per unit of time.

Let us denote W̃ , with cdf FW̃ , the distribution of the population beliefs on the expected

waiting time. The beliefs that are deterministic for each customer form a random distri-

bution because customers arrive to the system randomly. As before, we do not restrict the

belief distribution. Specifically, the no-information case in Guo and Zipkin (2007) in which

all customers arrive with the same deterministic belief on the waiting time (equaling the

long-run expected waiting time) is a special case of our analysis.

The effective joining rate under W̃ is given by

λeff,W̃ = λPr{v − p ≥ cW̃} = λFW̃ (
v − p

c
), (2.18)

and we can write waiting time metrics in terms of λeff,W̃ . The average customer waiting

time is 1/(µ − λeff,W̃ ); and the average congestion in the system is λeff,W̃ /(µ − λeff,W̃ ).

Note that the latter is not observed by customers but would be observed by the firm.

We now ask the central question of the paper about revealing information. Note in the

observable setting, when the true service rate is revealed, the firm is effectively giving out

the expected waiting time information for each customer based on the queue-length they

arrive at. The corresponding question in this model is as follows: When would a firm reveal

real-time expected waiting time information to its customers on their arrival? For example,

in practice, when calling the customer services line of Macy’s or AT&T, or using the live-

agent kiosks at Hertz airport locations, information such as “Your current expected waiting

time is 13 minutes” is revealed.
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The effect of revealing wait-times here is similar to the effect of revealing the service rate in

the observable setting. On one hand, some customers who have overestimated the expected

waiting time will join the queue after hearing the server’s announcement. On the other

hand, some customers that had underestimated the waiting time might balk. Therefore,

the firm’s decision to reveal depends on customers’ belief distribution W̃ .

Specifically, when the firm announces the real-time expected waiting time information to

each arrival who then joins or balks, the underlying unobservable queue coincides with

an observable M/M/1/N system where every consumer knows the true service rate µ.

(However, customers do not observe the state of the system or µ). The effective joining rate

is given by Naor (1969) as:

λ(1− ρN )/(1− ρN+1) (2.19)

In this case the average congestion in the system is given by

ρ

1− ρ
− (N + 1)ρN+1

1− ρN+1
,

and the average customer waiting time follows immediately from Little’s Law.

From (2.18) and (2.19), we find that it is better for the firm to reveal the waiting time

information if

FW̃ (
v − p

c
) <

1− ρN

1− ρN+1
(2.20)

but not otherwise. The LHS of the condition (2.20) is fixed for a population with a belief

distribution. For the population arriving at rate λ, it can be shown that RHS is increasing

in µ. As a result, a firm with a faster service rate is more likely to reveal its waiting time

information.

However, when a fast server (i.e., small ρ) reveals waiting time information, system conges-

tion and the resulting average waiting time also increases. In fact, just as in the observable

queue settings, we find that there exist some threshold ρL (and ρW respectively) such
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that when ρ ≤ ρL (ρW ), the system congestion (the average waiting time) will increase

upon waiting time information revelation. The impact on overall consumer welfare is typi-

cally negative due to increased congestion, despite the increase in the number of customers

served. Hence, social welfare can fall on the provision of information. A similar conclusion

is reached by Plambeck and Wang (2012) when customers make time-inconsistent decisions

(hyperbolic discounting).

2.6.2. Unobservable Settings with Service Rate Beliefs

We now assume that the customers arriving to an unobservable single-server queue have

beliefs about the service rate instead. Thus, similar to the model under the observable

setting, customers do not know the true service rate µ unless they are informed by the

service firm. The key technical issue in this case is that a customer has to make a join/balk

decision not only based on his own service-rate belief, but also on what he believes about

other customers’ service-rate beliefs. These decisions require each customer to evaluate the

best response to others’ strategies.

Prior research has modeled such scenarios by imposing that all customers know the true

service rate µ. For an extensive collection of such papers, see Chapter 3 of Hassin and Haviv

(2003). We extend this research stream to scenarios where the service rate is unknown.

Assume a customer j believes that the service time is exponentially distributed with some

service rate µ̃j . (An exponential distribution is assumed for analytical simplicity and can

be extended to a general distribution.) We use random variable µ̃ with cdf Gµ̃ to denote

the heterogeneity in service-rate beliefs, as in the observable model. Customer j (with

belief µ̃j) in making his decision, thinks that all the other customers (should) have the

same service-rate belief, namely µ̃j .
5 Hence, the distribution of each customer’s beliefs over

others’ deterministic beliefs follows the same distribution as the native distribution Gµ̃.

As is done in the classical unobservable-queue models, customers know the arrival rate λ.

5We could impose other characterizations on beliefs over other consumers’ beliefs, but this characteriza-
tion appears natural and does not impose additional informational requirements.
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This allows us to focus on the heterogeneity in beliefs about the service rate alone. Clearly,

every customer’s decision to join depends on his beliefs regarding others’ beliefs. Due to

our assumption, a customer with service-rate belief µ̃ makes the join/balk decision as if

the unobservable queue were M/M/1 system with arrival rate λ and known service rate

µ̃. Following Hassin and Haviv (2003), a customer with belief µ̃ joins the queue with some

probability q(µ̃) and balks with probability 1− q(µ̃) in equilibrium where















q(µ̃) =
µ̃− c

v−p

λ if ( c
v−p ≤) µ̃ < λ+ c

v−p

q(µ̃) = 1 if µ̃ ≥ λ+ c
v−p .

(2.21)

To explore the issue of revealing service-rate information, we note that, when customers

are fully informed of the true service rate µ, all customers will have the identical joining

strategy in equilibrium:















q(µ) =
µ− c

v−p

λ if ( c
v−p ≤) µ < λ+ c

v−p

q(µ) = 1 if µ ≥ λ+ c
v−p

(2.22)

We denote λU
eff and WU the long-run (effective) joining rate and each customer’s true

expected waiting time in the system. (The superscript U denotes the unobservable setting.)

The revenue (rate) at the server is given by the product of price charged by the server and

the long-run effective arrival rate at the system: RU , p · λU
eff .

Theorem 1U If µ̃ ≤st µ̃
′, then (i) λU

eff,µ̃ ≤ λU
eff,µ̃′ (RU

µ̃ ≤ RU
µ̃′), and (ii) WU

µ̃ ≤ WU
µ̃′ .

Theorem 1U states that, when the service-rate beliefs are more optimistic, more customers

join the queue. More joining customers lead to increased firm revenue as well as higher

waiting times. This result is consistent with the first-order result in the observable setting

(i.e., Theorem 1).

Next, let λU
eff,E(µ̃), R

U
E(µ̃), W

U
E(µ̃) denote the metrics of interest in an unobservable queue
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when the customers’ service rate beliefs are identical to the mean of the distribution, i.e.,

E(µ̃). This comparison extends our results on mean-preserving spread under the observable

queue (i.e., Theorem 2) to the unobservable case.

Theorem 2U For any µ̃, (i) λU
eff,µ̃ ≤ λU

eff,E(µ̃) (R
U
µ̃ ≤ RU

E(µ̃)), and (ii) WU
µ̃ ≤ WU

E(µ̃).

Theorem 2U states that, when the distribution of beliefs in the customer population is less

spread out, the firm receives more profit. Also note that average waiting time in the system

increases regardless of the traffic level ρ, which differs from Theorem 2 (of the observable

setting). This is due to the fact that, unlike in the observable setting, the effective joining

rate in the unobservable setting is independent of the underlying queue-lengths.

We are now ready to state the Proposition that compares performance measures under the

native customer beliefs to the case in which the true service rate is revealed.

Proposition 1U If E(µ̃) ≤ µ, then the revelation of the service rate information increases

both throughput and revenues. However, service rate revelation also increases the average

waiting time.

As in the observable setting, if customers have pessimistic or consistent beliefs, the revelation

of the service-rate information increases the revenues of the firm. However, system conges-

tion - which remains unobserved by the customers, but visible to the firm - also increases.

For the same reasons discussed in the observable case and in §2.6.1, consumer welfare and

social welfare may increase or decrease with the revelation of service-rate information.

2.7. CONCLUSIONS AND IMPLICATIONS

Customers often join queues with very limited information. Most of the literature has as-

sumed that service parameters (typically, µ) that influence the joining behavior as common

knowledge. However, customers cannot always fully characterize these service parameters;

sometimes even the calculation of mean service time may require repeated sampling or col-

lection of data. In such blind queues, not much is known on how revenues and welfare are
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impacted, when a firm reveals its service information (specifically, service capacity). Our

paper seeks to fill this gap.

Our approach to solving the information problem is distribution-free. We begin with any

belief distribution that customers may have on the service rate in the uncountable space,

and reduce it to balking threshold beliefs in the countable space. Using our general but

intuitive approach, we calibrate the impact of information revelation on the performance

of the queueing system, without any restrictions on the distribution of the initial customer

beliefs. We can apply the results from our general model on specific belief structures,

such as Quantal-response based bounded rationality (Luce (1959), Su (2008), Huang et al.

(2013)), learning through sampling either from past experiences (Xu et al., 2007), anecdotal

reasoning (Chen and Huang, 2013) and other cognitive biases to characterize their effects

on revenues and consumer welfare.

We find that if beliefs are pessimistic or consistent, the service provider always improve

revenues by revealing its service parameters. However, the impact of service rate information

on congestion and welfare is mixed. Even though a firm’s revenues improve on announcing

its service rate, the impact on the congestion levels (such as the average queue lengths,

or average wait times) are typically negative. As a result, consumer welfare worsens with

more information, despite the increased market coverage. In fact, consumer welfare loss

can exceed revenue improvements at the firm. As a result, the social welfare can fall with

provision of correct information.

Hence, intriguingly, with informational uncertainty, the social welfare typically improves,

regardless of the visibility of the actual queue, compared to the case in which customers have

full information. When left to their own devices, with full information, more customers join

the queue than what is socially optimal. In Naor (1969), tolls/taxes are levied to control the

joining population which improves welfare. Likewise, we find that the lack of information

acts as an information tax that deters admission, which could lead to improved welfare.
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The impact of additional information changes with the service capacity, given a market

size. Consumer welfare likely worsens in the case when a fast server reveals its service rate,

compared to the case when a slower server reveals its rate. Thus, customers are worse off

if a faster firm with more service capacity reveals its service information. This result is not

due to observability of the queues: Even if waiting times were announced in unobservable

queues, the welfare loss is likely to occur when the server is fast.

Several future research directions related to queue information appear promising. One

question is the timing of announcement decisions, and the type of announcements that could

be made. For instance, Allon et al. (2013) studies the impact on announcing (dynamic) delay

information on customer joining behavior. There are further informational considerations

that are rich for exploration. It is possible that the firm can strategically shade or alter the

information it provides, e.g., see Ang et al. (2014a). On the other hand, customers may

also dynamically update their beliefs as they wait in the queue, and abandon the queue.

Finally, our findings are under the limitation that λ < µ. The question on how true revealing

information to misinformed population beliefs, in overloaded service systems is open. We

believe that much of our results of the first-order stochastics continue to hold, but it appears

that sequencing beliefs under higher stochastic orders is more complex.

Our findings have several implications for queue management policies in practice. In primary

healthcare settings where the access to service providers is important, revealing the capacity

information can lead to an increased customer access to the queue (i.e., more customers will

visit the service provider). Nevertheless, customers will observe longer queues on average,

and also suffer a higher disutility in waiting time on average.

Thus when there is a significant impetus on treating admitted patients quickly, as in some

emergency room settings, revealing the service information may lead to increased crowding

and worsen the average wait times. Furthermore, this effect is exacerbated for a facility that

has ample service capacity. So, the decision to reveal the service information in aforemen-
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tioned settings depends critically on the tradeoffs between improved access and increased

congestion.
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CHAPTER 3 : A MODEL OF RATIONAL RETRIALS IN QUEUES

3.1. INTRODUCTION

In many service settings such as post offices or ATM machines, consumers usually have to

join a queue before they can obtain the service. It is well-known that consumers do not

enjoy waiting in queues. In real life, when the queues are long, consumers may not be willing

to wait, rather they choose to retry later (as opposed to balking). For instance, consider a

customer who arrives at the package pick-up service at a post office. Upon seeing the state

of the queue, i.e., the number of consumers that are already in the queue, this customer

can either decide to join the queue or to leave only to return at a later more convenient

time. However, the existing queueing literature on modeling strategic consumer decisions

has focused on join and balk decisions – with customers not making retry decisions.

In the package pick-up example described above and in many other real-life queues such as

lottery kiosks and DMV centers, retry decisions are common practices by consumers. In

this paper, we build a model to allow the consumers to retry for the service in the future,

with some retrial cost, upon seeing the status of the queue. This retrial hassle cost can be

associated with the additional transportation back and forth, the disutility of receiving the

service at a future date, the hassle of re-planning and rescheduling, or visit fees for entering

the system, etc.

Given the wide prevalence of scheduling tasks, it is important to understand how consumers

make join and balk, versus retry decisions. Since the amount of retrial hassle can be different

under various circumstances, it is necessary to investigate consumers’ decision-making as a

function of the retrial hassle cost. From a consumer-welfare point of view, a customer who

decides to come back to the system later will generate externalities to other consumers.

However, it is not clear if the net effect of the overall externalities is positive or negative.

To the best of our knowledge, strategic consumer retry decisions in service operations set-
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tings has remained almost unaddressed, even though such actions have been acknowledged

in both popular press and academic literature. In the paper, we characterize consumer

decisions among options to join, balk or retry, and study the impact of retrials on welfare.

Our main findings include: (i) With the additional option to retry, consumer welfare can

be however worse at individual equilibrium; (ii) More surprisingly, compared to the socially

optimal outcome, self-interested consumers do not retry enough when the retrial hassle cost

is small. And they retry too much when the retrial hassle cost is high.

We acknowledge that in some service settings, a portion of the consumers cannot afford

to delay their workload or balk. Examples include patients arriving at a hospital with

critical conditions, or drivers at a gas station whose car has run out of gas. We term these

emergency arrivals the “myopic” consumers, as opposed to others who strategically choose

to join, balk or retry. We then study the impact of the myopics on strategic consumers’

decision-makings and welfare.

Finally, we note that although our model is based on an observable setting, the results

we find can be implemented to unobservable queue settings where queue or wait-time in-

formation is provided. For example, using our model we can study consumer behaviors to

reschedule when they call customer services phone lines and hear information such as “Your

approximate waiting time is 10 minutes”, or “You are currently the 8th customer waiting

in the line”.

The remainder of this paper is structured as follows. We conclude this section with a

review of related literature. Section 2 describes the model. Section 3 investigates strategic

consumers’ behaviors as a function of the retrial hassle cost. Section 4 studies welfare, and

then compares individual equilibrium to the socially optimal outcome. Section 5 exploits

the impact of myopic consumers. Section 6 gives concluding remarks. All technical proofs

are deferred to the appendix.
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3.1.1. Related Literature

Mandelbaum and Yechiali (1983) considers a single strategic customer who can join the

queue, balk or wait outside the queue to retry, upon seeing the current state of the sys-

tem, while all other customers join the queue unconditionally. In this paper, we allow for

all consumers to have the option to retry, therefore the future arrivals to the system are

endogenous determined by consumer decisions, and each consumer’s decision could also

depend on the decisions of other people.

While Kulkarni (1983a,b), Elcan (1994) & Hassin and Haviv (1996) have studied socially

optimal and equilibrium retrial frequency decisions of consumers who are forced to retry

upon seeing a busy system, our paper reverses the focus to examine consumers’ strategic

retry versus join and balk decisions upon arrival at a busy server, and does not study the

retrial frequency decisions.

Besides Mandelbaum and Yechiali (1983), there seems to be no other previous research on

the top of modeling strategic consumer retry decisions, which our paper does. However,

two well-established research streams are relevant. These are papers on “modeling strategic

consumer decision-making without retry decisions” under the service operations literature,

and papers on “retrial queues with non-decision-making consumers” under the network and

call center literature.

The first literature on queueing models with strategic consumers dates back to the seminal

work by Naor (1969), who studies a single-server system with an observable queue. In

Naor’s model, homogeneous customers observe the queue length upon arrival before making

a decision to join the system or to balk. Our paper directly extends Naor’s model by allowing

for customers to have the third option to retry.

Following Naor (1969), strategic consumer behaviors have been studied in the context of

heterogeneous service values (e.g., Larsen (1998), Miller and Buckman (1987)), time costs

(e.g., Afèche and Mendelson (2004)) and many others (e.g., see the survey in Mendelson and
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Whang (1990) and the comprehensive review by Hassin and Haviv (2003)). Nevertheless,

in all these papers above strategic consumers only make state-dependent join or balk, but

not retry decisions.

Second, retrial queues have been employed in network models with non-decision-making

consumers, i.e., consumers or other objects are specified by the system on when and how

likely they should retry in order to optimize the system efficiency. In contrast, consumers

make their own strategic retry decisions in our model. The network models are also called

the orbital models, as the consumers waiting to try again are said to be in orbit. Because of

the intractable nature of the orbital models, analytic results are generally difficult to obtain.

Hence, there has been a significant focus on numerical and approximation methods (e.g.,

Reed and Yechiali (2013)). As a special case, Kulkarni and Choi (1990), Aissani (1994) &

Artalejo (1997) consider retrial queues due to unreliable servers. We refer interested readers

to Yang and Templeton (1987), Falin (1990); Falin and Templeton (1997) & Artalejo (1999,

2010) for surveys, a monograph and bibliographies on work related to orbital models.

Besides the network literature, ‘retrials’ have also been recognized as an important factor

in the call center literature. For example, Whitt (2002) describes some research directions

related to stochastic models of call centers and points out that the possibility of postponing

some work such as call-back options is worth more careful study. Hoffman and Harris (1986)

& Aguir et al. (2004) consider consumer abandonments and retrials in a call center setting to

estimate real arrivals (i.e., first-time consumers vs. retrial consumers). Mandelbaum et al.

(2002) provide approximations of system metrics of a multi-server system with abandonment

and retrials. de Véricourt and Zhou (2005) consider retrials generated by quality problems

but not system capacity, that is, a caller whose call has not been resolved will call the

service center again with the same concern. Aguir et al. (2008) investigate the impact of

disregarding retrials in the staffing of a call center. For other papers in this literature,

we refer interested readers to the surveys in Gans et al. (2003) and Akşin et al. (2007).

Nevertheless, these papers above typically assume that balking or abandoning consumers
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retry with a constant probability.

Artalejo (1995), Artalejo and Lopez-Herrero (2000) & Shin and Choo (2009) consider queues

where the retrial probabilities dependent on the number of consumers in the orbit but

controlled by the system. In our model, consumers’ retry decisions also vary with the state

of the system but are endogenously determined by the equilibrium conditions.

Parlaktürk and Kumar (2004) consider self-consumer routing in queueing networks. They

study the behavior of the system in Nash equilibrium. Our work is similar with this pa-

per in that any consumer needs to take into consideration future arrivals when making his

decisions. Also related is the paper by Hassin and Roet-Green (2011) who consider an un-

observable queue where consumers can join, balk or defer their decisions by first ‘inspecting’

the queue to obtain the information on the queue length.

The closest work to our model contains a set of papers by Armony and Maglaras (2004a,b).

In these two papers, the authors study the call center context where customers upon calling

and hearing the waiting signal can choose to join the queue, balk or leave their numbers for

a customer representative to call back. There is a guaranteed delay before which the call

back would take place. Consumers would make their decisions based on this guaranteed

call-back delay information with either real-time (Armony and Maglaras, 2004a) or steady-

state (Armony and Maglaras, 2004b) waiting-time information provided by the system. The

differences between our paper and Armony and Maglaras (2004a,b) are two-fold: First, the

retry decisions are driven by consumers in our paper but the call-back decisions by the server

in theirs. Second, we focus on the direct analysis of the underlying Markov chain while they

provide an asymptotic analysis in heavy-traffic regimes, in a more complex setting.

Kostami and Ward (2009) study an amusement park setting where there is a regular waiting

line versus an off-line waiting option (e.g., the FASTPASS system at Disneyland). Similar

to Armony and Maglaras (2004a,b), consumers can choose their line to join based on the

waiting time information provided by the system, but the authors assume that some con-
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sumers waiting in the off-line queue will not return. The focus of this paper is the service

provider’s capacity allocation rather than consumer decisions.

Finally, Akşin et al. (2013) studies consumers’ endogenous abandonment behavior from

call center data using a structural estimation approach. They assume that callers waiting

in the line make abandon or continue-to-wait decisions at the beginning of discrete time

periods. In comparison, the consumers in our model make join and balk decisions, or can

defer their decision-making to the following period by exercising the option to retry. Both

papers consider costs incurred in the past periods irrelevant for decision-making of the

forward-looking consumers, i.e., the consumers do not suffer from sunk cost fallacy.

To summarize, we propose a new model for rational decisions of consumer retrials in queues.

We study the welfare effects of retrial decisions as our focus. The main contribution of the

paper is to fill in the blank in the existing service operations literature which has typically

either omitted retrial decisions or specified it exogenously.

3.2. A MODEL OF RETRIALS: BASE MODEL

To introduce our base model, we first consider an observable M/M/1 queue as in Naor

(1969). Consumers arrive to the queue with a single server according to a Poisson process.

In Naor’s model, consumers observe the state of the queue and make join or balk decisions,

based on the service value and the cost of waiting in the queue. They join if the queue

length is below a certain threshold (typically addressed as the balking threshold), and balk

from the queue otherwise. In Naor’s model, balking consumers do not return.

3.2.1. Consumer Arrivals and Service Provision

We consider a model in which all arriving consumers can choose to retry later, in addition

to the options to join and balk. For this purpose, we consider an infinite horizon model

discretized into time periods. In each period, all arriving customers observe the length of

the queue, and make a decision whether to join the queue immediately, or to balk from the
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queue (and not return), or decide to come back at retrying the queue in the next period.

“Period” is symbolic for the time between retrial attempts, and its length differs by service

settings. For instance, a consumer who finds a long line at the post office in the morning

will likely choose to retry much later, either in the afternoon or during the next day. A

period is equivalent to half a day or a day in this context.

At any given period, the arriving population would consist of consumers who have arrived

at the queue for the first time this period (who shall be henceforth referred to as new

consumers), and those consumers arrived in the past periods, and are retrying the service

queue again (referred to simply as old consumers). It is likely that a fraction of consumer

population has retried multiple times in the past. A schematic representation of retrials

is provided in Figure 2 below. Note that retrial is simply a “deferral” action. Eventually,

every consumer has to join the queue or balk from it.

Figure 2: Illustration of the join, balk versus retrial decisions in our model.

We assume that the new consumers arrive to the queue according to a Poisson process

with rate λ. In addition to the new consumers, there could be other old consumers re-

attempting to join the queue, having decided to retry in the past. The service provider

processes consumers waiting in the queue at a rate of µ per unit time and the service times

are independent and exponentially distributed. We assume, as is done typically, that the

values of λ and µ are common knowledge.
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Upon joining the queue, all consumers are served according to first come, first served (FCFS)

discipline. We assume that the new arrivals do not exceed the system capacity, i.e., λ < µ.

Thus, the workload at the server due to new arrivals, l , λ/µ, is bounded by 1. However,

the total arrivals to the system in any period might exceed the system capacity, since the

arrivals also include the consumers retrying from past attempts. Note that while the new

arrivals are exogenous in the model, the size of the old thus the total arrivals is endogenously

determined, based on the consumer decisions (to retry) in the past.

3.2.2. Consumer Actions

Every consumer on arrival to the system observes the queue length, which we refer to the

state of the queue n. On observing n, the consumer has three choices of actions: Join the

queue, Retry or Balk. We define the action set A , {J,R,B}. Every rational consumer

chooses an action that maximizes his long-run risk neutral expected utility. We explore the

different actions below.

Joining: The joining consumers wait in the queue and incur a cost of c per unit of time,

when they are waiting in line. After service completion, they receive a value v (net of price)

from the service. We do not consider pricing decisions in the model. To receive service,

therefore, when there are n people ahead in the queue, when a customer joins, he receives

an expected net value of v − c
µ(n + 1), on the completion of his service. We assume that

there is no reneging or abandonment.

For ease of exposition, we assume that (i) v > c
µ , i.e., consumers will join the server if it

is idle (otherwise they should not have come to the server at the first place); (ii) v is not

a multiple of c
µ . In other words, the payoff from a join decision, v − c

µ(n + 1) ∀n ∈ N0, is

either positive or negative. When the retry option is not allowed (i.e., in the model of Naor

(1969)), this specification implies that there exists a unique balking threshold N such that

v − c
µ(N + 1) < 0 < v − c

µN .
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Formally, we define this Naor’s balking threshold as

N , ⌈v/ c
µ
⌉ − 1 = ⌊v/ c

µ
⌋. (3.1)

Balking: We assume that consumers who balk do not receive the service nor do they

incur any waiting cost. Therefore, without loss of generality, we normalize the payoff for

the balking consumers to zero.

Retrials: In addition to joining the queue or balking from it, a consumer may also decides

to retry: He leaves the queue without waiting any further but will return to the server during

the following period. When he returns in the following period, this consumer may again

decide to join, retry, or balk from the queue, on observing the queue. We can extend

the model to randomly distributed retrial intervals – a consumer may retry after a random

number of periods, or after a random time length. The discussion is deferred to the appendix

for the sake of brevity.

When a consumer chooses to retry, he suffers no waiting cost even as he waits in an off-line

queue, like in Cachon and Feldman (2011). However, retrial attempts are costly. Each

retrial attempt creates some “hassle” cost to the consumer. We denote this hassle cost

as “α” which is incurred on every retrial attempt. This retrial cost could come from the

transportation cost from consumer’s work/home to the service center, or a toll to re-enter

the service system, or the penalty cost for rescheduling the visit, or the opportunity cost

for the time spent on the trip back and forth. We assume that consumers are homogeneous

in their waiting cost c, their retrial cost α, and in their value from the service v. In Section

3.5, we will consider heterogeneous consumer classes.

Consumers can retry as often as they want but have to pay for the “hassle” cost α every

time they retry. They are forward-looking consumers. In each period, they compare the

expected payoffs from join, balk and retry decisions, and then choose a state-dependent

action that maximizes their expected payoff. We assume that the retrial cost is sunk, i.e.,
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retrial costs incurred before arrival to a service occasion are irrelevant to decisions to be

made in that period or onward.

Finally, we assume that periods are much longer than a service cycle. This assumption is

identical to the frequency of repeat users in queues in prior research. For example, consider

the subscription buyers who use a service multiple times in Cachon and Feldman (2011),

and the multiple trip users who engage in hyperbolic discounting in Plambeck and Wang

(2013). Consistent with these papers, in our model, consumers when retry and come back in

the following period expect to see a queue length, that is independent from the current state

of the queue.1 Thus, the state they observe in the next period will be a draw (independent

of the current observed states) from the distribution of queue lengths. Consider again

the parcel pick-up example - since a single service duration (typically, few minutes for a

customer to get his parcel) is relatively short compared to the time between retrials (half

a day, or a day). Hence, up on his return to the queue the customer who is retrying would

see a fresh realization from the distribution of the queue length probabilities.

3.2.3. Consumer Strategies

Let N0 , {0, 1, 2, . . .} denote the state space of the queue, i.e., the queue length. Then, a

consumer’s strategy on a particular service occasion specifies a probability distribution over

the action space A for any state n ∈ N0. That is, σ is a strategy if

σ : N0 → [0, 1]× [0, 1]× [0, 1]

such that we write σ(n) , [σJ(n) σR(n) σB(n)]
T ∀n ∈ N0, and

σJ(n) + σR(n) + σB(n) = 1. (3.2)

1It is well known that a queue converges to its steady-state characteristics, independent of the system’s
initial state, in a roughly exponential manner, e.g., see Morse (1955), Abate andWhitt (1988), etc. Therefore,
the auto-correlation between queue lengths at two time points in a stationary M/M/1 queue converges
exponentially to zero as the time interval in-between increases. When a period is much longer than a service
cycle, queue lengths observed at two time points in two different periods can be assumed to be independent
of each other. Also see Odoni and Roth (1983) for an upper bound on the time it takes for the queue length
in a M/M/1 queue to come to steady state.
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In words, a consumer who follows strategy σ arriving at the system to observe state n ∈ N0

will join the queue with probability σJ(n), retry with probability σR(n) and balk with

probability σB(n).

A strategy σ is a pure strategy if σa(n) is an integer ∀a ∈ A, ∀n ∈ N0. Otherwise, σ is a

mixed strategy. For example, the balking threshold strategy being used in Naor (1969) is a

pure strategy where σJ(n) = 1 for n < N , and σB(n) = 1 for n ≥ N .

Also, in Naor (1969), consumers only have the options to join or to balk. The expected

payoff from a join decision v − c
µ(n+ 1) or a balk decision 0 is perfectly determined by the

current state of the queue n, but not influenced by decisions made by future customers. In

contrast, in our model consumers are allowed to retry, and they choose an action including

retrials to maximize their long-run expected payoff. Since the (long-run) expected payoff

from a retry decision would depend on the decisions or strategies chosen by other consumers,

we shall pursue an equilibrium analysis.2

As all consumers in our model are ex-ante symmetric, we consider symmetric equilibria

under which all consumers adopt identical strategy on every service occasion. (We will

relax this consideration in Section 3.5.) Nevertheless, consumers may arrive at different

states of queue lengths, and end up choosing differing actions. We define the equilibrium

strategy below.

Definition 3 A (mixed) strategy σ is a symmetric equilibrium strategy if when all con-

sumers adopt σ, and no consumer can strictly improve his expected payoff by unilaterally

deviating from σ along any equilibrium path that occurs with a positive probability.

Since our game is an infinite player game on states that evolve according to a Markovian

process, the appropriate equilibrium solution concept is Markov Perfect Equilibrium due

to Maskin and Tirole (2001) which specifies equilibrium actions for all states that are

2For example, if a consumer were to make a retry decision during the current period, his long-run
expected payoff from this decision would depend on the arrivals in the future periods. And future arrivals are
endogenously determined by retrial decisions made by consumers who show up in the current or subsequent
periods.
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positive recurrent. A Markov Perfect Equilibrium is a Nash Equilibrium. Essentially, given

a symmetric equilibrium strategy σ in our model, all the states above n , min{n ∈ N0 :

σB(n) + σR(n) = 1} are eventually transient, and have zero probability measure.

The long-run effective workload of the system when the population adopts some strategy

σ is bounded above by l which is less than 1. Thus, there exists a stationary probability

distribution of the underlying birth and death process. For a given strategy σ, let us define

πσ
n be the long-run probability that the queueing system is in state n ∈ N0, and use πσ

J , π
σ
R

and πσ
B, to represent the unconditional probabilities that a customer arriving to the queue

will choose to join, retry or balk respectively, when the population adopts the strategy σ.

Then, the rate for total arrivals in any period is given by

λσ
total , λ+ λπσ

R + λ(πσ
R)

2 + . . . =
λ

1− πσ
R

. (3.3)

To understand (3.3), we illustrate the quantity of this period’s total arrival rate. Total

arrivals in this period include new arrivals (i.e., λ) plus the old arrivals who came to the

service provider for the first time in the previous period, but decided to retry according to

σ (i.e., λπσ
R for 1-period old consumers), plus the old arrivals who came the service provider

two periods back and have retried two periods in a row according to σ (i.e., λ(πσ
R)

2 for

2-period old consumers), and so on.

When a period is sufficiently long, we assume that the arrival times for k-period old cus-

tomers, who can strategically choose a time point to return in the period, are governed by

some renewal process ∀k = 1, 2, . . . ,∞, according to Lariviere and Van Mieghem (2004).

The total arrival process, a superposition of infinitely many renewal processes, is then of

the Poisson type (see Feller (1971), pp. 370-371, and Albin (1982)), so we should model the

total arrivals including new and all old consumers as a Poisson process with rate λσ
total.
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Using PASTA property, we then have

πσ
J =

∑

n∈N0

πσ
n · σJ(n); πσ

R =
∑

n∈N0

πσ
n · σR(n); πσ

B =
∑

n∈N0

πσ
n · σB(n). (3.4)

And it is clear from (3.2) and (3.4) that for any strategy σ,

πσ
J + πσ

R + πσ
B = 1 (3.5)

Finally, we denote the traffic intensity of the system under σ by

ρσ ,
λσ
total

µ
=

λ/(1− πσ
R)

µ
=

l

1− πσ
R

. (3.6)

Note that although the new workload l < 1, the total traffic intensity ρ can be less than,

equal to, or greater than 1, which depends on the underlying strategy σ being adopted by

the population.

3.2.4. Consumer Best Response

Now we can consider the best response strategy of a consumer j. Fix the strategy of all

other consumers i 6= j at σ on every service occasion.

The consumer j can retry repeatedly but has to pay for the “hassle” cost α every time

he retries. Since consumers in our model do not suffer from sunk cost fallacy, when the

consumer j makes a retry versus a join or balk decision upon a particular service occasion,

only the future retrial and expected waiting costs are in consideration. Therefore, if a

strategy is best for him for one service occasion in response to the population strategy σ,

it will be so for all service occasions.

Thus, let us suppose that the consumer j adopts some strategy σj on every service occasion.

We can now consider the conditional payoffs of this consumer arriving to the queue and

observing a state n. As described earlier, that the (expected) payoff for consumer j joining
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at a state n, is the value of the service net of waiting costs, i.e., v− c
µ(n+1). On the other

hand, the payoff for consumer j balking at any state n is 0.

Now consider the payoffs for the consumer j from choosing to retry at state n (and return

during the subsequent period with a retrial cost α). In the next period, he may join the

queue, balk from it, or retry again, based on the state of the queue he observes. Since all

other consumers follow strategy σ, by PASTA property, the consumer j’s (unconditional)

probability of joining, retrying and balking in the next period according to the strategy σ′

are, respectively,

πσ,σj

J ,
∑

n∈N0

πσ
n · σj

J(n); πσ,σj

R ,
∑

n∈N0

πσ
n · σj

R(n); πσ,σj

B ,
∑

n∈N0

πσ
n · σj

B(n). (3.7)

If the consumer j retries again next period, the same decision process plays out, and he faces

the same steady-state probabilities in the period after, and so on. Note that the customer

j eventually balks or joins the queue.

Let W σ denote the expected waiting time for consumer j conditional on joining the queue

in a period when the system is under σ. Then his expected long-run payoff from the retry

decision at state n in the current period is given by

πσ,σ′

J · (v − cW σ − α) + πσ,σ′

B · (0− α)

+ πσ,σ′

R · [πσ,σ′

J · (v − cW σ − 2α) + πσ,σ′

B · (0− 2α)]

+ (πσ,σ′

R )2 · [πσ,σ′

J · (v − cW σ − 3α) + πσ,σ′

B · (0− 3α)] + . . .

= πσ,σ′

J (v − cW σ) + πσ,σ′

B · 0− (1− πσ,σ′

R )α

+ πσ,σ′

R πσ,σ′

J (v − cW σ) + πσ,σ′

R πσ,σ′

B · 0− πσ,σ′

R (1− πσ,σ′

R )2α

+ (πσ,σ′

R )2πσ,σ′

J (v − cW σ) + (πσ,σ′

R )2πσ,σ′

B · 0− (πσ,σ′

R )2(1− πσ,σ′

R )3α+ . . .

=
πσ,σ′

J

1− πσ,σ′

R

(v − cW σ) +
πσ,σ′

B

1− πσ,σ′

R

· 0− 1

1− πσ,σ′

R

· α. (3.8)

=
πσ,σ′

J

1− πσ,σ′

R

(v − cW σ)− 1

1− πσ,σ′

R

· α. (3.9)
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It is clear that the expressions (3.8) and (3.9) are equivalent. However, from (3.8), we have

a better interpretation of the underlying quantities. Recall that retrial is only a deferral

option, and eventually consumer j completes his “mission” by either joining the queue

or balking. The first term in (3.8) can be interpreted as the probability that consumer

j completes mission by joining the queue (at some period) according to σj , times the

conditional expected payoff that he will receive upon joining. Similarly, the second term

in (3.8) can be interpreted as the probability that consumer j ends his mission by balking

(at some point), times the conditional expected payoff upon balking. And the last term is

interpreted as the expected number of periods it takes for consumer j to finish (by either

joining or balking), times the retrial cost. Therefore, we can describe the expected long-run

payoff from a retry decision for consumer j at state n, given by the expression (3.8), as the

total expected end-of-mission payoff less the total expected retrial cost incurred during the

process.

On the other hand, we observe that the retrial payoff of the consumer j at state n given by

(3.8) or (3.9) does not actually depend on n, and this is because the current state of the

queue is independent of the queue length realization in the next period should consumer

j choose to retry. But unlike the joining or the balking payoff, the retrial payoff depends

on the underlying population strategy σ. In other words, actions of other consumers may

make the retry option more or less attractive to consumer j.

Suppose σj is the best strategy of the consumer j in response to all other consumers adopting

σ, then for every state n ∈ N0, σj must specify a decision or decisions that maximize

the expected payoff for consumer j among i) the balking payoff 0, ii) the joining payoff

v − c
µ(n+ 1), and iii) the retrial payoff given by (3.9).

At a symmetric equilibrium, we set σj to σ, and σ must belong in the best response strategy

set in response to itself. It follows from (3.4) and (3.7) that when σj = σ, we have πσ,σj

J = πσ
J ,

πσ,σj

R = πσ
R and πσ,σj

B = πσ
B, and (3.9) is updated. We then have the following proposition,

that characterizes the conditions for a strategy to be an equilibrium.
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Proposition 2 σ is an equilibrium strategy, if and only if, for all n ∈ N0,

σB(n) > 0 ⇒ 0 ≥ max{v − c

µ
(n+ 1),

πσ
J

1− πσ
R

(v − cW σ)− α

1− πσ
R

}; (BALK)

σJ(n) > 0 ⇒ v − c

µ
(n+ 1) ≥ max{0, πσ

J

1− πσ
R

(v − cW σ)− α

1− πσ
R

}; (JOIN)

σR(n) > 0 ⇒ πσ
J

1− πσ
R

(v − cW σ)− α

1− πσ
R

≥ max{0, v − c

µ
(n+ 1)}. (RETRY)

Now that we have introduced the model and the equilibrium concept, we are ready to study

the strategic consumers’ equilibrium behaviors and their impact on consumer welfare. In

Sections 3 and 4, we assume that the population consists of all strategic consumers. Then,

in Section 5, we extend our findings on one class of strategic consumers to two classes

consisting of both strategic and myopic consumers.

3.3. EQUILIBRIUM STRATEGIES

Let the population be entirely made up of strategic consumers, i.e., every new and old

consumer makes rational state-dependent join, balk and retry decisions, upon arrival to the

system.

In (3.9), we showed that the payoff from a retry decision depends on the strategy being

adopted by the population. However, since the queue length one sees in the current period

is of no use in predicting what the queue realization will be during the following period,

the payoff from a retry decision does not depend on the state at which the decision is being

made in the current period.3 It infers that when the population adopts any fixed strategy,

the expected payoff from any retry decision is a fixed value.

Now suppose the system reaches an equilibrium when the population adopts some strategy

σ. Proposition 2 indicates that for every state n ∈ N0, σ must specify the payoff-maximizing

3For example, suppose that the population adopts a strategy which specifies that one should retry at
seeing state n = 3 or n = 8 upon arrival. Then the payoff one expects to receive from a retry decision made
at state n = 3 or made at state n = 8 will be identical, because when this consumer returns, he will observe
the same stationary process and make future decisions according to the same strategy.
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decision(s). Note that the joining payoff v− c
µ(n+1) is linearly decreasing in state n ∈ N0,

the balking payoff 0 is constant, and the retrial payoff is also constant for all states n ∈ N0.

Therefore, the equilibrium strategy σ must be of threshold type where consumers join the

queue up to some threshold queue length where the joining payoff drops below the balking

or the retrial payoff. A more careful analysis reveals that the equilibrium strategy σ must

be in one of the following four types.4

Type (i). A threshold retry strategy with some threshold n, denoted by “JnR” (join up to

n then retry): Consumers join the queue at states {0, 1, 2, . . . , n− 1} and retry at state n.

Type (ii). A threshold join/retry strategy, denoted by “J
J(β)
R(1−β)nR”: Consumers join the

queue at states {0, 1, 2, . . . , n− 2}, mix join and retry decisions at state n− 1, and retry at

state n. β ∈ [0, 1] denotes the probability of a join decision being made at state n− 1, and

1− β a retry decision.

Type (iii). A threshold balk strategy with some threshold n, denoted by “JnB” (join up to

n then balk): Consumers join the queue at states {0, 1, 2, . . . , n− 1} and balk at state n.5

Type (iv). A threshold retry/balk strategy denoted by “Jn
R(1−γ)
B(γ) ”: Consumers join the

queue at states {0, 1, 2, . . . , n − 1}, and mix retry and balk decisions at state n. γ ∈ [0, 1]

denotes the probability of a balk decision being made at state n, and 1− γ a retry decision.

Note that we have specified the four types of strategies above at only states 0, 1, 2 up to

some n, and this is because, when the entire population adopts any of these strategies, the

resulting queueing system is M/M/1/n (i.e., no state higher than n will be ever reached).

We illustrate all the possible types of an equilibrium strategy in Table 1 above. The balking

and joining payoffs depend only on the parameters and the underlying state of the system,

but not the strategy being adopted by the population. In the second and third columns of

Table 1, we display the balking and joining payoffs as a function of the state using v = 65

4By our assumption made before, the joining payoff can only assume strictly positive or negative values.
This assumption eliminates some trivial equilibrium strategy types that mix between join and balk decisions.

5This is the type of strategies studied in Naor (1969).
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Action Balk under Join under Retry under Retry under Retry under Retry under

State |Payoffs any strategy any strategy some σ1 some σ2 some σ3 some σ4

n=0 0 55 40 25 -8 0
n=1 0 45 40 25 -8 0
n=2 0 35 40 25 -8 0
n=3 0 25 40 25 -8 0
n=4 0 15 40 25 -8 0
n=5 0 5 40 25 -8 0
n=6 0 -5 40 25 -8 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Table 1: Illustration of the possible equilibrium strategy types (with v = 65 and c
µ = 10).

and c
µ = 10. Then, four imaginary strategies, σ1, σ2, σ3 and σ3, are being considered in the

fourth through the eighth column, such that when the population adopts them, the retrial

payoffs, given by (3.9), are equal to 40, 25, −8 and 0, respectively. By Proposition 2, we

can conclude that σ1 must be a retry strategy type (i.e., J2R) to possibly be an equilibrium

strategy, while σ2 has to be a join/retry strategy type (i.e., JJ
R4R), σ3 a balk strategy type

(i.e., J6B) and σ4 a retry/balk strategy type (i.e., J6RB).

The following theorem further reduces the number of possible equilibrium strategies by

imposing bounds on the threshold queue lengths. Specifically, it shows that the threshold

of a retry or a join/retry strategy must be smaller than or equal to Naor’s threshold, N .

And, the threshold of a balk or a retry/balk threshold coincides with Naor’s threshold.

Theorem 3 If a strategy JnR or JJ
RnR is an equilibrium, then we must have 1 ≤ n ≤ N .

On the other hand, if a strategy JnB or JnR
B is an equilibrium, then we must have n = N .

According to Theorem 3, an equilibrium strategy can only by JnR for n ≤ N , JJ
RnR

for n ≤ N , JNB, or JNR
B . Yet knowing the equilibrium candidates does not guarantee

the existence of any equilibrium. In the following subsections, we shall identify all the

equilibrium strategies.

Note that a retry or a join/retry strategy vaguely refers to “joining short queues and retrying

with longer ones”, while a balk or a retry/balk can be interpreted as “joining the queue if

there is a positive payoff”. For a given system (i.e., given the parameters λ, µ, v, c), it is

63



intriguing to find out under what conditions (of the exogenous retrial hassle cost α) can

each type survive an equilibrium. To proceed, we focus on three regions of the retrial cost

when it is high, low or moderate.

3.3.1. High Retrial Hassle

When the retry option is too costly compared to the net gain of the service (e.g., α >> v),

then retrials should no longer be considered by rational consumers. (The expected payoff

from retrials is always negative, and the retry decision is thus dominated by balking). In

fact, the retrial cost α can be even less than v when retrials are already not worthwhile,

because a consumer also incurs some waiting cost when he returns to join the queue in the

future.

Define αH , (1− πJNB
N )(v − cW JNB) where πJNB

N is the steady-state probability of state

N , and W JNB is the expected waiting time for a consumer conditional on joining the queue,

when the population adopts the balk strategy JNB (or Naor’s strategy). W JNB can be

written as

W JNB =
πJNB
0

πJNB
J

1

µ
+
πJNB
1

πJNB
J

2

µ
+. . .+

πJNB
N−1

πJNB
J

N

µ
=

πJNB
0

1− πJNB
N

1

µ
+

πJNB
1

1− πJNB
N

2

µ
+. . .+

πJNB
N−1

1− πJNB
N

N

µ
.

(3.10)

The following proposition shows that Naor’s strategy, JNB, is a (unique) equilibrium for

the system if the retrial cost exceeds αH . Note that αH is internally determined and can

be calculated for any given system, i.e., for given λ, µ, v, c.

Proposition 3 When the retrial cost is sufficiently high such that α ≥ αH , Naor’s strategy,

i.e., JNB, is an equilibrium. When α < αH , the strategy JNB cannot be an equilibrium.

It will be verified later in the paper that all other possible equilibrium types cannot be

equilibrium strategies on the region α ≥ αH . Therefore, by Proposition 3, we know that

when it is too costly to retry, retrials will not considered by rational consumers and Naor’s

system automatically emerges.
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3.3.2. Low Retrial Hassle

Next we consider settings in which the retrial hassle is low compared to the net value of the

service. It turns out that in this case, consumers do not balk when the queue is long (i.e.,

they do not want to leave the service value on the table). Rather, consumers can choose to

come back in the future because they can afford to pay for the retrial cost.

We show in this section that there exists some unique threshold αL on the retrial cost for a

given system, such that αL < αH and when α ∈ (0, αL], the system equilibrium is given by

either a retry strategy (i.e., JnR-type) or a join/retry strategy (i.e., JJ
RnR-type). However,

the Pareto-dominant equilibrium is given by the former type.

We first look for any equilibrium retry strategy (i.e., JnR-type), if it exists. Under the

strategy JnR, any consumer who sees a state smaller than n will join the queue. Otherwise,

he retries during the following period. The underlying queueing system when the population

adopts JnR is thus M/M/1/n. We have πJnR
J =

n−1
∑

i=0
πJnR
i , πJnR

R = πJnR
n , and πJnR

B = 0.

The total arrival rate defined in (3.3) for the system under JnR is thus given by

λJnR
total =

λ

1− πJnR
R

=
λ

1− πJnR
n

. (3.11)

And the traffic intensity defined in (3.6) for the system under JnR is

ρJnR =
l

1− πJnR
R

=
l

1− πJnR
n

. (3.12)

We call equation (3.12) the stability condition on ρ and πn for strategy JnR which ensures

that the steady-state probabilities are consistent. In fact, it is simply a constraint on the

variables ρ and n. Note that the traffic intensity ρJnR depends on the retrial threshold n

through (3.12), but the system’s true workload, ρJnRπJnR
J = ρJnR(1−πJnR

n ) = l
1−πJnR

n
(1−

πJnR
n ), is always equal to l, i.e., the effective joining rate is λ. This is because under JnR, we
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have πJnR
B = 0. Every consumer never balks, and he or she receives the service eventually

(through a certain number of retrials). Since there is no loss of consumers, the long-run

effective joining rate must equal to the new arrival rate, namely λ.

Under the strategy JnR, the total arrival rate is greater than the new arrival rate due to

old consumers who are retrying (i.e., λ
1−πJnR

n
> λ), but among them only a portion of the

consumers (an amount that equals λ) join the queue. The rest of them (a amount that is

equal to λ
1−πJnR

n
− λ or λ

1−πJnR
n

· πJnR
n ) will observe state n upon arrival to the system and

choose to retry accordingly.

From (3.9) and fact that πJnR
J = 1− πJnR

R , πJnR
R = πJnR

n , the retrial payoff under JnR is

v − cW JnR − α

1− πJnR
n

(3.13)

where the expected waiting time for a customer conditional on joining can be written as

W JnR =
πJnR
0

1− πJnR
n

1

µ
+

πJnR
1

1− πJnR
n

2

µ
+ . . .+

πJnR
n−1

1− πJnR
n

n

µ
.

If the retry strategy JnR indeed leads to an system equilibrium, then besides the stability

condition from equation (3.12), it also needs to satisfy the condition in Proposition 2 which

ensures that consumers would not want to deviate from it at any state, on any service

occasion. In this context, we require that the retry payoff is greater than the joining or

balking payoff at state n, but is less than or equal to the joining payoff at state n− 1, i.e.,

max{0, v − c

µ
(n+ 1)} ≤ v − cW JnR − α

1− πJnR
n

≤ v − c

µ
n (3.14)

From Theorem 3, we know that n ≤ N . We can then transfer (3.14) into

c

µ
(n+ 1) ≥ cW JnR +

α

1− πJnR
n

≥ c

µ
n with n ≤ N (3.15)
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which we call the indifference condition of the equilibrium. To be more precise here, when

n = N , we require the strategy JNR satisfies v ≥ cW JNR + α
1−πJNR

N

≥ c
µN instead of

c
µ(N + 1) ≥ cW JNR + α

1−πJNR
N

≥ c
µN because of the max operator in (3.14).

We shall look for all possible n that satisfies both the stability and the indifference condi-

tions, and then pick out the integer solutions (because the retrial threshold n is an integer).

Each integer solution for n then represents a legitimate equilibrium retry strategy in JnR.

It turns out that

Lemma 4 Fix a system (i.e., λ, µ, v, c). For any integer n ∈ {1, 2, . . . , N}, there exists a

unique retrial cost αn with which n satisfies (3.12) and (3.15) at the same time. Moreover,

αn increases in n.

Therefore, with retrial cost αn : n ∈ {1, 2, . . . , N}, the integer n is a solution of equations

(3.12) and (3.15). Thus, αn induces an equilibrium retry strategy for the system, namely

JnR. However, for αN , it does not ensure that JNR is an equilibrium, because 0 >

v− c
µ(N+1) = v−cW JNR− αN

1−πJNR
N

and the indifference condition in (3.14) is thus violated.

(This issue was mentioned after condition (3.15).) To fix this boundary condition, let

αL : αN−1 < αL < αN be the particular retrial cost that induces a zero retrial payoff when

the population adopts JNR, i.e., 0 = v−cW JNR− αL

1−πJNR
N

, or αL , (1−πJNR
N )(v−cW JNR).

It can be shown that αL < αH , and a rigorous proof is provided in the appendix. We are

now at a good position to characterize all equilibrium retry strategies of the system in the

following lemma.

Lemma 5 For a given system, there exist a sequence of thresholds on the retrial cost,

0 < α1 < α2 < . . . < αN−1 < αL, such that (i) when the retrial cost α ≤ α1, the retry

strategy J1R is an equilibrium; (ii) when α ∈ [αn − cl
µρJnR , αn] for n ∈ {2, . . . , N − 1}, the

retry strategy JnR is an equilibrium; (iii) when α ∈ [αL − (v − c
µN) l

ρJNR , αL], the retry

strategy JNR is an equilibrium.

Lemma 5 provides us with some important insights. It states that there exist N intervals on
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the low retrial cost region α ∈ (0, αL] such that the retry strategies with increasing thresh-

olds J1R, J2R, . . . , JNR form equilibrium strategies. Vaguely speaking (i.e., by focusing

on only the right end of each interval), when the retrial cost increases consumers would

retry at only seeing longer queues. We will return to this point after Theorem 4.

However, Lemma 5 does not provide information on whether these N intervals overlap or

there are gaps between the intervals. Therefore, it is possible that under some retrial cost

α ≤ αL, there does not exist an equilibrium retry strategy because α is not contained in

any of the N intervals, while some other retrial cost may induce more than one equilibrium.

This can happen for example, if αn−αn−1 ≤ cl
µρJnR

n
, then αn−1 will induce both equilibrium

retry strategies J(n − 1)R and JnR. We demonstrate below, via looking at equilibrium

join/retry strategies, that this is indeed the case for every n ∈ {2, 3, . . . , N}. Therefore,

there is no gap between the N intervals stated in Lemma 5. Given the presence of multiple

equilibria, we will then identify the Pereto-dominant equilibrium strategy for every α ≤ αL.

We now search for system equilibria under a join/retry strategy in the form of J
J(β)
R(1−β)nR,

i.e., all consumers join the queue at states {0, 1, 2, . . . , n−2}, join the queue with probability

β and retry with probability 1− β at state n− 1, and then retry at state n.

To tackle down such a strategy, we realize that it is an intermediate phase between two

retry strategies. Consider J
J(β)
R(1−β)nR: when β goes to 0, it coincides with the retry strategy

with threshold n− 1, namely J(n− 1)R; and when β goes to 1, it coincides with the retry

strategy with threshold n, namely JnR. And when β ∈ (0, 1), we have a non-degenerate

join/retry mixed strategy.

We first show in the following lemma that there exists a unique retrial cost that induces

J
J(β)
R(1−β)nR as an equilibrium strategy, for fixed n.

Lemma 6 Fix 1 ≤ n ≤ N . There exists a unique retrial cost α, for any particular β ∈

(0, 1), such that J
J(β)
R(1−β)nR is an equilibrium strategy. Therefore, we can write α which

induces the equilibrium as a function as β. Moreover, α is continuous in β.
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Lemma 6 tells us that α is continuous in β. Lemma 7 further tells us that α decreases in β.

Lemma 7 Fix n ∈ {2, . . . , N − 1, N}. (i) αn − cl
µρJnR < αn−1. (ii) For any β ∈ [0, 1], there

exists a unique α ∈ [αn − cl
µρJnR , αn−1] such that the strategy J

J(β)
R(1−β)nR is an equilibrium.

(iii) Moreover, α decreases in β.

A direct consequence of Lemma 7 is that the N intervals of the retrial cost constructed in

Lemma 5, on which J1R, J2R, . . . , JNR form equilibria, actually overlap with each other.

Therefore, for any retrial cost α ≤ αL, it induces at least one retry strategy (according to

Lemma 5). On the other hand, for n ∈ {2, 3, . . . , N}, both retry strategies J(n − 1)R and

J(n)R are equilibrium strategies on the overlapped region [αn − cl
µρJnR , αn−1], plus there

exist equilibrium join/retry strategies given by Lemma 7. Fortunately, we can establish

the uniqueness of the Pareto-dominant equilibrium strategy for every α ∈ (0, αL] in the

following theorem, i.e., the equilibrium strategy that gives the highest consumer welfare as

a whole or for each person.

Theorem 4 For any retrial cost α ≤ αL, we have one or more symmetric equilibria that are

of the retry or join/retry types. However, there exists a unique Pareto-dominant equilibrium:

For α that falls in one of the N intervals denoted by {In}n=1,2,...,N where I1 , (0, α1], I2 ,

(α1, α2], . . . , IN−1 , (αN−2, αN−1] and IN , (αN−1, αL], the corresponding retry strategy

{JnR}n=1,2,...,N is the Pareto-dominant equilibrium.

Theorem 4 indicates that the Pareto-dominant equilibrium strategies on α ≤ αL are of the

retry type JnR. And as the retrial cost α rises within the region (0, αL], the threshold n for

the equilibrium strategies also increases, from 1 to N . Let us apply the result to a concrete

example.

Say, a customer would like to pick up a parcel that is not time urgent, and he can always

go to the post office that holds the parcel after work. Imagine the first scenario that

this customer literally walks past the post office every evening on his way home, then the

additional cost for him to retry will be almost neglectable, i.e., α → 0. Knowing that there
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will be no line at the post office at some point (because the work load l < 1), this consumer

should adopt the J1R strategy. That is, he will only join the queue if the server is idle.

Even there is only one consumer that is ahead of him in the system, he should not want

to join the queue, because retrials are free in this case, and why not come back to an idle

server. Now imagine another scenario where getting to the post office requires some detour.

Then, Theorem 4 predicts that the more detour or the more hassle there is to retry, the

longer queue this customer upon arrival is willing to tolerate/join, as opposed to retrying.

From the same result, we find that any join/retry strategy is an intermediate phase of two

retry strategies and is eliminated by the Pareto-dominance criteria. With this refinement,

we can discuss the properties of the Pareto-dominant equilibrium strategies in the following

corollary.

Corollary 1 Suppose consumers follow the Pareto-dominant equilibrium strategies. As the

retrial cost α increases on (0, αL], we observe there are less retrial consumers and traffic

intensity in the system.

The corollary stated above shows the impact of the retrial cost on the queue outcomes

through the Pareto-dominant equilibrium strategy it induces. When it is less costly to

retry (i.e., lower α), we have a lower threshold n for the equilibrium retry strategy. And a

larger proportion of the consumer population will make a retry decision (i.e., more retrial

probability πR for each consumer and more total traffic ρ for the system). On the other

hand, when it is more costly to retry (i.e., higher α), consumers are more reluctant to make

retry decisions (higher n, lower πR and lower ρ).

3.3.3. Moderate Retrial Hassle

So far, we have showed that retry strategies (including join/retry strategies) are considered

by rational consumers when the retrials are affordable (i.e., the retrial hassle cost α ≤ αL),

and the balk strategy is being considered when retrials are costly (i.e., α ≥ αH). An

interesting question arising then is what can be an equilibrium strategy when the retrial
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hassle is moderate, i.e., the retrial cost is between αL and αH .

In what follows in this section, we propose that the retry/balk strategies (i.e., JNR
B -type)

will form equilibria for any retrial cost α ∈ (αL, αH). In other words, when the retrial hassle

is moderate, at equilibrium consumers join the queue at states {0, 1, 2, . . . , N−1}, then mix

retry and balk decisions at state N . Equivalently, consumers are mixing the retry strategy

JNR and the balk strategy JNB. To intuit the idea that this mixed type of strategy can

form an equilibrium when α ∈ (αL, αH), let us consider the retrial cost at αL +∆α where

∆α is infinitesimal.

Recall that when the retrial cost is αL, the population adopts a retry strategy with threshold

N (i.e., JNR) at equilibrium, and the expected payoff from a retry decision (at any state)

is actually equal to zero. At αL + ∆α, if everybody still sticks with the same strategy,

then the expected payoff from the retry decision becomes −∆α, which makes retrials less

favorable than the balking option. Thus, every individual has an incentive to balk rather

than retrying at state N , and JNR can no longer be an equilibrium strategy.

On the other hand, when the retrial cost αL increases to αL + ∆α, if everybody switches

to the balk strategy (i.e., JNB), then the expected waiting cost (compared to that under

the equilibrium strategy JNR when the retrial cost is αL) would suddenly drop because

the retrial population all disappears, more than enough to cover the infinitesimal increased

retrial fee (∆α) to make the retrial option to have a positive return. As a result, every

consumer has an incentive to retry at seeing state N rather than balking, so the balk

strategy JNB is also not an equilibrium strategy at αL +∆α.

Nevertheless, an equilibrium will be reached for α : αL < α < αH if some consumers adopt

the retry strategy while others adopt the balk strategy such that a retry decision at state

N (and at all other states) generates an expected payoff of zero. This leads to the following

lemma. Note that, when the population adopts the retry/balk strategy JN
R(1−γ)
B(γ) , the
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steady-state joining, retrial and baling probabilities are given by

π
JN

R(1−γ)
B(γ)

J = 1− π
JN

R(1−γ)
B(γ)

N , π
JN

R(1−γ)
B(γ)

R = (1− γ)π
JN

R(1−γ)
B(γ)

N , and π
JN

R(1−γ)
B(γ)

B = γπ
JN

R(1−γ)
B(γ)

N .

(3.16)

Lemma 8 The retry/balk strategy JN
R(1−γ)
B(γ) is an equilibrium strategy for the unique retrial

cost

α = (1− π
JN

R(1−γ)
B(γ)

N )(v − cW
JN

R(1−γ)
B(γ) ) (3.17)

where π
JN

R(1−γ)
B(γ)

N is the steady-state probability on state N or the steady-state not-joining

probability (balking or retrial) under JN
R(1−γ)
B(γ) , and W

JN
R(1−γ)
B(γ) is the expected waiting time

for a consumer conditional on joining the system under JN
R(1−γ)
B(γ) . W

JN
R(1−γ)
B(γ) can be written

as

W
JN

R(1−γ)
B(γ) =

π
JN

R(1−γ)
B(γ)

0

1− π
JN

R(1−γ)
B(γ)

N

1

µ
+

π
JN

R(1−γ)
B(γ)

1

1− π
JN

R(1−γ)
B(γ)

N

2

µ
+ . . .+

π
JN

R(1−γ)
B(γ)

N−1

1− π
JN

R(1−γ)
B(γ)

N

N

µ
.

Since there exists a unique retrial cost α that induces the equilibrium strategy JN
R(1−γ)
B(γ) for

every γ ∈ [0, 1], we can write α as a function of γ. Moreover, since π
JN

R(1−γ)
B(γ)

N and W
JN

R(1−γ)
B(γ)

are both continuous in γ, by (3.17) we see that α(γ) is a continuous function in γ. It then

can be shown that ∂α
∂γ > 0 (see the proof of Theorem 5 in the appendix). We can then

conclude that γ, for which JN
R(1−γ)
B(γ) forms an equilibrium strategy for some α, is also a

function of and increases in α. This gives the basis of the following theorem.

Theorem 5 For any retrial cost α ∈ (αL, αH), there exists a unique equilibrium strategy

for the system which is the retry/balk strategy JN
R(1−γ)
B(γ) . Moreover, when α increases from

αL to αH , the corresponding γ in the equilibrium strategy increases from 0 to 1.

Theorem 5 fills in the last missing piece of our equilibrium analysis. It states that (i)

the unique equilibrium strategy for any retrial cost α ∈ (αL, αH) is given by a retry/balk

strategy. (ii) when α → αL, consumers adopt the retry strategy JNR (or JN
R(1)
B(0) ) at the

equilibrium; when α → αH , consumers adopt the balking strategy JNB (or JN
R(0)
B(1) ); (iii)
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when α ∈ (αL, αH), consumers adopt the retry strategy JNR with probability 1 − γ and

the balk strategy JNB with probability γ at the equilibrium, but the likelihood of using

the balk strategy (i.e., γ) increases in the retrial cost.

3.4. CONSUMER WELFARE ANALYSIS

Throughout Section 3.3, we have examined all possible equilibrium strategies for our service

system with rational retrials. We briefly summarize these equilibrium results below.

(i) For any low retrial hassle cost α ≤ αL, multiple retry and join/retry strategies survive

the equilibrium. In this case, arriving consumers would join the queue if it is short and

retry if it is long. (The retrial cost is low so that consumers would not consider a balk

decision to leave the service value on the table when the queue is long.) We also identified

the Pareto-dominate equilibrium for each retrial cost α. As α increases from 0 to αL,

the Pareto-dominate equilibria are given by retry strategies, JnR, where the threshold n

increases from 1 to N . In other words, when retrials become more costly, consumers would

retry only upon seeing longer queues.

(ii) For any moderate retrial hassle cost α ∈ (αL, αH), a unique equilibrium retry/balk

strategy JNR
B exists. That is, when the queue is short, consumers still join the queue for

service. However, when the queue is long, they choose between the retry and the balk

options. Specifically, as the retrial cost increases in the region, consumers decide to retry

less frequently and balk more frequently (when seeing the long queue).

(iii) For any high retrial hassle cost α ≥ αH , the balking strategy JNB (or Naor’s strategy)

gives the unique equilibrium. Simply speaking, when there is too much retrial hassle (such

that any retrial attempt becomes very costly), rational consumers no longer consider the

retry option. Therefore, the retrial system reduces to Naor’s model where only join and

balk decisions are allowed. As a result, arriving consumers join the queue when it is short

and balk when it is too long.
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In this section, we turn to study the consumer welfare under the (Pareto-dominant) equi-

librium strategies. Since consumers follow different types of equilibrium strategies on the

regions α ≤ αL, α ∈ (αL, αH) and α ≥ αH , respectively, we will analyze the consumer

welfare region by region.

Recall that when α ≤ αL, the Pareto-dominant equilibrium strategy is given by JnR for

some n. Under JnR, the total arrival rate is λ
1−πJnR

n
and the effective joining rate is λ. The

overall consumer welfare is thus given by

λv − λcW JnR − λ(
1

1− πJnR
n

− 1)α (3.18)

where the first term λv is the revenue (rate), the second term λcW JnR is the total waiting

cost (rate), and the last term λ( 1
1−πJnR

n
− 1)α indicates the total retrial cost (rate) because

λ( 1
1−πJnR

n
− 1) is the amount of consumers (i.e., total arrival rate less the effective joining

rate) who are paying for the retrial fee.

Let us denote LJnR the average number of consumers in the system when the population

adopts JnR. Applying Little’s Law to the population that join the queue, we have

λW JnR = LJnR. (3.19)

(For completeness, we state a rigorous proof for (3.19) in the appendix.) Therefore, the

consumer welfare from (3.18) is also equal to

λv − cLJnR − λ(
1

1− πJnR
n

− 1)α, (3.20)

We know from Theorem 4 that as α increases on (0, αL], the threshold of the equilibrium

retry strategy, n, increases from 1 to N , and from Corollary 1 that on average less consumers

make retry decisions and more consumers make join decisions at equilibrium. As a result,

the system congestion goes up as α increases on (0, αL] and the extra congestion hurts the
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consumer welfare. To understand why congestion goes up with less retrying/more joining

activities, one can think of retrials as a smoothing mechanism. Because consumers retry

only when they see long queues, their retrial activities reduce the steady-state probabilities

on higher states of the system and increase those on lower states. In other words, retrials

can generate positive externalities to other consumers.

On the other hand, when α increases on (0, αL], on average less consumers are paying for

the retrial costs but each pays more at the equilibrium. Therefore, it is not clear ex-ante

how the overall consumer welfare is affected by the amount of the retrial cost α. It turns

out that congestion drives consumer welfare to drop in α on the region (0, αL]. Result is

shown in the following theorem.

Theorem 6 When the retrial cost α ≤ αL, consumer welfare is a decreasing piecewise lin-

ear function of the retrial cost α, with jumps (discontinuity) at the thresholds α1, α2, . . . , αN−1.

The maximum welfare, λv − cl, is achieved when α → 0, and the minimum welfare,

λv − cLJNR − λ( 1
1−πJNR

N

− 1)αL, is achieved when α = αL. Moreover, the slope for each

linear piece becomes flatter as we move along the intervals in the order of

(0, α1], [α1, α2], . . . , [αN−1, αL]. See Figure 3.

Figure 3: Illustration of consumer welfare at equilibrium as a function of the retrial cost
α ∈ (0, αL].

Theorem 6 states that when the retrial cost increases on (0, αL], consumer welfare de-
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creases. The reason we have downward-sloping linear curves on each of the intervals

{(0, α1], [α1, α2], . . . , [αN−1, αL]} is due to the facts that (i) on each individual interval,

the same equilibrium holds, i.e., we observe the same system including the same amount

of joining, retrial and balking activities, (ii) as α increases within any individual interval,

retrial consumers incur more total retrial cost in proportion. Mathematically, fixing the

n-th individual interval for any n ∈ {1, 2, . . . , N}, both LJnR and λ( 1
1−πJnR

n
− 1) stay the

same as α increases. So the total consumer welfare, given by (3.20), decreases linearly in

α. Moreover, the slope gets flatter as α moves away from left intervals to the right, be-

cause the magnitude of the slope, which is described by λ( 1
1−πJnR

n
− 1) = ρJnRµ − λ from

(3.20), decreases in n. In essence, less consumers make retry decisions as α increases, so

the marginal effect of increasing α on the total consumer welfare becomes diminishing.

Although consumer welfare decreases over the region α ≤ αL (i.e., less retrial hassle corre-

sponds to higher consumer welfare), we show in the following Theorem 7 that it actually

rises on α ∈ [αL, αH ]. To set up the result, recall that when α ∈ [αL, αH ], the equilibrium

is formed under the retry/balk strategy JN
R(1−γ)
B(γ) for some unique γ ∈ [0, 1]. Using (3.3)

and (3.16), the total arrival rate at the equilibrium is given by

λ
JN

R(1−γ)
B(γ)

total =
λ

1− π
JN

R(1−γ)
B(γ)

R λ

=
λ

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

. (3.21)

Therefore, by (3.3) and (3.21), the effective joining rate at the equilibrium is

λ
JN

R(1−γ)
B(γ)

total · π
JN

R(1−γ)
B(γ)

J =
λ

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

· π
JN

R(1−γ)
B(γ)

J =
λ(1− π

JN
R(1−γ)
B(γ)

N )

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

(3.22)

and the amount of consumers who are paying for the retrial cost is equal to

λ
JN

R(1−γ)
B(γ)

total · π
JN

R(1−γ)
B(γ)

R =
λ

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

· π
JN

R(1−γ)
B(γ)

R =
λ(1− γ)π

JN
R(1−γ)
B(γ)

N

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

. (3.23)
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The consumer welfare (on α ∈ [αL, αH ]) is given by total payoff less total retrial cost, so by

(3.22) and (3.23), it is equal to

λ(1− π
JN

R(1−γ)
B(γ)

N )

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

(v − cW
JN

R(1−γ)
B(γ) )− λ(1− γ)π

JN
R(1−γ)
B(γ)

N

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

α(γ) (3.24)

where α(γ) is the particular retrial cost that induces the equilibrium strategy JN
R(1−γ)
B(γ) .

Note that when γ = 0, JN
R(1)
B(0) = JNR and the consumer welfare in (3.24) reduces to

that in (3.18). Similarly, when γ = 1, JN
R(0)
B(1) = JNB and the consumer welfare in (3.24)

reduces to

λ(1− πJNB
N )(v − cW JNB

N ) = λv(1− πJNB
N )− cLJNB (3.25)

which gives the consumer welfare in Naor (1969).6

Theorem 7 When the retrial cost α ∈ [αL, αH ], the consumer welfare at equilibrium, given

in (3.24), is equal to λα(γ). That is, consumer welfare at the equilibrium increases linearly

in the retrial cost α with slope λ, from value λv − cLJNR − λ( 1
1−πJNR

N

− 1)αL = λαL when

α = αL to value λv(1− πJNB
N )− cLJNB = λαH when α = αH .

Theorem 7 seems counter-intuitive at first by claiming that consumer welfare as a whole

increases on the region α ∈ [αL, αH ] despite more retrial cost, but it can be explained as

follows. As the retrial cost α increases over [αL, αH ], consumers who arrive at state N

gradually adopt the balk strategy more often over the retry strategy at the equilibrium

(i.e., γ increases for the underlying equilibrium strategy JN
R(1−γ)
B(γ) ). For these consumers,

their payoffs remain the same, in fact remain 0. But they still have the intensives to

balk more frequently and retry less frequently because otherwise their payoffs would be

negative. However, retrying at state N causes negative externalities (i.e., congestion) to

other consumers while balking at N does not, thus as α increases on [αL, αH ], there are less

congestion in the system. As a consequence, the overall welfare goes up.

6In Naor’s system, the effective joining rate is λ(1 − π
JNB)
N ) therefore by applying Little’s Law on the

effective-joining population, we have λ(1− πJNB
N )W JNB = LJNB .
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We note that when α < αL, consumer welfare will decrease in the retrial cost α because

of more joining and less retrials as α increases, and retrials (compared to joining) reduces

congestion. But when α ∈ [αL, αH ], consumer welfare will increase in the retrial cost α as

a result of more balking and less retrials as α increases, and this time retrials (compared

to balking) induce congestion. It is important to recognize that a consumer’s retry decision

can impose both positive and negative externalities to others in the system.

Finally, when α ≥ αH , consumers follow the balk strategy JNB at the equilibrium. There

are no more retrial activities so the welfare is independent and a constant function of the

retrial cost. The level of the consumer welfare will be the same as that in Naor (1969).

Figure 4 below plots the consumer welfare at the equilibrium as a function of the retrial

cost α over the entire region.

Figure 4: Illustration of consumer welfare at equilibrium as a function of the retrial cost
α over the entire region. The welfare decreases in α on (0, αL], increases on [αL, αH ] and
stays flat on [αH ,∞).

It is clear from the discussion in this section so far and from Figure 4 that the shape of the

equilibrium welfare curve is down-up-flat as a function of the retrial cost α. However, what

is lacking is the comparison between the values of the consumer welfare when α → 0 versus

when α = αH . We present such result in the next theorem.
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Theorem 8 The consumer welfare is higher when α → 0 compared to that at α = αH .

Let us process the information provided by Theorem 8. First, by Theorem 6, we know

that the consumer welfare as α → 0 is equal to “λv − cl = λ(v − c
µ)”. This is the largest

possible consumer welfare for the population, as λ is the maximum effective joining rate,

and v− c
µ is the largest possible welfare any individual consumer can get out from the server.

Essentially, when α → 0, the population adopts J1R. Every consumer retries repeatedly

(with paying zero retrial cost) until he sees an idle queue and joins without any wait in the

queue. It is thus clear that the welfare when retrials are “free” (i.e., α → 0) exceeds that

when they are not free (i.e., α > 0 or α ≥ αH).

A counter-intuitive result then follows from Theorem 8 and the down-up-flat shape of the

equilibrium welfare curve: With the additional option to retry (comparing our model to

Naor’s model), consumer welfare could however worsen at equilibrium. In Figure 4, this

result is reflected on the interval roughly between α = α3 and α = αH .

This phenomenon can be explained by an argument similarly to Naor (1969): Consumers

are self-interested by heart. When they are presented with the additional option to retry,

they will take advantage of it as long as exercising the option can increase their individual

payoffs. However, at times, these extra gains in individual welfare cannot compensate for

the negative externalities (i.e., congestion costs) imposed to other consumers. Therefore, at

these times the overall consumer welfare would actually improve if consumers do not have

the privileges in retrying.

Naturally, the next question to be asked is what would the socially optimal policy be.

3.4.1. Socially Optimal Policies

In queueing systems, self-interested consumers usually form equilibrium that deviates from

the socially optimal outcome. For example, Naor (1969) shows that consumers (who have

the options to join or balk) over-congest the system when left to their devices. He then
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suggests that tolls or taxes can be levied to control the joining population.

We have established equilibrium strategies and welfare results for self-interested consumers

with the option to retry in this paper so far, and shall now consider socially optimal policies

(i.e., first best solutions) within the model framework. Socially optimal policies are highly

state dependent. Like Naor (1969), we will focus on policies of the threshold type. These

types of policies have been used for queue controls in the literature for settings that even

generalize Naor (1969), e.g., see Yechiali (1971, 1972) and other related papers surveyed in

Stidham (1985). Specifically, we consider all the retry and balk strategies, i.e., the class of

strategies {s : s = JnR or s = JnB for some n ≥ 1}. We characterize the socially optimal

policies (within this class) in the following theorem.

Theorem 9 For a given system λ, µ, c, v (thus αL is also determines), there exists a deter-

ministic point α′ ∈ (0, αL] such that the optimal policy is a retry strategy (i.e., JnR-type)

with increasing thresholds for α ≤ α′, and a balk strategy with threshold N ′ (i.e., JN ′B)

for α > α′ where N ′ < N is the socially optimal balking threshold defined in Naor (1969).

Moreover, for any fixed α ≤ α′, the threshold of the retry strategy at the social optimum is

smaller than or equal to that at the consumer individual equilibrium. Also see Figure 5 for

an illustration.

Figure 5: Illustration of equilibrium strategies (bottom) versus the socially optimal policies
(middle) as a function of the retrial cost α. Side by side comparison is given at top.
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Theorem 9 indicates that (i) when the retrial cost is low (i.e., region 1 in Figure 5), the retrial

thresholds for the equilibrium strategies are smaller than those for the socially optimal

policies, and thus consumers retry too little and join too much at the self equilibrium

compared to the socially optimum; (ii) when the retrial cost rises (i.e., region 2 in Figure

5), consumers retry and join too much, but balk too little on their own; and (iii) eventually

when the retrial cost is high (i.e., region 3 in Figure 5), consumers join too much and balk

too little.

Result (iii), where consumers over-join the system, certainly is not new. Recall that when

the retrial cost is high, consumers on thier own disregard the option to retry, and our model

becomes the one in Naor (1969). And Naor (1969) points out in his paper that self-interested

consumers join the system too much as opposed to balking because that ignore the negative

externalities (i.e., congestion costs to other consumers) in making the decisions.

On the other hand, results (i) and (iii) are new and counter-intuitive. For example, when

the retrial cost is low, one should anticipate that consumers, when left to their own devices,

would retry a lot because they can afford it. However, our result indicates that they are

not retrying enough compared to the socially optimal outcome. On the other hand, when

the retrial cost rises, one would anticipate that consumers are discouraged from retrying.

But we find that they still retry too much compared to social optimum when everyone were

altruistic.

Fortunately, we can explain consumers’ deviation from the social optimum above by the

same principle that Naor (1969) has observed, i.e., self-selecting consumers suffer from

externalities. Recall earlier in the paper, we have identified both the positive and negative

externalities of a retrial activity. When the retrial cost is low, there are no balking at both

self-equilibrium and social optimum. But, a consumer who retry at a long queue (compared

to joining) reduces the congestion costs imposed on other consumers. And self-interested

consumers over-join the system and do not retry enough, because they ignore these positive

externalities from retrials. In contrast, as the retrial cost rises, consumers retry and join too
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much, but balk too little at equilibrium because they fully ignore the negative externalities

from joining and retrials. If everyone were acted to maximize the overall consumer welfare

in this case, some of those consumers would balk.

3.5. EXTENDED MODEL: TWO CLASSES OF CONSUMERS

In many service settings, a portion of the consumer population cannot delay or give up

the workload. Examples include patients visiting a hospital who are in critical conditions,

or consumers arriving at DMV centers who are renewing driving licenses at the very last

minute. In this section, we extend the basic model to two classes of consumers, to include

these who arrive at deadlines.

We assume that among the new arrival rate λ, the portion (1−θ)·λ, are strategic consumers

like in the basic model who will make rational decisions to join the queue, balk, or to retry

later. Rest of the population, θ · λ, are non-strategic or myopic consumers who will join

the queue unconditionally. We assume that θ ∈ [0, 1) to ensure there exist some strategic

consumers whose equilibrium strategies are of our interest. On the other hand, the basic

model is a special case of the two-class model with θ = 0. With two class of consumers, we

can now study the impact of myopic consumers on the decision-making and welfare of the

strategic consumers, as well as the impact of the strategic consumes on the myopics.

3.5.1. Equilibrium Strategies

First we shall examine how strategic consumers make retry, versus join and balk decisions

in the presence of the myopics. For any fixed mixture of strategic and myopic consumers

in the population, (i.e., fixed θ), due to the monotonicity of the balking, joining and retrial

payoffs with respect to the state of the queue, only four types of equilibrium strategies can

survive the equilibrium for strategic consumers like in the basic model.

These four types of equilibrium candidates are also almost identical to the ones described

vefore except now they need to specify actions for every state of the system. (All states are
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now positive recurrent due to the existence of myopic consumers.) Simply speaking, the

equilibrium candidates for the extended model are the ones for the basic model with the

action on the last state recurring forever, so we will keep the same notations and names

wherever unambiguous:

Type (i). A threshold retry strategy with some threshold n ≤ N , denoted by “JnR”:

Consumers join the queue at states {0, 1, 2, . . . , n−1} and retry at not only state n but also

all the states {n+ 1, n+ 2, . . .}.

Type (ii). A threshold join/retry strategy with some threshold n ≤ N , denoted by

“J
J(β)
R(1−β)nR”: Consumers join the queue at states {0, 1, 2, . . . , n − 2}, mix join and retry

decisions at state n− 1 and retry at states {n, n+ 1, n+ 2, . . .}. β ∈ [0, 1] still denotes the

probability of a join decision being made at state n− 1, and 1− β a retry decision.

Type (iii). The threshold balk strategy (Naor’s strategy), denoted by “JNB”: Consumers

join the queue at states {0, 1, 2, . . . , N − 1} and balk at states {N,N + 1, N + 2, . . .}.

Type (iv). Finally, a threshold retry/balk strategy denoted by “JNR
B ”: Consumers join

the queue at states {0, 1, 2, . . . , N − 1} and mix retry and balk decisions at states {N,N +

1, N + 2, . . .}.

Note that a retry/balk strategy σ in this case can actually have different retrial versus

balking probabilities at states {N,N + 1, N + 2, ...}. Let γσN , γσN+1, γ
σ
N+2,... denote the

corresponding balking probabilities at these states, we will define JN
R(1−γ)
B(γ) for any γ ∈ [0, 1]

as an equivalence class of retry/balk strategies whose ratio of the steady-state balking

probability over the steady-state non-joining probability is equal to γ, in other words,

JN
R(1−γ)

B(γ) , {Retry/balk strategy σ :
πσ
B

πσ
B + πσ

R

=
γσ
Nπσ

N + γσ
N+1π

σ
N+1 + . . .

πσ
N + πσ

N+1 + . . .
=

∑∞
i=N γσ

i π
σ
i

∑∞
i=N πσ

i

= γ}.

We show in the next lemma that all the strategies in the same equivalence class correspond

to the same underlying queueing system. In other words, one cannot differentiate strategies

from an equivalence class JN
R(1−γ)
B(γ) by observing the queueing system and its evolution.
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Lemma 9 Fix θ ∈ [0, 1). When the strategic population, (1−θ)·λ, adopts any two retry/balk

strategies from a given JN
R(1−γ)
B(γ) class defined above, the underlying queueing systems are

identical.

As a result of Lemma 9, we will treat each equivalent class JN
R(1−γ)
B(γ) as one strategy. It

turns out that with the presence of myopic consumers, the equilibrium strategies adopted

by the strategic class share the same structure as before.

For the two-class model, define

αL , (1− πJNR
R )(v − cW JNR) = (1−

∞
∑

i=N

πJNR
i )(v − cW JNR) = (1− πJNR

N

1− θl
)(v − cW JNR),

αH , (1− πJNB
B )(v − cW JNB) = (1−

∞
∑

i=N

πJNB
i )(v − cW JNB) = (1− πJNB

N

1− θl
)(v − cW JNB),

where W σ is the expected waiting time for a strategic consumer conditional on joining the

queue, when the strategic population adopts σ.

We recover all the results in Sections 3.3 and 3.4 for two classes of consumers:

Lemma 5’ Fix θ ∈ [0, 1). There exist a sequence of retrial cost thresholds 0 < α1 < α2 <

. . . < αN−1 < αL such that (i) when the retrial cost α ≤ α1, the retry strategy J1R is an

equilibrium. (ii) when α ∈ [αn − c
µ(1− πJnR

R ), αn] for n ∈ {2, . . . , N − 1}, the retry strategy

JnR is an equilibrium. (iii) when α ∈ [αL − (v − c
µN)(1 − πJNR

R ), αL], the retry strategy

JNR is an equilibrium.

Lemma 7’ & Theorem 4’ Fix θ ∈ [0, 1). (i) For n ∈ {2, . . . , N − 1, N}, αn − c
µ(1 −

πJnR
R ) < αn−1, and there exists a unique α ∈ [αn − c

µ(1 − πJnR
R ), αn−1] such that the

join/retry strategy J
J(β)
R(1−β)nR is an equilibrium for any β ∈ [0, 1]. (ii) The Pareto-dominant

equilibrium exists and is unique for any α ≤ αL: For α that falls in one of the N intervals

{(0, α1], (α1, α2], . . . , (αN−2, αN−1], (αN−1, αL]}, the retry strategies J1R, J2R, . . . , J(N −

1)R, JNR represent the Pareto-dominant equilibria, respectively.
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Proposition 3’ & Theorem 5’ Fix θ ∈ [0, 1). (i) αL < αH . (ii) The balk strategy

JNB is the unique equilibrium strategy for α ≥ αH . (iii) For any retrial cost α ∈ (αL, αH),

JN
R(1−γ)
B(γ) is a unique equilibrium strategy (class) for the system. When α increases from αL

to αH , the corresponding γ in the equilibrium strategy increases from 0 to 1. The bijection

between α and γ is given by

α = (1−
∞
∑

i=N

π
JN

R(1−γ)
B(γ)

i )(v − cW
JN

R(1−γ)
B(γ) ) = (1− π

JN
R(1−γ)
B(γ)

N

1− θl
)(v − cW

JN
R(1−γ)
B(γ) ).

In essence, strategic consumers are committed to the same pattern of equilibrium strategies

with or without presence of the myopic consumers, i.e., a consumer who plays strategically

is always going to join the queue if it is short and retry or balk if it is long. In strategic

consumers’ minds, the myopic population, θ · λ, is treated as if a given environment. A

change in the environment (i.e., a change in θ) results in changes in the values of the retrial

cost thresholds, but not the structure of the equilibrium strategies. Henceforth, we use

environment θ to denote a population λ where (1 − θ) · λ are the strategic consumers and

θ · λ are the myopics.

3.5.2. Conditional and Overall Welfare

When there was only one class of strategic consumers in the basic model, we studied the total

consumer welfare. Recall that it first decreases, then increases and finally stays constant

as a function of the retrial cost α. Scaling the consumer welfare curve by a factor of 1
λ ,

we know that the consumer welfare per consumer in the basic model also follows the same

down-up-flat pattern.

Now that we have two classes of consumers (with some environment θ), we can study

the following three welfare quantities: (i) consumer welfare per strategic consumer; (ii)

consumer welfare per myopic consumer; and (iii) consumer welfare per consumer in the

population. Moreover, we can examine how the three welfare quantities change in θ.
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Welfare per Strategic Consumer. It turns out that not only do strategic consumers

adopt the same structure of equilibrium strategies with or without the presence of myopic

consumers, the consumer welfare per strategic consumer also bears the same shape as before.

Theorem 6’, Theorem 7’ & Proposition 8’ Fix θ ∈ [0, 1). (i) When the retrial cost

α ≤ αL, the consumer welfare per strategic consumer decreases in α, from v− c
µ to αL. (ii)

When the retrial cost α ∈ [αL, αH ], the consumer welfare per strategic consumer increases

linearly in α, from αL to αH . (iii) When the retrial cost α ≥ αH , the consumer welfare per

strategic consumer remains constant at the value of αH .

Therefore, for any given θ ∈ [0, 1), the function that describes the welfare per strategic

consumer in the retrial cost α has the same down-up-flat shape as before. But αL, αH and

all other retrial cost thresholds are all functions of θ and change as θ does. We demonstrate

in the following lemma that all these values monotonically decrease in θ.

Lemma 10 (i) The values of α1, α2, . . . , αN−1, αL, αH all decrease in θ. (ii) The unique

retrial cost in the region [αL, αH ] that induces the equilibrium retry/balk strategy JN
R(1−γ)
B(γ)

for each γ ∈ [0, 1], denoted by α(γ), also decreases in θ. Note that α(0) = αL and α(1) = αH .

(iii) αH − αL → 0 as θ → 1. On the other hand, we still have α1 < α2 < . . . < αN−1 < αL

as θ → 1.

There is an important message from Lemma 10: By focusing on the values of the retrial cost

thresholds or the “turning points” of the welfare curve, we see that the presence of more

myopic consumers makes retrials more costly for strategic consumers (i.e., consumers are

making the same decisions as before only with smaller retrial hassle). We will explain the

intuition after presenting the next theorem, which describes how the whole welfare curve

shift in θ.

Let U∗
α,θ denote the welfare per strategic consumer under the Pareto-dominant equilibrium

strategy when the environment (i.e., the ratio of the myopic consumers in the population)

is θ and the retrial cost is α. We show that, fixing any retrial cost, consumer welfare per
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strategic consumer decreases when there are more myopic consumers in the population.

Theorem 10 If 0 ≤ θ1 < θ2 < 1, then U∗
α,θ1

≥ U∗
α,θ2

for all retrial cost α ∈ (0,∞). That

is, the presence of myopic consumers reduces the welfare of each strategic consumers. Also

see Figure 6.

Figure 6: Illustration of the welfare per strategic consumer at equilibrium as the myopic
population increases. Note that α1, α2, . . . , αN−1, αL and αH all decrease in θ, and αH → αL

as θ → 1. For any particular θ ∈ [0, 1), the welfare curve remains the down-up-flat shape.

Theorem 10 provides us with insights on the impact of myopic consumers. It indicates

that the presence of myopic consumers makes every strategic consumer worse off. Let us

imagine a case where one strategic consumer turns himself into myopic (i.e., consider the

environment θ → θ +∆θ where ∆θ is infinitesimal). Conditional on the state under which

this consumer arrives to the system, say n: (i) If this consumer’s decision were to join

the queue (if he were a strategic consumer), then making him a myopic consumer does

not affect his or anybody else’s welfare, because a myopic consumer joins the queue. (ii)

If this consumer’s decision were to balk, then forcing him join the queue not only makes

this consumer worse off (receiving a negative payoff versus a zero payoff), but his join

decision also causes negative externalities to all other consumers in the system. (iii) If

this consumer’s decision were to retry, then forcing him join the queue reduces his payoff

because the retry decision would be more rewarding. On the other hand, both retry and

join decisions cause negative externalities to other consumers. However, a retry decision is
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not as bad as a join decision because it can also generate positive externalities.

Therefore, overall speaking, when myopic consumers replace strategic consumers, the system

becomes more congested. This explains the result of Lemma 10 that with the presence of

myopic consumers, it were as if the case that the retrial hassle for every strategic consumer

has increased.

Going forward, we find that the existence of the myopic consumers not only reduces strategic

consumers’ welfare, but also their own welfare. In other words, the presence of strategic

consumers increases the welfare of the myopics.

Welfare per Myopic Consumer. We now denote by V∗
α,θ the welfare per myopic con-

sumer when the environment is θ and the retrial cost is α, (and when the strategic pop-

ulation adopts the equilibrium strategies). As seen in the following theorem, the welfare

per myopic consumer under any θ exhibits the down-up-flat welfare pattern, and decreases

curve-wise in θ.

Theorem 11 Fix a given θ ∈ [0, 1). Welfare per myopic consumer is a decreasing step

function over α ≤ αL. It rises over α ∈ [αL, αH ], and then remains constant over α ≥ αH .

Moreover, if 0 ≤ θ1 < θ2 < 1, V∗
α,θ1

≤ V∗
α,θ2

for all α. Also see Figure 7.

Figure 7: Illustration of the welfare per myopic consumer as the myopic population in-
creases.
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The welfare curve forms a step function on the region α ≤ αL because the underlying

equilibrium strategy adopted by the strategic consumers remains the same for all α that

falls in one of the N intervals: (0, α1], (α1, α2], . . . , (αN−2, αN−1], (αN−1, αL]. The slope for

each linear piece is zero because the retrial cost is irrelevant to the welfare of a myopic

consumer given a fixed strategy used by the strategic population. Welfare decreases on

α ≤ αL and increases on (αL, αH) is due to increased and decreased expected waiting cost

for each myopic consumer. On the other hand, the whole welfare curve for each myopic

consumer decreases in θ due to the congestion that the myopic consumers create, as already

explained before.

For a second, consider the extreme case when θ → 1, i.e., the whole population approaches

myopic. Then the underlying system would coincide with the regular M/M/1 queue with

no balking or retrials. One would then conjecture that the welfare per myopic consumer

(as well as per consumer in this case) would be equal to the welfare per capita in a regular

M/M/1 system for all retrial cost α. We show in the proposition below that this is indeed

the case.

Proposition 4 As θ → 1, VJnR
αn,θ ↓ (v − c

µ−λ) for all n = 1, 2, . . . , N − 1. Moreover, VJNR
αL,θ

and VJNB
αH ,θ ↓ (v− c

µ−λ). Since the welfare curve is a step function on α ≤ αL with jumps at

α1, α2, . . . , αN−1 for every θ, and αH → αL as θ → 1, we conclude that welfare per (myopic)

consumer becomes (v − c
µ−λ) as θ → 1 for any retrial cost α ∈ (0,∞).

Consumer Welfare per Consumer in the Population. Following Theorems 10 and

11, we draw conclusion that welfare per capita in the mixed population (including both

the strategic and the myopic consumers) has the down-up-flat shape as a function of the

retrial cost α for any given θ, and that the whole welfare curve decreases in θ. When θ = 0,

it coincides with the welfare curve for one class of strategic consumers. And when θ = 1,

it becomes a constant function in α with a value of v − c
µ−λ , i.e., the M/M/1 consumer

welfare.
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3.6. CONCLUSIONS AND IMPLICATIONS

Consumers often use retry decisions in practice when they are faced with a long queue.

However, existing service operations literature on modeling strategic consumer decisions

has primarily focused on join and balk decisions. As a result, not much is known about

consumers’ decision-making when they also have the option to retry. Our paper seeks to

fill this blank in the literature by modeling consumers’ rational retrials.

We find that, with or without the presence of myopic consumers (who join the queue

unconditionally), consumers who play strategically act the following way when given the

options to join, balk or retry: (i) When the hassle cost to retry is low, consumers follow the

threshold retry strategies, i.e., they join the queue if it is short than some threshold and

retry otherwise. All else being equal, when the retrial cost increases, the retrial threshold

also increases. (ii) When the hassle cost to retry becomes significant, all consumers still

join short queues, but some will start to balk from long queues. (iii) Eventually when the

hassle cost is too high (e.g., when it exceeds the value from the service), consumers follow

the threshold balking policy given in Naor (1969).

Surprisingly, allowing consumers to retry does not always generate higher overall consumer

welfare than not allowing (i.e., the model in Naor (1969)). This is because the extra gain an

individual benefits from retrials does not always compensate for the negative externalities

(i.e., congestions costs) these retrial activities impose on other consumers in the system,

when balk decisions are actually better off for the society as a whole.

We also identified positive externalities that retrials can generate. Since consumers retry at

seeing longer queues, their retrial activities effectively reduce the steady-state probabilities

on the higher states of the system and increase those on the lower states. This leads to

less congestion in the system, and reduced expected waiting costs for every other consumer.

To some sense, retrials serve as a great smoothing mechanism to spread the workload over

time.
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In the case of self-interested consumers, they completely ignore externalities to other con-

sumers when making decisions and thus behave differently from the socially optimal point

of view. In Naor (1969), consumers when left to their own over-congest the system because

they ignore the negative externalities of joining the queue. We find that when the retrial

cost is small, consumers on their own do not retry enough compared to the social optimum

(which is by itself a counter-intuitive result), and the deviation comes from ignorance of the

positive externalities of the retrials.

In an important extension to the basic model, we consider both strategic and myopic con-

sumers in the population. The strategic consumers make state-dependent join, balk and

retry decisions as in the basic model, but the myopics unconditionally join the queue. Thus

our findings can be further applied to settings such as hospitals where both types of con-

sumers coexist. We find that, when there is a higher ratio of myopic consumers in the

population, welfare decreases for everybody due to the extra congestion that the myopic

consumers bring to the system.

Our findings have several implications for queue management policies in many service set-

tings. As consumer equilibrium deviates from the social optimum, a social planner could

implement various policies to improve the overall consumer welfare. Specifically, we find

that consumers retry too little when the retrial hassle is low; and they retry too much when

it is high. As a result, the social planner should consider subsidizing retrial consumers or

charging tolls for each visit to encourage or discourage retrials. In an incoming paper, we

devote our focus to the control policies.

Finally, in modeling retrials in this paper, we assume that the number of periods between

individual retrials is fixed. However, all of our results will continue to hold if we allow the

number of periods between retrials to be random. In fact, instead of using the periodic

model that we currently have, our results still hold if the time between retrials is modeled

by an exponential distribution like in orbital models. (We will address this issue with details

in the appendix.) Therefore, the insights found in this paper are general and robust.
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CHAPTER 4 : MANUFACTURING SOURCING IN A GLOBAL SUPPLY

CHAIN: A LIFE CYCLE ANALYSIS

4.1. INTRODUCTION

For decades, the dominant strategy in U.S. manufacturing has been to outsource to low

labor-cost countries, first dating back to the 60’s and the 70’s when off-shoring manufactur-

ing in Japan occurred, and the 70’s and 80’s to South Korea. With the advent of the 90’s,

the U.S. started to see a rapid transfer of production jobs to China and other low labor-cost

countries such as Vietnam, Indonesia, and Bangladesh.

According to U.S. Bureau of Labor Statistics, more than five and half million manufacturing

jobs were lost between the years 2000 to 2010 (i.e., from above 17 million jobs in 2000 to

below 12 million in 2010). Figure 8 below plots the number of U.S. manufacturing jobs

over time. The sheer drop happened when the congress agreed to permanent normal trade

relations (PNTR) status with China and President Clinton signed it into law in 2000, which

paved the way for China’s accession to the World Trade Organization (WTO) and its rise

as the single most favorable host country for outsourcing of manufacturing.

Today, however, this trend is being challenged by a movement by some companies to move

their manufacturing back to the U.S. (i.e., by “re-shoring”), or by moving it to Mexico (i.e.,

by “near-shoring”). Over the past four years (2010 – 2014), the number of manufacturing

jobs in the U.S. has started to rise for the first time after plunging for 15 years, edging up

by half a million to just above 12 million now.

Why are some firms placing a huge bet on re-shoring? How many manufacturers are likely to

follow this movement? Does offshore-outsourcing still make good business sense? And, what

are the consequences of changes in sourcing strategy for a firm’s products, performance and

operational flexibility? Motivated by an ongoing survey effort1 that is designed to explore

1The survey is an joint research project among Wharton, MIT, Shanghai Jiao Tong University and
Shanghai Institute of Foreign Trade.
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Figure 8: U.S. manufacturing employment. Data: U.S. Bureau of Labor Statistics,
http://www.bls.gov/iag/tgs/iag31-33.htm#workforce

answers to the questions noted above, we develop a modeling framework in this paper to

study the drivers of companies’ global sourcing location decisions.

4.1.1. Evidence and Competing Theories on Supply Chain Re-Structuring

In a review we recently conducted, we found over 50 cases where major U.S. and global

companies have announced significant re-structuring decisions for their global supply chain

in the past three years. Among them, 19 companies reported increased off-shoring by

shifting production to an off-shore location. In contrast, 19 other companies re-shored by

bringing production back to their home country. Well-known examples include decisions

by Apple to invest $100 million in producing some of its Mac computers in the U.S.; and

General Electric to invest $1 billion into domestic appliances manufacturing capabilities

at Louisville, Kentucky. There is also evidence that some companies are near-shoring by

bringing production to a country that is closer to major customers, and that others are

investing in manufacturing technology (e.g., the adoption of robots).

Interestingly, a number of Chinese manufacturing firms have also opened factories in the

U.S. to be near their U.S. market. Examples include Lenovo opening its first U.S. personal
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computer production facility in Whitsett, N.C. (June, 2013); and Fuling Plastics, which

makes plastic cutlery for America’s top fast food chains including McDonald’s, KFC, and

Subway, opening a production facility in Pennsylvania’s Lehigh Valley (May 2014).

A popular argument to explain the re-shoring phenomenon is called the “Tipping Point

Theory” (e.g., see Sirkin et al. (2011, 2012)), which comes from the observation that wages

in low labor-cost countries are rising at faster rate than those at developed countries. For

example, Chinese wages are growing at a rate of 15 percent annually, as opposed to 2

percent in the U.S. As a result, the labor-cost advantage of producing a product in China is

diminishing. After factoring in increased ocean freight rates, strengthened Chinese currency

and lower energy cost in the U.S., the landed cost advantage of manufacturing in China

versus the U.S. could be eliminated in a few years. The Tipping Point Theory thus argues

that “when the landed cost advantage falls below a critical level, most manufacturers will

re-shore to the U.S.”

While labor costs are a significant factor that firms need consider when making a global

sourcing decision, they must also consider other aspects of doing business overseas, such as

the time to market, foreign exchange rates, ownership of intellectual property, local content

requirements as well as other cost components in addition to labor. As a result, a number

of other competing theories to explain global sourcing decisions have emerged.

For example, Markides and Berg (1988) and Pisano and Shih (2012) believe that“outsourcing

of manufacturing leads to a loss of capability to develop new products and to adopt new

technologies”, while others have argued “technology developments such as enhanced au-

tomation reduce the impact of a foreign labor-cost advantage in making sourcing decisions”;

“government policies have a major impact on sourcing decisions”; and “the movement to a

service dominated economy has reduced the importance of manufacturing and will make it

more difficult to off-shore manufacturing”, etc.

There is a national debate among the media, the Federal Government, academia and in-
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dustry as to which of these theories is right or wrong. In this paper, we introduce a

comprehensive model that incorporates perspectives over the entire life cycle of a product,

i.e., product design, manufacturing and after-sale service support, in order to examine con-

ditions that support the validity of these theories. As the existing global sourcing literature

has mainly focused on the impact of costs on sourcing decisions, our work, to the best of

our knowledge, is the first to conduct a life cycle analysis in the context of global sourcing

strategy.

The remainder of this paper is structured as follows. Section 2 reviews the related litera-

ture. Section 3 describes a basic single-market single-plant model and sheds light on different

trade-offs present among the elements of a life cycle analysis, when making sourcing deci-

sions. Section 4 presents a number of extended models and associated structural results.

These include incorporation of technology investment decisions, multiple demand markets

and multiple plant locations into the basic model. Section 5 provides numerical examples

that illustrate managerial insights that can be derived from the optimal solution to various

models based on model specifications associated with a number of industries. Section 6

concludes the paper with suggestions for continuing analytical and empirical research.

4.2. LITERATURE REVIEW

Early research on the global plant location problem appears in Hodder and Jucker (1982,

1985), Hodder and Dincer (1986), Breitman and Lucas (1987). Cohen et al. (1989), and

Cohen and Lee (1989). These papers extended basic supply chain network models by

incorporating issues such as corporate taxes, tariffs, and duties. Here, we focus on a repre-

sentative publication: Cohen and Lee (1989) evaluated a series of policy options that the

Apple computer company might use to establish its global manufacturing strategy. Their

mathematical programming model is capable of capturing a large number of constraints

on demand, sourcing, interplant transshipments, taxation and tariffs, and the objective

function is to maximize total global after-tax profits.
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Many subsequent papers that developed global supply chain design models examined the

impact of factors such as the uncertain exchange rates, as well as transfer pricing, financial

subsidies and local content rules. For example, Kogut and Kulatilaka (1994) used a dynamic

programming model to study the value of real option in a multinational operating network

due to uncertain currency exchange rates. Huchzermeier and Cohen (1996) also developed a

modeling framework to solve the real option valuation problem. Their framework integrated

a production-distribution flow model by looking at a three-tier supply chain that contains

suppliers, production sites, and market regions. Munson and Rosenblatt (1997) incorpo-

rated local content rules into the plant location problem. Other representative works include

Arntzen et al. (1995), Gutierrez and Kouvelis (1995), Canel and Khumawala (1996), Kou-

velis and Gutierrez (1997), Dasu and de La Torre (1997), Vidal and Goetschalckx (2001),

Kazaz et al. (2005), Goh et al. (2007), Robinson and Bookbinder (2007). We refer interested

readers to Cohen and Mallik (1997), Cohen and Huchzermeier (1999), Meixell and Gargeya

(2005) and Bookbinder and Matuk (2009) for further reviews.

Techniques used in the papers mentioned above are mainly mathematical or stochastic pro-

gramming. A more recent stream of related papers use stylized models to explore structural

results and draw managerial insights pertaining global supply chain network management.

Our paper belongs to this category which includes: Rosenfield (1996) who examined lo-

cation and capacity strategies when exchange rates are uncertain, Hadjinicola and Kumar

(2002) who incorporated marketing functions on top of manufacturing into a global supply

chain model, Nagurney et al. (2003) who developed a network equilibrium model for man-

ufacturers, retailers and consumers in a global supply chain context, Lu and Van Mieghem

(2009) who studied multiplant network configurations for off-shoring products with compo-

nent commonality, and Ang et al. (2014b) and Simchi-Levi et al. (2014) who investigated

global supply chain disruption issues in wake of the 2011 Tōhoku earthquake and tsunami.

Literature on global sourcing is growing. In the international business literature, MacCor-

mack et al. (1994), Ferdows (1997) and Farrell (2004, 2005) have pointed out competitive
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advantages in setting up foreign factories, including low cost direct labor, capital subsidies,

tariff concessions, and access to overseas markets, etc. In contrast, Markides and Berg

(1988) and Pisano and Shih (2012) argue that it is only a myopic tactical move because

off-sourcing activities transfers technology which could eventually put the company out of

business. We consider both sides of this story in our model, and are able to demonstrate the

key trade-offs in the paper. On the other hand, Ghelfi (2011) discussed issues on ownership

of intellectual property for the off-sourcing of processes, and Feng and Lu (2011) provided

an overview of ODM practices to Asia (i.e., off-sourcing of both design and manufacturing

by original design manufacturers).

Hsu et al. (2014) looked at the impact of foreign tax credit on global sourcing quantity de-

cisions for a multinational firm. In contrast, this paper investigates global sourcing location

decisions, whether it is for “re-shoring”, “near-shoring” or continuing to “off-shore”. Given

the increasing labor costs in emerging markets, oil price volatility and technology advances,

the discussion on “re-shoring” and the debate on whether manufacturing jobs would return

to U.S. has intensified in recent years, e.g., see Sirkin et al. (2011, 2012) and Simchi-Levi

et al. (2012) in the popular business press. Using a survey, Simchi-Levi (2012) reported

that 33.6% of the U.S. companies in its sample are “considering” bringing manufacturing

back to the U.S., while 15.3% are “definitely” planning to re-shore to the U.S.

Similar to Pyke (2007) and Kumar and Kopitzke (2008), the goal of this paper is to provide

a framework for analyzing the global sourcing location decision process which would be

relevant to companies who are in the midst of global supply chain re-structuring transfor-

mation. Our model framework however is based on a specific mathematical model that can

be used to quantify the impact of the underlying drivers of such decision while the previous

two papers offer a qualitative approach. Wu and Zhang (2014) used a game theoretical

approach to study manufacturers’ sourcing location decisions under correlated demands.

While their paper focuses on off-sourcing supply responsiveness, we take a life-cycle analy-

sis approach to balance issues that impenetrate product design, manufacturing, delivering,
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and after-sale service support.

Finally, empirical studies have been carried out relating to global supply chain sourcing to

provide additional insight, e.g., see Brush et al. (1999), MacCarthy and Atthirawong (2003),

Li et al. (2008), Massini et al. (2010) and Jain et al. (2013). More relevant to our focus,

Srivastava et al. (2008) examines the fraction of activity that is off-shored; Lewin et al.

(2009) and Roza et al. (2011) studies the impact of skilled labor and firm size on off-shoring

strategy, respectively; Hutzschenreuter et al. (2011) looks at a firm’s decision on internal

versus external governance mode for off-shoring activities.

4.3. MODEL

We begin with a base model that considers a scenario where a firm is about to introduce

a product for sale to a particular end demand market. The firm must make a sourcing

location decision to manufacture this product in one country in the world, for example, in

the U.S., China or Mexico. Thus, we consider a single-plant singe-market model. We will

extend this model to include multiple demand markets or multiple plants in Section 4.

The firm has determined that it will introduce one future (upgraded) generation of the

product, but products of both the current and future generations will be manufactured in

the same plant that it has selected at the time that the first-generation product is introduced.

We thus consider a two-period model: one for the current generation and one for the next

generation.

Similar to Guajardo et al. (2014), a product of either generation in our model can be viewed

as a product/service bundle that specifies the level of product quality and service quality

that is offered to the market. For example, when a consumer purchases a new car, the

physical performance of the car together with the manufacturer’s warranty and associated

maintenance service that are included with the purchase forms a product/service bundle.

Between launches of the two generations of the product bundle, the firm will be able to
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improve both the product quality and the service quality by investing in product design en-

hancements and in service support resources. Examples of design upgrade effort include the

adoption of new materials or product technology, the hiring of additional design engineers,

or surveying consumers to determine their level of satisfaction with the current product

generation. Examples of service improvement effort include the purchasing of more spare

parts, increasing the capacity of repair depots, the hiring of additional customer representa-

tives, or improving service processes. In the case of Tesla Motors, for example, the electric

car maker is well-known for its efforts in both building better cars (product quality) and a

stronger network of supercharger stations around the world (service quality).

We note, however, that the returns on quality enhancement investment will depend on the

location of the plant that is used to produce the product. Specifically, we assume that the

location of the research and development center of the firm (usually at the headquarters) is

fixed throughout the two periods of our model. As Pisano and Shih (2012) note, product

and process innovations are intertwined and process engineering expertise depends on daily

interactions with manufacturing. Therefore, if the plant location is closer to the R&D center,

there will be presumably more return on product quality enhancement investment dollars

spent on re-design and innovation. Pufall (2013) shows empirically the positive relationship

between the proximity of engineers of the suppliers and the ramp-up performance of a

product.

On the other hand, if the plant location is closer to the end demand market, one anticipates

more return on service quality enhancement investment dollars spent on efforts to improve

service due to quicker response times, easier management coordination, highly spare parts

availability, and lower transaction costs, etc.

The firm conducts a life cycle cost-benefit analysis to choose a plant location up front to

maximize its expected after-tax profit generated by selling both generations of the product

on the given end market over two periods and must consider the impact of its plant location

decision through the product design, manufacturing and after-sale service support phases.
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Figure 9: Sequence of events in the two-period model. Decisions are underlined. Features
in the extended models in Section 4 are denoted with *.

In our model framework landed costs, which are the fully loaded costs of producing and

delivering one product unit to an end market, will be random. In particular, these costs

will be affected by fluctuations in labor costs, foreign exchange rates, energy costs, and

import/export tariffs, etc. In each of the two periods, the firm will make price decisions.

Demand for the product will then be determined by factors such as product quality, service

quality, the price of the product, additional exogenous market factors, and random noise.

Finally, the local government determined by the plant location offers a one-time subsidy and

sets a corporate tax rate in order to attract the firm to open the plant in their jurisdiction.

We describe the sequence of events below and in Figure 9:

1) The firm selects a host country to build one plant, and the plant will be used to manu-

facture the product for two periods.

2) The firm receives a one-time subsidy from the local government. A pre-determined tax

rate will apply profits generated in both periods. The amount of the subsidy and the tax

rate depend on the location of the plant that the firm has selected.

3) Period 1 starts. The landed cost for period 1 (which includes the raw material and

manufacturing cost of the item, all logistics and shipping costs, customs duties and tariffs)
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is realized and converted to the numeraire (U.S.) currency according to the realized foreign

exchange rate.

4) The firm launches the product/service bundle that comes with some pre-determined level

of product quality and service quality, and selects a price for the product.

5) The market demand for period 1 is then realized based on the product quality, the service

quality as well as the price of the product. The firm generates after-tax profit in period 1

for products sold in that period.

6) Also in Period 1, the firm invests in product design and service improvements, in prepa-

ration for launching the next-generation version of the product. These enhancement efforts

will determine the product quality and the service quality for the product/service bundle

in the second period.

7) Period 2 starts, and the landed cost in U.S. dollars for period 2 is realized.

8) The firm launches the updated product/service bundle with a new price decision.

9) The market demand for period 2 is realized based on the product quality, the service

quality and the price of the product in this period, and the firm generates after-tax profit

for product sold in the second period.

Note that, although the firm can announce a price in each period in response to the realized

landed cost, the enhancement of product/service quality cannot be carried out instanta-

neously. Therefore, we assume that effort made in Period 1 will lead to changes to product

and service quality in Period 2 only.

4.3.1. Notation

For the basic (one-plant one-end-market) model, we will use superscript i for the plant

location, and subscript j ∈ {1, 2} for the period. For example, xChina
2 represents a particular

variable, x, realized in period 2, if the plant was located in China. With this notation, xA1 ,
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xA2 , x
B
1 and xB2 are all different. The firm makes the plant location decision i, for a given

end market and a given location for its R&D center. Conditional on i, it also makes the

following decisions in the two periods:

1) the price of the product in Period 1, namely pi1;

2) the investment ri for the improvement of the product quality;

3) the investment si for the improvement of the service quality;

4) the price of the product in period 2, namely pi2.

The exogenous parameters are:

– f i: the fixed cost of opening and operating a new plant or for using an existing plant in

location i;

– qi1 ≡ q1: the initial product quality introduced to the end market which is given and

assumed to be same for all plant location i;

– ρi1 ≡ ρ1: the initial service quality introduced to the end market which is given and

assumed to be same for all plant location i;

– Dj : market demand which is a function of

– Aj : random intercept of the demand curve (to capture demand size and shocks)

– aq: demand sensitivity to the product quality, assumed to be same for both periods

– aρ: demand sensitivity to the service quality, assumed to be same for both periods

– ap: demand sensitivity to the price, assumed to be same for both periods

– Ci
j : random landed cost associated with producing one unit of the product;

– gi: one time subsidy from government i;

– vi: tax rate offered by country i, assumed to be same for both periods;

– kir: return rate of the investment on product design enhancements;

– kis: return rate of the investment on product service support enhancements.

The endogenous variables are:

– qi2: new product quality in Period 2 due to enhancement effort ri;

– ρi2: new service quality in Period 2 due to enhancement effort si;
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4.3.2. Formulation

We assume that market demand increases with higher product quality and higher service

quality but decreases with higher price. The demand function is given as the following:

Di
j = Aj + aq · qij + aρ · ρij − ap · pij (4.1)

where Ai
j +aq · q1+aρ ·ρ1 is sufficiently larger than ap ·Ci

j (almost surely) to ensure positive

demand and revenue for the firm.

Next, we assume that investments on product design and service support enhancements

exhibit diminishing marginal returns. That is, if f i
r(r

i) , qi2 − q1 and f i
s(s

i) , ρi2 − ρ1, then

∂f i
r

∂ri
> 0, ∂2f i

r

∂(ri)2
< 0 and ∂f i

s

∂si
> 0, ∂2f i

s

∂(si)2
< 0. For tractability of the solutions, in this paper,

we assume that

qi2 − q1 = kir ·
√
ri;

ρi2 − ρ1 = kis ·
√
si.

(Insights found in this paper generalize to more complex function forms but closed form

solutions may no longer be available.) The location-dependent parameters, kir and kis, reflect

the return rates of the investment on product and service quality enhancements. We assume

they are not too big in that eventually the firm loses money if it invests r → ∞ or s → ∞.

Specifically, we require (aqk
i
r)

2 + (aρk
i
s)

2 < 4ap.

As the firm’s goal is to maximize its expected after-tax future profit of selling both genera-

tions of the product at the end market over two periods, its optimal location decision i∗ is

given by

i∗ = argmax
i







max
pi1,r

i,si,pi2







E
Ci

1,A1,Ci
2,A2

2
∑

j=1

(1− vi)(pij − Ci
j)D

i
j − f i + gi − ri − si













(4.2)

103



We assume the random intercept of the demand function Ai
j is independent of the random

landed cost Ci
j for j ∈ {1, 2}. Then, expression (4.2) in i∗ becomes

argmax
i

{ max
pi
1,r

i,si,pi
2

{ E
Ci

1

E
A1

(1− vi)(pi1 − Ci
1)D

i
1 + E

Ci
2

E
A2

(1− vi)(pi2 − Ci
2)D

i
2 − ri − si } − f i + gi }

(4.3)

4.3.3. Optimal Solutions and Structural Results

The optimal decisions to the two-period basic model are given in the following theorem.

Theorem 12 (Optimal Decisions.) The optimal sourcing location decision is given by

i∗ =argmax
i

{(1− vi)

4ap
[E(A1) + aq · q1 + aρ · ρ1 − ap · E(Ci

1)]
2 +

(1− vi)ap · V ar(Ci
1)

4

+
(1− vi)[E(A2) + aq · q1 + aρ · ρ1 − aip · E(Ci

2)]
2

4ap − (1− vi)[(aqkir)
2 + (aρkis)

2]
+

(1− vi)ap · V ar(Ci
2)

4
− f i + gi}

(4.4)

where the optimal Period-1 price decision contingent on the realized landed cost ci1 is given

by

pi1
∗
(vi, ci1) =

1

2ap
[E(A1) + aq · q1 + aρ · ρ1 + ap · ci1], (4.5)

the optimal investment decisions on product and service quality enhancement are given by

ri
∗
(vi) =(aqk

i
r)

2

{

(1− vi)[E(A2) + aq · q1 + aρ · ρ1 − ap · E(Ci
2)]

4ap − (1− vi)[(aqkir)
2 + (aρkis)

2]

}2

(4.6)

si
∗
(vi) =(aρk

i
s)

2

{

(1− vi)[E(A2) + aq · q1 + aρ · ρ1 − ap · E(Ci
2)]

4ap − (1− v)[(aiqk
i
r)

2 + (aiρk
i
s)

2]

}2

, (4.7)

and the optimal Period-2 price decision contingent on the realized landed cost ci2 is given by

pi2
∗
(vi, ci2) =

2

4ap − (1− v)[(aiqk
i
r)

2 + (aiρk
i
s)

2]
[E(A2) + aq · q1 + aρ · ρ1]

+
1

2ap

4ap − 2(1− v)[(aiqk
i
r)

2 + (aiρk
i
s)

2]

4ap − (1− v)[(aiqk
i
r)

2 + (aiρk
i
s)

2]
ap · ci2, (4.8)
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Proof: In order to solve for the optimal decisions to the two-period model, we proceed by

backward induction.

(i) The decision pi2 is made by the firm given i, vi, qi2, ρ
i
2 with the realized landed cost in

Period 2, ci2. The optimal price for the second period is thus given by

pi2
∗
(vi, qi2, ρ

i
2, c

i
2)

, argmax
pi2

{E
A2

(1− vi)(pi2 − ci2)D
i
2}

=argmax
pi2

{E
A2

(pi2 − ci2)(A2 + aq · qi2 + aρ · ρi2 − ap · pi2)}

=argmax
pi2

{(pi2 − ci2)[E(A2) + aq · qi2 + aρ · ρi2 − ap · pi2]}

=
1

2ap
[E(A2) + aq · pi2 + aρ · ρi2 + ap · ci2] (4.9)

Since E(A2)+aq ·qi2+aρ ·ρi2 > ap ·ci2, it is clear that the optimal price decision in the second

period pi2
∗
(vi, qi2, ρ

i
2, c

i
2) will be bigger than the realized landed cost ci2, and increases in it.

The optimal profit (which is contingent on the realized landed cost) is given by

πi
2
∗
(vi, qi2, ρ

i
2, c

i
2)

,max
pi2

{E
A2

(1− vi)(pi2 − ci2)D
i
2}

= E
A2

(1− vi)(pi2 − ci2)D
i
2 |pi2=pi2

∗
(vi,qi2,ρ

i
2,c

i
2)

=
(1− vi)

4ap
[E(A2) + aq · qi2 + aρ · ρi2 − ap · ci2]2

(ii) Decisions on the optimal amount of investment to be made for product design and for

service support enhancements are made given i, and vi but before Period 2. Therefore, the

decisions are
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(ri
∗
(vi), si

∗
(vi))

, argmax
(ri,si)

E
Ci

2

πi
2
∗
(vi, qi2, ρ

i
2, C

i
2)− ri − si

=argmax
(ri,si)

E
Ci

2

(1− vi)

4ap
[E(A2) + aq · qi2 + aρ · ρi2 − ap · Ci

2]
2 − ri − si

=argmax
(ri,si)

(1− vi)

4ap
[E(A2) + aq · qi2 + aρ · ρi2 − ap · E(Ci

2)]
2 +

(1− vi)apV ar(Ci
2)

4
− ri − si

=argmax
(ri,si)

(1− vi)

4ap
[E(A2) + aq · qi2 + aρ · ρi2 − ap · E(Ci

2)]
2 − ri − si

Since qi2 − q1 = kir ·
√
ri and ρi2 − ρ1 = kis ·

√
si, plugging in gives

(ri
∗
(vi), si

∗
(vi))

= argmax
(ri,si)

(1− vi)

4ap
[E(A2) + aq · (q1 + kir

√
ri) + aρ · (ρ1 + kis

√
si)− ap · E(Ci

2)]
2 − ri − si

Solving first and second order conditions leads to

ri
∗
(vi)

(aqkir)
2
=

si
∗
(vi)

(aρkis)
2
. (4.10)

In particular, we have

ri
∗
(vi) =(aqk

i
r)

2

{

(1− vi)[E(A2) + aq · q1 + aρ · ρ1 − ap · E(Ci
2)]

4ap − (1− vi)[(aqkir)
2 + (aρkis)

2]

}2

si
∗
(vi) =(aρk

i
s)

2

{

(1− vi)[E(A2) + aq · q1 + aρ · ρ1 − ap · E(Ci
2)]

4ap − (1− v)[(aiqk
i
r)

2 + (aiρk
i
s)

2]

}2

Plugging in ri
∗
(vi) and si

∗
(vi) into (4.9), we have

pi2
∗
(vi, ci2) =

2

4ap − (1− v)[(aiqk
i
r)

2 + (aiρk
i
s)

2]
[E(A2) + aq · q1 + aρ · ρ1]
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+
1

2ap

4ap − 2(1− v)[(aiqk
i
r)

2 + (aiρk
i
s)

2]

4ap − (1− v)[(aiqk
i
r)

2 + (aiρk
i
s)

2]
ap · ci2.

Through some tedious algebraic operations, the optimal expected profit for the second

period can be solved as

πi
2
∗
(vi) , max

(ri,si)
E
Ci

2

πi
2
∗
(f i, gi, vi, qi2, ρ

i
2, C

i
2)− ri − si

=
(1− vi)[E(A2) + aq · q1 + aρ · ρ1 − aip · E(Ci

2)]
2

4ap − (1− vi)[(aqkir)
2 + (aρkis)

2]
+

(1− vi)ap · V ar(Ci
2)

4
(4.11)

(iii) The price decision for the first period to be made by the firm is conditional on i, vi

and the realized Period-1 landed cost ci1. It is given by

pi1
∗
(vi, ci1) , argmax

pi1

{E
A1

(1− vi)(pi1 − ci1)D
i
1}

=argmax
pi1

{E
A1

(pi1 − ci1)[A1 + aq · q1 + aρ · ρ1 − ap · pi1]}

=argmax
pi1

{(pi1 − ci1)[E(A1) + aq · q1 + aρ · ρ1 − ap · ci1]}

=
1

2ap
[E(A1) + aq · q1 + aρ · ρ1 + ap · ci1]

which is greater than and increases in the realized cost ci1. The optimal profit in Period 1

contingent on the realized the landed cost is

πi
1
∗
(vi, ci1) ,max

pi1

{E
A1

(1− vi)(pi1 − ci1)D
i
1}

= E
A1

(1− vi)(pi1 − ci1)D
i
1 |pi1=pi1

∗
(vi,ci1)

=
(1− vi)

4ap
[E(A1) + aq · q1 + aρ · ρ1 − ap · ci1]2
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Therefore, the expected profit to be received by the firm in Period 1, conditional on pro-

ducing the product in location i, is given by

πi
1
∗
(vi) , E

Ci
1

πi
1
∗
(vi, Ci

1)

= E
Ci

1

(1− vi)

4ap
[E(A1) + aq · q1 + aρ · ρ1 − ap · Ci

1]
2

=
(1− vi)

4ap
[E(A1) + aq · q1 + aρ · ρ1 − ap · E(Ci

1)]
2 +

(1− vi)ap · V ar(Ci
1)

4
. (4.12)

Using (4.11) and (4.12), we re-write (4.3), the firm’s optimal plant location decision i∗ as

i∗ =argmax
i

{πi
1
∗
(vi) + πi

2
∗
(vi)− f i + gi}

=argmax
i

{(1− vi)

4ap
[E(A1) + aq · q1 + aρ · ρ1 − ap · E(Ci

1)]
2 +

(1− vi)ap · V ar(Ci
1)

4

+
(1− vi)[E(A2) + aq · q1 + aρ · ρ1 − aip · E(Ci

2)]
2

4ap − (1− vi)[(aqkir)
2 + (aρkis)

2]
+

(1− vi)ap · V ar(Ci
2)

4
− f i + gi}

and therefore the theorem follows. �

A number of interesting structural results emerge from Theorem 12:

Marginal Investment Returns. It is clear from (4.10) that the amount to be invested

in product design enhancement versus service support enhancement (i.e., r∗ versus s∗) will

depend on the overall investment return rates, which is the product of the impact of the

investment dollars on product/service quality enhancement (i.e., kir, k
i
s) times the impact of

product/service quality enhancement on boosted demand (i.e., aq, aρ). Furthermore, from

(4.6) and (4.7), we see that if the investment does not generate any return (i.e., kir = 0 or

kis = 0), or if the enhancement of quality derived from the investment does not stimulate

demand (i.e., aq = 0 or aρ = 0), then the investment should not be considered (i.e., r∗ = 0

or s∗ = 0).
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Option Value. From (4.11) and (4.12), it is evident that all else being equal, the expected

profit for each period increases if the corresponding landed cost becomes more volatile.

More precisely, when we compare two sets of distributions on Ci
j with the same mean for

fixed j ∈ {1, 2}, a larger variance would lead to a higher expected profit in Period j. This

result is due to the fact that the firm can freely adjust its price decision according to the

realized cost. Similar observation has been made with other context, e.g., see Ho et al.

(1998).

Value of Quality Enhancement. We note that having the option to invest in design and

service enhancements always leads to higher expected profit. As the return rate increases

(kir ↑ or kis ↑), the expected profit also increases. In fact, if the demand and cost distributions

in both periods are identical, i.e. A1 = A2 , A and Ci
1 = Ci

2 , Ci, we can directly compare

the expected profits from the two periods:

πi
1
∗
(vi) =

(1− vi)

4ap
[E(A) + aq · q1 + aρ · ρ1 − ap · E(Ci)]2 +

(1− vi)ap · V ar(Ci)

4

<
(1− vi)[E(A) + aq · q1 + aρ · ρ1 − aip · E(Ci)]2

4ap − (1− vi)[(aqkir)
2 + (aρkis)

2]
+

(1− vi)ap · V ar(Ci)

4
= πi

2
∗
(vi)

The positive difference, πi
2
∗
(vi) − πi

1
∗
(vi), captures the overall expected investment return

from enhancing the product quality and service quality. The return increases in the mean

demand intercept, the initial given product and service quality, and decreases in the mean

landed cost.

Tipping Point Theory. Let us suppose that the end market being served is in the U.S.,

and consider plant location scenarios for i = U.S. and i = China. The mainstream media

and consultants have argued that since the Chinese wages are growing at more than 15

percent annually, compared to 2 percent in the U.S., the landed cost advantage in producing

a product in China as opposed to the U.S. is falling. And when this advantage falls below

some critical level, companies will choose to re-shore to the U.S. (i.e., the Tipping Point

Theory).
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Figure 10: Comparison of hourly wage received by manufacturing workers in the U.S. and
China. Data is retrieved from the website of U.S. Bureau of Labor Statistics, except that
the last three data points for the Chinese wage are estimated by extrapolation (not available
from the website).

Figure 10 displays the hourly wage for manufacturing workers in the U.S. and in China

from years 2000 to 2012. Note that the absolute wage difference is currently widening in

spite of the inflation rate differences, but it will eventually come down if the wage inflation

trends for both countries continue to hold.

For the purpose of this discussion, let us ignore the variance on landed costs, by assuming

that the firm can perfectly foresee the landed cost from producing the product in China

and in the U.S. for Period 1 and for Period 2, i.e., CChina
1 ≡ cChina

1 , CU.S.
1 ≡ cU.S.1 , CChina

2 ≡

cChina
2 , CU.S.

2 ≡ cU.S.2 . From (4.4), it is evident that, for fixed U.S. landed costs cU.S.1 , cU.S.2 ,

higher Chinese landed costs cChina
1 , cChina

2 drive the decision to favor manufacturing in the

U.S., and vice verse.

However, the validity of the Tipping Point Theory has to be tested when the landed costs

in the U.S. and in China alter from year to year simultaneously, as captured in Figure 10.

We will illustrate by numerical examples in Section 5 that the argument actually may or

may not hold depending on the percentage of labor cost component in the landed cost.
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Country-of-Origin Effect. Note that we did not specifically model the country of origin

effect, i.e., we assume that a customer has the same likelihood of buying two items if they

have the same product quality, service quality and price, but differ only in the country of

origin. However, the existing analysis can be easily extended to model a country-of-origin

effect, by making the parameters Aj , aq, aρ, ap all dependent on the plant location i.

A closer look at expression (4.4) reveals the following two corollaries:

Corollary 2 (Government Policies.) The government can have a major impact on the

firm’s decision by lowering the tax rate vi and by providing more subsidy or training grant

in gi.

Corollary 2 reveals that sufficient government support from location i can compensate for

its higher landed cost or lower investment return rates from quality enhancement (i.e.,

inefficiency of having a distant plant at location i), and results in optimal expected profit

for the firm.

Corollary 3 (Cost vs. Quality.) When the firm incurs a lower landed cost from producing

the product in country i = A, it may still be optimal to build the plant in another country

i = B if kBr > kAr and/or kBs > kAs .

Corollary 3 reveals that the firm has to balance cost and quality in making the optimal

global sourcing location decision. Especially, it may be optimal for the firm to select a

plant with higher landed cost if doing so brings more capability or competitive advantage

for developing new products or for enhancing the quality service.

4.4. EXTENDED MODELS

In this section, we present three extensions to the basic life-cycle analysis that was formu-

lated in Section 3. First, we consider technology decisions for the firm. Second, we allow

the firm to serve multiple demand markets. And lastly, we study the firm’s strategy when

it is allowed to build capacities in more than one plant upfront.
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4.4.1. Technology Decisions

In this subsection, we study a variant of the one-plant one-end-market model introduced in

Section 3, by allowing the firm to invest in technology (e.g., automation and robotic arms)

at the time that it builds the plant. But like the plant, the technology once built will be

used to produce the products in both periods. To derive comparative results, we assume

throughout this subsection that the distributions of the random demand curve intercepts

and those of the landed costs stay the same through two periods, i.e., A1 = A2 , A, and

Ci
1 = Ci

2 , Ci for all i. The rest of the assumptions are the same as the basic model

described in Section 3.

Once the firm decides on an amount of upfront investment t for technology (or no investment

if t = 0), the selected technology will help to reduce future costs. For example, having a

higher level of automation reduces the amount of labor required to produce the product, and

thus it will reduce the total labor cost; employing an RFID (Radio Frequency Identification)

system can save logistic costs for the firm.

If location i has been selected to build the plant, we assume that the technology decision ti

made upfront will reduce realized landed cost from cij to cij(1 − δit) where δit ∈ [0, 1) is the

percentage of cost reduction due to the technology and is a function of t. The cost reduction

function is subject to diminishing returns, i.e.,
∂δit
∂ti

> 0 and
∂2δit
∂(ti)2

< 0. For simplicity, we

assume in the analysis below that 1−δit =
1

1+kit·t
i for t

i ≥ 0 where kit is a resilience parameter

for the technology decision. (A larger value of kit, which leads to higher δit for any fixed ti,

corresponds to a better return on the investment in technology.)

Lemma 11 (Technology Investment Decision.) Given the plant location i, it is optimal for

the firm either not to invest in technology (i.e., ti
∗
= 0), or there exists a unique optimal

investment level ti
∗
> 0. Furthermore, ti

∗
increases in the mean landed cost but decreases

in its variance.

Proof: For a plant at location i with technology investment ti, the expected after-tax two-
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period profit for the firm, πi(ti), can be derived from expression (4.4), as:

πi(ti) =
(1− vi)

4ap
[E(A1) + aq · q1 + aρ · ρ1 − ap · E(Ci

1)(1− δt)]
2 +

(1− vi)ap · V ar(Ci
1)(1− δt)

2

4

+
(1− vi)[E(A2) + aq · q1 + aρ · ρ1 − aip · E(Ci

2)(1− δt)]
2

4ap − (1− vi)[(aqkir)
2 + (aρkis)

2]
+

(1− vi)ap · V ar(Ci
2)(1− δt)

2

4

− f i + gi − ti (4.13)

It follows from (4.13) that

∂πi(ti)

∂ti

=
2(1− vi)

4ap
{[E(A1) + aq · q1 + aρ · ρ1] · ap E(Ci

1)− (ap)
2 · [(E(Ci

1))
2 + V ar(Ci

1)](1− δt)} ·
∂δit
∂ti

+
2(1− vi){[E(A2) + aq · q1 + aρ · ρ1] · ap E(Ci

2)− (ap)
2 · [(E(Ci

2))
2 + V ar(Ci

2)](1− δt)}
4ap − (1− vi)[(aqkir)

2 + (aρkis)
2]

· ∂δ
i
t

∂ti
− 1

(4.14)

Since
∂δit
∂ti

→ 0, we have ∂πi(ti)
∂ti

→ −1. Thus, eventually, an additional dollar invested in

technology barely generates a more reduced cost, and thus is purely an extra dollar in

expense.

When A1 = A2 , Ai, Ci
1 = Ci

2 , Ci, the first order condition in (4.14) can be simplified

into

∂πi(ti)

∂ti
= 2{[ (1− vi)

4ap
+

2(1− vi)

4ap − (1− vi)[(aqkir)
2 + (aρkis)

2]
}×

{[E(A) + aq · q1 + aρ · ρ1] · ap E(Ci)− (ap)
2 · [(E(Ci))2 + V ar(Ci)](1− δt)} ·

∂δit
∂ti

− 1

(4.15)

From (4.15), we derive the second-order derivative:

∂2πi(ti)

∂(ti)2
= 2{ (1− vi)

4ap
+

(1− vi)

4ap − (1− vi)[(aqkir)
2 + (aρkis)

2]
} ·
{

(ap)
2 · [(E(Ci))2 + V ar(Ci)](

∂δit
∂ti

)2

+{[E(A) + aq · q1 + aρ · ρ1] · ap E(Ci)− (ap)
2 · [(E(Ci))2 + V ar(Ci)](1− δt)} ·

∂2δt
∂(ti)2

}

(4.16)
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It follows from expression (4.16) and the assumption δit =
kit·t

i

1+kit·t
i that

∂2πi(ti)

∂(ti)2
= 2{(1− vi)

4ap
+

(1− vi)

4ap − (1− vi)[(aqkir)
2 + (aρkis)

2]
}×

{[E(A1) + aq · q1 + aρ · ρ1] · ap E(Ci
1)−

3

2
(ap)

2 · [(E(Ci
1))

2 + V ar(Ci
1)](1− δt)} ·

∂2δt
∂(ti)2

(4.17)

Since ∂2δt
∂(ti)2

< 0, when [E(A1) + aq · q1 + aρ · ρ1] · ap E(Ci
1) ≥ 3

2(ap)
2 · [(E(Ci

1))
2 + V ar(Ci

1)],

∂2πi(ti)
∂(ti)2

is always strictly negative. Therefore, ∂πi(ti)
∂ti

↓ −1. Two scenarios can happen. (i):

∂πi(ti)
∂ti

is negative for all ti ≥ 0. As a result, the firm’s profit, πi(ti), decreases in ti, and it

is optimal for the firm not to invest on any technology (ti
∗ = 0). (ii): ∂πi(ti)

∂ti
is positive for

small ti ≥ 0 and becomes negative for large ti ≥ 0. In this case, the firm’s profit function,

πi(ti), is unimodal in ti and there exists a unique optimal technology decision ti
∗ > 0.

On the other hand, when [E(A1)+aq ·q1+aρ ·ρ1] ·ap E(Ci
1) <

3
2(ap)

2 · [(E(Ci
1))

2+V ar(Ci
1)],

∂2πi(ti)
∂(ti)2

is positive for small ti ≥ 0 and negative for large ti ≥ 0. Therefore, ∂πi(ti)
∂ti

increases

for a small ti ≥ 0, decreases for a large ti ≥ 0, and as ti → ∞ it approaches −1. Scenarios

(i) and (ii) are still possible. In addition, there could be scenario (iii) where ∂πi(ti)
∂ti

, ti ≥ 0 is

first negative, then positive, and eventually negative again. Equivalently, the firm’s profit

function, πi(ti), first decreases, then increases, and eventually decreases again in ti. It

follows that it is optimal for the firm either not to invest (ti
∗ = 0), or that an optimal

investment level ti
∗ > 0 exists.

Considering all of the cases discussed, the first order condition in (4.15) can be used to

solve for the (interior) optimal technology decision. Since E(A)+ aq · q1+ aρ · ρ1 > ap E(C
i)

from (4.1), we know [E(A) + aq · q1 + aρ · ρ1] · ap E(Ci) > (ap)
2(E(Ci))2 in (4.15), and it

follows then that when the mean of the landed cost increases (E(Ci) ↑) and/or its variance

decreases (V ar(Ci) ↓), the firm should invest more in technology (ti
∗ ↑). �

It is intuitive that more technology investment is welcome when the mean cost goes up,
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however, it is surprising that the same direction holds when variance decreases. Note that

when variance of the cost decreases (while holding the mean fixed), the option value due to

variable cost decreases, and thus manufacturing becomes more costly on average – a similar

effect as pulling up the mean.

We demonstrate in the following theorem that when two plant locations enjoy comparable

government subsidies and technology adaptability, the option to invest in technology im-

proves the chances that the country with the higher landed cost is selected for the plant

site, as opposed to the case when the firm cannot invest in technology.

Theorem 13 (Technology Investment.) If i = A and i = B are two candidate plant sites

with gA − fA = gB − fB and δAt = δBt for t ≥ 0. WLOG, assume that the landed cost in

A is greater than the landed cost in B. Then, the likelihood that location A being selected

is greater when the firm can invest in technology compared to the case when it cannot. In

other words, when the firm can invest in technology, location B is less likely to be selected.

Proof: Suppose for some landed costs cA > cB that the firm is indifferent between the two

sourcing locations without technology decisions, i.e., from (4.4):

{(1− vA)

4ap
+

(1− vA)

4ap − (1− vA)[(aqkAr )
2 + (aρkAs )

2]
} · [E(A) + aq · q1 + aρ · ρ1 − ap · cA]2

={(1− vB)

4ap
+

(1− vB)

4ap − (1− vB)[(aqkBr )
2 + (aρkBs )

2]
} · [E(A) + aq · q1 + aρ · ρ1 − ap · cB]2

Note that [E(A)+aq ·q1+aρ·ρ1−ap·cA)] < [E(A)+aq ·q1+aρ·ρ1−ap·cB)] due to the difference

in landed costs but (1−vA)
4ap

+ (1−vA)
4ap−(1−vA)[(aqkAr )2+(aρkAs )2]

> (1−vB)
4ap

+ (1−vB)
4ap−(1−vB)[(aqkBr )2+(aρkBs )2]

.

As a consequence, fixing cA, if the landed cost in location B is lower than cB, it is optimal

for the firm to product the products in location B, and otherwise in location A.

Now suppose the firm can equip the plant to be built with technology by upfront investment.

Denote tB
∗
the optimal technology decision for the plant in location B if it were to incur a
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landed cost cB. Then, technology can save plant B a total of

{ (1− vB)

4ap
+

(1− vB)

4ap − (1− vB)[(aqkBr )2 + (aρkBs )2]
} · [E(A) + aq · q1 + aρ · ρ1 − ap · cB · (1− δBtB∗)]2

− { (1− vB)

4ap
+

(1− vB)

4ap − (1− vB)[(aqkBr )2 + (aρkBs )2]
} · [E(A) + aq · q1 + aρ · ρ1 − ap · cB ]2 − tB

∗

={ (1− vB)

4ap
+

(1− vB)

4ap − (1− vB)[(aqkBr )2 + (aρkBs )2]
} · ap · cB · δtB∗×

[2E(A) + 2aq · q1 + 2aρ · ρ1 − ap · cB · (2− δBtB∗)]− tB
∗

<{ (1− vB)

4ap
+

(1− vB)

4ap − (1− vB)[(aqkBr )2 + (aρkBs )2]
} · ap · cA · δtB∗×

[2E(A) + 2aq · q1 + 2aρ · ρ1 − ap · cA · (2− δBtB∗)]− tB
∗

<{ (1− vA)

4ap
+

(1− vA)

4ap − (1− vA)[(aqkAr )
2 + (aρkAs )

2]
} · ap · cA · δtB∗×

[2E(A) + 2aq · q1 + 2aρ · ρ1 − ap · cA · (2− δAtB∗)]− tB
∗

(4.18)

Expression (4.18) is in fact the saving in cost for plant A if tB
∗
is invested in technology

with a landed cost cA. Of course, this saving is smaller (for plant A) compared to the case

when the optimal technology level for plant a, say some tA
∗
, is invested upfront. Therefore,

with the ability to invest technology, the firm would prefer to build the plant in location A

compared to B when the landed costs are cA and cB, respectively. (The firm is indifferent

with the two locations if it cannot invest in technology.) Therefore, technology decisions

increases the chances that location A is selected for the plant site. �

4.4.2. Single-plant Multiple-market Model

In this subsection, we extend the basic single-plant single-market model of Section 3 to

multiple markets. We will start with two markets A and B. For period j ∈ {1, 2}, the

demand parameters that describe market l ∈ {A,B} are denoted as Al
j , a

l
q, a

l
ρ and alp. The

landed cost in period j ∈ {1, 2} for producing an item in country i and then selling it in

market l ∈ {A,B} is denoted by the random variable Ci,l
j .

Since there is only one plant, we assume that the firm produces and supplies products of the

same product quality to both markets. We still use q1 to denote the initial (given) product
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quality for Period 1, and as in the basic model, the firm can invest in quality enhancement

to improve the product quality to some optimal level qi2 in Period 2 which depends on the

underlying choice of plant location i.

On the other hand, since there are two markets now, the firm can serve them with different

service levels. We denote ρl1 and ρi,l2 the given service quality and the improved service

quality in Period 1 and Period 2, respectively, for market l ∈ {A,B} when the firm has

selected location i to build the plant.

To be consistent with the basic model, we assume that

qi2 − q1 = kir ·
√
ri;

ρi,A2 − ρA1 = ki,As ·
√
si,A;

ρi,B2 − ρA1 = ki,Bs ·
√
si,B

where ri is the amount of investment made for product quality enhancement, and si,A,

si,B are the investments for service quality enhancement in markets A and B, respectively,

all conditional on the plant location i. In other words, for the initial given quality levels

(q1, ρ
A
1 , ρ

B
1 ) in Period 1, the investment return rates kir, k

i,A
s , ki,Bs all depend on the plant

location i, thus leading to different investment strategies and different quality levels in the

second period. We impose the condition that 2(aqk
i
r)

2 + (aρk
i,A
s )2 < 4ap and 2(aqk

i
r)

2 +

(aρk
i,B
s )2 < 4ap.

If some location i is to be selected for the plant site, the optimal investment decisions satisfy

(ri
∗
, si,A

∗
, si,B

∗
)

, argmax
(ri,si,A,si,B)

{

(1− vi)

4aAp
[E(AA

2 ) + aAq · (q1 + kir ·
√
ri) + aAρ · (ρ1 + ki,As ·

√
si,A)− aAp E(Ci,A

2 )]2

+
(1− vi)

4aBp
[E(AB

2 ) + aBq · (q1 + kir ·
√
ri) + aBρ · (ρ1 + ki,Bs ·

√
si,B)− aBp E(Ci,B

2 )]2

+
(1− vi)aAp · V ar(Ci,A

2 )

4
+

(1− vi)aBp · V ar(Ci,B
2 )

4
− ri − si,A − si,B

}

(4.19)
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The first order conditions with respect to si,A yields,

[E(AA
2 ) + aAq · q1 + aAρ · ρ1] · aAρ ki,As

1√
si,A

∗
+ aAq k

i
r · aAρ ki,As

√
ri

∗

√
si,A

∗
+ (aAρ k

i,A
s )2 −

4aAp
(1− vi)

= 0

iff
√

si,A
∗
=

1− vi

4aAp − (1− vi)(aAρ k
i,A
s )2

·
{

[E(AA
2 ) + aAq · q1 + aAρ · ρ1] · aAρ ki,As + aAq k

i
r · aAρ ki,As

√

ri
∗
}

(4.20)

Similarly, the first order conditions with respect to si,B yields,

[E(AB
2 ) + aBq · q1 + aBρ · ρ1] · aBρ ki,Bs

1√
si,B

∗
+ aBq k

i
r · aBρ ki,Bs

√
ri

∗

√
si,B

∗
+ (aBρ k

i,B
s )2 −

4aBp
(1− vi)

= 0

iff
√

si,B
∗
=

1− vi

4aBp − (1− vi)(aBρ k
i,B
s )2

·
{

[E(AB
2 ) + aBq · q1 + aBρ · ρ1] · aBρ ki,Bs + aBq k

i
r · aBρ ki,Bs

√

ri
∗
}

(4.21)

Plugging (4.20) and (4.21) back into (4.19) and after quite tedious algebraic simplifications,

one can derive the optimal expected profit for the second period as

πi
2
∗
=

1− vi

4aAp − (1− vi)(aAρ k
i,A
s )2

[E(AA
2 ) + aAq · (q1 + kir ·

√

ri∗) + aAρ · ρ1 − aAp E(Ci,A
2 )]2

+
1− vi

4aBp − (1− vi)(aBρ k
i,B
s )2

[E(AB
2 ) + aBq · (q1 + kir ·

√

ri∗) + aBρ · ρ1 − aBp E(Ci,B
2 )]2

+
(1− vi)aAp · V ar(Ci,A

2 )

4
+

(1− vi)aBp · V ar(Ci,B
2 )

4
− ri

∗
(4.22)

where ri
∗
is the optimal amount of investment in product quality.

Optimizing expression (4.22) with respect to ri
∗
gives

√

ri∗ =

∑

l=A,B

1−vi

4alp−(1−vi)(alρk
i,l
s )2

[E(Al
2) + alq · q1 + alρ · ρ1 − alp E(C

i,l
2 )] · alqkir

1−
∑

l=A,B

(1−vi)(alqk
i
r)

2

4alp−(1−vi)(alρk
i,l
s )2

(4.23)

By plugging (4.23) back into (4.22), the optimal expected profit for the second period
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becomes

πi
2

∗
(A,B)

=
∑

l=A,B

{

1− vi

4alp − (1− vi)(alρk
i,l
s )2

[E(Al
2) + alq · q1 + alρ · ρ1 − alp E(C

i,l
2 )]2 +

(1− vi)alp · V ar(Ci,l
2 )

4

}

+

{

∑

l=A,B

1−vi

4al
p−(1−vi)(al

ρk
i,l
s )2

[E(Al
2) + alq · q1 + alρ · ρ1 − alp E(C

i,l
2 )] · alqkir

}2

1− ∑

l=A,B

(1−vi)(al
qk

i
r)

2

4al
p−(1−vi)(al

ρk
i,l
s )2

(4.24)

It is easy to check that the optimal expected profit for the second period characterized by

(4.24) increases with each of the investment return rates kir, k
i,A
s , ki,Bs . Compare this with

the optimal expected profit in the first period, i.e.,

πi
1
∗
(A,B) =

∑

l=A,B

{

1− vi

4alp
[E(Al

1) + alq · q1 + alρ · ρ1 − alp E(C
i,l
1 )]2 +

(1− vi)alp · V ar(Ci,l
1 )

4

}

(4.25)

we can clearly see the value for quality enhancement, and the option value of the variance

of the landed cost. Furthermore, the optimal location decision when there are two markets

A and B is given by

i∗(A,B) = argmax
i

{πi
1
∗
(A,B) + πi

2
∗
(A,B)− f i + gi}.

The structure shares the same trade-offs among landed costs, capability of quality enhance-

ment and government policies, just as in the basic model. But with multiple markets, we

can conclude that the sourcing location decision depends on the demand sizes of individual

markets and derive the following result.

Theorem 14 (Local Market) If the local market in country i is big and/or growing, the

firm is more likely to produce the plants in its location.

Finally, it is a straight-forward exercise to show that when there are N end markets denoted
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by some set Sm, the optimal sourcing location decision for the firm is

i∗(Sm) = argmax
i

{πi
1
∗
(Sm) + πi

2
∗
(Sm)− f i + gi}

where πi
1

∗
(Sm) =

∑

l∈Sm

{

1− vi

4alp
[E(Al

1) + alq · q1 + alρ · ρ1 − alp E(C
i,l
1 )]2 +

(1− vi)alpV ar(Ci,l
1 )

4

}

and πi
2
∗
(Sm) =

∑

l∈Sm

{

1− vi

4alp − (1− vi)(alρk
i,l
s )2

[E(Al
2) + alq · q1 + alρ · ρ1 − alp E(C

i,l
2 )]2

+
(1− vi)alp · V ar(Ci,l

2 )

4

}

+

{

∑

l∈Sm

1−vi

4alp−(1−vi)(alρk
i,l
s )2

[E(Al
2) + alq · q1 + alρ · ρ1 − alp E(C

i,l
2 )] · alqkir

}2

1− ∑

l∈Sm

(1−vi)(alqk
i
r)

2

4alp−(1−vi)(alρk
i,l
s )2

4.4.3. Multiple-plant Single-market Model

In this subsection, we construct an extension to the basic model in Section 3 by allowing

the firm to invest in N plants upfront, denoted by some location set Sp. Depending on

the realized landed costs in each of the two periods, the firm can then specify a location

subset of Sp to use for production, in order to optimize its overall policy. For example,

a firm that owns both a Chinese plant and a Mexican plant can switch some or all of its

scheduled production from China to Mexico in Period 2, if labor wages in China undergo an

unusual increase due to intervention of the government. Since we do not impose production

capacities in our model, an optimal policy can always be achieved by producing all of the

volumes required in one available plant during each period.

Switching manufacturing plants usually does not come for free. To have the option to be

flexible, often referred to as the “real option”, the firm must pay fixed costs upfront to
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multiple plants to build or secure their capacities. In addition, we still assume that the firm

can choose to invest in product and service quality enhancement within the first period.

Nevertheless, the effectiveness of the quality enhancement would go down if production is

shifted to a new plant before the second period, since process and service support improve-

ments that are developed for the plant used in Period 1 may not and most likely will not be

fully carried over to the plant in Period 2. This is an equivalent notion of switching costs

in a model when a fraction of the entire production volume can be relocated.

Suppose the firm produces the product in location i during the first period, and has invested

r and s dollars respectively in product and service quality enhancement, but switches to

plant j in the second period. Then, given the initial quality bundle (q1, ρ1), we assume that

the quality of the product to be launched in the second period can be characterized by

(qj2, ρ
j
2) = (q1 + f i

r(r) · (1− φi
ij), ρ1 + f i

s(s) · (1− φi
ij))

where

φi
ij















= 0 if j = i

∈ [0, 1] if j 6= i

(4.26)

denotes the loss in quality enhancement as a result of switching from locations i to j.

We conduct the analysis below for when it is optimal for the firm to build multiple plants

rather than one plant upfront. Let us denote πSp to be the optimal expected after-tax

two-period profit for the firm when it can produce in the plant set Sp, and π
Sp,i
2 (rSp,i, sSp,i)

to be the optimal expected after-tax profit for the second period given that plant i is being

used, and ri and si are invested in product and service quality enhancement in the first

period.

Depending on the realizations of the second period landed costs, {ca2 : a ∈ Sp}, a firm who

has produced the product in plant i in the first period with quality investment levels ri and

si can strategically decide if it will continue to produce the products in plant i, or if it will
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switch to another plant for the second period. Its optimal expected after-tax profit for the

second period thus depends on the joint distribution of the landed costs {Ca
2 : a ∈ Sp}:

π
Sp,i
2 (rSp,i, sSp,i)

= E
{Ca

2 :a∈Sp}

{

max
j∈Sp

1− vj

4ap
[E(A2) + aq · [q1 + f i

r(r
Sp,i) · φi

ij ] + aρ · [ρ1 + f i
s(s

Sp,i) · φi
ij ]− Cj

2 ]
2

}

(4.27)

To derive the first-period optimal quality enhancement decisions rSp,i and sSp,i, given that

location i is used in the first period, the firm needs to take into consideration all possible

circumstances that could arise during the second period. For example, if there is a high

likelihood that the firm needs to switch location for Period 2, and/or the switching effect

is severe (i.e., φij is high), then it may not be optimal for the firm to invest tremendously

on product and service quality enhancement during the first period. The optimal decisions

are given as

(rSp,i∗, sSp,i∗) = argmax
rSp,i,sSp,i

π
Sp,i
2 (rSp,i, sSp,i)− rSp,i − sSp,i (4.28)

Therefore, the optimal expected after-tax two-period profit for the firm when it has flexi-

bility of the plant set Sp is:

πSp = E
{Ca

1 :a∈Sp}
max
i∈Sp

{

1− vi

4ap
[E(A1) + aqq1 + aρρ1 − Ci

1)]
2 + π

Sp,i
2 (rSp,i

∗
, sSp,i

∗
)− rSp,i

∗ − sSp,i
∗
}

(4.29)

Real Option. When the firm can only produce at location i, its optimal expected after-tax

two-period profit, πi, can be expressed as

πi = E
Ci

1

1− vi

4ap
[E(A1) + aqq1 + aρρ1 − Ci

1]
2

+ E
Ci

2

1− vi

4ap
[E(A1) + aq[q1 + f i

r(r
i∗)] + aρ[ρ1 + f i

r(s
i∗)]− Ci

2]
2 − ri

∗ − si
∗

(4.30)

where ri
∗
and si

∗
are the optimal quality enhancement decisions in the first period.
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Using (4.27) and (4.28), it is clear that πSp in (4.29) is greater than πi in (4.30) for any

i ∈ Sp. The positive difference, π
Sp−πi, represents the real option value of having flexibility,

i.e., being able to produce the products in multiple plants, as opposed to being able to use

only the plant i. Given the distributions of the landed costs, numerically we can investigate

the effects of the shape of the distributions, the demand parameters, and the stickiness

parameters φ on the real option value.

Ultimately, real option does not come for free. The firm has to purchase capacities upfront in

order to utilize them during the following the production periods. The following statement

describe the firm’s optimal sourcing location decision. Suppose a fixed cost fSp,i is needed

to secure capacities for plant i meanwhile the firm receives government subsidy gSp,i for

investment, then it is wise for the firm to consider using the plant set Sp if and only if

πSp −
∑

i∈Sp

fSp,i +
∑

i∈Sp

gSp,i ≥ max
i∈Sp

{πi − f i + gi}.

4.5. NUMERICAL ILLUSTRATIONS

In this section, we provide numerical examples to illustrate structural results found in earlier

sections. In these examples, we assume that only the U.S. market is supplied by the firm,

and compare costs and profits across plant locations in the U.S., China, and Mexico. These

correspond to the firm’s “re-shoring”, “off-shoring” and “near-shoring” decisions.

For all the examples, we assume the corporate tax rates for the three countries are vU.S. =

35%, vChina = 25%, vMexico = 30%, and that the historical wage inflation trends will hold

for the next 10 years, i.e., we assume that there will be an annual increase in wages at 15%

for China and at 2% for the U.S. and Mexico. For products supplied to the U.S. market,

we ignore the shipping cost if they are being produced in the U.S., and assume that it costs

China four times more expensive to ship the product than it costs Mexico.
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Example (i). In this example, we demonstrate that lower fixed costs and favorable govern-

ment incentives (i.e. increasing gi and/or decreasing f i, vi) encourage sourcing (to country

i), by considering industries with high labor cost and low shipping cost relative to other

costs, e.g., the apparel/footwear and the electronics industries.

We normalize the landed cost for manufacturing in the Chinese plant in year 2014 to be $1,

and assume that the labor cost accounts for 20% of the landed cost while the shipping cost

to the U.S. accounts for 3%. Figure 11 displays the estimated landed costs for producing

the product in the U.S., China, and Mexico, respectively, for years 2014-2024.

Figure 11: Estimated landed cost for a product that has high labor cost and low shipping
cost.

It is clear from Figure 11 that China and Mexico have tremendous landed cost advantages

over the U.S. in the industries noted above. In year 2019 and onward, Mexico is estimated

to have a lower landed cost compared to China due to a lower wage inflation rate.

In Figure 12, we examine the firm’s expected profits. We normalize the base portion of

the demand, E(A1) + aqq1 + aρρ1, to be 1000, and set (aqk
U.S.
r )2 = (aqk

U.S.
s )2 = 100,

(aqk
China
r )2 = (aqk

China
s )2 = 0, (aqk

Mexico
r )2 = (aqk

Mexico
s )2 = 100. The difference between

Figure 12/(a) and Figure 12/(b) is only that gU.S. − fU.S. = gChina − fChina = gMexico −

fMexico = 0 for Figure 12/(a), while gU.S. − fU.S. = gChina − fChina = 0 and gMexico −

fMexico = 100 for Figure 12/(b).
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(a) No government subsidy. (b) Government subsidy from Mexico

Figure 12: Expected profit for producing a product that has high labor cost and low shipping
cost.

We see from Figure 12 that a relative small financial subsidy from the local government in

Mexico could shift the tipping point to as early as now, enabling Mexico to become the most

ideal location to produce apparel, footwear and electronics for the U.S. market. All else

being equal, we predict that the apparel/footwear industry will off-shore to Mexico earlier

than the electronics industry due to lower fixed cost needed upfront. On the other hand,

these industries noted here are very unlikely to re-shore to the U.S., given the enormous

landed cost disadvantage.

Example (ii). In this example, we demonstrate that enhanced technology would reduce the

impact of the landed cost advantage in making sourcing decisions. We consider industries

with high labor cost and high shipping cost relative to other costs, e.g., automobile and

appliances companies.

We still normalize the landed cost in a plant located in China in year 2014 to be $1, but

assume now that the labor cost accounts for 15% of the landed cost while the shipping cost

to the U.S. accounts for 30%. Figure 13 displays the estimated landed costs for producing

such a product in the U.S., China, and Mexico for years 2014-2024.

Since the shipping cost to the U.S. market is much more significant for this product com-

pared to that in Example (i), we see from Figure 13 that Mexico is awarded with the lowest
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Figure 13: Estimated landed cost for a product that has high labor input and high shipping
cost.

landed cost among the three country locations. In contrast, a plant in the U.S. would still

incur the highest landed cost because of the relative high labor input required to produce

the product.

We examine the firm’s expected profits without the option to invest in technology in Figure

14/(a) and with the option to invest in technology in Figure 14/(b). The base portion of the

demand, E(A1)+ aqq1+ aρρ1, is still normalized to be 1000. This time, we set (aqk
U.S.
r )2 =

(aqk
U.S.
s )2 = 500, (aqk

Mexico
r )2 = (aqk

Mexico
s )2 = 250, (aqk

China
r )2 = (aqk

China
s )2 = 0 as

estimates for the location-dependent parameters that describe investment return rates on

product and service quality enhancement in the automobile and appliances industries.

The managerial insights we can learn from Figure 14/(a) is that, without the option to

invest in technology such as automation and robotic arms, near-shoring to Mexico is by far

considered as the best strategy for the firm in terms of the sourcing location decision, as

Mexico balances low labor cost with low shipping cost. Many companies in the automobile

and appliance industries have in fact already started manufacturing products in Mexico to

supply their U.S. market.

Nevertheless, if the firm has the ability to equip its plant with enhanced technology, we see

from 14/(b) that it will save much more for a plant in the U.S. compared to a plant in China
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(a) No technology. (b) Enhanced technology

Figure 14: Expected profit for producing a product that has high labor cost and high
shipping cost.

or in Mexico because of the higher labor wage in the U.S. As a result, with this particular

example, that enhanced technology can totally negate the high labor cost disadvantage. We

predict that with technology advances, the automobile industry and the appliances industry

would be among those that consider to re-shore to the U.S.

Example (iii). In this example, we demonstrate that when outsourcing leads to a loss of

capability for the firm to innovate product or to improve service, it may be optimal for it

to manufacture the products closer to the headquarters or the market, even if that means

higher landed cost.

Specifically, we consider industries with low labor cost and high shipping cost relative to

the landed cost in this case, e.g., the heavy machinery industry or the aerospace & defense

industry. Note that in such industries, hourly labor wages are high due to the employment

of highly-skilled workers. However, considering the enormous raw material cost and logistic

cost, total labor cost component accounts for a relatively small percentage in the landed

cost.

Figure 15/(a) displays the estimated landed costs for producing a product in the industries

noted above in the U.S., China, and Mexico for years 2014-2024. We still normalize the

landed cost in a plant in China in 2014 to be $1, but assume now that the labor cost
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accounts for 3% of the landed cost while the shipping cost to the U.S. accounts for 30%.

Figure 15/(b) displays the expected profit, with the base portion of the demand, E(A1) +

aqq1 + aρρ1 still being 1000. Like in Example (ii), we set (aqk
U.S.
r )2 = (aqk

U.S.
s )2 = 500,

(aqk
China
r )2 = (aqk

China
s )2 = 0, (aqk

Mexico
r )2 = (aqk

Mexico
s )2 = 250, to capture the impact

of proximity on product innovation and service enhancement capabilities.

(a) Estimated landed cost. (b) Expected profit

Figure 15: Estimated landed cost and expected profit for producing a product that has low
labor cost and high shipping cost.

We observe from Figure 15/(a) that because of low labor input and high shipping cost,

the landed cost of producing the product in the U.S. is quite close to the landed cost of

producing the product in China or in Mexico. While Mexico still gives us the lowest landed

cost considering the low labor wage in the country and its proximity to the U.S. market,

China would in fact become the most expensive place for production in a few years, as a

consequence of its rising labor wages and further off-shore location.

Nevertheless, when we examine the expected profit displayed in Figure 15/(b), a plant site in

the U.S. becomes a clear winner. We predict that these industries including heavy machinery

or aerospace & defense industries will stay in the United States, or other developed countries

like Japan and Germany, to maintain high innovation and service levels.
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4.6. CONCLUSIONS

Many manufacturing firms in the U.S. are re-examining the structure of their global supply

chains and their associated sourcing strategy in response to the uncertainties and risks they

face nowadays. For decades, a dominant strategy in manufacturing has been to outsource to

low cost global suppliers. This has led to the transfer of manufacturing jobs and development

activities out of the U.S., and into low labor cost countries such as China, India and Vietnam.

In recent years, however, this trend is being challenged by some companies’ “re-shoring”

and “near-shoring” decisions.

In contrast to traditional analysis where labor cost savings are evaluated versus transporta-

tion costs, we propose a comprehensive model framework for this global sourcing location

decision process that incorporates perspectives over the entire life cycle of a product, i.e.,

product design, manufacturing and delivering, and after-sale service support.

We use our framework to test the validity of various competing theories on global sourcing,

and find indeed that (i) Favorable government policies such as lower corporate tax rates

and greater financial subsidies can have a major positive impact on sourcing decisions;

(ii) Technology developments (such as enhanced automation) can negate the landed cost

disadvantage, especially for products that require substantial labor input; (iii) Consideration

in capability to develop new products and higher service standard can override cost concerns

in decision-making.

To extend the basic one-plant one-market model, we consider both the one-plant N-market

scenario and the N-plant one-market scenario. With the former, it is easy to check that the

sourcing location decision depends on the underlying market distribution, and when the

local market in a specific country is big and/or growing, the firm is more likely to select a

plant in its location. With the latter, the decision-making becomes a trade-off between the

value of real option and the upfront sunk cost needed to open and operate multiple plants.

Numerical examples are provided in the paper to support the structural results identified
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from the model. We predict that industries with high labor cost and low shipping cost

relative to the landed cost (e.g., apparel and electronics industries) are unlikely to come

back to the U.S.; Industries with relatively high labor cost and low shipping cost (e.g.,

automobile and appliances industries) will benefit from production in the U.S. if and only if

the plant being used is equipped with enhanced automation; And industries with relatively

low labor cost and high shipping cost (e.g., heavy machinery and aerospace & defense

industries) will remain their manufacturing in the U.S., to maintain high innovation and

high service levels.
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APPENDICES

APPENDIX TO CHAPTER 2

Proof of Lemma 1:

(i) By construction, the entire probability mass at one end of the distribution is transferred

to the middle of the support. As a result, the range of the random variable ÑK+1 is a

strict subset of the range of ÑK . Specifically, a(K+1)1 = aK1 +1 if fK(aK1) ≤ fK(aKn) and

a(K+1)N = aKN
− 1 if fK(aK1) ≥ fK(aKn). The length of the range of ÑK , |aKn − aK1 |, is

strictly decreasing in K. Within a finite number of steps, for some time K = T , the length

will be less than 2. When aTn − 1 < aT1 + 1, the process stops. Thus, T is finite.

(ii) We show that FK+1 ≤SMPS FK . Let ai1 , ai2 , ai3 , ai4 in Definition 2 be aK1 , aK1 + 1,

aKn−1 and aKn respectively. fK+1 = fK for all but these four points. Define γik = fK(aik)−

fK+1(aik) for k = 1, 2, 3, 4. Then, γi1 = −γi2 = −γi3 = γi4 = min{fK(aK1), fK(aKn)} > 0.

Moreover,
4
∑

k=i

aikγik = [aK1 − (aK1 + 1) − (aKn − 1) + aKn ] min{fK(aK1), fK(aKn)} =

0 ·min{fK(aK1), fK(aKn)} = 0. �

Proof of Lemma 2:

Suppose that ÑT has two elements which are not consecutive. Then, it must be that

aT1 + 1 < aTn . By Construction 1, then sequence is not completed, which contradicts the

definition of T . Else, suppose that ÑT has three or more elements. Again, it must be that

aT1 + 1 < aTn , and hence, the sequence in Construction 1 is incomplete, which contradicts

the definition of T . Therefore, ÑT can either take a single value or two consecutive values.

Case (i): When if E(Ñ0) is an integer, since the transformation is mean preserving, we have

ÑT is a singleton with ÑT = E(Ñ0) = ⌊E(Ñ0)⌋ = ⌈E(Ñ0)⌉. Case (ii): When E(Ñ0) is not

an integer, ÑT cannot be a singleton. Thus, ÑT takes on two consecutive values. Since the

transformation in Construction 1 is mean-preserving with E(Ñ0), we have E(ÑT ) = E(Ñ0).

Then we must have ÑT ∈ {⌊E(Ñ0)⌋, ⌈E(Ñ0)⌉}, with Pr(ÑT = ⌊E(Ñ0)⌋)⌊E(Ñ0)⌋+Pr(ÑT =

⌈E(Ñ0)⌉)⌈E(Ñ0)⌉ = E(Ñ0). It is also clear that the distribution of ÑT is independent of
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the distribution of Ñ0. �

Proof of Lemma 3:

(i) For j ∈ {K,K + 1}, recall from (2.6) that RÑj
= pλeff,Ñj

= pµ(1 − π0) where π0 =

1/

(

1 +
∞
∑

i=1
ρi

i−1
∏

n=0
F̄j(n)

)

. It is thus sufficient to show that

∞
∑

i=1

ρi
i−1
∏

n=0

F̄K(n) <
∞
∑

i=1

ρi
i−1
∏

n=0

F̄K+1(n). (A.1)

To verify (A.1), our strategy is to form a partition of i ∈ {0, 1, 2, ...} based on the sign

of ρi
i−1
∏

n=0
F̄K(n) − ρi

i−1
∏

n=0
F̄K+1(n). We specifically focus on terms that make the product

i−1
∏

n=0
F̄K(n), namely F̄K(n). Since F̄K(n) = fK(n+1)+fK(n+2)+. . ., applying Construction

1, we have

F̄K+1(0) = F̄K(0) = 1,

F̄K+1(1) = F̄K(1) = 1,

...

F̄K+1(aK1 − 1) = F̄K(aK1 − 1) = 1,

F̄K+1(aK1) = F̄K(aK1) + min{fK(aK1), fK(aKn)} ∈ (0, 1],

F̄K+1(aK1 + 1) = F̄K(aK1 + 1) ∈ (0, 1),

F̄K+1(aK1 + 2) = F̄K(aK1 + 2) ∈ (0, 1),

...

F̄K+1(aKn − 2) = F̄K(aKn − 2) ∈ (0, 1),

F̄K+1(aKn) = F̄K(aKn) = 0,

F̄K+1(aKn + 1) = F̄K(aKn + 1) = 0,

...

(A.2)
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Thus, using transformation of ÑK to ÑK+1 in Construction 1, we see that F̄K(n) differs from

F̄K+1(n) at only two points, specifically n = aK1 and n = aKn − 1. In order to show (A.1),

we verify, as an intermediate step, that F̄K+1(aK1)·F̄K+1(aKn−1) < F̄K(aK1)·F̄K(aKn−1).

We have

F̄K+1(aK1) · F̄K+1(aKn − 1)

=[F̄K(aK1) + min{fK(aK1), fK(aKn)}][F̄K(aKn − 1)−min{fK(aK1), fK(aKn)}]

=F̄K(aK1)F̄K(aKn − 1)

+ min{fK(aK1), fK(aKn)}[F̄K(aKn − 1)− F̄K(aK1)−min{fK(aK1), fK(aKn)}]

<F̄K(aK1)F̄K(aKn − 1) since F̄K(aKn − 1) ≤ F̄K(aK1). (A.3)

Now we define S1 , {1, 2, . . . , aK1}; S2 , {aK1 +1, aK1 +2, . . . , aKn − 1}; S3 , {aKn}; and

S4 , {aKn+1, aKn+2, . . .}. S1, S2, S3 and S4 then form a partition of the space {1, 2, 3, . . .}.

Our goal (A.1) is equivalent to
∑

i∈S1∪S2∪S3∪S4

ρi
i−1
∏

n=0
F̄K(n) <

∑

i∈S1∪S2∪S3∪S4

ρi
i−1
∏

n=0
F̄K+1(n).

From (A.2) and (A.3) we have ∀i ∈ S1 :
i−1
∏

n=0
F̄K(n) =

i−1
∏

n=0
F̄K+1(n) = 1; ∀i ∈ S2 :

i−1
∏

n=0
F̄K(n) <

i−1
∏

n=0
F̄K+1(n); ∀i ∈ S3 :

i−1
∏

n=0
F̄K(n) >

i−1
∏

n=0
F̄K+1(n); and ∀i ∈ S4 :

i−1
∏

n=0
F̄K(n) =

i−1
∏

n=0
F̄K+1(n) = 0.

It is clear that S1 and S4 are collection of the indices i where
i−1
∏

n=0
F̄K(n) =

i−1
∏

n=0
F̄K+1(n).

Hence, to prove (A.1), it suffices to show that
∑

i∈S2
⋃

S3

ρi
i−1
∏

n=0
F̄K(n) <

∑

i∈S2
⋃

S3

ρi
i−1
∏

n=0
F̄K+1(n).

As ρi
i−1
∏

n=0
F̄K(n) < ρi

i−1
∏

n=0
F̄K+1(n) for all i ∈ S2, the inequality will hold, if there exists some

S2′ ⊆ S2 such that

∑

i∈S2′∪S3

ρi
i−1
∏

n=0

F̄K(n) <
∑

i∈S2′∪S3

ρi
i−1
∏

n=0

F̄K+1(n). (A.4)
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On the other hand, the existence of ÑK+1 guarantees that aKn − 1 ≥ aK1 + 1 and aK1 ≥ 1

so there exists at least one index in S2 (i.e., i = aK1 + 1). There is only one element in S3

(i.e., i = aKn). Let us define S2′ , {aK1 + 1}. So S2′ ∪ S3 = {aK1 + 1, aKn}. Inequality

(A.4) is therefore equivalent to

∑

i∈{aK1
+1,aKn}

ρi
i−1
∏

n=0

F̄K(n) <
∑

i∈{aK1
+1,aKn}

ρi
i−1
∏

n=0

F̄K+1(n),

⇔ ρaK1
+1

aK1
∏

n=0

F̄K(n) + ρaKn

aKn−1
∏

n=0

F̄K(n) < ρaK1
+1

aK1
∏

n=0

F̄K+1(n) + ρaKn

aKn−1
∏

n=0

F̄K+1(n).

And the last condition is true because

ρaKn

aKn−1
∏

n=0

F̄K(n)− ρaKn

aKn−1
∏

n=0

F̄K+1(n) < ρaKn min{fK(aK1), fK(aKn)}
aKn−2
∏

n=0

F̄K(n}

≤ρaKn min{fK(aK1), fK(aKn)} < ρaK1
+1min{fK(aK1), fK(aKn)}

=ρaK1
+1min{fK(aK1), fK(aKn)}

aK1
−1

∏

n=0

F̄K(n) = ρaK1
+1

aK1
∏

n=0

F̄K+1(n)− ρaK1
+1

aK1
∏

n=0

F̄K(n).

Therefore, inequality (A.4)-(A.1) all hold by backward induction, and

λe,ÑK
< λe,ÑK+1

(RÑK
< RÑK+1

).

(ii) Using definition of L from equation (2.3), we first show below that LK < LK+1 ⇔

∑

i,j≥0:

∑

i>j

(i− j)ρi+j
j−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n)





i−1
∏

n=j

F̄K+1(n)−
i−1
∏

n=j

F̄K(n)



 > 0 (A.5)

(which also provides an alternative approach to prove Theorem 1/(ii)). LK+1 > LK ⇔

∞
∑

i=0
iρi

i−1
∏

n=0
F̄K+1(n)

∞
∑

i=0
ρi

i−1
∏

n=0
F̄K+1(n)

>

∞
∑

i=0
iρi

i−1
∏

n=0
F̄K(n)

∞
∑

i=0
ρi

i−1
∏

n=0
F̄K(n)

⇔

∞
∑

i=0
iρi

i−1
∏

n=0
F̄K+1(n)

∞
∑

j=0
ρj

j−1
∏

n=0
F̄K+1(n)

>

∞
∑

i=0
iρi

i−1
∏

n=0
F̄K(n)

∞
∑

j=0
ρj

j−1
∏

n=0
F̄K(n)
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⇔
[

∞
∑

i=0

iρi
i−1
∏

n=0

F̄K+1(n)

]





∞
∑

j=0

ρj
j−1
∏

n=0

F̄K(n)



 >

[

∞
∑

i=0

iρi
i−1
∏

n=0

F̄K(n)

]





∞
∑

j=0

ρj
j−1
∏

n=0

F̄K+1(n)



 ,

⇔
∞
∑

i=0

∞
∑

j=0

iρi+j
i−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n) >
∞
∑

i=0

∞
∑

j=0

iρi+j
i−1
∏

n=0

F̄K(n)

j−1
∏

n=0

F̄K+1(n),

⇔
∞
∑

i=0

∞
∑

j=0

iρi+j

(

i−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n)−
i−1
∏

n=0

F̄K(n)

j−1
∏

n=0

F̄K+1(n)

)

> 0,

⇔
∑

i,j>0:

∑

i 6=j

iρi+j

(

i−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n)−
i−1
∏

n=0

F̄K(n)

j−1
∏

n=0

F̄K+1(n)

)

> 0,

⇔
∑

i,j>0:

∑

i>j

iρi+j

(

i−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n)−
i−1
∏

n=0

F̄K(n)

j−1
∏

n=0

F̄K+1(n)

)

+
∑

i,j>0:

∑

i<j

iρi+j

(

i−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n)−
i−1
∏

n=0

F̄K(n)

j−1
∏

n=0

F̄K+1(n)

)

> 0,

⇔
∑

i,j>0:

∑

i>j

iρi+j

(

i−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n)−
i−1
∏

n=0

F̄K(n)

j−1
∏

n=0

F̄K+1(n)

)

+
∑

i,j>0:

∑

i>j

jρi+j

(

j−1
∏

n=0

F̄K+1(n)
i−1
∏

n=0

F̄K(n)−
j−1
∏

n=0

F̄K(n)
i−1
∏

n=0

F̄K+1(n)

)

> 0.

Regrouping again, gives

∑

i,j>0:

∑

i>j

(

(i− j)ρi+j
i−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n) + (j − i)ρi+j
j−1
∏

n=0

F̄K+1(n)

i−1
∏

n=0

F̄K(n)

)

>0,

⇔
∑

i,j>0:

∑

i>j

(i− j)ρi+j

(

i−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n)−
j−1
∏

n=0

F̄K+1(n)
i−1
∏

n=0

F̄K(n)

)

>0,

⇔
∑

i,j>0:

∑

i>j

(i− j)ρi+j
j−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n)





i−1
∏

n=j

F̄K+1(n)−
i−1
∏

n=j

F̄K(n)



 >0.

Since, aKn is the largest value on the support of F̄K , we have F̄K+1(i− 1) = F̄K(i− 1) = 0

for i ∈ {aKn + 1, aKn + 2, . . .}. Hence, those indices can be dropped, which proves (A.5):

LK < LK+1 ⇔
∑

aKn≥i>

∑

j≥0

(i− j)ρi+j

j−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n)





i−1
∏

n=j

F̄K+1(n)−
i−1
∏

n=j

F̄K(n)



 > 0.
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Let us define AK+1(i, j) , (i− j)ρi+j
j−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n)
i−1
∏

n=j

F̄K+1(n);

AK(i, j) , (i− j)ρi+j
j−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n)

i−1
∏

n=j

F̄K(n). (A.6)

Then (A.5) reduces to
∑

aKn≥i>

∑

j≥0
[AK+1(i, j)−AK(i, j)] > 0.

Similar to the approach used in the proof of part (i), our strategy is to form a partition of

(i, j) based on the sign of AK+1(i, j)−AK(i, j). The underlying space is the 2-dimensional

set {(i, j) : aKn ≥ i > j ≥ 0}. Since AK+1(i, j) > AK(i, j) if and only if
i−1
∏

n=j
F̄K+1(n) >

i−1
∏

n=j
F̄K(n), we shall seek a partition over {(i, j) : aKn ≥ i > j ≥ 0} based on the sign of

i−1
∏

n=j
F̄K+1(n)−

i−1
∏

n=j
F̄K(n) instead.

Define G1 , {aKn} × {0, 1, 2, . . . , aKn − 1}; G2 , {aK1 + 1, aK1 + 2, ..., aKn − 2, aKn − 1} ×

{0, 1, 2, . . . , aK1}; and G3 , {(i, j) : aKn ≥ i > j ≥ 0} − {G1 ∪ G2}, i.e., G3 contains all the

elements that are not in G1 or G2.

From (A.2) and (A.3), we can verify that

∀(i, j) ∈ G1 :
i−1
∏

n=j

F̄K+1(n) <
i−1
∏

n=j

F̄K(n) ⇒ AK+1(i, j)−AK(i, j) < 0;

∀(i, j) ∈ G2 :

i−1
∏

n=j

F̄K+1(n) >

i−1
∏

n=j

F̄K(n) ⇒ AK+1(i, j)−AK(i, j) > 0;

∀(i, j) ∈ G3 :

i−1
∏

n=j

F̄K+1(n) =

i−1
∏

n=j

F̄K(n) ⇒ AK+1(i, j)−AK(i, j) = 0.

Since G3 contains all (i, j) where AK+1(i, j) − AK(i, j) = 0, it suffices to just show that

∑

(i,j)∈

∑

G1
⋃

G2

[AK+1(i, j) − AK(i, j)] > 0 as a goal. Also since AK+1(i, j) − AK(i, j) > 0,
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∀ (i, j) ∈ G2, the inequality will hold if there exists a subset G2′ ⊆ G2 such that

∑

(i,j)∈

∑

G1∪G2′

[AK+1(i, j)−AK(i, j)] > 0. (A.7)

We shall prove that the sufficient condition on ρ stated in the lemma guarantees for in-

equality (A.7) to hold. To do that, we consider the elements of G1 and G2 in greater detail.

From the construction of the partition above, we have |G1| = aKn , i.e., there are aKn pairs of

(i, j) in G1, represented by {(aKn , aKn−1), (aKn , aKn−2), (aKn , aKn−3), ..., (aKn , 1), (aKn , 0)}.

On the other hand, |G2| = (aKn − aK1 − 1)(aK1 + 1). Treating aKn − aK1 − 1 and aK1 + 1

as base and height of a rectangular and using the fact that a rectangular shape of fixed

perimeter (aKn) contains less area (|G2|) when the shape is more asymmetric, we can show

that |G2| ≥ aKn − 1, with equality holds only when aK1 = aKn − 2 (or aK1 = 0 which is not

possible).

The aKn − 1 pairs of (i, j) that are guaranteed to reside in G2 can be parametrized as

{(aK1 + 1, aK1), (aK1 + 1, aK1 − 1), (aK1 + 1, aK1 − 2), ..., (aK1 + 1, 1), (aK1 + 1, 0), (aK1 +

2, 0), (aK1 +3, 0), ..., (aKn − 2, 0), (aKn − 1, 0)}. We therefore define this set to be G2′ . Note

that |G1| = aKn and |G2′ | = aKn − 1. We now order elements of G1 and G2′ in a specific way

displayed in Table 2 (each element in either group is itself an (i, j) pair).

We denote Gl
1 : l ∈ {1, 2, . . . , aKn} and Gl

2′ : l ∈ {1, 2, . . . , aKn−1} the l-th element in G1 and

G2′ , respectively, according to the order specified in Table 2. Furthermore, for each Gl
1 and

each Gl
2′ , we specific its Cartesian coordinates by subscript i and j, i.e., Gl

1 = ({Gl
1}i, {Gl

1}j)

and Gl
2′ = ({Gl

2′}i, {Gl
2′}j). For example, {GaKn

1 }i = aKn and {GaK1
2′ }j = 1. We note that

∀ l ∈ {1, 2, . . . , aKn − 1},

{Gl
1}i = aKn = (aKn − 1) + 1 ≥ {Gl

2′}i + 1 > {Gl
2′}i (A.8)

{Gl
1}i − {Gl

1}j = l = {Gl
2′}i − {Gl

2′}j (A.9)
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Order l G1 contains: G2′ contains:

l = 1 (aKn , aKn − 1) (aK1 + 1, aK1)
l = 2 (aKn , aKn − 2) (aK1 + 1, aK1 − 1)
l = 3 (aKn , aKn − 3) (aK1 + 1, aK1 − 2)
...

...
...

l = aK1 − 1 (aKn , aKn − aK1 + 1) (aK1 + 1, 2)
l = aK1 (aKn , aKn − aK1) (aK1 + 1, 1)
l = aK1 + 1 (aKn , aKn − aK1 − 1) (aK1 + 1, 0)
l = aK1 + 2 (aKn , aKn − aK1 − 2) (aK1 + 2, 0)
l = aK1 + 3 (aKn , aKn − aK1 − 3) (aK1 + 3, 0)
...

...
...

l = aKn − 2 (aKn , 2) (aKn − 2, 0)
l = aKn − 1 (aKn , 1) (aKn − 1, 0)
l = aKn (aKn , 0)

Table 2: G1 and G2′ used in the proof of Lemma 3/(ii)

{Gl
1}i + {Gl

1}j = aKn + {Gl
1}j = 2aKn − l > 2(aKn − 1)− l ≥ 2{Gl

2′}i − l ≥ {Gl
2′}i + {Gl

2′}j
(A.10)

Recall from (A.7), our goal is to find a sufficient condition such that the summation of

AK+1(i, j) − AK(i, j) over all (i, j) in G1 ∪ G2′ is positive. We describe all the elements of

G1 ∪ G2′ by considering the first (aKn − 2) rows of Gl
1 and Gl

2′ in Table 2 plus the last three

elements at the (aKn − 1)-th and the aKn-th rows of the table (namely GaKn−1
1 , GaKn−1

2′

and GaKn
1 ) from Table 2 . Therefore, one set of sufficient conditions for (A.7) to hold is (a)

∀ l ∈ {1, 2, . . . , aKn − 2},
∑

(i,j)∈{Gl
1,G

l
2′
}

[AK+1(i, j)−AK(i, j)] > 0 and (b)

∑

(i,j)∈{G
aKn

−1

1 ,G
aKn

−1

2′
,G

aKn
1 }

[AK+1(i, j)−AK(i, j)] > 0.

We first show that (a) is true for all ρ. ∀ l ∈ {1, 2, . . . , aKn − 2}. Recall that [AK+1(i, j)−

AK(i, j)] evaluated at (i, j) = Gl
1 is negative, and [AK+1(i, j) − AK(i, j)] evaluated at
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(i, j) = Gl
2′ is positive. It is thus equivalent to show that

[AK(i, j)−AK+1(i, j)]

∣

∣

∣

∣

(i,j)=Gl
1

< [AK+1(i, j)−AK(i, j)]

∣

∣

∣

∣

(i,j)=Gl
2′

.

Denote d = min{fK(aK1), fK(aKn)} > 0, we have from (A.6) that

[AK(i, j)−AK+1(i, j)]

∣

∣

∣

∣

(i,j)=Gl
1

= ({Gl
1}i − {Gl

1}j)ρ
{Gl

1}i+{Gl
1}j

{Gl
1}j−1
∏

n=0

F̄K+1(n)

{Gl
1}j−1
∏

n=0

F̄K(n)





{Gl
1}i−1
∏

n={Gl
1}j

F̄K(n)−

{Gl
1}i−1
∏

n={Gl
1}j

F̄K+1(n)





= (aKn − {Gl
1}j)ρ

aKn
+{Gl

1}j

{Gl
1}j−1
∏

n=0

F̄K+1(n)

{Gl
1}j−1
∏

n=0

F̄K(n)





aKn
−1

∏

n={Gl
1}j

F̄K(n)−

aKn
−1

∏

n={Gl
1}j

F̄K+1(n)





= l · ρaKn
+{Gl

1}j

{Gl
1}j−1
∏

n=0

F̄K+1(n)

{Gl
1}j−1
∏

n=0

F̄K(n)





aKn
−1

∏

n={Gl
1}j

F̄K(n)−

aKn
−1

∏

n={Gl
1}j

F̄K+1(n)





< l · ρaKn
+{Gl

1}j

{Gl
1}j−1
∏

n=0

F̄K+1(n)

{Gl
1}j−1
∏

n=0

F̄K(n)



d ·

aKn
−2

∏

n={Gl
1}j

F̄K(n)





= l · d · ρaKn
+{Gl

1}j

{Gl
1}j−1
∏

n=0

F̄K+1(n)

aKn
−2

∏

n=0

F̄K(n)

< ({Gl
2′}i − {Gl

2′}j) · d · ρ{G
l
2′

}i+{Gl
2′

}j

{Gl
1}j−1
∏

n=0

F̄K+1(n)

aKn
−2

∏

n=0

F̄K(n)

because l = {Gl
2′}i − {Gl

2′}j see (A.9), ρ < 1 and aKn + {Gl
1}j > {Gl

2′}i + {Gl
2′}j see (A.10)

≤ ({Gl
2′}i − {Gl

2′}j) · d · ρ{G
l
2′

}i+{Gl
2′

}j

aKn
−2

∏

n=0

F̄K(n)

≤ ({Gl
2′}i − {Gl

2′}j) · d · ρ{G
l
2′

}i+{Gl
2′

}j

{Gl
2′

}i−1
∏

n=aK1
+1

F̄K(n) because aKn − 2 ≥ {Gl
2′}i − 1 see (A.8)

= ({Gl
2′}i − {Gl

2′}j)ρ
{Gl

2′
}i+{Gl

2′
}j

{Gl
2′

}j−1
∏

n=0

F̄K+1(n)

{Gl
2′

}j−1
∏

n=0

F̄K(n)






d ·

{Gl
2′

}i−1
∏

n=aK1
+1

F̄K(n)







because

{Gl
2′

}j−1
∏

n=0

F̄K+1(n)

{Gl
2′

}j−1
∏

n=0

F̄K(n) = 1

= ({Gl
2′}i − {Gl

2′}j)ρ
{Gl

2′
}i+{Gl

2′
}j ×

{Gl
2′

}j−1
∏

n=0

F̄K+1(n)

{Gl
2′

}j−1
∏

n=0

F̄K(n)







{Gl
2′

}i−1
∏

n={Gl
2′

}j

F̄K+1(n)−

{Gl
2′

}i−1
∏

n={Gl
2′

}j

F̄K(n)
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because

aK1
−1

∏

n={Gl
2′

}j

F̄K+1(n) =

aK1
−1

∏

n={Gl
2′

}j

F̄K(n) = 1, F̄K+1(aK1)− F̄K(aK1) = d

and F̄K+1(x) = F̄K(x), ∀x ∈ {aK1 + 1, . . . , {Gl
2′}i − 1}

= [AK+1(i, j)−AK(i, j)]

∣

∣

∣

∣

(i,j)=Gl
2′

, as required.

Next, for (b) to hold, i.e.,
∑

(i,j)∈{G
aKn

−1

1 ,G
aKn
2′

,G
aKn
1 }

[AK+1(i, j)−AK(i, j)] > 0, we have equiv-

alently:

[AK(i, j)−AK+1(i, j)]

∣

∣

∣

∣

(i,j)=G
aKn

−1

1

+ [AK(i, j)−AK+1(i, j)]

∣

∣

∣

∣

(i,j)=G
aKn
1

<[AK+1(i, j)−AK(i, j)]

∣

∣

∣

∣

(i,j)=G
aKn

−1

2′

⇔[AK(i, j)−AK+1(i, j)]

∣

∣

∣

∣

(i,j)=(aKn ,1)

+ [AK(i, j)−AK+1(i, j)]

∣

∣

∣

∣

(i,j)=(aKn ,0)

<[AK+1(i, j)−AK(i, j)]

∣

∣

∣

∣

(i,j)=(aKn−1,0)

(A.11)

Note that (with any empty product being equal to = 1)

[AK(i, j)−AK+1(i, j)]

∣

∣

∣

∣

(i,j)=(aKn ,1)

= (aKn
− 1)ρaKn+1 ·

(

aKn−1
∏

n=1

F̄K+1(n)−
aKn−1
∏

n=1

F̄K(n)

)

< (aKn
− 1)ρaKn+1 · d ·

aKn−2
∏

n=aK1
+1

F̄K(n),

[AK(i, j)−AK+1(i, j)]

∣

∣

∣

∣

(i,j)=(aKn ,0)

= aKn
ρaKn ·

(

aKn−1
∏

n=0

F̄K+1(n)−
aKn−1
∏

n=0

F̄K(n)

)

< aKn
ρaKn · d ·

aKn−2
∏

n=aK1
+1

F̄K(n),

[AK+1(i, j)−AK(i, j)]

∣

∣

∣

∣

(i,j)=(aKn−1,0)

= (aKn
− 1)ρaKn−1 ·

(

aKn−2
∏

n=0

F̄K+1(n)−
aKn−2
∏

n=0

F̄K(n)

)

= (aKn
− 1)ρaKn−1 ·





aKn−2
∏

n=aK1

F̄K+1(n) −
aKn−2
∏

n=aK1

F̄K(n)



 = (aKn
− 1)ρaKn−1 · d ·

aKn−2
∏

n=aK1
+1

F̄K(n).
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Therefore, it is sufficient for (A.11) to hold if

(aKn − 1)ρaKn+1 · d ·
aKn−2
∏

n=aK1
+1

F̄K(n) + aKnρ
aKn · d ·

aKn−2
∏

n=aK1
+1

F̄K(n)

≤ (aKn − 1)ρaKn−1 · d ·
aKn−2
∏

n=aK1
+1

F̄K(n)

⇔ (aKn − 1)ρaKn+1 + aKnρ
aKn ≤ (aKn − 1)ρaKn−1 ⇔ ρ2 +

aKn

aKn−1ρ ≤ 1. (A.12)

Solving quadratic equation (A.12) gives the condition

1

2

(

−
√

(
aKn

aKn − 1
)2 + 4− aKn

aKn − 1

)

≤ ρ ≤ 1

2

(
√

(
aKn

aKn − 1
)2 + 4− aKn

aKn − 1

)

.

where it is clear that 1
2

(

−
√

(
aKn

aKn−1)
2 + 4− aKn

aKn−1

)

< 0 and

0 < 1
2

(
√

(
aKn

aKn−1)
2 + 4− aKn

aKn−1

)

< 1.

Since ρ ∈ (0, 1), we conclude that, when ρ ≤ 1
2

(
√

(
aKn

aKn−1)
2 + 4− aKn

aKn−1

)

, (A.12) (A.11),

(A.7) and (A.5) all hold and thus it is a sufficient condition for LÑK
< LÑK+1

. This

completes the proof of part (ii).

(iii) Using the definition of W from equation (2.8), and comparing the structure of equation

(2.3) to that of (2.8), it can be shown via a similar approach used in the proof of inequality

(A.5) that

WÑK
< WÑK+1

⇔
∑

i,j≥1:

∑

i>j

(i− j)ρi+j

j−1
∏

n=0

F̄K+1(n)

j−1
∏

n=0

F̄K(n)





i−1
∏

n=j

F̄K+1(n)−
i−1
∏

n=j

F̄K(n)



 > 0,

(A.13)

which also provides an alternative approach to prove Theorem 1/(iii). Using the same

definition of AK(i, j) and AK+1(i, j) from part (ii), we have

WÑK
< WÑK+1

⇔
∑

aKn≥i>

∑

j≥1

[AK+1(i, j)−AK(i, j)] > 0.

The rest of the proof is then almost identical to the proof of part (ii) except now i, j cannot

take on 0. Define G1 , {aKn}×{1, 2, . . . , aKn −1}, G2 , {aK1 +1, aK1 +2, ..., aKn −2, aKn −
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1} × {1, 2, . . . , aK1}, and G3 , {(i, j) : aKn ≥ i > j ≥ 1} − {G1 ∪ G2}.

There are now at least aKn − 2 elements in the set G2 which defines the subset G2′ . The

elements in G1 and G2′ are ordered in a similar fashion as before and displayed in Table 3.

Order l G1 contains: G2′ contains:

l = 1 (aKn , aKn − 1) (aK1 + 1, aK1)
l = 2 (aKn , aKn − 2) (aK1 + 1, aK1 − 1)
l = 3 (aKn , aKn − 3) (aK1 + 1, aK1 − 2)
...

...
...

l = aK1 − 1 (aKn , aKn − aK1 + 1) (aK1 + 1, 2)
l = aK1 (aKn , aKn − aK1) (aK1 + 1, 1)
l = aK1 + 1 (aKn , aKn − aK1 − 1) (aK1 + 2, 1)
l = aK1 + 2 (aKn , aKn − aK1 − 2) (aK1 + 3, 1)
l = aK1 + 3 (aKn , aKn − aK1 − 3) (aK1 + 4, 1)
...

...
...

l = aKn − 2 (aKn , 2) (aKn − 1, 1)
l = aKn − 1 (aKn , 1)

Table 3: G1 and G2′ used in the proof of Lemma 3/(iii)

A sufficient condition for WÑK
< WÑK+1

from (A.13) is that
∑

(i,j)∈G1∪G2′

[AK+1(i, j) −

AK(i, j)] > 0. It can be shown that conditions (A.8)-(A.10) still hold, and thus ∀ l ∈

{1, 2, . . . , aKn − 3} and for all ρ,
∑

(i,j)∈{Gl
1,G

l
2′
}

[AK+1(i, j) − AK(i, j)] > 0. Therefore, a suffi-

cient condition for WÑK
< WÑK+1

is that

∑

(i,j)∈{G
aKn

−2

1 ,G
aKn

−2

2′
,G

aKn
−1

1 }

[AK+1(i, j)−AK(i, j)] > 0. (A.14)

Since [AK(i, j)−AK+1(i, j)]

∣

∣

∣

∣

(i,j)=(aKn ,2)

< (aKn − 2)ρaKn+2 · d ·
aKn−2
∏

n=aK1
+1

F̄K(n),

[AK(i, j)−AK+1(i, j)]

∣

∣

∣

∣

(i,j)=(aKn ,1)

< (aKn − 1)ρaKn+1 · d ·
aKn−2
∏

n=aK1
+1

F̄K(n),
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and [AK+1(i, j)−AK(i, j)]

∣

∣

∣

∣

(i,j)=(aKn−1,1)

= (aKn − 2)ρaKn · d ·
aKn−2
∏

n=aK1
+1

F̄K(n),

condition (A.14) will hold if

(aKn − 2)ρaKn+2 · d ·
aKn−2
∏

n=aK1
+1

F̄K(n) + (aKn − 1)ρaKn+1 · d ·
aKn−2
∏

n=aK1
+1

F̄K(n)

≤ (aKn − 2)ρaKn · d ·
aKn−2
∏

n=aK1
+1

F̄K(n)

⇔ (aKn − 2)ρaKn+2 + (aKn − 1)ρaKn+1 ≤ (aKn − 2)ρaKn ⇔ ρ2 +
aKn−1
aKn−2ρ ≤ 1.

The solution of the quadratic inequality on the set ρ ∈ (0, 1) is

ρ ≤ 1
2

(√

(
aKn−1
aKn−2)

2 + 4− aKn−1
aKn−2

)

. �

Proof of Theorem 2:

(i) Result follows immediately from Lemma 3/(i) since λeff,ÑK
< λeff,ÑK+1

(RÑK
< RÑK+1

)

for all K.

(ii) Recall from Lemma 3/(ii) that LÑK
< LÑK+1

if ρ ≤ 1
2

(
√

(
aKn

aKn−1)
2 + 4− aKn

aKn−1

)

.

It can be easily verified that 1
2

(
√

(
aKn

aKn−1)
2 + 4− aKn

aKn−1

)

increases in aKn . Plugging in

the smallest possible value of aKn which is 3, we get ρ = 0.5. Therefore, when ρ ≤ 0.5,

LÑK
< LÑK+1

for all K (regardless of the distributions of {ÑK}K=0,1,2,...,T ). Result thus

follows. Note that it is possible to derive stronger distribution-specific conditions.

(iii) Recall from Lemma 3/(iii) that WÑK
< WÑK+1

if ρ ≤ 1
2

(√

(
aKn−1
aKn−2)

2 + 4− aKn−1
aKn−2

)

. It

can be verified that 1
2

(√

(
aKn−1
aKn−2)

2 + 4− aKn−1
aKn−2

)

increases in aKn . Plugging in the smallest

possible value of aKn which is 3, we get ρ = 0.414. Therefore, when ρ ≤ 0.414, WÑK
<

WÑK+1
for all K. Result thus follows. Again, it is possible to derive stronger distribution-

specific conditions. �

Proof of Theorem 1’:

(i) From (2.12), we then have RÑ = p · µ[s − (sπ0 + (s − 1)π1 + . . . + 2πs−2 + 1πs−1)] so
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RÑ is decreasing in π0 (given that p, µ, λ, ρ, s are all fixed). Since π0 itself is decreasing in
∞
∑

i=1
ρi

i−1
∏

n=0
F̄ (n) from (2.11), we have RÑ increases in

∞
∑

i=1
ρi

i−1
∏

n=0
F̄ (n). The rest of the proof

follows the proof of Theorem 1/(i).

(ii) Proof is similar to that of Theorem 1/(ii). Result follows because LÑ ≤ LÑ ′ iff

∑

i,j≥0:

∑

i>j

(i− j)
ρi+j

(i ∧ s)!(j ∧ s)!

j−s
∏

n=0

F̄Ñ ′(n)

j−s
∏

n=0

F̄Ñ (n)





i−s
∏

n=j−s+1

F̄Ñ ′(n)−
i−s
∏

n=j−s+1

F̄Ñ (n)



 ≥ 0.

(iii) Proof is similar to that of Theorem 1/(iii). We have WÑ ≤ WÑ ′ iff

∑

i,j≥1:

∑

i>j

(i(j ∧ s)− j(i ∧ s))
ρi+j

(i ∧ s)!(j ∧ s)!

j−s
∏

n=0

F̄Ñ′(n)

j−s
∏

n=0

F̄Ñ (n)

(

i−s
∏

n=j−s+1

F̄Ñ′(n)−

i−s
∏

n=j−s+1

F̄Ñ (n)

)

≥ 0

and result follows because (i(j ∧ s)− j(i ∧ s)) ≥ 0 for all {i, j ≥ 1 : i > j}. �

Proof of Theorem 2’:

We will prove the following lemma (a general version of Lemma 3 but with the M/M/s

queue setting) then the results of Theorem 2’ immediately follow.

Let {ÑK} be any sequence from Construction 1 in an M/M/s queue. We can show (i)

RÑK
< RÑK+1

for all ρ; (ii) LÑK
< LÑK+1

if ρ ≤ 1
2

(√

(
aKn+s−1
aKn+s−2)

2 + 4− aKn+s−1
aKn+s−2

)

; And

(iii) when s = 1, WÑK
< WÑK+1

if ρ ≤ 1
2

(√

(
aKn−1
aKn−2)

2 + 4− aKn−1
aKn−2

)

; when s ≥ 2, WÑK
<

WÑK+1
if ρ ≤ 1

2

(√

1 + 4(
aKn−2
aKn−1)− 1

)

.

(i) Recall from the proof of Theorem 1’/(i), RÑ increases in
∞
∑

i=1
ρi

i−1
∏

n=0
F̄ (n). Therefore it is

sufficient to show that
∞
∑

i=1
ρi

i−1
∏

n=0
F̄K(n) <

∞
∑

i=1
ρi

i−1
∏

n=0
F̄K+1(n). Result then follows the proof

of Lemma 3/(i).

(ii) We can apply the same approach used in the proof of Lemma 3/(ii) here. Define

AK+1(i, j) , (i− j)
ρi+j

(i ∧ s)!(j ∧ s)!

j−s
∏

n=0

F̄K+1(n)

j−s
∏

n=0

F̄K(n)
i−s
∏

n=j−s+1

F̄K+1(n)
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AK(i, j) , (i− j)
ρi+j

(i ∧ s)!(j ∧ s)!

j−s
∏

n=0

F̄K+1(n)

j−s
∏

n=0

F̄K(n)
i−s
∏

n=j−s+1

F̄K(n)

It can be shown that LÑK
< LÑK+1

if
∑

(i,j)∈

∑

G1∪G2′

[AK+1(i, j) − AK(i, j)] > 0 where the

elements of G1 and G2′ are listed in Table 4.

Order l = G1 contains: G2′ contains:

1 (aKn + s− 1, aKn + s− 2) (aK1 + s, aK1 + s− 1)
2 (aKn + s− 1, aKn + s− 3) (aK1 + s, aK1 + s− 2)
3 (aKn + s− 1, aKn + s− 4) (aK1 + s, aK1 + s− 3)
...

...
...

aK1 − 1 (aKn + s− 1, aKn + s− aK1) (aK1 + s, 2)
aK1 (aKn + s− 1, aKn + s− aK1 − 1) (aK1 + s, 1)
aK1 + 1 (aKn + s− 1, aKn + s− aK1 − 2) (aK1 + s, 0)
aK1 + 2 (aKn + s− 1, aKn + s− aK1 − 3) (aK1 + s+ 1, 0)
aK1 + 3 (aKn + s− 1, aKn + s− aK1 − 4) (aK1 + s+ 2, 0)
...

...
...

aKn + s− 3 (aKn + s− 1, 2) (aKn + s− 3, 0)
aKn + s− 2 (aKn + s− 1, 1) (aKn + s− 2, 0)
aKn + s− 1 (aKn + s− 1, 0)

Table 4: G1 and G2′ used in the proof of Theorem 2’/(ii)

It then can be verified that conditions (A.8)-(A.10) still hold, and that ∀ l ∈ {1, 2, . . . , aKn+

s− 3} and for all ρ,
∑

(i,j)∈{Gl
1,G

l
2′
}

[AK+1(i, j)−AK(i, j)] > 0. One sufficient condition for

∑

(i,j)∈{G
aKn

+s−2

1 ,G
aKn

+s−2

2′
,G

aKn
+s−1

1 }

[AK+1(i, j)−AK(i, j)] > 0,

which also makes LÑK
< LÑK+1

, is that

(aKn + s− 2)ρaKn+s + (aKn + s− 1)ρaKn+s−1 ≤ (aKn + s− 2)ρaKn+s−2.

It follows by solving the quadratic equation that ρ ≤ 1
2

(√

(aKn+s−1)2

(aKn+s−2)2
+ 4− aKn+s−1

aKn+s−2

)

.
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(iii) We can apply the same approach used in the proof of Lemma 3/(iii) here. Define

AK+1(i, j) , (i(j ∧ s)− j(i ∧ s))
ρi+j

(i ∧ s)!(j ∧ s)!

j−s
∏

n=0

F̄K+1(n)

j−s
∏

n=0

F̄K(n)
i−s
∏

n=j−s+1

F̄K+1(n)

AK(i, j) , (i(j ∧ s)− j(i ∧ s))
ρi+j

(i ∧ s)!(j ∧ s)!

j−s
∏

n=0

F̄K+1(n)

j−s
∏

n=0

F̄K(n)

i−s
∏

n=j−s+1

F̄K(n)

It can be shown that WÑK
< WÑK+1

if
∑

(i,j)∈

∑

G1∪G2′

[AK+1(i, j) − AK(i, j)] > 0 where the

elements of G1 and G2′ are listed in Table 5.

Order l = G1 contains: G2′ contains:

1 (aKn + s− 1, aKn + s− 2) (aK1 + s, aK1 + s− 1)
2 (aKn + s− 1, aKn + s− 3) (aK1 + s, aK1 + s− 2)
3 (aKn + s− 1, aKn + s− 4) (aK1 + s, aK1 + s− 3)
...

...
...

aK1 − 1 (aKn + s− 1, aKn + s− aK1) (aK1 + s, 2)
aK1 (aKn + s− 1, aKn + s− aK1 − 1) (aK1 + s, 1)
aK1 + 1 (aKn + s− 1, aKn + s− aK1 − 2) (aK1 + s+ 1, 1)
aK1 + 2 (aKn + s− 1, aKn + s− aK1 − 3) (aK1 + s+ 2, 1)
aK1 + 3 (aKn + s− 1, aKn + s− aK1 − 4) (aK1 + s+ 3, 1)
...

...
...

aKn + s− 3 (aKn + s− 1, 2) (aKn + s− 2, 1)
aKn + s− 2 (aKn + s− 1, 1)

Table 5: G1 and G2′ used in the proof of Theorem 2’/(iii)

It then can be verified that ∀ l ∈ {1, 2, . . . , aKn + s− 4} and for all ρ,

∑

(i,j)∈{Gl
1,G

l
2′
}

[AK+1(i, j)−AK(i, j)] > 0.

Further, when s ≥ 2 (the case when s = 1 is proved in Lemma 3/(iii)), one sufficient

condition for
∑

(i,j)∈{G
aKn

+s−3

1 ,G
aKn

+s−3

2′
,G

aKn
+s−2

1 }

[AK+1(i, j) − AK(i, j)] > 0, which leads to

WÑK
< WÑK+1

, is that

(aKn − 1)ρaKn+s+1 + (aKn − 1)ρaKn+s ≤ (aKn − 2)ρaKn+s−1.
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It then follows by solving the quadratic equation that ρ ≤ 1
2

(√

1 + 4(
aKn−2
aKn−1)− 1

)

. �

Proof of Proposition 1:

Consider the random variable ÑT ∈ {⌊E(Ñ)⌋, ⌈E(Ñ)⌉} such that E(ÑT ) = E(Ñ). By

Theorem 2, we have RÑ ≤ RÑT
for all ρ, and LÑ ≤ LÑT

, WÑ ≤ WÑT
for small ρ. On the

other hand, since E (Ñ) ≤ N and N is an integer, we must have ⌈E(Ñ)⌉ ≤ N . It follows

that ÑT ≤st N so by Theorem 1, we have RÑT
≤ RN for all ρ, and LÑT

≤ LN , WÑT
≤ WN

for small ρ. Result thus follows. �

Proof of Theorem 1U :

(i) For t ∈ {µ̃, µ̃′}, we have λU
eff,t =

∞
∫

−∞

λ · q(t) dGt = [

λ+ c
v−p
∫

c
v−p

(t − c
v−p) +

∞
∫

λ+ c
v−p

λ ] dGv =

E
t
min{t − c

v−p , λ}. (Throughout the paper, we assume µ̃ ≥ c
v−p .) Therefore, µ̃ ≤st µ̃

′ ⇒

µ̃ − c
v−p ≤st µ̃′ − c

v−p ⇒ min{µ̃ − c
v−p , λ} ≤st min{µ̃′ − c

v−p , λ} ⇒ E
µ̃
min{µ̃ − c

v−p , λ} ≤

E
µ̃′
min{µ̃′ − c

v−p , λ} ⇒ λU
eff,µ̃ ≤ λU

eff,µ̃′ . Also since RU
t = pλU

eff,t, it follows that R
U
µ̃ ≤ RU

µ̃′ .

(ii) For t ∈ {µ̃, µ̃′}, we have WU
t = 1

µ−λU
eff,t

. Since λU
eff,µ̃ ≤ λU

eff,µ̃′ < λ, then WU
µ̃ ≤ WU

µ̃′ . �

Proof of Theorem 2U :

(i) Under belief µ̃, we have λU
eff,µ̃ = E

µ̃
min{µ̃− c

v−p , λ}. Under belief E(µ̃), we have

λU
eff,E(µ̃) =















E(µ̃)− c
v−p if ( c

v−p ≤) E(µ̃) < λ+ c
v−p

λ if E(µ̃) ≥ λ+ c
v−p

If ( c
v−p ≤) E(µ̃) < λ+ c

v−p , we have min{µ̃− c
v−p , λ} ≤st µ̃− c

v−p ⇒

E
µ̃
min{µ̃− c

v − p
, λ} ≤st E

µ̃
(µ̃− c

v − p
) = E(µ̃)− c

v − p
⇒ λU

eff,µ̃ ≤ λU
eff,E(µ̃);

If E(µ̃) ≥ λ+ c
v−p , we have min{µ̃− c

v−p , λ} ≤st λ ⇒

E
µ̃
min{µ̃− c

v − p
, λ} ≤st E

µ̃
(λ) = λ ⇒ λU

eff,µ̃ ≤ λU
eff,E(µ̃);
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(ii) Result follows from (i). Proof of the result is analogous to that of Theorem 1U . �

Proof of Proposition 1U :

λU
eff,µ̃ ≤ λU

eff,E(µ̃), R
U
µ̃ ≤ RU

E(µ̃) and WU
µ̃ ≤ WU

E(µ̃) by Theorem 2U . Then because E(µ̃) ≤ µ,

we have E(µ̃) ≤st µ. It thus follows by Theorem 1U that λU
eff,E(µ̃) ≤ λU

eff,µ, R
U
E(µ̃) ≤ RU

µ

and WU
E(µ̃) ≤ WU

µ . �

APPENDIX TO CHAPTER 3

Proof of Proposition 2:

Omitted. Results follow from Definition 3. �

Proof of Theorem 3:

Suppose the population adopts JnR or JR
J nR and n > N , then some consumers, if not all,

will join the queue at stateN . Such strategies cannot be equilibrium strategies because these

consumers can do better if they balk at state N , rather than joining, as 0 > v − c
µ(N + 1).

On the other hand, we assume that every consumer will join (i.e., will not retry) on seeing

an idle server, so we must have n ≥ 1. Similarly, if JnB or JnR
B is adopted by the population

and n 6= N , then either some consumers are specified by the strategy to balk when they are

better off not to, or specified to join the queue when better off not to join. �

Proof of Proposition 3:

Let us suppose that everybody else is adopting JNB on every service occasion, and only one

consumer is given the opportunity to change his strategy unilaterally. Then, JNB will be

an equilibrium (i.e., this consumer has no incentive to retry at any state {1, 2, . . . , N−1, N})

if and only if his expected payoff from a retry decision is less than or equal to 0. Since this

consumer’s retrial payoff is decreasing in the retrial cost α, there exists one unique value of

α above which JNB is an equilibrium and below which it is not. We will show this value

is equal to αH , given by (1− πJNB
N )(v − cW JNB).
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At αH , this consumer’s retrial payoff is exactly 0, i.e.,

πJNB
0 (v − c

µ
) + πJNB

1 (v − 2c

µ
) + . . .+ πJNB

N−1 (v −
cN

µ
) + πJNB

N · 0− αH = 0

(1− πJNB
N )v − c(πJNB

0

1

µ
+ πJNB

1

2

µ
+ . . .+ πJNB

N−1

N

µ
)− αH = 0

(1− πJNB
N )v − (1− πJNB

N )cW JNB − αH = 0

(1− πJNB
N )(v − cW JNB)− αH = 0

and therefore result follows. �

Proof of Lemma 4:

If α = α∗ solves the equality c
µ(n

∗+1) = cW Jn∗R+ α
1−πJn∗R

n∗
for some n∗, and assuming the

stability condition in (3.12) holds, we have from (3.15) that Jn∗R generates an equilibrium

retry strategy for α ∈ [α∗ − c
µ(1 − πJn∗R

n∗ ), α∗]. On the other hand, if α = α∗∗ solves the

equality c
µn

∗∗ = cW Jn∗∗R+ α
1−πJn∗∗R

n∗∗
for some n∗∗, and if the stability condition holds, again

from (3.15) we know that Jn∗∗R is an equilibrium for α ∈ [α∗∗, α∗∗ + c
µ(1− πJn∗∗R

n∗∗ )]. For a

fixed n = n∗ = n∗∗, the set of α that satisfies the inequality c
µ(n+1) ≥ cW JnR+ α

1−πJnR
n

≥ c
µn

in (3.15) is α ∈ [α∗ − c
µ(1− πJn∗R

n∗ ), α∗] which is exactly that same as α ∈ [α∗∗, α∗∗ + c
µ(1−

πJn∗∗R
n∗∗ )] by setting α∗ − c

µ(1 − πJnR
n ) = α∗∗. In other words, to find all (α, n) pairs that

satisfy the seemingly two inequalities in (3.15), we only need to find solutions (α∗, n∗) to

one equality, say,

c

µ
(n+ 1) = cW JnR +

α

1− πJnR
n

(with n ≤ N), (A.15)

and then all the pairs {(α, n∗) : α ∈ [α∗ − c
µπ

Jn∗R
n∗ , α∗]} are solutions to the indifference

condition in (3.15).

Since W JnR = 1
µ

n−1
∑

k=0

πJnR
k

1−πJnR
n

(k + 1), equation (A.15) becomes

c

µ
(n+ 1) =

c

µ

n−1
∑

k=0

πJnR
k

1− πJnR
n

(k + 1) +
α

1− πJnR
n
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⇔ (1− πJnR
n )

c

µ
(n+ 1) =

c

µ

n−1
∑

k=0

πJnR
k (k + 1) + α

⇔ (1− πJnR
n )

c

µ
n =

c

µ

n−1
∑

k=0

πJnR
k k + α

⇔ c

µ
n =

c

µ

n
∑

k=0

πJnR
k k + α

⇔ c

µ
(n−

n
∑

k=0

πJnR
k k) = α (A.16)

By letting LJnR ,
n
∑

k=0

πJnR
k k denote the long-run average number of consumers in the

M/M/1/n system under the retrial strategy JnR and r , α/ c
u the cost ratio of the retrial

cost over the expected waiting cost for a service cycle, equation (A.16) becomes

n− LJnR = r (A.17)

Ignore the feasibility condition n ≤ N and the integer condition on n for now. Then equation

(A.17) (the indifference condition) along with equation (3.12) (the stability condition) give

us two equations for three unknowns (n, ρ and r) where the other parameters λ, µ, v, c

are fixed system inputs. In what follows, we should find solutions (ρJn
∗R, n∗) to equations

(3.12) and (A.17) in terms of r . Algebraic operations force us to separate the case when

ρJn
∗R = 1 (so-called the trivial solution) with the case when ρJn

∗R 6= 1 (so-called the

non-trivial solution).

Trivial Solution: We first consider the “trivial” case, i.e., when ρJn
∗R = 1 is part of the

solution to equations (3.12) and (A.17). When ρJnR = 1, we have πJnR
0 = πJnR

1 = πJnR
2 =

. . . = πJnR
n = 1

n+1 and LJnR = n/2. From equation (A.17), we have n = 2r. Plugging

n = 2r into (3.12), we then have ρJnR = 2r+1
2r l. Since ρJnR = 1, we must have 2r+1

2r l = 1, or

r =
1

2

l

1− l
(A.18)
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Therefore, when r = 1
2

l
1−l , we have a trivial (and unique) solution to equations (3.12) and

(A.17) where

(ρJn
∗R, n∗) = (1, 2r) = (1,

l

1− l
).

Non-trivial Solution: Next, we search for any possible solution, (ρJn
∗R, n∗), to equations

(3.12) and (A.17) when ρJn
∗R 6= 1. Although l < 1, ρJnR can be both smaller than or

greater than 1 at the equilibrium (we only know ρJnR > l). When ρJnR 6= 1, we have

πJnR
0 =

1

1 + ρJnR + (ρJnR)2 + . . .+ (ρJnR)n
=

1− ρJnR

1− (ρJnR)n+1 (A.19)

πJnR
n = (ρJnR)

n
πJnR
0 =

(ρJnR)
n − (ρJnR)

n+1

1− (ρJnR)n+1 (A.20)

1− πJnR
n = 1− (ρJnR)

n − (ρJnR)
n+1

1− (ρJnR)n+1 =
1− (ρJnR)

n

1− (ρJnR)n+1 (A.21)

Therefore, equation (3.12), the stability condition becomes

ρJnR(1− πJnR
n ) = l

⇔ ρJnR[
1− (ρJnR)

n

1− (ρJnR)n+1 ] = l from (A.21)

⇔ ρJnR − (ρJnR)
n+1

1− (ρJnR)n+1 = l

⇔ ρJnR − (ρJnR)
n+1

= l − l(ρJnR)
n+1

⇔ ρJnR − l = (1− l)(ρJnR)
n+1

⇔ (ρJnR)
n+1

=
ρJnR − l

1− l
(A.22)

⇔ n+ 1 = logρJnR(
ρJnR − l

1− l
) =

ln(ρ
JnR−l
1−l )

ln ρJnR
(A.23)

On the other hand, when ρJnR 6= 1, the average number of customers in the queue is given

by

LJnR =
n
∑

k=0

πJnR
k k =

ρJnR

1− ρJnR
− (n+ 1)(ρJnR)

n+1

1− (ρJnR)n+1 . (A.24)
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Equation (A.17), the indifference condition, n− LJnR = r is thus equivalent to

n− ρJnR

1− ρJnR
+

(n+ 1)(ρJnR)
n+1

1− (ρJnR)n+1 = r

⇔ n+
(n+ 1)(ρJnR)

n+1

1− (ρJnR)n+1 = r +
ρJnR

1− ρJnR

⇔ n+ 1 +
(n+ 1)(ρJnR)

n+1

1− (ρJnR)n+1 = r + 1 +
ρJnR

1− ρJnR

⇔ (n+ 1)(1 +
(ρJnR)

n+1

1− (ρJnR)n+1 ) = r + 1 +
ρJnR

1− ρJnR

⇔ (n+ 1)
1

1− (ρJnR)n+1 = r + 1 +
ρJnR

1− ρJnR

⇔ (n+ 1)
1− l

1− ρJnR
= r + 1 +

ρJnR

1− ρJnR
from (A.22)

⇔ (n+ 1)(1− l) = r(1− ρJnR) + 1

⇔ n+ 1 =
r(1− ρJnR) + 1

1− l
(A.25)

We have just transferred the two equilibrium conditions in (3.12) and (A.17), into an equiv-

alent set of equations

(A.23′) : n =
ln(ρ

JnR−l
1−l )

ln ρJnR
− 1; And (A.25′) : n =

r(1− ρJnR) + 1

1− l
− 1.

in the sense that a pair of solutions (n∗, ρ∗) that solves equations (3.12) and (A.17) also

solves equations (A.23’) and (A.25’), and vice versa.

We observe from equations (A.23’) and (A.25’) that a necessary condition for n ≥ 0 is

l < ρ ≤ 1 + l
r . Define

f1(ρ) ,
ln(ρ−l

1−l )

ln ρ
− 1 from (A.23′);

f2(ρ) ,
r(1− ρ) + 1

1− l
− 1 from (A.25′).
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Then, any intersection of the graphs of f1(ρ) and f2(ρ) (other than at ρ = 1) on the feasible

region l < ρ ≤ 1 + l
r will lead to a solution (ρ∗ = ρJn

∗R, n∗) = (ρ∗, f1(ρ
∗) = f2(ρ

∗)).

It can be shown that f1(ρ) is continuous, decreasing and convex in ρ on the region ρ ∈

(l,+∞) with

lim
ρ→l

f1(ρ) = +∞; lim
ρ→1

f1(ρ) =
l

1− l
; lim
ρ→+∞

f1(ρ) = 0. (A.26)

On the other hand, f2(ρ) is simply a straight line in ρ with slope − r
1−l on the region

ρ ∈ [0, 1 + l
r ] with

f2(0) =
r + l

1− l
; f2(1) =

l

1− l
; f2(1 +

l

r
) = 0. (A.27)

Note from (A.26) and (A.27) that f1(ρ) and f2(ρ) intersect at ρ = 1 with f1(1) = f2(1) =

l
1−l . If f2(ρ) is a tangent line to f1(ρ) at ρ = 1, as shown in Figure 16/(a), then we will not

have a solution (ρ∗, n∗) with ρ∗ 6= 1 (because in this case f1(ρ) and f2(ρ) will only intersect

at ρ = 1 on the feasible region l < ρ ≤ 1 + l
r ). It can be verified that the slope of the curve

f1(ρ) at ρ = 1 is −1
2

l
(1−l)2

so f2(ρ) coincides with the tangent line of f1(ρ) at ρ = 1 if and

only if

− r

1− l
= −1

2

l

(1− l)2
⇔ r =

1

2

l

(1− l)
(A.28)

note that condition (A.28) is exactly that same as condition (A.18), so in this case, although

we do not have any solution (ρ∗, n∗) such that ρ∗ 6= 1, we do have an unique solution found

earlier during the discussion of the trivial solution, i.e., (ρ∗, n∗) = (1, l
1−l ).

When r 6= 1
2

l
(1−l) , then f2(ρ) is still a straight line but no longer a tangent one to the curve

f1(ρ) at ρ = 1. Since f1(ρ) is a smooth decreasing convex curve, f2(ρ) is a straight line,

and they both have a common intersection at (1, 1
1−l ), they will intersect at some point ρ∗

other than ρ∗ = 1 on the region l < ρ ≤ 1 + l
r as shown in Figure 16/(b) and (c). The

intersection point depends on the slope of f2(ρ), or the value of r, or simply the retrial cost

α (assuming parameters λ, µ, v, c are system inputs and fixed). Thus, solution also exists
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0.8 1.0 1.2 1.4 1.6 1.8
Ρ

1

2

3

4

5

f1HΡL and f2HΡL

(a) r = 7
6
: f2(ρ) is tangent to f1(ρ).

0.8 1.0 1.2 1.4 1.6 1.8
Ρ

1

2

3

4

5

f1HΡL and f2HΡL

(b) r = 3: not tangent and cross above.

0.8 1.0 1.2 1.4 1.6 1.8
Ρ

1

2

3

4

5

f1HΡL and f2HΡL

(c) r = 1
2
: not tangent and cross below.

Figure 16: In these three subfigures, we let l = 0.7 and plot f1(ρ) and f2(ρ) w.r.t. different
values of r. In every case, f1(ρ) and f2(ρ) cross the point (ρ = 1, f(ρ) = l

1−l ) = (1, 73). (a)

When r = 7
6 = 1

2
l

1−l , f2(ρ) is a tangent line to the curve f1(ρ). (b) When r = 3 > 7
6 = 1

2
l

1−l ,

they cross above. (c) When r = 1
2 < 7

6 = 1
2

l
1−l , they cross below.

when r 6= 1
2

l
(1−l) and it is unique due to the single-crossing property of f1(ρ) and f2(ρ).

Note again that the intersection where ρ = 1 cannot be counted as a second non-trivial

solution.

So far we have shown that given the inputs of the system (i.e., λ, µ, v, c), a particular

value of the retrial fee α, which is transformed into a particular value of the cost ratio

r = α/ c
µ , induces a unique pair of solutions, in the threshold n∗ and its corresponding

traffic ρ∗ = ρJn
∗R among consumers, to equations (3.12) and (A.17). Furthermore, it is

clear from the graph that when α ↑ (i.e., f2(ρ) becomes steeper), n∗ ↑ and ρ∗ ↓. In fact,

when α → 0, lim
α→0

n∗ = 0 and lim
α→0

ρ∗ = ∞. When α → ∞, lim
α→∞

n∗ = ∞ and lim
α→∞

ρ∗ = l.
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At this moment we are ready to pick up the feasibility condition n∗ ≤ N and the integer

condition on n. (Recall that N = ⌊v/ c
µ⌋ indicates the balking threshold in Naor’s model,

see (3.1).) Let us denote 0 < α1 < α2 < . . . < αN−1 < αN the retrial costs that induce the

solutions to equations (3.12) and (A.17) with n = 1, 2, . . . , N − 1, N , respectively. We next

show existence and uniqueness of these α’s.

Recall that lim
α→0

n∗ = 0, lim
α→∞

n∗ = ∞, and n∗ is continuous and increases in α. For any fixed

integer n ∈ (0, N ], compute the unique ρn such that f1(ρn) = n, i.e., (ρn, n) solves equation

(A.23’). Next, let αn = (n+1)(1−l)−1
1−ρn

c
µ , i.e., αn is such that (ρn, n) solves equation (A.25’).

Since (ρn, n) solves both equations (A.23’) and (A.25’), αn is the amount of the retrial cost

that would induce n∗ = n as a solution to equations (3.12) and (A.17). Uniqueness and

monotonicity of αn were demonstrated in earlier discussion with the graph. �

Proof for the statement that “αL < αH”:

Recall by definition that

αL = (1− πJNR
N )(v − cW JNR), (A.29)

αH = (1− πJNB
N )(v − cW JNB). (A.30)

where W JNR and W JNB are the expected waiting time conditional on joining, given by

W JNR =
πJNR
0

1− πJNR
N

1

µ
+

πJNR
1

1− πJNR
N

2

µ
+ . . .+

πJNR
N−1

1− πJNR
N

N

µ
(A.31)

W JNB =
πJNB
0

1− πJNB
N

1

µ
+

πJNB
1

1− πJNB
N

2

µ
+ . . .+

πJNB
N−1

1− πJNB
N

N

µ
(A.32)

The underlying queueing system under both JNR and JNB isM/M/1/N . The birth rate is

bigger in the system under JNR than that under JNB, i.e., λJNR = λ
1−πJNR

N

> λ = λJNB.

The death rates are the same in both systems, namely µ. Therefore, ρJNR > ρJNB. As a

result,

πJNR
0 =

1

1 + ρJNR + (ρJNR)2 + . . .+ (ρJNR)N
<

1

1 + ρJNB + (ρJNB)2 + . . .+ (ρJNB)N
= πJNB

0 .
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That is, the server’s long-run idle rate is higher with a system that has balking consumers

compared to one that does not. Now suppose πJNR
n > πJNB

n for some n ∈ {1, 2, . . . , N},

then

πJNR
x = πJNR

n (ρJNR)x−n > πJNB)
n (ρJNB)x−n = πJNB

x

for all x ∈ {n, n+1, . . . , N}. Since
N
∑

x=1
πJNR
x =

N
∑

x=1
πJNB
x = 1, we must have πJNR

N > πJNB
N .

Next, we observe that the conditional probabilities in equations (A.31) and (A.32) sum up

to one and form geometric progressions with ratios ρJNR and ρJNB, respectively, i.e., for

s ∈ {JNR, JNB},
πs
0

1− πs
N

+
πs
1

1− πs
N

+ . . .+
πs
N−1

1− πs
N

= 1

πs
N−1

1− πs
N

= ρs
πs
N−2

1− πs
N

= (ρs)2
πs
N−2

1− πs
N

= . . . = (ρs)(N−1) πs
0

1− πs
N

It then follows from ρJNR > ρJNB and the structure of W that W JNR > W JNB. Since

πJNR
N > πJNB

N and W JNR > W JNB, we have from (A.29) and (A.30) that αH > αL. �

Proof of Lemma 5:

Fix n ∈ {1, 2, . . . , N−1}. When the retrial cost α = αn, since both stability and indifference

conditions are satisfied for the solution (n∗, ρ∗) = (n, ρJnR), we have an equilibrium under

JnR. Specifically, when α = α1, J1R is an equilibrium strategy which specifies that an

arrival only joins the server if it is idle. By the construction of the game, every consumer

would join an idle server no matter what the retrial cost α is (because the retrial and balking

payoffs are always less than the joining payoff at seeing an idle server). Therefore, for α ≤ α1,

J1R remains an equilibrium strategy. On the other hand, for n ∈ {1, 2, . . . , N − 1}, when

α ∈ [αn− c
µ(1−πJnR

n ), αn], the indifference condition of (A.15) still holds at n. Thus, JnR is

also an equilibrium for such α. Note that, from equation (3.12) that 1−πJnR
n = l

ρJnR . Thus,

when the retrial cost α ∈ [αn − c
µ

l
ρJnR , αn], we have an equilibrium under JnR. Finally,

when α = αL, we have a retrial payoff of zero under JNR according to the definition of

αL, so such a strategy is an equilibrium. Furthermore, when α ∈ [αL − (v− c
µN) l

ρJNR , αL],
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the retrial payoff under JNR is greater than zero and less than v − c
µN thus the strategy

remains an equilibrium. �

Proof of Lemma 6:

Fix 1 ≤ n ≤ N . Choose any β ∈ (0, 1). For J
J(β)
R(1−β)nR to be an equilibrium, upon arriving

at state n− 1, a consumer is indifferent between join and retry decisions. Therefore, the

joining and the retrial payoffs at state n− 1 (under J
J(β)
R(1−β)nR) are identical and both

should be greater than 0 (the balking payoff), i.e.,

v − c

µ
(n) = v − cW

J
J(β)
R(1−β)

nR − α

1− π
J
J(β)
R(1−β)

nR

R

(A.33)

If and only if the retrial cost α satisfies equation (A.33), the policy J
J(β)
R(1−β)nR becomes an

equilibrium. Since W
J
J(β)
R(1−β)

nR
and π

J
J(β)
R(1−β)

nR

R are just some fixed quantities given that the

population adopts the join/retry strategy J
J(β)
R(1−β)nR, it is clear from equation (A.33) that

α exists and is unique, where

α = (1− π
J
J(β)
R(1−β)

nR

R )[
c

µ
n− cW

J
J(β)
R(1−β)

nR
] (A.34)

is a function of β. Finally, when β increases from 0 to 1, the underlying queueing system,

where everyone adopts the strategy J
J(β)
R(1−β)nR, evolves continuously, and thus the condi-

tional waiting time W
J
J(β)
R(1−β)

nR
and the steady-state retrial probability π

J
J(β)
R(1−β)

nR

R are both

continuous quantities in β. It follows that α(β), given in (A.34), is also continuous in β. �

To prove Lemma 7, we first prove two supporting lemmas (Lemmas 12 and 13).

Lemma 12 For fixed n : 1 ≤ n ≤ N , vary α such that J
J(β)
R(1−β)nR is an equilibrium

policy for β ∈ (0, 1). Then, the partial derivative of consumer welfare under the equilibrium

join/retry strategy J
J(β)
R(1−β)nR with respect to β is negative. Mathematically, if we denote U

as consumer welfare, then ∂U
J
J(β)
R(1−β)

nR

∂β < 0.
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Proof of Lemma 12:

Suppose J
J(β)
R(1−β)nR is an equilibrium strategy. We still use

π
J
J(β)
R(1−β)

nR

0 , π
J
J(β)
R(1−β)

nR

1 , . . . , π
J
J(β)
R(1−β)

nR

n−1 , π
J
J(β)
R(1−β)

nR
n

as the steady-state probabilities for states {0, 1, . . . , n− 1, n}, respectively. Let

U
J
J(β)
R(1−β)

nR

0 , U
J
J(β)
R(1−β)

nR

1 , . . . , U
J
J(β)
R(1−β)

nR

n−1 , U
J
J(β)
R(1−β)

nR
n

denote a consumer’s (expected) payoff arriving to state x ∈ {0, 1, . . . , n − 1, n} (when the

population adopts J
J(β)
R(1−β)nR). Then,

U
J
J(β)
R(1−β)

nR

0 = v − c

µ
(1) for joining;

U
J
J(β)
R(1−β)

nR

1 = v − c

µ
(2) for joining;

... =
...

U
J
J(β)
R(1−β)

nR

n−2 = v − c

µ
(n− 1) for joining;

U
J
J(β)
R(1−β)

nR

n−1 = v − c

µ
(n) no matter choosing to join or retry;

U
J
J(β)
R(1−β)

nR
n = v − c

µ
(n) for retrying.

On the other hand, the consumer welfare (rate) is given by

U
J
J(β)
R(1−β)

nR
= λ

n
∑

x=0

π
J
J(β)
R(1−β)

nR
x U

J
J(β)
R(1−β)

nR
x . (A.35)

The retrial probability under J
J(β)
R(1−β)nR is

π
J
J(β)
R(1−β)

nR

R = (1− β)π
J
J(β)
R(1−β)

nR

n−1 + π
J
J(β)
R(1−β)

nR
n .
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According to (3.12), we have ρ
J
J(β)
R(1−β)

nR
= l

1−π
J
J(β)
R(1−β)

nR

R

and

π
J
J(β)
R(1−β)

nR

1 = ρ
J
J(β)
R(1−β)

nR
π
J
J(β)
R(1−β)

nR

0 ;

π
J
J(β)
R(1−β)

nR

2 = ρ
J
J(β)
R(1−β)

nR
π
J
J(β)
R(1−β)

nR

1 ;

... =
...

π
J
J(β)
R(1−β)

nR

n−2 = ρ
J
J(β)
R(1−β)

nR
π
J
J(β)
R(1−β)

nR

n−3 ;

π
J
J(β)
R(1−β)

nR

n−1 = ρ
J
J(β)
R(1−β)

nR
π
J
J(β)
R(1−β)

nR

n−2 ;

π
J
J(β)
R(1−β)

nR
n = βρ

J
J(β)
R(1−β)

nR
π
J
J(β)
R(1−β)

nR

n−1 .

It follows that for fixed n : 1 ≤ n ≤ N , ρ
J
J(β)
R(1−β)

nR
decreases in β : 0 → 1 due to (i)

π
J
J(β)
R(1−β)

nR

0 + π
J
J(β)
R(1−β)

nR

1 + . . .+ π
J
J(β)
R(1−β)

nR
n

=π
J
J(β)
R(1−β)

nR

0 [ρ
J
J(β)
R(1−β)

nR
+ (ρ

J
J(β)
R(1−β)

nR
)
2

+ . . .+ (ρ
J
J(β)
R(1−β)

nR
)
n−1

+ β(ρ
J
J(β)
R(1−β)

nR
)
n

] = 1,

and (ii) π
J
J(β)
R(1−β)

nR

0 ≡ 1 − l no matter what β is (and in fact what n is), because in a non-

balking system (i.e., π
J
J(β)
R(1−β)

nR

B = 0), the server’s long-run idle probability is always equal

to one minus the utility rate. As a result, the consumer welfare in (A.35) decreases in β

because the payoffs U
J
J(β)
R(1−β)

nR
x ’s are decreasing in state x, i.e.,

U
J
J(β)
R(1−β)

nR

0 > U
J
J(β)
R(1−β)

nR

1 > . . . > U
J
J(β)
R(1−β)

nR

n−2 > U
J
J(β)
R(1−β)

nR

n−1 = U
J
J(β)
R(1−β)

nR
n .

As a side result, we also notice that the steady-state retrial probability

π
J

J(β)

R(1−β)
nR

R = (1− β)π
J

J(β)

R(1−β)
nR

n−1 + π
J

J(β)

R(1−β)
nR

n = [(1− β)(ρ
J

J(β)

R(1−β)
nR

)
n−1

+ β(ρ
J

J(β)

R(1−β)
nR

)
n

]π
J

J(β)

R(1−β)
nR

0

decreases in β. This is because for fixed ρ
J
J(β)
R(1−β)

nR
, (1−β)(ρ

J
J(β)
R(1−β)

nR
)
n−1

+β(ρ
J
J(β)
R(1−β)

nR
)
n

decreases in β. And now since ρ
J
J(β)
R(1−β)

nR
decreases in β, so (1 − β)(ρ

J
J(β)
R(1−β)

nR
)
n−1

+
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β(ρ
J
J(β)
R(1−β)

nR
)
n

further decreases as β increases. This can be formally proved by taking

derivatives to show
∂π

J
J(β)
R(1−β)

nR

R

∂β < 0. �

Lemma 13 Fix n : 1 ≤ n ≤ N . The consumer welfare under the equilibrium join/retry

strategy J
J(β)
R(1−β)nR, i.e., U

J
J(β)
R(1−β)

nR
in Lemma 12, is also equal to

λv − λcW
J
J(β)
R(1−β)

nR − λ(
1

1− π
J
J(β)
R(1−β)

nR

R

− 1)α (A.36)

where α = α(β) is the quantity that induces the equilibrium join/retry strategy J
J(β)
R(1−β)nR.

Proof of Lemma 13:

We show below that (A.36) equals U
J
J(β)
R(1−β)

nR
via equation (A.35). Since α induces the

equilibrium policy J
J(β)
R(1−β)nR, we have from (A.33) that v − c

µ(n) = v − cW
J
J(β)
R(1−β)

nR −
α

1−π
J
J(β)
R(1−β)

nR

R

. Using σ = J
J(β)
R(1−β)nR in the rest of the proof, it then follows that

Uσ

=λ

n
∑

x=0

πσ
xU

σ
x

=λ{πσ
0 [v −

c

µ
(1)] + . . .+ πσ

n−2[v −
c

µ
(n− 1)] + βπσ

n−1[v −
c

µ
(n)] + πσ

R[v −
c

µ
(n)]}

=λ{πσ
0 [v −

c

µ
(1)] + . . .+ πσ

n−2[v −
c

µ
(n− 1)] + βπσ

n−1[v −
c

µ
(n)] + πσ

R[v − cW − α

1− πσ
R

]}

=λ{(πσ
0 + . . .+ πσ

n−1 + βπσ
n−1 + πσ

R)v

− [πσ
0

c

µ
(1) + . . .+ πσ

n−2

c

µ
(n− 1) + βπσ

n−1

c

µ
(n) + πσ

RcW
σ]− πσ

R

1− πσ
R

α}

=λv − λ[(1− πσ
R)cW

σ + πRcW
σ]− λ

πR
1− πR

α

(because W σ =
πσ
0

1− πσ
R

1

µ
+

πσ
1

1− πσ
R

2

µ
+ . . .+

πσ
n−2

1− πσ
R

n− 1

µ
+

βπσ
n−1

1− πσ
R

n

µ
)

=λv − λcW σ − λ
πσ
R

1− πσ
R

α

which is equal to the expression in (A.36). �
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Proof of Lemma 7:

As a corollary to Lemmas 12 and 13 proved above, at an equilibrium strategy J
J(β)
R(1−β)nR,

we must have

∂[v − cW
J
J(β)
R(1−β)

nR − α

1−π
J
J(β)
R(1−β)

nR

R

]

∂β
+

∂α

∂β
< 0. (A.37)

This is because the partial derivative of λv−λcW
J
J(β)
R(1−β)

nR−λ 1

1−π
J
J(β)
R(1−β)

nR

R

α+λα in (A.36)

with respect to β is negative and λ is only a constant.

Fix n ∈ {2, . . . , N−1, N}. Let α(β) be the retrial cost that induces the equilibrium strategy

J
J(β)
R(1−β)nR. Under any equilibrium strategy J

J(β)
R(1−β)nR, the retrial payoff must be the same

as the joining payoff at state n− 1, i.e.,

v − c

µ
(n) = v − cW

J
J(β)
R(1−β)

nR − α

1− π
J
J(β)
R(1−β)

nR

R

. (A.38)

It follows from (A.38) that

∂[v − cW
J
J(β)
R(1−β)

nR − α

1−π
J
J(β)
R(1−β)

nR

R

]

∂β
= 0. (A.39)

Comparing (A.39) to (A.37) tells that ∂α
∂β < 0, i.e., when β increases from 0 to 1, the unique

retrial cost that induces the equilibrium policy J
J(β)
R(1−β)nR decreases continuously in β.

On the other hand, we have showed in Lemma 5 that αn−1 induces J(n − 1)R or sim-

ply J
J(0)
R(1)nR, and αn − cl

µρJnR induces JnR or simply J
J(1)
R(0)nR with binding indifference

conditions, i.e.,

v − c

µ
(n) = v − cW

J
J(0)
R(1)

nR − αn−1

1− π
J
J(0)
R(1)

nR

n−1

v − c

µ
(n) = v − cW

J
J(1)
R(0)

nR −
αn − cl

µρJnR

1− π
J
J(1)
R(0)

nR
n
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Therefore, when β increase from 0 to 1, we have an equilibrium strategy J
J(β)
R(1−β)nR for

some unique retrial cost α that is decreasing from αn−1 to αn − cl
µρJnR . It follows that

αn − cl
µρJnR < αn−1. �

Proof of Theorem 4:

From Lemmas 5 and 7, we see that for any α ≤ αL, there exists at least one equilibrium

strategy in the forms of a retry or a join/retry strategy. The lemmas tell us that on the

region of In, the equilibrium strategies certainly include retry strategy JnR and join/retry

strategies J
J(β)
R(1−β)nR. If there are any other equilibrium strategies of a retry or a join/retry

strategy on this region, say JmR or J
J(β)
R(1−β)mR, then it must be the case that m > n.

Therefore, to show the retry strategy JnR is the Pareto-dominant equilibrium for all α ∈

In, it is equivalent to show that JnR generates the highest welfare among the family of

strategies {JJ(β)
R(1−β)mR : m > n, 0 ≤ β ≤ 1}. With Lemma 12 in mind, it suffices to show

that U
J
J(0)
R(1)

(n+1)R
> U

J
J(0)
R(1)

(n+2)R
> U

J
J(0)
R(1)

(n+3)R
, . . ., or equivalently UJnR > UJ(n+1)R >

UJ(n+2)R, . . .. We will show next that for all k ∈ {n, n+ 1, . . .}, UJkR > UJ(k+1)R. Recall

UJkR =λ
k
∑

x=0

πJkR
x UJkR

x

UJ(k+1)R =λ

k+1
∑

x=0

πJ(k+1)R
x UJ(k+1)R

x

UJkR
0 > UJkR

1 > UJkR
2 > . . . > UJkR

k−1 ≥ UJkR
k

|| || || || ∨

U
J(k+1)R
0 > U

J(k+1)R
1 > U

J(k+1)R
2 > . . . > U

J(k+1)R
k−1 > U

J(k+1)R
k ≥ U

J(k+1)R
k+1 .

Since πJkR
0 = π

J(k+1)R
0 = 1− l and ρJkR > ρJ(k+1)R, it follows that UJkR > UJ(k+1)R. �

Proof of Corollary 1:

Results follow from the properties of functions (A.26) and (A.27). �
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Proof of Lemma 8:

We note that the underlying system is M/M/1/N when the retry/balk strategy JN
R(1−γ)
B(γ)

is adopted by the population. With retrial cost α, the expected retrial payoff is given by

π
JN

R(1−γ)
B(γ)

J (v − cW
JN

R(1−γ)
B(γ) − α)− π

JN
R(1−γ)
B(γ)

B α+ π
JN

R(1−γ)
B(γ)

R π
JN

R(1−γ)
B(γ)

J (v − cW
JN

R(1−γ)
B(γ) − 2α)

− π
JN

R(1−γ)
B(γ)

R π
JN

R(1−γ)
B(γ)

B 2α+ (π
JN

R(1−γ)
B(γ)

R )2π
JN

R(1−γ)
B(γ)

J (v − cW
JN

R(1−γ)
B(γ) − 3α)

− (π
JN

R(1−γ)
B(γ)

R )2π
JN

R(1−γ)
B(γ)

B 3α+ . . .

=
π
JN

R(1−γ)
B(γ)

J

1− π
JN

R(1−γ)
B(γ)

R

(v − cW
JN

R(1−γ)
B(γ) )− π

JN
R(1−γ)
B(γ)

J

(1− π
JN

R(1−γ)
B(γ)

R )2
α− π

JN
R(1−γ)
B(γ)

B

(1− π
JN

R(1−γ)
B(γ)

R )2
α

=
π
JN

R(1−γ)
B(γ)

J

1− π
JN

R(1−γ)
B(γ)

R

(v − cW
JN

R(1−γ)
B(γ) )− 1− π

JN
R(1−γ)
B(γ)

R

(1− π
JN

R(1−γ)
B(γ)

R )2
α

=
1− π

JN
R(1−γ)
B(γ)

N

1− π
JN

R(1−γ)
B(γ)

R

(v − cW
JN

R(1−γ)
B(γ) )− α

1− π
JN

R(1−γ)
B(γ)

R

(A.40)

where

W
JN

R(1−γ)
B(γ) =

π
JN

R(1−γ)
B(γ)

0

1− π
JN

R(1−γ)
B(γ)

N

1

µ
+

π
JN

R(1−γ)
B(γ)

1

1− π
JN

R(1−γ)
B(γ)

N

2

µ
+ . . .+

π
JN

R(1−γ)
B(γ)

N−1

1− π
JN

R(1−γ)
B(γ)

N

N

µ
.

The strategy JN
R(1−γ)
B(γ) will be an equilibrium of the system if and only the retrial payoff

under JN
R(1−γ)
B(γ) is exactly zero, i.e., expression (A.40) is zero. Therefore, the unique retrial

cost that induces JN
R(1−γ)
B(γ) as an equilibrium is a solution to

1− π
JN

R(1−γ)
B(γ)

N

1− π
JN

R(1−γ)
B(γ)

R

(v − cW
JN

R(1−γ)
B(γ) )− α

1− π
JN

R(1−γ)
B(γ)

R

= 0,

or simply α = (1− π
JN

R(1−γ)
B(γ)

N )(v − cW
JN

R(1−γ)
B(γ) ) which is given by (3.17). �
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Proof of Theorem 5:

Suppose the consumer population adopts the retry/balk strategy JN
R(1−γ)
B(γ) and γ increases

from 0 to 1. The underlying system remains M/M/1/N . By a similar proof to “αL < αH”,

it is easy to see that ρ
JN

R(1−γ)
B(γ) , π

JN
R(1−γ)
B(γ)

N and W
JN

R(1−γ)
B(γ) all continuously decrease in γ.

Therefore, by (3.17), the retrial cost α(γ) that induces the equilibrium strategy JN
R(1−γ)
B(γ)

increases continuously in γ. Furthermore, when γ = 0, the retry/balk strategy JN
R(1)
B(0) is

equivalent to the retrial strategy JNR and equation (3.17) is simply equation (A.29), so

α(0) = αL. Similarly, when γ = 1, the retry/balk strategy JN
R(0)
B(1) is equivalent to the balk

strategy JNB and equation (3.17) becomes equation (A.30), and so α(1) = αH .

We have argued that for each γ ∈ (0, 1), there exists a unique retrial cost α ∈ (αL, αH) such

that JN
R(1−γ)
B(γ) is an equilibrium strategy. Due to the continuity and strict monotonicity of

α(γ) in γ, we can conclude that for each retrial cost α ∈ (αL, αH), there exists a unique

equilibrium retry/balk strategy JN
R(1−γ)
B(γ) where γ increases in α (from 0 to 1). Note

that there does not exist other types of equilibrium strategy when α ∈ (αL, αH) because

equilibrium retry and join/retry strategies appear for α ≤ αL and equilibrium balk strategy

appears for α ≥ αH . Therefore, the equilibrium retry/balk strategy is unique. �

Proof of (3.19):

λW JnR =λ[
πJnR
0

1− πJnR
n

1

µ
+

πJnR
1

1− πJnR
n

2

µ
+ . . .+

πJnR
n−1

1− πJnR
n

n

µ
]

=λJnR(1− πJnR
n )[

πJnR
0

1− πJnR
n

1

µ
+

πJnR
1

1− πJnR
n

2

µ
+ . . .+

πJnR
n−1

1− πJnR
n

n

µ
]

=λJnR[πJnR
0

1

µ
+ πJnR

1

2

µ
+ . . .+ πJnR

n−1

n

µ
]

=πJnR
0 ρJnR · 1 + πJnR

1 ρJnR · 2 + . . .+ πJnR
n−1 ρ

JnR · n

=πJnR
1 · 1 + πJnR

2 · 2 + . . .+ πJnR
n · n

=πJnR
0 · 0 + πJnR

1 · 1 + πJnR
2 · 2 + . . .+ πJnR

n · n

=LJnR
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Proof of Theorem 6:

By the proof of Theorem 4, we know that when α ≤ αL, the consumer welfare (of the

Pareto-dominant retry strategy JnR) decreases in the retrial cost α. The welfare is linearly

decreasing on each region of (0, α1], (α1, α2], . . . , (αN−1, αL] with flatter and flatter slope

because 1
1−πJnR

n
decreases in n. Therefore, the highest welfare is achieved when α → 0 and

the lowest when α → αL. Recall from (A.24) that the average number of consumers in the

system is

L =
ρ

1− ρ
− (n+ 1)ρn+1

1− ρn+1
=

ρ

1− ρ
− [logρ(

ρ− l

1− l
)]
ρ− l

1− ρ
. (A.41)

It can be verified that (A.41) decreases in ρ on ρ > l. In fact, lim
ρ→l

L = l
1−l and lim

ρ→ l
1−l

L = l.

When α goes from 0 to αL, the threshold of the equilibrium retry strategy JnR increases

from 1 to N , and ρJnR decreases from ρJ1R = l
1−l to some ρJNR > l. (When J1R is

an equilibrium strategy, ρJ1R = l
1−πJ1R

1
= l

1−l .) Therefore, when α → 0, the equilibrium

strategy is J1R with LJ1R = πJ1R
1 = l and πJ1R

0 = 1− l. It then follows from (3.20) that the

consumer welfare equals λv − cl. On the other hand, when α = αL, the consumer welfare

is λv − cLJNR − λ( 1
1−πJNR

N

− 1)αL.

Moreover, we can bound λv − cLJNR − λ( 1
1−πJNR

N

− 1)αL in that

λv − cl(LJNR + 1) < λv − cLJNR − λ(
1

1− πJNR
N

− 1)αL < λv − cLJNR. (A.42)

It is clear that λv − cLJNR − λ( 1
1−πJNR

N

− 1)αL < λv − cLJNR. To show the other half of

the inequality in (A.42), we note that since αN > αL, we have

λv − cLJNR − λ(
1

1− πJNR
N

− 1)αN < λv − cLJNR − λ(
1

1− πJNR
N

− 1)αL, (A.43)

and we shall show below that the LHS of expression (A.43) is equivalent to λv−cl(LJNR+1).
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Recall from (A.25) that at the equilibrium, n+ 1 = r(1−ρJnR)+1
1−l , thus we have

N + 1 =
(αN/(c/µ))(1− ρJNR) + 1

1− l

⇔ c(N + 1) =
αNµ(1− ρJNR) + c

1− l

⇔ c(N + 1)(1− l) = αNµ(1− ρJNR) + c

⇔ cN + c− cNl − cl = αNµ− αNµρJNR + c

⇔ cN − cNl − cl = αNµ− αNµρJNR

⇔ cN + αNµρJNR − αNµ = cNl + cl

⇔ cN + αNµρJNR − αNµ = cl(N + 1) (A.44)

The LHS of expression (A.43) can be rewritten as

λv − λ(
1

1− πJNR
N

− 1)αN − cLJNR

=λv − [λ(
1

1− πJNR
N

− 1)αN + cLJNR]

=λv − [λ(
1

1− πJNR
N

− 1)αN + c(N − αN/(c/µ))] from (A.17)

=λv − [µ(ρ− l)αN + c(N − αN/(c/µ))]

=λv − [µραN − µlαN + cN − αNµ]

=λv − [cl(N + 1)− µlαN ] from (A.44)

=λv − [cl(N + 1− r)]

=λv − cl(LJNR + 1) from (A.17) (A.45)

From (A.43) and (A.45), we see that λv−cl(LJNR+1) < λv−cLJNR−λ( 1
1−πJNR

N

−1)αL <

λv − cLJNR. It is a quick check that λv − cl(LJNR + 1) < λv − cLJNR because we know

LJNR < l
1−l . �
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Proof of Theorem 7:

By (3.24), the consumer welfare equals

λ(1− π
JN

R(1−γ)
B(γ)

N )

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

(v − cW
JN

R(1−γ)
B(γ) )− λ(1− γ)π

JN
R(1−γ)
B(γ)

N

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

α

=
λ

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

(1− π
JN

R(1−γ)
B(γ)

N )(v − cW
JN

R(1−γ)
B(γ) )− λ(1− γ)π

JN
R(1−γ)
B(γ)

N

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

α

which by (3.17) is equal to

λ

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

α− λ(1− γ)π
JN

R(1−γ)
B(γ)

N

1− (1− γ)π
JN

R(1−γ)
B(γ)

N

α = λα. (A.46)

As (A.46) clearly increases in α and by considering the two extreme scenarios, our claim is

proved.

Recall from (A.29) and (A.30) that αL = (v−cW JNR)(1−πJNR
N ) and αH = (v−cW JNB)(1−

πJNB
N ), it is then a trivial verification that

λ · αL = λv − λcW JNR − λ(
1

1− πJNR
N

− 1)αL = λv − cLJNR − λ(
1

1− πJNR
N

− 1)αL,

λ · αH = λv(1− πJNB
N )− λ(1− πJNB

N )cW JNB = λv(1− πJNB
N )− cLJNB.

Here’s an alternative proof. Since α(β) always adjust to make the retrial payoff of the

strategy JN
R(1−γ)
B(γ) zero, the welfare can also be given as

U
JN

R(1−γ)
B(γ)

=λ[

N
∑

x=0

π
JN

R(1−γ)
B(γ)

x U
JN

R(1−γ)
B(γ)

x ]

=λ[π
JN

R(1−γ)
B(γ)

0 (v − c

µ
) + π

JN
R(1−γ)
B(γ)

1 (v − 2c

µ
) + . . .+ π

JN
R(1−γ)
B(γ)

N−1 (v − Nc

µ
)
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+ γπ
JN

R(1−γ)
B(γ)

N · balking payoff + (1− γ)π
JN

R(1−γ)
B(γ)

N · retrial payoff]

=λ[π
JN

R(1−γ)
B(γ)

0 (v − c

µ
) + π

JN
R(1−γ)
B(γ)

1 (v − 2c

µ
) + . . .+ π

JN
R(1−γ)
B(γ)

N−1 (v − Nc

µ
)

+ γπ
JN

R(1−γ)
B(γ)

N · 0 + (1− γ)π
JN

R(1−γ)
B(γ)

N · 0]

=λ[π
JN

R(1−γ)
B(γ)

0 (v − c

µ
) + π

JN
R(1−γ)
B(γ)

1 (v − 2c

µ
) + . . .+ π

JN
R(1−γ)
B(γ)

N−1 (v − Nc

µ
)]

=λ[(1− π
JN

R(1−γ)
B(γ)

R )v − (1− π
JN

R(1−γ)
B(γ)

R )cW
JN

R(1−γ)
B(γ) ]

=λα

Proof of Proposition 8:

There was an argument in the paper. Here, we provide a more formal proof to show that

λv−cl is greater than Naor’s consumer welfare given in (3.25), i.e., λv−cl > λv(1−πJNB
N )−

cLJNB, or equivalently, πJNB
N λv > cl−cLJNB. Recall that v > N c

µ , therefore it is sufficient

to show that

πJNB
N λN

c

µ
> cl − cLJNB

⇔ πJNB
N lN > l − LJNB

⇔ (1− l)lN

1− lN+1
lN > l − l

1− l
+ (N + 1)

lN+1

1− lN+1

⇔ l

1− l
− l > [(N + 1)− (1− l)N ]

lN+1

1− lN+1

⇔ l2

1− l
> (1 + lN)

lN+1

1− lN+1
(A.47)

Since the RHS of expression (A.47) is decreasing in N and equals to l2

1−l when N = 1 (the

smallest possible value), we know (A.47) holds and therefore the claim is proved. �

Proof of Theorem 9:

We take the graph on the results of the equilibrium welfare in Figure 4, and extend all the N

line segments on α ∈ (0, αL] into N lines, and denote them as L1, L2, . . . , LN , respectively,

see Figure 17. The original N line segments correspond to the welfare under the retry
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strategy J1R for α ∈ (0, α1], welfare under the retry strategy J2R for α ∈ (α1, α2],..., and

welfare under the retry strategy JNR for α ∈ (αN−1, αL], etc. With the extension, the full

line Ln for n = 1, 2, . . . , N would represent the welfare under retry strategies JnR for all

α ∈ (0,∞).

Figure 17: Illustration of the welfare under socially optimal policies (the upper envelope of
L1, L2, . . . , LN and L).

On the other hand, if we denote L the welfare under JN ′B, i.e., the socially optimal

policy in Naor (1969), we know it is a straight line describing a constant function of the

retrial cost α. Naor (1969) showed that N ′ < N and the consumer welfare under JN ′B

exceeds that under JNB which is equal to λαH . In fact, welfare curve under any balk

strategy (i.e., JnB-type) will be a horizontal line in the graph, because there are no retrials

at the equilibrium. Since JN ′B generates the highest welfare among all balk strategies,

{JnB : n ≥ 1}, the upper envelope of L1, L2, . . . , LN and L will give the socially optimal

welfare as a function of the retrial cost α among the class of pure threshold policies that we

study, namely {s : s = JnR or s = JnB for some n ≥ 1}. Result then follows. �
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Proof of Lemma 9:

The queueing system under a retry/balk strategy σ have the following birth and death

rates:

πσ
1 = ρσπσ

0 ;

πσ
2 = ρσπσ

1 ;

πσ
3 = ρσπσ

2 ;

... =
...

πσ
N = ρσπσ

N−1;

πσ
N+1 = θlπσ

N ;

πσ
N+2 = θlπσ

N+1;

... =
...

where

ρσ = θl + (1− θ)
l

1− πσ
R

(A.48)

πσ
B + πσ

R = πσ
N + πσ

N+1 + πσ
N+2 + . . . =

πσ
N

1− θl
(A.49)

If the underlying queueing systems when the population adopts retry/balk strategy σ1 or

σ2, share the same steady-state balking and retrial probabilities, i.e., if πσ1
B = πσ2

B and

πσ1
R = πσ2

R , then by (A.48) and (A.49), ρσ1
R = ρσ2

R and πσ1
N = πσ2

N . It will be true then

πσ1
x = πσ2

x for all x ∈ N0.

Therefore, given two distinct strategies σ1, σ2 ∈ JN
R(1−γ)
B(γ) where

π
σ1
B

π
σ1
B +π

σ1
R

=
π
σ2
B

π
σ2
B +π

σ2
R

= γ ⇒

πσ1
B πσ2

R = πσ2
B πσ1

R , we will only need to show that πσ1
B = πσ2

B and πσ1
R = πσ2

R .

WLOG, assume that πσ1
B < πσ2

B and πσ1
R < πσ2

R . (Signs need to be the same for πσ1
B πσ2

R =
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πσ2
B πσ1

R to hold.) According to (A.48) and (A.49), ρσ1
R < ρσ2

R and πσ1
N < πσ2

N . Also, since

πσ
0 = 1− 1− πσ

R − πσ
B

1− πσ
R

l = 1− (1− πσ
B

1− πσ
R

)l,

we must have πσ1
0 < πσ2

0 . Then, πσ1
x < πσ2

x for all x ∈ N0. And this is a contradiction to

the fact that
∑

x∈N0

πσ1
x =

∑

x∈N0

πσ2
x = 1. �

Proof of Lemma 5’:

Proof is similar to that for the one-class case. The new stability condition is

ρJnR = θl + (1− θ)
l

1− πJnR
R

⇔ ρJnR − θl =
(1− θl)(l − θl)

1− θl − (1− l)(ρJnR)n
(A.50)

since πJnR
R =

πJnR
0 (ρJnR)

n

1− θl
=

(1− l)(ρJnR)
n

1− θl

⇔ (1− l)(ρJnR)
n
=

(1− θl)(ρJnR − l)

ρJnR − θl

⇔ (ρJnR)
n
=

(1− θl)(ρJnR − l)

(ρJnR − θl)(1− l)

⇔ n =
ln (1−θl)(ρJnR−l)

(ρJnR−θl)(1−l)

ln ρJnR
(A.51)

The new indifference condition is

c

µ
(n+ 1) =

c

µ

n−1
∑

k=0

πJnR
k

1− πJnR
R

(k + 1) +
α

1− πJnR
R

⇔ (1− πJnR
R )

c

µ
(n+ 1) =

c

µ

n−1
∑

k=0

πJnR
k (k + 1) + α

⇔ (1− πJnR
R )

c

µ
n =

c

µ

n−1
∑

k=0

πJnR
k k + α

⇔ c

µ
n =

c

µ

n
∑

k=0

πJnR
k k +

c

µ
πJnR
R n+ α

⇔
n
∑

k=0

πJnR
k (n− k) = r
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⇔ (1− ρJnR)r = πJnR
0 n− πJnR

0 ρ(1 + ρJnR + ρJnR
2
+ . . .+ (ρJnR)

n
)

⇔ (1− ρJnR)r = πJnR
0 n− πJnR

0 ρ
1− (ρJnR)

n

1− ρJnR

⇔ (1− ρJnR)r = (1− l)n− (1− θ)ρJnRl

ρJnR − θl
(A.52)

since (A.51) ⇒ 1− (ρJnR)
n

1− ρJnR
=

(1− θ)l

(ρJnR − θl)(1− l)

⇔ n =
(1− ρJnR)(ρJnR − θl)r + (1− θ)ρJnRl

(1− l)(ρJnR − θl)
(A.53)

Note that (A.51) and (A.53) reduce to (A.23) and (A.25) when θ = 0. Define

f3(ρ) ,
ln (1−θl)(ρ−l)

(ρ−θl)(1−l)

ln ρ
from (A.51);

f4(ρ) ,
(1− ρ)(ρ− θl)r + (1− θ)ρl

(1− l)(ρ− θl)
from (A.53).

It can be shown that f3(ρ) and f4(ρ) always intercept at ρ = 1 with a function value of

l
1−l · 1−θ

1−θl regardless of r, but intercept at only one point, say n, other than ρ 6= 1. As

r ↑ (i.e., α ↑), n ↑ and ρ ↓. Similar as before, we can choose α1, α2, . . . , αN such that for

n = 1, 2, . . . , N and for α ∈ [αn − c
µ(1 − πJnR

R ), αn], the pair (n, ρ) = (n, ρJnR) satisfies

both conditions (A.51) and (A.53), thus JnR is an equilibrium strategy. Considering the

boundary conditions, we then have the result. �

Proof of Lemma 7’, Theorem 4’, Proposition 3’ and Theorem 5’:

Omitted. See the proof of Lemma 7, Theorem 4, Proposition 3 and Theorem 5, respectively.

�

Proof of Theorem 6’, Theorem 7’ and Proposition 8’:

Using an argument similar to Proposition 4, it can be shown that the total consumer

welfare for the strategic population decreases in alpha when α ≤ αL, from (1− θ)(λv − cl)

to (1 − θ)λ(v − cW JNR − ( 1
1−πJNR

N

− 1)αL). Dividing the quantities by (1 − θ)λ gives the

welfare per strategic consumer, going from v − c
µ to v − cW JNR − ( 1

1−πJNR
N

− 1)αL = αL.
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The consumer welfare per strategic consumer when the retrial cost α ∈ [αL, αH ] is given by

1

(1− θ)λ
[

(1− θ)λ(1−
∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n )

1− (1− γ)
∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n

(v − cW
JN

R(1−γ)

B(γ) )−
(1− θ)λ(1− γ)

∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n

1− (1− γ)
∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n

α]

=

(1−
∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n )

1− (1− γ)
∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n

(v − cW
JN

R(1−γ)

B(γ) )−
(1− γ)

∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n

1− (1− γ)
∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n

α

=
1

1− (1− γ)
∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n

(1−
∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n )(v − cW

JN
R(1−γ)

B(γ) )−
(1− γ)

∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n

1− (1− γ)
∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n

α

=
1

1− (1− γ)
∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n

α−
(1− γ)

∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n

1− (1− γ)
∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n

α

since α = (1−
∞
∑

n=N

π
JN

R(1−γ)

B(γ)
n )(v − cW

JN
R(1−γ)

B(γ) )

=α

Therefore, the welfare per strategic consumer increases linearly in α from αL to αH .

When α ≥ αH , the consumer welfare will stay constant as the retrial cost varies (because no

consumer retries and pays for the retrial cost). The total consumer welfare for the strategic

population is (1− θ)λ(1− πJNB
N

1−θl )(v− cW JNB), and therefore welfare per strategic consumer

equals (1− πJNB
N

1−θl )(v − cW JNB) = αH .

Finally, it is easy to see that welfare per strategic consumer on α ≥ αH is less than the

welfare when α approaches 0, because the total welfare reaches the maximum possible at

the value of (1 − θ)λ(v − c
µ) when α approaches 0. If the objective function were changed

to maximize welfare per strategic consumer with respect to the retrial cost, the maximizer

remains at α = 0 regardless of the value of θ. �
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Proof of Lemma 10:

We only prove part (ii) here. Proofs to part (i) and (iii) are given in the proofs to Theorem

10 and Proposition 4. For part (ii), fix γ ∈ [0, 1]. Since

π
JN

R(1−γ)
B(γ)

0 = 1− [θ + (1− θ)
1− π

JN
R(1−γ)
B(γ)

B − π
JN

R(1−γ)
B(γ)

R

1− π
JN

R(1−γ)
B(γ)

R

]l

ρ
JN

R(1−γ)
B(γ) = (θ +

1− θ

1− π
JN

R(1−γ)
B(γ)

R

)l,

and
1−π

JN
R(1−γ)
B(γ)

B −π
JN

R(1−γ)
B(γ)

R

1−π
JN

R(1−γ)
B(γ)

R

< 1, 1

1−π
JN

R(1−γ)
B(γ)

R

> 1, we have by taking derivatives that

π
JN

R(1−γ)
B(γ)

0 and ρ
JN

R(1−γ)
B(γ) both decrease in θ. As a result, π

JN
R(1−γ)
B(γ)

0 , π
JN

R(1−γ)
B(γ)

1 , . . . , π
JN

R(1−γ)
B(γ)

N−1

all decrease in θ. Recall that

α(γ) =(1−
∞
∑

i=N

π
JN

R(1−γ)
B(γ)

i )(v − cW
JN

R(1−γ)
B(γ) )

=(π
JN

R(1−γ)
B(γ)

0 + π
JN

R(1−γ)
B(γ)

1 + . . .+ π
JN

R(1−γ)
B(γ)

N−1 )v

− (π
JN

R(1−γ)
B(γ)

0

c

µ
+ π

JN
R(1−γ)
B(γ)

1

2c

µ
+ . . .+ π

JN
R(1−γ)
B(γ)

N−1

Nc

µ
),

we can conclude α(γ) decreases in θ because v > Nc
µ > (N−1)c

µ > . . . > c
µ and

π
JN

R(1−γ)
B(γ)

0 , π
JN

R(1−γ)
B(γ)

1 , . . . , π
JN

R(1−γ)
B(γ)

N−1

all decrease in θ.. �

Proof of Theorem 10:

Recall that Uσ
α,θ denotes the welfare per strategic consumer when the environment is θ, the

retrial cost is α and the strategy being adopted by the population is σ. The idea is to show

that the down-up-flat welfare-per-strategic-consumer curve (given by the Pareto-dominant

equilibrium strategies) with environment θ2 dominates that with environment θ1. Note that
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when the retrial cost α → 0, the Pareto-dominant strategy (either with environment θ1 or

θ2) is for every strategic consumer to join an idle server and retry whenever the server is

busy (i.e., the retrial strategy J1R). Therefore,

lim
α→0

U∗
α,θ1 = lim

α→0
U∗
α,θ2 = v − c

µ

To show U∗
α,θ1

≤ U∗
α,θ2

for all α, we will use the fact that the welfare curve between αL and

αH is a 45-degree straight line. It suffices to prove that

(i) the slope of each piecewise welfare curve on α ≤ αL becomes steeper as θ increases, i.e.,

1
1−πJnR

R

increases in θ for n = 1, 2, . . . , N ;

(ii) The values of α1, α2, . . . , αN−1, αL decrease in θ.

(iii) Value on the left end of each of the piecewise welfare curves on α ≤ αL decreases in θ,

i.e., UJnR
αn−1,θ

decreases in θ for n = 2, . . . , N ;

(iv) Value on the right end of each of the piecewise welfare curves on α ≤ αL decreases in

θ, i.e., UJnR
αn,θ decreases in θ for n = 1, 2, . . . , N − 1 and UJNR

αL,θ
decreases in θ;

(v) Finally, UJNB
αH ,θ decreases in θ.

For (i), fix n ∈ {1, 2, . . . , N}. The steady-state probabilities of the underlying system under

JnR satisfy

πJnR
1 = ρJnRπJnR

0 ;

πJnR
2 = ρJnRπJnR

1 ;

πJnR
3 = ρJnRπJnR

2 ;

... =
...

πJnR
n = ρJnRπJnR

n−1 ;

πJnR
n+1 = θlπJnR

n ;
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πJnR
n+2 = θlπJnR

n+1 ;

... =
...

Since πJnR
0 ≡ 1 − l (none of the strategic or myopic consumer balks), ρJnR must decrease

when θ increases. Therefore, πJnR
0 , πJnR

1 , . . . , πJnR
n−1 all decrease in θ, which implies that

πJnR
R = 1− (πJnR

0 , πJnR
1 , . . . , πJnR

n−1 ) increases. And thus, 1
1−πJnR

R

increases in θ.

For (ii), recall from (A.29) that

αL =(1− πJNR
R )(v − cW JNR)

=(1− πJNR
R )v − (1− πJNR

R )(cW JNR)

=(1− πJNR
R )v − (πJNR

0

c

µ
+ πJNR

1

2c

µ
+ . . .+ πJNR

N−1

Nc

µ
) (A.54)

From (i), we know that πJNR
0 , πJNR

1 , . . . , πJNR
N−1 all decrease in θ while πJNR

R increases in

θ. And the total reduction by πJNR
0 , πJNR

1 , . . . , πJNR
N−1 must be equal to the reduction of

1− πJNR
R , as they sum to 1. Since v > Nc

µ > (N−1)c
µ > . . . > 2c

µ > c
µ , it is clear from (A.54)

that αL decreases in θ.

Now fix n ∈ {1, 2, . . . , N − 1}. The retrial payoff when the population adopts JnR with the

retrial cost αn equals the joining payoff at state n, i.e.,

v − cW JnR − αn

1− πJnR
R

= v − (n+ 1)c

µ
(A.55)

⇔ αn =(1− πJnR
R )(

(n+ 1)c

µ
− cW JnR)

=(1− πJnR
R )

(n+ 1)c

µ
− (1− πJnR

R )(cW JnR)

=(1− πJnR
R )

(n+ 1)c

µ
− (πJnR

0

c

µ
+ πJnR

1

2c

µ
+ . . .+ πJnR

n−1

nc

µ
) (A.56)

From (i), we know that πJnR
0 , πJnR

1 , . . . , πJnR
n−1 all decrease in θ while πJnR

R increases in θ.
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And the total reduction by πJnR
0 , πJnR

1 , . . . , πJnR
n−1 must be equal to the reduction of 1−πJnR

R .

Since (n+1)c
µ > (n)c

µ > . . . > 2c
µ > c

µ , it is clear from (A.56) that αn decreases in θ.

For (iii), fix n ∈ {2, . . . , N}. The retrial payoff when the population adopts JnR with the

retrial cost αn−1 equals the joining payoff at state n − 1, i.e., the indifference condition is

binding at the smaller side:

v − cW JnR − αn−1

1− πJnR
R

= v − nc

µ
(A.57)

Therefore,

UJnR
αn−1,θ

=v − cW JnR − (
1

1− πJnR
R

− 1)αn−1

=v − [(1− πJnR
R )cW JnR + πJnR

R cW JnR]− πJnR
R

1− πJnR
R

αn−1

=v − [πJnR
0

c

µ
+ πJnR

1

2c

µ
+ . . .+ πJnR

n−1

nc

µ
+ πJnR

R cW JnR]− πJnR
R

1− πJnR
R

αn−1

=πJnR
0 (v − c

µ
) + πJnR

1 (v − 2c

µ
) + . . .+ πJnR

n−1 (v −
nc

µ
) + πJnR

R (v − cW JnR − αn−1

1− πJnR
R

)

=πJnR
0 (v − c

µ
) + πJnR

1 (v − 2c

µ
) + . . .+ πJnR

n−1 (v −
nc

µ
) + πJnR

R (v − nc

µ
)

due to (A.57) (A.58)

As θ increases, πJnR
0 , πJnR

1 , . . . , πJnR
n−1 all decrease and πJnR

R increases. It is clear from (A.58)

that UJnR
αn−1,θ

decreases in θ.

For (iv), fix n ∈ {1, 2, . . . , N − 1}. Then,

UJnR
αn,θ

=v − cW JnR − (
1

1− πJnR
R

− 1)αn

=v − [(1− πJnR
R )cW JnR + πJnR

R cW JnR]− πJnR
R

1− πJnR
R

αn
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=v − [πJnR
0

c

µ
+ πJnR

1

2c

µ
+ . . .+ πJnR

n−1

nc

µ
+ πJnR

R cW JnR]− πJnR
R

1− πJnR
R

αn

=πJnR
0 (v − c

µ
) + πJnR

1 (v − 2c

µ
) + . . .+ πJnR

n−1 (v −
nc

µ
) + πJnR

R (v − cW JnR − αn

1− πJnR
R

)

=πJnR
0 (v − c

µ
) + πJnR

1 (v − 2c

µ
) + . . .+ πJnR

n−1 (v −
nc

µ
) + πJnR

R (v − (n+ 1)c

µ
) due to (A.55)

(A.59)

As θ increases, πJnR
0 , πJnR

1 , . . . , πJnR
n−1 all decrease and πJnR

R increases. And UJnR
αn,θ

decreases

in θ due to (A.59).

When n = N . The retrial payoff when the population adopts JNR with retrial cost αL

equals 0 because we recall from (A.29) that v − cW JNR − αL

1−πJNR
R

= 0. Then,

UJNR
αL,θ

=v − cW JNR − (
1

1− πJNR
R

− 1)αL

=v − [(1− πJNR
R )cW JNR + πJNR

R cW JNR]− πJNR
R

1− πJNR
R

αL

=v − [πJNR
0

c

µ
+ πJNR

1

2c

µ
+ . . .+ πJNR

N−1

Nc

µ
+ πJNR

R cW JNR]− πJNR
R

1− πJNR
R

αL

=πJNR
0 (v − c

µ
) + πJNR

1 (v − 2c

µ
) + . . .+ πJNR

N−1 (v −
Nc

µ
) + πJNR

R (v − cW JNR − αL

1− πJNR
R

)

=πJNR
0 (v − c

µ
) + πJNR

1 (v − 2c

µ
) + . . .+ πJNR

N−1 (v −
Nc

µ
) (A.60)

As θ increases, πJNR
0 , πJNR

1 , . . . , πJNR
N−1 all decrease. It is clear from (A.60) that UJNR

αL,θ

decreases in θ.

For (v). The steady-state probabilities of the underlying system under JNB satisfy

πJNB
1 = lπJNB

0 ;

πJNB
2 = lπJNB

1 ;

πJNB
3 = lπJNB

2 ;
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... =
...

πJNB
N = lπJNB

N−1 ;

πJNB
N+1 = θlπJNB

N ;

πJNB
N+2 = θlπJNB

N+1 ;

... =
...

When θ increases, πJNB
0 must decrease. Therefore, πJNB

0 , πJNB
1 , . . . , πJNB

N−1 all decrease in

θ. Since

UJNB
αH ,θ = πJNB

0 (v − c

µ
) + πJNB

1 (v − 2c

µ
) + . . .+ πJNB

N−1 (v −
Nc

µ
),

UJNB
αH ,θ clearly decreases in θ. �

Proof of Theorem 11:

Welfare per myopic consumer under an equilibrium strategy σ (played by the strategic

consumers) is given by

πσ
0 (v −

c

µ
) + πσ

1 (v −
2c

µ
) + . . .+ πσ

n−1(v −
nc

µ
) + πσ

n(v −
(n+ 1)c

µ
) . . . (A.61)

It forms a step function over α ≤ αL because equilibrium strategy remains the same for

strategic consumers for all α that falls in one of the N intervals:

(0, α1], (α1, α2], . . . , (αN−2, αN−1], (αN−1, αL].

When the retrial cost increases from some value in one interval to the next interval, i.e.,

when the equilibrium strategy jumps from JnR to J(n + 1)R, we have ρJnR > ρJ(n+1)R.

As a result,

πJnR
0 =π

J(n+1)R
0 = 1− l

πJnR
x >πJ(n+1)R

x for x = 1, 2, . . . , n
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πJnR
x <πJ(n+1)R

x for x = n+ 1, n+ 2, . . .

As the weights of these steady-state probabilities shift to the right, it is easy to see from

(A.61) that welfare per myopic consumer decreases on α ≤ αL.

When α ∈ [αL, αH ], the equilibrium strategy is JN
R(1−γ)
B(γ) for some γ. As α increases within

this region, γ also increases. As a result, π
JN

R(1−γ)
B(γ)

R decreases and π
JN

R(1−γ)
B(γ)

B increases in α.

However,
π
JN

R(1−γ)
B(γ)

N

1−θl = π
JN

R(1−γ)
B(γ)

R + π
JN

R(1−γ)
B(γ)

B must decrease in α. Because otherwise both

π
JN

R(1−γ)
B(γ)

N and γ would increase in α, then π
JN

R(1−γ)
B(γ)

B = π
JN

R(1−γ)
B(γ)

N · γ increases and cause a

contradiction.

According to (A.61), welfare per myopic consumer is given by

π
JN

R(1−γ)
B(γ)

0 (v −
c

µ
) + π

JN
R(1−γ)
B(γ)

1 (v −
2c

µ
) + . . .+ π

JN
R(1−γ)
B(γ)

n−1 (v −
(n)c

µ
) + π

JN
R(1−γ)
B(γ)

n (v −
(n+ 1)c

µ
) . . .

=[π
JN

R(1−γ)
B(γ)

0 (v −
c

µ
) + π

JN
R(1−γ)
B(γ)

1 (v −
2c

µ
) + . . .+ π

JN
R(1−γ)
B(γ)

n−1 (v −
(n)c

µ
)] + π

JN
R(1−γ)
B(γ)

n (v −
(n+ 1)c

µ
) . . .

=[(1− π
JN

R(1−γ)
B(γ)

R )(v − cW
JN

R(1−γ)
B(γ) )] + π

JN
R(1−γ)
B(γ)

n (v −
(n+ 1)c

µ
) + π

JN
R(1−γ)
B(γ)

n+1 (v −
(n+ 2)c

µ
) . . .

=α+ π
JN

R(1−γ)
B(γ)

n (v −
(n+ 1)c

µ
) + π

JN
R(1−γ)
B(γ)

n+1 (v −
(n+ 2)c

µ
) . . . (A.62)

Since π
JN

R(1−γ)
B(γ)

n , π
JN

R(1−γ)
B(γ)

n+1 , π
JN

R(1−γ)
B(γ)

n+2 , . . . all decreases in α, and 0 > v− (n+1)c
µ > v− (n+2)c

µ >

. . ., welfare per myopic consumer given by (A.62) increases in α.

Finally, welfare per myopic consumer remains the same when α ≥ αH because strategic

consumers adopt the balk strategy over this region.

Next, recall that Vσ
α,θ denotes the welfare per myopic consumer when the environment is

θ, the retrial cost is α and the strategy being adopted by the strategic population is σ. We

have already proved in Lemma 10 and Theorem 10 that the values of α1, α2, . . . , αN−1, αL,

α(γ) for each γ ∈ [0, 1] (including αL and αH) all decrease in θ, meanwhile the welfare

forms a step function on α ≤ αL and is increasing between αL and αH for any fixed θ. To

prove V∗
α,θ1

≤ V∗
α,θ2

for all α, it then suffices to show
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(i) Value on the right end of each of the piecewise welfare curves on α ≤ αL decreases in θ,

i.e., VJnR
αn,θ decreases in θ for n = 1, 2, . . . , N − 1 and VJNR

αL,θ
decreases in θ;

(ii) Fix γ ∈ [0, 1]. V
JN

R(1−γ)
B(γ)

α(γ),θ decreases in θ.

For (i), fix n ∈ {1, 2, . . . , N − 1}. The steady-state probabilities of the underlying system

under JnR satisfy

πJnR
1 = ρJnRπJnR

0 ;

πJnR
2 = ρJnRπJnR

1 ;

πJnR
3 = ρJnRπJnR

2 ;

... =
...

πJnR
n = ρJnRπJnR

n−1 ;

πJnR
n+1 = θlπJnR

n ;

πJnR
n+2 = θlπJnR

n+1 ;

... =
...

Since πJnR
0 ≡ 1− l (none of the strategic or myopic consumers balks), ρJnR must decrease

when θ increases. Therefore, the weights of the steady-state probabilities shift to the left,

and as a result, welfare per myopic consumer,

VJnR
αn,θ = πJnR

0 (v − c

µ
) + πJnR

1 (v − 2c

µ
) + . . .+ πJnR

n−1 (v −
nc

µ
) + πJnR

n (v − (n+ 1)c

µ
) . . . ,

decreases in θ. Now at αL,

VJNR
αL,θ

= πJNR
0 (v − c

µ
) + πJNR

1 (v − 2c

µ
) + . . .+ πJNR

N−1 (v −
Nc

µ
) + πJNR

N (v − (N + 1)c

µ
) . . . ,

decreases in θ for the same reason.
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For (ii), fix γ ∈ [0, 1],

V
JN

R(1−γ)
B(γ)

α(γ),θ = π
JN

R(1−γ)
B(γ)

0 (v−
c

µ
)+π

JN
R(1−γ)
B(γ)

1 (v−
2c

µ
)+ . . .+π

JN
R(1−γ)
B(γ)

N−1 (v−
ic

µ
)+π

JN
R(1−γ)
B(γ)

N (v−
(N + 1)c

µ
) . . . .

Since both π
JN

R(1−γ)
B(γ)

0 and ρ
JN

R(1−γ)
B(γ) decrease in θ, the steady-state probabilities shift to the

left, and as a result, V
JN

R(1−γ)
B(γ)

α(γ),θ decreases in θ. �

Proof of Proposition 4:

Let πM
0 , πM

1 , πM
2 , . . . , denote the steady-state probabilities of a regular M/M/1 system (no

balking and no retrials). Recall from (A.61) that the consumer welfare per myopic consumer

when the strategic class follows the strategy σ equals

πσ
0 (v −

c

µ
) + πσ

1 (v −
2c

µ
) + . . .+ πσ

n−1(v −
nc

µ
) + πσ

n(v −
(n+ 1)c

µ
) . . . (A.63)

As θ → 1, e.g., imagine there is only 1 strategic consumer among the new arrivals in each

period, what strategy this strategic consumer or the strategic population adopts would

have no impact on the steady-state probabilities of the underlying queueing system. That

is, πσ
x → πM

x as θ → 1 for all x ∈ N0.

Therefore, for n = 1, 2, . . . , N − 1, we have

VJnR
αn,θ

→ πM
0 (v − c

µ
) + πM

1 (v − 2c

µ
) + . . .+ πM

n−1(v −
nc

µ
) + πM

n (v − (n+ 1)c

µ
) . . . = v − c

µ− λ
.

Similarly, we have

VJNR
αL,θ = VJNB

αH ,θ

→ πM
0 (v − c

µ
) + πM

1 (v − 2c

µ
) + . . .+ πM

N−1(v −
Nc

µ
) + πM

N (v − (N + 1)c

µ
) . . . = v − c

µ− λ
.

Also as θ → 1, we have

αL = (1− πJNR
N

1− θl
)(v − cW JNR) → (1− πM

N

1− l
)(v − cWM ) =

N−1
∑

x=0

πM
x [v − (x+ 1)c

µ
];
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αH = (1− πJNB
N

1− θl
)(v − cW JNB) → (1− πM

N

1− l
)(v − cWM ) =

N−1
∑

x=0

πM
x [v − (x+ 1)c

µ
]

where WM is the limiting conditional waiting time defined by

WM ,
πM
0

N−1
∑

x=0
πM
x

c

µ
+

πM
1

N−1
∑

x=0
πM
x

2c

µ
+

πM
2

N−1
∑

x=0
πM
x

3c

µ
+ . . .+

πM
N−1

N−1
∑

x=0
πM
x

Nc

µ
.

It becomes clear that αH → αL as θ → 1, although both αH and αL decrease in θ.

On the other hand, it should be noted that not any two points in the set {α1, α2, . . . αN−1}

will converge to one point as θ → 1. Since v−cW JnR− αi

1−πJnR
R

= v− (n+1)c
µ for any θ ∈ [0, 1)

(e.g., see (A.55)), as θ → 1, we have for any n ∈ {1, 2, . . . N − 1},

αn →(
n−1
∑

x=0

πM
x ) · [( (n+ 1)c

µ
)− c(

πM
0

n−1
∑

x=0
πM
x

c

µ
+

πM
1

n−1
∑

x=0
πM
x

2c

µ
+

πM
2

n−1
∑

x=0
πM
x

3c

µ
+ . . .+

πM
n−1

n−1
∑

x=0
πM
x

nc

µ
)]

=

n−1
∑

x=0

πM
x [

(n+ 1)c

µ
− (x+ 1)c

µ
] =

n−1
∑

x=0

πM
x [

(n− x)c

µ
].

Therefore, as θ → 1, we still have α1 < α2 < . . . < αN−1. �

Alternative modeling on the time between retrials:

In the model presented in the paper, a retrial consumer always returns in the following

period. We show here that all the results of the paper will still hold if the time to return

after a consumer has made a retry decision is either X number of periods where X is

a positive finite integer random variable, or T amount of time where T is exponentially

distributed with some rate t, like in orbital models. (Note that when X assumes infinity, it

represents a balk decision instead, so we do not consider it.)

The key is to show under both cases, the total arrival rate is still λσ
total =

λ
1−πσ

R
, and the long-

run idle probability of the server is still given by πσ
0 = 1− πσ

J

1−πσ
R
l, when the population adopts

some strategy σ at equilibrium. Then, all the steady-state probabilities of the underlying
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queue will be calculated the same way as before.

First, we assume that each retrial consumer returns in X number of periods, where X takes

on values in {x1, x2, . . . , xk} with probabilities p1, p2, . . . , pk, respectively. Then the total

arrival rate is given by

λσ
total = λ+ λπσ

R

k
∑

i=1

pk + λ(πσ
R)

2(

k
∑

i=1

pk)
2 + λ(πσ

R)
3(

k
∑

i=1

pk)
3 + . . . =

λ

1− πσ
R

,

and long-run idle probability of the server is πσ
0 = 1− πσ

J ·λ
σ
total

µ = 1− πσ
J

1−πσ
R
l.

In the case with exponential returning time, let Lt denote the average number of consumers

in the orbit, i.e., the average number of consumers waiting to retry. (Note that Lt depends

on t.) At equilibrium, equating the rates customers enter and leave the system, we have

λπσ
R + tLtπ

σ
R =tLt

λπσ
R =tLt(1− πσ

R)

tLt =λ
πσ
R

1− πσ
R

Therefore the total arrival rate equals λ+ tLt = λ(1 +
πσ
R

1−πσ
R
) = λ

1−πσ
R
.

Now, equating the rates customers enter and leave the orbit, we have

λπσ
J + tLtπ

σ
J =µ(1− πσ

0 )

λ
πσ
J

1− πσ
R

=µ(1− πσ
0 )

πσ
0 =1− πσ

J

1− πσ
R

l

Claims are thus proved. �
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Z. Akşin, B. Ata, S. Emadi, and C.-L. Su. Structural estimation of callers’ delay sensitivity
in call centers. Management Science, 59(12):2727–2746, 2013.

S. Albin. On poisson approximations for superposition arrival processes in queues. Man-
agement Science, 28(2):126–137, 1982.

G. Allon, A. Bassamboo, and Q. Yu. Do delay announcements influence customer behavior?
an empirical study. Kellogg Working Paper, 2013.

E. Ang, M. Bayati, S. Kwasnick, and E. Plambeck. Improving the prediction of emergency
department waiting times. Working Paper, 2014a.

E. Ang, D. Iancu, and R. Swinney. Disruption risk and optimal sourcing in multi-tier supply
networks. Working Paper, 2014b.

M. Armony and C. Maglaras. Contact centers with a call-back option and real-time delay
information. Operations Research, 52(4):527–545, 2004a.

M. Armony and C. Maglaras. On customer contact centers with a call-back option: customer
decisions, routing rules, and system design. Operations Research, 52(2):271–292, 2004b.

B. C. Arntzen, G. G. Brown, T. P. Harrison, and L. L. Trafton. Global supply chain
management at digital equipment corporation. Interfaces, 25(1):69–93, 1995.

J. Artalejo. A queueing system with returning customers and waiting line. Operations
Research Letters, 17(4):191–199, 1995.

185



J. Artalejo. Analysis of an M/G/1 queue with constant repeated attempts and server
vacations. Computers & Operations Research, 24(6):493–504, 1997.

J. Artalejo. Accessible bibliography on retrial queues. Mathematical and Computer Mod-
elling, 30(3):1–6, 1999.

J. Artalejo. Accessible bibliography on retrial queues: progress in 2000–2009. Mathematical
and Computer Modelling, 51(9):1071–1081, 2010.

J. Artalejo and M. Lopez-Herrero. On the single server retrial queue with balking. INFOR.
Information Systems and Operational Research, 38(1):33–50, 2000.

A. Berger and W. Whitt. Comparisons of multi-server queues with finite waiting rooms.
Communications in Statistics – Stochastic Models, 8(4):719–732, 1992.

O. Besbes and C. Maglaras. Revenue optimization for a make-to-order queue in an uncertain
market environment. Operations Research, 57(6):1438–1450, 2009.

O. Besbes, B. Dooley, and N. Gans. Dynamic service control of a queue with congestion-
sensitive customers. Working Paper, 2011.

B. Bhaskaran. Almost sure comparison of birth and death processes with application to
m/m/s queueing systems. Queueing Systems, 1(1):103–127, 1986.

J. H. Bookbinder and T. A. Matuk. Logistics and transportation in global supply chains:
review, critique and prospects. Tutorials in operations research. Hanover, MD: Institute
for Operations Research and the Management Sciences, pages 182–211, 2009.

R. L. Breitman and J. M. Lucas. Planets: A modeling system for business planning.
Interfaces, 17(1):94–106, 1987.

T. H. Brush, C. A. Marutan, and A. Karnani. The plant location decision in multinational
manufacturing firms: An empirical analysis of international business and manufacturing
strategy perspectives. Production and Operations Management, 8(2):109–132, 1999.

G. Cachon and P. Feldman. Pricing services subject to congestion: Charge per-use fees
or sell subscriptions? Manufacturing & Service Operations Management, 13(2):244–260,
2011.

C. Canel and B. M. Khumawala. A mixed-integer programming approach for the inter-
national facilities location problem. International Journal of Operations & Production
Management, 16(4):49–68, 1996.

Y. Chen and T. Huang. Service systems with experience-based anecdotal reasoning cus-
tomers. Working Paper, 2013.

M. A. Cohen and A. Huchzermeier. Global supply chain management: A survey of research

186



and applications. In Quantitative models for supply chain management, pages 669–702.
Springer, 1999.

M. A. Cohen and H. L. Lee. Resource deployment analysis of global manufacturing and
distribution networks. Journal of manufacturing and operations management, 2(2):81–
104, 1989.

M. A. Cohen and S. Mallik. Global supply chains: research and applications. Production
and Operations Management, 6(3):193–210, 1997.

M. A. Cohen, M. Fisher, and R. Jaikumar. International manufacturing and distribution
networks: A normative model framework. Managing international manufacturing, 13:
67–93, 1989.

S. Dasu and J. de La Torre. Optimizing an international network of partially owned plants
under conditions of trade liberalization. Management Science, 43(3):313–333, 1997.

F. de Véricourt and Y.-P. Zhou. Managing response time in a call-routing problem with
service failure. Operations Research, 53(6):968–981, 2005.

L. G. Debo and S. Veeraraghavan. Equilibrium in queues under unknown service rates and
service value. Operations Research, 62(2):38–57, 2014.

A. Economou and S. Kanta. Optimal balking strategies and pricing for the single server
markovian queue with compartmented waiting space. Queueing Systems, 59(3):237–269,
2008.

A. Elcan. Optimal customer return rate for an M/M/1 queueing system with retrials.
Probability in the Engineering and Informational Sciences, 8(4):521–539, 1994.

G. Falin. A survey of retrial queues. Queueing Systems, 7(2):127–167, 1990.

G. Falin and J. Templeton. Retrial Queues, volume 75. CRC Press, 1997.

D. Farrell. Beyond offshoring: Assess your company’s global potential. Harvard Business
Review, 82(12):82–90, 2004.

D. Farrell. Offshoring: Value creation through economic change. Journal of Management
Studies, 42(3):675–683, 2005.

W. Feller. An Introduction to Probability Theory and Its Applications, volume 2. Wiley,
1971.

Q. Feng and L. X. Lu. Outsourcing design to Asia: ODM practices. Managing Supply
Chains on the Silk Road: Strategy, Performance, and Risk, page 169, 2011.

K. Ferdows. Making the most of foreign factories. Harvard Business Review, 75:73–91,
1997.

187



N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review, and
research prospects. Manufacturing & Service Operations Management, 5(2):79–141, 2003.

V. Gaur and Y. Park. Asymmetric consumer learning and inventory competition. Manage-
ment Science, 53(2):227–240, 2007.

D. Ghelfi. The ‘outsourcing offshore’ conundrum: An intellectual property perspective.
WIPO report (World Intellectual Property Organization), 2011.

M. Goh, J. Lim, and F. Meng. A stochastic model for risk management in global supply
chain networks. European Journal of Operational Research, 182(1):164–173, 2007.

J. A. Guajardo, M. A. Cohen, and S. Netessine. Service competition and product quality
in the us automobile industry. 2014.

P. Guo and P. Zipkin. Analysis and comparison of queues with different levels of delay
information. Management Science, 53(6):962–970, 2007.

P. Guo and P. Zipkin. The effects of the availability of waiting-time information on a balking
queue. European Journal of Operational Research, 198(1):199–209, 2009.

P. Guo, W. Sun, and Y. Wang. Equilibrium and optimal strategies to join a queue with
partial information on service times. European Journal of Operational Research, 214(2):
284–297, 2011.

G. J. Gutierrez and P. Kouvelis. A robustness approach to international sourcing. Annals
of Operations Research, 59(1):165–193, 1995.

G. C. Hadjinicola and K. R. Kumar. Modeling manufacturing and marketing options in
international operations. International Journal of Production Economics, 75(3):287–304,
2002.

R. Hassin. Consumer information in markets with random product quality: The case of
queues and balking. Econometrica, 54(5):1185–1195, 1986.

R. Hassin. Information and uncertainty in a queuing system. Probability in the Engineering
and Informational Sciences, 21(3):361, 2007.

R. Hassin and M. Haviv. On optimal and equilibrium retrial rates in a queueing system.
Probability in the Engineering and Informational Sciences, 10(02):223–227, 1996.

R. Hassin and M. Haviv. To Queue or Not to Queue: Equilibrium Behaviour in Queueing
Systems, volume 59. Kluwer Academic Pub, 2003.

R. Hassin and R. Roet-Green. Equilibrium in a two dimensional queueing game: When
inspecting the queue is costly. Working paper, Tel Aviv University, Israel, 2011.

188



M. Haviv and R. Randhawa. Pricing in queues without demand information. Working
Paper, 2012.

T.-H. Ho, C. S. Tang, and D. R. Bell. Rational shopping behavior and the option value of
variable pricing. Management Science, 44(12-part-2):S145–S160, 1998.

J. E. Hodder and M. C. Dincer. A multifactor model for international plant location and
financing under uncertainty. Computers & Operations Research, 13(5):601–609, 1986.

J. E. Hodder and J. V. Jucker. Plant location modeling for the multinational firm. In
Proceedings of the Academy of International Business Conference on the Asia-Pacific
Dimension of International Business, pages 248–258. AIB Honolulu, HI, 1982.

J. E. Hodder and J. V. Jucker. International plant location under price and exchange rate
uncertainty. Engineering Costs and Production Economics, 9(1):225–229, 1985.

K. Hoffman and C. Harris. Estimation of a caller retrial rate for a telephone information
system. European Journal of Operational Research, 27(2):207–214, 1986.

V. N. Hsu, J. Hu, and W. Xiao. Global sourcing decisions for a multinational firm with
foreign tax credit planning. Working Paper, 2014.

T. Huang, G. Allon, and A. Bassamboo. Bounded rationality in service systems. Manufac-
turing & Service Operations Management, 15(2):263–279, 2013.

A. Huchzermeier and M. A. Cohen. Valuing operational flexibility under exchange rate risk.
Operations research, 44(1):100–113, 1996.

T. Hutzschenreuter, A. Y. Lewin, and S. Dresel. Governance modes for offshoring activities:
A comparison of U.S. and German firms. International Business Review, 20(3):291–313,
2011.

N. Jain, K. Girotra, and S. Netessine. Managing global sourcing: Inventory performance.
Management Science, 60(5):1202–1222, 2013.
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