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Abstract 

Technology transitions require the formation of a self-sustaining market through 
alignment of consumers’ interests, producers’ capabilities, infrastructure development, 
and regulations. In this research I develop a broad behavioral dynamic model of the 
prospective transition to alternative fuel vehicles.  
 
In Essay one I focus on the premise that automobile purchase decisions are strongly 
shaped by cultural norms, personal experience, and social interactions. To capture these 
factors, I examine important social processes conditioning alternative vehicle diffusion, 
including the generation of consumer awareness through feedback from driving 
experience, word of mouth and marketing. Through analysis of a simulation model I 
demonstrate the existence of a critical threshold for the sustained adoption of alternative 
technologies, and show how the threshold depends on behavioral, economic and physical 
system parameters. Word-of-mouth from those not driving an alternative vehicle is 
important in stimulating diffusion. Further, I show that marketing and subsidies for 
alternatives must remain in place for long periods for diffusion to become self-sustaining. 
Results are supported with an analysis of the transition to the horseless carriage at the 
turn of the 19th century. 
 
In the second Essay I explore the co-evolutionary interdependence between alternative 
fuel vehicle demand and the requisite refueling infrastructure. The analysis is based on a 
dynamic behavioral model with an explicit spatial structure.  I find, first, a bi-stable, low 
demand equilibrium with urban adoption clusters. Further, the diffusion of more fuel 
efficient vehicles,  optimal for the long run,  is less likely to succeed, illustrating the 
existence of trade-offs between the goals of the early stage transition, and those of the 
long-run equilibrium. Several other feedbacks that significantly influence dynamics 
including, supply and demand, and supply-coordination behaviors, are discussed.  
 

In Essay three I examine how technology learning and spillovers impact technology 
trajectories of competing incumbents - hybrid and radical entrants. I develop a 
technology lifecycle model, with an emphasis on technology heterogeneity. In the model, 
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spillovers can flow to the market leader and can be asymmetric across technologies. I 
find that the existence of learning and spillover dynamics greatly increases path 
dependence. Interaction effects with other feedbacks, such as scale economies, are very 
strong. Further, superior radical technologies may fail, even when introduced 
simultaneously with inferior hybrid technologies. 
 
 
Thesis Supervisors:  

Charles H. Fine 
Professor of Management  
 
Ernest J. Moniz 
Professor of Physics and Engineering Systems 
 
John D. Sterman (Chair) 
Professor of Management 
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Essay 1 
  

Transition challenges for alternative fuel vehicles: 

Consumer acceptance and sustained adoption

 

Abstract  

Automobile firms are now developing alternatives to internal combustion engines (ICE), 
including hydrogen fuel cells and ICE-electric hybrids. Adoption and diffusion dynamics 
for alternative fuel vehicles (AFVs) are more complex than those typical of most new 
products due to the size and importance of the automobile industry, the size and impact of 
the vehicle fleet, and the presence of various forms of increasing returns to scale. This 

paper describes a model examining the diffusion dynamics for and competition among 

AFVs, focusing on the generation of consumer awareness of alternative propulsion 
technologies through feedback from driving experience, word-of-mouth, and marketing. 
Through detailed model analysis the existence of a critical threshold for sustained 
adoption of new alternative technologies is shown. Word-of-mouth from those not 
driving an alternative vehicle is identified as important in stimulating adoption. The 

reduced form treatment of network effects and other positive feedbacks are analyzed. The 

model is discussed in light of the transition to the horseless carriage at the turn of the 19th 
century. As with 19th century vehicles, the combination of scale effects and familiarity 
are the key mechanisms for adoption and stagnation and they pose serious challenges for 
the diffusion of AFVs. 

 

Introduction  

In the 1860s the first self-propelling steam vehicles in the United States were banned 

from the turnpikes, because of their reckless speed, noise, and explosions. Twenty-five 

years later, New York, Boston, and Philadelphia were among cities that provided a warm 

welcome to the clean,  silent electric “horseless carriages” as alternatives to the polluting 

horse-drawn carriage (Kirsch 1996). There was great enthusiasm among inventors, 

including Thomas Edison, for the potential of electric vehicles (EVs). In 1899, an EV set 
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the world speed record of 61 mph (Flink 1988) and during that time the professional elite 

debated the relative efficacy of the various platforms, including steamers, EVs and 

internal combustion engines (ICE) (Schiffer et al. 1994). However, eventually the 

installed base of ICE developed most rapidly and shaped the standard of driving, 

becoming the dominant design.  

 

Today, motivated by environmental pressures and increasing constraints on energy 

resources, we face another potential transition - away from fossil-powered ICE vehicles. 

Various alternatives, compressed natural gas vehicles (CNG), hydrogen fuel cell vehicles 

(HFCVs), or hybrids, are expected to compete with each other and with ICE. Market 

formation for AFVs harbors many uncertainties and the successes of past introductions 

are limited. In the United States and elsewhere, diesel and CNG vehicles have failed to 

create self-sustaining markets despite initial subsidies. Many other AFVs, such as EVs, 

have failed to take of at all despite repeated attempts in many countries (Callon 1986; 

Schiffer et al. 1994; Cowan and Hulten 1996; Kirsch 2000; Mom and Kirsch 2001).  

 

The failure of new technologies to take off, despite an anticipated potential, is often 

attributed to the existence of increasing returns to scale. Arthur (1989), David (1985), and 

Katz and Shapiro (1985, 1986) developed and analyzed arguments about lock-in through 

increasing returns. Whether the take-off mechanism involves economies of scale, scope, 

or R&D, complementarities, or network externalities, an increase in adoption raises the 

installed base, and subsequently improves the attractiveness of the technology. As this 

technology gains an even larger market share, it wins further opportunities to improve its 
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performance, further increasing its market share. Such mechanisms are indeed central to 

industry dynamics generally and the automobile industry specifically as it is subject to 

many such positive feedbacks such as learning-by-doing in production and maintenance, 

scale- and scope economies, and complementarities, especially fueling infrastructure.  

 

There are competing ideas about market share capture. Many new technologies do break 

through despite such entrance barriers. Scale effects eventually exhibit diminishing 

returns, and once an entrant technology does get traction, it can be expected to catch up 

with the established technology. Christensen (1997) describes this mechanism: disruptive 

technologies often emerge in a neighboring market and compete on dimensions of merit 

that were previously unavailable. As the experience of the entrant grows, its’ superior 

performance on the new attributes allows the entrant to outplay the incumbent. 

 

While important, explanations that focus primarily on objective technology efficacy do 

not provide full explanations of the patterns. Further, there is much variation in take off 

of identical technologies in different contexts: diesel vehicles have taken off since the 

1980s in several European countries, but failed to do so in the United States. Similarly, 

CNG vehicles gained traction in Argentina, but sizzled and then fizzled in New Zealand 

and in Canada, and stagnated at low levels in Europe and the United States. These 

examples demonstrate that otherwise technologically promising and economically viable 

products face strong resistance and sometimes fail to take-off at all.  
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A new technology’s efficacy is often ambiguous and debates about them are often 

incommensurable with each other and shaped by series of social events (Bijker et al. 

1987). Part of a wave of non-traditional car designs in the 1930s, the super efficient 

Dymaxion car, oddly shaped into a tear-drop, received large attention and stirred public 

debates. However, soon after its concept car was involved in fatal incident during a test-

drive at the 1933 Chicago World fair the public opinion tipped against it, despite that the 

accident was unrelated to the car’s design (Kimes and Clark 1996). The role of public 

understanding in the failed or delayed diffusion is acknowledged to be important for non-

automotive examples such as rigid airships (Botting 2002), nuclear energy (Gamson 

2001), and renewable energy (Krohn 1999).  

 

Consumers need to learn about the existence, availability, and relevance of a new 

technology. Automobile purchase decisions are not the result of “cold” economic 

calculation. Cars are an important symbol in society and a source of personal identity, 

status, and emotional resonance (Urry 2004). Efficacy and safety of designs and their 

features are shaped by historic events, experience, and social interactions (Miller 2001). 

New technologies need to become accepted as a viable alternative, yet in the early stages 

it is unclear what a new technology may bring. Many technologies, in particular 

automobiles, are complex and are evaluated along many dimensions of merit. Besides 

price, new platforms need to establish themselves on attributes such as safety, 

performance, reliability, and comfort. Thus, awareness of a new technology is not 

sufficient. Considering a new technology to be a viable alternative, in comparison with 

the more familiar and trusted alternatives, will require more knowledge and exposure. In 
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the case of automobile platforms, such considerations will have to build up under 

stringent competition for attention from various alternatives.  

 

The existence of consumer uncertainty in the early developmental stages of a technology 

is not new. Abernathy and Utterback (1978) identified the role of uncertainty in the early 

stages of a product life-cycle. Word-of-mouth is the basic mechanism of spread of 

information about a product in the diffusion literature (Rogers 1962; Bass 1969). 

However, while suggestive (Gladwell 2000), the importance of the process of consumer 

acceptance and learning in the success or failure of a new technology is suggestive, it has 

received only limited attention.  

 

This paper focuses on adoption generated by consumer awareness and learning through 

feedback from driving experience, word-of-mouth, and marketing. I model the process of 

consumer acceptance of a new technology and its role as a critical factor for the 

successful diffusion and sustained adoption of AFVs. In the prospective transition to 

AFVs, the social diffusion interacts strongly with other scale effects, creating further 

barriers to entry. I examine the various adoption patterns that can emerge in the context 

of competing vehicle platforms. Further, I argue, supported by analysis of the formal 

model, that the effects that are considered important for transition dynamics, such as 

learning-by-doing and complementarities, should not be studied in isolation but in 

interaction with other take-off mechanisms.  
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Understanding these mechanisms is critical for successful transitions towards an AFV-

based transportation system. In other the other two essays I treat the role of learning, 

research, spillovers, infrastructure, and supply-demand dynamics more explicitly and in 

detail. Here I will illustrate the importance of interaction effects of the various 

mechanisms in a more aggregate way, which provides focus on the general patterns.  

 

In what follows I first discuss the model’s scope in relation to the existing literature on 

consumer choice and social exposure. Next, I discuss the core model, followed by 

detailed analysis of its dynamics. The subsequent section expands the model to include 

richer dynamics that result from the interaction with scale effects and consumer learning. 

This is followed by a discussion of this larger model in light of the 19th century transition 

to ICE. Based on the understanding that is achieved here, I discuss the efficacy of 

potential policies to stimulate successful diffusion. I end with a conclusion and discussion 

of the implications. 

 

Modeling consumer choice 

Conceptual and formal models of the product life cycle are useful starting points for 

considering the possible transition to alternative vehicles. Abernathy and Utterback 

(1978) emphasized the role of uncertainty in consumer choice and Klepper (1996) 

introduced a formal model that incorporates learning and scale economies. Arthur (1989)1 

examined factors such as learning and externalities that drive self-reinforcing 

                                                 

1 Arthur’s original manuscript was in circulation in 1983 but was not published until 1989. 
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mechanisms that have become part of mainstream organizational and industrial literature. 

For example, Katz & Shapiro (1985) examine the formation of standards and the role of 

expectations and Loch & Huberman (1999) discuss technological diffusion in the context 

of network externalities.  

 

I draw on innovation diffusion models (Bass 1969; Norton and Bass 1987; Mahajan et al. 

1990; Mahajan et al. 2000), and their applications in the auto industry (Urban et al. 1990; 

Urban et al. 1996).  Models of innovation diffusion date from the 1950’s (Griliches 1957; 

Rogers 1962; Bass 1969). The basic Bass (1969) model, with endogenous word-of-mouth 

from adopters, has been extended by to include other effects: marketing and media 

attention (Mahajan et al. 2000); uncertainty about the value of the innovation (Kalish 

1985), substitution among successive technology generations (Norton and Bass 1987); 

repurchases (Sterman 2000). All these models yield an S-shaped growth curve for the 

introduced product and are widely used, as many new products follow that basic pattern. 

However, the models do not account for other patterns of diffusion, including “rise and 

demise,” stagnation at low penetration levels, or fluctuations. One exception is Homer 

(1987), who develops a diffusion model with endogenous technology, learning-by-doing, 

and adoption applied to medical innovations. Homer shows that the model can explain a 

wide range of diffusion patterns: the classic success (S-shaped); boom and bust; boom, 

bust, and recovery.  

 

This paper builds on the family of Bass-diffusion models with significant modifications. 

These traditional diffusion models confound exposure, familiarity, and the purchase 
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decision.  However, vehicles are complex and involve many experience attributes 

(Nelson 1974), such as vehicle power, reliability, operating cost, and fuel economy, that 

can only be determined after purchase or usage, or extensive exposure. Thus 

familiarization requires sufficient exposure. This exposure must continue over long 

periods of time as vehicles are semi-durable goods and individuals take on average about 

a decade between two purchase decisions. As a result, a much more careful delineation of 

the social exposure mechanisms may be needed to capture critical dynamics. This 

supposition leads me to include six concepts in the model, most of which have been 

discussed in various separate bodies of literature, but not brought together, which is 

critical for exploration of transition dynamics. 

The first concept involves decoupling of the process of familiarization from adoption and 

replacement decisions. This is important, especially for novel semi-durable goods but 

rarely done (for a notable exception, though for different purpose, see Kalish 1985). 

Second, I explicitly capture the different channels through which consumers bring an 

alternative into their consideration set, a concept discussed by Hauser et al. (1993). Third, 

because of the competition for attention, in the absence of any subsequent purchase, 

consideration of a new alternative is gained only slowly, and can degrade or be forgotten 

(Dodson and Muller 1978). This is especially important because of complexity in 

weighing the different attributes, their ambiguous role in the functioning of the car, and 

the emotion and social pressure involved in purchasing a vehicle. Fourth, regarding the 

individual attributes, learning about their relevance and performance is a lengthy process 

that requires confirmation from various sources (Gladwell 2000). Fifth, I explore multi-

technology competition. To do so, I integrate the traditional diffusion concept with 
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discrete consumer choice models (McFadden 1978; Ben-Akiva and Lerman 1985) that 

are often applied to transport mode choice (Domencich et al. 1975; Small et al. 2005), 

and automobile purchases (Berry et al. 2004; Train and Winston 2005), including 

alternative vehicle choice (Brownstone et al. 2000; Greene 2001).   

In the analysis, I characterize the global dynamics and parameter space of the model 

rather than estimation of parameters for particular AFVs, since i) these are highly 

uncertain, and ii) identifying which parameters are sensitive guides subsequent efforts to 

elaborate the model and gather needed data.  

 

The model  

We begin with the fleet and consumers’ choice among vehicle platforms.  The total 

number of vehicles for each platform { }1,...,j n= , Vj, accumulates new vehicle sales, sj, 

less discards, dj: 

 
dV j

dt
= s j – d j  (1) 

Sales consist of initial and replacement purchases.  Discards are age-dependent. Initial 

purchases dominated sales near the beginning of the auto industry, and do so today in 

China, but in developed economies replacements dominate. Appendix 2a treats age-

dependent discards and appendix 2b treats initial purchases; for simplicity, I  assume the 

fleet is in equilibrium and focus here on replacement purchases: 

 s j = σ ijdi

i

∑  (2) 
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where σij is the share of drivers of platform i replacing their vehicle with platform j.  The 

share switching from i to j depends on the expected utility of platform j as judged by the 

driver of vehicle i, . Because driver experience with and perceptions about the 

characteristics of each platform may differ, the expected utility of, for example, the same 

fuel cell vehicle may differ among those currently driving an ICE, hybrid, or fuel cell 

vehicle, even if these individuals have identical preferences.  Hence,  

uij

e

 σ ij =
uij

e

uij

e

j

∑
 (3) 

Expected utility depends on two factors. First, while drivers may be generally aware that 

a platform, such as hybrids, exists, they must be sufficiently familiar with that platform 

for it to enter their consideration set.  Second, for those platforms considered, expected 

utility depends on perceptions of various vehicle attributes.  To capture the formation of a 

driver’s consideration set we introduce the concept of familiarity among drivers of 

vehicle i with platform j, Fij. “Familiarity” captures the cognitive and emotional 

processes through which drivers gain enough information about, understanding of, and 

emotional attachment to a platform for it to enter their consideration set.  Everyone is 

familiar with ICE, so Fi,ICE = 1, while Fij = 0 for those completely unfamiliar with 

platform j; such individuals do not even consider such a vehicle: Fij = 0 implies σij = 0.  

Hence 

 *  (4) e

ij ij iju F u=

where utility, uij, depends on vehicle attributes for platform j, as perceived by driver i.  

 18



 

For an aggregate population average familiarity varies over the interval [0, 1].  

Familiarity increases in response to social exposure, and also decays over time: 

 
dFij

dt
= ηij 1− Fij( )− φijFij  (5) 

where ηij is the impact of total social exposure on the increase in familiarity, and φij is the 

fractional loss of familiarity about platform j among drivers of platform i. The full 

formulation accounts for the transfer of familiarity associated with those drivers who 

switch platforms (see appendix 2c). 

 

Total exposure to a platform arises from three components: (i) marketing, (ii) word-of-

mouth contacts with drivers of that platform, and (iii) word of mouth about the platform 

among those not driving it, yielding: 

 ηij = α j + c ijjF jj V j N( )+ c ijkFkj

k≠ j

∑ Vk N( ) (6) 

Here αj is the effectiveness of marketing and promotion for platform j.  The second term 

captures word of mouth about platform j - social exposure acquired by seeing them on the 

road, riding in them, talking to their owners.  Such direct exposure depends on the 

fraction of the fleet consisting of platform j, Vj/N, and the frequency and effectiveness of 

contacts between drivers of platforms i and j, cijj.  The third term captures word of mouth 

about platform j arising from those driving a different platform, k≠j – for example, an 

ICE driver learning about hydrogen vehicles from the driver of a hybrid.2  

                                                 

2 Eq. 6 can be written more compactly as ηij = α j + cijkFkj

k

∑ Vk N( ); we use the form above to emphasize 

the two types of word of mouth (direct and indirect). 
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It takes effort and attention to remain up to date with new vehicle models and features.  

Hence familiarity erodes unless refreshed through social exposure.  The loss of 

familiarity is highly nonlinear.  When exposure is infrequent, familiarity decays rapidly: 

without marketing or an installed base, the electric vehicle, much discussed in the 1990s, 

has virtually disappeared from consideration.   But once exposure is sufficiently intense, 

a technology is woven into the fabric of our lives and “automobile” implicitly connotes 

“internal combustion”. Familiarity with ICE =1 and there is no decay of familiarity.  Thus 

the fractional decay of familiarity is: 

 φij = φ0 f ηij( );      f (0) = 1, f (∞) = 0, f '(⋅) ≤ 0 . (7) 

Familiarity decays fastest (up to the maximum rate φ0) when total exposure to a platform, 

ηij, is small.  Greater exposure reduces the decay rate, until exposure is so frequent that 

decay ceases.  I capture these characteristics with the logistic function 

  f ηij( )=
exp −4ε ηij – η*( )( )

1+ exp −4ε ηij – η*( )( )
 (8) 

where η*  is the reference rate of social exposure at which familiarity decays at half the 

normal rate, and ε is the slope of the decay rate at that point.  Varying η*and ε enables 

sensitivity testing over a wide range of assumptions about familiarity decay.  

These channels of awareness generation create positive feedbacks that can boost 

familiarity and adoption of AFVs (Figure 1). First, a larger alternative fleet enhances 

familiarity as people see the vehicles on the roads and learn about them from their 

drivers.  Greater familiarity, in turn, increases the fraction of people including AFVs in 

their consideration set and, if their utility is high enough, the share of purchases going to 

AFVs (the reinforcing Social Exposure loop R1a).  Further, as the AFV fleet grows, 

people driving other platforms increasingly see and hear about them, and the more 

socially acceptable they become, suppressing familiarity decay (reinforcing loop R1b).   
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Second, familiarity with AFVs among those driving ICE vehicles increases through word 

of mouth contacts with other ICE drivers who have seen or heard about them, leading to 

still more word of mouth (reinforcing loops R2a and R2b).  The impact of encounters 

among non-drivers is likely to be weaker than that of direct exposure to an AFV, so cijj > 

cijk, for k≠j.  However, the long life of vehicles means AFVs will constitute a small 

fraction of the fleet for years after their introduction.  The majority of information 

conditioning familiarity with alternatives among potential adopters will arise from 

marketing, media reports, and word of mouth from those not driving AFVs. Word of 

mouth arising from interactions between adopters and potential adopters will become 

significant only after large numbers have already switched from ICE to alternatives. 

 

This concludes the exposition of the core model. The formulation differs from those of 

the standard Bass models through the decoupling of exposure, familiarity and the 

adoption decision, the word of mouth through non-users and the discrete choice 

replacement, for durable goods. Appendix 3a describes how we can recover the Bass 

model, under special conditions, and interpret its parameters in terms of those used in 

familiarity model. However, the dynamics are expected to differ considerably from the 

deterministic S-shape. We will now analyze its fundamental dynamics. 

 

Analysis of the principal dynamics 

For analytic purposes I will hold driver population and vehicles per household, and thus 

total installed base, constant. This assumption simplifies the potential dynamics and 
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analysis and draws attention away from the specific, uncertain parameters and numerical 

outcomes, towards the different patterns of behavior that are generated and their causes. 

Further, much of the critical dynamics will occur early on, say, in the first two decades 

after introduction, during which the growth pattern will not have a significant impact on 

the dynamics. 

 

A first-order model: familiarity  

The model generalizes to any number of vehicle platforms and constitutes a large system 

of coupled differential equations.  To gain insight into the diffusion of alternative 

vehicles, we analyze a simplified version with only two platforms, ICE (j=1) and an AFV 

(j=2).  We assume constant driver population and vehicles per driver, so the total fleet, 

, is constant.  Familiarity with ICE can reasonably be assumed to remain 

constant at 1 throughout the time horizon.  Further, AFV drivers are assumed to be fully 

familiar with their own AFVs.  Thus 

N = V j
j

∑

 F =
1 F12

1 1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , (9)  

significantly reducing the dimensionality of the model.   

Long vehicle life means the composition of the fleet will remain roughly fixed in the first 

years after alternatives are introduced.  Assuming the fleet of each platform is fixed 

reduces the model to a first-order system where the change in familiarity with AFVs 

among ICE drivers, dF12/dt, is determined only by the level of familiarity itself and 

constant effects of marketing and social exposure to the small alternative fleet.  
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Figure 2 shows the phase plot governing familiarity for a situation with a strong 

marketing program for AFVs and a modest initial fleet (Table 1 lists model parameters).  

When familiarity with the alternative is low, word of mouth from non-drivers is 

negligible, and the gain in familiarity comes only from marketing and exposure to the 

few AFVs on the road.  Since the total volume of exposure is small, the decay time 

constant for familiarity is near its maximum.  As familiarity increases, word of mouth 

about AFVs among ICE drivers becomes more important, and increasing total exposure 

reduces familiarity loss.  

 

The system has three fixed points.  There are stable equilibria near F=1, where familiarity 

decay is small, and near F=0, where word of mouth from non-drivers is small and 

familiarity decay counters the impact of marketing and exposure to the small alternative 

fleet.  In between lies an unstable fixed point where the system dynamics are dominated 

by the positive feedbacks R2a and R2b.  The system is characterized by a threshold, or 

tipping point.  For adoption to become self-sustaining, familiarity must rise above the 

threshold; otherwise, it (and thus consumer choice) will tend toward the low-

consideration equilibrium.  The existence and location of the tipping point depends on 

parameters.  Sensitivity analysis shows the low-familiarity equilibrium increases, and the 

tipping point falls, as i) the magnitude of marketing programs for AFVs, α2, rises; (ii) the 

impact of word of mouth about AFVs between AFV and ICE drivers, c122, increases; iii) 

the size of the initial alternative fleet grows; iv) the impact of word of mouth about AFVs 

within the population of ICE drivers, c121, increases; and v) as familiarity is more durable 

(smaller φ0 and η* and larger ε).  Continuing these parameter changes causes the unstable 
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fixed point to merge with the lower stable equilibrium, and then to a system with a single 

stable equilibrium at high familiarity. 

 

A second-order model: familiarity versus adoption  

We now relax the assumption that the share of alternative vehicles is fixed, adding the 

social exposure loops R1a and R1b.  We simplify the dynamics of fleet turnover by 

aggregating each fleet into a single cohort with constant average vehicle life λj = λ, 

yielding  

 d j = V j /λ (10)  

Since V2 = N – V1, fleet dynamics are completely characterized by the evolution of the 

alternative, which, from eq. 1 and 2, is 

 
dV2

dt
= σ 22V2 + σ12 N −V2( )( ) λ −V2 λ . (11)  

By eq. 3 and 4, the fraction of drivers purchasing an AFV is 

 σ i2 = Fi2ui2 / Fi1ui1 + Fi2ui2( ) (12)  

As before, we assume AFV drivers are fully familiar with their AFVs, and that everyone 

is familiar with ICE.  Assuming for now that the perceived utilities uij are also constant, 

σ22 is constant at u22/(u22 + u21) and  

 σ12 = Fi2ui2 / 1⋅ u11 + F12u12( ). (13)  
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With the equation governing familiarity, the system reduces to a pair of coupled 

differential equations with state variables V2 (the AFV fleet) and F12 (the familiarity of 

ICE drivers with AFVs). 

Figure 3 shows the phase space of the system for several parameter sets.  In all cases, the 

utilities of the two platforms are assumed to be equal so that AFV purchase share is 0.5 at 

full familiarity.  Table 1 shows other parameters.  The nullclines (dashed lines) are the 

locus of points for which the rate of change in each state variable is zero.  Fixed points 

exist where nullclines intersect.  With moderate marketing and no non-driver word of 

mouth (Figure 3a) there are three fixed points, as in the one-dimensional case, and the 

state space is divided into two basins of attraction.  For small initial alternative fleets, 

familiarity and the fleet decay to low levels, even if initial familiarity is high.  On the 

other side of the separatrix dividing the basins, familiarity rises and more ICE drivers 

switch to AFVs, further increasing familiarity and triggering still more switching. Figure 

3b shows a case with no marketing but moderate non-driver word of mouth.  As in the 

one-dimensional case, indirect word of mouth among ICE drivers shrinks the basin of 

attraction for the low adoption equilibrium.  In Figure 3c marketing and non-driver word 

of mouth are large enough that there is only one fixed point, with high familiarity and 

diffusion.  

In Figure 3 marketing impact is constant.  In reality, marketing is endogenous.  

Successful diffusion boosts revenues, enabling marketing to expand, while low sales limit 

resources for promotion.  Declining marketing effort lowers α2, moving the low-diffusion 

equilibrium toward the origin and enlarging its basin of attraction.  Figure 4 illustrates a 

set of simulations beginning with no familiarity or installed base for the alternative.  An 
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aggressive marketing campaign (α2=0.02) begins at t=0.  The campaign ends after T 

years, 10≤T≤50 years.  When the campaign is “short” -- only about a decade -- familiarity 

and market share drop back despite initial success:  the campaign does not move the 

system across the basin boundary.  With the assumed parameters, aggressive promotion 

must be maintained for roughly 30 years before diffusion becomes self-sustaining.  

 

The long time required to move the system across the basin boundary to where adoption 

is self-sustaining depends, of course, on parameters. However, the key time delays, 

particularly the long lives of vehicles, are not in doubt. Vehicle lifetime affects the slow 

transition dynamics in two ways: first, the long lifetime constrains the physical diffusion 

speed. Second, the long replacement times require a much larger utility or total market 

volume to overcome the forgetting dynamics at low exposure (that is to overcome 

dominance of loop B1 in Figure 1). This would suggest that more durable products and 

systems (cars, energy deployment) are especially affected by such dynamics. This 

distinction does not come out in the classic diffusion models, or the standard demand 

models. Collapses after initial take-offs have been observed.  For example, attempts to 

introduce CNG vehicles faltered in Canada, and in New Zealand after initial subsidies 

expired, despite some initial diffusion; and stagnated at low penetration in Italy, even 

with continued subsidies (Cowan and Hulten 1996; Di Pascoli et al. 2001; Sperling and 

Cannon 2004; Energy Information Administration 2005). This concludes the discussion 

of the fundamental social exposure dynamics.  We will now analyze the implications of 

interactions with other increasing returns to scale mechanisms and the role of 

competition. 
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Social exposure, endogenous performance and competition 

The analysis above illustrates the fundamental dynamics generated by this structure.  In 

real life, however, technologies are engaged in a dynamic competition with each other, 

with the performance of each technology improving over time. In addition, consumers 

have to learn about each technology’s efficacy over time. Here we want to illustrate the 

relevance of consumer learning in such settings. To do this, we expand the model to 

include endogenous technology improvement through learning-by-doing and consumer 

learning about performance and focus our analysis on the competitive interaction 

between alternatives.  

 

Figure 5 illustrates how the dynamics are now shaped by additional feedback loops that 

have highly nonlinear characteristics: increased sales allow improving the technology, 

which increases attractiveness and market share. New entrants can close the gap, 

especially because such feedbacks, which exhibit diminishing returns, are very strong for 

those with little prior experience (R3). However, early during the diffusion, new entrants 

receive limited effective exposure, suppressing market shares, as discussed above, which 

reduces learning-by-doing (R1 and R2 interacting with R3). Consumers will learn fast 

about the actual performance of established technologies (B2), but for novel technologies 

consumers get much less opportunities to learn about the state of the art or its potential 

(R4), which suppresses learning and perceived utility, further limiting sales and exposure. 

Such interactions between actual improvement, the consumers’ perception of the 

performance, and their consideration for purchase of a technology were critical during the 
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failed introduction of diesels in the US during the late 70s. The early models had weak 

performance, which resulted in large-scale rejection, making them unable to occupy a 

critical niche that would allow them to improve. Further, despite substantial 

improvements of diesel technology over the years, and its large-scale acceptance in 

Europe, in the US sales and perception remain poor (Moore et al. 1998). Finally, the 

competitive dynamics between various AFVs (indicated in Figure 5 with the layered 

stocks) limit their market share, and thus production volumes and hence exposure and 

learning as well. 

 

Model expansion: endogenous performance and consumer perception 

Utility takes the reference value u* when expected performance equals a reference 

value : 

e

ijlP

*

lP

 ( )* exp e

ij l ijl lu u P Pβ= *  (14)  

where β is the sensitivity of utility to performance. The exponential utility function 

means the share of purchases going to each platform follows the standard logit choice 

model. A person's assessment of a platform's attractiveness depends on her perceptions of 

the vehicle characteristics, including purchase cost, fuel efficiency, power, features, and 

range, here aggregated into a single attribute denoted “vehicle performance.”  

The actual states of the attributes are not observed directly, but learned over time. For 

instance, Urban et al. (1990) find that users gradually update their assessment of the 

attractiveness of the latest model of a platform through social interactions with other 

people (drivers and non-drivers) and exposure to marketing and media. It took years 
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before the consumer perception of diesels caught up with the reality of improved 

technology. We model this by allowing perceived performance of attribute l for platform 

j by a driver of platform i, , to be updated through channels similar to those affecting 

familiarity: i) marketing, through which drivers learn about the performance of the new 

technology; ii) ; drivers of platform j, through which they learn about their experience 

with the platform ; and, iii) non-drivers of platform j, through which they learn about 

their perceived performance . On top of that, drivers of j experience the current 

performance themselves, at an experience adjustment rate 

e

ijlP

n

jlP

e

jlP

e

ilP

f

jlP jlε . Hence, 

 ( ) ( ) ( ) ( )
e

ijl n e e e e e f e

jl jl ijl ijjl jl il j ijkl kl il jk k jl jl jl ij

k j

dP
P P c P P v c P P F v P P

dt
α ε δ

≠

= − + − + − + −∑  (15) 

Effectiveness of contacts and marketing depend on the attributes. For instance, more 

complex products will require more time to be fully comprehended. Such parameters 

cannot be observed but can be approximated through calibration. When a person switches 

from one platform to another, she will take her perception of the state of attractiveness 

with her (see appendix 1c for the treatment of co-flows). 

ijklc

 

I capture the technological improvement of platforms with standard learning curves. In 

reality this happens differently for different attributes , but here we aggregate all into 

one (see Appendix 3a of Essay 3 for a more detailed discussion of the individual 

attributes). Performance of the new vehicles follows a standard learning curve, rising as 

relevant experience with the platform, E, improves, 

n

jlP
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j j jP P E E0
γ

=  (16)  

where performance equals an initial value P0 at the reference experience level E0. 

We proxy a platform’s experience and learning from all sources with cumulative sales: 

 
j

j

dE
s

dt
=  (17)  

Finally, the performance of the installed base, , improves gradually upon selection by 

consumers. This is modeled through a co-flow structure, with sales and discards of 

vehicles (see appendix 1c for the treatment of co-flows). 

f

jP

 

This concludes the exposition of the learning-by-doing and learning of performance. We 

now examine how the social diffusion processes interact dynamically with learning-by-

doing, consumer learning, and platform competition. 

 

Analysis of performance and competition dynamics 

In this section we will examine the dynamics of the expanded model through simulation 

of the introduction of entrants in an environment with a mature technology that has full 

market share. To simplify, we can assume that consumers have a constant perceived 

utility of not adopting an entrant, unless otherwise stated, .  Up to two entrants 

are introduced, with equivalent technology potential

0.5ou =

( )0 0

1 2 1P P= = .This means that, in the 

absence of learning, there exists a theoretical equilibrium in which both entrants reach 
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40% of the market. 3 Other parameters are specified in or discussed for each graph 

separately. The simulation over time, shown in Figure 6, provides an illustrative example 

of the typical dynamics involved. In this simulation, the learning curve strength has a 

value that is typical for production technologies ( )0.3γ =  (Argote and Epple 1990; 

Zangwill and Kantor 1998); performance of the technology is directly observed by all 

consumers and valued equally ( . Time zero is defined as the introduction of 

entrant 2, ten years after the first entrant. After introduction, marketing effectiveness for 

each is held constant at a base level

),e

ij jP P i j= ∀

( )0 0.01jα = , except for the first 10 years after launch, 

during which they receive an additional exposure boost from an introductory marketing 

program p

jα . Such a marketing boost can be seen as an initial period of “free” media 

attention and public interest, because of its novelty. Its effectiveness will depend on many 

social factors, among others, such as how usage of the technology differs from the 

existing habits, its complexity, and how it fits with the existing norms. In this simulation 

the effectiveness of the introductory campaign for entrant 2 is slightly higher than for 

entrant 1 ( , yielding the dotted lines for the total market 

effectiveness for each. We see that consumers’ familiarity with platform 1 grows upon 

introduction, together with the installed base. However, familiarity drops after its 

intensive marketing program ends, resulting in stagnation of the installed base. At the 

same time, the share of the second entrant starts to grow in combination with potential 

)

                                                

1 20.04; 0.035p pα α= =

 

3 The entrants’ attractiveness, used for the MNL equals in this case eβ(Po-1)=1, thus its share will be 

1/(1+1+0.5)=50%. Note further that the attractiveness of the mature technology equal to 0.5 corresponds 

with a performance of the mature technology equal to Po=1-ln(uo)=0.37. 
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consumers’ familiarity. However, when the marketing program of entrant 2 ends, its 

installed base is still below that of entrant 1. Despite this lag and the fact that the 2nd 

entrant certainly has less experience and its technology is less attractive than entrant 1’s, 

entrant 2 can gain a larger market share. Even though its program is only marginally 

more effective than that of the first entrant, it allows building critical exposure from early 

adopters of the platform and those who do not drive it, which further increases the 

consumers’ consideration of the platform. Once it expands, the attractiveness of the 

platform grows, even compared to the first entrant. 

As is shown by the dashed line, in the absence of a 2nd entrant, entrant 1 would have 

taken off, despite early stagnation. While familiarity will also decline in this case after the 

program, absent any serious competition, exposure from the existing installed base and 

familiarity are sufficient to overcome this. However, under more sever and increasing 

competitive pressure, the installed base does not grow sufficiently to overcome the decay 

in familiarity. The attractiveness of a second growing alternative allows less and less 

opportunity for entrant 1 to build its own products. These mechanisms allow a lagging 

entrant to overtake an earlier, equivalent technology. In the next simulations we explore 

in more detail under what conditions the late entrant will take over, and what other 

equilibria can result. 

 

 I now explore the role of positive attention, learning, and technological performance on 

the competitive diffusion dynamics. I start by examining how the simulation result of 

Figure 6 changes, when the strength of the initial marketing program and the learning 
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curve parameter are varied for each. As before, we first set the technology potential of the 

two entrants identical to each other. We then examine the impact of the learning-curve 

strength in isolation. Figure 7a shows, under constant and full familiarity, the effect of 

learning-curve strength, [ ]0.0.5γ ∈ , and the effect of a head start by entrant 1, 

represented by varying non-zero installed base at t=0 for the first entrant 1, [ ]0

1 0,0.2υ = . 

We see that the equilibrium share for the lagging entrant 2 is barely affected by a change 

in the learning-curve strength, or the lead of entrant 1 is increased. Generally, both 

entrants 1 and 2 capture a little over 40% of the market. Only the situation of an 

extremely large learning-curve strength and introduction lag for entrant 2 will have long-

term impact on entrant 2’s equilibrium market share.  

Thus, under these conditions that we will maintain for the rest of this analysis, the 

learning-curve dynamics and introduction lags by themselves exhibit only very weak 

selection effects between technologies. Further, a variation of these parameters triggers 

only a gradual response. Of course the response depends also on the sensitivity of 

consumers to a change in performance. This value is represented in the model by β  and 

set to equal to the neutral value of 1 throughout (Table 1).4  

We now continue with the set up of Figure 6. Figure 7b-d show the equilibrium installed 

base share for entrant 2 when, as before, entrant 2 is introduced with a 10-year lag after 

entrant 1. We analyze the impact on this equilibrium share of effectiveness of the 

                                                 

4 The sensitivity being equal to 1 yields a demand elasticity of 0.5 and can be interpreted that at normal 

performance and 50% market share in equilibrium, a 1% increase in performance will yield a 0.5% increase 

in its equilibrium market share. The factor of 0.5 is the result of the market saturation effect. 
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marketing programs for both entrants during the first 10 years after introduction, 

[ ]0,0.06p

iα ∈ . Figure 7b shows the results in the absence of any learning-by-

doing (  with perceived and actual performance of both platforms still being equal. 

Even in this highly technologically stable environment, three equilibria can be identified: 

i) The two attain equal market shares. This occurs when both programs are very effective. 

In this case, the late entrant can overcome the burden of limited exposure early on. ii) The 

late entrant does not achieve a sustainable market share. This occurs typically when the 

marketing effectiveness of the second entrant is constrained and cannot be considerably 

larger than that of the first. In the case of very effective programs, the threshold is 

independent of the program of the first entrant. iii) full tipping towards the late entrant. 

This occurs when the program of entrant 2 is significantly stronger than a weak program 

of a first entrant. Thus, dynamic paths depend critically on the early stages of the 

platform competition. For instance, there are conditions where a strong program fails, 

while a weaker one leads to a sustainable market share.  

)0γ =

Figure 7c shows the results in the presence of learning-by-doing ( )0.3γ = . While the 

tipping regions are maintained, it is now much harder for the late entrant to catch up 

under moderate marketing of the second entrant. On the other hand, under these 

conditions, the opportunity to out compete the first entrant is also larger, as in this case 

earlier entrants also struggle to attain a reasonable market share (moderate market 

effectiveness for entrant 1, large for entrant 2). Underlying each time are the same 

mechanisms as discussed under Figure 6. Note further that the maximum market share is 

now not constrained to be 65% of the market, as learning-by-doing, at a high production 

 34



 

rate allows for improvement well above the reference performance. In Figure 7d we relax 

the assumption that consumers observe the actual performance. Using parameters for 

consumer learning (equation 15), with a strength of 0.5 times of those used for social 

exposure (see equation 15) and an experience adjustment rate for actual drivers of 0.5, we 

see that the conditions under which the late entrant can catch up are greatly reduced.  

In Appendix 3b I illustrate that the rich tipping dynamics observed here depart radically 

from the traditional lower order diffusion models.  

 

The analysis thus far was done with a fixed attractiveness of an alternative, with 

in each case. However, in some markets no viable alternative exists, which 

would correspond with a very small ; in others, the alternatives are introduced at par 

with the incumbent technologies. Diffusion dynamics will depend on such differences, 

but how is not clear. Figure 8 shows how the equilibrium entrant share of entrant 2 varies 

as a function of its marketing effectiveness during introduction (as before) and a function 

of the mature technology’s attractiveness ( ). When rescaled to

0.5ou =

ou

ou ( )* 1o o ou uσ = + , this 

last axis can be interpreted as the non-linear scaled market share that the mature 

technology would attain, when one entrant would enter the market. The introductory 

marketing effectiveness of the first entrant is held constant at moderate levels . 

The thick line indicates correspondence with the output of Figure 7c, for a marketing 

effectiveness at 0.03. We see that, even given a very low attractiveness of the incumbent, 

an aggressive marketing program is needed to reach a sustainable market share since, in 

this case, the first entrant has also been able to establish itself. Because of that, the second 

1 0.03pα =
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entrant can at best reach an equivalent share of the market to the first entrant. When 

attractiveness of the incumbent is high, a similar aggressive marketing campaign is 

needed, but now only one entrant will survive with its equilibrium market share gradually 

decreasing as the mature technology becomes more superior. In between, with moderate 

attractiveness of the incumbent, a sweet spot exists at which the market can be penetrated 

with more modest marketing efforts.  

 

Early on the diffusion dynamics are critical, and highly path-dependent. Of course the 

dynamics are parameter-dependent and detailed calibration can provide insights 

concerning under what conditions the different dynamics are more likely. However, the 

type of the dynamics seem to correspond with observations, for instance about earlier 

AFV introductions. Detailed analysis of historic cases will provide insights to what 

extend the insights hold. To illustrate this, we now discuss the 19th century transition to 

the horseless carriage. 

 

The transition to the horseless carriage 

The early transition to the current ICE-dominated system in the late 19th century serves 

as a good illustration of the thesis of this essay. In 1900 there were about 18 million 

horses in the United States and 8000 registered vehicles for a population of 76 million. 

Twenty-five years later, 125 million Americans drove 26 million ICE vehicles and held 

just 11 million horses (US Census 1976). While such numbers correspond to an S-shaped 

diffusion pattern typical when a new, superior technology replaces an inferior one, a 

closer look reveals a dramatically different story. I discuss the role of consumer learning 
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and socialization regarding technological alternatives in the context of this transition 

towards ICE in two phases: the slow emergence of the automobile before 1895 with take-

off around 1900; the failed revival of EVs in the 1910s. 

 

The slow emergence of the automobile 

While ICE vehicles did not take off before the end of the 19th century, early automobiles 

had already been introduced in the United States since the 1850s. Figure 9 shows the 

distribution of auto types between 1876 and 1942, measured by the share of firms 

producing each type of vehicle. In these early days, engineers, carpenters, and hobbyists 

devoted their time mainly to developing self-propelling steam and electric machines. ICE 

did not seriously enter the market before Carl Benz demonstrated the first operating ICE 

vehicle in 1885 (Westbrook 2001). Even around 1900, of the 4200 vehicles sold, 3200 

were equally shared among EVs and steamers, with only about 1000 ICE vehicles (Geels 

2005).  

 

The pre-1890 steamers, developed by individual entrepreneurs, were tested and could be 

seen in small villages in various regions of the United States. The steamers delivered 

greater speed, lower operating costs, and less pollution than horses. As Robert Thurston, 

president of the American Society of Mechanical Engineers, suggested in his inaugural 

address in 1881, the triumph of the steam vehicles was imminent (McShane 1994). 

Further, many technological improvements, such as more efficient boilers, were 

available, but not widely implemented (Kimes and Johnson 1971). However, at this stage, 

the public that came to hear about these powered road-running vehicles feared that they 
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would destroy the traditional non-travel functions of urban streets: social activities (such 

as meeting places and provision of safety); walking; economic activities (through open 

air markets, bartering, and vendors with push carts or horse-drawn carriages) (Jacobs 

1961, McShane 1994). Reflecting this, local regulators even went so far as to ban 

steamers because of “their speed, smoke, steam exhaust, and potential for explosion” 

(Schiffer et al. 1994). Its application as a device of travel, for which the railroad was 

perceived as sufficient, was not really considered. Hiram Percy Maxim, an early and 

respected experimenter with ICE vehicles, states that “It has been the habit to give the 

gasoline engine all the credit for bringing the automobile, as we term the mechanical 

road vehicle today. In my opinion this is a wrong explanation. We have had the steam 

engine for over a century. We could have built steam vehicles in 1880, or indeed in 1870. 

But we did not. We waited until 1895” and providing argument other transportation 

developments such as the bicycle “had not directed men’s mind to the possibilities of 

independent, long-distance travel over the ordinary highway” (Jamison 1970). 

 

Thus, while inherent performance was not an issue, in the early days there existed no 

organized groups of stakeholders that could mount campaigns to promote the vehicle as a 

viable alternative. On the contrary, led by threatened groups, much of the media attention 

and word-of-mouth stressed the negative side-effects of this new technology, and the 

resistance to it suppressed any diffusion and limited exposure and growth of familiarity 

with the automobile. There was no opportunity to gain the experience necessary for 

testing other applications, to improve the vehicle, or to increase the talk-of-the-town that 

could ignite a serious competition with the horse. 
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While in the early days the horseless carriage was often considered nothing more than a 

fad or toy, and horse traffic was initially protected by regulation against the “race-devils” 

(Beasly 1988), this negative attitude towards the vehicle changed considerably during the 

roaring 1890s (Westbrook 2001, Beasley 1988).  Early experiments with electrics and 

steams had spilled over to new forms of public transportation. For example, between 

1880 and 1895 a battery-trolley boom resulted in 850 new systems throughout the US, 

transporting over one hundred million passengers annually (Geels 2005). Electric trams 

carried passengers much faster and farther than horse-drawn trolleys (Schiffer et al. 

1994). Gradually, even the middle class could afford living farther away from the 

workplace, setting off a trend of suburban life. Concomitantly, bicycles emerged as a 

form of personal, speedy transportation (Geels 2005). During this period the population 

gradually got accustomed to the idea of mechanized personal transportation.  

 

A truly big breakthrough for the automobile was the 1895 Chicago Times-Herald contest. 

Much more than a contest, it was a show of comparison of the car with the horse: 

performance indicators that were considered critical in the contests included 

responsiveness, tractability, economy of maintenance, power, and docility, with speed 

being much less emphasized (Kimes and Johnson 1971). Besides its most practical and 

public scientific testing of the automobile, it brought the auto pioneers and enthusiasts 

together for the first time. While the general public had never learned the potential value 

of early steamers, the Times-Herald contest was considered a great success and proved an 

enormous stimulus for other events. Automobile periodicals started to make their debut, 
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as with the appearance of The Motorcycle and Horseless Age in 1895 (Flink 1998). This 

was also the year of the first US automobile advertising, placed in The Motorcycle by 

Carl Benz (McShane 1997). In 1896 William Jennings Bryan conducted his presidential 

campaign throughout Illinois in an automobile (Kimes and Johnson 1971). The 

automobile industry as a whole benefited enormously from the positive attention, and 

from the learning by consumers about applications and preferences. Around 1895 public 

interest was great and the number of entrepreneurs developing EVs, steamers, and ICE 

vehicles exploded, as illustrated by Figure 9. From the engineering side the main focus 

was on steamers and electrics, with their known technologies finding it easier to attract 

capital, while ICE developers were mainly individual entrepreneurs with more limited 

capital (McShane 1994).   

 

Thus, this period is associated with gradual learning about the potential function of self-

propelled vehicles by both potential adopters and developers. Although initially only the 

wealthy could afford a vehicle (Epstein 1928), publicity was enormous, building a 

potential for a much broader consumer base. 

 

Besides the aggregate shaping of the idea of the automobile, this was also a period when 

platforms became identified with particular attributes. ICE vehicles were complex to 

operate and noisy, but good for long trips. Steamers were much faster and held the speed 

record until 1906, taken away from EVs in 1899. On the other hand, they required a 

longer start-up time, and more fuel (as well as water), and were likewise noisy. EVs, on 

the other hand, were simple and quiet but had heavy battery packs and could not bring the 
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tourist to remote areas. Their most dominant early applications were as taxicabs in the 

bigger cities. Debates about vehicles’ current and potential advantages were often 

incommensurable because of the many considerations. Camps of partisans emerged and 

respected journals backed different technologies. For instance, Scientific American, 

which had first supported steamers, favored EVs, while the more mundane but influential 

journal Horseless Age was more favorable to ICE vehicles (Schiffer et a. 1994; Horseless 

Age 1895-1899). In those days, for the public, selecting one kind of car with confidence 

was far from easy. 

 

While decisions based on actual performance were difficult, the media and regulators 

were becoming amenable to the automobile as a form of personal transportation. 

However, because steamers were still feared by the general public, haunted by their bad 

reputation for danger (drivers of steamers were still required to obtain a boiler license), 

interest in ICE vehicles and EVs grew. Even though steamer performance was superior, 

many entrepreneurs shifted away from steam to ICE and EVs (McShane 1994, Kimes and 

Clark 1996) and cities started to allow ICE vehicles. 

 

These dynamics were reinforced by the technological improvements that started to take 

shape. With the take-off in demand, each platform began to introduce many new 

concepts. For example, steamers could now be seen with flash-boilers and improved hulls 

for boilers, making them more efficient. ICE, with its more complex technology 

benefited particularly from other industrialization developments in the US, such as the 

experience gain in exchangeable parts production (Flink 1970). ICE was unhindered by 
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constraints of public acceptance or complementarities, making it a favorite for investors. 

Growing production and driving experience and R&D led to spectacular advances in ICE 

vehicles and they soon outgrew the others. In addition, ICE received much more 

exposure, further strengthening its position as the standard choice. EVs and steam were 

unable to keep up. By 1905, 85% of automobile sales consisted of ICE vehicles. 

 

The dynamics of the early transition to the horseless carriage illustrate the concepts 

analyzed in this essay including: consumer learning about existence and performance of 

attributes of multiple platforms; the process of familiarization through social exposure 

and experience; the complication of inter-platform competition and learning-by-doing. To 

illustrate the importance of all these factors, Figure 10 shows the dynamics resulting from 

different hypothesis about key drivers of the dynamics for the competition. For analytical 

clarity we focus on ICE and steam alone.  Parameters are set equal to the base parameters 

(Table 1), unless otherwise stated. Attractiveness of the mature mode of transportation 

(horses) is considerably lower than steam and ICE: .0.2ou = 5 Further, I include a typical 

learning-curve-strength ( )0.3γ = , unless otherwise stated. Steam is introduced 10 years 

prior to ICE. Increased marketing effectiveness is active for both between year 0 and 10, 

representing the increased interest in the automobile. Further, to represent more favorable 

exposure to ICE, I set the marketing effectiveness during that time higher for 

ICE ( ) .  0.04; 0.03p p

ICE Steamα α= =

 

                                                 

5 Which would lead to 80% adoption of Steam or ICE, if only one of them would break through, and in 

absence of learning. 
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I examine, a), the dynamics resulting from the full model structure introduced in this 

Essay, and compare this with: b) a reduced model that emphasizes the superiority of ICE, 

setting familiarity equal to 1 for both; and c) basic word-of-mouth diffusion. In this last 

scenario I confound exposure, familiarity and adoption into one instantaneous adoption 

variable, ignoring the accumulation of familiarity, as well as the role of non-drivers in 

social exposure. I focus on the qualitative patterns of behavior of each scenario. Figure 

10a1 shows the results.  

 

The qualitative reference mode is easily represented by the full model structure, and, 

explanations for the behavior match, as for instance discussed with Figure 6, with the 

observations around the early stages of the automobile transitions. Clearly, performance 

is not a necessary explanation: even with steam and ICE equivalent, ICE can take over. 

Further, we can hypothesize that steam was a viable candidate, in absence of ICE (Figure 

10a2). Figure 10b, ICE superior, shows dynamics under full familiarity, and with ICE 4 

times higher performance than steam. We see direct and fast adoption for steam, even 

when learning is included and for low steam performance. The first order adjustments 

result in very inert dynamics and do not offer room for a strong narrative about the 

transition. Finally we illustrate the dynamics for “instantaneous word-of-mouth”, we set 

familiarity equal to its equilibrium value, ignoring the role of non-

drivers ( )0ijkc j k= ∀ ≠ , ( ) ( ) 0

B B

ij j j jF c V N N Vκ α φ⎡ ⎤≡ + −⎣ ⎦ , with Bκ a free parameter 

with which we can generate a best case for the word-of-mouth scenario (Appendix 3a 

recovers the Bass expression from this familiarity model). For the equivalent technology 

scenario (Figure 10c1), , and the marketing effectiveness for entrant 2 is to be 0.15Bκ =
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increased to 0.2 to generate this best result. The key observation is that the tipping point 

are much less pronounced (but still there due to the competitive dynamics). Without 

strong feedbacks active around the tipping point, Steam does not die out. 

 

The failed revival of EVs 

The role of consumer learning in a dynamic environment in which platforms enter and 

technologies change over time is well illustrated by the short-lived revival of EVs during 

the 1910s. Before that, while expectations and potential were high, their performance 

improvements lagged ICE and driving range was short. These factors can easily be 

assumed to be the main reason for their demise. However, I argue that such learning and 

network externality dynamics are strongly conditioned by social processes around the 

adoption decision. I discuss how the process of acceptance or rejection plays an important 

role in opening, and closing, a window of opportunity for technology introduction and its 

diffusion.  

 

Around 1900, along with the contests and touring enthusiasm, a few attributes emerged 

as dominant for the social group of young affluent men, who had the required purchasing 

power at that time: vehicle speed and capacity for long-range touring. Those attributes 

were especially well provided by ICE and steam. On the other hand, EVs became 

increasingly criticized for their lack of “active radius.” More subtly, EVs’ use for short 

trips in urban areas offered little incentive to develop recharging stations in remoter areas. 

The lack of recharging stations or standardization fed back to limit the appeal of the 

electric cars in those areas, slowing diffusion further. Finally, the heavy EVs could easily 
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get stuck on unpaved roads (at this time still comprising 99% of all roads) and thus 

provided little opportunity to gain experience in using batteries over longer ranges.  

 

Steamers and ICE encountered fewer such problems, as their driving range was typically 

larger. More importantly, their fueling infrastructure was much less constrained, due to 

wide availability of fuel at retail outlets. This allowed for gradual growth in the 

sophistication of its fuel-distribution network, supported by a growing petroleum lobby 

(Kirsch 2000). Moreover, repairs for ICE and steamers in rural areas were much easier, 

as experience with engines (especially gas engines) was growing. Including such 

feedbacks further strengthens the tipping dynamics. This difference in application also 

provided those vehicles visibility almost everywhere, with media attention on spectacular 

and heroic long-distance tours, while EVs were mainly used for unexciting taxi rides in 

the city. After 1900 EVs were generally perceived as losing ground. 

 

Nevertheless, EVs kept developing, and a race for battery improvement started between 

Thomas Edison and the Electric Vehicle Company, leading to a series of significant 

improvements by 1910 (Geels 2005, Kirsch 1996). Other advances around that time 

included infrastructure improvements, such as reliable boost charging, developed by 

Edison, and curbside recharging technologies (Schiffer et al. 1994). Finally, with the 

battery improvements, central stations realized that revenues could be made by providing 

off-peak charging for a larger installed base of EVs.  They started to provide that and 

other services and built their own EV fleets, with leasing and rental services. The sudden 

spurt in advertisements for EVs in some magazines was no accident. Car makers, 
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managers of the larger central stations, and battery companies, perhaps convinced that the 

missing link was solved, agreed that EVs had a bright future if the public were educated, 

through advertising, about their many advantages. In those years much investment, 

research, and collaborative efforts went into the EV, including collaborations between 

Ford and Edison, and, as this discussion illustrates, resulted in organized efforts to revive 

the EV (Schiffer et al. 1994; Kirsch 2000; Westbrook 2001). While sales did indeed 

increase during the “golden age” of the EV, and picked up for professional fleets, public 

interest remained moderate, suggesting that while performance did indeed improve 

Americans still harbored prejudices against EV performance (Schiffer et al. 1994).  

 

Throughout the 20th century, and even now, the EV has been repeatedly introduced into 

the market by confident entrepreneurs, OEMS, and engineers, (Callon (1986);Schiffer et 

al. (1994);Westbrook (2001);MacLean and Lave (2003); MacCready (2004)), but so far 

has never found a way to overcome the burden of history (Kirsch 2000). We saw that 

early in the transition ICE was able to surpass steamers, because the automobile was still 

novel and steamers faced a burden of negative association. However, once ICE took off, 

there remained only limited attention for organized efforts to reintroduce the EVs. The 

improved EVs and EV infrastructure arrived too late, as consumers and investors were 

already comfortable with ICE. AFVs today face an even more established system of 

users, producers, and suppliers, illustrating the importance of explicit consideration of 

social exposure affecting consumer perception and choice. 
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Exploring policy levers 

To illustrate that capturing the richness of the various mechanisms allows for exploration 

of high-leverage policies, I discuss a series of proposed policies to stimulate sustained 

adoption of an entrant. I  do this with the help of Figure 11, which shows a base run with 

a failed introduction of an entrant and various policies. In the base run one entrant is 

introduced into the market with an established technology that is equivalent in potential 

performance . The learning-curve strength is set equal to a typical 

value (

( 0 0

1 2 1P P= = )

)0.3γ =  and, to simplify dynamics, we assume that performance of the technology 

is directly observed by the consumers ( )e

ij iP P= . As before, marketing effectiveness is 

held constant at a base level ( , except for the first 10 years after launch of the 

entrant, during which the additional market effectiveness is moderate

)0 0.01iα =

( )1 0.02pα = .  

 

A first policy to consider is extending the marketing program in duration (run 1). 

However, even an extension to a 30-year program does not lead to adoption. The 

feasibility of such an effort is highly questionable, even if 30 years would lead to take-

off, given far shorter political and industrial decision cycles. A slightly different approach 

involves increasing the marketing effort at introduction. Simulation 2 shows the doubling 

of the effectiveness ( , the lowest value that leads to sustained adoption. While 

this can be successful, increasing effective exposure for a considerable time is very 

difficult and costly, probably more than linearly. A third consideration is the value 

proposition for consumers. The simulation succeeds here for 

)1 0.04pα =

0 0

2 1 3P P = , a significant 
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difference. This could be done, for instance by developing complementary applications 

for, say, HFCVs. While eventually effective, it takes a long period before the higher 

market share is realized. This is because little is done to improve familiarity, while the 

established technology has comparable performance for the first 20 years. Including the 

perception lags of consumers would pose even more of a challenge for this approach.  

 

The fourth strategy is an increase of exposure effectiveness, which leads to a successful 

diffusion for , double the original value. However, the effect takes a while, 

because of the fundamentally slow replacement dynamics. Increasing the influence of 

non-drivers (simulation 5) has a much faster effect. Finally, reducing the replacement 

time is explored. In the simulation, this is done by reducing

0.6ijc =

dτ  for the incumbent by a 

factor 3, for the first 15 years only. This could be realized through buy-back programs of 

old vehicles and fleets, leasing, and targeted early adopters. As shown, this offers 

enormous leverage, especially in the early years.  

 

The policy analysis served to show that including the richer model, allows exploring and 

testing policies and strategies that are out of scope otherwise. In particular, the last two 

policy scenario’s make use of the fundamental dynamics explored in this essay. 

 

Discussion and conclusion 

Understanding the dynamic challenges of a competition with an existing system is critical 

for achieving self-sustaining alternative-fuel-based markets. Recent attempts to introduce 
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alternative fuel vehicles, such as CNG and diesel vehicles, have yielded mediocre results, 

and their general slow diffusion or complete failures illustrate the complexity of any such 

transition in modern transportation. This essay focused on one of the critical aspects of 

such a transition: the social processes that shape acceptance of and learning about the 

efficacy of new technologies. The importance of these processes is illustrated by the fifty 

years that stood between the introduction of the first steam automobiles in the US, and 

the actual take off of the automobile industry. 

 

Especially in the early stages of a prospective transition, social exposure plays a 

dominant role in the success and failure of technologies. First, consumers -- and 

producers and other stakeholders -- need to become familiar with the alternatives, whose 

acceptance are constrained by established habits and socialized preferences. In addition, 

learning from experience a technology’s attributes and performance requires significant 

exposure, which takes considerable time. Such mechanisms do not form a barrier when a 

new technology can be swiftly introduced in a new market, such as consumer electronics, 

or the movie industry. In fact, in such markets exposure mechanisms are often utilized to 

set high expectations. Setting high expectations can be used to drive up sales that help in 

achieving a critical mass for network externalities, as with i-Pods, or before potential 

feedback from consumer experience corrects the expectations, as with blockbuster 

movies. However, when a new technology is introduced into a market of semi-durable 

goods, as with automobiles -- where there are established consumer preferences, 

experiences, networks, and complementarities -- the challenges are enormous. Further, 

more complex products are particularly subject to these dynamics. A larger set of 
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attributes implies that multiple exposures are required until perception has caught up with 

an alternative’s efficacy (Centola and Macy 2005).   

 

Here I developed and analyzed a formal framework showing how the process of 

acceptance plays an important role in technology introduction, in particular in 

combination with scale effects. The model introduced here extends Bass diffusion models 

by incorporating two important characteristics of automobile purchase decisions. First, 

the process of consumer awareness is decoupled from the sales process. The maximum 

diffusion rate is slow due to the physical characteristics, thus making competition for 

attention more complicated than usual. Second, adopters face a choice among a variety of 

technologies, of which performance is endogenously affected by adoption. The 

fundamental tipping point dynamics could be captured in a 1st order analytically tractable 

model. Word-of-mouth through non-users and endogenous media attention is represented 

explicitly and is important for take-off in the early stages. However, to capture the 

essence of the structural characteristics behind our hypothesis a broader model is needed, 

and this was explored in depth. 

 

The analysis offers significant insights into the typical challenges that lie ahead for 

contemporary vehicle propulsion system transitions. First, this analysis revealed a tipping 

point in consumer acceptance and the adoption of novel technologies, purely determined 

by the social exposure dynamics. Second, these mechanisms suggest slower take-off, 

beyond what is expected from learning or replacement dynamics which are especially 
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slow for more durable goods. Third, competition between entrant technologies strongly 

increases the path-dependence of the system. 

 

Obviously the scope of the current model is limited and further work is needed. One 

challenge is to further understand the interplay between exposure, socialization, and 

formation of choice sets. These socio-cognitive interrelations that are involved in the 

formation of new markets or product portfolios (Garud and Rappa 1994) are not directly 

observable and are difficult to estimate. Parameter sensitivity tests based on various real-

life cases of adoption will help improve this basic structure. The model has been 

formulated so that this is feasible.  

 

 

The performance of a technology is not objective but a complex process of socialization 

that involves both learning about its qualities and the evolution of consumer preferences, 

while actual adoption drives the development of complementary assets that in turn feed 

back to attractiveness. Current exposure to the HFCVs and, in a broader context, to the 

hydrogen economy is growing. But even when an AFV’s expected future performance is 

superior to alternatives there are several challenges to be met before it can take off. First, 

as this research suggests, there seem to be few benefits to generating costly early 

awareness, if subsequent potential adoption rates are low. Acceptance will demand a 

process that allows building “trust” in the new technology and “confidence” through 

actual experience and intimate exposure. The debates about, and camps formed behind 

the different platforms during the early transition towards the horseless carriage is 
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illustrative here. There are strong feedbacks that operate around perceived performance: 

when expectations are high, the platform experiences a lot of “free” media attention. This 

effect will gradually disappear as performance improvement slows. Eventually, the focus 

could even be directed to incidents of failure, thus turning a virtuous cycle in a vicious 

one.  

 

Second, limited performance improvement can constrain adoption, which in turn further 

reduces the opportunity for learning-by-doing. A 2003 MIT report by Heywood et al. 

estimates that performance of HFCVs will not equal that of ICE, gas-electric hybrids, or 

diesel engines for 20 years. In the meantime, the dominant internal combustion engine 

has the opportunity to “free ride” on innovative ideas that emerge out of research on the 

hydrogen platform. A combination of consumer acceptance and scale effects such as 

learning-by-doing and spillovers can lead to perverse dynamics, even under relatively 

benign initial conditions, such as the current high gasoline prices, security concerns about 

the current energy systems, environmental pressures, and the existence of potentially 

efficacious technologies.  

 

Managing the transition trajectories of these socio-technical systems is difficult. Without 

a “fertile supportive environment,” early marketing and media attention will not be a 

leverage point for replacement. High prospective performance is not a guarantee for 

success. The durable enthusiasm of engineers, suppliers, and producers for EVs in the 

early 20th century and the limited success of AFV introductions illustrate the enormous 
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misconceptions in understanding the power of social factors and their co-evolutionary 

dynamics with other scale effects in determining the success or failure of innovations.  
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Figure 1 Principal positive feedbacks conditioning familiarity and consumer choice, with 

expected modes of behavior.
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Figure 2 Phase plot for one-dimensional system showing two stable and one unstable 

fixed points for familiarity of ICE drivers with AFVs (parameters in Table 1). 
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Figure 3  Phase space for two-dimensional system with endogenous familiarity and fleet.  

Fixed points exist at intersections of nullclines; sample trajectories shown as dots.  Grey 

area shows basin of attraction for the low-diffusion equilibrium. Strength of marketing 

and non-driver word of mouth as shown.  Other parameters as in Table 1.
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Figure 5 Exploring other feedbacks: social exposure interacts tightly with learning-by-

doing, consumer learning about the vehicle efficacy, and with the competitive dynamics 

(indicated by the layering of the stocks). 
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Figure 7 Competitive diffusion dynamics for two entrants. Each graph shows the 

equilibrium installed base share of entrant 2. a) shows, under constant and full familiarity, 

the effect of learning-curve strength and head-start installed base of the first entrant. b)-d) 

show the results including the endogenous familiarity, with entrant 2 introduced with a 10 

year lag. Shown are the results of marketing effectiveness in the first 10 years after 

introduction for both entrants. Conditions in the different graphs are: b) absence of 

learning-by-doing, c) normal learning-by-doing, d) normal learning-by-doing and 

consumer learning about performance.  
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Figure 8 Competitive diffusion dynamics for two entrants. Equilibrium installed base 

share of entrant 2 is graphed as a function of marketing effectiveness of entrant 2 during 

the 10-year introduction period and as a function of attractiveness of not adopting. The 

thick line indicates correspondence with the output of graph 6c for marketing 

effectiveness at 0.03. 
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Figure 9 Producers by platform. Source: Compiled by author from Kimes and Clark 

(1996), crosschecking with Epstein (1928), Geels (2005), Kirch (2000) and others. 

Excluded are other platforms, such as spring-powered, compressed air, or hybrids that 

constitute small numbers. 
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Figure 10 The early transition towards the automobile using competing models; a) 

dynamics resulting from inclusion of full structure; b) focusing only on technology, using 

superiority of ICE as an hypothesis; c) using traditional word-of-mouth dynamics. 
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Figure 11 Exploration of policies. 
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Tables 

 

Table 1  Parameters used in simulations. 

 Definition unit value 

2α  AFV marketing effectiveness 1/year 0.01 

122c  Strength of word of mouth about AFVs for contacts between ICE 

and AFV drivers 

1/year 0.25 

121c  Strength of word of mouth about AFVs for contacts between ICE 

and other ICE drivers 

1/year 0.15 

0φ  Maximum familiarity loss rate 1/year 1 

*η  Reference rate of social exposure 1/year 0.05 

ε  Slope of decay rate at reference rate year 20 

λ  Average vehicle life year 8 

*u  Reference utility dmnl 1 

β  Sensitivity of utility to performance dmnl 1 

γ  Learning curve strength dmnl 0.379*

0E  Reference years of effective experience years 20 

 

                                                 

* The learning curve exponent γ is calculated from the assumed fractional performance improvement per 

doubling of knowledge, (1 + ∆)P0 = P0(2K0/K0)
γ
, or γ = ln(1+ ∆)/ln(2).  We assume a 30% learning curve, ∆ 

= 0.3, so γ=0.379. 
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Technical appendix accompanying Essay 1 

 

1 Introduction      

The model described in this Essay is designed to capture the diffusion of and competition 

among multiple types of alternative vehicles, along with the evolution of the ICE fleet.  

For example, the model can be configured to represent ICE and alternatives such as ICE-

electric hybrid, CNG, HFCV, biodiesel, E85 flexfuel, and electric vehicles.  However, the 

Essay focuses on intuition about the basic dynamics around the diffusion of alternatives 

to ICE by considering two platforms, ICE and an alternative vehicle, and makes a number 

of other simplifying assumptions that allow us to explore the global dynamics of the 

system.  In this appendix I discuss additional components of the full model, highlighting 

those structures required to capture the competition among multiple alternative platforms. 

 

The appendix is divided into three sections. The first section provides elaborations on the 

model. The second section provides connections to, and differences from the original 

Bass structure as discussed in the Essay.  The model and analyses can be replicated from 

the information provided in the Essay. The last section provides a link to the full model 

and analysis documentation. 
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2 Elaborations on the model 

This section elaborates segments of the model that were highlighted in the paper but not 

fully expanded due to space limitations. 

 

a) Vehicle fleet aging chain 

For simplicity, the age structure of the fleet is not treated in the paper.  Below we lay out 

how this is incorporated in the full model. 

The total number of vehicles for each platform j, j={1,…, J }, of each age cohort m,  

accumulates net vehicle replacements and aging (see Figure 1):  

mj
V ,

 m

m

j r

j

dV
v v

dt m

a

j= +  (A1) 

Fleet i,1

sales i

Fleet i,M

discards
i, M

discards
i,1

....

discard
time i

-

+

Fleet i, m ....

discards
i,m

+

new
sales i

replacement
sales i

+

+

+

total
discards i

+ + +

+

Vehicle fleet i

Vj,1 Vj,m Vj,M

j

j

j

j j

j

j

 

Figure 1 Vehicle replacement with aging chain. 

 

Aging captures vehicles coming from a younger cohort less those aging into the next 

cohort: 
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0 1
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ia a
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v m m M

+

−

+ −
= ⎧ M≤⎧⎪ ⎪= =⎨ ⎨> =⎪ ⎪⎩ ⎩  (A3) 

while  

 
, 1m m m m

s c

i i iv f V τ
+

=  (A4) 

Where 
m

s

if is the survival fraction for each cohort.6,7

 

Net vehicle replacements are new vehicle sales, , less age dependent discards, : 
mj

s
mj

d

  (A5) 
m m

r

j jv s d= −
mj

We do not consider the used car market here.  New vehicle sales enter the first age 

cohort, thus: 

 
1

0 1m

j

j

s m
s

m

=⎧
= ⎨ >⎩

 (A6) 

Total sales for platform j, , consist of initial and replacement purchases: js

 n

j js s sr

j= +  (A7) 

The full model allows for growth in the fleet as population and the number of vehicles 

per person grow.  In the paper population and the number of vehicles per person are 

                                                 

6  Annual survival (and/or scrappage) rates by model year can be derived from registration data (e.g. by L. 

Polk &Co, AAMA).  

7 In equilibrium average vehicle life 
vλ is found by:

' '

1 11

1 ' 1 ' 1

M

m m

m MM
cr c r

j j j

m m m

f fλ λ λ
− −−

= = =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∏ ∏  
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assumed constant, implying the total fleet is in equilibrium and initial purchases are zero.  

Vehicles sales for platform j arise from the replacement of discards from any platform i 

and cohort m, :  
'm

r

id

 ∑
'

, '
m m

r

j i j

i m

s σ=
'

r

id∑  (A8)  

where 
ni jσ  is the share of drivers of platform i cohort n replacing their vehicle with a new 

vehicle of platform j.  The share switching from i to j depends on the expected utility of 

platform j as judged by the driver of vehicle i, cohort n, , relative to that of all options 

.  

n

e

i ju

'n

e

i ju

Thus:  

 
'

'

m

m

m

e

i j

i j e

i j

j

u

u
σ =

∑
. (A9) 

To capture a driver’s consideration set we introduce the concept of familiarity among 

drivers of vehicle i with platform j.  The model can be elaborated to include cohort-

specific levels of familiarity, recognizing that drivers of, say, a 10 year old ICE vehicle 

have a different (presumably lower) familiarity with new ICE vehicles than the driver of 

a 1 year old vehicle.  Such distinctions may matter when vehicle attributes change 

rapidly, as is likely for early AFVs as experience and technology rapidly improve.  

(Further disaggregation would eventually lead to an agent-based representation where 

each driver has an individual-specific level of familiarity with different platforms).  

These issues will be treated in future work.  For simplicity I assume here that familiarity 

is equal across all cohorts of a given platform and remains ijF , thus expected utility is: 
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b) Initial purchases and fleet growth 

New car sales for fleet j are: 

  (A11) n n

j js σ=

where the share 
jσ  is equal to the share of replacement sales: n r

j j i
s sσ = ∑ r

i

V

.  

Total new car sales allow the total fleet 
, mjj m

V = ∑ to adjust to its indicated level V*: 

 
( )*max 0,

n

v

V V
s

τ

⎡ ⎤−⎣ ⎦=  (A12) 

where total desired vehicles V*
=ρv

*H is product of the target or desired number of 

vehicles per household ρ and total households H, and vτ is the fleet adjustment time.  The 

max function ensures sales remain nonnegative in the case where V* falls below V (a 

possibility if there is a large unfavorable shift in the utility of AFVs when the installed 

base is small). 

 

Discards, are found by: 
mj

d

 
(1 )

m m

m

m

s c

j j

j cM

j

f V m
d

V m

λ

λ

⎧ M

M

− <⎪= ⎨
=⎪⎩

 (A13) 

where cλ is the cohort residence time; cMλ is the residence time of the last cohort. 

The number of discards people choose to replace is give by: 

  (A14) 
m

r r

jd f d=
mj
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where rf is the nonnegative part of the difference between total discards and the 

indicated contraction rate as a fraction of the total discard rate: 

 

*max 0, c

r
d v

f
d

⎡ ⎤−⎣ ⎦=  (A15) 

Here is total discards, and 
, mii m

d = ∑ d

*

*
max 0,

c

v

V V
v

τ

⎡ ⎤−⎣ ⎦=  is the indicated fleet 

contraction rate.  The fleet of a particular platform can contract when, for example, the 

perceived utility of that platform suddenly falls (say, due to unfavorable shifts in fuel 

costs or perceived safety, reliability, or costs) and if the existing installed base is small 

enough and young enough so that discards from normal aging are small. 

 

c) Co-flows 

The model accounts for transfer of familiarity and perceived performance associated with 

those drivers who switch platforms. I will capture this through the co-flow structure 

(Sterman 2000). The formal structure is identical for both and I will discuss the 

familiarity co-flow as an example. The familiarity of drivers of platform i with platform j 

is updated through social exposure, as discussed in the paper.  When a driver switches 

from platform i to k, their familiarity with platform j is transferred from Fij to Fkj.  For 

example, consider a model in which three platforms are portrayed, say, ICE, hybrids, and 

HFCVs (denoted platforms 1, 2, and 3, respectively).  When an ICE driver switches to a 

hybrid, the familiarity of that driver with HFCVs, previously denoted F13, now becomes 

F23. In the two platform simulations considered in the paper these dynamics do not matter 

since all drivers are assumed to be fully familiar with ICE, and AFV drivers are assumed 
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fully familiar with AFVs, so the only dynamic relates to the growth of familiarity of ICE 

drivers with AFVs (F12). 

To model the transfer of familiarity as drivers switch platforms, it is convenient to 

consider the evolution of familiarity at the population level: 

 
d FijV j( )

dt
= Vi

dFij

dt
+ Fij

dVi

dt
= f ij

u + f ij

t  (A16) 

where the first term, which we call , captures updating of familiarity with platform j 

by drivers of platform i, as discussed in the paper. The second term, denoted , captures 

the transfer of familiarity arising from drivers who switch platforms.  When familiarity is 

updated much faster than fleet turnover (and therefore switching), the second term has 

limited impact on the dynamics of familiarity.  On the other hand, when fleet turnover is 

very fast, the transfer of familiarity as drivers switch platforms can be important.   

f ij

u

f ij

t

Familiarity updating is formulated as described in the paper: updating of total familiarity 

is the average update from social exposure, including familiarity decay (equation 5 of the 

paper), over the total number of drivers Vi: 

 ( )1u

ij ij ij ij ij if F Fη φ V⎡ ⎤= − −⎣ ⎦  (A17) 

where ijη  is the total impact of total social exposure to platform j on the increase in 

familiarity for drivers of platform i, and ijφ  is the fractional loss of familiarity about 

platform j.  
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Figure A2 Familiarity change for drivers that switch between platforms 

 

The transfer term captures two that track the movement of the familiarity of a driver of 

platform i with platform j, one arising from vehicle sales and one arising from discards: 

 t s

ij ij ij

df f f= − . (A18) 

The first term,  s

ijf , captures the transfer of familiarity through sales:  

  

r

ki kjks n

ij i ij r

kik j

s F i j
f s F

s i
≠

⎧

j

≠⎪= + ⎨ =⎪⎩

∑
∑

 (A19) 

This term contains the flow of new drivers purchasing platform i, and their average 

familiarity with platform j, assumed to equal the familiarity of current drivers of i with 

platform j.  The second term is the transfer of familiarity associated with the flow of 

drivers of platform k replacing their vehicles with one of platform i. The average 

familiarity of these drivers with platform j is transferred as they switch.  We assume 

drivers become fully familiar with the platform they are driving, so those who purchase a 
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vehicle of platform j (the case i=j ) achieve full familiarity with platform j (in a time 

much shorter than the other time constants).  

 

The second term in equation (A18) captures the transfer of familiarity with platform j 

associated with drivers of platform i through discards: 

 d

ij i ijf d F=  (A20) 

where is total discards . 
mi m

d ≡ ∑ id

 

The transfer term t

ijf was used in the simulations of the paper, for the relevant cases. The 

transfer of familiarity as drivers switch platforms has a small but significant contribution 

to the dynamics: early alternative fuel adopters who switch back from the alternative to 

ICE have full familiarity with the AFV, and contribute strongly to word of mouth. 

Technically, a balancing loop is generated, in similar fashion as marketing effectiveness, 

with strength 1 v

jj jii
u u λ⎡ −⎣ ∑ ⎤⎦ . However, a more complicated result emerges when 

learning about performance through social exposure is involved, as early adopters might 

learn about mediocre performance. Hence, their word of mouth results in lower perceived 

attractiveness of alternatives among others.   

 

Other co-flows that follow the same logic are those guide an adjustment of installed base 

performance, f

jP  to the new vehicle performance , and those that allow the perceived 

performance to be updated when drivers switch platforms. The first one is a simple co-

flow that only changes with sales and discards. The perceived performance updated 

n

jP

e

ijP
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implies taking all influences of Equation 17 into account. This is done by separately 

capturing drivers of a platform j  , and non-drivers of platform j, . e

jjP ,e

ijP i j≠

 

 

3 Stipulations 

a) Equivalence to Bass 

Here we recover the Bass equation from the familiarity model in this paper, for durable 

goods, with validity for low familiarity. The formulation differs from those of the 

standard Bass models through the decoupling of exposure, familiarity and the adoption 

decision, the word of mouth through non-users and the discrete choice replacement, for 

durable goods.  

 

The original Bass model is describes diffusion of isolated technologies and is specified as 

follows: 

 ( )( )(
B

B B B BdV
c V N N V

dt
α= + − )  (A21) 

Where the marketing effectiveness Bα and contact rate have the same interpretation as 

in the familiarity model. The functional form is a the logistic growth and the associated 

dynamics yield an S-shape curve. 

Bc

 

To recover the Bass model, we ignore population change, which is sensible with the 

shorter time horizons of product replacements in usual Bass settings), aging chains (the 
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arguments below can be easily expanded), heterogeneity in contact effectiveness, and 

word of mouth through non users, and denote this simplified version ‘1’: 

 ( ) ( )
1

1 1 11
ij

ij ij ij ij

dF
F

dt
η φ η= − − 1F  (A22) 

We ignored here the higher order terms that involve transfer of familiarity through sales 

and discards. Simplifying further, setting contact effectiveness between drivers of 

platforms j with non-drivers equal for all j and i≠j, with d

ijjc c= ,for all i≠j: 

 ( )1 1 1

ij j jc V Nη α= +  (A23) 

Now we specify the sales rate for a platform j, which is identical to the actual familiarity 

model j iji j
s Viσ λ

≠
= ∑ ,  with λ being the vehicle life.  

 

We further assume perceived utility to equal actual utility and derive the Bass equation 

for durable goods, with validity for low familiarity. When the product of familiarity and 

relative attractiveness is low, we can make a first order approximation for the share going 

to i from j: 

 

' '

'

' '

'

;

;

ij j j

j ij jo o

i ij j

j i

ij

j j

j jo o

j jj j

j

F u u
u F i j u

u u F u u u

u u
u i j u

u u F u u u

σ

− −

≠

⎧
≈ ≠ ≡⎪

+ + +⎪
⎪= ⎨
⎪ ≈ = ≡⎪ + + +
⎪⎩

∑

∑

� �

� �

i

j

 (A24) 

Then, letting all alternatives to j yield the same utility, the net sales rate equals the new 

vehicle sales minus the discards that are not replaced:  
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 (A25) 

Further, with adoption dynamics slow relative to the familiarity dynamics, which is 

justified for durable goods, we use the steady state familiarity as a function of the number 

of adopters. Ignoring the word of mouth through non-drivers, and the higher order terms 

that include that include transfer of familiarity through discards: 

 ( ) ( )
1

1 1 1 11
ij

j ij j ij

dF
F F

dt
η φ η 0= − − =  (A26) 

Using a piecewise linear expression for equation (7):8

( ) ( )

0

0 0

0 0
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0.5

0.5
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j j ij

j
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η η
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φ η φ ε η η

φ η η
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We get for the equilibrium familiarity: 

 ( )( )
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1

01 1
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Then, with 1

jη small compared to 0φ , and, and by definition of the interesting case where 

familiarity is not saturated yet, 1

0 0.5jη η<< + ε

                                                

, and thus: 

 

8 This functional form for forgetting leads to results that are indistinguishable from the non-linear form 

used in the paper. 
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 ( )( )1* 1 1 1

0
ij j j jF c V Nη φ α φ≈ = +  (A27) 

and thus, combining with equation (A25): 

 ( )( )( ) ( )1

1 1 1 1

0

1 jj j

j j j

udV u
c V N N V V

dt
α

φ λ λ
−

⎡ ⎤−
≈ + − −⎢ ⎥

⎢ ⎥⎣ ⎦

��
j   

Which can be rewritten as: 

 ( ) ( )
1*

'j

j j j j

dV
c V N N V y

dt
κ α⎡ ⎤= + − −⎣ ⎦ j  (A28) 

Where, 0j juκ −≡ � φ λ  is the conversion parameter between Bass and the familiarity model 

that captures the relative attractiveness, replacement rate, and forgetting rate are 

convoluted in the Bass model, but explicit in the familiarity model. Further, 

( )'

01j j j ju uα α −≡ + − � � φ  is the adjusted marketing effect, of which the second term, in 

multiplication with the conversion parameter captures the “free marketing” exposure that 

derives from drivers who discard their vehicles and become non-drivers (which are not 

included in the original Bass model). Finally, ( )1j jy u N λ= − � is a constant adjustment 

that accounts for discards, offsetting any adoption. Note that when drivers are zero, the 

last two effects cancel out, naturally preserving non-negativity.  

 

With equation (A28) we have derived at the original Bass model, except for a correction 

term. Note that the connection implies structural equivalence, this only held under 

specified conditions, for instance assuming equilibrium familiarity and ignoring the role 

of non-drivers. Because of the equilibrium assumption, the complex dynamics have been 

filtered out. This derivation illustrates the connection of the parameters of the two 
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models, as well as an interpretation of the Bass parameters in the context of competitive 

platforms. This interpretation will also be used in the analysis section of the Essay. 

 

b) Platform competition: The familiarity model compared to Bass 

The Essay illustrates the strong tipping dynamics that the familiarity model reveals for 

competing entrants, as a function of their respective marketing programs (Figure 7b and 

7c).Here we compare the dynamics of platform competition to that what can be generated 

by Bass models. We proxy the Bass model with platform competition, by deriving the 

equilibrium familiarity and absence of word-of-mouth from non-drivers (see Appendix 

2a), and combine this with the multiplatform logit decision structure. Figure A3 shows 

the results, using exactly the same scenario as in Figure 7c and 7d of the Essay.  
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Figure A3 Multiplatform competition: comparing the Familiarity model (Bottom – 

identical to Figure 7b and c of the paper) with the Bass representation the 

Bassrepresentation, combined with the MNL decision structure (Top). 

 

We see that the dynamics depart considerably. In absence of learning, in the Bass model 

there is always convergence to the equal equilibrium share (as the background marketing 

is nonzero, equaling 0.01). When we include learning, we see that some path-dependency 

is created in the Bass representation, albeit very smoothly. The results from the 

Familiarity model contrast greatly to this (Bottom).  
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4 Model and analysis documentation 

The model and analyses can be replicated from the information provided in the Essay.  

In addition model and analysis documentation can be downloaded from  

http://web.mit.edu/jjrs/www/Thesis Documentation.htm

 

5 References 

Sterman, J. (2000). Business dynamics : systems thinking and modeling for a complex 

world. Boston, Irwin/McGraw-Hill. 
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Essay 2 

  

Identifying challenges for sustained adoption of 

alternative fuel vehicles and infrastructure 

 

Abstract 

This paper develops a dynamic, behavioral model with an explicit spatial structure to 
explore the co-evolutionary dynamics between infrastructure supply and vehicle demand. 
Vehicles and fueling infrastructure are complementarities and their "chicken-egg" 
dynamics are fundamental to the emergence of a self-sustaining alternative fuel vehicle 
market, but they are not well understood. The paper explores in-depth the dynamics 
resulting from local demand-supply interactions with strategically locating fuel-station 
entrants. The dynamics of vehicle and fuel infrastructure are examined under 
heterogeneous socio-economic/ demographic conditions. The research reveals the 
formation of urban adoption clusters as an important mechanism for early market 
formation. However, while locally speeding diffusion, these same micro-mechanisms can 
obstruct the emergence of a large, self-sustaining market. Other feedbacks that 
significantly influence dynamics, such as endogenous topping-off behavior, are 
discussed. This model can be applied to develop targeted entrance strategies for 
alternative fuels in transportation. The roles of other powerful positive feedbacks arising 
from scale and scope economies, R&D, learning by doing, driver experience, and word of 
mouth are discussed. 
 

Introduction 

In response to environmental, economic, and security related pressures on our current 

energy system, automakers are now developing alternatives to internal combustion 

engines (ICE). A diverse set of alternatives are considered ranging from promoting 

existing possibilities that run on alternative fuels, such as compressed natural gas (CNG), 

bio-fuels (such as E85), and diesel, to radically different hydrogen fuel cell vehicles 

(HFCVs), and to hybrid forms, such as hybrid electric-ICE vehicles (HEV-ICE). Current 
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perspectives on the possibility of a successful transition to various alternative fuel 

vehicles (AFVs) are diverse. For example, concerning HFCVs, Lovins and Williams 

(1999) emphasize their long-term socio-economic advantages, while Romm (2004) 

stresses the current costs and performance factors that disadvantage hydrogen. Central to 

these debates are the various so-called chicken-egg dynamics “that need to be overcome” 

(National Academy of Engineering 2004) For example, drivers will not find HFCVs 

attractive without ready access to fuel, parts, and repair services, but energy producers, 

automakers and governments will not invest in HFC technology and infrastructure 

without the prospect of a large market (e.g. Farrell et al. 2003, National Academy of 

Engineering 2004). The non-compatibility of an infrastructure with that of the existing 

gasoline network is a major issue for most alternatives and past introductions of AFVs 

have yielded mediocre results, despite subsidies and promotions. Ethanol in Brazil, CNG 

in Argentina, and diesel in Europe are examples of large scale penetration and potentially 

self-sustaining markets. In contrast diesel in the United States and CNG in Canada and in 

New Zealand have fizzled after an initial period of sizzle. Most commonly however, 

whether they are gaseous-, liquid-, or flex-fuel vehicles or electrics (EVs), alternatives 

fail to exceed penetration levels of a few percent (Cowan and Hulten 1996; Di Pascoli et 

al. 2001; Sperling and Cannon 2004; Energy Information Administration 2005).  

 

The underlying dynamics are much more complex than simple chicken-egg analogies 

suggest. Table 1 lists various sources for dynamic complexity for AFVs. First, 

competitive dynamics are determined by the interplay of several feedbacks: a transition 

towards any AFV, but especially towards HFCVs, involves building of consumer 
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acceptance, automotive learning-by-doing that improves with production experience, co-

development of complementarities, especially maintenance and fueling infrastructure, 

and investment synergies with non-automotive applications. Further, these interactions 

play out under a system of government incentives, but also in concert with public interest 

and media attention. Second, the system is distributed in various ways: a multiplicity of 

stakeholders has varying perceptions and conflicting goals (Bentham 2005); the adoption 

population is heterogeneous in physical and socio-economic space; and the alternative 

options for technology deployment are many and diverse. Third, elements in the system 

change with large time delays. Some of those elements are tangible, such as consumers’ 

vehicle replacement times, while others are more difficult to observe, such as adjustment 

of consumers’ perceptions of value, or of their familiarity with the technologies. Finally, 

many of these relationships are highly non-linear. For example, in the very early stages 

when there are few fueling stations, the marginal benefit of one or two additional fueling 

locations is very low for consumers but increases dramatically as the number of stations 

increases and returns to zero when stations are found on every corner.  

 

The existence of such dynamic complexity in the early stage of a market formation 

process suggests that the evolution of new technologies such as these is likely to be 

strongly path dependent (David 1985; Arthur 1989; Sterman 2000).  In such 

environments policymakers’ and strategists’ efforts to stimulate adoption can contribute 

to its failures. Consequently, in order to understand how policy can effectively stimulate 

adoption on a large scale, it is essential to have a quantitative, integrative, dynamic model 

with a broad boundary, long time horizon, and realistic representation of decision making 
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by individuals and other key actors. Such a model should take economic, social and 

cultural, but also technical and physical parts of the system into account. This thesis lays 

the groundwork for a behavioral, dynamic model to explore the possible transition from 

ICE to AFVs such as hybrids, CNG, and HFCVs. Figure 1 shows a conceptual overview 

of the main feedbacks in the model. The approach emphasizes a broad boundary, 

endogenously integrating consumer choice, as conditioned by product attributes, driver 

experience, word of mouth, marketing, and other channels, with scale economies, 

learning through R&D and experience, innovation spillovers, and infrastructure. The full 

scope for such a model is discussed in more detail in Struben and Sterman (2006).  

 

In this essay I analyze one of the mechanisms in depth: the dynamics resulting from 

interactions between AFVs’ adoption and the necessary fueling infrastructures. To 

support my analysis of the critical mechanisms, I develop a dynamic behavioral spatial 

simulation model. A full policy analysis requires a model that integrates infrastructure 

dynamics with the other feedbacks. However, such an integrated model will be complex 

and its behavior difficult to understand. This essay builds an understanding of the 

complex dynamics surrounding the infrastructure question as a foundation for an 

integrated analysis. Similarly, Essays 1 and 3 analyze other key feedbacks: Essay 1 

focuses on key interactions between consumer familiarity and adoption; Essay 3 focuses 

on the dynamics of performance improvement of alternative fuel vehicles through 

learning-by-doing and R&D, and spillovers between them. The analysis in this essay as 

well as in the others provides an understanding of the dynamics that are associated with 

the integrated framework. 
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Understanding the dynamics that result from the interdependency of vehicle adoption and 

development of fueling infrastructure is critical for achieving the successful introduction 

of various AFVs. Infrastructure development is considered to be one of the biggest 

challenges for HFCVs (Farrell et al. 2003, National Academy of Engineering 2004, 

Ogden 2004), but is also central to diffusion of other AFVs, whether CNG (Flynn 2002), 

prospective bio-fuel vehicles, or even plug-in hybrids. While the dynamics result from 

demand externalities that lay behind the complementary character of vehicles and their 

fueling infrastructure, the actual underlying mechanisms are more subtle. Ascertaining 

when the market can be self-sustaining, or when incentives or coordination are critical - 

and if so,  to what extent, and how - requires knowing how demand for fuel, vehicle 

adoption multiplied with desired travel behavior, grows with infrastructure as well as the 

economics of infrastructure supply in the early transition.  

 

An earlier transition, from the horse-driven to the horseless carriage at the turn of the 19th 

century, with ICE as the eventual winner, can serve as a useful starting point for building 

an understanding of the co-evolutionary dynamics between vehicle demand and fueling 

infrastructure. In those days ICE vehicles and the fueling infrastructure co-evolved 

gradually over time. Slow evolution was possible because the need for long-distance 

automotive travel had not developed. First, long-distance travel services were provided 

by the rail network, while proper roads, especially between settlements were virtually 

nonexistent. Second, there existed limited experience and familiarity with the idea of 

driving for pleasure. Third, cars frequently broke down. Together these conditions hardly 
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provided incentives to extend the road network. Further, as touring by individual 

transport was a novelty in the early days of the automobile, the initial adopters were 

adventurous and willing to put up with inconveniences, such as the problem of finding 

fuel. Thus, early on proper refueling facilities were only required in urban settlements. 

Later, around 1900, gasoline also became available at local retail shops all over the 

country, allowing, in a period where touring became ever more popular and road 

construction grew, for a gradual diffusion of demand to more remote areas (Geels 2005). 

Thus, the emergence of a gasoline fueling network through local pockets that gradually 

connected to each other was a viable, though slow path for ICE in the early 1900s.  

 

In contrast to this, contemporary consumers are accustomed to a dense, high-performing 

network of fueling infrastructure. Consumers demand high levels of service along the 

dimensions of availability, speed and convenience for all their trips. Such demands 

greatly constrain the viability of an alternative transportation fuel when the infrastructure 

is developing. Figure 2 (on left) illustrates the feedback that lays behind this, and what 

policymakers term the “chicken-egg” problem (Farrell et al. 2003). To increase the 

attractiveness to drive, the availability of fuel needs to be sufficient, and likewise, without 

considerable expectations about demand, investors have no confidence to invest in and 

commit to building and expanding a significant fueling infrastructure. Figure 2 (on right) 

illustrates the conditions for such a tipping point graphically. It depicts vehicle demand as 

a function of the number of stations. Starting with only one fueling station, no one is 

willing to adopt, or drive. When the fueling infrastructure grows, demand grows at 

increasing rate as more factors favor adoption: initially only short trips for a few are 
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covered, subsequently some people can also make longer trips and trips fpr those already 

covered are more convenient. This encourages more adoption and more consumption per 

vehicle. Demand growth flattens when the average station distance becomes small 

enough, not bringing significant additional benefits to drivers, and eventually demand 

becomes irresponsive to an increase in the number of fueling stations. Assuming 

cumulative industry costs of fuel supply grow linear with infrastructure, the S-shaped 

demand curve intersects the cost curve at a critical point, above which the industry is 

profitable and the market is self-sustaining.  

 

In order to test this hypothesis, I analyze the detailed mechanisms underlying the, thus far 

high-level, concept of chicken-egg dynamics. Rather than treating fuel station 

development as independent, various sources of dynamic complexity - feedbacks 

between demand and supply, distributed decision making, time delays and non-linearities 

are taken into account. Further, it is critical to appreciate that feedback between fuel 

supply and demand is mediated through interactions that are non-uniformly distributed in 

space. For example, households in urban areas will not be satisfied with fuel services 

limited to their home locations. They also want to make long trips. An urban dweller 

living in San Francisco, also wants to make an annual trip to the Yosemite national park, 

or to Las Vegas and they require fueling infrastructure in these distant places. The 

consumer’s utility includes the distribution of stations through space. This interaction in 

space, across settings with a heterogeneous population distribution, strongly contributes 

to the non-linear and distributed characteristics of the transition dynamics (Table 1 has 

the spatial component explicitly listed). In this essay the chicken-and-egg dilemma is 
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explicitly modeled by considering consumers’ choice for adoption, driving and refueling, 

as well as the fuel station entry, exit and capacity adjustments in response to and 

anticipation of fuel demand developments. These infrastructure developments in turn 

feedback to change the consumer’s trip convenience. 9

 

This essay begins with a brief motivation of the modeling approach and an exposition of 

the conceptual model. Next I present the formulation of the spatial dynamic behavioral 

model and the analysis that is based on the simulations of the model. While the model is 

generally applicable, the analysis uses the state of California as a laboratory. I discuss the 

finding that low adoption levels, with clusters concentrated in urban areas, form a bi-

stable equilibrium. I identify and discuss the technical and economic parameters to which 

the dynamics are particularly sensitive. Finally, the counterintuitive finding that the 

introduction of more fuel efficient AFVs can yield larger thresholds for a successful 

transition is discussed.  The analysis demonstrates that the behavioral assumptions are 

critical to understand such phenomena. In the conclusion and discussion section I suggest 

that relying on the standard assumptions, such as exogenous demand or supply is 

problematic. To understand how policy can effectively stimulate AFV adoption on a 

large scale, a quantitative, integrative, dynamic model with a broad boundary, long time 

horizon, and realistic representation of decision making by individuals and other key 

                                                 

9 An earlier version Struben (2005) generated the insight of clustering through a one dimensional spatial 

model with a short patch length. The current model develops a much richer structure, provides deeper 

insight into the dynamics and the role of various other feedbacks, and explores alternative policies and 

strategies, including supply/demand side subsidies/taxes. Further, it allows for calibration. 
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actors is essential. The essay ends with a discussion of implications for policy, in 

particular for the transition challenges for AFVs, and further work. 

 

Modeling spatial behavioral dynamics 

The existence of chicken-egg challenges between AFV adoption and fueling 

infrastructure development are well known (e.g. Farrell 2003; Ogden 2004; National 

Academy of Engineering 2004).  However, a careful analysis of the co-evolutionary 

dynamics of market formation of AFVs and fueling infrastructure has not been 

conducted. I conduct such an analysis. Vehicles and their fueling infrastructure are strong 

complementarities (Katz and Shapiro 1994). However, their short and long-range 

interactions result in significantly more complex issues than basic hardware-software 

analogies justify. Before laying out the conceptual model, I discuss briefly existing 

approaches to problems that have a spatial, behavioral and/or dynamic character. 

 

Transportation and travel research has a long history of modeling demand and supply in 

space (e.g. Fotheringham 1983). This research has mainly focused on identification of 

least cost optima (e.g. Collischonn and Pilar 2000), or equilibrium (e.g Lefeber 1958) 

distributions, and has grown enormously since Dijkstra (1959) published his shortest path 

algorithm. However, to allow for a detailed computation of trajectories, there is limited 

room for dynamics. In most of these studies either the demand or the supply side is 

assumed to be fixed over time. Such approaches are suitable for problems of more static 

character - explaining the existence of certain equilibria of travel demand -or to study the 

effect of an optimal solution to marginal changes within an established system - the 
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impact of a new highway on current traffic flows. This model benefits from particular 

concepts developed in this literature, such as shortest path algorithms and gravity demand 

models. However, the market formation processes associated with AFV transitions 

involve situations of disequilibrium and the potential existence of multiple equilibria 

requires focus on the dynamic interrelationship of supply and demand.  

 

Interest in the formation of spatial patterns through reinforcing and balancing feedbacks 

took-off after Turing (1952) introduced physio-chemical diffusion reaction structures, or 

“Turing Structures”. Such patterns are likely to be found where the movement and range 

of influence of actors is small compared to the global scale, leading to strong local 

correlations. With increases in information processing capabilities, problems throughout 

the sciences including problems in statistical physics (e.g. Ising models), material physics 

(crystal growth and the process of solidification, or dendrites (Langer 1980)), and organic 

surface growth (diffusion limited aggregation, (e.g. Witten and Sander 1981)) were 

addressed. Similar trends are found in the social sciences, for example in aggregation and 

geographical economics (Krugman 1996).  

 

The field of economic geography has a longstanding history in spatial dynamic problems, 

appreciating that the actual location of activity deviates from the optimum location 

(Lösch 1940; Christaller 1966).  Modern, formal applications focus on the tension 

between “centripetal” and “centrifugal” forces regarding geographical concentration 

(Krugman 1996). While dynamic, these models seek to filter out core mechanisms from 

each of the two competing forces that are perceived to be dominant (Fujita and Krugman 
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1999, 2004). With little prior understanding of the dynamics of the system, as is the case 

with technology transitions as the AFVs, a richer set of behavioral feedbacks needs to be 

included. In this case, it is the combination of spatial heterogeneity with the detailed 

behavioral feedbacks that gives rise to the dynamic complexity.  

 

The dynamic behavioral spatial model presented in this essay demonstrates that relaxing 

the assumption that supply and demand directly adjust to clear the market, and including 

many of the behavioral aspects, leads to transition dynamics that are more diverse than 

can otherwise be observed. The model captures endogenous driver behavior including 

decisions regarding the adoption of AFVs, the mode of transportation (AFV, or other) for 

each trip, where to refuel, and “topping off” behavior. These decisions are influenced by 

driver concern for the risk of running out of fuel, service times, and how far one has to go 

out of one’s way for refueling. Similarly, on the supply side, decisions about fueling 

stations, entrance, exit, location and expansion decisions are endogenous. These 

behaviors mediate interactions that are different over short- and long-distance and could 

drive dynamics that cannot be observed with mean-field approaches. 

 

Figure 3 provides a spatial representation of the model structure and illustrates at a high 

level how interactions between supply and demand are captured. For illustration a grid 

structure is shown overlaying an area representing greater Los Angeles. The area is 

divided into patches, or zones, the darker ones having a larger household density. 
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Households locations are indicated by index z.10 Households wish to make trips to 

various places outside their patch location, for work, leisure, and other purposes. While 

any set of desired trips can be generated, and thus various types of drivers can be 

represented, in this essay the distribution of trip destinations z’ is assumed to be 

lognormal in their length , and randomly distributed in direction l θ . I capture boundary 

constraints properly by disallowing non-feasible trips, such as those that would lead into 

the ocean. For each zone, the average household’s trips are normalized to equal the 

average vehicle miles of the population. The actual trip choice is endogenous.  Drivers 

will choose whether and how often to travel to a particular location based on their 

assessment of how difficult the trip will be, including the travel time, the risk of running 

out of fuel, and the likely extra time and effort involved in finding fuel (the need to go 

out of their way to find fuel if it is not available on their main route).  Similarly, 

households select between vehicle platforms depending on perceived utility of using it for 

the trips that they desire to make. The location of fueling infrastructure is also 

endogenous. Station entry and exit are determined by the expected profitability of each 

location, for example in zone z’, which, in turn, depends on the demand and expected 

demand for fuel at that location and the density of competition from nearby stations. 

 

For the analyses, I define the patch sizes such that heterogeneity at the scale of typical 

trip behavior is captured. For more specific analysis, the model can be setup with a finer 

grid, and with more technical detail, however this will put significant pressure on scarce 

                                                 

10 Throughout this Essay I will use zones and patches interchangeable, the first representing the 

geographical boundary, and the second being the formal term used in spatial models. 
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resources, as they dramatically increase computation time, make analysis harder. Finally, 

lower level provides significant data challenges. Most importantly however, as I will 

justify in the analysis, a finer level of detail contributes noise, but does not change the 

fundamental dynamics. For the same reasons the model does not include technical details, 

such as traffic flows, or highly disaggregated agents, representing large variation of 

consumer types.  

 

Figure 4 shows a conceptual overview of the main feedback loops in the model that 

result from behavioral assumptions. Feedback (R1) describes the basic chicken-egg 

dynamics. An increase in the number of stations of platform i in a zone z, lowers 

refueling efforts for trips to or through z for households living in a nearby zone z’ 

(depending on their normal trips to/through that area). This increases the attractiveness of 

driving and raises platform i’s market share in that area. A larger number of adopters 

generates more demand around z, increasing station utilization, sales and finally 

profitability, contributing to industry-level profits, which increases fuel station entrance 

for this platform (B1), until fuel station sales and profits are reduced to critical levels. 

However, those who have already adopted the platform also experience a decrease of trip 

efforts, induced by a higher number of stations, which leads to an increase of the fraction 

of trips for which the alternative vehicle is used, rather than a conventional vehicle or 

other transport modes (R2). High station utilization is good for profitability, but also 

leads to increased crowding (B2), requiring an increase in the drivers’ efforts to refuel, 

and thus lowering their adoption, and likewise lowering vehicle miles through that 

region. Finally, within a zone z, higher profitability also leads to a larger share of the 
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entrants in that particular zone (R3), fewer exits (R4), and capacity expansion (B3) (more 

pumps), by existing stations. Finally, while not explicitly shown, in response to an 

inconvenient distribution of fuel along the route, drivers can raise the tank level at which 

they top off (topping off well before the warning light goes on). For this they trade off an 

increase in refueling effort for the need to go out of their way to refuel.   

 

These concepts together define the inherent spatial, dynamics between vehicle fleet 

demand and fueling infrastructure. Combined with other feedbacks, this structure governs 

the co-evolutionary dynamics among the elements of an alternative-fuel-based 

transportation system. However, for analytical clarity the model is restricted to the 

interactions between infrastructure and vehicle demand only.  

 

The Model 

 In this section I provide an exposition of the model: the demand-side structures for 

vehicle adoption; the trip, route, and refueling choices. This is followed by a more 

detailed discussion of the components of trip effort and the supply-side decisions, 

including entrance, exit, and capacity adjustment. 

Adoption 

The total number of vehicles for each platform { }1,...,j = n , in region z,  Vjz, accumulates 

new vehicle sales, sjz, less discards, djz

 –
jz

jz jz

dV
s d

dt
=  (1) 
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Ignoring the age-dependent character of discards, and assuming a total fleet in 

equilibrium, this implies that purchases only involve replacements: 11  

 jz ijz iz

i

s σ= d∑  (2) 

where σijz is the share of drivers of platform i living in location z replacing their vehicle 

with platform j.   

Consumers base their adoption decision on a range of vehicle attributes: vehicle price; 

power; operation and maintenance; safety; drive range; effort and cost of driving. I 

capture this by integrating diffusion models with discrete consumer choice theory 

(McFadden 1978; Ben-Akiva and Lerman 1985). These are often applied to transport 

mode choice (Domencich et al. 1975; Small et al. 2005), and automobile purchases 

(Berry et al. 2004; Train and Winston 2005), including alternative vehicles (Brownstone 

et al. 2000; Greene 2001). Then, the share switching from i to j depends on the expected 

utility of platform j as judged by the driver of vehicle i, in location z, . Hence, e

ijzu

 e

ijz ijz ijz

j

u uσ = e∑  (3) 

While drivers may be generally aware that a platform (such as CNGs or HFCVs) exists, 

they must be sufficiently familiar with that platform for it to enter their consideration set, 

which I model in Essay 1 by its degree of familiarity , with , where is 

the perceived utility of platform j by a driver of platform i in region z. Further, for those 

platforms considered, expected utility depends on perceptions regarding the set of vehicle 

attributes which represents the performance of platform j with respect to attribute l, 

ijzF e

ijz ijz ijzu F u= ijzu

ijlza

                                                 

11  See appendix 1a of Essay 1 for the age-dependent structure and appendix 1b of Essay 1 for the initial 

sales structure. 
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for a driver of platform i in region z. Driver experience with and perceptions about 

various characteristics of each platform may differ significantly even if individuals have 

identical preferences. For example, drivers of HFCVs experience the actual availability 

of hydrogen fueling stations in their local environment. However, drivers of other 

platforms who consider buying a HFCV have to learn about these services through 

various indirect channels, and do not know the exact levels of convenience for their trips. 

Similar issues relate to attributes associated with vehicle performance. This diffusion 

process of knowledge about attribute performance is discussed in Essay 1 which shows 

that it has a significant impact on adoption dynamics. While the socialization dynamics 

associated with drivers’ familiarity and consumers’ learning about the performance of the 

various platforms are important for overall dynamics, here I focus purely on dynamics 

related to the demand and infrastructure. Therefore I set 1 , ,ijzF i j z≡ ∀  and , 

where is the perceived performance of an attribute l to any consumer in z. 

Consequently, expected utility is identical for all drivers, and equals utility based on the 

perceived efforts part of the set L , 

ijlz jlza a≡ ∀i

jlza

jlza e

ijz jzu u= .  

 

Appendix 3a of Essay 3 discusses the general structure capturing the relevant attributes, 

and their changes, in more depth. Of the many relevant attributes, only the trip 

convenience is directly affected by the abundance of fuel stations and is thus a central 

attribute, which yields a utility contribution . This component will be discussed in the 

next section. For arguments of consistency, the model must explicitly capture those 

attributes that are affected by parameters that vary supply and demand elsewhere in the 

model. For example, the maximum action radius of a vehicle (which correlates with, but 

t

jzu
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is not identical to, trip convenience), influences not only a consumer’s purchase decision, 

but also influences the number of fuel station visits by drivers, and thus utilization; 

supply is affected in a non-trivial way. For the same reason, we capture operating cost 

(which is a function of fuel price that also affects supply) and fuel economy (which 

affects demand, as well as fuel station visits). We capture these under attributes . All 

other attributes by which AFVs may differ, such as vehicle power and footprint, are 

aggregated under the vehicle-specific term . Using the standard multinomial logit 

formulation we can now state: 

jlza

0

jzu

 ( )0 expt

jz jz jz l jlz ll
u u u a aβ *⎡ ⎤= ⎣ ⎦∑  (4) 

where lβ  represents the sensitivity of utility to performance of attribute l.  

Trip, route, and refueling choice 

Consumers not only decide to purchase vehicles but also how to use them – their driving 

patterns. Drivers wish to take trips to various places around their home for work, leisure, 

and other purposes.   But trip choice is endogenous.  Drivers will choose whether and 

how often to travel to a particular location based on their assessment of the difficulty of 

the trip. Drivers select their favorite routes and refueling locations as a function of the 

availability of fuel.  

 

Determination of refueling effort is explained later. Figure 5 illustrates how the 

motivations for consumers’ adoption choice, and drivers’ trip, route, and refueling 

choices are captured. The diagram on the left shows the high-level structure: first, as 

discussed above, consumers in region z, decide on adoption, with share izσ  going to the i-
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th platform. This share depends, among other factors, on the utility component to adopt 

an AFV. Similarly, the fraction of trips from one’s home z to destination z’ for which the 

AFV is used,

t

izu

'izzσ , conditional upon prior adoption, depends on their utility to make that 

trip . Further, consumers’ aggregate utility to drive  depends on the utility derived 

from making each trip, weighted by ' . Going further down the diagram, for each trip, 

consumers decide on the route to follow, with share 

'izzu t

izu

zzw

'zziωσ  depending on the relative 

utility for each route one might consider taking, 
'zz

t

iu ω . This route utility, also determines 

the trip effort of the average consumer in z , weighted by its shares. Finally, in a 

similar fashion, drivers decide where to refuel along the route, 

'

t

izzu

'zzi sωσ . The refueling effort 

is determined by other factors that will be explained later. 

 

The right-hand side of Figure 5 shows the functional forms that determine the share and 

the effort variables. For each choice type the share is determined through a logit-

expression, as listed in column 1. For example, row 1 describes the derivation for the 

vehicle adoption share and average efforts to drive that have already been discussed. 

Columns 1-2 yield exactly equations (3) and (4) for the vehicle choice decision. A 

driver’s trip choice involves a driver i’s decision on the mode of transportation for a trip 

from z to z’. The fraction of trips that their alternative vehicle is used depends on the 

utility for that trip,  compared to using another mode of transportation that is 

available .  

'

t

izzu

'

o

zzu
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The experienced utility of driving is a non-linear, weighted average of the various trips, 

as shown by column 3 in Figure 5. To represent the effort, several functional forms are 

possible. The form used and shown in column 3 is the constant elasticity of substitution 

(CES) function (McFadden 1963; Ben-Akiva and Lerman 1985; see Essay 3 and its 

Appendix 2e and Appendix 3a of that Essay for expansions on this function). 

Households’ total trips from/to an area (trip generation), combining residential and job 

locations and trip distribution (location of these trips) are constant. This generates a 

desired trip frequency distribution per household, .The utility to drive is a weighted 

average over the utility derived from each trip that is part of a driver’s desired trip 

set . The weight can be a function of anything, but I assume it increases with 

frequency and distance. For example, long-distance trips, while less frequent, could be 

considered very important (see Appendix 4a): 

max

'zzT

max

'zzT 'zzw

 ( ) ( )
max

max max

' ' ' ' '

'

;
z

zz zz zz zz zz

z T

w g r T g r T
∈

= ;∑  (5) 

The parameter tµ  of the CES function can be interpreted as follows: the case where 

individual consumers make only one unique type of trip corresponds with , which 

means that utility captures the weighted average across all trips, and the expression of 

vehicle share converges to a standard multinomial logit expression. The case in which 

individuals make many distinct trips corresponds with 

1tµ →

1tµ < , with the extreme case 

being , where perceived utility of driving equals that of the individual trip that is 

perceived to provide the worst utility (in this case trips can be seen as full complements 

of each other). In the special case 

tµ → ∞

0tµ = , the aggregate utility equals the utility of the 

(weighted) average trip.  
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Going further down the hierarchy, in Figure 5, the modal choice (Small 1992) of each 

trip is endogenous and depends on the fraction of trips between z and z’ that are taken 

with the alternative fuel platform i, 'izzσ , with the actual frequency of trips for drivers 

living in z , owning platform i, with destination in z’ , with platform i, . max

' 'izz izz zzT Tσ= '

Small (1992) offers a long list of factors that influence drive effort, including travel time, 

on-time arrival fraction, operating cost, parking. Here we concentrate on the role of fuel 

availability. We differentiate i) the normal drive time for a route ω between z and z’, 

'

0

zz

taω without any refueling; ii) the factors that depend on the availability of fuel, which 

include the risk of running out of fuel, and the likely extra time and effort involved in 

finding fuel (the need to go out of one’s way to find fuel if it is not available on the main 

route), which are experienced in the location s where one seeks to refuel, ; iii) all other 

factors are aggregated in one effect on trip utility .  

f

isa

0

'izzu

 

The share of trips between z and z’ taken by platform i is derived through a binomial 

choice expression, comprising the utility to drive trip , of driving trip zz’ with 

platform i, and the combined alternative  (capturing alternative modes of 

transportation and the opportunity cost of not going). A driver’s trip utility is the 

composite over routes that are part of the route set for trips from z to z’, However, in this 

case, it is assumed that individual drivers have one favorite route (which can be adjusted), 

and . Working our way down Figure 5, the perceived effort to drive an individual 

trip is experienced on the route. The elasticity parameter 

'

t

izzu

'

o

zzu

1ωµ →

ωβ  represents a driver’s 
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sensitivity to changing routes. If the sensitivity would be large, different drivers would 

tend to take the same route. The average route effort, 
'zz

t

ia ω , is approximated by the sum of 

the route effort, in absence of refills 
'

0

zz

taω and the expected refills per trip, 
'zziωφ multiplied 

by the average effort of refueling (see Appendix 3b), which is the sum over refueling at 

any location, , weighted by the refueling share. 
'

'

zz zz

zz

f

i i

s

a ω ω
ω

σ
∈

= ∑ '

f

s isa

 

Finally, drivers adjust their refueling behavior and driving, based on variation in 

perceived effort utility of refueling for trip zz’. The refills along the route that locations s 

receive, with share of the total 
'zzi sωσ , depends on the length of the route that passes 

through an area 
'zz

rω , but also on the effort it takes to refuel, within each location.  

 

The ability to select more convenient locations depends critically on refueling behavior. 

Frequently running the tank down close to empty implies the consumer constrains 

himself to refueling at locations available when the tank is empty, which would imply 

refueling shares are constrained to be according to the relative distance that is driven 

through each location. Such behavior works well when stations are abundant everywhere, 

as is currently the case with gasoline, and reduces the frequency, and thus total effort, of 

refueling. At the other extreme, however, when topping-off occurs at extremely higher 

tank levels (before the warning light goes on), the freedom of choice for refueling 

becomes limited again. When top-off levels are between these two extremes, the freedom 

to select those locations that are most attractive for refueling is larger (at the expense of 

increased refueling frequency). The tank level (converted to miles) available when 
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consumers refill is referred to as the buffer. The number of miles driven between a full 

tank and top-off is referred to as the effective range (see Figure 6). 

 

More formally, the effective range between two refills f

izr  equals the maximum range 

f

ir minus the average buffer that remains when refueling, : b

izr

 f f

iz i izr r rb= −  (6) 

where , with f f

i ir η= iq f

iη the fuel efficiency and the energy storage capacity of a 

tank. The refueling sensitivity parameter

iq

fβ  determines the sensitivity of refueling shares 

that go to the various locations to a change in the consumers perceived utility to refuel. 

(see Figure 5). Running the tank always empty does not give any freedom of choice to 

select a more favorable location, thus, . Reducing the effective tank 

range too much provide the same constraints, . However, when the 

buffer and effective range are on the order of the trip length, the freedom of choice is 

large, or, 

0b f

izr β→ ⇒ → 0

0b f f

iz izr r β→ ⇒ →

' '
1

zz zz

f t b t f f

iz i iz i refr r r rω ω β β∧ ≅ ⇒ → . Then we can state: 

 ( ) ( ) ( ) ( )
( ) ( )' '

0 0; 1 1; ' 0
;

0 0; 1 1; ' 0zz zz

f f b t f b t

ref iz i iz iz i

g g g
g r r h r r r

h h h
ω ωβ β

= = ≥⎧⎪⎡ ⎤= − ⎨⎣ ⎦ = = ≥⎪⎩
 (7) 

Where f

refβ is determined by the physical constraints of refueling elsewhere. Typically, 

the functions h and g can be expected to be concave because of the increasing effect of 

the physical constraint of refueling. Appendix 2a provides the functional forms used in 

the model. 
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Finally, the length of trip equals the sum of the normal route and average distance when 

refilling, which equals the refills per trip, 
'zziωφ , multiplied by the average distance one is 

required to go out of the way for refueling,  

 
' ' ' '

'

zz zz zz zz

zz

t t f

i i i

s

r r rω ω ω ω
ω

φ σ
∈

= + f

s s∑  (8) 

See Appendix 3c for the derivation of the refills per trip. This completes the formulation 

of the consumer decision-making processes regarding adoption, trip choice, route choice, 

and refueling location. The endogenous component that affects all of these is the trip 

effort explained below.  

 

Components of trip effort 

The normal effort for a route is expressed in time units and is given as  

 
' ' '

0

zz zz zz

t d t

u uu
a rω ω ωτ= = v∑  (9) 

The speed may depend on the region, for example, the drive time associated with driving 

an extra mile in a congested urban area is much longer than on a rural highway.  

We model the experienced refueling effort in each location as a weighted sum of: (i) the 

effort to find fuel , which depends on the time spent driving out of one’s way to reach 

a fuel station; (ii) the risk of running out of fuel , which depends on vehicle range and 

the location of fuel stations relative to the driver’s desired refueling needs; and (iii) 

servicing time , which depends on wait times resulting from local demand being 

higher than the refill capacity at fuel stations. The experienced trip effort in location s is 

the weighted sum of each of these three components: 

d

isa

r

izsa

x

izsa
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 f d d r r x x

izs is izs izsa w a w a w a= + +  (10) 

The relative value of the weights  , and  can be interpreted as the relative 

sensitivity of a driver’s utility to a change in these effort components. The out-of-fuel risk 

involves a cost and time component. The drive and service time both involve time 

components, but the experience of time is not necessarily the same in each case. A large 

body of transportation research is devoted to how commuters and other travelers value 

their time (e.g. Steinmetz and Brownstone 2005); reliability (e.g. Brownstone and Small 

2005); and related attributes (e.g. Small 1992; McFadden 1998; Small et al. 2005). The 

perception of time or cost associated with additional trip efforts may vary considerably 

by type of trips (recreational, business), individual, and activity (waiting in line to refuel 

vs. driving to a station). This explicit formulation allows taking the valuing of time into 

consideration, if it is deemed to be importantly influencing the dynamics. Appendix 5a 

provides a discussion of the elasticity of utility to a change in the various components. 

dw rw xw

 

The effort to find fuel is expressed as the search time, which is the average distance to a 

station divided by the average driving velocity in region s: 

 d d

is is sa r v=  (11) 

The value of d

isr  depends on fuel station density and can be analytically derived, which 

is done in appendix 3d. 

 

The second component of driving effort, the perceived risk of running out of fuel within 

region s can be captured by assuming that a combination of experiences and individual 
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assessments yield results that are qualitatively similar to the expected out-of-fuels per 

refill
izs

o within a region s: 

 r

izs izsa o=  (12) 

Expected out-of-fuels is found by integrating over the probability of not reaching a 

station within its range, with the refueling buffer being the average. The probability 

further decreases with station density in region s, and increases with the required distance 

driven through that region s. Its full derivation is provided in appendix 3e. 

b

izr

 

Finally, the service component of the effort attribute is determined by the average 

servicing time at the station 

 x

izs izsa xτ=  (13) 

Figure 7 shows the main idea of the structure for servicing time. This expression 

comprises waiting in line, which depends on station utilization, and the actual refueling 

time: 

 x w

izs izs izs

fτ τ τ= +  (14) 

The refueling time has a variable component of actually operating the pump and a fixed 

component (including paying and purchasing ancillary products), 0f p

izs izs iτ τ τ= + .  The 

variable component is a function of the quantity demanded and the capacity of the 

pumps: 

 p

izs iz iq kτ = p  (15) 

Average quantity demanded depends on tank capacity, adjusted for the effective top-off 

levels (see Equation(6)): 
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 ( )f f

iz i iz iq q r r=  (16) 

The wait component in equation (14) depends on the average demand versus capacity.  

 

The expected time that customers must wait depends very non-linearly on the station 

utilization and the number of pumps, as suggested in Figure 7. When the number of 

pumps is relatively high, say 8, the average wait time will remain low, even for 

reasonably high utilization. This is because the expected number of empty service points 

upon arrival remains high. However, when stations have only one or two pumps, for the 

same station utilization, we are less likely to find an empty pump. Thus, in this case the 

average wait time for service can be large, even at reasonably low levels of utilization. 

Representing this relationship is important, especially when we realize that in initial 

stages, and in particular in those regions where demand is critically low, we might expect 

stations to be small. This is captured using a simple queuing theory. The wait time 

depends on the average refill time for that location, f

isτ , given by the mix of demand and 

equations (15)-(16), the station utilization f

isυ , and the number of pumps per station,  

(discussed below). The resulting mean waiting time is 

isy

 
( )1

q
w is
is isf

is is

P

y

fτ τ
υ

=
−

 (17) 

where is the probability of finding all pumps busy (which is itself a highly non-linear 

function of average refill time, the utilization, and the arrival rate). Details of how the 

mean waiting time is derived through application of basic queuing theory and the station 

utilization are provided in Appendix 3f. 

q

isP
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It is noteworthy to mention that all expected values and averages expressed in equations 

(11)-(17) are derived through probabilistic calculus, as functions of station concentration 

or demand in each region and do not involve additional assumptions or parameters 

(Appendix 3).  

 

Search time, out-of-fuel risk and service time are based on perceived values of station 

density (for search time and out-of-fuel risk), and the wait time at the pump. They adjust 

to the actual values with time delay sτ . 

 

The total vehicle miles driven per year by drivers of platform equal,  i

 ( )
' ' '

'
zz u u u

v v

iz i s izz izz iz iz iz

z s

m m T dωφ υ= k∑  (18) 

with utilization isυ and demand as derived in Appendix 3f, in the derivation of the 

mean waiting time for service. This completes the consumer segment of the model and 

the description of how the distribution of fueling stations is influenced by consumers’ 

decision to adopt a vehicle that is compatible with the fueling infrastructure, as well as 

their trip, route, and refueling choices.  Supply formation which occurs partly in response 

to existing demand is described in the next section. 

isd

 

Fuel Station economics 

Before discussing the supply-side decisions, I first set up the basic fuel station 

economics. Next, the decisions made by the (potential) fuel station owners, which include 

entrance, expansion, and exiting are examined. Stations can serve consumers with various 
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product mixes. For example, a station with 8 pumps can have 8 gasoline pumps or 6 

gasoline and 2 diesel pumps. Throughout this essay, for the purpose of analytical clarity, 

I ignore explicit modeling of multi-fuel stations and therefore can distinguish stations by 

the fuel they serve, indexed by v. This is reasonable as a first order approximation, as 

most of the scale economies do not apply across fuel type. The role of multi-fuel stations 

will be discussed in later work. Average profits for stations of type v in region s equal 

revenues minus total cost : vsr vsc

 vs vs vsr cπ = −  (19) 

Revenues equal sales from fuel multiplied by price vsp , and revenues from (net) ancillary 

sales  are given by:  a

vsr

 a

vs vs vs vsr p s r= +  (20) 

Ancillary sales mainly involve convenience-store items and can account for up to 50% of 

profits. It might be that ancillary sales opportunities vary by platform. For example, 

hydrogen fuel stations might be seeking a wider set of services through 

complementarities with stationary applications, motivated by higher initial capital cost. 

This is possible for hydrogen because many services, such as maintenance, are not 

specialized enough, or because of complements with stationary applications. This would, 

of course, only work in populated areas. In all simulations ancillary sales will be set to a 

fixed amount per gallon consumed.  

 

Station costs include a fixed, capacity-dependent component, , that represents such 

categories as land rent, equipment, and capital depreciation and a variable component that 

k

vsc
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increases with sales, having unit cost . The unit cost comprises feedstock cost  and 

“other”  that include electricity, labor, and taxes. Ignoring sunk costs (of starting a 

station) and adjustment costs: 

u

vsc ;f

vsc

o

vsc

 ;  (21) u k u f

vs vs vs vs vs vs vsc s c c c c c= + = + o

Both fixed cost and unit cost can differ considerably by location, because of the large 

contribution of rent, especially in urban areas. Unit cost can be different, because of 

gradients in distribution costs. Fixed costs increase with capacity  and are equal to 

when the number of pumps are equal to : 

vzk

,k ref

vsc vsy refy

 ( ) ( ) ( ), ; 0 0; 1 1; ' 0; '' 0k k ref k ref

vs vs vsc c f y y f f f f= > = > <  (22) 

Scale economies are concave in the number of pumps (see Appendix 2b). 

Sales are determined by station capacity and utilization isυ ,  

  (23) vs is vss υ= k

with station capacity being the product of the number of pumps and pump capacity 

. p

vs vs vk y k=

 

To complete the fuel station economics, price is set at fuel stock cost plus markup: 

 ( )1 f

vs vs vsp m c= +  (24) 

For simplicity we assume that fuel stock markups are constant.12  

                                                 

12 Empirical data between 1960 and 2000 show that the average markups remain virtually constant, they 

were reduced only after the first oil shock, when cost of fuel increased dramatically, suggesting a very slow 

anchoring and adjustment process. (Sources: U.S. Wholesale Gasoline Price, US Bureau of the Census, 

Statistical Abstracts of the United States 1950 &1976 & 1980 & 1994 & 2005; U.S. Retail Gasoline Price,  
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Supply decisions 

Potential station owners also make decisions. Figure 8 shows the entrance and exit 

behavior of stations. Potential entrants decide to enter the market based on perceived 

industry return on investment. Next, entrepreneurs decide where to locate, after which a 

permitting procedure results in construction and, finally, actual operation. Following this 

overview, we track the total number of fuel stations of type v, in region s which 

integrates entrance less exits

vsF

vse vsx : 

 vs
vs vs

dF
e x

dt
= −  (25) 

While the higher-order process is captured in the model, in this exposition I collapse the 

process of location selection, permitting, and construction into one, with aggregate entry 

time eτ . Then, new-to-industry stations in region s,  , enter the market as:n

vsF
13

 n e

vs vse F τ=  , (26) 

Where the indicated new-to-industry stations equal the new-to-industry capacity intended 

for region s, divided by the desired fuel station capacity , *

vzk

 *n n

vs vs vsF K k=  (27) 

Location s receives share k

vsσ of the total new-to-industry capacity: 

                                                                                                                                                 

1949-2004 Annual Energy Review 2004 Report No. DOE/EIA-0384(2004) Accessed August 15, 2005 

http://www.eia.doe.gov/emeu/aer/petro.html). 

13 The model includes the higher-order entrance process and allows for varying the extent to which the 

supply line is taken into account. 
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  (28) n k

vs vs vK σ= nK

vsFHigh returns at the industry level lead to expansion of existing capacity, . 

The total market for fuel v grows at rate , which increases with industry profits: 

v vss
K k≡ ∑

k

vg

 ( ) ( ) ( ) ( )0 ; 0 0; 0 1; ' 0; ' 1 0;

n k

v v v

ek k g
vv v

K g K

g g f f f f fπ

=

= = = ≥� � =
 (29) 

where 
e

vπ  is the perceived returns minus the desired, normalized to the desired 

( )0e e
v v v v

0π π π π≡ − . The constraints imply, first, that the growth rate equals when 

perceived returns on investment equal desired returns; second, that the growth rate 

increases with return on investment, which could differ by fuel, because of potential 

variation in constraints. Further, the shape is bounded, at zero, for extremely negative 

profits, and, at some finite value, for extremely high returns. The most general shape that 

satisfies these conditions is an S-shape (see appendix 2c for the exact functional form). 

0k

vg

 

Finally, region s’s share of total new capacity is a function of the expected relative return 

on investment within each region, vs

βπ , compared to that of alternative regions. A logit-

expression is sensible, given the noise in the relevant information for those who have to 

decide what area to locate in: 

 ( ) ( )exp expk k k
vs vsvs z

β β
σ β π β π= ∑  (30) 

where kβ is the sensitivity, which depends on the accuracy of information on differences 

in profitability. Expected return on investment is derived through a net present value 

calculation of future profits streams vs

βπ , compared to the desired return on investment, 
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( )0
vs vs v v

β β 0π π π π≡ − . Entrepreneurs use heuristics to estimate how much demand would 

be induced by their entrance., based on reference demand generated by existing transport 

patterns (see appendix 2d). 

 

Exits are driven by recent station performance and follow a standard hazard formulation, 

where the hazard rate xλ is a function of anticipated return on investment,
x

vsπ , compared 

to a required profitability, x

sπ , ( )x x x
vs vs

xπ π π π≡ − : 

 ( ) ( )0

;

; 0 1; 0; ' 0; '' 0

x

vs vs

xx x x
vs

x F

f f f f f

λ

λ λ π

=

= = ≥ ≤ >
 (31) 

where 0xλ is the exit rate when recent profits equal desired profits. A general shape that 

satisfies these conditions is an S-shape, such as the logistic curve (see appendix 2c for the 

exact functional form). 

 

To determine their own anticipated return on investment x

vsπ , mature stations rely on 

recent performance vsπ ;  new to industry stations use their expected return on investment 

figures, vz

βπ . The different emphasis is captured by the weight  given to the recent 

profits streams, which increases with the average station maturity: 

m

vsw

 ( )1x m m

vz vs vs vs vz vsw w Max β ,π π π π⎡ ⎤= + − ⎣ ⎦  (32) 

where the weight increase is zero for entirely new to industry stations, and equals one for 

old stations. A reasonable form is an S-shaped form, centered around the age m*, 

*
vs vsm m m≡ : 
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 ( ) ( ) ( ) ( ); 1; 1 1 2; 0 0 'm
vsvsw f m f f f f= ∞ = = = 0≤  (33) 

Station maturity is derived through a simple age co-flow function (Sterman 2000) that 

tracks the average age of fuel stations. Appendix 2e provides the selected functional 

form. Appendix 2c of Essay 1 describes the formulation of co-flow structures. 

 

The final decisions to be described are decisions within industry to alter capacity of fuel 

stations. Existing stations adjust capacity, in terms of the number of pumps, to the desired 

level over an adjustment time *

vsy k

vsτ , accounting for both the time to actually learn about 

the optimal size, as well as the time to alter capacity, which can differ by region.  

 ( )* kvs
vs vs vs

dy
y y

dt
τ= −  (34) 

where the desired number of pumps allows the utilization to reach its desired level: 

 ( )* *k k

vs vs vs vsy υ υ= y  (35) 

where *k

vzυ  is desired utilization. Stations desire high utilization, as profits increase with 

utilization; however, very high utilization will lead to congestion at stations and customer 

defection. Thus, desired utilization is well below 1. A heuristic estimate, observing fuel 

stations gives utilization levels on the order of 0.2, that is, well below maximum 

utilization .14  

 

                                                 

14 The desired utilization is therefore linked to the wait time in equation (17), with a likely optimum at the 

point where its slope begins to increase sharply, which is also well below full utilization. For less regular 

demand patterns, or fewer pumps, desired utilization would be lower. On the other hand, adjustment 

constraints can lead to a utilization that is higher than desired, while competition effects can render it lower. 
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This finalizes the model structure. Key decisions on the supply side were: market entry 

decisions that were based on expected NPV; exit decisions, in response to realized 

profits; fuel station location decisions, based on relative expected profitability between 

different locations; and finally, capacity adjustment, in response to utilization.  

 

 

Analysis 

The analysis begins with consistency tests, illustrated through a comparison with 

empirical data based on the state of California. Next key insights of the basic behavior of 

the model found by analyzing the introduction of a hypothetical AFV in California are 

discussed. Given these understandings, I discuss the generality of these results and 

explore the value of relaxing technical and behavioral assumptions. Finally, I analyze 

implications when technical and economic parameters are varied and discuss implications 

for the introduction of various types of AFVs.  

 

Ie use the state of California as a reference region for analysis. That is, the demographic, 

economic, and technical parameter settings as well as the reference data, are equivalent to 

those typically found in California. Table 2 provides a summary of the relevant statistics. 

The default parameters in the model are provided in Table 3, and are used for the 

simulations, unless otherwise stated. Parameter settings for particular simulations are 

discussed in the text for each figure. To determine behavioral parameters, such as the 

consumer sensitivity parameters, or those that relate to station entrance and exit, a 

combination of heuristics, published empirical findings, sensitivity analysis, and 
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calibration are used to select reasonable values. To simplify analysis and dynamics, one 

type of consumer is assumed: households that generate trips conforming to a frequency 

distribution  that is generated by a lognormal in distance with average trip length of 

20 miles and , with a uniform distribution of the direction, subject to boundary 

conditions. If all trips would be made by vehicles, it generates the maximum 15,000 

vehicle-miles per person per year.  

max

'zzT

 

Fundamental behavior 

Several partial model tests, sensitivity analyses, and calibrations have been carried out to 

confirm behavioral consistency and heuristic parameter settings. Figure 9 shows, as an 

example, the results of a partial model test, which was to replicate the distribution and 

total number of ICE gasoline stations in California. Figure 9a shows the actual gasoline 

fuel station distribution in California in 2003 (N=7949) on a 625 patch grid. For the 

stations we used actual GIS data provided by the National Renewable Energy Laboratory. 

Throughout these simulations vehicle ownership was held fixed at 2003 levels (17.126e6) 

with a distribution identical to that of the population, with an adoption fraction equal to 

0.91 throughout. For each trip destination, the desired fraction of trips to be performed 

with an ICE/gasoline vehicle was 0.8, which would yield the average of 12,000 miles per 

vehicle, if realized. Simulations began with 10% of current stations, uniformly 

distributed, with 8 pumps per station. Supply was subsequently allowed to adjust over 

time through entry, exit, and capacity adjustment. Figure 9b shows the simulated results 

based on the heuristic parameters, obtained without optimization.  
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Without relying on detailed data inputs regarding items such as traffic flows, the model 

performs quite well, though there are a few regions that over or underestimate the number 

of stations. For example, the model places some stations in mountainous regions, or 

deserts, while it ignores a disproportionately high number of stations in big transit hubs, 

e.g., to Las Vegas. While these deviations are small, it is easy to correct for such 

deviations, without much additional data being required. This is discussed later. On a 

final note, the model performs much better, compared with simulations where the number 

of pumps per station was held fixed at the average of 8, illustrating the relevance of such 

additional behavioral feedbacks. 

Now we perform an analysis in which both supply and demand are endogenous. Figure 

10 shows the base case simulation. In the base case, the initial ICE fleet and 

infrastructure size and distribution are set to 2003 California values: 15.5 million vehicles 

and 7949 gas stations.  In the base case, to emphasize the spatial co-evolution of vehicles 

and infrastructure, we assume full familiarity with AFVs and set AFV economic and 

technical parameters of merit equal to those of ICE. The simulation begins with an AFV 

adoption fraction of 0.1% and 200 fueling stations (these numbers approximate station 

values for CNG in California in 2002, including private fleets and fueling stations).  We 

assume, optimistically, that all AFV fuel stations are accessible to the public. Initially, 

investors and other partners will be committed to and collaborate to achieve a successful 

launch and hence they attempt to keep stations open, even when making losses. We 

capture this by subsidizing, on average, 90% of a station’s losses for the first 10 years. 

This scheme disproportionally favors those stations that are in more vulnerable locations 

and receive more support. 

Figure 10 shows the alternative fuel stations and fleet. The top graph shows the 

simulated adoption fraction, stations, and fuel consumption, relative to normal, over time. 
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The bottom graph shows the geographical distribution of the adoption fraction and 

number of fuel stations at time t=45. Qualitatively, three important results are revealed. 

First, despite performance equal to ICE/gasoline and full familiarity with the AFV, 

overall diffusion is very low, especially in the early phase. Net fuel station growth 

initially lags that of the fleet.  

Second, many stations are forced to exit when subsidies expire, while entry ceases 

somewhat earlier, as the expected value from subsidies starts to decline. Average capacity 

increases strongly after the shakeout (see number of pumps, right axis) because of two 

effects: a selection effect is that those who exit are generally the smaller stations; in 

addition, those that remain in business experience increased demand, which drives their 

capacity expansion. For the same reason average profitability increases dramatically. 

However, these effects have a limited effect on the overall demand growth. Eventually, 

with the gradual increase of demand and constraints in capacity expansion, station 

entrance accelerates.  

Note that the growth of fuel consumption lags adoption, especially earlier in the 

simulation. This is because of the limit on the destinations that can be reached with the 

AFV because of absence of stations in rural areas and overcrowding in urban areas. Time 

to adopt and settle is much longer than one might expect from the time delays in vehicle 

replacement and station entrance only, which total up to 12 years for this simulation. This 

behavior is a result of closing the feedback between the interdependent relationship of 

vehicle demand and infrastructure development, each of which only gradually increases 

to an indicated level, as shaped by the other, and thereby also only slowly adjusts the goal 

for the other. 
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Third, the end state that emerges shows a spatially bi-stable equilibrium in which 

essentially all AFVs and fueling stations are concentrated in the major urban centers. 

Miles driven per year and actual consumption for the typical AFV are also far less than 

for ICE vehicles. Limited diffusion is a stable equilibrium in the cities, because high 

population density means fuel stations can profitably serve the alternative fleet, and low 

refueling effort induces enough people to drive the alternative vehicles. Figure 11 shows 

the underlying hypothesis. Both urban and rural demand is subject to chicken-and-egg 

dynamics (R1, B1). For metropolitan areas, potential demand would be sufficient if all 

demand would be generated from within and to within; however, rural areas would never 

be able to generate a self-sustaining market. Though AFV fuel stations do locate in rural 

areas during the period they are subsidized, rural stations remain sparse, so rural residents 

and city dwellers needing to travel through rural areas find AFVs unattractive (demand 

spillover, R2).  Further, urban adopters, facing low fuel availability outside the cities, use 

their AFVs in town, but curtail long trips (demand spread R3).  Consequently, demand 

for alternative fuel in rural areas never develops, preventing a profitable market for fuel 

infrastructure from emerging, which, in turn, suppresses AFV adoption and use outside 

the cities.  

 

Consideration of relaxing assumptions 

The benefits and costs of expanding the model boundary are discussed in this section and 

provide further support for the insights. Central to the model structure is its ability to 

capture the dynamics of supply and demand that interacting through space. Therefore I 

discuss first the appropriateness of the level of spatial detail. The AFV introductory 
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scenario that was discussed earlier is used as the basis. Figure 12a illustrates the 

sensitivity of the model behavior to changes of the patch length (the square root of the 

patch area). To control for large rounding errors with very large patches, population 

density is kept fixed at the California average (109 households/sqml). Tracing the 

equilibrium adoption as a function of path length, the results show: no self-sustaining fuel 

demand for the alternative when patch length are above 200 miles; equilibrium demand 

peaking when patch length is about 100 miles; and convergence for patch length below 

30 miles. The variation in the equilibrium demand for larger patches is explained as 

follows: the extreme case of one single patch corresponds to assuming a uniformly 

distributed population. This assumption does not bring out strategic location incentives 

on the supply side, and, even under rich behavioral assumptions, will yield demand 

/supply responses that correspond with the qualitative sketch in Figure 2, where demand 

is adjusted for the number platforms. The single patch dynamics will therefore result in a 

limited amount stable equilibria of which the number depends on the number of 

competing platforms. In the case of two platforms, as here, there are at most three stable 

equilibria. Two equilibria provide full adoption of either platform, and zero for the other. 

Whether a third equilibrium allows for both platforms to be self-sustaining depends if, in 

the case of equivalent platforms, if 50% of the demand yields a profitable market (see 

appendix 4b that this is indeed the case). Whether such equilibrium is actually achieved, 

depends on whether the subsidy schemes can bring the adoption/fuel stations past the 

boundary separting the low and the 50% equilibrium. We see that in this case this did not 

yield enough adoption for take-off towards the 50% adoption fraction. At more moderate 

patch length of say 100 miles, some patches capture major urban clusters, but also their 
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hinter land. Within such patches, average potential demand is large enough to yield the 

penetration to 50%. Further, virtually all trips of drivers are covered within that area, 

resulting in more adoption and demand. 

 

Under such assumptions of regional uniformity, expected distance to a station is identical 

from all locations within that region, however, the fraction of long trips fulfilled relative 

to short trips differs slightly. This is mostly because of the varying dependence of effort 

and out of fuel risk, for short and long trips. In sum, this level of granularity brings out 

bi-stable character, associated with adoption clustering, but not the coupling between the 

different regions (as indicated by the demand spread and demand spillovers loops in 

Figure 10).  

 

AFV demand and fueling infrastructure supply exhibit more subtle long distance 

interdependency that drives dynamics. Decreasing the patch length further brings the 

feedbacks associated with the long-range interactions into consideration. The explicit 

consideration of the existence of vast rural areas outside, and between urban regions, 

results in a reduction of demand as compared to the coarser grid, which is also illustrated 

by a lower ratio of large to small trip fulfillment for these patches. Decreasing patch 

length from here on, allows capturing population level and demand fluctuations, but does 

not affect the overall patterns of demand and supply. However, as simulation run time 

increases exponentially with the number of patches, computational constraints become 

another factor of consideration. The current patch length of 18 miles falls within the 

region where dynamics are insensitive to a change in its length. This example further 
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illustrates that the current analysis not only allows exploration of behavioral explanations 

of why take-off might stall, or of what policies might lead to success, but uncovers 

fundamentally different dynamics and equilibria, compared to assumptions that ignore 

the spatial heterogeneity, or that only focus on local supply and demand interactions. 

Studies of symmetry breaking in spatially distributed systems are more and more 

appearing in biological research (e.g. Sayama et al. 2000). In this particular case the 

consumer and supplier behaviors mediated interactions that are different over short- and 

long-distance and drive dynamics that cannot be observed with mean-field approaches. 

Finally, it is expected that dynamics are not affected by disaggregating other parameters, 

such as consumer types, for reasons similar to those arguing against reducing the patch 

size.  

 

A second assumption to explore in more depth involves that of randomly distributed trip 

destinations. Such an assumption greatly limits data and modeling requirements and is 

certainly useful for shorter trips. However, long-distance travel occurs at least partly over 

highways and is thus considerably more concentrated. The impact of relaxing the 

assumption of undirected travel for longer trips on the overall dynamics is not 

straightforward. Highway travel creates corridors that reduce the effective dimensionality 

for parts of the long-distance trips. This lowers the effective distance between stations 

and thus, holding actual stations constant, has a declining effect on driving effort. On the 

other hand, including road travel increases the typical length for the same absolute 

distance, and thus the required total number of stations per trip. Further, availability of 
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sufficient fuel stations throughout a trip is imperative for drivers’ willingness to adopt 

and drive, but long-distance travel is a relatively low contributor of the total demand 

volume and provides limited potential for revenues, especially in the less high-volume 

regions (even for gasoline competitive highway stations are frequently more than 30 

miles apart).  

 

I address these considerations in a simulation that generates different driving patterns 

with a different treatment for short and long distance trips.  Short trips with random 

directionality, distributed following the same assumptions as in the previous analysis are 

generated. The concept of gravitational models (e.g. Fotheringham 1983) is used to 

generate long-distance trip destinations as a function of the population density, with 

populated areas serving as the main destinations. Next, the repertoire of highly frequented 

destinations is expanded by including several destination hotspots, such as Las Vegas, 

Lake Tahoe, and the north east border, Crescent City.15 In the model, the high density 

traffic between cities and to hotspots form natural corridors for demand and serve as a 

useful proxy for directed trips. We perform a simulation that is further, where possible 

identical, to Figure 10, in terms of parameter settings, initial conditions and subsidy 

scenario for the entrant equivalent to ICE. However, to conserve computational efforts, I 

limit the simulated area. I choose one that includes the complete LA region, until the  

Mexican border, including Lake Tahoe towards the North-East, and San Jose on the 

                                                 

15 Even though such hotspots may lie outside the modeled grid area, their drivers destined for these 

locations generate demand within the modeled grid. 
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North-West. The average population density for the selected region is 30% higher than 

the California average. Details are provided in appendix 4c. 

Figure 12b shows the results. We see, first, that adoption attains a low level equilibrium, 

only slightly higher than in Figure 10. Further, there is a strong discrepancy between 

urban and rural adoption. Comparing these results with a simulated equilibrium of ICE in 

absence of the equivalent entrant (ICE equilibrium), illustrates that a high equilibrium 

with stations throughout, can be achieved. Performing analysis at this more disaggregated 

level requires careful calibration and more work is needed to confirm these results. 

However, the results are strong: the assumptions for this simulation strongly favor take-

off: besides the higher average population density any station that appears along the 

corridors is easily accessible for regional demand. This favors especially rural stations.  

Adding more behavioral detail does matter. An analysis of the role of endogenous 

topping-off behavior illustrates this. Drivers can adjust their topping-off level, trading off 

the frequency of refueling for a reduction in needing to go out of the way, crowding and 

out-of-fuel risks, by selecting more convenient locations before the actual need appears. 

To test the implications, we represent the endogenous topping-off level relative to the 

normal toping-off buffer , that adjusts to the indicated level , which is a function of 

the average utility of driving, which can be seen to represent the certainty of availability 

of fuel and service: 
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The relative top-off buffer increases with decreasing utility, but stabilizes at  for very 

low utility, as drivers will not want to be constrained by refilling on average too early.

max

br

16  

Further, when drivers are fully confident, they will reduce their buffer to , which can 

be below the indicated level by the warning sign, .  The exact form, yielding one 

sensitivity parameter

min

br

0

br

fα , is derived in Appendix 4d, also including a graphical 

representation. When the value of the sensitivity parameter fα equals 0, the topping-off 

buffer remains constant for all utility parameters, when it is equal to 1, the buffer changes 

linearly with utility. The reference topping-off buffer is 0 40b

ir = miles (10% of the total 

range), miles (50% of the total tank range), and max 200br = min 20br = miles. 

 

Figure 13 illustrates the results. Respective simulations involve increasingly 

sophisticated assumptions about refueling behavior. Varying fα , and f

refβ , a measure for 

refueling location sensitivity to a change in the relative effort in refueling, I show 1) the 

case of responsive behavior, for which the topping-off  buffer is held fixed and drivers 

are assumed to always start searching for fuel when they reach their 

buffer ( . In this case, within each trip, the refueling location shares )0; 0f f

refβ α= = ,
'zzi sω

σ  

is exactly equivalent to the share of driving through the various locations; 2) balancing 

behavior, in which drivers hold their topping-off buffer fixed, but are allowed to select 

                                                 

16 This level depends on the physical constraint of refueling elsewhere; see also equation (7) and Figure (5). 

From this behavioral reasonable parameters could be derived. 
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refueling sites, based on the ( 2; 0f f

refβ α )= = ;17 iii) adjusting behavior, in which drivers 

endogenously adjust the effective tank range ( )2; 0.5f f

refβ α= = . We see from the results 

that endogenous topping-off does not stimulate, but hinders adoption. Ignoring other 

effects, facing an increase of uncertainty of fuel availability, a driver’s adjustment of its 

topping-off buffer can improve her utility, from being able to locate at more favorable 

locations, at the cost of a little increased frequency. However, once that happens, two 

major reinforcing feedback loops become active: first, drivers contribute to an increase in 

crowding, because of their lower effective range, without increasing net consumption, 

this further triggers upward adjustment of buffers, leading to more crowding. Second, the 

reallocation of demand for fuel implies that more fuel goes to more favorable locations. 

This further reduces demand in already ill-served areas, contributing to more station 

exits, increasing uncertainty and reducing further demand in those areas. This last 

feedback is intrinsic to the urban-rural inequality, as well as the behavioral and 

disequilibrium character of this system.  

Varying AFV characteristics 

How is adoption affected when AFVs differ from the incumbent technology, ICE, along 

technical and economic dimensions of merit? To answer this question using simulations, 

use more favorable conditions than before to generate a successful take-off in the 

reference case that represents the ICE-equivalent AFV. Besides high station and vehicle 

subsidies, favorable assumptions regarding vehicle/fuel performance, cost parity, 

awareness and acceptance of the alternative technology - already assumed in the previous 

                                                 

17 These parameter settings correspond with the assumptions for all other simulations 
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simulation – are used. In addition, lower consumer sensitivity to the additional effort/risk 

associated with low station coverage is included. In Figure 14, the blue line (highest 

penetration) shows the reference case, a successful penetration. The left axis shows 

adoption, with a value of 0.5 corresponding to a 50% share of the market, which is 

expected to be the maximum equilibrium situation for an ICE equivalent. Equilibrium 

market penetration still saturates at a level lower than that of the status quo due to a high 

degree of clustering near metropolitan centers.  

 

Particular starting assumptions are relaxed step-by-step to allow for a comparison of three 

other fictitious AFVs that are also shown in Figure 14. The parameters that are varied 

and their values for each run are shown in Appendix 4e . To illustrate the role of 

increased efficiency, the red line shows the dynamics for scenario 2, representing a fuel-

efficient fictitious AFV with fuel efficiency three times that of the reference case and 

total vehicle driving range held constant, as compared to the reference case (to achieve 

this, the tank size is set to equal 1/3 of the reference case’s). This scenario could represent 

the introduction of small fuel-efficient AFV vehicles, at first sight an attractive candidate 

for early adopters. While adoption takes off fast, it stagnates early; surprisingly, more 

efficient vehicles are not necessarily more successful. Figure 14, right, shows that the 

supply collapses after the subsidies come to an end. The increased demand is not 

sufficient to make up for lower revenues, and no self-sustaining market emerges at low 

levels of penetration. Thus, this counterintuitive result illustrates a large trade-off 

between the end goal of increasing fuel efficiency and diffusion: on the one hand, there is 

efficiency, which reduces the environmental footprint (the energy dependence of 
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transportation), and may drive adoption; on the other hand, we see the importance of 

rapid supply growth to achieving successful diffusion. 

 

Dispensing capacity is expected to be a constraint for many alternatives, especially 

gaseous fuels (CNG, hydrogen), and EVs. Scenario 3 (the green line in Figure 14) 

illustrates the role of dispensing rate on the dynamics. It shows the dynamics for 

parameters similar to scenario 2, except for an assumption of dispensing capacities being 

25% as compared to the reference. Entrant technologies also have the burden of limited 

performance. In this case, adoption is suppressed directly as well. Due to the significant 

overcrowding at stations, which has a very non-linear response to station/pump utilization 

levels, attractiveness for potential adopters remains low. On the other hand, stations have 

limited incentives to expand or enter in places where utilization does not achieve very 

high levels. When fuel efficiency is lower, fueling frequency and crowding go up 

considerably. This dramatically increases the refueling time, making the effect even 

stronger. The final simulation represents early stage HFCVs, with DOE’s 2015 targets for 

HFCVs as a reference for the parameters (Table 3, case 4). Importantly to stress, without 

sophisticated introduction policies and under the current model assumptions, these 

parameters result, in no take-off at all. To point of this last simulation is not to show 

expected failure for HFCV, but to illustrate that for different configurations, dynamics 

can be disproportionally influenced. 

 

Different technologies result in different challenges. For example, introduction of hybrid 

vehicles, that use an infrastructure that is compatible with gasoline, and further have 
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lower fuel consumption, will lead to fast penetration (ignoring other feedbacks that relate 

to familiarity, technology learning and policies). In this model, if utility from hybrid 

vehicles equals that of gasoline vehicles, 25% of the market share is attained in 5.5 years, 

and 40% in 11 years, solely constrained by replacement dynamics of vehicles. The 

infrastructure can easily absorb the reduced demand, while still providing fuel 

throughout. However, for most of the alternative technologies, for which the 

infrastructure is not compatible, the dynamics as discussed above will be critical.  

 

 Bi-fuel and flex-fuel vehicles will exhibit a significantly reduced out-of-fuel risk, 

compared to alternative fuels, such as CNGs and HFCVs, as they can rely on pure 

gasoline as backup, while they can select the cheapest vehicle. But for hybrid solutions, 

there are inherent tradeoffs. This is illustrated by the case of CNG-gasoline vehicles. The 

fixed cost is higher, while vehicle performance and space are compromised. More 

importantly, the spatial dynamics of bi- and flex-fuel vehicles might play out quite 

differently than is the case for a mono-fuel: the reduced dependence of drivers on 

availability of remote stations reduces demand in the low-volume regions even further, 

which further reduces incentives for a widespread network to build up. Plug-in EVs also 

pose challenges. Charging at home solves part of the service time challenge of EVs.  

However, a side-effect is that the demand volume outside the home location is virtually 

non-existent, again providing little incentive for infrastructure to build up. In summary, 

for bi-fuel vehicles, the low-demand bi-stable equilibrium might emerge more easily and 

quickly, but the gap with full-scale penetration can become even larger than is the case 
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for mono-fuel vehicles that depend on an infrastructure that is incompatible with 

gasoline. 

 

This analysis also brings to mind the coordination and standardization challenge that 

stakeholders, fuel suppliers, automotive manufacturers, and governments face. Similar 

coordination issues contributed heavily to the stalling of the EV infrastructure in the early 

20th century. Not until it was too late were inventors, entrepreneurs, owners of central 

electricity stations, and policy makers able to coordinate on a viable infrastructure 

solution by providing large-scale, low-cost, off-peak refueling opportunities at central 

stations; sufficient coordination did not occur despite many viable ideas that were 

proposed early, included battery change services, leasing by central stations, and curbside 

pump networks stations (Schiffer 1994). 

 

Also here, choice to seek early standardization occurs at several levels:  across AFV 

portfolio choice, such as internal combustion hydrogen versus hydrogen fuel cells; within 

an AF technology, such as forms of on-board storage (comprising a variety of gaseous 

low- and high pressure, liquid, Nanotube solutions); with respect to individual 

technologies; or, regarding practices and regulations, such as on-site fuel storage modes, 

or the dispensing process. While technology diversity may be beneficial to the innovation 

rate of the technologies involved, absence of standards produces many difficulties. First, 

this greatly increases incompatibility for users. For example, different forms of on-board 

storage require different dispensing technologies. From the preceding analysis, one can 

readily interpret the dramatic negative impact this would have on the early market 
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formation. Similarly, for fuel stations absence of standards implies higher cost and 

increased space constraints. Further, different technologies that share much lower 

volumes have less learning and cost-reduction. Finally, absence of standards, rules, and 

legislation greatly increases permitting time for fuel stations. 

 

Discussion and conclusion 

Modern economies and settlement patterns have co-evolved around the automobile, 

internal combustion, and petroleum.  The successful introduction and diffusion of 

alternative fuel vehicles is more difficult and complex than for many products.  The 

dynamics are conditioned by a broad array of positive and negative feedbacks, including 

word of mouth, social exposure, marketing, scale and scope economies, learning from 

experience, R&D, innovation spillovers, complementary assets including fuel and service 

infrastructure, and interactions with fuel supply chains and other industries.  A wide 

range of alternative vehicle technologies – hybrids, biodiesel, fuel cells – compete for 

dominance. 

 

This essay focuses on only one interaction: the co-evolution between alternative fuel 

vehicle demand and the refueling infrastructure. I developed a dynamic behavioral 

model, with explicit spatial structure. The behavioral elements in the model included 

drivers’ decisions to adopt an AFV, their trip choices, and their decisions to go out of the 

way to find fuel, as well as their topping-off behavior in response to the uncertainty of 

finding fuel.  The responses to fuel availability included the effort involved in searching 

or getting to a station, the risk of running out of fuel, and the service time (as a function 
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of supply and demand), and number of service points. The supply-side decisions included 

station entry and location decisions, exit, and capacity adjustment. 

 

The local scale, but long-distance correlation of interactions is paramount in this dynamic 

and behavioral setup.  Fuel availability differs for each driver based on their location and 

driving patterns relative to the location of fuel stations.  Often labeled as “chicken-and-

egg” dynamics, these co-evolutionary dynamics are much more complex. The increasing 

interest for spatial symmetry breaking in biological systems (e.g. Sayama et al. 2000) is 

also justified for the complementary interactions between vehicle demand and its fueling 

infrastructure. Analysis of local adoption and stagnation provides an explanation for 

persistent clustering phenomena, with low levels of adoption and usage, for AFVs that 

are introduced in the market. For example, in Italy, with a CNG penetration of 1%  in 

2005, 65% of the CNG vehicles and 50% of the CNG fuel stations are concentrated in 3 

of the 20 regions (Emilio-Romagna, Veneto, and Marche), together accounting for about 

one-sixth of the population and area (Di Pascoli et al. 2001). In Argentina, the largest bi-

fuel CNG market with a penetration of 20%, 55% of the adopters live in Buenos Aires 

and 85% in the biggest metro poles. Similarly, in the beginning of the 20th century, EVs 

remained clustered in urban areas, with virtual absence of recharging locations outside 

urban areas (Schiffer at al. 1994). Many attempts to introduce AFVs collapsed after 

government support, subsidies, or tax credits were abandoned, for example with bi-fuel 

CNG/gasoline in Canada and New Zealand (Flynn 2002). While islands of limited 

diffusion might be sustained in the cities, as can be seen in Argentina, broad adoption of 

AFVs can easily flounder even if their performance equals that of ICE. The 
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acknowledgement of different relative “tipping points” for rural and urban markets and 

their interdependency can inform the evaluation of different hydrogen transition 

strategies and policies. The clustering and stagnation behavior is significantly different 

than the basic chicken-egg dynamics suggests, or than can be inferred from standard 

economic analysis of complementarities. Modeling the behavioral decision making and 

the spatial aspects dynamically is essential for revealing these patterns of low penetration.  

 

This model is in the early stages of development and requires more intense calibration, 

validation, and extensions. Yet current analysis considerably enhances our understanding 

of previous alternative fuel experiences and future alternative fuel transition strategies. 

The tight coupling between components of the system that are physical (such as typical 

replacement time and the spatial characteristics), behavioral (trip choice, sensitivity to 

availability of fuel), or technical/economic (e.g., fuel economy, tank size, fuel price) 

influence the dynamics. The analysis illustrates a bi-stable equilibrium with urban 

adoption clusters and limited aggregate demand. This fully dynamic perspective 

illustrates some counterintuitive results: more efficient vehicles are not necessarily 

improve the transition dynamics, for the emergence of a self-sustaining market, and can 

in fact harm it. More generally, the analysis illustrates the trade-off between the long-

term goal of low consumption and emission vehicles and the necessary market take-off. 

 

The behavioral character of the model, within the spatial context, provides significant 

insights with driver behavior, for instance fuel station capacity adjustment, being 
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endogenous. For example, the number and length of trips increases as fuel availability 

rises, and only then demand spillovers from urban to local regions, allowing for sufficient 

demand for take-off in those regions. Finally, we saw that dynamics were critically 

impacted when we allowed topping-off levels to be endogenously adjusted. Drivers who 

perceive refueling effort to be high - say, because some fuel stations are distant or 

crowded - will seek to refuel before their tanks are near empty, balancing increased 

efforts from more frequent refueling stops against reduced out-of-fuel risk. However, the 

side effects of increased crowding, and reallocation of demand to the higher volume 

regions, set in work self-fulfilling prophecies of the uncertainty of supply. More 

generally, including these behavioral aspects highlights the distributed nature of the 

system. The local adjustments of supply and demand can easily be absorbed in a well 

established high volume system and provides increased adaptability and efficiency that 

can thus be expected to improve successful transitions. However early in the transition 

the negative side effects of such adjustments can and lead to a failed transition. 

 

The analysis focused on the impact of supply-demand interactions relevant for aggregate 

diffusion dynamics. This model’s finite element approach suggests several research 

directions. For example, one could focus on specific state-level location strategies, by 

reducing patch size and incorporating detailed data such as traffic flow information. 

However, we saw that for the transition dynamics, capturing heterogeneity at the scale 

below the typical trip length, in combination with the behavioral feedbacks, was critical 

to obtaining the results, but the high-frequency noise from smaller-scale fluctuations 

could be ignored. In addition, we saw that the fundamental conclusions are not changed, 
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when relaxing the assumptions of randomly directed trips. Assuming random directions 

saved scarce resources for computation and analysis, and critically reduced data 

requirements. Also, analysis at a higher level of aggregation allows including more 

behavioral feedbacks that, as we saw throughout, but in particular with the topping-off 

dynamics, contribute significantly to the aggregate dynamics.  

 

Transition challenges are different for different AFVs. Successful introduction of hybrid 

vehicles poses much fewer and smaller challenges than achieving this for HFCVs. It is 

valuable to think how the dynamics observed here would interact with other elements of 

the socio-technical system. For example, suppressed diffusion also limits the 

accumulation of knowledge that is critical for improving AFV performance.  Further, 

automotive OEMs are likely to respond to the observed demand patterns for AFVs that 

favor cars for city-dwellers. In response, their portfolios would come to consist mainly of 

small, efficient, inexpensive models, adapted for commuting but ill suited for touring.  

Such behavior further reduces their attractiveness in rural areas, and likely restricts 

adoption to affluent households who can afford an AFV for commuting and an ICE 

vehicle for weekend excursions. These feedbacks can further constrain diffusion. 

 

Taking a broad system perspective allows exploring at high leverage interventions. As we 

discussed with hybrid vehicles, a transition is certainly possible. For example, in Essay 1 

I focus on the role of social exposure dynamics: as vehicles are complex, and emotions, 

norms and cultural values play an important role, social exposure dynamics will have 
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significant influence on the transition dynamics. Combining the partially local diffusion 

aspects with the spatial infrastructure dynamics will provide more insights into 

challenges and levers for adoption. As an “inverse” analogy to ring vaccination policies 

(designed to contain viruses), peripheral dotting of metropolitan regions at edges between 

urban and rural areas might be used to bridge demand for drivers towards more remote 

regions, thereby lowering uncertainty in demand. This robustness of this policy can be 

further tested with this model. 

 

Other policy levers lie in the collective action problem that is deeply rooted in AFV 

transition dynamics. Without coordination between automakers, fuel suppliers, and 

governments, adoption will not take off. First, there is the challenge of coordination on 

strategic investment. As we saw above, if AFs are initially only introduced in light, 

compact, efficient cars, there might be little incentive for the supply side to roll out a 

large infrastructure. On the other hand, if the benefits are too little from the consumer 

perspective, demand will not develop. This suggests high leverage can be found in 

coordination across stakeholders on issues such as pilot region selection, target market, 

vehicle portfolio selection, asymmetric incentives for urban and rural stations, other 

incentive packages, and standardization. Second, governments’ policies need to be 

aligned with those of the industry: a gasoline tax alone might spur demand for other fuels, 

but it might take a long time before good alternatives became available. Further, as we 

saw, if the alternative does not provide incentives for suppliers to build fuel stations or 

for automakers to build alternative vehicles, impact will be small. Finally, the lack of 

standardization is a strong cause and effect of the coordination problem. Further 
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application of the present model can reveal high-leverage coordination policies between 

these (and other) stakeholders. Subsequent research will be targeted at such questions. 

 

The observations in this discussion suggest that, for exploration of robust alternative fuel 

transition strategies, full policy analysis, and development of incentives of proper kind 

and duration, other feedbacks need to be included as well. Inclusion of other feedbacks -- 

such as scale and scope economies, R&D, learning by doing, technology spillovers, 

familiarity through word of mouth and driver experience, and production/distribution of 

fuels and other complementary assets -- are crucial for understanding the transition 

challenges. Initially, the technologies of AFVs will perform much worse than ICE, 

significantly increasing the threshold for the formation of a self-sustaining market. The 

strong dependency of model behavior on economic/technical characteristics suggests that 

full inclusion of these feedbacks is critical. Building towards this, essay 3 discusses the 

inclusion of learning and technology spillovers. Finally, full analysis must include 

various alternatives at the same time also competing with each other. 

 

The variety of success and failures of AFV market formation in the past suggests strongly 

that our understanding was unguided by reliable insight. This essay demonstrates the 

importance of dynamic models – when they incorporate behaviorally rich detail and focus 

on those factors that increase the dynamic complexity – for understanding the dynamics 

of market formation that involves consumers, producers, regulators, and producers of 

supporting infrastructure.  
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Figure 1 Full model boundary. 
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Figure 5 Consumer choice decision tree: left, diagrammatic representation; right, 

functional forms used for choice structure (multinomial logit (MNL)), and utility and 

effort structure (non-linear weighted average (CES)). 
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Figure 8 Fuel station entrance and exit process. 
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Figure 10 Behavior of spatially disaggregated model calibrated for California. 
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Figure 12 Model sensitivity to spatial detail: a) sensitivity of equilibrium behavior to 

patch length, with equilibrium fuel consumption (left axis), relative trip fulfillment short 

versus long trips (right), and simulation time (number of patches) as function of patch 

length; b) relaxing the assumption of randomly distributed long-distance trips, with 

adoption fraction over time (top) and the equilibrium adoption fraction for urban, 

suburban and rural, compared to the results for a simulation of ICE. 
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Figure 13 Sensitivity to topping-off behavior: adoption fraction (top) and fuel station 

density (bottom) for increasingly behavioral assumptions: 1) responsive, drivers always 

start searching when they reach their topping-off buffer; 2) balancing, drivers refuel on 

average at their topping-off buffer, allowing some flexibility to refuel at more favorable 

locations 3) adjustment: topping-off buffers are adjusted in response to changes in the 

uncertainty of availability of fuel. Left insets show the adoption fraction and fuel station 

density at t=40 for urban, suburban and rural populations. The right inset shows the 

effective tank range. For simulation 3 the effective tank range adjusts over time. 
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Tables 

 

 

Table 1 Sources of dynamic complexity of market formation for alternative fuel vehicles. 

 

 

Effect of fuel availability on trip effort.Nonlinear

Urban/rural asymmetries; short haul/long haul trips; station locating 
strategies

Spatial 

heterogeneity

AFV market formation exampleCharacteristic

Vehicle turnover; technological progress; infrastructure 
replacement.

Dynamics / time 

scale of change

Consumers; automotive companies; energy companies; fuel cell 
developers; policy makers; media.

Multiple 

stakeholders

learning from R&D- and user experience, and by doing; word-of-
mouth, technology spillovers; complementarities (fueling 
infrastructure).

Multiple 

feedbacks 

Cumulative knowledge; efficacy- and safety perceptions; oil 
infrastructure.

History 

dependent

Effect of fuel availability on trip effort.Nonlinear

Urban/rural asymmetries; short haul/long haul trips; station locating 
strategies

Spatial 

heterogeneity

AFV market formation exampleCharacteristic

Vehicle turnover; technological progress; infrastructure 
replacement.

Dynamics / time 

scale of change

Consumers; automotive companies; energy companies; fuel cell 
developers; policy makers; media.

Multiple 

stakeholders

learning from R&D- and user experience, and by doing; word-of-
mouth, technology spillovers; complementarities (fueling 
infrastructure).

Multiple 

feedbacks 

Cumulative knowledge; efficacy- and safety perceptions; oil 
infrastructure.

History 

dependent
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Table 2 Summary statistics for the state of California. 

Statistic value Unit Source 

Population 35,537,438 People US Census 2000 

Households 50.2% Dmnl US Census 2000 

Land area 155,959 Miles^2 US Census 2000 

Fraction population 
metropolitan 

84 Dmnl US Census 1996 

Fraction land 
metropolitan 

0.08 Dmnl US Census 1996 

Registered 
automobiles 

17,3e6 Vehicles 

Bureau of Transportation Statistics 

http://www.bts.gov/publications/stat
e_transportation_profiles/california/
html/fast_facts.html 

Gasoline fuel 
stations 

7,949 
Fuel 
stations 

Provided by National Renewable 
Energy Lab (year = 2003) 

Mean travel time to 
work 

27.2 

Minutes/ 

trip 

US Census 2000 

Annual vehicle miles 12,000 
Miles/ 
year 

Average US 
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Table 3 Default parameter settings; defaults not listed here have been specified in 

elaboration sections in Appendix 2. 

 

Short Description Value Units Source/Motivation 

Demand - Consumer Choice 
dτ  Time to discard a vehicle 8 Years Close to Census values 

*u  Reference Utility 1 Dmnl Free choice 

'

o

zzu  Utility of alternative to 
drive 

0.25 Dmnl Heuristic 

tµ  Trip distribution parameter 2−  Dmnl See discussion in text 

tβ  Route choice sensitivity ∞  Dmnl Simplifying dynamics 

ωµ  Route distribution 
parameter 

1 Dmnl  

cβ  Elasticity of Utility to Cost -0.5 Dmnl/ 
($/trip) 

Used to compare 
(coarsely) across 
elasticity 

tν  Value of Time 40 $/Hour See research by e.g.  
Train (2005). Used to 
specify value of elasticity 
parameters, including 
refueling 

rν  Value out of Fuel 200 $/Empty Tank Used to calculate w
r

sγ  Relative Value of Time 
Service  

1 Dmnl Used to calculate w
x

fγ  Acceptable refueling effort 
as fraction of trip effort 

0.25 Dmnl  

uv  Average drive speed 40 Miles/hour  

sτ  Time to observe station 
density and wait time 

1 Dmnl As close as possible to 3 
Months, simulation time 
constraints  

0br  Reference Toping-off 
buffer 

0.1 Dmnl  

Demand - Platform specific 

iq  Storage capacity per Tank 20 Gallon 
Equivalent 

Equivalent to typical ICE 

f

iη  Vehicle fuel Efficiency 20 Miles/Gallon 
Equivalent 

Equivalent to typical ICE 

Station Economics 
f

vzc  Whole sale fuel price 1.65 $/gallon Typical for US 

o

vzc  Non Fuel Variable Cost 0.6 $/gallon Typical for US 

a

vzf  Ancillary revenues as 
fraction of value of 1 
gasoline gallon equivalent 
consumed 

0.2 Dmnl Typical for US 

vzm  Fuel margin 0.5 dmnl Typical for US 
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Short Description Value Units Source/Motivation 
0

vπ  Reference Profitability 0.1 dmnl  

uizy  
Reference number of 
pumps per station 

8 Pumps/station Typical for US (Gasoline) 

u

p

izk  Normal Pump Capacity 400 Gallons/hour Average for California 
(Gasoline) 

Station Behavior 
ep

izτ  Time to Permit Stations 1 Year Part of 
eτ  

el

izτ  Time to Select Locations 1 Years Part of 
eτ  

ec

izτ  Time to Construct Stations 2 Years Part of 
eτ  

x

refλ  Normal station hazard rate 
(station hazard rate at zero 
ROI) 

0.1 Dmnl/year  

kβ  Sensitivity of Entry to 
Local Profits 

1 Dmnl  

k

vzτ  Time to adjust capacity 1 Year Though longer when 
population density is 
larger. 
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 Technical appendix accompanying Essay 2 

1   Introduction 

The model described in this Essay is designed to capture the diffusion of and competition 

among multiple types of alternative vehicles and their fueling infrastructure.  In the 

appendix I discuss additional components of the full model, highlighting those structures 

required to capture the full model. Further, this appendix provides additional information 

to accompany the model and the analysis of Essay 2. Each subsection is pointed to from a 

paragraph within the Essay.  Following this introduction, subsequent sections group 

issues by: 

2 Elaborations on the model that provide details on expressions that were not fully 

expanded due to space limitations (in particular we discuss functional forms).  

3 Derivations, which discuss expressions that be derived through closed form 

derivations. These were highlighted in the paper but not fully expanded due to space 

limitations. 

4 Notes on simulations, providing completions or complementary information to 

analysis in the paper. 

5 Stipulations: Additional notes that provide insight in the model or analysis 

6 Model analysis and documentation: Essay 2, in combination with the first two 

Appendix sections allows replicating the model. The third section allows the reader to 

replicate those analyses that did not provide sufficient information in the Essay to do 

so. Here I point to additional supporting documentation to do so. 

7 References 
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 2   Elaborations on the model 

This section elaborates segments of the model that were highlighted in the paper but not 

fully expanded due to space limitations. These elaborations include in particular selected 

functional forms for functions that were provided in general form in the model. 

a) Refueling sensitivity parameter 

The refueling sensitivity parameter captures the propensity of drivers to refuel outside the 

location where they reach their normal refueling buffer  (Equation 7 of the Essay).  b

izr

The two functions g and h determine how this propensity depends on the effective buffer 

and driving range, relative to the trip length. The functions should increase in both inputs, 

but are bounded, as the relevant area of sensitivity is at the order of the trip length (if one 

has a top-off buffer of 100 miles and the trip is 20 miles, we can typically refuel 

anywhere we like along the way). We use: 

 
( )
( )

' '

' '

min 1,

min 1,

b

zz zz

f

zz zz

b t b t

iz i iz i

f b t f b t

iz iz i iz iz i

g r r r r

h r r r r r r

η

ω ω

η

ω ω

⎡ ⎤= ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤− = −⎣ ⎦ ⎣ ⎦⎣ ⎦

 

The default setting in the model of both bη and fη are set equal 1. 

 

The reference sensitivity f

refβ  determines how the refueling location sensitivity is 

constraint by a combination of behavioral and physical constraints of refueling on a 

different location. Formally, it gives the elasticity of refueling shares to a change in the 

utility of a refueling at a location, when the refueling buffer equals the trip length 
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determined by the physical and behavioral factors. Here we assume this to be fixed (see 

Table 3). Note that if drivers always intend to top-off at their topping-off buffer, this 

parameter is zero. 

 

b) Scale economies for fuel stations 

Fixed costs are defined in Equation 23 of the Essay as: 

( ) ( ) ( ), ; 0 0; 1 1; ' 0; '' 0k k ref k ref

vs vs vsc c f y y f f f f= > = > <  

Economies of scale in fuel station cost follow the standard diminishing returns to scale 

function: 

( ) ( )
k

k ref ref

vs vsf y y y y
η

=  

Further, station cost may, labor, and land may differ per region. In particular fuel stations 

in urban areas have a totally different costs than those in rural areas. Higher cost in urban 

areas wil suppress expansion and entrance. Population is a good proxy for consistent 

variation between them. Thus, I include a population dependenent factor: 

( ), , ,
h

k ref k o k h avg

vs vs vs sc c c h h
η

= +  

In the simulation I use the following parameters: , and 

 

0.25kη =

, ,0.25; 250,000; 250,000h k o k h

vz vzc cη = = =

Note that these parameter settings disvafovor adoption in urban areas relative to rural 

areas. Effects of excluding this have limited impact on the dynamics. 

 

A note on explicit representation of multi-fuel stations: 
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Assuming that scale economies do not hold across technologies, it is reasonable to 

exclude the role of multi-fuel stations. Under such conditions, we can see a multifuel 

station as two neighbouring monofuel stations. This is assumption is reasonable when 

involving entirely different fuels such as natural gas and gasoline. Flexfuels are more 

likely to be substitutes from the station’s perspective and require some more complicated 

scaling. In that case multi-fuels might offer lower barriers than specialized stations. In the 

current simulations I exclude the explicit representation of hybrid fuel stations. 

c) Entry and exit sensitivity to profits 

Equation 30 in the Essay defines the industry growth rate as 

 ( ) ( ) ( ) ( )0 ; 0 0; 0 1; ' 0; ' 1 0;

n k

v v v

ek k g
vv v

K g K

g g f f f f fπ

=

= = = ≥� � =
 

The constraints imply, first, that the growth rate equals when perceived returns on 

investment equal desired returns; second, that the growth rate increases with return on 

investment, which could differ by fuel, because of potential variation in constraints. 

Further, the shape is bounded, at zero, for extremely negative profits, and, at some finite 

value, for extremely high returns. The most general shape that satisfies these conditions is 

an S-shape. The logistic curve is used here, with the following parameter settings:  

0k

vg

( ) ( )0 m; ;1;0;10;e LG
v v vf fπ π π α= ax . 

See this Appendix, section 2f for a detailed specification of the functional form and 

interpretation of the parameter entries, but in short, the elasticity of industry growth to 

market profits equals 1 at the normal profits, and the growth entrance rate is smoothly 

bounded by 0 and 10 times the normal growth rate. 
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Exits, specified in Equation 32 of the Essay also follow an S shape, but have a negative 

elasticity of 1:  

( ) ( )0 m; ; 1;0;10;x x LG x

vz vz vf fπ π π α= − ax  

See this Appendix, section 2f for a detailed specification of the functional form and 

interpretation of the parameter entries, but in short, the elastivity of exits to profits equals 

-1 at the normal profits, and the growth entrance rate is smoothly bounded by 10 10 times 

the normal exit rate (at large losses) and 0  (large profits) . 

d) Expected return on investment 

Entrepreneurs derive the perceived net present value of operation over planning horizon 

pτ and continuous time discount rate β . Expected retuns on investment e

vzβπ are 

determined by the net present value of expectected revenues, minus net present value of 

costs, divided by net present value of cost: 

 ( )e e e

vz vz vz vzr c ce

β β βπ = − β  

The net present value of a constant stream s (income or expense) is represented by: 

 
0

1

p

pts se s e

τ
β βτ sβ ββ ν− −⎡ ⎤= = − =⎣ ⎦∫  (A36) 

This formulation is a good representation for expected net present value of, say, cost of 

capacity, or price. However, other values, in particular sales, adjust gradually over time. 

For, instance, the expiration of subsidies can be anticipated, which results in a gradual 

reduction of entrance in the last years of such a program. Similarly, placement of 5 

stations in a periphery around, say, Sacramento can considerably increase the 
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attractiveness of AFVs, driving up sales of vehicles of that platform, followed by 

increased fuel consumption, but the impact on the return on investment depends strongly 

on the adjustment time (in relation to discount rate). The more general representation of 

an expected net present value of a variable stream sβ  that adjusts with adjustment rate λ  

to its indicated value equals: *s

 ( )* *

'

0

p

e t ts s s s e e s s

τ
λ β sβ β β

− −⎡ ⎤= − − = + −⎣ ⎦∫ + + β  (A37) 

Where *s s sβ β= −+ β is the net present value of the goal (structurally defined in equation 

(A36)) and, with  and 'β β λ= + , 'sβ∆ is the correction for the time needed to adjust to it. 

Note that if λ → ∞ , the third term drops out, and net present value equals that of a 

constant stream. Further, the net present value of the sum of two variables is additive, 

while the net present value of the product of two variables is found through additivity in 

the adjustment rate and we can also write for  therefore we can also write for equation 

(A37): 

*s

e es s sβ β= ++ β  and: 

 ( )'

es s sβ β β β βν ν= − = −+ + + +' s   

 

The main challenge for stations is estimation of future sales fe

vzs β at entrance, which feeds 

into revenues ( )e e

vz vz vzr p sβ β= and variable cost ( );a v k v v e

vz vz vz vz vz vzc c c c c sβ β β β β= + = . We will 

discuss this here. Expected present value of revenues e

vzs β are those of current fuel sales 

plus the adjustment for growth e

vzs β+ induced by entrance, but can not exceed one’s 

planned capacity: 
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( ) ( )

* 1
min ,

1 1

e vz
vz vz vz vz

vz vz

F
s k s S

F F

e

β β β

⎡ ⎤
= +⎢ ⎥

+ +⎢ ⎥⎣ ⎦
+   

The first term on the right hand side of the min function equals current demand patterns 

at stations, adjusted for sharing of sales by an increased base of fuel stations. The second 

term captures the share of (net present value of) an anticipated increase of sales due to 

increased coverage, going to a new station. This increase in sales comprises four 

components: i) closing the gap between demand and sales, in the case of full utilization  

ii) increased share of current driver’s refuelings in that area, iii) an increase of trips by 

adopters iv) an increase in adoption.  

 

In an earlier version this has been derived and implemented, using the actual demand 

elasticities. An alternative, simpler, approach that is used in this and is now discussed. 

Potential entrants expect that demand in a zone can grow more the wider the gap is 

between perceived potential demand and perceived actual demand. Perceived potential 

demand , equals the total current demand in that region, of which the potential for the 

entrant is corrected by 

m

vss

vsα , that captures fuel specific factors (e.g. higher fuel efficiencies 

result in less potential demand), and contextual factors (the aggregate of factors discussed 

above):  

 ( )* * max 0, m

vs vs vs vs vss f s sα⎡ ⎤∆ = −⎣ ⎦  

The effectiveness to attract more demand, *

vsf , depends on how the infrastructure 

coverage is changed as a function of entrance. The heuristic follows the one that let us 

draw the demand curve in Figure 2 of the Essay. At zero existing stations, the 

responsiveness will be very low, similarly when infrastructure is already very abundant. 
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However, when stations are reasonably spars, say halfway the normal demand, entrance 

responsiveness is expected to be high: 

 ( ) ( ) ( ) ( ) (
( ) ( ) ( )

* 0
0 0; 1 1; ' 0; '' 0 0

0 1; 1 0; ' 0; '' 0 0;

ref ref

vs vs vs vs

g g g g
f f g s s h s s

h h h h

) ;= = ≥ >⎧⎪= ⎨ = = ≤ <⎪⎩
 

We use two standard symmetric, bounded at 0 and 1 logistic curve functions (see 

Appendix 2f), with sensitivity parameters of respectively g and h being 2 and -2. 

 

e) Exits: weight of expected profits for mature stations 

Stations enter based on expected return on investment, and during a honeymoon period, 

losses may well be anticipated. Equation 34 in the paper captures the different behavior 

for mature and new to industry stations, through the weight of the relevant expected 

profits. As we study early transition dynamics, it is important to capture the reality that 

new stations can stay in business, holding on to their business case, eventhough no profits 

are being made. New stations therefore base their exit rate on adjusted expected profits.  

 

For the weight function given to recent profit streams increases with the average maturity 

of the stations we use the logistic curve: 

( ) ( );4;0.25;0;1;1L LG

vz vzf L f L=  

See this Appendix, section 2f for a detailed specification of the functional form and 

interpretation of the parameter entries, but in short, the elasticity of growth to profits 

equals 4 at the normal profits, and the growth entrance rate is smoothly bounded by 0 and 

1. 
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f) General forms, the logistic curve 

In the Essay several functional forms were specified in general terms, including boundary 

constraints as normal values, extreme conditions, first and second derivatives. For several 

of them a general S-shape curve is a natural form. For those we specify here the exact 

expressions used in the simulation. While many forms are available, I use the Logistic 

Curve. I will present this here in a more general form, and specify parameters where 

applied: 

 ( ) ( )
0

0

max min
; ; ;max;min; min

exp '

LG

ref

f x x
x x

x

α
β α

α β

−
≡ +

⎡ ⎤⎛ ⎞−
+ −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (A38) 

With min and max as specfified, output at x=0 equal to: 

The inflection point at x0 has value: 

 

( )

( )
( )

( )
( )( ) ( )

0

0

0

max min

1

min max min min min

max max max min min 1

LG

LG LG LG

LG LG LG

f x

f x y y

f x y y

α
α

α

+
= ⇒

+
− − + −

= = =
− − − + −

 

Where is the locus of the inflection point as fraction between the max and the min. If 

we want to set 

LGy

( )0

LGf x to 1, provided min<1: 

 ( )1 min
; max minLGy

−
= ∆ = −

∆
 

Next, if  

( )
0

0

0

min
' ;

1

LG
x

x LG LG
ref

xy
f

xf y y
β β+ ∆

= =
− ∆

 

Then the elasticity of output to the input at the inflection point equals:  
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0
/ /

LG

LG x LG xLG x

x df

f dx
ε ε β= ⇒ =  

Note further that the symmetric configuration, 1α = , renders the standard logistic curve. 

 

However, with minimum at min, maximum at max, elasticity at the inflection point 

specificed and the output equal to 1 at x0, we have:  

( )
max1

max 1
α α= ≡− . Note that with max to infinity we get the exponential function: 

( ) 0
0

0

; ; ; ;0;0 expLG x x
f x x

x
β β

⎡ ⎤⎛ ⎞−
∞ = ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

 

3   Derivations 

In this section I derive analytical expressions, including the average route effort 

(discussed with Figure 5), refills per trip, and the trip effort inputs average refueling 

distance, out of fuel risk and service time.   

a) Notes on derivation of trip effort components 

In the following treatment we assume that all searches for fuel occur within the zone 

(used interchangeably with “patch”) s in which refueling is desired. This is justified as in 

the current analysis the zones are naturally chosen large enough such that in search for 

fuel within a zone, and small enough to allow capturing the effects of heterogeneous 

population concentrations. For deriving the average risk of running out of fuel, the 

average refueling effort, I use a discrete grid, with patches defined at a much smaller 
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scale than that of the patches s or z. Where preferred I will resort to polar coordinates, 

using ( ),l θ . 

 

b) Route effort and probability of a refill 

Here I explain how I derive at the route effort expression in Figure 5 (row 3 of the 

aggregate utility and effort column). For the average trip effort I use an approximation of 

the expected trip effort, which aggregates over the probability of refueling n times , 

multiplied with the corresponding effort

'zzi np ω

'zz

t

i na ω . Assuming that various refueling events are 

uncorrelated, which holds true when averaging over a large population, this equals the 

effort of not having to refill, plus the summation (to infinity) over the number of rfill 

events n  , of n multiplied with the refueling probability and the net effort of refueling 1 

time, 
' '

1 0

zz zz

f f

i ia aω ω−  

 ( )
' ' ' ' ' '

0 1

zz zz zz zz zz zz zz

t t t f

i i n i n i n in n
a p a a np a aω ω ω ω ω ω= ≈ +∑ ∑ '

0f

iω−  

The product 
'zzi nnp ω is the only part that is a function of n. This summation equals the 

expectd refills per trip,
'zziωφ , and the previous expression can be further simplified to  

' ' ' '

0

zz zz zz zz

t t f

i i ia a aω ω ω ωφ= +

)
'

 

Where . For each individual refueling location this equals the average 

effort of refueling 

(
' '

1 0

zz zz zz

f f f

i i ia a aω ω ω≡ −

'zz

f

ia ω .  
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c) Refills per trip 

The refills per trip can be found by solving from Equations (6) and (8), using that the 

refills per effective tank range f

izr equals 1. Then:  

' ' '

'

*

zz zz zz

zz

t f f

i s iz i s s

s

r r rω ω ω
ω

φ σ
∈

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ f . 

The denominator provides a corrected effective tank range that is reduced because of the 

search for fuel. We see that if the expected distance to obtain fuel approaches the actual 

tank range, this term diverges. This is the situation corresponds with the situation that 

there is not enough fuel to be found along the whole trip, to bring us home. The 

divergence is physically sound. Note for instance that at this point the utility for making 

the trip approaches zero (see Figure 5). However, the negative constraint is not. To deal 

with this in a consistent manner, I assume that the range to find fuel in each location is 

bounded by the actual tank range, representing an option to call a service to fill you up. 

However, the cost in time and money is very large, thus at this time the effect of refueling 

effort on utility is at this point already reduce it to zero, consistent with this, thus:  

' ' '

'

max 0 ,
zz zz zz

zz

t f f

i iz

s

r rω ω ω
ω

φ σ+
∈

⎛ ⎞
f

i s sr
⎡ ⎤

= −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∑  

d) Average refueling distance 

The average distance of a refueling point to the desired refueling location, d

isr  is found 

by summing over the probability that the nearest station is at a distance from the 

desired refueling point in s, 

lr

*

islp  multiplied by the distance: 
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( )

*

0

!

! !

d

is l isl

l

n
r r

l n l≥

=
−∑ p   

which equals the probability that at least one station exists at a ring with radius  and 

with dl, minus the probability that a station within that ring within r

lr

l of s, 1islp − : 

 *

1isl isl islp p p −= −  

The probability of finding a station until l, equals 1 minus the probability of finding no 

station: 

 01isl islp p= −  

Given the poisson characteristics, 0

islp  this equals (e.g. Pielou 1977): 

 ( )0 exp /isl s l sp F A A= −  (A39) 

Where 2l lA r dlπ= . 

Below I plot, for reference the relative effective trip duration, as a function of the 

effective tank range (wich determines the trip frequency), and thus the effective search 

time, and the trip length.  

 

Figure A1 – trip duration  
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No parameters are required to derive this function. Trip duration is especially sensitive to 

station density for short trips. 

 

e) Out of fuel risk 

The expected risk of running out of fuel is derived by summing over probabilities of 

running out of fuel at distance  from the desired refueling location, given topping-off 

buffer .  Such a probability requires not having encountered a station within one’s 

lr

b

izr

driving radius lr , 0

lsp − , times the probability of running out of fuel in location o

izslp , 

conditional upon not having run out of fuel before:  

1 0

1

o o

izs izsl izsl

l

o p p −

>

= ∑  

Where an out of fuel in location l equals to the probability of getting out of fuel at a 

distance rl from the desired refueling point o

izslp , conditional upon not having been out of 

fuel before: 

 1

1

o o o

izsl izsl izslp p c−
−=  (A40) 

The cumulative out of fuel probability is a function of the tank range f

ir and the buffer : b

izr

( ) ( ) ( ) ( ); 0 0; 0.5; 1 1;; ' 0o f b f

izl l i iz ic f r r f f r r f f= = = = ≥  

The probability of not having been out of fuel can be derived from this expression, when 

using simple exponential expressions for o

izlp , otherwise it can be approximated through: 

 ( )1o oc c−
1 1izl izl− −= − A41) 

While 

 (
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( ) 1

o o o

izl izl izlp c c −= −

le ip

(50 miles). 

 

 

 (A42) 

Figure A2 shows a graphical representation for relatively short (10 mi s) and longer tr s 

10 Miles Trips 50 Miles Trips

0.01

Figure A2– fuel reliability 

Comparing this with the general results for search efforts, we note that the driving effort 

component is most easily affected during short trips, while the out of fuel risk grows 

faster in larger trips. 

 

f) Mean waiting time for service 

Disequilbirum between supply and demand are very critically felt at the pump. In 

Argentina and New Zealand that have experienced a take-off of CNG, waiting times have 
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been found to be in the order of 2 hours.18 The mean waiting time at a station is derived 

through stationary solutions of basic queuing theory concepts. This provides insights o

the average wait time

n 

 as a function of average utilization, number of pumps and pump 

apacity. The assumptions we make are simplified, but provide excellent insights on the 

strong non-linearities involved. We assume customer arrival rate at stations in s, for 

drivers of platform i to be uncorrelated and Poisson distributed. Assuming more complex 

demand patterns, such as peak behavior would yield average wait times that are even 

larger. The average arrival rate per station is the sum over arrival rates from all regions 

c

z, s

is vzs vs

z

Fλ λ= ⎜ ⎟
⎝ ⎠
∑ . The arrival rate for refills in region s for platform v from region 

s,

⎛ ⎞

vzsλ ,is given by the average refills during trips between z and z’, the actual trip 

 ' '

, '

vzs izz s izz iz

i v z

T Vλ φ
∈

= ∑  (A43) 

 With refills per trip from location z to z’, with underway s: 

distribution between zz’ and the number of adopters in z: 

 '

s

' ' '

f t

izz s izz sw izz w izz w

w

φ σ σ φ= ∑  (A44) 

A second requirement for the (basic) queuing concepts is to assume the servicing time at 

nce by 

 is sufficient to surface the 

strong non-linearity and analytically convenient. Other second order effects derive from, 

for instance, the number of stations in an area.  

                                                

the pump to be exponential. The strong assumption can be easily relaxed, for insta

assuming more sophisticated Erlang distributions, but this

 

18 Jeffrey Seissler, Executive Director of the European Natural Gas Vehicle Association (ENGVA) – 

personal communication July 2006. 
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The average duration sf

isτ , is found by averaging over the service duration from all 

ustomers:  

 

c

sf s sf s

is izs izs izsz z
τ λ τ λ= ∑ ∑  (A45) 

e statio actor

The steady state wait time, that is, the waiting time for t → ∞  is derived from the 

constraint that the sum of over all probabilities of finding k customers in the system 

should be equal to 1. The derivations are done for total demand being smaller than supply 

(the interesting area). First we define the averag n load f , s sf

is is isρ λ τ= , which is 

mp tations 

is isy

by the foregoing assu tion smaller than the number of stations, and the average s

available is ( )α ρ= − . Then, the probability that k customers demand fuel,

xpressed in the probability that no customers demand fu

kP , 

e el 0P  (for derivation see e.g. 

Gnedenko and Kovalenko (1989)), omitting subscripts for clarity: 
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0 ! 1 1!k

P
k yυ

1
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−
+

=
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And the probability that all pumps are busy equals 

 
( ) ( )

( ) 01 1

1 1 !

y

q

k y

k y

y
P P P

y

υ
υ υ

∞

=

= = =
− −∑ P  (A47) 
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In the case of one pump per station, this equals the average utilization of a stationυ , 

according to intuition.  

his intermediate outcome is important: it shows that when 

becomes high , the probability that someone finds all pumps increases 

dramatically. Further, this probability is also highly dependent on the number of busy 

umps, even when the total utilization is constant. Finally the mea

shown to be: 

 

T the average station utilization 

( )1υ →

p n waiting time can be 

( )1

q
sw sis
is is

is is

P

y

fτ τ
υ

=
−

  (A48) 

Figure 3 shows, for one set of parameters, technological parity with gasoline stations and 

ICE vehicles (e.g. pump capacity, vehicle driving range), utilization and relative service 

time for increasing demand supply imbalance and increasing number of pumps per 

station. I use an estimated 8 pumps per station. Of interest is the steep non-linearity of 

service time for low utilization, especially for fewer pumps per station). 
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Figure A3– Utilization and Relative Service Time for increasing pumps per station and relative 

demand (Technological Parity with Gasoline stations and Drive Range). 

 

4   Notes on simulations 

a) Trip generation and trip relevance 

For the simulation we derived the aggregate for each driver d from a two-parameter 

lognormal distribution: 

 ( ) ( ) ( ) 2
, 2

' ,
ln

2 exp
22 2 2

t t mean

t TOT t mean t t t t
n t

r r
f f r r

σ σσ π
σ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − + +
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

 

with tσ the standard deviation and mean distance, r r
20.5*t,mean t,ref e tσ≡ ; 'TOTf equals the 

total annual trip frequency 'TOTf , times the cumulative distribution until a maximum 

range . Specific data can be derived from trip-tables (e.g Domencich et al. 1975), but 

here we assumed identical average trip behavior across the regions: 

 miles per trip and , yielding the total

max
r

, max27, 120t meanr r= = 0.5tσ = TOTf of 300 trips per 
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year ( TOTf derived through integration over the populations corresponds with average 

annual miles ).  

max

t

0

r
r

t

nm h f= ∫

 

The total vehicle miles for a drivers of platform equal:  i

 ,max max

' '

'

v

zz zz

z

m r T= ∑  

And are set to 15,000 miles per person per year. Subsequently, was derived by 

dividing of trips between region z and z’ assuming uniform distribution in radius .  

max

'zzT

 

Trips between regions are weighted by desired frequency and distance, thus, with  

, we have ,max max

' '

'

wv

zz zz

z

m r Tη= ∑ ,max ,max

' ' '

v v

zz zz zzi
w m m= ∑ .  

In the simulations . The combination of trip weight and frequency render the 

following distributions: 

2wη =
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Figure A4 Normal Trip Frequency, and trip weight for the deteriming average trip 

attractiveness (see Figure5 in the Essay). To speed up the computation, throughout the 

analysis, drivers only select the direct route tβ → ∞  (see Table 3). 

 

b) Figure 12a – tipping point for a one patch model 

Figure 12a in the Essay discusses the equilibrium dynamics as a function of the patch 

length. Under the assumption of one patch, the model structure corresponds with 

assumptions of uniform population distribution. This assumption does not bring out 

strategic location incentives on the supply side, and, even under rich behavioral 

assumptions we can plot a unique adoption curve as a function of the number of fuel 

stations, that will yield demand /supply responses that correspond with the qualitative 

sketch in Figure 2. This graph shows the equilibrium adoption fraction under the default 
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simulation assumptions: 

 

Figure A5 Adoption fraction and fuel station profits for a 1 patch simulation 

 

Where profits equal zero (or for 0 fuel stations), we can expect an equilibrium. We see 

that under these assumptions 2 platforms can be supported. But getting towards that 

requires significant investment. While useful as a starting point, the assumptions for the 

uniform distribution ignore many feedbacks that involve critical dynamics.  

 

c) Figure 12b – directed trip simulation 

The full Los Angeles region is included, including San Diego. Further, to the north, 

Fresno, San Jose, and Sacramento. Figure A6 right provides summary statistics of 

population distribution for each landuse, as well as the average trip frequency and miles 
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(short and long trips). Minimum pop density indicates the selection criterium for each 

landuse type and is measured against the average population of the region. The region 

contains 83 % of the California populion and 58% of the land area. (Figure A6). 

 

.   

Region         

Parameters U
rb

a
n

S
u

b
U

rb
a

n

R
u

ra
l

T
o

ta
l

Minium Pop Density 10 0.75 0

Area Fraction 0.09 0.29 0.62 1.00      

Population Fraction 0.70        0.27     0.01   

Population (M) 19.8 7.6 0.33 28         

Short Trip Frequency 97           89        86      94         

Long Trip Frequency 24           11        7        20         

Total Trip Frequency 122         100      93      114       

Short Trip Distance 7,453      5,380   5,155 6,767    

Long Trip Distance 6,131      2,870   1,992 5,120    

Total Trip Distance 13,584    8,250   7,147 11,887  

California      

Parameters U
rb

a
n

S
u

b
U

rb
a

n

R
u

ra
l

R
e

g
io

n
 /
 C

a
li

fo
rn

ia

Fraction of Total Area 0.05        0.19     0.75   0.58

Fraction of Population 0.63        0.32     0.05   0.83

Figure A6 Selected region for directed trip simulation (left) and summary statistics of 

geographical and the generated desired driving behavior (right). 

 

Short-distance trips follow the same distribution as those in the base model (with random 

direction). However, to conserve computation time, trips of that category were cutoff 

beyond a 50 miles radius for urban and suburban population and a 30 miles radius for 

suburban and rural population. Long-distance trip destinations drawn from each location 

(23 for urban, 10 for suburban and 8 for rural), to a limited set of destinations as well, 
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weighted by population and distance from home to final destination: Population weights 

increased linearly with density: ( )'

p

z refw h h=  if , 0 otherwise; distance between 

zones, with

'z reh h≥ f

( )'max 1,d

ref zzw d⎡ ⎤= ⎣ ⎦d , with 100milesrefd = . Thus, a long distance 

destination 200 miles away from one’s home location was twice as likely to be drawn 

than a trip 400 miles away from z. Finally 6 hot-spot areas were handpicked: Las Vegas, 

Lake Tahoo, Crescent City, Alturas, Mamoth Lakes, with weight being set equal to a 

region with 10-20 times the average population. If destination fell outside the boundary 

of the region, the nearest point to the region was selected. (. Figure A7 shows the demand 

profile that is generated by total population and its trip profile in Mgallons/year/ zone 

(top). Also in Figure A7 (bottom) the actual gasoline stations. Average demand per 

station is 1.1 Mgallons/year. Therefore, the demand/ gasoline ratio in each region is a 

good indicator for proficiency of the generated trips. 
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6          6          22        2          4          6          -      

1          9          9          3          2          2          -      

5          26        16        8          4          5          4          

21        67        47        12        1          7          11        0          
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46        45        46        1          6          14        6          6          2          

49        27        36        33        0          10        4          9          4          8          

90        0          12        32        19        18        8          13        4          5          1          

62        37        0          12        21        23        10        16        16        5          1          0          

28        27        1          16        6          27        69        21        12        6          2          1          1          1          1          

17        16        2          13        16        9          38        40        19        12        4          1          0          0          0          0          8          

6          4          3          2          9          11        18        35        20        21        11        2          0          0          0          3          4          

0          0          1          3          12        19        28        18        26        9          2          0          1          2          5          2          

1          7          2          3          10        28        37        17        20        7          3          1          4          2          1          

8          1          4          2          14        68        32        28        12        4          3          3          2          1          

0          12        4          4          5          12        38        48        18        35        7          4          8          1          

9          12        9          18        22        7          74        112      81        41        34        8          31        1          

22        66        158      354      230      136      76        14        1          3          

2          1          1          4          8          446      456      257      144      38        11        8          

102      211      245      87        45        46        14        

8          82        128      52        23        6          

102      100      11        2          

22        112      1          14         

38        17        1          3          1          3          -      

8          8          1          14        3          11        -      

-      39        32        13        -      7          -      

14        105      104      32        2          13        -      

38        134      19        19        1          9          -      1          

63        63        46        9          21        4          -      -      4          -      

51        22        47        56        7          2          1          4          1          5          -      

188      18        12        43        5          5          1          7          -      -      11        -      

103      28        2          22        19        6          3          2          3          -      -      3          

29        18        12        6          5          60        116      14        2          -      -      -      2          

42        40        -      -      5          15        25        56        4          2          -      2          -      -      2          -      -      

3          7          -      4          3          24        32        30        1          -      1          -      -      -      -      -      

-      -      1          2          7          5          11        -      1          3          -      -      -      -      -      

3          37        1          -      7          12        27        15        3          -      -      5          -      -      -      

-      -      28        15        -      -      4          87        4          10        -      1          -      -      -      9          

2          13        18        -      2          2          8          8          19        12        3          25        2          3          

12        25        30        13        -      10        37        19        10        28        16        1          -      

-      31        76        117      370      112      57        88        27        -      10        

8          568      495      290      169      48        24        21        

-      60        198      179      38        42        5          49        

-      24        93        31        -      2          

50        169      3          -      

35        250      2          3           

Figure A7 Comparing generated demand with actual supply with in selected region: top 

shows generated gasoline demand (Million Gallons per year per zone; D=6,751e6); 
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bottom shows the distribution of gasoline stations (Top, N=6,499). White areas <5 units; 

green <20; yellow < 50; orange ≥50. 

      

d) Figure 13 – endogenous topping off 

Figure 13 in the essay simulates the endogenous topping-off buffer. The general 

functional form was provided to be: 

 ( ) ( ) ( ) ( )0 max 0; ' 0; 0 ; 1 1;b t b b b b

iz iz i i ir f u r f f r r f f r r= ≤ = = ∞ = min 0

b  

The relative top-off buffer increases with decreasing utility, but stabilizes at  for very 

low utility, as drivers will not want to be constrained by refilling on average too early.

max

br

19  

Further, when drivers are fully confident, they will reduce their buffer to , which can 

be below the indicated level by the warning sign, . To satisfy these conditions we use a 

simple one parameter form for f : 

min

br

0

br

( )( ) ( )1

min max max 0max , 1 1 ; 1
f f

b b b t b b

iz iz ir r r xu x r r
α α⎡ ⎤= + =⎢ ⎥⎣ ⎦

−

                                                

 

which yields, for the selected parameters: 

 

 

19 This level depends on the physical constraint of refueling elsewhere; see also equation (7) and Figure (5). 

From this behavioral reasonable parameters could be derived. 
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Figure A8 Endogenous topping-off buffer as a function of utility. 

 

The reference topping-off buffer is 0 40b

ir = miles (10% of the total range), 

miles (50% of the total tank range), and max 200br = min 20br = miles. We see that, for 

instance, the utility equals 0.27, the topping-off buffer becomes equal to 100 miles 

(corresponding, under current assumptions, but with uniform population and fuel station 

distribution, and in absence of crowing, with a station density of about 19% of the normal 

density). 

 

e) Figure 14 – table for technology parameters 

 

Table 1 Parameters for the 3 scenarios: 
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Relative to reference 
Parameter Reference Scenario 

2 
Scenario 

3 
Scenario 

4 

Relative fuel 
efficiency 

20 
miles/gallon 3 3 3 

Relative tank size 20 
gallons/tank 0.33 0.33 0.25 

Relative pump refill 
rate 

400 
gallons/hour 1 0.25 0.25 

Relative fixed cost 
(at four pumps) 

50,000 
$/refill point 1 0.25 0.40 

Relative wholesale 
fuel cost 

1.65 
gallons/hour 1 1 1.25 

 

 

5   Stipulations 

This section provides additional comments and clarifications on assumptions, or on 

connections. 

a) Sensitivity parameters for trip efforts 

The Essay describes how several attributes are brought together to detremine the trip 

one’s utility to drive uiz, (Figure 5). Below I discuss how the relative weights can be 

interpreted and validated. 

 

The elasticity of one’s utility to drive uiz, to a change effort component c, with c={drive 

time,out of fuel risk, refueling service}, when all attributes '

f

zz ca are at their reference 

level *

'

f

zz ca equals: 

 
'

' '

* *

'

*

' '

fc
zz

zz c zz c

' '

f f
tzz c izz c zz c

fu a
zz c zza a

a du

u da a

φε
−

=

= =
t

w aβ  (A49) 
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Where is the shortest trip effort between z and z’ and 0

'

t

zza 'izzφ is the normal refueling 

frequency. Further, The reference effort, , equals the reference trip time, plus the 

frequency of refueling multiplied with the reference levels for each attribute: 

*

'

t

zza

 * 0

' ' '

t t f

zz zz izz c cc
a a w aφ= + 0∑  (A50) 

With 0f

ca being the acceptable level (e.g. 0

2

fa =0, we don’t accept out of fuels). For 

example, ignoring the role of out of fuel and refueling time, we see that the actual 

elasticity of utility to drive depends on the search time for fuel, relative to the normal 

travel time for a trip, times the refueling frequency, times weight of finding fuel, and the 

elasticity to trip effort: 

'

*

'
' */

'

fd
zz

fd
t d zz

izz du a
zz

w
τε β φ
τ

=  

Note further that the elasticity of utility to refueling in total equals: 

 (
' '

*
' '

*

' ''

0* *

' ' ' '

f fc
zz zz

f f
zz zz

ff
t tizz zzzz

f t fu a u ac
zz zz izz zza a

aa du

u da a a

φε β β
φ− −

=

= = =
+ ∑ )ε  (A51) 

and the elasticity of utility to a change of a component, at the normal level, relative to the 

elasticity of utility to a change of another component is a direct measure of their relative 

weight: 

 
' '

* *

' 'fx fx
zz zz

x f x x f x

zz zzu a u a x
w a w aε ε

− −
= ∑ . 

Together this gives an interpretation of the relative importance of the attributes, with 

respect to each other and compared to the trip effort as a whole, determined at some 

useful reference point, e.g. at 30% station density of current. At that level, the out of fuel 

risk might be very low, say 1%, but its weight can be very large. 
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We now set the weight for searching for fuel equal to the value of time tν , divided by the 

a parameter that measures how time of getting fuel is weighted against spending effort 

/time driving towards a destination, fγ : d tw fν γ=  . Similarly, for out of fuel risk: 

r rw fν γ= , while the weight for service time is equal to that of searching fuel, corrected 

for a parameter that measures the weight of time waiting for fuel, with that of . d sw wγ= d

 

6   Model and analysis documentation  

The model and analyses can be replicated from the information provided in the Essay and 

the first two sections in the Appendix. However, analysis involved several steps and 

different tools. For instance, the population distribution for the proper gridsize was 

derived in Excel, while the static trip distributions (trip generation) were calculated in 

Matlab, using also the population information. Next each was uploaded in Vensim for 

simulation. Model source code and instruction for replication of the analysis can be 

downloaded from  

http://web.mit.edu/jjrs/www/Thesis Documentation.htm
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Essay 3  

 

Alternative fuel vehicles turning the corner?: A product 

lifecycle model with heterogeneous technologies 

 

Abstract 

The automotive industry may be on the verge of a technological disruption as different 
alternative fuel vehicles are expected to enter the market. Industry evolution theories are 
not unified in suggesting the conditions under which different types of entrant 
technologies can be successful. In particular, the competitive dynamics among a variety 
of technologies with varying potential for spillovers are not well understood.  This essay 
introduces a product life cycle model used to analyze the competitive dynamics among 
alternative fuel vehicles, with explicit and endogenous product innovation, learning-by-
doing, and spillovers across the technologies. The model enables in particular the 
exploration of the spillover dynamics between technologies that are heterogeneous. I 
explore how interaction among learning and spillovers, scale economies, and consumer 
choice behavior impacts technology trajectories of competing incumbents, hybrids, and 
radical entrants. I find that the existence of learning and spillover dynamics greatly 
increases path dependence. Superior radical technologies may fail, even when introduced 
simultaneously with inferior hybrid technologies. I discuss the implications for the 
prospective transition to alternative fuels in transportation. While the dynamics are 
discussed in relation to the automobile industry, the model is general in the sense that it 
can be calibrated for different industries with specific market, technology, and 
organizational characteristics. 
 

Introduction 

Mounting economic, environmental, and security-related concerns put long-term pressure 

on a largely oil-based transportation system. In response, automakers are developing 

alternative technologies, such as hydrogen fuel cell vehicles (HFCVs), to transition away 

from the petroleum-guzzling internal combustion engine (ICE) vehicle fleet. A central 

and hotly debated issue among stakeholders is the feasibility of various transition paths 
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towards a vehicle fleet powered by renewable energy. For instance, according to some, 

HFCVs are a radical innovation with long-term socio-economic advantages and are 

therefore bound to replace current automobiles (Lovins and Williams 1999). On the other 

hand, current cost and performance factors disadvantage hydrogen relative to the 

established ICE-gasoline system, creating large barriers to entry (Romm 2004).  

 

Adding to the complication is the plurality and diversity of other alternatives being 

considered. Besides leapfrogging to HFCVs or electric vehicles (EVs), some automakers 

are focused on increasing the efficiency of the current ICE technology. Others emphasize 

shifting to alternative fuels, such as compressed natural gas or blends of bio- and fossil 

fuels or are exploring various combinations of these alternative technologies, such as 

ICE-electric hybrids (ICE-HEVs), diesel-electric hybrids, or hydrogen-ICE (MacLean 

and Lave 2003). Beyond the fact that each technology trajectory involves large upfront 

investments, an alternative fuel transport system will drastically transform the social, 

economic, and organizational landscapes, with implications well beyond the automotive 

industry. With so much at stake, a thorough understanding of the transition dynamics is 

crucial.  

 

How do different technologies come to be, gain traction, and sustain themselves? The 

general pattern dominating the post-industrial perspective regarding technological 

innovation is the S-shaped diffusion path of superior or novel technologies (e.g., 

Griliches 1957). This diffusion pattern is currently considered a stylized fact (Jovanovic 

and Lach 1989), with numerous documented examples including: end products such as 
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motor cars (Nakicenovic 1986) and laser printers (Christensen 2000); process 

technologies (Karshenas and Stoneman 1993); enabling products such as turbo jet 

engines (Mowery and Rosenberg 1981) and mini mills (Tushman and Anderson 1986); 

ideas and forms of social organization (Strang and Soule 1998). While a powerful for ex-

post finding, this transition concept is useful for the dynamics of prospective transitions if 

we have a thorough and detailed understanding of the mechanisms underlying the 

outcomes20. 

 

Examination of the mechanisms underlying transitions is required, first, because several 

hypotheses about the mechanisms underlying the S-curve pattern co-exist (Geroski 

2000). For example, while the role of word-of-mouth is emphasized in diffusion models 

(Bass 1969), game-theoretic models emphasize the process of learning-by-doing and 

spillovers as fundamental (Jovanovic and Lach 1989). Furthermore, many diffusion 

patterns deviate from the typical S-shape. Henderson (1995) records unexpectedly long 

lifecycles for lithographical technologies while other technologies, such as 

supercomputers and nuclear energy, have saturated at low levels. Also, as Homer 

showed, diffusion is often much more complex, with a boom-bust-recovery being 

common (Homer 1987, Homer 1983). In line with this, the empirical literature 

increasingly identifies cases of diffusion challenges for new technologies across a wide 

range of complex environments, such as medical applications (Gelijns et al. 2001), 

                                                 

20 The S-curve literature is guilty of selection bias: successful technologies are the focus of explanation. Yet 

failures (instant or fizzle) are surely numerous. 
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renewable energy (Kemp 2001; Garud and Karnoe 2001), or automotive industry (Geels 

2005). 

 

The reason for such a high degree of heterogeneity in hypotheses and outcome is due in 

part to the differences in potential performance and productivity of individual 

technologies across cases. Further, the literatures emphasize different drivers of diffusion. 

The marketing literature emphasizes social dynamics and consumer choice, while the 

literature on industry dynamics emphasizes the technological S-curve. In each system, 

both are present, but their influence differs across cases. In several cases it is justified to 

filter out the most dominant mechanisms; however, this is not always true. However, 

other critical factors can make similar, or stronger, contributions to the dynamics: a 

technology transition includes network effects, scale economies and other increasing 

returns to scale, co-evolution with complementary systems, consumer behavior and 

learning, public rules and regulations, and competing technologies.  

 

 It is such interplay within and with its context that makes a technological trajectory path-

dependent. Such path dependency is a particularly important consideration for the 

evolution of the automotive industry. Figure 1 illustrates the evolution of the installed 

base of various fuel technologies between 1880 and 2005. ICE vehicles displaced the 

horse-drawn carriage as the dominant mode of transport through a very rich set of 

interactions that included the competitive development of various types of platforms (that 

is, vehicles defined by the technology but also their complimentary and institutional 

elements) with technological innovations for each that partly spilled over between them, 
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but also competitive and synergistic interactions with other emerging modes of 

transportation, such as trolleys and railways. Furthermore, co-evolution of fueling and 

maintenance infrastructure, roads, and driving habits played a large role in the adoption 

dynamics (e.g., Geels 2005). In the first decades there was little agreement on what the 

outcome of the transition would be. For example, around 1900 EVs were very much in 

competition with steam and internal combustion engines (ICE): they held the world speed 

record of 61 mph in 1899 (Flink 1988); their performance was superior in many other key 

attributes (e.g., simplicity, cleanliness, noise); they had strong support from leaders in 

industry, including Thomas Edison. However, soon after, sales of automobiles powered 

by ICE surpassed electrics and ICE became the dominant design (see Essay 1 for a more 

detailed discussion).   

 

With the prospective transition challenges within the automobile industry in mind, we 

develop a model that captures a broad scope. In the other Essays, the role of feedbacks 

related to consumer familiarity (Essay 1) and to infrastructure complementarities (Essay 

2) are analyzed in depth. This essay focuses on the mechanisms that involve 

technological innovation, learning, standardization, and spillovers among various 

technologies. Technology spillovers are a central contributor to advancement of 

technology throughout industries (Jovanovic and Lach1989). For example, a critical 

invention for the advancement of ICE vehicles was the electric starter. Its idea, built on 

the use of a battery and dynamo, was derived from the EV. The experience with the EVs 

was fundamental to its successful implementation in ICE vehicles the dynamo, wiring, 
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non-standardized batteries, and starter system all needed to be adjusted properly to each 

other.  

 

The power of spillover is also illustrated by the emergence of the wind-power industry. In 

the early 1980s, two drastically different approaches competed with each other. First, a 

US-based approach was founded on superior and top-down design, based on aerospace 

fundamentals, and backed by fundamental R&D. In contrast, the Danish wind industry 

supported development of diverse alternatives, by individual entrepreneurs, and was 

geared to stimulate spillovers among them. It was the low-investment, large-spillover 

approach that out-competed the superior designs (e.g., Karnoe 1999).  

 

One key question to understand in relation to such technology competition is, Under what 

conditions is leapfrogging, rather than gradual change, more likely to lead to success? A 

related question is whether broad deployment of competing alternatives constrains or 

enables a transition. Radically different technologies will experience limited exchange of 

knowledge with incumbents. For example, HFCVs can share part of the gains in body 

weight with ICE/gasoline vehicles, and vice versa, but their fuel-cell stacks and electric 

motors will not benefit from the 100 years of experience with ICE. On the other hand, 

contemporary HEVs can learn from experience with both ICE and HFCVs.  

 

While strategic and policy implications are enormous, the concept of spillovers has been 

treated explicitly in only a few models (notable exceptions are Klepper 1996, Jovanovic 

and Macdonald 1994, Cohen and Levinthal 1989). Here I introduce and explore a model 
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with endogenous innovation, learning and spillover, and resource allocation. This model 

contrasts with the traditional models regarding three critical aspects. First, this model 

explicitly captures the notion of variation in the substitutability of knowledge across 

platforms. Second, advances within an entrant technology can spill over to the market 

leader. That is, market leading and technology advances are decoupled. Third, the model 

includes scale effects that are external to the technology and analyzed in interaction with 

the spillover dynamics.  

 

These differences will permit focus on the specific challenges related to technology 

transitions. The first two distinctions imply relaxing the implicit assumption of 

technology convergence to one standard. The third will be shown to have significant 

implications for the dynamics, even when weak in isolation. Further, we can examine the 

competitive dynamics between entrants, hybrids, and more radical technologies. 

 

I begin with a short discussion of the literature on technological change patterns. Next I 

will provide an overview of the model. Thereafter I present the model structure. In the 

analysis I demonstrate the possibility of superior technologies failing in competition with 

inferior ones. In addition, while the isolated effects of spillovers and scale effects can be 

limited, their interaction can dramatically influence the dynamics and reduce the take-off 

opportunities for more radical technologies. I also point to the path dependency of 

multiplatform competition. In the final section, I state conclusions and discuss 

implications for the AFV transitions. 
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Modeling competitive dynamics between heterogeneous 

technologies 

This section provides an overview of the central factors affecting “technology 

trajectories” and next describes the model boundary and scope. 

The literature on technological change patterns 

” In product life cycle (PLC) theories, radically different technologies start with an initial 

low level of agreement about the key dimensions of merit on the producer side, along 

with limited attention to the technology from consumers (Abernathy and Utterback 

1978). A subsequent rise of entrants with different ideas drives up product innovations. 

As industry and average firm size grow, and an increase in capital intensity forms barriers 

to entry, benefits from engaging in process innovations increase, which lowers cost. A 

shakeout results in a reduction of variety and total product innovation, stabilizing the 

standard product (Klepper 1996), or, alternatively, a dominant design results in 

stabilization and shakeout through subsequent process improvement (Abernathy and 

Utterback 1978).  Ultimately, market shares of firms’ products stabilize, indicating the 

final stage of the PLC. Table 1 presents an impressionistic overview of the evolution of 

the automobile industry, novel in 1890, infant around 1910, and mature by 1960, 

corresponding with the general PLC observations.  The industry is currently experiencing 

a period of change. 

 

Disruptive innovations are hard to establish in a mature and oligopolistic market. Barriers 

to change are formed: first, because incumbents can deter entry through preemptive 

patenting out of fears of cannibalization of existing market share (Gilbert and Newbery 
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1982, Arrow 1962); and, second, because of the existence of various increasing returns to 

adoption economies (Arthur 1988). Others describe conditions under which disruption is 

possible, for example, under sufficient uncertainty of the timing and impact of the 

innovation (Reinganum 1983).  

 

Addressing the issues of barriers from increasing returns, the literature builds on Dosi 

(1982), who distinguishes market-performance attributes, organizations’ value networks, 

and technology cost structures. For example, Tushman and Anderson (1986) distinguish 

capability-enhancing and capability-destroying disruptions: that is, cumulative experience 

and scale can either help or hinder incumbents producing the old technologies, but not 

entrants. This asymmetry allows barriers for development of a new technology to be 

broken down either because incumbents have an incentive to rely on scale economies and 

experience or because the entrants are not locked-in to the sunk cost and experience of 

the old technology. Incumbents have inertia because of cost in adjusting their channels 

(Henderson and Clark 1990) or because of cognitive biases (March 1991; Tripsas and 

Gavetti 2002). Christensen (1997) notes that disruptive technologies can emerge in a 

neighboring market and compete on dimensions of merit previously ignored. For the 

incumbent it is not attractive to invest in a small infant market product, but they can fend 

off threats by shifting upward in the market. However, as the experience of the entrant 

grows, its superior performance in the new attributes allows the entrant to outplay the 

incumbent.  
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While the unit of analysis of these studies is the firm, when the focus shifts to technology 

entrant and incumbent, the conclusions are similar. Firm capabilities are built up around 

particular technologies. Learning and accumulation of experience are central in the study 

of technological change. Four types of channels are usually distinguished:  product 

innovation through R&D, learning by doing (often equated with process innovation) 

(Arrow 1962; Zangwill and Kantor 1998), learning by using (Mowery and Rosenberg 

1989), and spillovers (e.g., Cohen and Levinthal 1989). Developments in each channel 

can be tightly interdependent. For example, tasks (processes) depend on design (product). 

To what extent this is the case depends on technology design characteristics, such as its 

complexity and modularity (Clark 1985; Sanchez and Mahoney 1996; Baldwin and Clark 

2000) and its vertical integration (Henderson and Clark 1990; Christensen and 

Rosenbloom 1995; Ulrich 1995; Fine 1998).  

 

The window of opportunity for a disruption is discussed by Tushman and Rosenkopf 

(1992). They expand the “dominant design” model to incorporate the social dynamics by 

which networks of power rearrange during the ferment period, subsequentially changing 

the institutional structures and driving the next process towards standardization. Holling 

(2001) provides a similar ecological view of succession. On the other hand, Basalla 

(1988) describes a much more evolutionary process of change. Finally, the invention and 

progress rate depends also on potential rates of discovery (Aghion and Howitt 1992; 

Aghion et al. 2001), technological characteristics (Iansiti 1995), firm goals and 

perceptions of the technology potential (Henderson 1995). The relevance of these 

  204 



 

different observations depends on industry specific parameters and the stage of the 

industry. 

 

Technological innovations spill over between technologies. The effect increases with the 

gap between laggards and leaders (Jovanovic and Macdonald 1994; Aghion et al. 2001), 

and with the capability to extract knowledge from the outside (Cohen and Levinthal 

1989). At the industry level, competence building is a social, distributed process of 

bricolage (Garud and Karnoe 2003). This view emphasizes the value of technological 

diversity as was discussed for the emergence of wind energy by (Karnoe 1999; Kemp 

2001; Garud and Karnoe 2003). Whether innovations of a potential entrant will generally 

trigger increased R&D activity and performance increases of incumbents, the so-called 

sailing-ship effect (Rosenberg 1976), has also been observed in the automobile industry 

(Snow 2004). It is these combinations of interactions that suggest that hybrid 

technologies can serve as temporal intermediate bridges between an incumbent and a 

radical innovation (Utterback 1996). 

 

Other dynamic factors are early uncertainty about the efficacy and safety of new 

technology, the role of complementary assets, economies of scale, scope, and other 

market externalities. They drive increasing returns to scale (Arthur 1989) and network 

externalities (Katz and Shapiro 1985) that play a central role in the emergence of a 

standard designs  (David 1985; Sterman 2000; Klepper 1996).  
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Model Boundary and scope 

The model represents the evolution of an industry’s technology over time and is in spirit 

similar to the product life cycle model of Klepper (1996) that is based on the concepts of 

industry evolution (Nelson and Winter 1982). The current formulation captures the new 

and replacement sales of semi-durable goods. The model is discussed in the light of the 

vehicle market. Klepper focuses on interactions between market structure (patterns of 

firm entry, exit, and concentration) and innovation, with heterogeneity in capabilities of 

firms as a main driver of dynamics. In this paper the unit of analysis is the technology 

rather than the firm. Figure  shows the boundary of the model. Layers indicate different 

platforms. Further, as with other PLC models, this model captures learning-by doing and 

R&D, and endogenous allocation of resources that are adjusted with the relative 

productivity of the production inputs. Technological diversity evolve over time and 

substitutability between variants explicitly and endogenously. However, central to this 

analysis is the assumption that technology is inherently multidimensional. This means, 

first, that spillovers can also flow to the market leader, as platforms lead at some aspects 

of technology, but lag at others. Second, technologies can be non-uniform across 

platforms. Finally, to explore the dynamics, the model allows examining the interaction 

with other scale effects, external to the technology. 

 

Figure 3 shows the principal feedbacks that drive technological change.  Sufficient 

attractiveness of a product increases its market share and sales and allows for allocation 

of resources for R&D that in turn improves the knowledge and technology, and 

subsequently the product attractiveness. This further increases market share (R1, learning 
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by R&D), as well as learning-by-doing (R2) through accumulation of production 

experience. The first results in product improvement, the second mostly in process 

improvement. Improvements occur with diminishing returns (B1). On the other hand, 

resources can be allocated to absorb knowledge spillovers (B3) from other platforms. 

Resources are allocated to those activities with the highest perceived productivity (R3). 

While not shown explicitly in this high-level overview product and process improvement 

is separately represented in the model. Also not shown, but included, are several 

increasing returns to scale. Without a priori assumptions that impose conversion of 

technologies to one standard, we can explore here under what conditions these dynamics 

benefit or harm different technologies. 

 

The model 

For platform economies I use a simple model of cost, volume and profits. Aggregate 

profits earned by producers of platform type j, { }1,...,j = n , depend on the net profits n

jπ  

minus capital cost, , and investments in R&D, : k

jC RD

jC

  (1) n k R

j j j jC Cπ π= − − D

The price equals unit cost plus markup ( )1j j jp m c= + . Then, net profits equal the 

markup multiplied by unit cost  and total sales , jc js

 ( )n

j j j j j j jp c s m c sπ = − =  (2) 
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A key structure in the model is how experience and revenues feedback to improve 

knowledge, technology and then consumer choice and sales. Figure 4 shows the modeled 

chain of operations that connects the producers’ resource allocation decisions to the 

consumers’ purchase decisions, through knowledge accumulation and technological 

improvement. The chain is comprised of three main segments: consumer choice, effective 

technology and knowledge accumulation, and resource allocation. The consumer’s choice 

of platform j, { }1,...,j ∈ N , depends on the utility  that consumers derive from platform 

j, and is determined using a multinomial logit function. Utility is derived from two 

attributes ,

ju

la { }performance,pricel ∈ that are a function of the state of the effective 

technology associated respectively with cost and technology performance. There are two 

types of activity, { }product,processw∈ , that each determine the state of technology. To 

simplify the analysis, I assume that the state of technology associated with product 

improvement yields performance improvements and those with process improvements 

yield solely cost improvements. The technology frontier moves with an increase in the 

effective knowledge, with diminishing returns. Effective knowledge aggregates 

knowledge from all sources i that contribute to the state of the technology and that are 

associated with activity w, this is done through a constant elasticity of substitution (CES) 

function.  Knowledge of platform j accumulates, through internal learning-by-doing and 

product improvement , or through spillovers(i j= ) ( )i j≠ . The third section comprises 

resource allocation decisions made to maximize marginal returns. 

 

This structure rests upon several significant simplifications. While the key arguments of 

this paper do not rest on the current level of detail, a more detailed transition exploration 
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of the transition dynamics would benefit from relaxing some assumptions. Four are 

especially important to highlight at this point. First, I collapsed several consumer choice 

attributes into two that map on to cost and performance. However, consumers base their 

choice on a series of attributes (price, operating cost, convenience, reliability, driving 

range, power, etc…). Capturing these details can be important, for example because 

complementarities from fueling infrastructure affect attractiveness at this level, but can 

differ by platform. Second, I map cost and performance one on one onto respectively 

process and product innovations. In reality both process and product innovations 

contribute to both performance and cost. Third, vehicles comprise different modules 

(powertrain, body, brake-system, electrics). It is at this level that spillovers and 

improvements occur, and the degree of this depends very much on the specific module. 

Thus, an analysis of transition dynamics for specific AFVs should rest on a structure at 

the module level. Fourth, product and process improvements are tightly coupled due to 

the design/task interdependencies of complex products. For example, the unit production 

cost of technologies may increase temporarily after a product innovation cycle. This is 

because product innovations partly render previous process improvements obsolete. 

Appendix 3a describes the generalization of the model that includes these more general 

formulations.  This expanded model allows testing of the extent to which the key 

dynamics hold when the boundary is expanded. It also allows for the exploration of 

dynamics within a larger set of environments.  

 

I proceed here with an exposition of the core model. In the next section I provide the 

functional relationships for the central parts of the model: technology, and knowledge 
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accumulation. Thereafter I discuss the resource allocation process. I end the exposition 

with notes on consumer choice and accounting that includes the elasticity of substitution 

between the various sources of knowledge, effective technology, and the input factors. 

 

Cost have a fixed component and a variable component that decreases with the 

advance of relative process technology

fc

2jθ  (index w=2, 0

jw jw wT Tθ ≡ ). The variable costs 

are equal to when relative technology is equal to the reference technology : vc 0

2T

 2

f v

jc c c jθ= +  (3) 

Technology, , adjusts to its indicated level  with adjustment time jwT *

jwT tτ , while 

technology exhibits diminishing returns in accumulation of effective knowledge .  e

jwK

 (* 0 0
k
we

jw jw jw wT T K K )η
=  (4) 

where represents the quality of a platform, or its technology potential. The state of 

technology adjusts to  when internal knowledge equals the mature knowledge . 

0

jwT

0

jwT
0

wK k

wη  

is the diminishing returns parameter, 0 1k

wη≤ ≤ .  

Much of the knowledge that is accumulated within one platform can spill over to others.  

One firm and platform may lead on certain aspects of technology and lag on others, 

simultaneously being both the source and beneficiary of spillovers. To allow for varying 

substitution possibilities, the knowledge base for each platform is a constant elasticity of 
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substitution (CES) function of the platform’s own knowledge , and the knowledge, 

spilled over from other platforms, , depending on the spillover effectiveness :

jjwK

ijwK ijwκ 21

 ( ) ( )
1

0 0

k
jw

k k
jw jwe

jw jjw jjw w ijw ijw w

i j

K K K K K

ρ
ρ

κ κ
−

−

≠

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑

ρ−
 (5) 

I separate the contribution from internal knowledge to emphasize the different process 

(see below). The spillover effectiveness is not identical across technologies. For instance, 

the fraction of the knowledge of a HEV powertrain that is relevant to ICE vehicles differs 

from the fraction relevant from a biodiesel powertrain. Parameters will depend on 

differences in the technologies.  For example, ICE experience is relevant to biodiesel 

vehicles, but less relevant to General Motors’ HyWire HFCV, which radically alters most 

design elements. We specify this spillover potential between two technologies, with 

respect to activity w as , 0  and, by definition, for internal knowledge there is 

full spillover (carry over) potential, 

ijwκ 1ijwκ≤ ≤

1jjwκ = . 

Further, ( )1k k

jw jw jw

kρ ς ς= − is defined as the substitution parameter, with its transformed 

value k

jwς  being a measure of the elasticity of substitution between the various knowledge 

                                                 

21 This expression is a natural generalization of McFadden’s (1963) multiple input CES function. This 

significantly increases the production possibilities. For instance the elasticity of substitution does not have 

to be identical for all inputs (see also Solow 1967). See the analysis for an explanation of how this function 

behaves naturally with accumulation of knowledge. 
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sources for platform j.22 For such technologies1 k

jwς< < ∞ . Further, we see that one way 

for the effective knowledge to be equal to the normal knowledge is when internal 

knowledge equals the mature knowledge  in absence of any spillover knowledge. 0

wK

 

Accumulation of knowledge 

Knowledge accumulates through four distinct processes: product improvement through 

R&D, process improvement through learning-by-doing, and spillovers of both product 

and process knowledge. Knowledge production occurs through directed search (trials) 

(Simon 1969) and following standard search models, actors take random draws from a 

large pool of potential ideas (Levinthal and March 1981). Product improvement trials can 

be undertaken with increased R&D.  Process improvements accumulate through learning-

by-doing, increasing with production rates and investment (Arrow 1962; Zangwill and 

Kantor 1998). Knowledge production grows with diminishing returns in the number of 

resources, reflecting the several organizational and time constraints in doing more trials. 

More formally, product innovation and process improvement knowledge accumulate at a 

rate  when resources are equal a normal valuewΓ 0R . The accumulation rate increases 

with allocation of resources, an endogenous productivity effect i

jwε , and relative resource 

allocation: 

                                                 

22 In a two platform context, 
k

jwς would measure exactly the elasticity of substitution between spillover 

knowledge and internal knowledge. In a multiple platform situation the definition of elasticity of 

substitution is not well defined.  

  212 



 

 ( )0

i
wjjw i

jw jw w

dK
R R

dt

η
ε= Γ  (6) 

Benefits to resource allocation exhibit diminishing returns: 0 1i

wη≤ ≤ .  

For product improvement the productivity effect is constant, 1 1i

jε = . Process 

improvement is subject to learning-by-doing effects and the effectiveness is a concave 

function of the relative resources per volume produced: 23

 ( )2 0

s

i

j js s
η

ε =  (7) 

with 0 . The unit of analysis is the platform. Capturing learning-by-doing at this 

level is justified for that knowledge that can flow easily between firms with similar 

technologies are fast relative to the industry evolution time scale). However this is 

certainly not true for all knowledge. As the typical number of firms that are active in an 

industry can change significantly over time, this also means the learning-by-doing 

effectiveness can do so. This is discussed in Appendix 2d. 

1

                                                

s

jη≤ ≤

 

Process knowledge and the knowledge embedded in the product can spill over to other 

technologies. Imitation, reverse engineering, hiring from competitors and other processes 

 

23 We can arrive at the combined effect of equations (6)and (7) following a different train of thought: 

process knowledge grows linear with sales, holding resources per unit produced equal to its reference 

value, while reference resources per unit produced increase with sales (as it is harder to capture all the 

benefits); and finally, the productivity of resources per unit produced has diminishing returns Thus: 

( ) ( ) ( )2

2 0 1 ;
i s

s s

jj j j j jdK dt s s R s R R s s R
η η−

⎡ ⎤= Γ =⎣ ⎦ 0 0

0

1≤

, with constraints: 

 guaranteeing diminishing returns in sales following this expression, and 

, because of the interpretation in the main text. 

21 r sη η− ≤ − − ≤

20 ,r sη η≤
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that enhance spillovers take time and resources. Further, spillovers close the gap between 

the perceived knowledge of platform i as perceived by platform j, , and the 

knowledge that has already spilled over . Further, spillover increases with resource 

allocation, and fractional growth rate : 

ijwK ∼

ijwK

o

wg

 ( )( 0

o
wijw o

w ijw ijw jw

dK
g K K R R

dt
)η

= −∼  (8)  

Note that the model exhibits diminishing returns in the accumulation of technology, in 

relation to effective knowledge, but that there are constant returns to the accumulation of 

knowledge itself. In real life, the exact locus of diminishing returns is not always easy to 

measure. For instance whether aggregate diminishing returns are the result of constraints 

at knowledge collection, effectiveness of knowledge, or transforming knowledge into 

technology is not easily to observe. Moreover, all will be true in reality, in the long run. 

In appendix 3b I show that we can be indifferent to where we impose diminishing returns, 

as they are mathematically interchangeable. Therefore I collapse all sources of 

diminishing returns into one parameter. I further discuss how the current formulation 

relates to standard learning curves. 

 

Supply decisions 

Here I describe how the resource allocation process is captured. Upfront investment in 

R&D can increase total profits in the long run, either by improving performance or by 

lowering costs (and subsequently price). Both have a positive effect on attractiveness and 

sales. Actual resource allocation decisions then depend on expected demand elasticity 
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under the existing market structure, and effectiveness in improving platform 

performance, as compared to reducing its cost.  

 

Decision makers within organizations are bounded rational (Cyert and March 1963; 

Forrester 1975; Morecroft 1985). They learn about relevant knowledge and productivity 

over time and resources are allocated based on the relative perceived marginal returns 

(Nelson and Winter 1982). Further, decisions are made locally. Managers push projects 

by pushing those allocations that are perceived most beneficial, modules that are 

outsourced are optimized at the module level. This concept is used here for the resource 

allocation decision. While the key findings of this paper do not rest on the concept of 

local decision making, it is robust as compared to globally optimal decision making, but 

also mathematically convenient, for the same reason that actual decision making is local. 

 

Resource allocation decisions include: i) allocation of a share of total revenues going to 

R&D, r

jσ ; ii) the share of total R&D resources of platform j that the chief engineers 

dedicates to process or product improvement, , 1r r

jw jww
σ σ =∑ ; iii) the share of total R&D 

resources of platform j activity w, that managers dedicate to internal knowledge 

accumulation, r

jjwσ , as opposed to spillovers ; and finally, iv) the share of 

total R&D spillover resources of platform j, activity w , that engineers dedicate to 

extracting knowledge from platform i j

1r

jjw jjmwσ σ= −∼
r

≠ , ,r r

ijw ijwi j
σ σ

≠
1=∑ . 
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We will discuss one resource allocation decision here, others follow the identical 

structure. Resources that are dedicated by platform j to spillovers, jjwR∼ , need to be 

distributed to capture spillovers from the various platforms. The distribution results in 

resources r

ijw ijw jjwR Rσ= ∼ , going to platform i, with r

ijwσ being the share of the total budget 

going to i. The share adjusts over resource adjustment time rτ to the desired share for 

platform i, *r

ijwσ , which equals desired resources *

ijwR divided by the resources others 

bargain for: 

 * * *

'

'

r

ijw ijw i jw

i j

R Rσ
∉

= ∑  (9) 

Desired resources for platform i increase with expected return on effort *r

ijwς relative to the 

reference returns kς  in knowledge generation.  

 ( ) ( )* * ; ' 0; 0; 1 1r k r

ijw ijw ijwR f R f f fς ς= ≥ ≥ =  (10) 

Returns are measured in relation to the relevant lowest level performance indicator that is 

perceived to be fully influenced by the decision, capturing the essence of local decision 

making. The planning horizon over which the expected performance is estimated is pτ . 

In the case of resources for spillovers across platforms, the reference indicator is total 

spillover knowledge, , with  jwK∼ ( )
1

0

k
jwk

jw

jw ijw ijw wi j
K K K

ρ
ρ

κ
−

−

≠
⎡ ⎤≡ ⎢ ⎥⎣ ⎦∑∼ , which follows 

from equation (4).  

 

In Appendix 3c show that when the expected returns on effort, *r

ijwς , equal marginal 

returns on effort, the resource allocation is locally optimal. Here I assume, optimistically, 
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that decision makers understand the structure that drives marginal returns on effort and 

that they can learn this, with perception delays, under the local conditions of holding 

current resources and all outside conditions constant (see Appendix 2b for a detailed 

motivation and example).  

  

A final set of decisions involve entry and exit. Entry decisions are conditional on 

realization of discovery of a particular technology. Entry depends further on expected 

return on investment (ROI), which follows similar heuristics as outlined here for the 

resource allocation process. Expected ROI depends on the spillover effectiveness with 

incumbents, on the current state of the industry, the initial experience that platforms are 

endowed with, the initial state of their technology, and on the size and duration of seed 

funding. Platforms exit when profits fall below a reference value. This will be discussed 

more in the analysis 

 

Platform sales 

The total number of vehicles for each platform { }1,...,j = n , Vj, accumulates new vehicle 

sales, sj, less discards, dj:
24

 
dV j

dt
= s j – d j  (11) 

                                                 

24 I ignore the age-dependent character of discards in this discussion (see for this Appendix 2a in Essay1). 
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Total potential sales going to platform j equal considered sales from non drivers adopting 

at rate  and all discards from all platforms, multiplied by the share going to platform 

j,

ns

jσ : 

 n

j j i

i

s sσ ⎛= +⎜
⎝ ⎠

d
⎞
⎟∑  (12) 

The replacement decision involves a choice of whether to adopt or not, and conditional 

upon adoption, platform selection. This is captured through a nested logit-model (Ben-

Akiva 1973). Further, Essay 1 discusses the social factors influencing utility such as 

familiarity and experience from driving, as well as perceptions of attributes’ state as 

input. Appendix 2e provides the detailed nested-logit formulation, and how familiarity 

and perceived utility are integrated in the nested-logit formulation. In the model 

exposition here we proceed with an extreme case of the nested form: the normal 

multinomial form in which all alternatives are compared at par: 

 ( )''

o

j j jj
u u uσ = + ∑  (13) 

For non-drivers, the total purchase rate, in the absence of capacity constraints, equals: 

 ns N aτ=  (14) 

Where,  are the non-drivers, with being the total number of 

households, while

; jN H V V V= − = ∑ H

aτ is the average time between two adoption considerations.25  

                                                 

j

25 The proper interpretation of a “share” that is allocated based on relative utility is thus defined as 

individuals’ allocation between two alternatives at a decision point, rather than a fixed fraction of the 

population adopting or not. The steady state total adoption fraction depends thus on the consideration time. 

For instance, if and non-drivers, the total adoption fraction equals
*

ju u= ∀ ( )a a dτ τ τ+ , and is 

therefore not necessarily 50%. 
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The perceived utility of a platform captures the aggregate of experience across various 

dimensions of merit. Ignoring variation in perceptions for drivers of different platforms, 

we can write . Further, with utility being equal to the reference value uij iu u= ∀i
* all 

attributes equal their reference value, we have: 

 ( )* exp 1j l jll
u u a aβ *⎡ ⎤= −⎣ ⎦∑  (15)  

where βl is the sensitivity of utility to a change in the attribute { }1, 2l ∈ . The first 

attribute captures the performance, and thus state of the production technology, 1 1j ja θ= . 

The second attribute captures price 2ja p j= , where price is an indirect function of the 

state of the process technology, 2jθ , discussed above. 

 

This concludes the fundamental structure of the model, relevant and sufficient for 

explaining the key insights of this essay. The model has been subjected to its robustness 

by testing the role of other factors. None of them have critical impact on key insights of 

this paper, however, those that I include in Appendix 4 do allow studying a richer variety 

of contexts and also serve for detailed testing of the conditions under which the key 

insights hold. Besides the expanded structure regarding technology accumulation, 

discussed above, additional boundary conditioning structures that I subjected the model 

to are: i) endogenous elasticity of substitution, which allows capturing consistently 

spillover dynamics of multiple endogenously platforms over long time horizons; ii) 

interaction effects between different activities, which traces the effective technology 

more closely; iii) spillover potential ; iv) endogenous capacity adjustment, constraining 
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the sales growth rate after sudden technology shocks. So far we ignored that demand and 

actual sales can become decoupled through capacity constraints, accumulating backlogs. 

v) backlogs and churn, which properly deals with demand responses to supply shortages; 

vi) adjustment of markups, which allows one to proxy different market structure and 

competitive effects; vii) scale economies within a platform, which allows to distinguish 

these effects, that are not prone to spillovers, from learning by doing. 

 

Analysis 

We will first explore the basic behavior by testing basic PLC dynamics for two extreme 

cases: i) a single platform, without spillovers; ii) multiple platforms that enter 

endogenously, and are subject to complex spillover interactions. Next we analyze the 

spillover mechanisms in detail by examining the isolated case of two competitive 

dynamics between two platforms. To understand how these mechanisms play out in a 

richer context, we also explore the role of scale effects. With the insights from these 

analyses, we will study implications for AFV transitions and focus in particular on 

competitive interactions between three heterogeneous platform. 

 

Testing basic model behavior 

I first test whether the model is able to generate the stylized patterns of behavior we 

should expect from a PLC model. Figure 5 shows the product lifecycle dynamics 

generated by the model, representing the introduction of a new technology in isolation, 

such as the basic technology related dynamics of the emergence of the automobile 
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industry. Parameter settings for this and other simulations are provided in Table . 

Discovery probabilities for all but one technology are set to zero, while this technology is 

introduced at t=0. The installed base reaches 90% of the potential market over time 

(utility of not adopting,  equals 0.1).  The improvement rate of product technology 

precedes that of process technology. Vehicle performance improves initially very steeply, 

while costs rise after initialization, because of the inexperience with the new products. 

After year 5 costs start to decline rapidly as well due to the rapid increase in scale, 

spurring learning-by-doing effects. After year 13 the improvement rate of process 

technology dominates benefits from the increased scale. From then on, costs fall over 50 

percent, while vehicle performance improves marginally. Investment in R&D increases 

rapidly, due to considerable returns on investment and larger scale, but decays gradually 

subsequently, as ROI evaporates when a reasonable large market share is reached.

ou

26 

However, ultimately, rapid experience overcomes this. At the same time, the scale is 

large enough that net cost reductions remain positive. Clearly, other modes of behavior 

can be generated depending on these assumptions and on the initial experience of product 

and process innovation. However, by using typical parameter settings, the fundamental 

PLC patterns are well represented by the model.  

 

                                                 

26 In these simulations we have ignored the number of firms within a platforms and their effect of the 

market concentration on scale economies (see Klepper 1996). This will be treated in later versions.  See 

also Appendix 2c. 
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The PLC scenario in Figure 5 represents the aggregate behavior of a market that in 

reality is comprised of multiple technologies that compete, enter, and exit with various 

degrees of spillover among them. As the goal is to understand inter platform competition, 

it is imperative that this model can also reproduce such dynamics deriving from a lower 

level of disaggregating, in which entrance is endogenous. I analyze here if and how 

competitive and multiple platform dynamics lead to stabilized market concentration and 

performance. To do this I explore simulations in which platform entrance is a stochastic 

process. I first discuss the setup for these simulations and then discuss typical results. The 

results comply with robustness requirements of the model. In the subsequent section I 

explore the underlying drivers for spillovers dynamics in depth. 

 

The expected entrance rate for a platform depends on the expected returns and on the 

normal entrance rate, which can be seen to represent the aggregate barriers to entry due to 

various factors such as technological complexity, economic barriers, rules and 

regulations. Expected returns *

i

πς are compared to the required returns ref

πς : 

 ( ) ( ) ( ) max; 1 1; ' 0; 0;e

i i refe f f f f f fπ πς ς τ= = ≥ ≥ ;∞ =  (16) 

Expected returns depend on the type of current platforms in the market, their market 

shares and the distribution of knowledge across the various platforms. Expected returns 

will vary by the technology potential as perceived by those who consider to enter, In this 

simulation I assume that potential entrants have the same information about the market as 

actual entrants. Potential entrants are endowed with, and take into consideration, 

additional seed funding of 5 years of 1.5 Billion $ (equal to 1% of normal industry 

revenues). Expected entrance increases with expected profits, but saturates for large 
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profits. I use the logistic curve for this, with sensitivity parameter 1eβ = . To represent the 

distribution of technologies available for the market, I vary the distribution of spillover 

effectiveness between technologies, 1ijκ  and the technology potential, .  For spillover 

potential I define 

0

1jT

( )1 /

1ij i j
υ υκ α −= − , for i j≠ ( )1 1ii iκ = ∀ , where α is a scaling parameter 

for spillover strength, and υ  is the uniformity index for the available technologies in the 

market, with 0 1υ≤ ≤ . Whenυ  is close to zero, the spillover potential between 

technologies approaches zero very fast over different platforms, representing a more 

heterogeneous market. While υ  equal to 1 implies that spillover across platforms is equal 

to the maximumα for all platforms. The technology potential is varied randomly across 

platforms, with an average of 1 and standard deviation of 0.5.  

 

I am interested in the competitive dynamics between the various platforms over time, and 

the market behavior with respect to knowledge accumulation and performance. To 

analyze the competition over time, I use the Herfindahl index, which measures the market 

concentration and is defined as: 2

1

N

i

i

H σ
=

= ∑  

The Herfindahl Index (H) has a value that is always smaller than one. A small index 

indicates a competitive industry with no dominant platforms. If all platforms have an 

equal share the reciprocal of the index shows the number of platforms in the industry. 

When platforms have unequal shares, the reciprocal of the index indicates the 

"equivalent" number of platforms in the industry. Generally an H index below 0.1 

indicates an unconcentrated market (market shares are distributed equally across 

technologies). An H index between 0.1 to 0.18 indicates moderate concentration, An H 
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index above 0.18 indicates high concentration (most of the market share is held by one or 

two platforms). 

 

Figure 6 shows representative results. Different simulations each start with 16 potential 

entrants. Across simulations I vary the technology heterogeneity, with 0.75α =  for each, 

and for simulation { }1,...,7s ∈ , { }0.91,0.83,0.67,0.5,0.33.25,0.1υ ∈ . Figure 6a shows 

the average spillover potential across platforms, weighted by market share in 

equilibrium (t=100). Technology heterogeneity in equilibrium corresponds with the 

distribution of technologies available in the market. Further, an increase in the spillover 

potential also results in increased resources being allocated to spillovers. Aggregate 

behavior of all simulations is consistent (Figure 6b). Figure 6c shows the Herfindahl 

index over time. First, we see, that for these simulations the market can only support a 

limited amount of platforms (in equilibrium, , or 5-6 firms). This is in absence 

of any scale effects that are not related to R&D and learning.  We also see that 

concentration increases with the uniformity of the technologies. Absent any potential for 

spillovers, entrants can partly catch up, despite initial experience deficit. This holds 

especially true for those platforms that have superior technology potential. The spillover 

dynamics work in favor of more superior technologies that have for example, more 

resources available, providing scale economies associated with learning by doing. 

κ

min 0.15H ∼

27 Note 

that these dynamics do not reflect the concept of niche formation, as performance is a 

scalar. Including additional increasing returns to scale will reinforce this significantly.  

                                                 

27 An additional analysis to separate micro effects from macro effects would be to look at the seniority of 

those who have an advantage. 
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Figure 6d shows that the increased spillovers also lead to a greater attractiveness of the 

average platform in the market (weighted by market share), in the capacitated market. 

Attractiveness behaves properly, with diminishing returns. The aggregate market 

dynamics are robust and intuitive. 

 

Reducing the barriers to entry for new platforms, which can be emulated by lowering eτ , 

results in an increase in the number of entrant attempts throughout. The result is that 

increased spillovers compete with a more intense competition, but before hand it is not 

clear which effects are stronger. Doubling the normal entrance rate for these simulations 

has no significant effects on the Herfindahl, and on average a 5-10% increase in the 

market attractiveness. Increasing the barrier to entry leads to a 5-20% increase in the 

Herfindahl and a 10-25% decrease in market attractiveness, in all cases with diminishing 

returns. The results of endogenous entry dynamics illustrate the consistency and 

robustness of the model behavior over a wide range of contexts. However, a deeper 

understanding of the dynamics should come from various levels of analysis. I now 

concentrate on a deeper understanding of the spillover dynamics. 

 

Analysis of spillover dynamics 

To understand the basic spillover dynamics, I analyze the competition between the 

incumbent 1I and one alternative entrant platform . Figure 7 shows simulated adoption 

over time for cases with varying, but symmetric, spillover effectiveness across platforms, 

2E

[ ], 1 0,0.1,...,1i iκ κ∆ +≡ ∈ . Technology potential is identical. The adoption rate for the 

entrant and its equilibrium adoption fraction increase with spillover effectiveness: when 
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all platform technology of each platform is fully appropriable, 0κ∆ = , the entrant reaches 

about 10% of the installed base.  However, the entrant can catch up fully, reaching 50% 

of the market, when spillover effectiveness equals 1. However,  note that it takes 40 years 

to reach the equilibrium, even under maximum spillover effectiveness, while the 

technology replacement time is 10 years. Figure 7b) and 7c) show the allocation of 

resources to R&D for two cases of very low, and very high spillover effectiveness, 

{ }0.1,0.9κ∆ = . Figure 7b) shows total resources that are allocated to R&D. The entrant 

technology, being less mature and having a lower market share, invests heavily as it can 

capture significant returns on its R&D, especially in the high spillover case. Note that 

returns and thus investment in R&D would be considerably suppressed in the presence of 

scale effects. The incumbent experiences several effects. A first order effect is that 

reduced revenues also lower R&D spending. However, other effects lead to an increase in 

spending: irrespective of any spillover, demand elasticity to innovation increases when 

market share is reduced. This effect is however stronger for the high spillover cases, as 

these are the scenarios under which the entrant captures a larger market share. This effect 

is combined with an effect that is directly a function of spillover strength: as the entrant 

develops its technology, so does the spillover potential for the incumbent. These two 

second order effects lead to an increase in R&D investment by the incumbent and are 

different manifestations of the sailing-ship effect (Rosenberg 1976; Snow 2004). Further 

(Figure 7c), after entrance, both parties dedicate indeed the largest portion of their 

resources to spillovers. Once the core technology has been established it becomes much 

more beneficial for the entrant to improve technology through internal R&D.  
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In summary, dynamics between various technologies in a market unfold with three 

competing effects at work: first, there are competition effects that distribute the market 

shares; second, there are the learning and R&D feedbacks at work (as well as external 

increasing returns); finally, there are spillover effects between the technologies. 

Competition effects pressure established technologies’ installed base through the 

balancing feedback of reallocation of vehicle discards according to platforms’ relative 

attractiveness. Those that receive a larger market share than their installed base share, 

will grow until they match. Attractiveness depends on each platform’s technology 

potential, the current relative state of their technology. Learning-by-doing and -R&D, 

allow improving the technology performance through internal processes that further build 

attractiveness which can drive up sales, feeding back to investment in those processes. 

Generally these are subject to diminishing returns, and therefore, when presented in 

isolation, they will allow laggards to catch up (see Essay 1). Finally, the spillover effects 

derive from interaction between competitors’ relative performance that borrow ideas 

from each other. The net spillover effect involves a flow towards the entrant, and the 

magnitude depends on their amount of internally produced knowledge.  

 

Equilibrium is established when the forces from these three interactions offset each other, 

balancing market share, relative resources, relative flows of internal and spillover flows. 

We saw that with for two platforms an increase in spillovers benefits the entrant. 

However, for differences in technology potential, for multiple technologies, or when 

other scale effects are included, one can see the existence of different conditions for 
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equilibrium, or multiple equilibria and strong path-dependency, based on the specific 

interdependencies  between platforms. This is will be analyzed next. 

 

Analysis of AFV competition: spillovers, scale effects and multiple 

entrants 

Having an increased understanding of the general dynamics generated by the model, I  

now analyze how different technologies fare in a multi-platform race, focusing on the 

role of spillovers and learning, on their interaction with scale effects and with the effect 

of differences in the technology potential of the platforms. I specify an incumbent, 1I , 

with a large and saturated installed base, analogous to ICE in 2000. I first analyze the 

dynamics when entrance is limited to one platform only. 

The model captures internal economies of scale that represent, for instance, reduced 

production cost when production plants are scaled up or economies of scope. However, 

platforms are also subject to increasing returns to adoption related to external factors, 

such as complementarities or other (network) externalities that affect the perceived 

consumer utility in one way or the other. In particular, the co-evolution of demand for 

alternative fuel vehicles and infrastructure is an important feedback for many 

technologies, especially hydrogen, but also to some extend CNG, flex-fuels, EVs, and 

plug-in hybrids. Further, as is discussed in Essay 1, the requirement of building up 

familiarity greatly. Other increasing returns result from economies of scope such as 

increased sales and experience, the number of models offered (which will greatly 

enhance demand, as vehicles have limited substitutability). Expanding the product 
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portfolio also results in a wider experience, both in using (users will drive the vehicles in 

different climates, or environments), and in production (the variety of trials available for 

innovation is wider). These increasing returns to adoption can be a function of cumulative 

adoption, the current installed base, or the current sales rate. To test how the learning and 

spillover effects I have analyzed so far interact with such external scale effects. I 

introduce as the third attribute, one aggregate scale effect as a function of installed base 

share v T

j jV Vσ = : 

 ( ) ( ) ( )3 ; ' 0; 1;s v

j j j ref ra f f f f v s

efε σ≡ = ≥ ∞ = =σ ε  (17) 

Appendix 2f discusses the functional form used, but Figure 8 shows the shape of the 

function and the parameters. At the reference installed base share v

refσ , the scale effect on 

attractiveness relative to the case of full penetration equals s

refε . The scale factor, defined 

as the inverse of the relative scale effect, 1s s

jf jε≡ , serves as a measure of the strength of 

the scale. The scale factor gives the relative attractiveness of an entrant when its installed 

base share equals the reference installed base share, compared to when it is fully 

penetrated. At full penetration all scale effects work maximally to its advantage. For the 

reference I use an installed base 5% of the fleet and sensitivity parameter sβ =1, which 

measures the slope at the reference installed base share.  

 

Figure 9 a) shows the sensitivity of the entrant’s equilibrium installed base share to scale 

effects (technology potential is equal that of the incumbent, 0 1T∆ = ; the same holds true 

for other parameters). Table 3 lists parameter manipulations for all the following 

analyses. The equilibrium installed base is very sensitive to scale effects. For any scale 
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factor sf larger than 4, equilibrium penetration remains below 0.1 (that is, all results fall 

below the iso-installed base line of 0.1). Increasing the spillover effectiveness improves 

the range of scale factors that result in take off. However, the entrant, otherwise 

equivalent to the incumbent, approaches 50% of the market only in absence of scale 

factors. Thus, while the scale effects have no effects when learning is ignore, and limited 

effects when spillover potential is large, the interaction of this feedback with those from 

learning lead to strong strong barriers to entry, when spillover effects become smaller. 

 

The installed base for different values of technology potential ( 0 0

21 11T T T∆ ≡ 0 , see 

equation(13)), and spillover potentialκ∆  is illustrated in Figure 9b. Absent any spillover 

and learning, the predicted share of the entrant is equal to: 

 
( )

( ) ( )( )
2 21

2

2 21 21

s v

s

s v s v

u

u

ε σ
σ

ε σ ε σ

∆

∆
=

+ −
  

with , where 0

21 exp Iu θβ θ∆
∆⎡ ⎤= −⎣ ⎦T Tβ  is the aggregate sensitivity of adoption to 

technological advance and Iθ  is the status of the incumbent technology, relative to the 

reference.28 In our case, and 0.9Tβ ≈ 1Iθ = . Equilibrium requires that the sales share 

equals the installed base share, 2 2

s vσ σ= . This equilibrium is indicated Figure 9b. We see 

here that, when learning dynamics are included, a superior entrant technology reaches a 

larger share in equilibrium, provided presence of limited spillovers (above the dotted 

                                                 

28 The technology state parameter of the incumbent makes explicit that MNL models predict that, holding 

the relative difference between two technologies constant, the gap between the relative shares that 

technologies receive increases with the advancement of the technology (as the effect of the unobserved 

characteristics remains constant).  
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line). An entrant with technology potential that is equivalent to the incumbent (  close 

to 1) achieves equal shares only when spillover effects are very strong. A weak 

technology never approximates its potential. 

0T∆

 

Under what conditions can superior or equivalent entrant technologies catch up with 

incumbents? The process of learning and spillover determine the technology trajectory. 

This, however, is very much a function of the mix, diversity, and quantity of alternative 

technologies available in the market. The analysis illustrates that scale effects create a 

barrier to entry, as can be seen in the low spillover case. Beyond that, they allow for 

spillovers to flow to the incumbent, before the entrant catches up. This was the situation 

for example in the case for EVs in the early 20th century. They diffused slowly with 

limited progress in critical aspects such as battery life, recharging speed, and availability 

of recharging points, due to limited penetration and limited standardization of electricity 

systems at that time. Gradually, the batteries and dynamo system improved and around 

1910 they experienced a second wind. However, this also provided spillovers to the more 

established ICE platform, and led in particular to the commercialization of the electric 

self-starter by Kettering, a critical device that was implemented in ICE vehicles as of 

1911 (Schiffer et al. 1994). Ultimately, more and more ICE vehicles were able to gain 

market share in areas that were previously considered EV niches. This supports the 

notion that neither learning and spillover dynamics, nor scale effects must be explored in 

isolation. They interact tightly with each other and also with others such as vehicle 

placement and consumer choice dynamics. Together they determine the transition 
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trajectories and potential for different technologies. It is for this reason that we need to 

explore dynamics of multiple platforms in depth.  

 

In reality competition plays out not between one incumbent and one entrant, but between 

a mix of platforms, as was illustrated by Figure 1. Further, such platforms are different 

from each other across different attributes. For instance, where ICE and HEVs share an 

engine, HEVs and HFCFs share an electric motor system. Advances in ICE experience, 

with respect to the engine, are thus relevant to great extent to HEVs, but not so to General 

Motors’ HyWire HFCV, which radically alters most design elements (Burns et al. 2002). 

On the other hand advances in some elements, such as body weight, are relevant to great 

extent across all platforms. Many more of such cases can be found considering the 

enormous set of combinations of mono-, bi-, flex-fuel vehicles, or the consideration of 

gaseous versus liquid fuels. This context of multiple, heterogeneous platforms greatly 

limit our ability to intuitively grasp the dynamic implications of the basic interactions 

discussed above.  

 

 I study the fundamental dynamics of such a situation, by analyzing the case in which one 

hybrid platform (E2) that has reasonably large overlap with the incumbent (I1), and a 

radically different platform (E3), with technology that has little in common with the 

incumbent, but significant overlap with the hybrid. To do so I define the spillover 

effectiveness between the ith and the i+1
th as , 1i iκ κ± ∆≡ , representing the spillover 

effectiveness between the incumbent and the hybrid, but also between the hybrid and the 

radical. In addition I also define the spillover effectiveness between the ith and i+2
nd 
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platform as , setting spillover effectiveness between two platform pairs 

equal. Thus, represents the spillover effectiveness between the incumbent and the 

radical. Figure 10a) shows the simulated trajectories of the installed base shares of both 

entrant technologies, for four different spillover configurations: symmetric and 

asymmetric situations between {S,A}, for which respectively

2 2iκ κ κ± ∆≡ ≤ ∆

2κ∆

{ }2 ,0.4κ κ κ∆ ∆= ∆  and high 

and low spillover effectiveness {H,L}, for which respectively { }0.75,0.25κ∆ = . See also 

Table 3.  

 

Technology potential and scale factors are equal to one. The dotted line along the 45-

degree line show the trajectory for the symmetric, high spillover effectiveness scenario 

{S,H}. Dots represent samples with a 2.5 year interval. The three other trajectories with 

dots show trajectories of the asymmetric, high spillover effectiveness scenario, in which 

the hybrid and radical technology are introduced, simultaneously ( )2 3

i iτ τ=  and with 15 

years between them. Both trajectories appear to yield the same equilibrium. In fact, the 

case where the radical technology is introduced later, results in the highest market share. 

This is because the hybrid technology matures before being able to capture some benefits 

from the HFCV. Along the axes we can observe the trajectories where only one entrant is 

introduced ( ).The equilibrium installed base shares for these cases are equal to 

those with corresponding parameters in Figure 9a, where the scale factor 1, and spillover 

potential is 0.25 (E3 in this analysis) and 0.75 (E2 in this analysis). 

I

iτ − → ∞
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While the combined market share is considerably higher than for the individual 

introductions, the individual shares of the entrant platforms are lower than in the case 

when they are introduced individually. That is, under current assumptions, the 

competition effects limit market share and dominate the spillover effects. For instance, 

the hybrid technology learns much from the incumbent. This, however, is of limited value 

to the radical technology. Further, the incumbent also learns and, while attractiveness of 

the platforms is higher than is the case with individual introductions, this is also the case 

for the incumbent. Also shown is the equilibrium installed base share for the symmetric 

and asymmetric, low spillover effect case {S,L}, {A,L}. Figure 10b) shows the evolution 

of installed base share for the {A,H} trajectory with late introduction of the radical 

technology against time.  

 

This simulation reveals that the radical technology does not reach as much of its potential 

as the hybrid does. In equilibrium, all market shares remain constant while for each 

platform internal knowledge as well as spillover knowledge can be different. However, 

the growth rate of total knowledge must be identical across each. Three competing effects 

are at work to contribute to knowledge. First, there are competition effects that distribute 

the instantaneous market shares based on platforms’ relative attractiveness. Second, there 

are internal learning and innovation feedbacks at work as production and sales proceed, 

allowing for improved attractiveness and that further build production and sales. Finally, 

there are spillover effects between the technologies. Initially the radical can catch up with 

the hybrid, through spillover. However, it will also build up knowledge itself, through 

learning-by-doing and R&D investment. However, that is partly available to the hybrid. 
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The net spillover effect to the radical captures the flow towards the radical (from mainly 

the hybrid), less those towards the incumbent (from the mainly the hybrid), and the 

hybrid (from both other players), each closing the gap with the other’s learning. However 

at the same time there is also intensive interaction between the hybrid and the incumbent. 

This additional feedback, results in a steady state advantage for the hybrid.  

 

Generally the technology potential is not identical across platforms. For example, hybrid 

vehicles will have to sacrifice space and weight to offer multiple propulsion technologies. 

Vehicles that propel on gaseous fuels have lower energy density, in volume, compared to 

those that drive on liquid fuels and thus generally lower tank ranges. Radically different 

designs, such as HFCVs could offer more space, and more features than others due to 

their inherently electric system, which also requires few moving parts. Figure11 adds this 

dimension to the analysis, showing scenarios as before, for varying technology potential, 

while we explore with it the role of scale effects. Figure 11a) shows the equilibrium 

penetration levels for the high, symmetric spillover effectiveness scenario, in the absence 

of scale effects. I show the equilibrium installed base share for E2 and E3, as a function 

of the technology potential of E3, relative to the incumbent, keeping the product of the 

hybrid and the radical identical to that of the incumbent: 0 0 0 0

3 1 1 2T T T T T∆ = = 0  (thus 

values , corresponds with the technology potential for the radical being larger than 

that of the incumbent, while that of the incumbent is larger than that of the hybrid). The 

hatched line shows the analytically derived equilibrium for when all technologies are 

equal to their potential value. We see that including dynamic effects of learning and 

spillover reinforces the effects of a difference in technology potential on the installed 

0 1T∆ >
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base shares. Figure 11b) shows the same scenarios, except that now we also apply a weak 

scale factor of value 3. This scale effect is considered weak as for this value no effect can 

be detected for the equilibrium value in the static case (dotted lines are identical to those 

in Figure 11a). In the dynamic case, we now see a tipping point: only one entrant will 

survive – the most superior.  

 

Figure 11c) and d) show the same scenarios as in Figure 11a) and b), but for asymmetric 

spillover effectiveness, representing the true situation of a hybrid and a radical entrant.  In 

absence of scale effects, the point where the hybrid and radical have identical market 

share is shifted to the right - the situation where the radical is superior and the hybrid is 

inferior to the incumbent. The case where all technologies are identical corresponds with 

the equilibrium of simulation (1) in Figure 10b, which was identical to the case of 

simultaneous introduction). Figure 11d shows again the weak scale effect scenario, now 

under asymmetrical spillover effects. In this case there is again a tipping point, allowing 

for only one entrant to succeed. This graph reveals how the superior technology can fail 

dramatically. In fact, successful penetration occurs for the radical only under extreme 

conditions. The weak scale effect imposed was sufficient to greatly reinforce the effect 

already apparent without any such effects. The radical succeeds only when it is 

significantly superior to the incumbent and the hybrid. For asymmetric spillover 

potential, the hybrid can accumulate its technology much faster than the radical, diffuses 

and sustains successfully for intermediate scale factors as well, while the radical fails for 

a larger range of scale factors. Under these conditions, hybrids can benefit enough from 

the spillover dynamics, improve their technology, and offset limitations from scale 

  236 



 

effects. The more radical technology does not improve its technology fast enough to 

overcome the initial barriers. The hybrid survives under more adverse conditions, in the 

presence of a weaker alternative. 

 

The mechanisms that were discussed to be at work in Figure 10, are drastically 

reinforced under the scale effects: while initially the system might get close to 

equilibrium, the scale advantage of hybrids widens the gap between the hybrid and the 

radical. Importantly: as the hybrid benefits, by definition, much more from the mature 

technology, the incumbent will generally lag, which makes the relevance of a installed 

base gap larger. 

 

While the scale effects have little impact in isolation and the asymmetric spillover effects 

alone do not lead to the dramatic tipping, their interaction results in the real dramatic 

failure. With understanding from the preceding analyses it may seem likely that there are 

a large number of combinations of contexts that can generate conditions that result in 

failed diffusion of superior radical technologies. However, these conditions, when 

examined in isolation, do not have any significant impact. For instance, alternative fuels 

are introduced in the market at different times, after much of the competitive landscape 

has changed, they rely upon different fueling, distribution, and production infrastructures, 

parts of which may be compatible with those of other AFVs. I address this in the 

concluding analysis with three scenarios that capture different, small dissimilarities. 

Figure 12, left columns (a-c 1), show successful transitions towards the radical entrant. 

The right columns (a-c 2) show the  failed transitions for the radical platform, achieved 
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by one parameter departure from the corresponding scenario on the left. Detailed 

parameter settings are provided in Table . The scenarios show for the failed cases: a) a 

further reduced spillover effectiveness between the incumbent and the radical, in absence 

of scale effects; b) less scale effects for the hybrid compared to the radical, in the case of 

more superior radical. This may be the case, for instance because the hybrid depends on 

an infrastructure that is compatible with that of the incumbent, which is the case for 

gasoline ICE-HEVs; and c) a lagged introduction of the radical with respect to the hybrid, 

which is a natural situation. In this case the combination of an (already improved) 

incumbent and maturing hybrid, the performance gap is too big to be overcome through 

spillovers. 

 

Discussion and conclusion 

The early decades of the transition to the horseless carriage in the late 19th and early 20th 

century constituted a period of excitement, but also a period of great uncertainty about 

which technology would prevail. The technology of steamers, EVs and the eventually 

prevailing ICE vehicles all changed dramatically during those periods. Technological 

change was particularly large when the industry became more organized and sales 

increased. Also, there were large spillovers between the various technologies within and 

outside the infustry. As Flink (1988) argues, critical to further development of the 

automobile was the development of the bicycle around 1890. Key elements of the 

automotive technology that were first employed in the bicycle industry included product 

innovations such as steel-tube framing, pneumatics, ball bearings, chain drive, and 

differential gearing, as well as process innovations, such as quantity production, utilizing 
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special machine tools and electric resistance welding. Importantly, not all vehicles 

benefited in the same way from this. For instance the differential gears contributed to 

those of ICE and steamers, while steel-tube frames were particularly beneficial to EVs, 

making them significantly lighter, providing a larger action radius (McShane 1994; 

Schiffer 1994).  

 

Another types of interaction involved induced research intensity in response to upcoming 

threats. For instance, the light two cylinder cycle car stormed the market in the 1910s, 

responding to increasing congestion in the urban streets. But it did not take long before 

genuine vehicles became smaller in response to this threat, soon after which the cycle 

cars disappeared from the landscape, not being able to keep up with their limited 

experience. The prospective transition in the automobile industry, this time away from 

the fossil fuel burning ICE vehicles with many alternatives enter the market is subject to 

similar complex dynamics. 

  

In this paper I emphasized the dynamics of and interaction between technology 

trajectories. This analysis was supported by a dynamic model that included explicit and 

endogenous consideration product innovation, learning-by-doing, investment decisions, 

and spillovers between the technologies. In contrast to other treatments of technology 

spillovers (e.g. Cohen and Levinthal 1989; Jovanovic and Macdonald 1994; Klepper 

1996), spillovers, in this paper, are a function of the relative similarity between 

heterogeneous technologies. Further, in this setting, leading technologies may also learn 

from laggards, capturing various forms of sailing-ship effects.  
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To provide sufficient but controlled variation of relevant interactions, the analysis 

focused on the competitive dynamics of up to three players, one incumbent, one hybrid, 

and one radical platform. The competitive landscape under which the alternatives are 

introduced matters enormously for their likelihood of success. I analyzed in detail the 

dynamics resulting from three competing effects at work: competition effects that 

distribute the market shares, internal learning and R&D feedbacks, and spillover effects 

between the technologies. I found plausible conditions under which a superior technology 

may fail, competing against inferior entrants. 

 

 As expected, an entrant with a radically different technology, say the HFCV, may benefit 

from the existence of a hybrid technology, such as HEVs, when its technology potential 

is significantly higher than that of the hybrid. Alternatively, various alternative 

technologies may co-exist in equilibrium. The net spillover effect to the radical captures 

the flow towards the radical (from mainly the hybrid), less those towards the incumbent 

(from the mainly the hybrid), and the hybrid (from both other players). However, to 

illustrate the dynamic complexity, at the same time there is also intensive interaction 

between the hybrid and the incumbent. This is why a radical platform, occupying the 

margin within the space of spillover can be suppressed, even when equivalent or even 

superior to its competitors in terms of technology potential. 

 

The automobile industry is subject to various forms of scale effects. The challenges for 

policy and strategy makers become apparent in when these are included in the analysis. 

  240 



 

Successful diffusion and sustenance of AFVs are dramatically affected when spillover 

dynamics are allowed to interact with scale effects. Scale effects are important in the 

automotive industry. New platforms, consumer and investor familiarity needs to build up 

before they are considered on equal par (see Essay 1). Similarly, complementarities, such 

as fueling infrastructure need to build up with the vehicle fleet (see Essay 2). The analysis 

in this paper illustrates how such scale effects, modeled in reduced form, can have drastic 

effects on the technology trajectory and adoption dynamics, even when the effects in 

isolation are moderate. In particular technologies that develop slower, for instance those 

on the outside of a spillover landscape, are negatively affected.  

 

On top of that, HFCVs will be introduced later and their scale effects are much stronger. 

Such a situation was the case with the transition towards the horseless carriage, with EVs 

having the burden of a slow developing support infrastructure, and steamers experiencing 

a liability of public acceptance from earlier times. This allowed ICE vehicles to gain 

market share, build experience and innovate more, and keep learning from its slower 

developing competitors. Similarly, in the modern transition, the various hybrid 

technologies might be well positioned. However, for a full policy analysis, an integrated 

model is needed that explicitly captures the various feedbacks of infrastructure, consumer 

acceptance, and fuel production and distribution dynamics, that all act differently for the 

various alternatives. The model must be subjected to more empirical cases and in more 

depth analyzed. A particular enrichment will be to study introductions that had variations 

of success.  
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With respect to the model structure, for the purpose of analytical clarity, I have allowed 

several simplifications. For instance individual firms were not modeled explicitly. Doing 

so will allow for a more elaborate capturing of industry level effects from the bottom up, 

such as learning-curves. Further, some firms will produce multiple platforms, thus 

yielding a richer distribution of spillover rates. Facing the transition challenges, several 

consortia emerge, but also partial collaborations across them. For instance GM, BMW 

and Toyota collaborate on hybrid technology, but not on their HFCV related R&D. 

Capturing such firm detail will also allow exploration of firm specific strategies. 

However, I do not expect that the central conclusions of this paper will be affected.  

 

Another potential area of expansion is the consumer choice structure. While the 

technology heterogeneity was captured carefully, from the demand side substitutability 

among platforms differs as well. For instance the total portfolio of gaseous fuel vehicles 

might be treated by consumers as one “nest” of partially substitutable choices. Advances 

and increased demand for one platform of such a nest can have a positive effect on 

market shares of others that are also considered part of that nest. For instance, once 

familiarity of one type of gaseous fuels grows, others also benefit from this. Beyond our 

research focus, transition dynamics in the automobile industry, the PLC model can find a 

broader application in various new and mature markets, especially those that involve 

more complex products, with large diversity and large volumes, such as the upstream-

high tech sector (e.g. semiconductor), as well as downstream high-tech sector 

(computers, PDA, cameras, mobile phones),  energy (wind-energy), and aircrafts. 
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Besides opportunities for further work, the findings illustrate already the enormous 

challenges for policy and strategy makers. There are a wide range of patterns of behavior 

possible, including early success and failure, even of superior technologies. Small 

differences that have limited significance in isolation may have dramatic impact. Strategy 

and policy makers that support technology neutral incentives, such as fuel taxes, to 

stimulate AFVs may see unexpected side-effects through the co-development of the 

various other AFVs and incumbents that compete at the same time. On the other hand 

focused support of a single technology such as E85 or HFCVs is likely to stall when 

interdependencies between the technologies are not well understood. Further many other 

non-technology related dynamics, including those related to consumer acceptance and 

learning (as discussed in Essay 1), to infrastructure complementarities (Essay 3), or to 

product portfolios will dramatically alter strategies and policies of preference. However 

the research also suggests that there are opportunities for management at the level of 

technology portfolios. With the tools that are geared to support analysis of the dynamic 

complexity, the challenges to the transition can be understood, allowing for high leverage 

policies to be identified.  
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Figure 1 Early diffusion and preparation for substitution; reconstructed by author for 

qualitative illustrative purposes. Abbreviations of: LNG - liquid natural gas; M85 

- Blend of 85% Methanol and 15% gasoline; BD - Biodiesel. Main sources: 

Energy Information Administration 2005, Kimes and Clark 1996). 
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Figure 2 Model boundary. The model corresponds in many ways with the mainstream 

PLC models. Differences are: the unit of information and resource collection and 

allocation is the platform; spillovers flow between heterogeneous technologies; dynamics 

are explored in combination with non-technology related scale effects. 
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Figure 3 Principal feedbacks in the model. 
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Figure 5 Simulation of PLC trajectory for single platform. 
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Figure 6 Endogenous platform entry. a) spillover potential, and R&D; b) total installed 

base for all simulations; c) Herfindahl over time for different levels of technology 

uniformity; c) share of total R&D resources allocated to internal R&D; b) Attractiveness 

of technologies in the market for different levels of technology uniformity. 
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Figure 7 Base run dynamics for one incumbent and one entrant: a) entrant installed base 

share for various spillover potential factors; b) RD resource allocated over time for the 

low and high case of spillover potential factor. The low/high spillover potential case 

correspond each with one simulation for which both entrant and incumbent resources 

allocation are traced; c) share of resources allocated to internal R&D, further as in b).
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Figure 8 Incorporating complementarities and other scale effects. We vary the scale 

factor fs in later analysis. 
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potential. Thick lines correspond with identical.  
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Figure 11 Scale effects and technology potential interacting with spillovers.  
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Tables 

 

Table 1 Evolution of the automobile industry: users, technology, firms. Source: compiled 

by author. 

Area ICE 1890 ICE 1910 ICE 1960 

Users almost none  few  millions 

User familiarity almost none moderate high 

User experience almost none small large 

Firms/entrepreneurs of main 

product 

many many few 

Firms across value chain few moderate many 

Performance of technology low, growing 

rapidly 

medium, growing high, stable 

Variety of technology large moderate small 

Cost of production high, stable medium, 

fluctuating 

stable 

Experience (cumulative vehicles) ~hundreds  ~million  ~billion 

Diversity of Experience large moderate small 

Sources of innovation many moderate few 

Complementarities developed few rising many 
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Table 2 Parameter settings for simulations, unless otherwise stated. All reference 

parameters that are not mentioned are set equal to 1. 

Short Description Value Units  
General 

H  Total households 100e6 people  

Firm Structure 

jm  Markup 0.2 dmnl  

k

jC  Capital cost 0 $/year  

fc  Unit production cost not subject to 
learning 

3,000 $/vehicle  

vc  Unit production cost variable at normal 
technology 

12,000 $/vehicle  

Technology and Knowledge 
tτ  Time to realize technology frontier 2 years  

k

wη  Technology learning curve exponent to 
knowledge accumulation 

0.3 dmnl  

0

wK  Reference Knowledge 50 Knowledge 
units 

 

k

jwς  Elasticity of Substitution Parameter 1.5 Dmnl  

wΓ  Normal knowledge growth rate 1 Knowledge 
units/year 

 

1 2
, ,

i i s
η η η  

returns to resource allocation 1,0.2,0.8 Dmnl  

0s  Reference sales for normal production 4e6 Vehicles/ 
year 

 

o

w
η  

returns to resource allocation spillover 0.3 Dmnl  

o

wg  Normal spillover knowledge growth 
fraction 

10 Dmnl/year  

0R  reference resources for total R&D 1.5e9 $/year  

rτ  Time to adjust resources 1 year  

pτ  Planning horizon for resource allocation 5 Years  

Consumer Choice 
dτ  Time to discard a vehicle 10 Years  

aτ  Time between adoption decisions for 
non-drivers 

10 Years  

1β  Sensitivity of utility to vehicle 
performance 

0.6 Dmnl  

2β  Sensitivity of utility to vehicle price -0.3 Dmnl  

0

11wK  Knowledge of incumbent at introduction 1 Knowledge 
units 

 

0 1jjwK j ≠  Knowledge of entrant at introduction 0.1 Knowledge 
units 

 

0

ijwK  Spillover knowledge at introduction  0 Knowledge 
units 
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Table 3 Parameters manipulated for graphs 8-11 
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3 2

i iτ τ−  

9a Variable spillover 

potential & scale factor VAR - VAR - 1 - - 

9b Variable spillover & 

technology potential 1 - VAR - VAR - - 

10a Symmetric/Strong 
spillover (SS) 1 1 0.75 1 1 1 {0,15} 

10a Symmetric/Weak 
spillover (SW) 1 1 0.25 1 1 1 0 

10a Asymmetric/Strong 
spillover (AS) 1 1 0.75 0.25 1 1 0 

10a Asymmetric/Weak 
spillover (AW) 1 1 0.25 0.25 1 1 0 

11a Symmetric spillover, 
No Scale 

0 0

1 3T T

 VAR 0.75 1 1 1 0 
11b Asymmetric spillover, 

No Scale 

0 0

1 3T T

 VAR 0.75 0.25 1 1 0 
11c Symmetric spillover, 

Weak Scale 

0 0

1 3T T

 VAR 0.75 1 3 3 0 
11d Asymmetric spillover, 

Weak Scale 

0 0

1 3T T

 VAR 0.75 0.25 3 3 0 
12a1 Base  0.75 1.33 0.75 0.25 2 2 0 

12a2 RAD Fail 0.75 1.33 0.75 0 2 2 0 

12b1 Base 1 2 0.75 0.25 3 3 15 

12b2 RAD Fail 1 2 0.75 0.25 2 3 15 

12c1 Base 0.75 1.33 0.75 0.25 3 3 0 

12c2 RAD Fail 0.75 1.33 0.75 0.25 3 3 15 

 

  264 



 

 Technical appendix accompanying Essay 3 

1   Introduction 

The model described in this Essay is designed to capture the technology trajectory of and 

competition among multiple types of alternative vehicles, along with the evolution of the 

ICE fleet.  For example, the model can be configured to represent ICE and alternatives 

such as ICE-electric hybrid, CNG, HFCV, biodiesel, E85 flexfuel, and electric vehicles.  

However, the Essay makes a number of simplifying assumptions that allow us to explore 

the global dynamics of the system.  In this appendix I discuss additional components of 

the full model, highlighting those structures required to capture the competition among 

multiple alternative platforms, with their more particular context. This appendix provides 

also additional information to accompany the model and the analysis of Essay 3. Each 

subsection is pointed to from a paragraph within the Essay.  

 

Sections group issues by: 

2 Elaborations on the model that provide details on expressions that were not fully 

expanded due to space limitations (in particular we discuss functional forms).  

2 Stipulations that provided notes on, additional motivations for, or insight into the 

model or analysis.  

3 Boundary constraints considered, providing information about tests that were done 

by including additional behavioral and physical constraints. They partially reinforce, 

or otherwise dampen the dynamics, without affecting the fundamental insights of the 

model. 
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4 Model and analysis documentation. Essay 3, in combination with the section that 

elaborates on the model provides sufficient information to replicate the model. The 

Essay provides sufficient information to replicate the analysis. 

5 References 

 

2   Elaborations on the model 

This section elaborates segments of the model that were highlighted in the paper but not 

fully expanded due to space limitations. These elaborations include in particular selected 

functional forms for functions that were provided in general form in the model, or more 

detailed decision structures 

 

a) Resource allocation 

The process of resource allocation was discussed in the model (Equation 9 and 10, and 

discussion). Here we first provide the same process in more detail and for more. Figure 

12 illustrates this process in more detail, in particular how in the model, at different 

levels, competition for limited resources plays out. Constrained by allocations at more 

aggregate levels we derive: i) a share of total revenues going to R&D, rd

jσ ; ii) the share of 

total R&D resources of platform j, that managers or system integrators dedicate to the 

various modules ; iii) the share of total R&D resources of platform j, 

module m that chief engineers dedicates to activity w , 1

, ,,rd rd

m j m jm
σ σ =∑ 1

rd rd

jmw jmww
σ σ =∑ ; iv) the share of 

total R&D resources of platform j, within module m, process w, that managers dedicate to 

  266 



 

internal knowledge accumulation, , as opposed to spillovers ; 

and finally, v) the share of total R&D spillover resources of platform j, R&D process w , 

within module m, that engineers dedicate to extracting knowledge from 

platform i j , .  

,

rd

j jmwσ , ,1rd rd

j jmw j jmwσ σ −= −

≠ , ,, 1rd rd

i jmw i jmwi j
σ σ

≠
=∑

 

+

RD

Resources

m Activity w

0

RD

Resources

m Activity w

0 0

RD Resources

RD Resources m

w Internal

RD Resources m

w Spillover

RD
Resources
Module m
Activity w
Spillover j

RD Resources

Module m 2
RD Resources

Module m 0

RD Resources Module m

RD
Resources
Module m
Activity w

Spillover j 0

RD
Resources
Module m
Activity w

Spillover j 0
0

RD
Resources

m w
Spillover j

RD Resources

Activity m w

+ ++

Desired

Resouces to

Module m
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Productivity m

+

+
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to Module m +

+

-
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on Technology m w

+
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-

+ +

Share to
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+
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Figure 12 R&D Resource Allocation (boxes) throughout the decision making chain, 

performance metric for each decision (top) and decision making process in detail for 

resource allocation to module m. 

 

Structurally each decision process is identical. Figure 4 illustrates this resource allocation 

process, and in detail for one point in the hierarchy. We follow this here. We label a 

decision point d, assigning lower numbers to points up the hierarchy. With the set of 

potential allocations at xd being{ }
d

x , the share that xd+1 receives from source xd  is 

. This share adjusts to its indicated share 
1,d d

rd

x xσ
+

*

d

rd

xσ over adjustment time rd

dτ : 
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 ( )1

1 1

, *

, ,
d d

d d d d

rd

x x rd rd rd

x x x x d

d

dt

σ
σ σ τ+

+ +
= −  (A.1) 

In the case of the example of Figure 12, this is the share of total RD resources goes to 

each module m. The adjustment time is the result of bureaucratic - and information 

gathering delays, depends thus on complexity, and can be different at different decision 

points.  

The indicated share is the outcome of the continuous bargaining for, given, scarce 

resources 

1

*

,d d

rd

x xσ
+

dxR at each decision point d, and equals desired resources
1d

rd

xR
+

D divided by the 

resources others credibly bargain for: 

 
{ }

1 1

1

*

,d d d d

d

rd rd rd

x x x x

x
1

R Rσ
+ +

+

=
+∑D D  (A.2) 

Stakeholders at dx can credibly bargain for more resources when expected returns 

~

d

rd

xς exceed the reference value at this decision point, { }
~

d

rd

x
ς : 

 { }( ) ( )~ ~

,
; ' 0; 0; 1 1

d d dd

rd rd rd rd

x x xref x
R f R f f fς ς= ≥ ≥D =  (A.3) 

Note that
11 ,d dd d

rd

x xx x
R Rσ

−−
= . 

 

b) Expected return of effort 

An R&D resource allocation task involves by nature attempts to explore using some form 

of forward looking. I assume that for the assessment of the return on investment involves 

decision makers attempt to understand, at least locally, the structural factors that 

influence their improvement efforts.  For example, one can be interested in the returns in 

her platform j‘s knowledge base for activity w , deriving from resources dedicated to jwK
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extracting knowledge from platform i,. She will seek information about the constituents 

of knowledge accumulation: i) the relevance of the source to total knowledge ; ii) the 

perceived potential accumulating rate of spillover knowledge

*

ijw
κ

*

ijwγ ; and, iv) the 

productivity of resources . This would imply for the expected returns on effort: *

ijwr

  (A.4) * * *

ijw ijw ijw ijwk rς γ= *

The assessment comprises activities as market research, interpretation of reports, study of 

patents, evaluation of historic results, study of journals, and information exchanged over 

coffee, in seminars, and during golf matches. Such assessments do not yield perfect 

information about all factors, takes time, and are subject to information processing 

constraints. Therefore we assume that decision makers: a) understand the correct 

structural factors, but simplify their world by assuming that during their assessment that 

the environment remains constant; b) it takes time to learn about the state of the 

environment and the parameters. Thus, to assess the return on effort for collecting 

knowledge from another platform, one has a perception of the knowledge of the other 

platform that one assumes to remain constant during the planning horizon. Further, one 

updates the perception of the knowledge base, but this takes time.  

 

Assumptions about decision makers’ available information  

We now will illustrate what decision makers more generally need to know under to 

allocate their resources equal to the marginal return on effort, at least for some bounding 

set of assumptions. For the purpose of capturing the decisions related to resource 

allocation, there are two types of activities. Some resources are typically adjusted 
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reactively, for instance, reallocation of resources for spillovers between source platforms. 

Others involve longer term anticipation, such as adjustment of resources across modules. 

In the first case improving perceived returns on effort can be captured by assuming that 

the rate of accumulation of performance indicator P will be adjusted. In the second case 

the NPV of P over a planning horizon pτ  will be improved.  

We now will use specific examples to illustrate what decision makers need to know in 

order to have their target return on effort equal the marginal return on effort. 

 

Example: process improvement and product innovation 

With the change rate of a performance indicator being i
i

i

dP dX
P

dX dt

•

= i , the direct 

adjustment of resources would require: 

 i i

i i

d P dP d X

dR dX dR

i

i

• •

=  

We first determine the marginal return of knowledge accumulation, thus , in 

terms of resource allocation to activity w, thus

jwP K≡

jwR , which implies: 

 
jw jw jjw

jjw jjw jjw

d K dK d K

dR dK dR

• •

=  

And with Equation (6) and the CES relation in the Essay: 

 

( )

( ) ( )

0

1

0 0

i
w

k
jwk k

jw jw

i

jjw jw jw w

e

jw jjw jjw w jw w

K R R

K K K K K

η

ρ
ρ ρ

ε

κ

•

−
− −

= Γ

⎡ ⎤= +⎢ ⎥⎣ ⎦∼
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where is the total spillover knowledge, jwK∼ ( )
1

0 0

k
jwk

jw

jw w ijw ijw wi j
K K K K

ρ
ρ

κ
−

−

≠
⎡ ⎤≡ ⎢ ⎥⎣ ⎦∑∼  

We get: 

 

1
e

jw jw jjwi

w jjw

jjw jjw jw

d K K K

dR K R

ρ

η κ

•• +
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

And attaining the optimal NPV, holding the environment constant would require: 

 

p p

i i i

i i i

dP dP dK

dR dK dR
τ τ

⎛ ⎞
⎜=
⎜ ⎟
⎝ ⎠

⎟  (A.5) 

 

Maximization of Net Present Value yields, in this case the same type of relationship, 

because there is constant returns in accumulation of internal knowledge . jjwK

In this case, the true values of these factors that determine the marginal return on effort 

are, for the productivity , which is simply the ease at which they accumulate 

more knowledge, 

i

jjw jw wγ ε= Γ

( ) 1

0

i
wi

jjw w jwr R R
η

η
−

= , which gives the slope return on adding more 

resources. For instance, if the budget is a factor above than what it should be for all to be 

effectively spend,  does not increase anymore. The last term, the relevance of 

knowledge equals 

jjwr

( 1
e

jjw jjw jw jjwk K K ) ρ
κ

+
=  . A higher factor share indicates more 

relevance. Acknowledging this will correspond with the notion that producers of HFCVs 

will expect more from observing EVs, than from biodiesels. Further, if the elasticity 

parameter is infinite, the distribution parameter equals 0 and the whole expression is 

identical to its factor share. That is, when knowledge is additive, we always look towards 

those sources that have larger factor contributions. However, when substitutability of 
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knowledge is less than perfect, we increasingly expect to benefit from other sources as 

well.  

 

An important point of this exposition is that decision makers will use heuristics that 

correspond with chunks of a structure that provides a locally optimal solution, and as a 

whole allows them to get reasonably close to that exact contributions.  

 

Formulating decision making chunks at each stage, whether based on the current rates or 

NPV, yields similar types of structures at each level. This is how the decisions have been 

formulated in the model.  There are important conditions, one of them is that many 

environmental factors are held constant in the resource allocation decisions, and thus the 

definition of “local” is quite narrow (and defined for this purpose above). Further, there 

are significant time delays in learning them. These two conditions assure that the decision 

structure for resource allocation conforms to the perspectives of bounded rationality. 

 

c) Learning about productivity 

Relevant knowledge, input factors, elasticity of substitution, and platform specific quality 

are learned over time. Biases by investors towards tested technology have important 

dynamics implications for the transitions. We capture this in the expanded model by 

allowing, for instance perceived knowledge of others, adjusts to the indicated level 

over time

~

,j ijmwK

Kτ : 

( )~ ~ K

ijmw ijmw ijmwdK dt K K τ= −  
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A more sophisticated formulation would have the learning rate depend on attention as a 

function of exposure and interest, but for assessing its basic impact, this will suffice. 

 

d) Platform- versus firm-level learning-by-doing 

Equation 7 in the Essay discusses the learning-by-doing effect on process technology.  

Learning-by-doing can be seen as partly occurring at platform level (fast spillovers 

between firms for the same platform) and partly at the firm level. The number of firms 

changes considerably over the lifecycle of a technology, in particular, after a swift ramp-

up, the number of firms tend to peak, followed by a shakeout. This would imply that the 

effective learning, at platform level, on is much slower early on.  

 

It is useful to be able to capture this. I capture this by introducing the effective sales 

for learning in the equation: n

js

 ( )2 0

s

i n

j js s
η

ε =  

Where the effective sales  is a function of the total platform sales and the maturity of 

the platform and is represented by the share of the platform sales divided by the effective 

number of producers, for learning, ; 

n

js

jn

 ( )n n

j j js s n=  

The effective producers assumed to decline with the maturity of the industry: 

 ( )1n new n mat

j j jn w n w n= + −  

The weight of  declines with total platform sales: newn
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 ( ) ( ) ( ) ( )0 ; 0 0; ' 0; 1 0.5; 1 1n n

j jw f s s f f f f= = ≥ = > ;> =  

The weight starts at 1, and increases with total sales (ignoring the first ramp-up), 

saturating at 0.  A sensible shape is the S curve. Here we use the standard logistic curve, 

with the inflection point at reference sales for learning :  0

ns

 ( )( ) ( )( )0 0exp 1 2 1 exp 1 2n n n n n

j j jw s s s sβ β⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦−

1

 

This structure is switched off for the AFV analysis, assuming that for these dynamics 

very few firms will be in competition ( 0n

jnβ = → = ). This is valid for the basic 

analysis. However, in general analysis includes simulations with new industry formation. 

For those cases I set nmat
=2, n

new
=20, 1nα = −  and set equal , or 20% of the total 

potential market. The effect of this is that learning by doing is moderately slowed down 

in the first decade or two in the industry. 

0

ns 0s

 

e) Vehicle choice and nesting 

This focus of this Essay is on multi platform competition. Endogenous platform entrance 

is one of the dynamics that are captured. In the basic formulation of consumer choice 

between the available platforms (equation 13), when new vehicle types or a set of 

platforms are introduced, demand elasticity to the number of platforms is constant. This 

assumes the existence of  a powerful feedback loop that is in reality much weaker:  an 

increase in the variety and number of models, does not necessarily increase aggregate 

utility of “the vehicle” proportionally. That is, total increase in demand is generated 

depends on the correlation (or substitutability) of preference across a range of products in 
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the choice outcome. Capturing is important to generate consistent dynamics, for example 

in the case of endogenous platform entrance.  

 

Here I describe the formulation of this. I also include how to incorporate familiarity with 

a platform in this formulation (a consumer’s familiarity with a platform, through 

processes of social exposure is discussed in Essay 1).  The basis is a  nested logit 

formulation. The share that drivers of platform i replacing their vehicle allocate to 

platform j, d

ijσ , involves a nested decision process (Ben-Akiva 1973). A share of the 

discarded vehicles from platform i is replaced by j, r

ijσ , conditional upon an earlier 

choice of replacing the vehicle at all r

iσ : 

 d r

ij i ij

rσ σ σ=  (A.6) 

For a replacement decision, all vehicle platforms form a “nest” whose utility is compared 

to an unspecified alternative: 

 
ve

r i
i ve oe

i

u

u u
σ =

+
 (A.7) 

An increase in the variety of models does not necessarily increase aggregate utility of 

“the vehicle nest” proportionally. That is, utility of the nest depends on the correlation (or 

substitutability) of preference across a range of products in the choice outcome (not 

necessarily in direct relation to the different platforms). To capture this we introduce a 

scaled parameter ( )1 1µ χ≡ − with ,χ 0 1χ≤ ≤ , being the correlation parameter for 

consumer choice with respect to the platforms within the nests (further intuition is 

provided following equation (A.9), the nest utility is: 
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1

ve ve

i ij

j

u u

µ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
∑  (A.8) 

 

While the effective utilities for the various platforms  are the perceived utility with 

each platform adjusted for their correlation, multiplied with familiarity of the 

population with the various choices: 

ve

iju

v

iju ijF

 ( )ve v

ij ij iju F u
µ

=  (A.9) 

Utility, , depends on vehicle attributes for platform j, as perceived by driver i. For an 

aggregate population average familiarity 

v

iju

ijF varies over the interval [0, 1]. 

The correlation parameter can now be interpreted as follows, with 0χ → , the case of no 

correlation, platforms are perceived by the consumers as fully distinct and overall 

“vehicle utility” rises linearly with number of platforms. For 1χ → , full correlation, 

vehicle platforms are perceived to be identical, and the perceived utility equals that of the 

most superior. For instance, in the case of n identical products, with only different prices, 

all demand goes to the cheapest product. Lowering price for a more expensive product, 

while still being above the most affordable, has no effect on market shares, nor on the 

overall demand. Neither extreme is behaviorally appropriate. Further, dynamically, χ  

controls a potentially very strong feedback, between demand and the introduction of new 

platforms (with maximum strength at the default, no correlation, case 1χ = ). In 

addition, χ is arguably a function of the technological heterogeneity of products on the 

market. That is however not the point we want to make here. In this paper we assume that 
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the consumer only cares about performance, not so much about distinctiveness between 

them.  Thus, in this model, χ is constant between 0 and 1.  

 

The formulation of equation (A.6)-(A.9) is equivalent to the compact general nested 

formulations (Ben-Akiva and Lerman (1985), Ben-Akiva 1973), frequently used in 

transportation decision making models (e.g. Brownstone and Small (1989)), industrial 

organization literatures (e.g. Anderson and Palma (1992) regarding multi product firms, 

Berry et al. (1995) regarding the automobile industry). We can write d

ijσ  as: 

( )

( )
1

veveve
ij ijijd r r i

ij ij i oe ve ve

i i ve oe

ij ij

j

F uuu

u u u
F u u

ρ

ρ
ρ

σ σ σ= = =
+ ⎡ ⎤

+⎢ ⎥
⎣ ⎦
∑

 

In the nested logit model, 1 µ≤ ≤ ∞ is the scale parameter for the MNL associated with 

choice between alternatives within the nest (in our case the vehicles). For 1µ → , 

corresponding to 0,χ →   the function converges to a standard MNL, while for µ → ∞ ,or 

1χ → , the model is a perfect nest.  

 

The formulation of platform utility is also consistent with general Constant Elasticity of 

Substitution Production Function (CES-PF) (McFadden 1963), the functional form used 

elsewhere in the paper: 

 ( )
1

i ij ij

j

K K

ρ
ρ

κ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
∑  

In this expression 1ρ ς ς= − , with ς the elasticity of substitution between products. 
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In this formulation µ ρ= − . Note that the range specified for vehicle choices implies an 

elasticity between 0ς−∞ < < , while elasticities on the supply side specify the positive 

range (complementary goods imply ς between 0 and 1, and substitutes 1 ς≤ < ∞  ).   

 

In the model χ is set to 0.5 throughout. 

 

f) External scale effects 

The general formulation of the aggregate scale effect, as a function of the installed base 

share v T

j jV Vσ = , is: 

 ( ) ( ) ( )3 ; ' 0; 1;s v v

j j j ref ra f f f f s

efε σ σ≡ = ≥ ∞ = = ε  

We use the three parameter logistic curve to generate the patterns of Figure 7. To do so 

we control the value of at the inflection point, and set the fixed the rest to the selected 

slope at that point. This results in: 

 
( )

( )

1 min
min

1 exp

s

s s

j v v

j refs s s s s

j v

ref

f

ε
σ σ

α α β ν
σ

−
≡ +

⎡ ⎤⎛ ⎞−
+ − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (10) 

For this curve, which is we set the scale factor, as a measure for the scale effect, and fix 

the slope at the reference point. sν is a scaling parameter to equalize the slope at the 

reference point and equals ( ) mins s s

jf sν α= , and ( )( ) 2min 1s s s s s

j jf fα α= − + ,  sα is 

an offset parameter to determine the minimum, that is, where v

jσ . At full penetration all 

scale effects work maximally to its advantage. For the default settings I use an installed 
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base 5% of the fleet,  and sensitivity parameter0.05v

refσ = sβ =1, which measures the 

slope at the reference installed base share; . See also Appendix 2f of Essay 2 for 

a discussion on generating logistic curves. 

0.8sα =

 

3   Stipulations 

a) Generalization to multiple attributes and modules  

This section discusses the more general structure of which this model is a special case. In 

particular detailed vehicle attributes, . In the analysis these structures where all switched 

off, but for more detailed analysis and insights they, or parts of them, can be switched on. 

 

Overview of expanded chain 

The model as specified in the paper provides all the structure necessary to generate the 

key insights derived in this paper. However, in order to consistently simulate a wide 

range of behaviors, and more intuitive patterns we include additional structure. Figure A1 

shows the chain of decisions and technological chain, between resource allocation for 

R&D and consumer choice regarding the technologies. 
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Source platform i
Target platform j
Module m
Activity type w 

Figure A1 Diagrammed representation of chain of decisions and technological change 

for expanded model. 

 

Consumer choice contains a nested logit model capturing the notion of substitutability of 

choice across platforms. Figure A2 shows the indices used in the expanded model. They 

include, from bottom to top: platforms j; modules m, the most important level at which 

technological change and spillovers occur; activity type w, that specifies whether 

technology advances derive from product- or process improvements; function x that 

allows to differentiate relevance of product and process improvements to either cost or 

performance; and attribute l that captures dimensions of merit from the perspective of a 

consumer.   
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{ }
{ }
{ }
{ }
{ }

attribute 1,...,L e.g.Price, Power, Operating Cost, Reliability.

function cost,performance

activity type process,product

module 1,...,M e.g.Body, Brakesystem, Powertrain, Wiring.

platform , 1,..., e.g.I

l

x

w

m

i j N

∈

∈

∈

∈

∈ CE, HFCV, HEV, EV, CNG.

Figure A2 Indices used in the expanded model. 

 

Attributes derive their state from the technology performance at the module level (Figure 

A1), while the current unit costs at each module determine the price attribute of the 

vehicle. Further down the chain, another distinction is that the effective technology 

captures notion of complementarity between activities: advances at the product level will 

make process advances obsolete. We will now describe these adjustments.  

 

Multiple dimensionality of choice attributes 

The perceived utility of a platform captures the aggregate of perceived attractiveness of a 

platform across various dimensions of merit, for which we define the attribute set that 

includes price, vehicle range, power etc... With  being the state of the lijla
th attribute of 

platform j as perceived by drivers of platform i, its perceived utility from that platform 

equals: 

 ( )* exp 1ij l ijl ll
u u a aβ *⎡ ⎤= −⎣ ⎦∑  (A.11)  

where βl is the sensitivity of utility to a change in the attribute. Struben (2006a) discusses 

the various channels through which consumers learn about and experience performance.  
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The performance of a user-attribute is established through technological advances with 

producers of platform j. Further, a technology is multidimensional. Vehicles comprise of 

modules that include for instance the powertrain, suspension, controls and the body. This 

means for different attributes, different modules m are determinants of the performance. 

We follow a two stage production function (McFadden 1963) to specify the attribute 

performance in relation to the knowledge produced at module level. We first describe in 

general formulations how we capture the dependence of attribute performance on 

knowledge, and follow that up with an example. 

 

An attribute’s performance comprises a fixed component, and one that depends on the 

current state of the technology.  

 0 v

jl jl jla a a= +  (A.12) 

0

jla  is the initial attribute independent of module level improvements through R&D, and 

other endogenous processes. This is the performance level that is attained at start-up 

depends for instance on the state of the complementary technologies, and can therefore 

differ per platform.  

We assume that substitutability between modules’ technology is maintained, independent 

of the rate of progress. We can thus use the standard constant elasticity of substitution 

(CES) function (Arrow et al. 1961), with multi inputs (McFadden 1963).29 The CES 

approach to the multi input substitution problem is convenient, leads to simple estimation 

                                                 

29 For multi inputs, the exact elasticity of substitution between two inputs is not easily to categorize, and 

several definitions exist. This is not a problem for our purpose. 
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methods and is widely used (see also Solow 1967). The behavioral characteristics are 

discussed further in the analysis section. 

 

Then, performance of attribute l is a function of the relative technology of module m, and 

function x, jmxθ . The index x represents either performance, or cost. How a technology 

jmxθ  impacts an attribute, depends on its factor contributions to, or relevance for, attribute 

l, . Then: jmlxκ

 ( )
1/

1

,

a
j

a
jv

jl jl jmxl jmx

m x

a a

ρ
ρ

κ θ
−

−⎛ ⎞
= ⎜

⎝ ⎠
∑ ⎟  (A.13) 

where ρj
a = (1 – ζ j

a)/ζ j
a is the substitution parameter and ζ j

a
 , the elasticity of 

substitution between the effectiveness of the technology between different modules for 

attribute j.  The attribute associated with vehicle price map strictly on the cost index of x, 

while all others strictly map on performance. As technologies are substitutes, the range of 

the elasticity is confined to 1 . Further, is the scale, or efficiency parameter 

for the attribute and is scaled such that

a

jς< < ∞ 1

jla

,

1jmlx

m x

κ =∑ . The distribution parameters  

define the relative importance of each module m to attribute j. Then, by construction, 

when all module technologies’ effectiveness equal unity, the fixed share in the total 

attribute state equals

jmlxκ

( )0 0 1

jl jl jla a a+ , which provides an interpretation for . Finally, we 

have constrained the aggregate performance to constant returns to scale with respect to 

the total effective technology. That is, the function has an implicit degree of homogeneity 

parameter that is set to 1.  

0

jla
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Finally, the performance and cost are found from the technology as produced through 

process and product improvement. Index w represents different activities that allow 

improving a technology, such as product innovation, process improvement. Here we 

define strictly w={product innovation, process innovation}: 

 ; 1jmx jmwx jmw jmwx

w x

θ α θ α= =∑ ∑  (A.14) 

Where jmwxα represents the share of the improvements in the technology of module m, 

through activity w (product or process), contributing to function x (price or performance).  

 

Illustration: from knowledge, to cost, to vehicle price 

Figure A1 illustrated the how chain of decisions and technological relations connect the 

state of an attribute to knowledge at the module/activity type level . In the exposition 

we just went through, we saw that this chain can be compactly captured formally, through 

a two-stage CES PF. The following example serves to illustrate this more clearly. The 

chain of connections comprises, first, the effect of the various modules on the attribute 

state and, second, the effect of the various sources of knowledge to improving the 

technology at the modular level. I use the vehicle price attribute as an example, 

with . I select vehicle price deliberately. We have an intuition how price is 

connected to cost that improves especially through learning (and scale economies). By 

showing that also this set of relations fits in this structure, I hope to improve our intuition 

of it. 

jmwK

1ja p≡ j

 

Following the CES expression, using index 1 of x for cost, we must get to:  
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 ( ) 1
1

1 11
;

jm
jme

j j jm jmm

0

jp p
ρρκ θ

−−= ∑ p+  (A.15) 

The interpretation of the variables must become clear in the end. Further, from the 

bottom-up, unit costs are the sum of the system level unit cost  and the cost incurred 

for producing modules, : 

0u

jc

u

jmc

 ( ) 0u u

j jmm
c c= u

jc+∑  (A.16) 

Unit costs are prone to learning by doing and/or scale economy effects, c

jmε , thus: 30

 0u u

jm jm jmc c cε=  (A.17) 

But only a fraction s

jmf  is variable with respect to scale, s

jmε  , and s

jmf  is subject to 

experience through learning-by-doing e

jmε : 

 ( )( )1 1c s e s s e

jlm jm jm jm jm jm jmf f f f eε ε= − − + + ε

j

 (A.18) 

For simplification we ignore from here any internal scale economies. With 

( )1j jp m c= +  and the derivation of the unit cost above, we now rewrite the price and 

derive, and interpret, the two components in (A.15): 

( )

( ) ( )

01

0 0 0

0

0

0 0 0 0

1 ;

1 ; 1

e

jm jmuve uve e

j j j j jm jm jm uve
m j

e e e

j j j j jm jm j

m

f c
p m c c f c

c

p m c c f c c

σ= + = =

= + = − +

∑

∑

;

 

With being the part of the total unit cost subject to learning, when inputs for learning 

are equal to their normal levels. We see that the interpretation of the fixed component 

corresponds with the one provided in equation (A.12) and (A.13). 

0

uve

jc

1

jp , the efficiency or 

                                                 

30 Implicitly, for purpose of analytical clarity, we assume here that system level costs are not subject to 

learning/innovation improvement. This can easily be relaxed. 
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scale parameter, is the variable price, when all are equal to their normal values, and 

( )0 0 1

j j jp p p+ is the fixed share when all are equal to their normal values.  

Further,  with typically ( ;e

jmx jmwx jmw

w

fθ α ε= ∑ ) 21jmα large (most improvements from 

process improvement lead to cost improvements) and 21 11jm jmα α> (most, but certainly 

not all, cost improvements come from learning by doing). 

 

Also from bottom-up, the learning-by-doing relation also gives us: 

0

e
jmw

jmwe

jmw jmw

K

K

λ

ε σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 and as cost decrease at diminishing rate with embedded 

knowledge, thus, . Thus in order for the attribute vehicle price expression to 

hold, , or  in equation (13) and substitution parameter

0 e

jmwλ< < 1

01e

jmw jmwθ ε −= 1 jmwλ− < < ρ =-1. 

This corresponds with the elasticity of substitution being infinite. This is intuitive: we are 

indifferent to the sources of cost reductions. Further, in the case of vehicle price, an input 

factor share must be interpreted as the relative contribution of each module in terms of 

variable unit cost when technology is equal to normal values. 

We end this exposition with the following question (and examination of it): Are 

technology level returns to scale are independent of the number of modules? That is, how 

can we avoid that dynamics are affected when we aggregate or disaggregate? 

 

The dynamics are not affected. This follows directly from equation (A.13). First, a 

hypothetical case: splitting the drive train into two modules into n parts that are in fact 

independent, implies that the distribution parameter for each sub-module is smaller. In 
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the case of two equal sub modules the distribution parameters are 50% of the distribution 

parameter of the whole module ' 0.5jm wl jmwlκ κ= . The CES function is indifferent to this 

reconfiguration. However, in this case, the state of the technology for each must now 

increase at the same rate as the whole, with half the resources required. This implies that 

the reference resources for the sub modules are equal to half of that of the full module: 

0

' 0.5m

0

mR R= . The same explanation holds when we generalize to a larger number of sub 

modules that have varying contribution. This also implies that, if we are interested in 

more basic dynamics, we can aggregate multiple modules into one, following the same 

procedure, without impacting the fundamental dynamics. 

 

Effective technology 

The complementarity between activities is captured in the net progress rate of effective 

technology  that depends on the progress rate of the total technology of all 

activities . For instance, complementing a radically new body will make previous 

process technology obsolete. Capturing this is important when we examine the interaction 

between novel and mature technologies. For instance, mature platforms can be expected 

to be conservative with innovating.  

e

jwT

'w

 

Growth of the effective technology follows that of the cumulative technology, but is 

adjusted for the obsolescence rate that results from other activities. With being the e

jWΓ
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vector of the growth rate of the effective technology, with its wth element defined as, and 

being a similar growth rate vector for the technology   : jWΓ jwT
31

' ''

e

jw t

jww jw jww

dT
g T

dt
ε= ∑ '  

The growth rate ( )' 'jw jw jwg dT dt T≡ '

0

. By definition, the diagonal terms are unitary. 

Representing the usually negative effect of improvements in w’ on activity w, the lower 

triangular terms are bounded by , while the upper triangular terms are zero. 

Thus, with product and process innovation: 

'1 t

jwwε− ≤ ≤

 
21

1 0

1
t

tj

jε
⎡ ⎤

Ε = ⎢ ⎥
⎣ ⎦

 (A.19) 

In the analysis of the Essay, I ignore any overlap and thus, 21 0t

jε = . 

Spillover potential 

The process knowledge related factor shares are by construction equal to unity for 

internal knowledge accumulation. However, for spillovers the factor contribution 

depends on the amount of technology of j that is currently embodied in the technology i, 

thus, for i j : ≠

 

( )
( ) ( )

( )

0

' ' '

0

'

0

' '' '

0 0, 1 ; 1; ' 0

1

ijw t

jww ijw w iw jw

w

e t

ijw ijw jw jww ijww w w w

d
f K K g

dt

f f f f

κ

κ

θ
ε θ

κ

κ θ θ ε
≠ ≠

=

= = ≤ >

= + −

∑

∑ ∑ κ

                                                

 (A.20) 

 

31 This could also be represented by a co-flow structure, but in this case this construction seems more 

intuitive. 
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In the analysis, the factor overlap is equal to zero, therefore the spillover potential for 

process improvement is independent of the product technology, and . 0 0

ijw ij wκ κ= ∀

In the analysis of the Essay, I ignore any overlap and thus, 21 0t

jε = . 

 

b) The locus of diminishing returns 

The process of accumulation of knowledge, improving technology, performance and 

increasing attractiveness is subject to increasing returns. In the model we limited 

diminishing returns to technology in an increase of total knowledge, while the attribute 

state has constant returns to technological change, and total knowledge has constant 

returns to knowledge accumulation. However, in real life it is hard to distinguish between 

them. Here we show that the return to scale parameter can be transferred among these 

three, without affecting the main dynamics. First, note that returns to scale is maintained 

across a constant returns function. For instance between attribute and technology, 

ignoring the function and activity indices, we have:  

( )

1

10 0

0 0
1 1

M M
em m

l m m m

m m

T T
a a a a

T T

ρρ ηη ρ
η ρκ κ κ

−− −−
− −

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞⎜ ⎟= ≈⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ l

ρ

≡ . 

Subsequently, we can say:  

( )
*

1
1

0 0

0

e l
m

a
a a

a

η
ηρκ

−− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
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where 

1

* 0

0
1

M
m

l m

m

T
a a

T

ρρ

κ
−−

=

⎛ ⎞⎛ ⎞= ⎜ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
∑ ⎟⎟ is the constant returns equivalent of technology. Thus, 

by approximation we can shift the constant returns parameter, only having to correct by a 

constant. The approximation is exact, when κ is identical for all m.  

 

More important, diminishing returns to knowledge accumulation for source i 

implies: ( 0;
k

k k

i i i i idK dt K K )η
ε γ ε= = , with kη . We can rewrite this, through an 

intermediate variable ( )
1

'

i iK K K 0 ν≡ , such that 
'

0

0

i
i

K
K K

K

ν
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

and 

'
0

0
; 1 1

R

Ki i
i

dK R
K

dt R

η

γ ν⎛ ⎞= =⎜ ⎟
⎝ ⎠

η− . Further, total knowledge accumulation is also a CES 

function of all the various sources. Thus, we can convert diminishing returns to 

knowledge accumulation for each individual to diminishing returns at the level of the 

technology, by letting ( )1K T Tη η= − η (thus, for diminishing returns, Kη is negative, 

which makes sense: the accumulation of knowledge decreases with an increase of 

knowledge). 

 

This exposition can further be expanded to include consumer choice sensitivity to a 

change in the attribute, and the overall elasticity of demand (including market saturation 

effects). Doing this will give insights under what condition the technological progress as 

a whole (temporarily) exhibits increasing, constant, or diminishing returns to scale. 

 

  290 



 

c) Optimal Resource Allocation 

Proposition 1 Resource allocation decisions are asymptotically optimal within the 

planning horizon, holding the environment constant, including the technology of other 

platforms. 

 

Proof: Appendix 2A showed the decision structure and also that the perceived return on 

effort, ~

d

rd

xς , was plausibly set equal to the marginal return on effort. Further, in 

equilibrium, indicated shares are equal to actual. Then (Appendix 2a), 
11 ,d dd d

rd

x xx x
R Rσ

−−
= , 

and ( )~
p
d

d d

rd

x x dxf dP dR
τς = yield: 

{ }( )
{ }

( ) { }
{ }

1 1 1 111

1 1

~ ~ ~

, ,, ,

p
d

d d d d d d d d dd dd d

d d

rd rd rd rd rd rd rd rd rd

x x x x x x x ref x xref x xx x
x x

f R R f dP dR R R
τσ ς ς ς σ

+ + + +++

+ +

= =∑ ∑D D  

And with f smooth and non-decreasing, we get: 

 
{ }( ) { }

{ }( ) { }
( ) ( )1 1 11

1
1 1 1

~

,,

' '
~

', ' ,

p
d

p pd d d dd dd d d d

p d d d d
d

d d
d d d dd d

rd rd rdrd
x x x xx xx x

x x x xrd rd rd rd
x x x x x xx x

f dP dR R
dP dR dP dR

f dP dR R

τ

τ τ

τ

ς σσ
σ ς σ

+ + ++

+ + + +

= ⇒ =  

Thus, in equilibrium, the marginal returns on effort of all allocations are identical. Since 

the costs of resources are identical across resources, this implies optimal allocation of 

resources.  

A more formal derivation 

Here we derive more formally that the preceding statement is valid. Assume a production 

function that improves performance indicator P, with various forms of Inputs Ki, with 

cost Ci=ciRi. Then, maximizing returns yields: 
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 ( )( )P K R C−
JJJJJJG JG

 (A.21) 

This implies that allocation of resources is optimal if:32  

 ,i

i j j

cdP dP
i j

dR c dR
= ∀  (A.22) 

Where ( )(i i idP dR dP dK dK dR= )i , if the marginal productivity in resources is 

multiplicatively separable in those resources, ( )i i i idP dR p f R= , then the optimal 

resource allocation equals: 

 
( )
( ) ( )* 1 *i ji i ii i

j j i i

j j j ij j j

p cp f RdP dR c
R f f R

dP dR c p cp f R

−
⎛ ⎞

= = ⇒ = ⎜⎜
⎝ ⎠

⎟⎟  (A.23) 

And 

 

( )
*

1 *
*

1

11

i
i i

j i jj

j ij i
i j i

R

R p c
f f R

R p c

σ σ
−

≠

= ⇒ =
⎛ ⎞

+ ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ i

 (A.24) 

When the functional forms are identical this simplifies to: 

 
( )

( )
1

*

1

1

1 i i

i

j jj i j

j
j i

f c p

f c pp c
f

c p

σ
−

−
−

= =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑
 (A.25) 

Note that this implies, as expected, when the production function is linear in R, it is 

optimal to allocate all resources to the one with the highest marginal productivity. 

Further, in equilibrium, the desired share equals the desired resources, *d

i iσ σ= , with 

                                                 

32 We take the Paretian profit-maximization hypothesis in which only prices are fixed and conditional on 

diminishing marginal productivities. This is a not unlimitedly strong but general assumption. 
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jj

R

R
σ =

∑
 (A.26) 

and  ( )d

i i iR R f x= . 

 

 In equilibrium, ( ) ( ) ( ); ,d

j i j i jj j
R f x R f x f x i j= ⇒ =∑ ∑ ∀  

 

Thus, when ix ∝ the marginal return on effort, idP dR , we reach the equilibrium where 

shares are optimal.  

 

As an example, assume the following multi input CES production function, as is 

specified for knowledge accumulation: 

 0

0
1

S

I
i

i

i

K
P P

K

η ρρ

κ
−−

=

⎛ ⎞⎛ ⎞= ⎜ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
∑ ⎟⎟  (A.27) 

In this expression 1ρ ς ς= − , with ς the elasticity of substitution between products, and 

0 0 0p P K≡ is the price of P. Then, 

 
0 0
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1 1
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∑ ∑
 (A.28) 

Assume now the following relationship i iR K= , (e.g. forms of labor productive capital vs 

output). The optimal share equals: 

 

( ) ( )
( ) ( )

( ) ( )

1 1 1 1 1

*

1 1
/

j i i ii i i i
i

i j j j j j i j
j jj

c cK c KdP dP

dK dK K c K c c

ρ ρ ρ

ρ

κ κκ σ
κ κ κ

− + + +

+

⎛ ⎞ ⎛ ⎞
= = ⇒ = ⇒ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ∑
(A.29) 
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Which is identical to equation (A.25). 

 

Again, when the PF grows linearly with resources ( )1ρ = − , the marginal productivity 

between allocation to i and the others is a fixed ratio, say ( )1 α+ and in equilibrium, all 

shares will go to the one with largest marginal productivity: 

( )
( )

*
1

1
1

i eq

i i

i i

α σ
σ σ

α σ σ −

+
= ⇒

+ +
=  

 

4   Boundary constraints considered 

These involved boundary constraints to which the model is tested against. I will discuss 

briefly what role they play in the analysis and where they influenced dynamics, 

sometimes in a significant way. 

 

a) Capacity adjustment, backlogs and churn 

Capacity adjustment assures robust dynamics during strong demand growth. Further, 

capacity adjustment is another balancing constraint on growth, relevant to many 

technologies.  Japanese automakers face significant delays in meeting demands for their 

hybrids. Further, significant backlogs can have more side-effects involves churn and 

suppression of potential demand, as those who consider such a platform, will now abstain 

form selecting it. As the social behavior regarding this is hard to assess, a mismatch of 

supply and demand can severely hurt transition dynamics.  
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To simplify analysis, there are no adjustment costs, but it does take adjustment time cτ to 

reach desired capacity . Desired capacity equals current, adjusted for signals from 

demand: 

*

jC

 * c

j jC jCε=  (A.30) 

Where and c

jε is the effect of utilization on capacity adjustments:  

 ( ) ( )* * ; ' 0; 0 1c c d d d c c

js jf f fε τ τ τ⎡ ⎤= − >⎣ ⎦ ;=  (A.31) 

*dτ  and d

jτ  are the desired and current delivery time for platform j. The current delivery 

time is given by Little’s law by backlog and capacity: 

 d

j j jB Cτ =  (A.32) 

 

The backlog structure is modeled explicitly to retain dynamic consistency when demand 

and supply are in significant imbalance, but also to allow for churning dynamics. 

Backlogs grow with initial purchase decisions and churn from others , and decline 

with actual sales, at delivery, , and total churn to other platforms : 

*k

js ci

jb

k

js co

jb

 *j k k ci c

j j j j

dB
s s b b

dt

o= − + −  (A.33) 

The indicated sales, under capacity constraint  is equal to the sales rate discussed in 

the paper. However, in perceived utility for each platform is adjusted, to include an extra 

attribute that captures the effect of perceived wait time on attractiveness to buy, 

*k

js

b w

j ja τ=  

and *b

refa wτ= . Actual sales under capacity constraints result from deliveries to those in 

the backlogs at delivery rate d

jτ , k

js B d

jτ= . Further, those who are in the backlog churn 
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when their experienced wait time w

jτ is much larger than their expected wait time, when 

they decided to purchase *w

jτ : 

 ( ) ( ) ( )* ; ' 0; 0 0; 1 1co c w w

j ref j jb f f f fλ τ τ= ≥ = =  (A.34) 

Expected weight time of those who are in the backlog, *w

jτ  and their experienced wait 

time, w

jτ , are traced through a co-flow structure (Sterman 2000; see also Appendix ** of 

Essay 1). Finally, the perceived backlog, also feeds into the initial purchase decision, thus 

backlog is another attribute at purchase, with a negative elasticity. 

 

b) Endogenous elasticity of substitution 

It depends on the state of the technology how newly acquired knowledge contributes to 

the total technology. In the early stages a technology trajectory is malleable. Alternative 

solutions can easily be incorporated, while substitutability is low. As technology 

accumulates, standards emerge, flexibility decreases, which means that substitutability 

increases. Including this formulations allows exploring the fundamental dynamics 

consistently over a rich set of relevant environments. For instance, the competition 

between that include. For instance, incorporating this effect amplifies the fundamental 

dynamics. 

The functional form of Equation (5) in the Essay connects to this through the substitution 

parameter: a low substitution parameter, say -1, implies that it is optimal to allocate all 

resources to those knowledge sources with the highest factor shares. A substitution 
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parameter of 0, implies that it is optimal to build up knowledge proportional to the factor 

shares, and the effective knowledge is very sensitive to an increase in knowledge sources.  

While the substitution parameter is intimately linked with the elasticity parameter, 

via ( )1k

jw jw jwρ ς ς= − , the elasticity parameter does not necessarily yield the elasticity of 

substitution between the knowledge between platform, when there are more than two 

platforms. However, following the reasoning above, the decrease of the substitution 

parameter is a good representation of platform maturity.  

Capturing this formally through the elasticity parameter of knowledge exchange between 

that of platform j and that i, min

jw jw w

ςς ε ς= , we get. 

 ( ) ( ) ( ); 0 0; 1 1; 'jw jwf f f fςε θ= > = 0≥  (A.35) 

 

We imposed these conditions for the logical arguments of maturation of the technology. 

However, under these conditions of a non-decreasing elasticity parameter jwς , we can 

arrive at the same intuition more formally: 

 

 Proposition 2: For novel technologies, the effective technology exhibits increasing 

returns in the number of platforms. However in the long-run equilibrium, technologies 

exhibit neutral returns to the number platforms, even under infinite market and constant 

entrance probabilities.  

 

Intuition: spillovers are a central mechanism for growth of knowledge, especially in the 

early stages of a product lifecycle. For a novel technology, knowledge is incomplete and 
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thus has complementarities with that within other technologies. As a technology matures, 

knowledge is increasingly complex, providing more incentive to exploit the most 

productive aspects.  

 

Proof: Assume the a fortiori case in which spillover rate among platforms is infinite and 

free, so all resources are allocated to internal knowledge development, and we don’t have 

to impose optimal allocation of resources.  

Starting with ( )
1/

0

1

M
jmM

ijm
M

n

jm jm ijm ijm

i

K K k

ρ
ρ

κ
−

−

=

⎛
= ⎜

⎝ ⎠
∑ ⎞

⎟ . Then, introducing a new platform n+1, 

with instantaneous spillover to platform j implies: 

 ( ) ( )
1/

1 { }

0 1, 1,

1

M
jmM M

ijm ijm
n

n n

jm jm ijm ijm n jm n jm

i

K K k k

ρ
ρ

κ κ
−

− −+
+ +

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

ρ

κ

 (A.36)  

The main insights are derived when we rewrite this, so that the first order effect gets 

captured in the scale parameter . Hereto we defining a set of distribution 

parameters , such that  . Then we can rewrite (A.36) to 

0 jmK

,'i jmκ
1

1 1

'
n n

ijm ijm

i i

κ
+

= =

=∑ ∑

( )
1/

1
{ 1}

0 ,

1

'

M
jmM

jm
n

n

jm jm i jm ijm

i

K K k

ρ
ρ

κ
−+ −+

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ . With: 

 

1{ 1} 1
0

,{ }
1 10

'

M
jmn n n

jm

i jm ijmn
i ijm

K

K

ρ

κ κ
−+ +

= =

⎛= ⎜
⎝ ⎠
∑ ∑ ⎞

⎟  (A.37) 

For immature technologies and very small number of technologies, or, elasticity of 

substation close to 1, , and n small, the increasing returns  are very large. However, 

once the entrants increase, n large, and the technology matures elasticity , the 

0
M

jm
ρ →

1
M

jm
ρ → −
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effect diminishes fully. Also, effect of entrance on knowledge growth raises with the 

distribution parameters. New entrants have less knowledge, so (A.37) bounds the direct 

knowledge. Other second order effects are also balancing, for instance, the market share 

goes down, reducing revenues and profits, and resource allocation for all the incumbent 

platforms. Generally the overlap (or quality) becomes cannot be maintained, 

corresponding with on average smaller spillover factorsκ , further reducing the returns to 

the number of entrants, for incumbents. This is in particular the case for more mature 

technologies, for which marginal benefit of an increase in knowledge increases linearly 

with the input factor. 

 

Thus, spillover is a central mechanism for growth of knowledge, especially in the early 

stages of a product lifecycle. For novel technologies, knowledge is incomplete and thus 

has complementarities with others. As technology matures, knowledge is increasingly 

substitutable, providing more incentive to exploit the most productive aspects. As a 

corollary to this, platforms with more mature knowledge fixate on fewer candidates for 

sources of spillover. Another interpretation of this is that with reduction of uncertainty 

the knowledge allocation is more accurate – closer to the concept of Jovanovic (1982) 

that companies only borrow from the leader. 

 

c) Product experience 

Product improvement productivity increases with effective experience in R&D. This 

captures an additional feedback loop that will extend the time for new technologies to 
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catch up. This is included by making the productivity of product innovations endogenous, 

tracing experience that accumulates historic resources allocation: 1jE

 

( )1 1 0

1

1

e

r

j j

j

j

E E

dE
R

dt

η
ε =

=
 (A.38) 

where 0E is the reference experience at which relative productivity is equal to 1. 

 

d) Markups 

Markups adjust to desired levels  over adjustment time*

jm mτ . Desired markups are equal 

to a reference markup, adjusted through pressure from market level prices m

jε  

  (A.39) * m

j j rm mε= ef

j

Pressure to decrease (increase) markups result from a discrepancy between price 

( )1j jp m c= + and the market level, relevant for platform j, m

jp : 

 ( ) ( ) ( ) ( ) max; ' 0; 0 0; 1 1;m m

j j jf p p f f f f mε ε= < = = ∞ =  (A.40) 

The perceived relevant market price adjusts to the actual relevant market price *m

jp  with 

adjustment time pτ . This model ignores potential product differentiation with respect to 

consumer choice; therefore the indicated relevant market price is the price of all 

platforms weighted by their market shares: 

 '

*

'

'

m

j j j

j

p pσ= ∑  (A.41) 
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Thus, in the long run the market tends to produce at unit costs of the cheapest producing 

platform.  

Throughout the analysis I hold markups fixed at 0.2. 

 

e) Scale economies within a platform 

The role of scale economies are important to consider. First they   

 

We include two forms of scale economies. First, important economies of scale, internal to 

the production, and act at the modular level, s

jmε . Other scale economies are aggregated 

and modeled as a function of the existing installed base and introduced in the analysis 

section. Here we specify the internal scale economies: 

 ( ) ( ) ( )0 ; ' 0; 1; 1 1s

jm jf s s f f fε = ≤ ∞ = =  (A.42) 

The selected function is a standard power law, where cost improves as ( ) s
mf x x

γ= . The 

scale exponent γm
s is calculated from the assumed fractional cost improvement per 

doubling of sales, (1 + ∆) = (2s0/s0)
γ
, or γ = ln(1+ ∆)/ln(2).   For analysis a 30% scale 

curve, ∆ = 0.3, is the default, corresponding with the scale effect parameter γs =0.379. 

The section that discusses c) Optimal Resource Allocation shows how scale economies 

feed into the cost equation.  

In the analyses of the Essay the scale effect parameter is set to 0. 
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5   Model and analysis documentation  

The model and analyses can be replicated from the information provided in the Essay and 

the first section in the Appendix. In addition model source code and analysis 

documentation can be downloaded from  

http://web.mit.edu/jjrs/www/Thesis Documentation.htm
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