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Essence of survival analysis†

Many clinical trials are designed based on a time-to-event end-
point. Overall survival and progression-free survival are com-
monly used, especially in Phase 2 and 3 clinical trials. Overall 
survival measures the time to death from any cause while pro-
gression-free survival measures the time to progression of the 
disease or death from any cause. The key distinguishing fac-
tor is that the event of interest, such as death, may not occur 
in all individuals, making their time to this event unknown. 
Survival analysis comprises of the methods used to estimate 
the rates associated with time-to-an-event data, compare the 
rates between groups, and assess how other factors impact 
these rates.

A patient diagnosed with a grade 2 glioma has just been 
referred to you for treatment. After discussing her treatment, 
her first question is how much time she has left. Recalling 
the results of Buckner et al, the median survival time for this 
patient population receiving radiotherapy (RT) followed by 
6 cycles of procarbazine, lomustine, and vincristine (PCV) is 
13.3 years, which was shown to be significantly longer than RT 
alone (7.8 years).1 The median time to progression is 10.4 years 
for patients receiving RT + PCV compared with 4.0 years for 
patients receiving RT alone.1 You inform her that with this 
particular treatment, approximately 50% of patients progress 

before 10.5  years and 50% survive just over 13  years when 
treated with RT + PCV.

Median survival time (MST) is a commonly used statistic in 
survival analysis, which is an analytic approach when time to 
an event is of interest, noting that not all patients may experi-
ence the event. For example, time to death is commonly used 
in cancer research but is usually called survival time. Not all 
patients may die during the study so their survival time is 
unknown. Another example is progression-free survival, 
which is the time to disease progression or death, whichever 
occurs first. If a patient does not progress or die during the 
study, then this patient's progression-free-survival time is 
unknown. Since the time to an event could be unknown and 
tends to have a skewed distribution, the median survival time, 
rather than the mean, is used.

Censoring

How are the patients with unknown survival time handled in 
the analysis? Censoring occurs when some information on a 
patient's survival time exists, but the exact time is unknown 
since the event has not occurred within the time frame under 
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Abstract
Many clinical trials are designed based on a time-to-event endpoint. Overall survival and progression-free survival 
are commonly used, especially in Phase II and III clinical trials. Overall survival measures the time to death from 
any cause, while progression-free survival measures the time to progression of the disease or death from any 
cause. The key distinguishing factor is that the event of interest, such as death, may not occur in all individuals, 
making their time to this event unknown. Survival analysis comprises of the methods used to estimate the rates 
associated with time-to-an-event data, compare the rates between groups, and assess how other factors impact 
these rates.
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investigation.2 Using time to death in a clinical trial as an 
example, a patient who is alive at the end of the trial or time 
of analysis would be censored at that time. The patient's 
information, that he or she was alive at the end of the 
study, is used in the analysis even though an event did not 
occur. If a patient is lost to follow-up, the information until 
the last date the patient was seen can still be used in the 
analysis and the patient would be censored at the last date 
seen. Censoring can also occur if the patient experiences a 
different event that makes it impossible to experience the 
event of interest.3 These examples of censoring typically 
occur prior to the end of the time frame under investiga-
tion and are thus known as left censoring. Another type of 
censoring that is quite common is right censoring, which 
occurs when the patient does experience the event of inter-
est, but this occurs after the end of the time frame under 
investigation. For both types of censoring, the observed 
survival time is shorter than the actual survival time, 
which is unknown. The observed survival time is then used 
to draw inferences about the actual survival time.2 Fig. 1 
depicts examples of these types of censoring.

Estimation of Survival Curves

Survival data are modeled in terms of two functions, sur-
vival and hazard.3 The survival function models the prob-
ability that an individual survives past a specified time. 
The survival function is nonincreasing and will eventually 
go to 0 as all patients eventually die. The hazard function 
provides the instantaneous event rate, the rate measured 
at that instant, at a specified time given that an individual 
has survived up to that time.3 In other words, the survival 
function focuses on not failing and is cumulative, while 

the hazard function focuses on failing and is tied to a 
time point.

Survival curves are typically plotted to allow visualiza-
tion of survival across time. The Kaplan-Meier approach 
is commonly used.4 This is a nonparametric approach, 
meaning it does not depend on a probability distribution 
such as the exponential function. It is assumed that events 
occur independently of each other. The times associated 
with each event are ordered from the smallest to the larg-
est; if multiple patients have the same event time, that 
time is only listed once. Each event time creates a new 
time interval. Within each interval, the number of patients 
with an event is calculated along with the number at risk. 
If a patient is censored, that patient is removed from the 
number at risk in the subsequent time interval. Thus the 
number at risk can decrease even when no events have 
occurred. A  Kaplan-Meier plot will then look like a step 
function (Fig. 2). The more events there are, the smoother 
the lines will look. The MST can be found from a Kaplan-
Meier plot by finding the point on the line that corresponds 
to 50% survival (on the y axis). The corresponding time (on 
the x axis) is the MST. Looking at  Fig. 2, the MST for the 
RT-alone arm is about 8 years, while the MST for the RT + 
PCV arm occurs after 12 years, which is as far as the figure 
goes.

Testing Differences in Survival 
Distributions

After plotting survival curves for two different treatments, 
for example, determining whether they are different is 
of interest. The log-rank test is the most commonly used 
method to determine statistically if survival curves are 
the same or not. The null hypothesis is that the survival 
curves are the same and can be extended to more than two 
curves.5,6 Specifically, it calculates the number of expected 
events since the previous event, assuming there is no dif-
ference between the groups, at each time in each group. 
The observed number of events for each group are com-
pared with the expected using a test statistic that is then 
compared with the chi-square distribution to determine 
the P value. A stratified log-rank test will test the difference 
between groups created by multiple categorical factors, 
such as treatment (RT alone vs RT + PCV) and age (<40 vs 
≥40 years old), by grouping patients based on these vari-
ables. In this situation, the null hypothesis being tested is 
that the survival distributions for all of the groups are the 
same. If it is rejected, it does not specify which groups are 
different.

Recall the example of a patient with a grade 2 glioma. 
In Fig. 2, the survival curves for each treatment arm 
cross early and then a large separation of the curves 
occurs. Is this difference between treatment arms sta-
tistically significant? The answer to this question is yes 
because the P value from the log-rank test is .001, which 
is less than the prespecified .05 significance.1 Therefore, 
we can conclude that the treatment arms had different 
survival distributions. Examining the figure shows us 
that the RT + PCV arm is better since the RT-alone arm 
declines faster.

Fig. 1 Types of censoring: Patients were enrolled in 
a study at different calendar times and followed until 
the end of the study when the analysis took place. 
Patients 1 and 5 were right censored at the end of the 
study since an event did not occur. Patients 2 and 6 
experienced an event on study. Patients 3 and 4 were 
lost to follow-up and left censored at the last time 
of follow-up. C = censored, L = lost to follow-up, X = 
event.
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There are other approaches to testing the differences 
between survival curves. Briefly, one example is the class 
of tests developed by Harrington and Fleming.7 This class 
of tests uses weights on each death to emphasize differ-
ences at different time points. The log-rank test, contained 
within this class of tests, assigns equal weight to all events. 
The Wilcoxon test, on the other hand, assigns more weight 
to early events when the number of patients at risk is larger 
and is therefore more sensitive to early differences.2,8 The 
paper by Buckner et al focuses on the long-term follow-up 
of patients on NRG Oncology's trial RTOG 9802, a rand-
omized phase 3 trial of RT with or without PCV chemother-
apy in unfavorable low-grade glioma.1 The initial reporting 
of this study by Shaw et  al reported the Wilcoxon test.9 
However, in the long-term follow-up analysis, early differ-
ences were not the focus and thus the log-rank test was 
used to test the survival distribution differences between 
treatment arms.1 The Tarone-Ware test also applies more 
weight to early event times and is suitable to be used in the 
case of crossed curves as seen in  Fig. 2.10

When conducting a survival analysis, it is crucial to ana-
lyze the data after all patients have been followed for a 
sufficient amount of time. For example, if the MST of the 
patient population is 13.3  years, as was the case in the 
example used, only following patients for 5 years will not 
provide enough events to yield sufficient statistical power 
when testing differences between treatments.1,3 However, 
in a trial for patients with newly diagnosed glioblastoma, 
where the MST is only about 16 months, 5 years of follow-
up would be more than sufficient.11

Modeling Survival Distributions

The log-rank test applies only to groups; meaning that the 
effect of a continuous variable on a time-to-event outcome 
cannot be tested using the log-rank unless the continuous 

variable was categorized into groups. This can create a loss 
of statistical power and sensitivity when conducting the 
test. Since the log-rank test functions by separating the 
cohort into groups based on the categorical predictors, 
the sample size within each group becomes much smaller, 
thus decreasing the statistical power of the test. The log-
rank test also gives the significance of the difference, but 
not the magnitude of the difference. Is there a way to test 
the difference between groups without these limitations?

Consider the example of the patient with a grade 2 oli-
godendroglioma. Does histology, as well as the type of 
treatment, impact the survival distribution? Buckner et al 
reported that this particular histology is a favorable prog-
nostic variable indicating that patients with an oligoden-
droglioma have significantly improved survival when 
compared with patients with oligoastrocytoma or astro-
cytoma, while adjusting for treatment, the patient's age, 
and whether or not the patient has a specific mutation.1 
This analysis was performed using a statistical regression 
model, the Cox proportional hazards model, which exam-
ines the association between survival time and one or 
more variables and provides an estimate of the strength of 
effect for each variable.12,13 Although there are other types 
of statistical models for survival data, such as the accel-
erated failure time model, the Cox proportional hazards 
model is the most common and will be described here.

The hazard ratio, the ratio of the hazard rates from two 
groups, is an important measure in survival analysis and 
an integral component of Cox proportional hazards mod-
els. If there is no difference in survival, the hazard ratio is 
equal to 1. If the ratio is less than 1 then the effect is consid-
ered protective and if it is greater than 1, the effect is con-
sidered a risk factor. As an example, the hazard ratio for the 
survival curves presented in  Fig. 2 is 0.59 and the 95% con-
fidence interval is 0.42–0.83. In this example, since there 
are only 2 groups, the log-rank test is testing whether this 
ratio is equal to 1. The confidence interval does not include 
1 which indicates, along with the log-rank test, that the RT 
+ PCV arm is superior.

The Cox proportional hazards model provides the hazard 
ratio and a statistical test and corresponding P value for 
each variable included in the model. The time to event is 
the hazard function which is dependent on a set of vari-
ables called covariates. The covariates in the model can 
be categorical or continuous, one advantage over the log-
rank test. Using the example above, the covariates would 
be treatment arm (RT alone vs RT + PCV), histology (oli-
godendroglioma vs oligoastrocytoma vs astrocytoma), 
age (categorized as < 40 years old vs ≥ 40 years old), and 
presence vs absence of a mutation. Since histology has 
more than two levels, in order to calculate a hazard ratio 
it must be split into two variables each with two levels: 
oligodendroglioma vs oligoastrocytoma and oligoden-
droglioma vs astrocytoma. The level that appears in both 
variables is called the reference level. As seen in  Table 1, 
oligodendroglioma tumors have lower hazard ratios than 
oligoastrocytoma and astrocytoma tumors, meaning they 
are associated with a longer survival time.

A basic premise of the Cox proportional hazards model 
appears in its name: the hazards are assumed to be pro-
portional. There are various ways to check the propor-
tional hazards assumption.14 A proportional hazard occurs 

Fig.  2 Overall survival results using the Kaplan-Meier method 
from NRG Oncology's RTOG 9802 trial, a randomized phase 3 trial of 
radiation therapy with or without PCV chemotherapy in unfavora-
ble low-grade glioma.1 The hash marks on the survival curves indi-
cate when a patient was censored.
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when the difference between groups in the hazard rate is 
the same across time; in other words, the hazard of one 
group is simply the hazard of the other group multiplied 
by some constant. Visually, one can see that the data por-
trayed in  Fig. 2 do not have proportional hazards since the 
survival curves for treatment arm cross at around 3 years. 
Other models, such as an accelerated failure time model, 
could be used and are described elsewhere, or the Cox 
model could be modified to correct the nonproportional 
hazards.2,11,15–17 A stratified Cox model, where subjects are 
divided into strata with distinct baseline hazard functions, 
is one example of a modification.2 Another is the extended 
Cox model in which an interaction or time-dependent 
covariate is added to the model. When conducting the Cox 
model for the data in  Fig. 2, treatment arm was divided 
into two variables based on time (Table 1). This extension 
allowed the use of the Cox model in the setting of nonpro-
portional hazards. The Tarone-Ware test, mentioned in the 
previous section, is also a more powerful test than the log-
rank test in the case of nonproportional hazards.

The assumptions associated with the Cox proportional 
hazards model should always be confirmed when using it 
in an analysis. The proportional hazard assumption can be 
checked visually, using a goodness of fit test or implement-
ing an extended Cox model with time-dependent vari-
ables. More information on these approaches can be found 
elsewhere.2 The functional form of the covariates, usually 
continuous, in the model must be assessed, as a nonlin-
ear covariate may cause the hazards to appear nonpropor-
tional. A linear relationship between an outcome variable 
and a covariate can be visualized with a straight diagonal 
line.18 As is the case with any regression model, idenitify-
ing outliers, specifically ones that disproportionately influ-
ence analysis, is also critical when using Cox proportional 
hazards models.

Discussion

Survival analysis is a widely used and well-studied method 
of data analysis in statistics. It allows for calculation of both 
the failure and survival rates in the presence of censoring. 
The Kaplan-Meier method is commonly used to estimate 
the survival and hazard functions and depict these func-
tions in a graphical form. The log-rank test is typically used 

to test the difference between survival distributions in at 
least two groups. In the case of two groups, a hazard ratio 
is calculated that describes the hazard rate in one group as 
compared with the other. In the case where there are multi-
ple covariates that may impact the occurrence of the event, 
a Cox proportional hazards model can be used to assess 
these associations simultaneously.

Survival analysis has been extended to other types of 
data, such as longitudinal. In that particular case, the event 
may occur when a certain score or level is met. Brown et al 
conducted an analysis based on time to neurocognitive fail-
ure, where a score below a certain threshold on at least one 
test in a battery of neurocognitive tests, indicates failure.19 
Chinot et al assessed deterioration-free survival, which is 
a composite endpoint of time to a ≥10-point decline from 
baseline without a subsequent ≥10-point improvement 
from baseline in selected quality-of-life and brain-tumor-
specific questionnaires or death, whichever occurred first.20

Another extension is competing risks, which occurs when 
a patient cannot experience the event of interest because 
another event has occurred. The analysis performed by 
Brown et al took the competing risk of death into account 
since a person cannot decline cognitively postmortem.19 
Therefore, there were three types of patient status: event 
(neurocognitive failure), censored, competing risk (death). 
The methods of analysis are different in the presence of a 
competing risk than those described here.21–24

The type of data and the hypothesis of interest will direct 
the type of analysis and choice of statistical tests. The tests 
described in this paper are robust, allowing them to be 
commonly applied. There are modifications of these tests 
that allow them to be applied even when certain assump-
tions are not met. Even in the presence of nonproportional 
hazards, the Cox model can be extended to allow its use. 
Most statistical software packages have these tests and 
models as built-in functions and also allow for extensions 
into competing risks analysis.
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Table 1 Cox proportional hazards model from NRG Oncology's RTOG 9802 trial, a randomized phase 3 trial of radiation therapy with or without PCV 
chemotherapy in unfavorable low-grade glioma1

Variable (Bolded value has favorable outcome) P value Hazard Ratio (95% CI)

Assigned treatment: first 1-year follow-upa (RT + PCV vs RT 
alone)

.839 1.15 (0.30-4.33)

 >1-year follow-upa (RT + PCV vs RT alone) .001 0.35 (0.19-0.66)

IDH1-R132H Mutation (Absent vs Present) .124 0.66 (0.39-1.12)

Histology (Astrocytoma vs Oligdendroglioma) .012 0.38 (0.18-0.81)

 (Oligoastrocytoma vs Oligdendroglioma) .001 0.35 (0.19-0.66)

Age (<40 vs >=40) .014 0.50 (0.29-0.87)

From New England Journal of Medicine, Buckner J, Shaw EG, Pugh SL, et al., Radiation plus Procarbazine, CCNU, and Vincristine in Low-
Grade Glioma, Volume No. 374, Page No. S3. Copyright © (2016) Massachusetts Medical Society. Reprinted with permission.
a1 year was the optimal survival time which yielded the largest log partial likelihood.
RT, radiation therapy; PCV, procarbazine, lomustine, and vincristine.
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