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Abstract. Let Γ be a structure with a finite relational signature and a first-order definition
in (R; ∗, +) with parameters from R, that is, a relational structure over the real numbers where
all relations are semi-algebraic sets. In this article, we study the computational complexity of
constraint satisfaction problem (CSP) for Γ : the problem to decide whether a given primitive
positive sentence is true in Γ . We focus on those structures Γ that contain the relations ≤,
{(x, y, z) | x+y = z} and {1}. Hence, all CSPs studied in this article are at least as expressive
as the feasibility problem for linear programs. The central concept in our investigation is
essential convexity: a relation S is essentially convex if for all a, b ∈ S, there are only finitely
many points on the line segment between a and b that are not in S. If Γ contains a relation
S that is not essentially convex and this is witnessed by rational points a, b, then we show
that the CSP for Γ is NP-hard. Furthermore, we characterize essentially convex relations in
logical terms. This different view may open up new ways for identifying tractable classes of
semi-algebraic CSPs. For instance, we show that if Γ is a first-order expansion of (R; +, 1,≤),
then the CSP for Γ can be solved in polynomial time if and only if all relations in Γ are
essentially convex (unless P=NP).

1 Introduction

Linear Programming is a computational problem of outstanding theoretical and practical impor-
tance. It is known to be computationally equivalent to the problem to decide whether a given set
of linear (non-strict) inequalities is feasible, i.e., defines a non-empty set:

Linear Program Feasibility
INPUT: A finite set of variables V ; a finite set of linear inequalities of the form a1x1+· · ·+akxk ≤ a0

where x1, . . . , xk ∈ V and a0, . . . , ak are rational numbers where the numerators and denominators
are represented in binary.
QUESTION: Does there exist an x ∈ R|V | that satisfies all inequalities?

This problem can be viewed as a constraint satisfaction problem, where the allowed constraints
are linear inequalities with rational coefficients, and the question is whether there is an assignment
of real values to the variables such that all the constraints are satisfied. For formal definitions of
concepts related to constraint satisfaction, we refer the reader to Section 2.1. It is obvious that



this problem cannot be formulated with a finite constraint language; however, we will later on
(Proposition 12) see that the feasbility problem for linear programs is polynomial-time equivalent
to the constraint satisfaction problem for the structure

Γlin :=
(
R; {(x, y, z) | x+ y = z},≤, {1}

)
.

It is well-known that linear programming can be solved in polynomial time; moreover, several
algorithms are known that are efficient also in practice. In this article, we study how far Γlin can
be expanded such that the corresponding constraint satisfaction problem remains polynomial-time
solvable. An important class of relations that generalizes the class of relations defined by linear
inequalities is the class of all semi-algebraic relations, i.e., relations that have a first-order definition
over (R; ∗,+) using parameters from R. By the fundamental theorem of Tarski and Seidenberg, it
is known that a relation S ⊆ Rn is semi-algebraic if and only if it has a quantifier-free first-order
definition in (R; ∗,+,≤) using parameters from R. Geometrically, we can view semi-algebraic sets as
finite unions of finite intersections of the solution sets of strict and non-strict polynomial inequalities.

We propose a framework for systematically studying the computational complexity of expansions
of Γlin by semi-algebraic relations. In this framework, a constraint satisfaction problem is given by a
(fixed and finite) constraint language Γ . All the constraints in the input of such a feasibility problem
must be chosen from this constraint language Γ (a formal definition can be found in Section 2.1).
This way of parameterizing constraint satisfaction problems by their constraint language has proved
to be very fruitful for finite domain constraint satisfaction problems [1,7–9,14]. Since the constraint
language is finite, the computational complexity of such a problem does not depend on how the
constraints are represented in the input. We believe that the very same approach is very promising
for studying the complexity of problems in real algebraic geometry. In Section 6 we will discuss a
connection between some of the CSPs with semi-algebraic constraint languages and open problems
in convex geometry and semidefinite programming.

One of the key reasons why linear program feasibility can be decided in polynomial time is
that the feasible regions of linear inequalities are convex. Convexity is not a necessary condition
for tractability of semi-algebraic constraint satisfaction problems, though. It is, for instance, well-
known that linear program feasibility can also be decided in polynomial time when some of the input
constraints are disequalities, i.e., constraints of the form a1x1 + · · ·+ akxk 6= a0 for rational values
a0, . . . , ak. However, we show that if Γlin ⊆ Γ and Γ contains a relation S with rational a, b ∈ S
such that on the line segment L between a and b there are infinitely many points that are not in
S, then the CSP(Γ ) is NP-hard. This motivates the notion of essential convexity : a set S ⊆ Rk is
essentially convex if for all p, q ∈ S there are only finitely many points on the line between p and
q that are not in S. One of our central results is a logical characterization of essentially convex
semi-algebraic relations in Section 4. This characterization can be used to show several results that
are briefly described next.

A relation is called semi-linear if it has a first-order definition with rational parameters4 in the
structure (R; +,≤). From the perspective of constraint satisfaction, the set of semi-linear relations
is a rich set. For example, every relation S ⊆ Qk with finitely many elements is semi-linear; thus,
every finitary relation on a finite set can be viewed as a semi-linear relation. In Section 5.1, we
show that when we add a finite number of semi-linear relations to Γlin, then the resulting language

4 We deviate from model-theoretic terminology as it is used e.g. in [24] in that we only allow rational and
not arbitrary real parameters in first-order definitions. Our definition conincides with the definition of
semi-linear sets given in e.g. [12, 13].



either has a polynomial-time or an NP-hard constraint satisfaction problem. This result is useful for
studying optimization problems: note that linear programming can be viewed as optimizing a linear
function over the feasible points of a set of linear inequalities. This view suggests an immediate
generalization: optimize a linear function over the feasible points of an instance of a constraint
satisfaction problem for semi-linear constraint languages. We completely classify the complexity of
this problem in Section 5.2.

Another application concerns temporal reasoning. A temporal constraint language Γ is a struc-
ture (R;R1, . . . , Rl) with a first-order definition in (R;<). Many computational problems in arti-
ficial intelligence and scheduling can be modeled as constraint satisfaction problems for temporal
constraint languages. The complexity of the CSP for temporal constraint languages Γ has been
completely classified recently [6]; there are 9 tractable classes of temporal constraint satisfaction
problems. Often, temporal languages are extended with some mechanism for expressing metric
time, i.e., the ability to assign numerical values to variables and performing some kind of arith-
metic calculations [11]. It has been observed that many metric languages Γ are semi-linear and
satisfy Γlin ⊆ Γ , and if such a language is polynomial-time solvable, then it is a subclass of the
so-called Horn-DLR class [21]. Our result shows that this is not a coincidence: whenever Γ is not a
subclass of Horn-DLR, then the CSP(Γ ) is NP-hard.

2 Preliminaries

2.1 Constraint Satisfaction Problems

A first-order formula5 is called primitive positive (pp) if it is of the form

∃x1, . . . , xn.(ψ1 ∧ · · · ∧ ψm)

where ψi are atomic formulas, i.e., formulas of the form x = y or S(xi1 , . . . , xik
) where S is the

relation symbol for a k-ary relation in Γ . We call such a formula a pp-formula, and as usual a
pp-formula without free variables is called a pp-sentence.

Let Γ = (D;S1, . . . , Sl) be a structure with domain D and a finite relational signature. The
constraint satisfaction problem for Γ (CSP(Γ ) in short) is the computational problem to decide
whether a given primitive positive sentence Φ involving relation symbols for the relations in Γ is
true in Γ . The conjuncts in a pp-sentence Φ are also called the constraints of Φ, and to emphasize the
connection between the structure Γ and the constraint satisfaction problem, we typically refer to Γ
as a constraint language. By choosing an appropriate constraint language Γ , many computational
problems that have been studied in the literature can be formulated as CSP(Γ ) (see e.g. [5, 9]).

When studying the complexity of different CSPs, it is often useful to be able to derive new
relations from old. If Γ = (D;S1, . . . , Sl) is a relational structure and S ⊆ Dk is a relation, then
(Γ, S) denotes the expansion (D;S, S1, . . . , Sl) of the structure Γ by the relation S. We say that
an n-ary relation S is pp-definable in Γ if there exists a pp-formula φ with free variables x1, . . . , xn

such that (x1, . . . , xn) ∈ S iff φ(x1, . . . , xn) holds in Γ . The following simple but important result
explains the importance of pp-definability for constraint satisfaction problems.

Lemma 1 (Jeavons et al. [20]). Let Γ be a relational structure, and let S be pp-definable over
Γ . Then CSP(Γ, S) is polynomial-time equivalent to CSP(Γ ).
5 Our terminology is standard; all notions that are not explicitly introduced can be found in standard

textbooks, e.g., in [19].



2.2 Semi-algebraic and semi-linear relations

We say that a relation S ⊆ Dn is first-order definable in a structure Γ with domain D if there exists
a formula φ(x1, . . . , xn) using universal and existential quantification, disjunction, conjunction,
negation, and atomic formulas over Γ (where x1, . . . , xn denote the free variables in φ) such that
φ(a1, . . . , an) is true over Γ if and only if (a1, . . . , an) ∈ S. We always admit equality when building
atomic formulas, i.e., we have atomic formulas of the form t1 = t2 for terms t1, t2 formed from
function symbols for Γ and variables. We say that S is first-order definable in Γ with parameters
from A, for A ⊆ D, if additionally we can use constant symbols for the elements of A in the
first-order definition of S.

A set S ⊆ Rn is called semi-algebraic if it has a first-order definition in (R; ∗,+) using parameters
from R. Note that the order ≤ of the real numbers is first-order definable in (R; ∗,+), since

a ≤ b ⇔ ∃c. b = a+ c ∗ c .

We need some basic algebraic and topological concepts and facts.

Definition 2 (Section 3.1 in [2]). A set S ⊆ Rn is open if it is the union of open balls, i.e., if
every point of S is contained in an open ball contained in S. A set S ⊆ Rn is closed if its complement
is open. The closure of a set S, denoted S̄, is the intersection of all closed sets containing S.
Equivalently, S̄ = {x ∈ Rn | ∀r > 0 ∃y ∈ S. (y − x)2 < r2}. A point p in S is a boundary point if
for every ε > 0, the n-dimensional open ball with radius ε around p contains at least one point in
S and one point not in S. The set of boundary points is denoted ∂S. The interior of S, denoted by
S◦, is S \ ∂S.

Note that the interior of S consists of all p ∈ S such that there exists an ε > 0 with the following
property: the n-dimensional open ball with radius ε around p is contained in S. Also note that a
finite union of closed sets is closed.

Proposition 3 (Proposition 2.2.2. in [4]). The closure of a semi-algebraic relation is semi-
algebraic.

We use the notion of dimension dim(S) ∈ N of a semi-algebraic set S as defined in [4].

Definition 4 (Section 2.8 in [4]). Let S ⊆ Rk be a semi-algebraic set, and let P(S) be the ring
of polynomial functions on S, i.e., the ring of functions S → R which are the restriction of a
polynomial. Then the dimension of S, denoted by dim(S), is the maximal length of chains of prime
ideals of P(S), i.e., the maximal d such that there exist distinct prime ideals I0, I1, . . . , Id of P(S)
with I0 ⊂ I2 ⊂ · · · ⊂ Id.

To work with this definition of dimension, we need some more concepts.

Definition 5 (see [4]). Let S ⊆ Rk and T ⊆ Rl be semi-algebraic sets. A function f : S → T is
semi-algebraic if the set {(x1, . . . , xk, y1, . . . , yl) | f(x1, . . . , xk) = (y1, . . . , yl)} is a semi-algebraic
subset of Rk+l.

As usual, bijective functions f : S → T such that S′ ⊆ S is open if and only if f(S′) ⊆ T is
open are called homeomorphisms.

Lemma 6 (Propositions 2.8.5, 2.8.9, and 2.8.13 in [4]). Let S ⊆ Rn be semi-algebraic.



– If S = S1 ∪ S2 then dim(S) = max(dim(S1),dim(S2)).
– If there is a semi-algebraic homeomorphism from S to (0, 1)d, then dim(S) = d.
– dim(S̄ \ S) < dim(S).

In particular, if S ⊆ T , then dim(S) ≤ dim(T ).
A set V ⊆ Rn is called an (algebraic) variety if it can be defined as a conjunction of the form

p1 = 0∧ · · · ∧ pm = 0 where p1, . . . , pm are polynomials in the variables x1, . . . , xn with coefficients
from R. We allow terms in polynomials to have degree zero.

Lemma 7. Let V ⊆ Rn be a variety and let L ⊆ Rn be a line. If infinitely many points of L are in
V , then L ⊆ V .

Proof. Let V be defined by p1(x1, . . . , xn) = 0 ∧ · · · ∧ pm(x1, . . . , xn) = 0, and let l1, . . . , ln be
univariate linear polynomials such that L = {(l1(x), . . . , ln(x)) | x ∈ R}. For each pi, the univariate
polynomial pi(l1(x), . . . , ln(x)) equals 0 infinitely often. So it is always 0, and it follows that every
point on L satisfies p1 = 0 ∧ · · · ∧ pm = 0. ut

Theorem 8 (Tarski and Seidenberg; Proposition 5.2.2 in [4]). Every first-order formula
over (R; ∗,+,≤) with parameters from R is equivalent to a quantifier-free formula with parameters
from R.

By an interval we mean either an open, half-open, or closed interval with more than one element.
An ordered structure (D;≤, . . .) is o-minimal (see [23], Definition 3.1.18) if for any first-order
definable S ⊆ D with parameters from D there are finitely many intervals I1, . . . , Im with endpoints
in D ∪ {±∞} and a finite set D0 ⊆ D such that S = D0 ∪ I1 ∪ · · · ∪ Im. The following is an easy
and well-known consequence of Theorem 8.

Theorem 9 (see e.g. [23]). Let R1, . . . , Rn be semi-algebraic relations. Then (R;≤, R1, . . . , Rn)
is o-minimal.

A set S ⊆ Rn is called semi-linear if it has a first-order definition in (R; +,≤) with parameters
from Q; we also call first-order formulas over (R; +,≤) with parameters from Q semi-linear. It
has been shown in [12, 13] that it is decidable whether a given first-order formula over (R; ∗,+,≤)
with parameters from Q defines a semi-linear relation or not. A set V ⊆ Rn is called a linear
set if it can be defined as a conjunction of the form p1 ≥ 0 ∧ · · · ∧ pm ≥ 0 where p1, . . . , pm are
linear polynomials in the variables x1, . . . , xn with coefficients from Q. It is not hard to see that
every semi-linear relation S can be viewed as a finite union of linear sets. We also have quantifier
elimination for semi-linear relations.

Theorem 10 (Ferrante and Rackoff [15]). Every semi-linear relation has a quantifier-free def-
inition over (R; +,−,≤) with parameters from Q.

2.3 Definability of Rational Expressions

The following elementary lemma will be needed for the observation that the feasibility problem
for linear programs is polynomial-time equivalent to CSP(Γlin); it is also essential for the hardness
proofs in Section 3 and for proving the dichotomy result for metric temporal constraint reasoning.



Lemma 11. Let n0, . . . , nl ∈ Q be arbitrary rational numbers. Then the relation {(x1, . . . , xl) | n1x1+
. . .+nlxl = n0} is pp-definable in (R; {(x, y, z) | x+y = z}, {1}). Furthermore, the pp-formula that
defines the relation can be computed in polynomial time.

Proof. We first note that we can assume that n0, . . . , nl are integers. To see this, suppose that
the rational coefficients n0, . . . , nl are represented as pairs of integers (a0, b0), . . . , (al, bl) where
ai denotes the nominator and bi the denominator. Let c =

∏l
i=0 bi and create a new sequence of

coefficients n′0, . . . , n
′
l = (a0 ·c/b0, 1), . . . , (al ·c/bl, 1). The resulting equation is obviously equivalent.

It is also clear that it only takes polynomial time to compute these coefficients.
Before the actual proof, we note that x = 0 is pp-definable by x + x = x, and we therefore

freely use the terms 0 and 1 in pp-definitions. Similarly, x = −1 is pp-definable by x+ 1 = 0. The
proof is by induction on l. We first show how to express equations of the form n1x1 + n2x2 = x3.
By setting x2 to −1 and x3 to 0, this will solve the case l = 1. For positive n1, n2, the formula
n1x1 + n2x2 = x3 is equivalent to

∃u1, . . . , un1 , v1, . . . , vn2 . u1 = x1 ∧
n1−1∧
i=1

x1 + ui = ui+1

∧ v1 = x2 ∧
n2−1∧
i=1

x2 + vi = vi+1

∧ un1 + vn2 = x3 .

However, this formula is exponential in the representation size of n1 and n2, and cannot be used in
polynomial-time reductions.

Let bit(n, i) denote the i-th lowest bit in the binary representation of an integer n and 1 ≤ i ≤
blog nc + 1. The following formula is equivalent to the previous one (we are still in the case that
both n1 and n2 are positive) and has polynomial length in the representation size of n1 and n2.

∃ā, b̄, c̄, d̄. a1 = x1 ∧
blog n1c∧

i=1

ai + ai = ai+1 ∧

b1 = x2 ∧
blog n2c∧

i=1

bi + bi = bi+1 ∧

c1 = bit(n1, 1) ∧
blog n1c∧

i=1

bit(n1, i+ 1)ai + ci = ci+1 ∧

d1 = bit(n2, 1) ∧
blog n2c∧

i=1

bit(n2, i+ 1)bi + di = di+1 ∧

cblog n1c+1 + dblog n2c+1 = x3

If l = 2, and n1 = 0 or n2 = 0, then the proof is similar. If n1 and n2 have different signs, we
replace the conjunct cblog n1c+1+dblog n0c+1 = x3 in the formula above appropriately by cblog n1c+1+
x3 = dblog n0c+1 or dblog n0c+1 + x3 = cblog n1c+1. If both n1 and n2 are negative, then we use the
pp-definition ∃x′3.(−n1x1 − n2x2 = x′3 ∧ x′3 + x3 = 0).



Equalities of the form n1x1 + n2x2 = n0 can be defined by ∃x3.(n1x1 + n2x2 = x3 ∧ x3 = n0).
Now suppose that l > 2. By the inductive assumption, there is a pp-definition φ1(x1, x2, u) for
n1x1 +n2x2 +u = n0 and a pp-definition φ2(x3, . . . , xl, u) for n3x3 + . . . nlxl = u. Then ∃u.(φ1∧φ2)
is a pp-definition for n1x1 + · · ·+ nlxl = n0.

We next prove that the pp-definition can be computed in time O(p(m)) time where p is a fixed
polynomial and m denotes the number of bits needed to represent the input. Let T (l,m) denote the
maximum time needed to compute the definition for the equations containing l variables and where
m bits are needed for representing the input. We assume without loss of generality that l ≤ m. If
1 ≤ l ≤ 3, then T (l,m) ≤ p′(m) for some polynomial p′ since we can compute bit(·, ·) in polynomial
time. If l > 3, then T (l,m) ≤ T (3,m)+T (l−2,m)+p′′(m) for some polynomial p′′ by the inductive
construction of the definition. Assume for simplicity that l is even; the case when l is odd can be
solved analogously. By unfolding the recursive definition of T , we see that

T (l,m) ≤ l

2
T (3,m) + p′(m) +

l/2∑
j=1

p′′(m) ≤ l · p′(m) + p′(m) + l · p′′(m)

≤ m · p′(m) + p′(m) +m · p′′(m)

which is a polynomial in m. ut

By extending the previous result to inequalities, we prove that CSP(Γlin) and linear program
feasibility are polynomial-time equivalent problems. The dichotomy for metric temporal reasoning
follows immediately by combining this result and Theorem 29.

Proposition 12. The linear program feasibility problem is polynomial-time equivalent to CSP(Γlin).

Proof. It is clear that an instance of CSP(Γlin) can be seen as a linear program feasibility problem,
since the three different relations in the constraint language, x+ y = z, x = 1, x ≤ y, are linear.

For the opposite direction, let Φ be an arbitrary instance of the linear program feasibility prob-
lem. Given a linear equality L(x1, . . . , xk) ≡ c1x1 + . . . + ckxk = c0, let φL(x1,...,xk) denote the
pp-definition of L(x1, . . . , xk) in (R; {(x, y, z) | x + y = z}, {1}) obtained in Lemma 11. Con-
struct an instance Ψ of CSP(Γlin) by replacing each occurrence of a linear inequality constraint
c1x1 + . . . clxl ≤ c0 in Φ by a φc1x1+···+clxl−y=0 ∧ y ≤ c0; use fresh variables for y and for the
existentially quantified variables introduced by φL. The resulting formula Ψ can be rewritten as a
primitive positive sentence over Γ without increasing its length and, by Lemma 11, the length of
Ψ is polynomial in the length of Φ. Since Φ is satisfiable if and only if Ψ is satisfiable, this shows
that the problems are polynomial-time equivalent. ut

3 Hardness

We consider relations that give rise to NP-hard CSPs in this section. We first need some definitions:
a relation S ⊆ Rk is convex if for all p, q ∈ S, S contains all points on the line segment between p
and q. We say that a relation S ⊆ Rk excludes an interval if there are p, q ∈ S and real numbers
0 < δ1 < δ2 < 1 such that p + (q − p)y 6∈ S whenever δ1 ≤ y ≤ δ2. Note that we can assume that
δ1, δ2 are rational numbers, since we can choose any two distinct rational numbers γ1 < γ2 between
δ1 and δ2 instead of δ1 and δ2.



Definition 13. We say that S ⊆ Rn is essentially convex if for all p, q ∈ S there are only finitely
many points on the line segment between p and q that are not in S.

If S is not essentially convex, and if p and q are such that there are infinitely many points on
the line segment between p and q that are not in S, then p and q witness that S is not essentially
convex. The following is a direct consequence of Theorem 9, and we will use it in the following
without further reference.

Corollary 14. If S is a semi-algebraic relation that is not essentially convex, then S excludes an
interval. If S is an essentially convex semi-algebraic relation, and a, b are two distinct points from
S, then the line segment between a and b contains an interval I with I ⊆ S.

The next proposition will be used several times in the sequel; it clarifies the relation between
finite unions of varieties and essentially convex relations.

Proposition 15. Let W be a finite union of varieties V1, . . . , Vk ⊆ Rn, and let C ⊆W be essentially
convex. Then, there is an i ≤ k such that C ⊆ Vi.

Proof. Let J ⊆ {1, . . . , k} be minimal such that C ⊆
⋃

i∈J Vi. If |J | = 1, then there is nothing
to show. So suppose for contradiction that there are distinct i, j ∈ J . Then there must be points
a, b ∈ C such that a ∈ Vi and a /∈ Vl for all l ∈ J \ {i}, and b ∈ Vj and b /∈ Vl for all l ∈ J \ {j}.
By essential convexity of C and Corollary 14, the line segment L between a and b must contain an
interval I that lies in C. Since J is finite, there must be l ∈ J such that infinitely many points on
I are from Vl. By Lemma 7, all points on the line through a and b are from Vl; this contradicts the
choice of a and b. ut

The rest of the section is divided into two parts. We first prove that if S ⊆ Rk is a semi-algebraic
relation that is not essentially convex and this is witnessed by two rational points p and q, then
CSP((Γlin, S)) is NP-hard. In the second part, we prove that if S ⊆ Rk is a semi-linear relation that
is not essentially convex, then this is witnessed by rational points and, consequently, CSP((Γlin, S))
is NP-hard.

3.1 Semialgebraic relations and rational witnesses

We begin with the special case when S is a unary relation. The hardness proof is by a reduction
from CSP(({0, 1};R1/3)) where

R1/3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} .

This NP-complete problem is also called Positive One-In-Three 3Sat [16, LO4], which is the
variant of One-In-Three 3Sat where we have the extra requirement that in all input instances of
the problem, no clause contains a negated literal.

Lemma 16. Let S ⊆ R be a unary relation. If S excludes an interval and this is witnessed by
rational points p and q, then CSP((Γlin, S)) is NP-hard.

Proof. We know that there are rational numbers 0 < δ1 < δ2 < 1 such that p + (q − p)y 6∈ S
whenever δ1 ≤ y ≤ δ2. Let

a = sup{δ2 − δ1 | 0 < δ1 < δ2 < 1 and [p+ (q − p)δ1, p+ (q − p)δ2] ∩ S = ∅},
i.e., the least upper bound on the length (scaled to the interval [0,1]) of excluded intervals between
p and q. Choose rational numbers δ1, δ2 such that



– there exists y ∈ [δ1 − d, δ1] such that p+ (q − p)y ∈ S; and
– there exists y ∈ [δ2, δ2 + d] such that p+ (q − p)y ∈ S.
– S ∩ [p+ (q − p)δ1, p+ (q − p)δ2] = ∅.

where d = (δ2− δ1)/5. It is easy to see that such δ1, δ2 exist; we simply need to find δ1, δ2 such that
S ∩ [p + (q − p)δ1, p + (q − p)δ2] = ∅ and δ2 − δ1 is sufficiently close to a. Clearly, for any ε > 0,
there exist suitable δ1, δ2 such that a− (δ2 − δ1) < ε.

Now, define p′ = p+ (q − p)(δ1 − d), q′ = p+ (q − p)(δ2 + d), and

U(y) ≡ ∃z.(z = p′ + (q′ − p′)y ∧ S(z) ∧ 0 ≤ y ≤ 1).

Observe that U is pp-definable in Γlin ∪ {S} by Lemma 11 combined by the fact that p′ and q′

are rational numbers. We claim that U contains at least one point in the interval [0, d′], at least
one point in the interval [1− d′, 1], and no points in the interval [d′, 1− d′] where d′ = 1/7. Let us
consider the interval [0, d′]. The point (expressed in p and q) corresponding to y = 0 is p′ (which
equals p+ (q − p)(δ1 − d)) while the point corresponding to y = 1/7 is

p′ +
(q′ − p′)

7
= p+ (q − p)(δ1 − d) +

p+ (q − p)(δ2 + d)− p− (q − p)(δ1 − d)
7

= p+ (q − p)(δ1 − d) +
(q − p)((δ2 + d)− (δ1 − d))

7

= p+ (q − p)(δ1 − d) +
(q − p)(δ2 − δ1 + 2d)

7

= p+ (q − p)(δ1 − d) +
(q − p)(5d+ 2d)

7
= p+ (q − p)(δ1 − d) + (q − p)d
= p+ (q − p)δ1

We know that the choice of δ1 and δ2 implies that there is at least one point in S on the line
segment between p+ (q− p)(δ1− d) and p+ (q− p)δ1. The other two cases can be proved similarly.

We show NP-hardness by a polynomial-time reduction from CSP(({0, 1};R1/3)). Let φ be an
arbitrary instance of this problem and let V denote the set of variables appearing in φ. Construct
a formula

ψ ≡
∧

v∈V

U(v) ∧
∧

R1/3(vi,vj ,vk)∈φ

vi + vj + vk ≥
6
7
∧

∧
R1/3(vi,vj ,vk)∈φ

vi + vj + vk ≤
11
7
.

Lemma 11 implies that ψ is pp-definable in (R; {(x, y, z) | x + y = z}, {1},≤, U) (and, conse-
quently, pp-definable in (R; {(x, y, z) | x + y = z}, {1},≤, S)) and the formula can be constructed
in polynomial time. We now verify that the formula ψ has a solution if and only if φ has a solution.

Assume that there exists a satisfying truth assignment f : V → {0, 1} to the formula φ. We
construct a solution g for ψ as follows: arbitrarily choose a point t0 ∈ [0, d′] such that t0 ∈ U and a
point t1 ∈ [1− d′, 1] such that t1 ∈ U . Let g(v) = t0 if f(v) = 0 and g(v) = t1, otherwise. Clearly,
this assignment satisfies every literal of the type U(v). Each literal vi + vj + vk ≥ 6/7 is satisfied,
too, since g(vi) + g(vj) + g(vk) = 2 · t0 + t1 ≥ 2 · 0 + (1− d′) = 1− d′ = 6/7. Similarly, each literal
vi + vj + vk ≤ 11/7 is also satisfied: g(vi) + g(vj) + g(vk) = 2 · t0 + t1 ≤ 2 · d′ + 1 = 9/7.



Assume now instead that there exists a satisfying assignment g : V → R for the formula ψ. Each
variable obtains a value that is in either the interval [0, d′] or in the interval [1− d′, 1]. If a variable
is assigned a value in [0, d′], then we consider this variable ‘false’, i.e., having the truth value 0;
analogously, variables assigned values in [1− d′, 1] are considered ‘true’.

We continue by looking at an arbitrary literal R1/3(vi, vj , vk) in φ and its corresponding inequal-
ities (1) vi+vj +vk ≥ 6/7 and (2) vi+vj +vk ≤ 11/7. If all three variables are assigned values within
[0, d′], then their sum is at most 3d′ = 3/7 which violates inequality (1). If two of the variables
appear within [1−d′, 1], then their sum is a least 0+2(1−d′) = 12/7 which violates inequality (2);
naturally, this inequality is violated if all three variables appear within [1 − d′, 1], too. If exactly
one variable appears within [1− d′, 1], then the sum of the variables is at least 1− d′ = 6/7 and at
most 1 + 2d′ = 9/7. We see that both inequality (1) and (2) are satisfied. Hence, we can define a
satisfying assignment f : V → {0, 1} for φ:

f(v) =
{

0 if 0 ≤ g(v) ≤ d′

1 otherwise

This concludes the proof. ut

It is now straightforward to lift Lemma 16 to relations with arbitrary arities.

Lemma 17. Let S ⊆ Rk be a semi-algebraic relation that is not essentially convex, and this is
witnessed by two rational points p = (p1, . . . , pk) and q = (q1, . . . , qk). Let Γ be the structure
(Γlin, S). Then, CSP(Γ ) is NP-hard.

Proof. Define

U(y) ≡ ∃z̄.
k∧

i=1

zi = pi + (qi − pi)y ∧ S(z̄) ∧ 0 ≤ y ≤ 1

where z̄ = (z1, . . . , zk). By Corollary 14, U excludes an interval and CSP(Γ ) is NP-hard by
Lemma 16 since U is pp-definable in Γ . ut

Remark 18. If S is not essentially convex and this is witnessed by non-rational points only, then the
problem CSP(Γ ) for Γ = (R; {(x, y, z) | x+ y = z}, {1},≤, S) might still be solvable in polynomial
time. Consider for instance the binary relation

S = {(x, y)
∣∣ (|x+ y| ≤ 1) ∧ (y =

√
2x→ |x+ y| = 1)} .

Clearly, S is not essentially convex; however, the only witnesses are (
√

2− 1, 2−
√

2) and (−
√

2 +
1,−2 +

√
2) (see Figure 1).

We show that CSP(Γ ) can be solved in polynomial time. To see this, define

S′ = {(x, y) | (|x+ y| ≤ 1) ∧ (x 6= 0 ∨ y 6= 0)}

and ∆ = (R; {(x, y, z) | x + y = z}, {1},≤, S′}. We first prove that a primitive positive sentence
is true in Γ if and only if it is true in ∆. Clearly, if a primitive positive sentence is true in Γ ,
then it is also true in ∆, since the relations in ∆ are supersets of the corresponding relations in
Γ . Conversely, suppose that Φ is primitive positive and true in ∆. Let α be an assignment of the
variables of Φ that satisfies all conjuncts in Φ. Since ∆ is semi-linear, we can assume that α is



y=x√2

Fig. 1. Illustration of relation S

rational (see Lemma 19). The only relations that are different in Γ and in ∆ are the relations S
and S′. Since S′ \ S contains irrational points only, the assignment α shows that Φ is also true in
∆. Finally, CSP(∆) can be solved in polynomial time by the results in Section 5.1 (note that the
constraint |x+ y| ≤ 1 is equivalent to a conjunction of four linear inequalities). ut

3.2 Semilinear relations

In the previous section, we showed that there exists a relation S that is not essentially convex, this is
witnessed by non-rational points only, and CSP({(x, y, z) | x+y = z}, {1},≤, S) is polynomial-time
solvable. If we restrict ourselves to semi-linear relations, then this phenomenon cannot occur. By
semi-linearity, all equalities and inequalities are of degree one and use rational parameters only. In
particular, the boundary sets of excluded areas are rationally defined, and every excluded interval
is witnessed by rational points. This section gives a formal confirmation of this fact.

Lemma 19. Every non-empty semi-linear relation S contains at least one rational point.

Proof. Assume first that S is a non-empty unary relation such that S ∩ Q = ∅. If S contains
infinitely many points, then it also contains an interval due to o-minimality of S; this contradicts
that S∩Q = ∅. So we assume that S contains a finite number of points. Consider the unary relation
S′ = {min(S)} and note that it can be pp-defined in (Γlin, S) by S′(x) ≡ S(x) ∧ x ≤ p where p
denotes a suitably chosen rational number. By Theorem 10, S′ has a quantifier-free definition φ
over (R; +,−,≤) with parameters from Q, and we can without loss of generality assume that φ
is in disjunctive normal form, and contains a single disjunct since |S′| = 1. Assume without loss
of generality that every conjunct of this disjunct of φ is of one of the following forms: x ≥ c,
x ≤ c, or x 6= c (where c denotes some rational number). Let a = max{c | (x ≥ c) ∈ φ} and
b = min{c | (x ≤ c) ∈ φ}. If a = b then S′ = {a} and we have a contradiction since a is a
rational number. If a < b, then S′ contains an infinite number of points (regardless of the number
of disequality constraints in φ) and we have a contradiction once again.

Assume now that ar(S) = d > 1. Arbitrarily choose a point s = (s1, . . . , sd) ∈ S with a
maximum number of rational components. Assume without loss of generality that s1, . . . , sk′ , k′ < k



are rational points and consider the unary relation

U(xk) ≡ ∃x1, . . . , xk−1.(S(x1, . . . , xk) ∧ x1 = s1 ∧ · · · ∧ xk′ = sk′).

We get a contradiction since U ∩Q = ∅, U is non-empty, and U is semi-linear. ut

Corollary 20. Let S ⊆ Rk be a semi-linear relation and let s ∈ S be arbitrary. Then, every open
k-dimensional ball B around s of radius ε > 0 contains a rational point in S.

Proof. If there is an ε such that B does not contain any rational point in S, then there is a linear
set P within B such that S ∩ P only contains irrational points. This contradicts Lemma 19. ut

A hyperplane is a set V = {x ∈ Rk | p(x) = 0} where p is a linear term such that ∅ ⊂ V ⊂ Rk

(this makes sure that the degree of p is one). We do not require that the coefficients in p are rational;
it is important to note that this differs from the definition of a linear set. If all coefficients appearing
in p are rational, then we say that the hyperplane is rational.

Lemma 21. If T is a semi-linear relation that is not essentially convex, then this is witnessed by
rational points, and CSP((Γlin, T )) is NP-hard.

Proof. If there are rational witnesses of the fact that T is not essentially convex, then NP-hardness
follows from Lemma 17 and we are done.

Assume now that there exists a relation T that is not essentially convex but T lacks rational
witnesses. Arbitrarily choose such a T with minimal arity k. We first consider the case when k = 1.
Arbitrarily choose witnesses p, q ∈ T . By o-minimality, there are finitely many intervals I1, . . . , Im
with endpoints in R ∪ {±∞} and a finite set D0 ⊆ R such that T = D0 ∪

⋃m
i=1 Ii. Now, apply the

following process to D0 and I1, . . . , Im.

– if there is a point d ∈ D0 and an interval Ij , 1 ≤ j ≤ m, such that d is in Ij , then remove d
from D0 and replace Ij with Ij ∪ {d};

– repeat until D0 is not changed.

After these modifications, the sets I1, . . . , Im are still (open, half-open, or closed) intervals, and
for every point d ∈ D0, there exists an εd > 0 such that [d− εd, d+ εd] ∩ T = {d}.

Assume without loss of generality that p 6∈ Q. If p ∈ D0, then choose rational numbers p−, p+

such that p − εp < p− < p < p+ < p + εp; this is always possible since the rationals are a dense
subset of the reals. Consider the semi-linear relation

T ′(x) ≡ T (x) ∧ p− ≤ x ≤ p+

and note T ′ = {p}. However, p is not a rational number which contradicts Lemma 19. We may thus
assume that p 6∈ D0 and that p is a member of an interval I ∈ {I1, . . . , Im}. Arbitrarily choose one
rational point p′ ∈ I; once again, this is possible since the rationals are a dense subset of the reals.
Note that p′, q witness that T is not essentially convex. If q ∈ Q, then we are done so we assume
that q 6∈ Q. We see that q 6∈ D0 by reasoning as above. Consequently, q is a member of an interval
J ∈ {I1, . . . , Im} and I 6= J . Finally choose a rational point q′ ∈ J and note that p′, q′ are rational
points witnessing that T is not essentially convex.

Assume instead that k > 1. Let Sk denote the set of relations S that satisfy 1, 2, and 3:



1. S is a semi-linear relation of arity k,
2. S is not essentially convex, and
3. for every pair of witnesses that S is not essentially convex, at least one is irrational.

We now conclude the proof by considering two different cases.

Case 1: There exists an S ∈ Sk and a finite set of rational hyperplanes H1, . . . ,Hh such that
S ⊆

⋃h
j=1Hj . Choose the hyperplanes such that h is minimal. Let v, w ∈ S be arbitrarily chosen

witnesses for the fact that S excludes an interval, and let I denote this interval.
Suppose first that h = 1, i.e., that there is a single hyperplane H such that S ⊆ H. Obviously,

x = (x1, . . . , xk) ∈ H ⇔ c1x1 + . . . + ckxk = c0 for some rational constants c0, . . . , ck. We assume
without loss of generality that at least one ci, say ck, is non-zero. Define the relation S′ by

S′(x1, . . . , xk−1) ≡ ∃y.(S(x1, . . . , xk−1, y) ∧ y =
c0 − c1x1 − . . .− ck−1xk−1

ck
) .

Let v′ = (v1, . . . , vk−1) and w′ = (w1, . . . , wk−1), and note that v′, w′ are witnesses of an excluded
interval in S′. If S′ lacks rational witnesses of essential non-convexity, then the fact that S′ has
arity k − 1 contradicts the choice of T . Hence, S′ has two rational witnesses t = (t1, . . . , tk−1) and
u = (u1, . . . , uk−1). This implies that

t′ =
(
t1, . . . , tk−1,

c0 − c1t1 − . . .− ck−1tk−1

ck

)
and

u′ =
(
u1, . . . , uk−1,

c0 − c1u1 − . . .− ck−1uk−1

ck

)
are rational witnesses for S, which leads to a contradiction.

Next, suppose that h ≥ 2. Let H ′
1 = S ∩ (H1 \

⋃h
j=2Hj) and H ′

2 = S ∩ (H2 \
⋃

j∈{1,3,...,h}Hj).
By the minimal choice of h, H ′

1 and H ′
2 are non-empty. Furthermore, they are semi-linear so we can

choose rational points pi ∈ H ′
i, 1 ≤ i ≤ 2, by Lemma 19. We now claim that at most a finite number

of points on the line segment between p1 and p2 lie in S. Suppose to the contrary that infinitely
many points lie on the line segment. Then, there must be one Hi, i ≥ 1, such that infinitely many
points from Hi lie on the line segment. Hence, Hi (since it is a variety) must contain the entire line
by Lemma 7. This leads to a contradiction since p1 and p2 are chosen so that |{p1, p2} ∩Hj | ≤ 1,
1 ≤ j ≤ h. Thus, we have found rational witnesses for essential non-convexity of S and obtained a
contradiction since S ∈ Sk.

Case 2: There is no S ∈ Sk such that there exists a finite set of rational hyperplanes H1, . . . ,Hh

and S ⊆
⋃h

j=1Hj . Arbitrarily choose S ∈ Sk, let v, w ∈ S be arbitrarily chosen witnesses for the
fact that S excludes an interval, and let I denote such an interval.

If there exists a rational hyperplane H such that {v, w} ⊆ S ∩H, then the semi-linear relation

S′(x1, . . . , xk) ≡ S(x1, . . . , xk) ∧H(x1, . . . , xk)

excludes an interval and this is witnessed by v and w. Obviously, S′ ∈ Sk and S′ ⊆ H. This
contradicts the assumptions for this case so we assume that {v, w} (and consequently I) do not lie
on any rational hyperplane.

Next, we prove a couple of facts.



Fact 1: I ⊆ S̄ \ S. We show that there is no point e ∈ I and an ε > 0 such that the open k-
dimensional ball B around e with radius ε satisfies B ∩ S = ∅. Assume to the contrary that there
is a point e ∈ I satisfying this condition. By Corollary 20, there exist rational points in S arbitrary
close to v and w. Thus, one can find rational points v′, w′ ∈ S such that the line segment L between
v′ and w′ passes through B and L′ = L ∩ B has non-zero length. In other words, v′ and w′ are
rational witnesses of an excluded interval and we have obtained a contradiction.

Fact 2: There exists a finite set {H1, . . . ,Hh} of rational hyperplanes such that S̄ \ S ⊆
⋃h

i=1Hi.
Let φ be a first-order definition of S and let ψ = D1 ∨ ...∨Dn be a quantifier-free definition of S in
disjunctive normal form; such a ψ exists due to Theorem 10. Note that every parameter appearing
in ψ is rational: initially, every parameter in φ is rational, the quantifier elimination does not add
any irrational parameters, and the conversion to disjunctive normal form does not introduce any
new parameters. Let l1, . . . , lm denote the literals appearing in φ. For each li ≡ p(x1, . . . , xk) r 0
(where r ∈ {≤, <,=, 6=, >,≥}), create a hyperplane Hi = {(x1, . . . , xk) ⊆ Rk | p(x1, . . . , xk) = 0}.
In other words, we let the boundary of the subspace defined by li define a hyperplane Hi. It is now
easy to see that S̄ \ S ⊆ ∂S ⊆

⋃m
i=1Hi. Furthermore, every hyperplane H1, . . . ,Hm is rational.

We are now ready to prove the second case of the proof. By Fact 1, I ⊆ S̄ \ S. The set S̄ \ S is
a subset of

⋃h
i=1Hi where H1, . . . ,Hh are rational hyperplanes by Fact 2. Hence, I is a subset of

some Hi by Proposition 15, a contradiction. ut

4 Essentially Convex Relations

Before we present a logical characterization of essentially convex semi-algebraic relations, we give
examples that show that two more naive syntactic restrictions of first-order formulas are not power-
ful enough for defining all essentially convex semi-algebraic relations. Both of those restrictions are
motivated by classes of essential convex semi-linear relations that have appeared in the literature,
cf. [21]. When S is a subset of Rn, we write ¬S for the complement of S, i.e., for Rn \ S.

We start with an example that shows that not every essentially convex semi-algebraic relation
can be defined by conjunctions of first-order formulas of the form

p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ

where p1, . . . , pk are polynomials with coefficients from R, and where φ defines a convex set. It is
easy to see that every relation that can be defined by such a conjunction is essentially convex.

See Figure 2, left side. The figure shows a 1-dimensional variety C ⊆ R2, given as {(p(t), q(t)) | t ∈
R} for polynomials p and q. The figure also shows two marked segments S1, S2 on the curve C. The
marked segments are chosen such that one end point is contained in interior of the convex hull of
the other three end points of the segments.

Let S be the set ¬C ∪ S1 ∪ S2. Clearly, S is essentially convex. Now, suppose for contradiction
that S has a definition ψ as described above. Let H be the convex hull of S1 ∪ S2. The crucial
observation is that the set G := (H ∩C) \ (S1 ∪ S2) is infinite. Since no point from G is in S, there
must be a conjunct p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ in ψ that excludes infinitely many points from G. In
particular, the variety V defined by p1 = · · · = pk = 0 contains infinitely many points from C. As
in the proof of Lemma 7, one can see that V must contain C. Hence, all points in S1 ∪ S2 must
satisfy φ; but in this case, all points in G satisfy p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ, a contradiction.
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Fig. 2. Examples of essentially convex relations.

Our first example might motivate the following notion of definability: we consider conjunctions
of formulas of the form p1 6= 0∨ · · · ∨ pk 6= 0∨ φ such that for every conjunction of linear equalities
ψ that implies pi = 0 for all i ≤ k, the set defined by φ ∧ ψ is convex. The set described above
can indeed be defined by such a formula. Similarly as before, it is also easy to see that all relations
that can be defined in such a way are essentially convex. However, we again have an example of a
semi-algebraic essentially convex relation that cannot be defined by such a conjunction.

See Figure 2, right side. The figure shows the boundary B of a doubly infinite cone with apex o.
On the boundary, there is a straight line segment L through o, and a circle C that cuts L. Let S be
the set ¬B∪C∪(L\{o}). It can be verified that S is essentially convex. However, we claim that there
is no conjunction as described above that defines S. The reason is that when p1 6= 0∨· · ·∨pk 6= 0∨φ
is such that p1 = 0 ∧ · · · ∧ pk = 0 describes B, and if φ contains C ∪ (L \ {o}), then it must also
contain o in order that p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ meets the required condition. However, the set
¬B ∪ C ∪ L is not essentially convex since o and points from the cycle exclude an interval.

The correct definition of formulas that correspond to essentially convex sets has to take these
examples into account. We call these formulas convex Horn formulas. Basically, a convex Horn
formula is a conjunction of implications p1 = ... = pk = 0 → φ such that the premise defines a
variety V , and the formula φ is again convex Horn when restricted to any convex subset of V .
Formally, we have the following definition.

Definition 22. The set of convex Horn formulas is the smallest set of first-order formulas such
that

– all formulas defining convex closed semi-algebraic relations over (R; +, ∗,≤) with parameters
from R are convex Horn;

– Suppose that p1, . . . , pk are polynomials, φ is a first-order formula that defines a set U ⊆ Rn,
and for every semi-algebraic convex set C contained in the set defined by p1 = · · · = pk = 0, the



set C ∩ U can be defined by a convex Horn formula, and has strictly smaller dimension than
the set defined by ψ ≡ (p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ). Then ψ is also convex Horn.

– Finite conjunctions of convex Horn formulas are convex Horn.

For example, the formula (x2 − y 6= 0) ∧ (y ≥ 1), describing the half-plane above y = 1 with
exception of the standard parabola, is convex Horn. Every convex set C contained in the set defined
by x2 − y = 0 consists of at most one point, and hence is 0-dimensional and can be defined by a
convex Horn formula.

We can prove properties about the set of all convex Horn formulas by induction over the level
of a convex Horn formula, which is defined as follows. The level of a formula that defines a convex
closed semi-algebraic relation is 0. Now, suppose we have already defined convex Horn formulas of
level smaller than i, and let ψ be a convex Horn formula that does not have level smaller than i.
Then ψ has level i if it is the finite conjunction of formulas ψ′ ≡ (p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ) such
that for every semi-algebraic convex set C contained in the set defined by p1 = · · · = pk = 0, the
intersection of C with the set defined by φ is convex Horn, has level at most i − 1, and strictly
smaller dimension than the set defined by ψ′. Since the intersection of sets of dimension n has at
most dimension n, it follows directly from the definition of convex Horn formulas that the level of
a convex Horn formula φ is bounded by the dimension of the set defined by φ.

Looking back at the formula (x2− y 6= 0)∨ (y ≥ 1), we claim that it is convex Horn of level one:
every convex set contained in the parabola consists of at most one point, and can hence be described
by a convex Horn formula of level zero. For another example, consider (x2 − y 6= 0) ∨ (z ≥ 0), i.e.,
the same parabola in three dimensions on one side side of the x-y-plane. Each convex subset of
x2−y = 0 is a point, a straight line, or a line segment in the z direction and can again be described
by a level zero convex Horn formula.

We are now ready to logically define essentially convex semi-algebraic sets via convex Horn
formulas. This is done in two steps; we first prove (in Proposition 23) that every set defined by
a semi-algebraic convex Horn formula is essentially convex. The rest of the section is devoted to
proving the other direction—the final result can be found in Theorem 27.

Proposition 23. Any set S defined by a convex Horn formula ψ over (R; ∗,+,≤) is essentially
convex.

Proof. Our proof is by induction over the level of ψ. Let m denote the number of free variables
in ψ. If the level of ψ is 0, then S = {x ∈ Rm | ψ(x)} is a closed convex set and, in particular,
essentially convex.

Assume that all relations defined by convex Horn formulas of level < i are essentially convex.
Arbitrarily choose a convex Horn formula ψ ≡ p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ with level i. Define
S = {x ∈ Rm | ψ(x)}, V = {x ∈ Rm | p1(x) = · · · = pk(x) = 0}, and U = {x ∈ Rm | φ(x)}. Since ψ
is level-i convex Horn, we know that for every semi-algebraic convex set C such that C ⊆ V , the set
C ∩ U can be defined by a convex Horn formula of level smaller than i and dim(C ∩ U) < dim(S).

Suppose for contradiction that there are a, b ∈ S and an infinite set I of points on the line
segment L between a and b that is not contained in S. In particular, I ⊆ V since S = ¬V ∪ U . By
Lemma 7, all points on the line through a and b are in V . However, a and b are in S and therefore
in U so L∩U is not essentially convex. We now note that L is a semi-algebraic convex set that is a
subset of V so L∩U can be defined by a convex Horn formula of level smaller than i. Consequently,
L ∩ U is essentially convex by the inductive assumption which leads to a contradiction.



Finally, suppose that ψ is a finite conjunction of convex Horn formulas of level at most i. Since
the intersection of finitely many essentially convex relations is essentially convex, we are done also
in this case. ut

Next, we need some preparations for the proof of the converse implication (Theorem 27): we
show that semi-algebraic relations can be defined by a special type of formula (Lemma 25), and
that the closure S̄ of an essentially convex relation S is convex (Lemma 26).

Definition 24. Let S be a semi-algebraic relation. We say that a first-order formula φ is a standard
definition of S if

– φ(x1, . . . , xk) defines S ⊆ Rk over (R; ∗,+,−,≤) with parameters from R;
– φ is in quantifier-free conjunctive normal form;
– if we remove any literal from φ, then the resulting formula is not equivalent to φ; and
– all literals are of the form t ≤ 0 or t 6= 0.

Lemma 25. Every semi-algebraic relation S has a standard definition. If S is even semi-linear,
then it has a standard definition φ that does not involve the function symbol for multiplication and
irrational parameters.

Proof. By Theorem 8, we know that S has a quantifier-free definition over (R; ∗,+,≤) with param-
eters from R, and it is clear that such a definition can be rewritten in conjunctive normal form φ.
Replace a clause α in φ with a literal of the form a < b by two clauses α1 and α2 obtained from α by
replacing a < b by a ≤ b and by a 6= b, respectively. In the same way we can eliminate occurrences
of a = b from φ using ≤. Literals of the form a ≤ b (a 6= b) can then be replaced by a − b ≤ 0
(and a− b 6= 0, respectively). Finally, we remove literals from φ as long as the resulting formula is
equivalent to the original formula.

If S is semi-linear, then by Theorem 10 we know that S has a quantifier-free definition over
(R; +,−,≤) with parameters from Q, and it is then clear that the formula constructed from φ
as above will be a standard definition of S without the function symbol for multiplication and
irrational parameters. ut

Lemma 26. The closure S̄ of an essentially convex relation S is convex.

Proof. Let a, b ∈ S̄. We will show that all points c on the line segment between a and b are in S̄.
We have to show that for every ε > 0 there is a point c′ in S such that the distance between c
and c′ is smaller than ε. Since a ∈ S̄ and b ∈ S̄, there are points a′ ∈ S and b′ ∈ S that are closer
than ε/2 to a and b, respectively. Let L be the line from a′ to b′. It is clear that there are infinitely
many points on L that are at distance less than ε from c. Hence, since a′ and b′ are in S and S is
essentially convex, there must be one such point in S, and we are done. ut

Theorem 27. A semi-algebraic relation S ⊆ Rn is essentially convex if and only if it has a con-
vex Horn definition. Moreover, when S is even semi-linear then S has a semi-linear convex Horn
definition.

Proof. We have already seen in Proposition 23 that every relation defined by a convex Horn formula
is essentially convex. We now show the more difficult implication of the statement. Let φ be a
standard definition of S. The proof is by induction on the dimension d of S. For d = 0, the set S
consists of at most one point, and the statement is trival. Otherwise, if |S| ≥ 2, then by essential
convexity, Corollary 14, and Lemma 6 we have that dim(S) ≥ 1.



For d > 0, we will construct two formulas φ1, φ2 such that φ is equivalent to φ1∧φ2. Thereafter,
we will show that φ1 is equivalent to a conjunction of convex Horn formulas, and that φ2 defines a
closed convex relation (and consequently is convex Horn). Since finite conjunctions of convex Horn
formulas are also convex Horn, φ is then equivalent to a convex Horn formula.

We begin by writing all clauses of φ as α → β where α is either ‘true’ or a conjunction of
polynomial equalities and β is either ‘false’ or a disjunction of inequalities. This is always possible
since a clause

(p1 ≤ 0 ∨ · · · ∨ pk ≤ 0 ∨ q1 6= 0 ∨ · · · ∨ qm 6= 0)

is logically equivalent to

(q1 = 0 ∧ · · · ∧ qm = 0) → (p1 ≤ 0 ∨ · · · ∨ pk ≤ 0).

Next, we rewrite all clauses α → β where α is not equal to ‘true’, as (α → (β ∧ φ)). Let φ1 be
the conjunction of all the implications of the type (α → (β ∧ φ)) and φ2 the conjunction of the
remaining implications, i.e., those of the type (true → β). The formula φ1 ∧φ2 is clearly equivalent
to the formula φ.

We begin by studying the formula φ1. Let α→ (β ∧φ) be a clause from φ1, let V be the variety
defined by α, and let U be the set defined by β ∧ φ. Observe that U ⊆ S. We now show that the
intersection of the set U with a semi-algebraic convex set C ⊆ V can be defined by a convex Horn
formula. We make two claims about the set U ∩ C:

Claim 1. U ∩ C is essentially convex. For arbitrary points a, b ∈ U ∩ C, let Lab denote the line
segment from a to b, and Xab = {x ∈ Lab | x 6∈ U ∩ C}. Suppose for contradiction that there exist
a, b ∈ U ∩C such that Xab is an infinite set. Since a, b ∈ C and C is convex, Lab ⊆ C which implies
that Xab = {x ∈ Lab | x 6∈ U}. Moreover, C ⊆ V so Xab ⊆ V . Now recall that a, b ∈ S since
U ∩ C ⊆ U ⊆ S: thus, there are infinitely many points (those that are in Xab) between a, b ∈ S
that are in V but not in U . This shows that no point in Xab satisfies α→ (β ∧φ), and Xab ∩S = ∅.
This fact contradicts the essential convexity of S.

Claim 2. U ∩C has smaller dimension than S. Let T be the set S \ (U ∩C). It suffices to show that
U ∩ C is a subset of T̄ \ T , because Lemma 6 asserts that dim(T̄ \ T ) < dim(T ) ≤ dim(S).

The set S must contain a point p that is not in V , because if S ⊆ V then we could replace the
clause of φ that was re-written to α → (β ∧ φ) by β and obtain a formula that is equivalent to φ;
this contradicts the assumption that φ is a standard definition of S.

To show that (U ∩ C) ⊆ T̄ \ T , let x be an arbitrary point in U ∩ C. Only finitely many points
on the line segment between p and x can be from (U ∩ C) ⊆ V , because otherwise Proposition 15
implies that V must contain the entire line between x and p, including p, a contradiction. Also the
set S contains all but finitely many points on the line segment between p and x: this is by essential
convexity of S, since x ∈ U ∩ C ⊆ S and p ∈ S. Hence, we can choose a sequence of points from
T = S \ (U ∩ C) on this line segment that approaches x, which shows that x ∈ T̄ .

Since U ∩C is semi-algebraic, essentially convex, and has smaller dimension than S, it follows by
the inductive assumption that it can be defined by a convex Horn formula. Thus, φ1 is equivalent
to a finite conjunction of convex Horn formulas.

We claim that φ2 defines a closed convex setD. This follows from Lemma 26, sinceD is in fact the
closure of S. To see this, observe that D is clearly a closed set, D contains S, and hence S̄ ⊆ D̄ = D.
To prove that D ⊆ S̄, let y be from D \ S. Consider the clauses α1 → (β1 ∧ φ), . . . , αl → (βl ∧ φ)
of φ1, and let Vi, for 1 ≤ i ≤ l, be the variety {x ∈ Rk | x satisfies αi}. There must be a point q in



S that is not contained in the set W =
⋃

i≤l Vi; otherwise, Proposition 15 implies that there exists
an i ≤ l such that S ⊆ Vi. In other words, all points in S satisfy αi. This is in contradiction to the
assumption that φ is a standard definition of S, since in this case the formula φ is equivalent to
the formula where the clause of φ that has been rewritten to αi → (βi ∧ φ) is replaced by βi. Only
finitely many points on the line segment L between q and y can be from W , because otherwise
Lemma 7 implies that W contain the entire line between y and q, including q, a contradiction.
Hence, y ∈ S̄.

Finally, consider the case that S is semi-linear. By Lemma 25, we can choose φ to be a standard
definition which is semi-linear (and only uses parameters in Q). Then the proof above leads to a
semi-linear convex Horn definition of S. ut

5 Applications

5.1 Semi-linear constraint languages

We will now show that a finite semi-linear expansion Γ of Γlin has a polynomial-time tractable
constraint satisfaction problem if and only if all relations of Γ are essentially convex.

Recall that a relation is semi-linear if it has a first-order definition in (R; +, 1,≤). A quantifier-
free first-order formula in CNF is called Horn-DLR [21] (where ‘DLR’ stands for disjunctive linear
relations) if its clauses are of the form

p1 6= 0 ∨ · · · ∨ pk 6= 0

or of the form
p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ p0 ≤ 0

where p0, p1, . . . , pk are linear terms with rational coefficients. A semi-linear relation is called Horn-
DLR if it can be defined by a Horn-DLR formula. The constraint satisfaction problem for Horn-
DLRs can be solved in polynomial time.

Theorem 28 (see [10, 21, 22]). Let Γ be a structure with domain R whose relations are Horn-
DLR. Then CSP(Γ ) is in P.

In this section, we show the following.

Theorem 29. Let Γ = (Γlin, S1, . . . , Sl) be a constraint language such that S1, . . . , Sl are semi-
linear relations. Then, either each relation S1, . . . , Sl is Horn-DLR and CSP(Γ ) is in P, or CSP(Γ )
is NP-complete.

In order to prove Theorem 29, we need to characterize convex and essentially convex semi-linear
relations. This is done in Lemma 30 and Theorem 31, respectively.

Let P1, . . . , Pn be (possibly unbounded) polyhedra defined such that Pi = {x ∈ Rk | Aix ≤ bi}.
Bemporad et al. [3] define the envelope of P1, . . . , Pn (env(P1, . . . , Pn)) as the polyhedron

{x ∈ Rk | A′
1x ≤ b′1, . . . , A

′
nx ≤ b′n}

where A′
ix ≤ b′i is the subsystem of Aix ≤ bi obtained by removing all the inequalities not valid for

the other polyhedrons P1, . . . , Pi−1, Pi+1, Pn. We note that if P1, . . . , Pn are defined with coefficients
from Q, then env(P1, . . . , Pn) can be described by rational coefficients, too. By combining Theorem 3
with Remark 1 in Bemporad et al., it follows that

⋃n
i=1 Pi is convex if and only if

⋃n
i=1 Pi =

env(P1, . . . , Pn).



Lemma 30. A closed semi-linear relation S is convex if and only if it has a primitive positive
definition in (R; +, 1,≤).

Proof. It is straightforward to verify that relations with a primitive positive definition in (R; +, 1,≤)
are convex; each relation defines a convex set and the intersection of convex sets is convex itself.

For the converse, let φ = ψ1 ∨ . . .∨ψm be a quantifier-free definition of S over (R; +,−,≤) with
parameters from Q, written in disjunctive normal form. If there is a disjunct ψi that contains a
literal p 6= q, for linear terms p and q, then split the disjunct into two; one containing p− q < 0 and
one containing p− q > 0. By repeating this process, every literal p 6= q can be removed. Similarly,
every literal p = q can be replaced by p − q ≤ 0 ∧ q − p ≤ 0. Thus, we may assume that every
literal appearing in the ψi is of the type p ≤ 0 or p < 0, for a linear term p. Let D1, . . . , Dm be the
sets defined by ψ1, . . . , ψm, respectively.

Now recall that the topological closure operator preserves finite unions, i.e., D̄1 ∪ · · · ∪ D̄m =
D1 ∪ · · · ∪Dm. Hence,

S = D1 ∪ · · · ∪Dm ⊆ D̄1 ∪ · · · ∪ D̄m = D1 ∪ · · · ∪Dm = S̄ = S

and S = D̄1 ∪ · · · ∪ D̄m. We now note that if P = {x ∈ Rk | Ax ≤ b, Cx < d} and P 6= ∅,
then P̄ = {x ∈ Rk | Ax ≤ b, Cx ≤ d}, cf. Case (i) of Proposition 1.1 in [17]. Thus, each
D̄i = {x ∈ Rk | Aix ≤ bi} for some rational Ai, bi. Furthermore, S =

⋃m
i=1 D̄i is convex so

S = env(D̄1, . . . , D̄m) by Bemporad et al.’s result. This implies that S = {x ∈ Rk | C1x ≤
d1, . . . , Cmx ≤ dm} for some rational matrices C1, . . . , Cm and rational vectors d1, . . . , dm. It is
easy to see that each Cix ≤ di is pp-definable in (R; +, 1,≤) by the same technique as in the proof
of Lemma 11, and this concludes the proof. ut

Theorem 31. A semi-linear relation S is essentially convex if and only if S is Horn-DLR.

Proof. We first prove that every Horn-DLR relation S is essentially convex. Let φ be a Horn-
DLR definition of S. Suppose for contradiction that there are a, b ∈ S and an infinite set I of
points on the line segment L between a and b is not contained in S. Since φ has finitely many
conjuncts, there is a conjunct ψ in φ that is false for an infinite subset I ′ of I. If ψ is of the form
p1 6= 0∨ · · · ∨ pk 6= 0, then all points in I ′ satisfy p1 = · · · = pk = 0. By Lemma 7, the entire line L
satisfies p1 = · · · = pk = 0. This contradicts the assumption that a ∈ L and b ∈ L satisfy φ. If ψ is
of the form p1 6= 0∨ · · · ∨ pk 6= 0∨ p0 ≤ 0, then all points in I ′ satisfy p1 = · · · = pk = 0 and p0 > 0.
Again by Lemma 7 we find that both a and b must satisfy p1 = · · · = pk = 0. Since a, b also satisfy
ψ, we conclude that both points satisfy p0 ≤ 0. But then also all points in L must satisfy p0 ≤ 0,
which contradicts the fact that the points in I ′ satisfy p0 > 0.

The other direction of the statement can be derived from Theorem 27 as follows. Let S be an
essentially convex semi-linear relation. By Theorem 27, S has a semi-linear convex Horn definition
ψ. We prove by induction on the level of ψ that ψ is Horn-DLR. If the level is 0, then S is closed
and convex and the claim follows from Lemma 30. Now suppose that ψ has level i > 0 and is of
the form p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ ψ′, where p1 = · · · = pk = 0 defines a set V , and ψ′ defines a set
U such that for every semi-algebraic convex set C ⊆ V the set C ∩ U has a convex Horn definition
of level strictly smaller than i. Since ψ is semi-linear, the terms p1, . . . , pk are linear. Hence, V
is convex, and by taking C := V in the statement above we see that V ∩ U has a convex Horn
definition of level strictly smaller than i. By the inductive assumption, V ∩ U has a definition by
a Horn-DLR formula φ with clauses φ1, . . . , φm. Then φ′ =

∧
1≤i≤m(p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φi) is

clearly Horn-DLR. We claim that φ′ defines S. First suppose that a ∈ ¬V . In this case, a clearly



satisfies φ′ and this is justified by the fact ¬V ⊆ S. Suppose instead that a ∈ V . Then a satisfies
φ′ if and only if it satisfies φ, and since φ defines V ∩U this is the case if and only if a satisfies ψ′.

Finally, the statement holds if ψ is the conjunction of finitely many convex Horn formulas (which
are Horn-DLR by inductive assumption). ut

Proof (of Theorem 29). If all relations of Γ are Horn-DLR, then CSP(Γ ) can be solved in poly-
nomial time (Theorem 28). Otherwise, if there is a relation S from Γ that is not Horn-DLR,
then Theorem 31 shows that S is not essentially convex, and NP-hardness of CSP(Γ ) follows by
Lemma 21.

So we only have to show that CSP(Γ ) is in NP. Let Φ be an arbitrary instance of CSP(Γ ).
By Theorem 10 every relation of Γ has a quantifier-free definition in conjunctive normal form
over (R; +,−,≤) with rational parameters. One can now non-deterministically guess one literal
from each clause of in the defining formula for each constraint and verify – in polynomial-time by
Theorem 28 – that all the selected literals are simultaneously satisfiable. ut

5.2 Generalized linear programming

In this section, we study generalizations of the following problem.

Linear Programming (LP)
INPUT: A finite set of variables V , a vector c ∈ Q|V |, a number M ∈ Q, and a finite set of linear
inequalities of the form a1x1 + · · · + anxn ≤ a0 where x1, . . . , xn ∈ V and a0, . . . , an ∈ Q. All
rationals are given by numerators and denominators represented in binary.
QUESTION: Is there a vector x ∈ R|V | that satisfies the inequalities and cTx ≥M?

We generalize LP as follows. Let Γ be a structure (Γlin, R1, . . . , Rm) such that R1, . . . , Rm are
semi-linear relations.

Generalized Linear Programming for Γ (GLP(Γ ))
INPUT: A finite set of variables V , a vector c ∈ Q|V |, a number M ∈ Q, and a finite set Φ of
expressions of the form R(x1, . . . , xk) where R is a relation from Γ and x1, . . . , xk ∈ V .
QUESTION: Is there a vector x ∈ R|V | that satisfies the constraints and cTx ≥M?

This can indeed be viewed as a generalization of LP because of Proposition 12: the problem LP
is polynomial-time equivalent to the problem GLP(Γlin).

Theorem 32. Let Γ = (R;Γlin, R1, . . . , Rl) be a structure with semi-linear relations R1, . . . , Rl.
Then, either each Ri is Horn-DLR and GLP(Γ ) is in P, or GLP(Γ ) is NP-hard.

Proof. If there is an Ri that is not Horn-DLR, then the relation Ri is not essentially convex by
Theorem 31, and CSP((Γlin, Ri)) is NP-hard by Theorem 29. Clearly, GLP(Γ ) is NP-hard, too.

Assume instead that each Ri is Horn-DLR. We present an algorithm that actually solves a more
general problem that includes GLP(Γ ). Let Φ be an arbitrary satisfiable Horn-DLR formula6 over
variable vector x̄ = (x1, . . . , xn) and let c be a rational n-vector.
6 Note that if we are given an instance of CSP((Γlin, R1, . . . , Rl)), then it can be transformed into an

equivalent Horn-DLR formula in polynomial time since there is only a finite number of relations in the
given structure. Hence, there is no loss of generality in considering Horn-DLR formulas instead of CSP
instances. Also note that the resulting formula is (up to a multiplicative constant depending on the
structure) of the same size as the CSP instance.



We assume additionally that Φ∧D is satisfiable for every disequality literal (i.e., literal p(x̄) 6= a)
D appearing in Φ. If Φ∧D is not satisfiable, then every occurrence of D in Φ can be removed without
changing the set defined by the formula. Furthermore, this check can be carried out in polynomial
time by Theorem 28. Hence, we may assume that Φ has this additional property (which we will
refer to as (∗)) without loss of generality. Let Φ = Φ′ ∧ Φ′′ where Φ′ consists of the clauses not
containing any disequality literal p(x̄) 6= a, and Φ′′ consists of the remaining clauses.

Given Φ, our algorithm returns one of the following three answers:

– ‘unbounded’: for every K ∈ Q, there exists a solution y such that cT y ≥ K;
– ‘optimum: K’: there exists a K ∈ Q and a solution y such that cT y = K, but there is no solution
y′ such that cT y′ > K;

– ‘optimum is arbitrarily close to K’: there exists a K ∈ Q such that there is no solution y
satisfying cT y ≥ K, but for every ε > 0 there is a solution y′ with cT y′ ≥ K − ε.

We claim that the following algorithm solves the task described above in polynomial time.

Step 1. Maximize cT x̄ over Φ′ (by using some polynomial-time algorithm for linear programming).
Let K denote the optimum. If K = ∞, then return ‘unbounded’ and stop.

Step 2. Check whether Φ ∧ cT x̄ = K is satisfiable. Note that cT x̄ = K has a primitive positive
definition in Γlin, which furthermore can be computed in polynomial time by Lemma 11. Therefore
this check can be reduced to deciding satisfiability of Horn-DLRs. If Φ ∧ cT x̄ = K is satisfiable,
then return ‘optimum: K’. If this is not the case, then return ‘optimum is arbitrarily close to K’.

We first show that the algorithm runs in polynomial time. Step 1 takes polynomial time since
maximizing cT x̄ over Φ′ is equivalent to solving a linear program with size polynomially bounded
in the size of Φ. Finally, Step 2 takes polynomial time due to Lemma 11 and Theorem 28.

Next, we prove the correctness of the algorithm. Correctness is obvious if the algorithm answers
‘optimum: K’ in Step 2. For the remaining cases, we need to make a couple of observations. Define
S = {x ∈ Rn | x satisfies Φ} and S′ = {x ∈ Rn | x satisfies Φ′}. Let D1, . . . , Dm denote the
disequality literals appearing in Φ. Let Hi = {x ∈ Rn | x does not satisfy Di}, 1 ≤ i ≤ m, and note
that each Hi is a hyperplane.

Observation 1. The formula Φ− ≡ Φ ∧D1 ∧ · · · ∧Dm is satisfiable.
Otherwise, S ⊆ H1∪· · ·∪Hm. The set S is essentially convex and each Hm is a variety, so there

exists an 1 ≤ i ≤ m such that S ⊆ Hi by Proposition 15. Consequently, Φ ∧ Di is not satisfiable
which contradicts the fact that Φ has property (∗).

Observation 2. For every ε > 0 there is a y ∈ S satisfying |cTw − cT y| < ε.
Let d(·, ·) denote the Euclidean distance in Rn, i.e., d(a, b) =

√∑n
i=1(ai − bi)2, and || · || the

corresponding norm, i.e., ||a|| =
√
aTa.

Arbitrarily choose a point z that satisfies Φ−; this is always possible by Observation 1. Consider
the line segment L between z and w. Note the following: if H is a hyperplane in Rn, then either H
intersects L in at most one point or L ⊆ H. Also note that w, z ∈ S′ and S′ is convex so L ⊆ S′.
Arbitrarily choose a clause C ∈ Φ′′ and assume C = (p1(x̄) 6= 0 ∨ · · · ∨ pk(x̄) 6= 0 ∨ p0(x̄) ≤ 0).
Assume that there exist two distinct points a, b ∈ L such that p1(a) = p1(b) = 0. If so, then every
point c ∈ L satisfies p1(c) = 0. This is not possible since z ∈ L satisfies D1 ∧ · · · ∧ Dm, and in
particular p1(z) 6= 0. Hence, at most one point c ∈ L satisfies p(c) = 0, and c is the only point in L



that potentially does not satisfy the clause C. This implies that only finitely many points in L do
not satisfy Φ′′, and it follows that for every δ > 0 there is a point y ∈ S such that d(w, y) < δ.

We proceed by showing that if w, y ∈ Rn and d(w, y) = d, then |cTw − cT y| ≤ ||c|| · d. This
follows from the Cauchy-Schwarz inequality (that is, |aT b| ≤ ||a|| · ||b|| for vectors a, b in Rn):

|cTw − cT y| = |cT (w − y)| ≤ ||c|| · ||w − y|| = ||c|| · d(w, y) = ||c|| · d.

To find a vector y that satisfies |cTw − cT y| < ε, we simply choose y ∈ S such that d(w, y) < ε
||c|| ;

we know that such a y exists by the argument above.

If the algorithm outputs ‘unbounded’ in Step 2, then arbitrarily choose a sufficiently large
number k and note that there exists a vector w ∈ S′ such that cTw ≥ k. By Observation 2, there
exists a vector y ∈ S such that |cTw − cT y| < 1. Hence, S has unbounded solutions, too.

Assume finally that the algorithm answers ‘optimum is arbitrarily close to K’ in Step 3; Ob-
servation 2 immediately proves correctness in this case, too. ut

6 Open Problems

The most prominent open question is whether there are there are essentially convex relations S
with a first-order definition in (R; ∗,+) such that CSP((Γlin, S)) is NP-hard. Resolving this ques-
tion is probably difficult, since the following closely related problem is of unknown computational
complexity:

Feasibility of Convex Polynomial Inequalities
INPUT: A set of variables V , a set of polynomial inequalities each of which defining a convex set;
the coefficients of the polynomials are rational numbers where the numerators and denominators
are represented in binary.
QUESTION: Is there a point in R|V | that satisfies all inequalities?

One may note that the problems we have considered could be easier since they are defined over
finite constraint languages. On the other hand, convexity is much more restrictive than essential
convexity; moreover, we are only given polynomial inequalities (there are convex semi-algebraic
relations that cannot be defined as the intersection of convex polynomial inequalities). Still, the
computational complexity of the Feasibility Problem of Convex Polynomial Inequalities is open.

Convex semi-algebraic relations are of particular interest in the quest for efficiently solvable
semi-algebraic constraint languages because of a conjectured link to semidefinite programming.
Every semidefinite representable set is convex and semi-algebraic. Recently, Helton, Vinnikov and
Nie showed that the converse statement is true in surprisingly many cases and conjectured that it
remains true in general [18].
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