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ESSENTIAL DIMENSION OF FINITE p-GROUPS

NIKITA A. KARPENKO AND ALEXANDER S. MERKURJEV

Abstract. We prove that the essential dimension and p-dimension of a
p-group G over a field F containing a primitive p-th root of unity is equal
to the least dimension of a faithful representation of G over F .

The notion of the essential dimension ed(G) of a finite group G over a field
F was introduced in [5]. The integer ed(G) is equal to the smallest number of
algebraically independent parameters required to define a Galois G-algebras
over any field extension of F . If V is a faithful linear representation of G over
F then ed(G) ≤ dim(V ) (cf. [2, Prop. 4.15]). The essential dimension of G
can be smaller than dim(V ) for every faithful representation V of G over F .
For example, we have ed(Z/3Z) = 1 over Q or any field F of characteristic 3
(cf. [2, Cor. 7.5]) and ed(S3) = 1 over C (cf. [5, Th. 6.5]).

In this paper we prove that if G is a p-group and F is a field of characteristic
different from p containing p-th roots of unity, then ed(G) coincides with the
least dimension of a faithful representation of G over F (cf. Theorem 4.1).

We also compute the essential p-dimension of a p-group G introduced in [15].
We show that edp(G) = ed(G) over a field F containing p-th roots of unity.

In the paper the word “scheme” means a separated scheme of finite type
over a field and “variety” an integral scheme.

Acknowledgment: We are grateful to Zinovy Reichstein for useful conversations
and comments.

1. Preliminaries

1.1. Severi-Brauer varieties. (cf. [1]) Let A be a central simple algebra of
degree n over a field F . The Severi-Brauer variety P = SB(A) of A is the
variety of right ideals in A of dimension n. For a field extension L/F , the
algebra A is split over L if and only if P (L) 6= ∅ if and only if PL ≃ Pn−1

L .
The change of field map deg : Pic(P ) → Pic(PL) = Z for a splitting field

extension L/F identifies Pic(P ) with eZ, where e is the exponent (period) of
A. In particular, P has divisors of degree e. The algebra A is split over L if
and only if PL has a prime divisor of degree 1 (a hyperplane).
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2 N. KARPENKO AND A. MERKURJEV

1.2. Groupoids and gerbes. (cf. [4]) Let X be a groupoid over F in the
sense of [19]. We assume that for any field extension L/F , the isomorphism

classes of objects in the category X (L) form a set which we denote by X̂ (L).

We can view X̂ as a functor from the category Fields/F of field extensions of
F to Sets .

Example 1.2.1. If G is an algebraic group over F , then the groupoid BG is
defined as the category of G-torsors over a scheme over F . Hence the functor

B̂G takes a field extension L/F to the set of all isomorphism classes of G-
torsors over L.

Special examples of groupoids are gerbes banded by a commutative group
scheme C over F . There is a bijection between the set of isomorphism classes
of gerbes banded by C and the Galois cohomology group H2(F, C) (cf. [7, Ch.
4] and [13, Ch. 4, §2]). The split gerbe BC corresponds to the trivial element
of H2(F, C).

Example 1.2.2. (Gerbes banded by µn) Let A be a central simple F -algebra
and n an integer with [A] ∈ Brn(F ) = H2(F, µn). Let P be the Severi-Brauer
variety of A and S a divisor on P of degree n. Denote by XA the gerbe banded

by µn corresponding to [A]. For a field extension L/F , the set X̂A(L) has the

following explicit description (cf. [4]): X̂A(L) is nonempty if and only if P is

split over L. In this case X̂A(L) is the set of equivalence classes of the set
{
f ∈ L(P )× : div(f) = nH − SL, where H is a hyperplane in PL

}
,

and two functions f and f ′ are equivalent if f ′ = fhn for some h ∈ L(P )×.

1.3. Essential dimension. Let T : Fields/F → Sets be a functor. For a field
extension L/F and an element t ∈ T (L), the essential dimension of t, denoted
ed(t), is the least tr. degF (L′) over all subfields L′ ⊂ L over F such that t
belongs to the image of the map T (L′) → T (L). The essential dimension
ed(T ) of the functor T is the supremum of ed(t) over all t ∈ T (L) and field
extensions L/F .

Let p be a prime integer and t ∈ T (L). The essential p-dimension of t,
denoted edp(t), is the least tr. degF (L′′) over all subfields L′′ ⊂ L′ over F ,
where L′ is a finite field extension of L of degree prime to p such that the
image of t in T (L′) belongs to the image of the map T (L′′) → T (L′). The
essential p-dimension edp(T ) of the functor T is the supremum of edp(t) over
all t ∈ T (L) and field extensions L/F . Clearly, ed(T ) ≥ edp(T ).

Let G be an algebraic group over F . The essential dimension ed(G) of
G (respectively the essential p-dimension ed(G)) is the essential dimension
(respectively the essential p-dimension) of the functor taking a field extension
L/F to the set of isomorphism classes of G-torsors over Spec L.

If G is a finite group, we view G as a constant group over a field F . Every
G-torsor over SpecL has the form Spec K where K is a Galois G-algebra over
L. Therefore, ed(G) is the essential dimension of the functor taking a field L
to the set of isomorphism classes of Galois G-algebras over L.
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Example 1.3.1. Let X be a groupoid over F . The essential dimension of X ,

denoted by ed(X ), is the essential dimension ed(X̂ ) of the functor X̂ defined in
§1.2. The essential p-dimension of edp(X ) is defined similarly. In particular,
ed(BG) = ed(G) and edp(BG) = edp(G) for an algebraic group G over F .

1.4. Canonical dimension. (cf. [3], [11]) Let F be a field and C a class of
field extensions of F . A field E ∈ C is called generic if for any L ∈ C there is
an F -place E Ã L.

The canonical dimension cdim(C) of the class C is the minimum of the
tr. degF E over all generic fields E ∈ C.

Let p be a prime integer. A field E in a class C is called p-generic if for any
L ∈ C there is a finite field extension L′ of L of degree prime to p and an F -
place E Ã L′. The canonical p-dimension cdimp(C) of the class C is the least
tr. degF E over all p-generic fields E ∈ C. Obviously, cdim(C) ≥ cdimp(C).

Let T : Fields/F → Sets be a functor. Denote by CT the class of split-
ting fields of T , i.e., the class of field extensions L/F such that T (L) 6= ∅.
The canonical dimension (p-dimension) of T , denoted cdim(T ) (respectively
cdimp(T )), is the canonical dimension (p-dimension) of the class CT .

If X is a scheme over F , we write cdim(X) and cdimp(X) for the canon-
ical dimension and p-dimension of X viewed as a functor L 7→ X(L) =
MorF (Spec L, X).

Example 1.4.1. Let X be a groupoid over F . We define the canonical di-
mension cdim(X ) and p-dimension cdimp(X ) of X as the canonical dimension

and p-dimension of the functor X̂ .

Example 1.4.2. If X is a regular and complete variety over F viewed as a
functor then cdim(X) is equal to the smallest dimension of a closed subvariety
Z ⊂ X such that there is a rational morphism X 99K Z (cf. [11, Cor. 4.6]).
If p is a prime integer then cdimp(X) is equal to the smallest dimension of
a closed subvariety Z ⊂ X such that there are dominant rational morphisms
X ′

99K X of degree prime to p and X ′
99K Z for some variety X ′ (cf. [11,

Prop. 4.10]).

Remark 1.4.3. (A relation between essential and canonical dimension) Let
T : Fields/F → Sets be a functor. We define the “contraction” functor T c :
Fields/F → Sets as follows. For a field extension L/F , we have T c(L) = ∅
if T (L) is empty and T c(L) is a one element set otherwise. If X is a regular
and complete variety over F viewed as a functor then one can show that
ed(Xc) = cdim(X) and edp(X

c) = cdimp(X).

1.5. Valuations. Let K/F be a regular field extension, i.e., for any field ex-
tension L/F , the ring K ⊗F L is a domain. We write KL for the quotient field
of K ⊗F L.

Let v be a valuation on L over F with residue field R. Let O be the associated
valuation ring and M its maximal ideal. As K ⊗F R is a domain, the ideal

M̃ := K ⊗F M in the ring Õ := K ⊗F O is prime. The localization ring ÕfM
is
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a valuation ring in KL with residue field KR. The corresponding valuation ṽ
of KL is called the canonical extension of v on KL. Note that the groups of
values of v and ṽ coincide.

We shall need the following lemma.

Lemma 1.1 (cf. [11, Lemma 3.2]). Let v be a discrete valuation (of rank 1) of
a field L with residue field R and L′/L a finite field extension of degree prime
to p. Then v extends to a discrete valuation of L′ with residue field R′ such
that the ramification index and the degree [R′ : R] are prime to p.

Proof. If L′/L is separable and v1, . . . , vk are all the extensions of v on L′ then
[L′ : L] =

∑
ei[Ri : R] where ei is the ramification index and Ri is the residue

field of vi (cf. [20, Ch. VI, Th. 20 and p. 63]). It follows that the integer
ei[Ri : R] is prime to p for some i.

If L′/L is purely inseparable of degree q then the valuation v′ of L′ defined
by v′(x) = v(xq) satisfies the desired properties. The general case follows. ¤

2. Canonical dimension of a subgroup of Br(F )

Let F be an arbitrary field, p a prime integer and D a finite subgroup of
Brp(F ) of dimension r over Z/pZ. In this section we determine the canonical
dimension cdim D and the canonical p-dimension cdimp D of the class of com-
mon splitting fields of all elements of D. We say that a basis {a1, a2, . . . , ar}
of D is minimal if for any i = 1, . . . , r and any element d ∈ D outside of the
subgroup generated by a1, . . . , ai−1, we have ind d ≥ ind ai.

One can construct a minimal basis of D by induction as follows. Let a1 be a
nonzero element of D of minimal index. If the elements a1, . . . , ai−1 are already
chosen for some i ≤ r, we take for the ai an element of D of the minimal index
among the elements outside of the subgroup generated by a1, . . . , ai−1.

In this section we prove the following

Theorem 2.1. Let F be an arbitrary field, p a prime integer, D ⊂ Brp(F ) a
subgroup of dimension r and {a1, a2, . . . , ar} a minimal basis of D. Then

cdimp(D) = cdim(D) =
( r∑

i=1

ind ai

)
− r .

We prove Theorem 2.1 in several steps.
Let {a1, a2, . . . , ar} be a minimal basis of D. For every i = 1, 2, . . . , r, let

Pi be the Severi-Brauer variety of a central division F -algebra Ai representing
the element ai ∈ Brp F . We write P for the product P1 × P2 × · · · × Pr. We
have

dim P =
r∑

i=1

dim Pi =
( r∑

i=1

ind ai

)
− r.

Moreover, the classes of splitting fields of P and D coincide, hence cdim(D) =
cdim(P ) and cdimp(D) = cdimp(P ). Thus, the statement of Theorem 2.1 is
equivalent to the equality cdimp(P ) = cdim(P ) = dim(P ).
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Let r ≥ 1 and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nr be integers and K = K(n1, . . . , nr)
the subgroup of the polynomial ring Z[x] in r variables x = (x1, . . . , xr) gen-
erated by the monomials pe(j1,...,jr)xj1

1 . . . xjr

r for all j1, . . . , jr ≥ 0, where the
exponent e(j1, . . . , jr) is 0 if all the j1, . . . , jr are divisible by p, otherwise
e(j1, . . . , jr) = nk with the maximum k such that jk is not divisible by p. In
fact, K is a subring of Z[x].

Remark 2.2. Let A1, . . . , Ar be central division algebras over some field such
that for any non-negative integers j1, . . . , jr, the index of the tensor product
A⊗j1

1 ⊗ · · · ⊗ A⊗jr

r is equal to pe(j1,...,jr). The group K can be interpreted as
the colimit of the Grothendieck groups of the product over i = 1, . . . , r of the
Severi-Brauer varieties of the matrix algebras Mli(Ai) over all positive integers
l1, . . . , lr.

We set h = (h1, . . . , hr) with hi = 1 − xi ∈ Z[x].

Proposition 2.3. Let bhi1
1 . . . hir

r be a monomial of the lowest total degree of
a polynomial f in the variables h lying in K. Assume that the integer b is not
divisible by p. Then pn1 | i1, . . . , p

nr | ir.

Proof. We recast the proof for r = 1 given in [8, Lemma 2.1.2] to the case of
arbitrary r.

We proceed by induction on m = r + n1 + · · · + nr. The case m = 1 is
trivial. If m > 1 and n1 = 0, then K = K(n2, . . . , nr)[x1] and we are done by
induction applied to K(n2, . . . , nr). In what follows we assume that n1 ≥ 1.

Since K(n1, n2, . . . , nr) ⊂ K(n1 −1, n2, . . . , nr), by the induction hypothesis
pn1−1 | i1, pn2 | i2, . . . , p

nr | ir. It remains to show that i1 is divisible by pn1 .
Consider the additive operation ϕ : Z[x] → Q[x] which takes a polynomial

g ∈ Z[x] to the polynomial p−1x1 · g′, where g′ is the partial derivative of g
with respect to x1. We have

ϕ(K) ⊂ K(n1 − 1, n2 − 1, . . . , nr − 1) ⊂ K(n1 − 1)[x2, . . . , xr]

and

ϕ(hj1
1 hj2

2 · · ·hjr

r ) = −p−1j1h
j1−1
1 hj2

2 · · ·hjr

r + p−1j1h
j1
1 hj2

2 · · ·hjr

r .

Since bhi1
1 · · ·hir

r is a monomial of the lowest total degree of the polynomial
f , it follows that −bp−1i1h

i1−1
1 hi2

2 · · ·hir
r is a monomial of ϕ(f) considered as a

polynomial in h. As

ϕ(f) ∈ K(n1 − 1)[x2, . . . , xr] ,

we see that −bp−1i1h
i1−1
1 is a monomial of a polynomial from K(n1 − 1). It

follows that p−1i1 is an integer and by Lemma 2.4 below, this integer is divisible
by pn1−1. Therefore pn1 | i1. ¤

Lemma 2.4. Let g be a polynomial in h1 lying in K(m) for some m ≥ 0. Let
bhi−1

1 be a monomial of g such that i is divisible by pm. Then b is divisible by
pm.
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Proof. We write h for h1 and x for x1. Note that hi ∈ K(m) since i is divisible
by pm. Moreover, the quotient ring K(m)/(hi) is additively generated by
pe(j)xj with j < i. Indeed, the polynomial xi − (−h)i = xi − (x−1)i is a linear
combination with integer coefficients of pe(j)xj with j < i. Consequently, for
any k ≥ 0, multiplying by pe(k)xk, we see that the polynomial pe(i+k)xi+k =
pe(k)xi+k modulo the ideal (hi) is a linear combination with integer coefficients
of the pe(j)xj with j < i + k.

Thus, K(m)/(hi) is additively generated by pe(j)(1 − h)j with j < i. Only
the generator pe(i−1)(1 − h)i−1 = pm(1 − h)i−1 has a nonzero hi−1-coefficient
and that coefficient is divisible by pm. ¤

Let Y be a scheme over the field F . We write CH(Y ) for the Chow group of Y
and set Ch(Y ) = CH(Y )/p CH(Y ). We define Ch(Y ) as the colimit of Ch(YL)
where L runs over all field extensions of F . Thus for any field extension L/F ,
we have a canonical homomorphism Ch(YL) → Ch(Y ). This homomorphism
is an isomorphism if Y = P , the variety defined above, and L is a splitting
field of P .

We define Ch(Y ) to be the image of the homomorphism Ch(Y ) → Ch(Y ).

Proposition 2.5. We have Ch
j
(P ) = 0 for any j > 0.

Proof. Let K0(P ) be the Grothendieck group of P . We write K0(P ) for the
colimit of K0(PL) taken over all field extensions L/F . The group K0(P ) is
canonically isomorphic to K0(PL) for any splitting field L of P . Each of the
groups K0(P ) and K0(P ) is endowed with the topological filtration. The sub-
sequent factor groups GjK0(P ) and GjK0(P ) of these filtrations fit into the
commutative square

CHj(P ) −−−→ GjK0(P )x
x

CHj(P ) −−−→ GjK0(P )

where the top map is an isomorphism. Therefore it suffices to show that the
image of the homomorphism GjK0(P ) → GjK0(P ) is divisible by p for any
j > 0.

The ring K0(P ) is identified with the quotient of the polynomial ring Z[h] by
the ideal generated by hind a1

1 , . . . , hindar

r . Under this identification, the element
hi is the pull-back to P of the class of a hyperplane in Pi over a splitting
field and the j-th term K0(P )(j) of the filtration is generated by the classes
of monomials of degree at least j. The group GjK0(P ) is identified with the
group of all homogeneous polynomials of degree j.

The group K0(P ) is isomorphic to the direct sum of K0(B), where B =
A⊗j1

1 ⊗ · · · ⊗ A⊗jr

r , over all ji with 0 ≤ ji < ind ai (cf. [14, §9]). The image of
the natural map K0(B) → K0(BL) = Z, where L is a splitting field of B, is

equal to ind(aj1
1 · · ·ajr

r )Z. The image of the homomorphism K0(P ) → K0(P )
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(which is in fact an injection) is generated by

ind(aj1
1 · · ·ajr

r )(1 − h1)
j1 · · · (1 − hr)

jr

over all j1, . . . , jr ≥ 0.
We embed K0(P ) into the polynomial ring Z[x] = Z[x1, . . . , xr] as a sub-

group by identifying a monomial hj1
1 · · ·hjr

r where 0 ≤ ji < ind ai with the
polynomial (1− x1)

j1 · · · (1− xr)
jr . As the elements a1, . . . , ar form a minimal

basis of D, the index ind(aj1
1 · · ·ajr

r ) is a power of p with the exponent at least
e(logp ind a1, . . . , logp ind ar). Therefore,

K0(P ) ⊂ K(logp ind a1, . . . , logp ind ar) ⊂ Z[x].

An element of K0(P )(j) with j > 0 is a polynomial f in h of degree at least
j. The image of f in GjK0(P ) is the j-th homogeneous part fj of f . As the
degree of f with respect to hi is less than ind ai, it follows from Proposition
2.3 that all the coefficients of fj are divisible by p. ¤

Let d = dim P and α ∈ CHd(P × P ). The first multiplicity mult1(α) of α
is the image of α under the push-forward map CHd(P × P ) → CH0(P ) = Z

given by the first projection P × P → P (cf. [10]). Similarly, we define the
second multiplicity mult2(α).

Corollary 2.6. For any element α ∈ CHd(P × P ), we have

mult1(α) ≡ mult2(α) modulo p.

Proof. We follow the proof of [9, Th. 2.1]. The homomorphism

f : CHd(P × P ) → (Z/pZ)2,

taking an α ∈ CHd(P ×P ) to
(
mult1(α), mult2(α)

)
modulo p, factors through

the group Ch
d
(P × P ). Since for any i, any projection Pi × Pi → Pi is a

projective bundle, the Chow group Ch
d
(P × P ) is a direct some of several

copies of Ch
i
(P ) for some i’s and the value i = 0 appears once. By Proposition

2.5, the dimension over Z/pZ of the vector space Ch
d
(P ×P ) is equal to 1 and

consequently the dimension of the image of f is at most 1. Since the image of
the diagonal class under f is (1, 1), the image of f is generated by (1, 1). ¤

Corollary 2.7. Any rational map P 99K P is dominant.

Proof. Let α ∈ CHd(P × P ) be the class of the closure of the graph of a
rational map P 99K P . We have mult1(α) = 1. Therefore, by Corollary 2.6,
mult2(α) 6= 0, and it follows that the rational map is dominant. ¤

Corollary 2.8. cdimp P = cdim P = dim P .

Proof. As cdimp P ≤ cdim P ≤ dim P , it suffices to show that cdimp P =
dim P . Let Z ⊂ P be a closed subvariety and f : P ′

99K P and g : P ′
99K Z

dominant rational morphisms such that deg f is prime to p. Let α be the class
in CHd(P × P ) of the closure in P × P of the image of f × g : P ′

99K P × Z.
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As mult1(α) = deg f is prime to p, by Corollary 2.6, we have mult2(α) 6= 0,
i.e., Z = P . By Example 1.4.2, cdimp P = dim P . ¤

The corollary completes the proof of Theorem 2.1.

Remark 2.9. Theorem 2.1 can be generalized to the case of any finite sub-
group D ⊂ Br(F ) consisting of elements of p-primary orders. Let {a1, a2, . . . , ar}
be elements of D such that their images {a′

1, a
′

2, . . . , a
′

r} in D/Dp form a mini-
mal basis, i.e., for any i = 1, . . . r and any element d ∈ D with the class in D/Dp

outside of the subgroup generated by a′

1, . . . , a
′

i−1, the inequality ind d ≥ ind ai

holds. In particular, {a1, a2, . . . , ar} generate D. Then, as in Theorem 2.1, we
have

cdimp(D) = cdim(D) =
( r∑

i=1

ind ai

)
− r .

Indeed, the group D and the variety P = P1 ×· · ·×Pr, where Pi for every i =
1, . . . , r is the Severi-Brauer variety of a central division algebra representing
the element ai, have the same splitting fields. Therefore, cdim(D) = cdim(P )
and cdimp(D) = cdimp(P ). Corollaries 2.6, 2.7 and 2.8 hold for P since
K0(P ) ⊂ K(logp ind a1, . . . , logp ind ar).

Remark 2.10. One can compute the canonical p-dimension of an arbitrary
finite subgroup of D ⊂ Br(F ) as follows. Let D′ be the Sylow p-subgroup of
D. Write D = D′ ⊕ D′′ for a subgroup D′′ ⊂ D and let L/F be a finite field
extension of degree prime to p such that D′′ is split over L. Then DL = D′

L

and cdimp(D) = cdimp(DL) = cdimp(D
′

L) = cdimp(D
′) = cdim(D′).

3. Essential and canonical dimension of gerbes banded by (µp)
s

In this section we relate the essential and canonical (p-)dimensions of gerbes
banded by (µp)

s where s ≥ 0. The following statement is a generalization of
[4, Th. 7.1].

Theorem 3.1. Let p be a prime integer and X a gerbe banded by (µp)
s over

an arbitrary field F . Then

ed(X ) = edp(X ) = cdimp(X ) + s = cdim(X ) + s.

Proof. The gerbe X is given by an element in H2
(
F, (µp)

s
)

= Brp(F )s, i.e., by
an s-tuple of central simple algebras A1, A2, . . . , As with [Ai] ∈ Brp(F ). Let P
be the product of the Severi-Brauer varieties Pi := SB(Ai) and D the subgroup
of Brp(F ) generated by the [Ai], i = 1, . . . , s. As the classes of splitting fields
for X , D and P coincide, we have

(1) cdim(X ) = cdim(P ) = cdim(D) = cdimp(D) = cdimp(P ) = cdimp(X )

by Theorem 2.1. We shall prove the inequalities edp(X ) ≥ cdim(P ) + s ≥
ed(X ).

Let Si be a divisor on Pi of degree p. Let L/F be a field extension and
fi ∈ L(Pi)

× with div(fi) = pHi − (Si)L, where Hi is a hyperplane in (Pi)L for

i = 1, . . . , s. We write 〈fi〉
s
i=1 for the corresponding element in X̂ (L) (cf. §1.2).
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By Example 1.4.2, there is a closed subvariety Z ⊂ P and a rational domi-
nant morphism P 99K Z with dim(Z) = cdim(P ) = cdimp(P ). We view F (Z)
as a subfield of F (P ). As P (L) 6= ∅ and P is regular, there is an F -place
γ : F (P ) Ã L (cf. [11, §4.1]). Since Z is complete, the valuation ring of
the restriction γ|F (Z) : F (Z) Ã L dominates a point in Z. It follows that
Z(L) 6= ∅. Choose a point y ∈ Z such that F ′ := F (y) ⊂ L.

Since P (F ′) 6= ∅, the Pi are split over F ′, hence Pic(Pi)F ′ = Z and there are
functions gi ∈ F ′(Pi)

× with div(gi) = pH ′

i − (Si)F ′, where H ′

i is a hyperplane
in Pi for i = 1, . . . , s. As Pic(Pi)L = Z, there are functions hi ∈ L(Pi)

× with
div(hi) = (H ′

i)L − Hi. We have

div(gi)L = div(fi) + div(hp
i ),

hence
aigi = fih

p
i

for some ai ∈ L×. It follows that 〈fi〉
s
i=1 = 〈aigi〉

s
i=1 in X (L), therefore 〈fi〉

s
i=1

is defined over the field F ′(a1, a2, . . . , as). Hence

ed〈fi〉
s
i=1 ≤ tr. degF (F ′) + s ≤ dim(Z) + s = cdim(P ) + s,

and therefore ed(X ) ≤ cdim(P ) + s.

We shall prove the inequality edp(X ) ≥ cdim(P ) + s. As P
(
F (Z)

)
6= ∅,

there are functions fi ∈ F (Z)(Pi)
× with div(fi) = pHi − (Si)F (Z), where Hi

is a hyperplane in (Pi)F (Z). Let L := F (Z)(t1, t2, . . . , ts), where the ti are

variables, and consider the point 〈tifi〉
s
i=1 ∈ X̂ (L).

We claim that edp〈tifi〉
s
i=1 ≥ cdim(P ) + s. Let L′ be a finite extension of L

of degree prime to p and L′′ ⊂ L′ a subfield such that the image of 〈tifi〉
s
i=1 in

X̂ (L′) is defined over L′′, i.e., there are functions gi ∈ L′′(Pi)
× and hi ∈ L′(Pi)

×

with tifi = gih
p
i . We shall show that tr. degF (L′′) ≥ cdim(P ) + s.

Let Li := F (Z)(ti, . . . , ts) and vi be the discrete valuation of Li correspond-
ing to the variable ti for i = 1, . . . , s. We construct a sequence of field exten-
sions L′

i/Li of degree prime to p and discrete valuations v′

i of L′

i for i = 1, . . . , s
by induction on i as follows. Set L′

1 = L′. Suppose the fields L′

1, . . . , L
′

i and
the valuations v′

1, . . . , v
′

i−1 are constructed. By Lemma 1.1, there is a valuation
v′

i of L′

i with residue field L′

i+1 extending the discrete valuation vi of L′

i with
the ramification index ei and the degree [L′

i+1 : Li+1] prime to p.
The composition v′ of the discrete valuations v′

i is a valuation of L′ with
residue field of degree over F (Z) prime to p. A choice of prime elements in
all the L′

i identifies the group of values of v′ with Zs. Moreover, for every
i = 1, . . . , s, we have

v′(ti) = eiεi +
∑

j>i

aijεj

where the εi’s denote the standard basis elements of Zs and aij ∈ Z.
Write v′′ for the restriction of v′ on L′′. Let K = F (P ). We extend canoni-

cally the valuations v′ and v′′ to valuations ṽ′ and ṽ′′ of KL′ and KL′′ respec-
tively (cf. §1.5). Note that fi ∈ K(Z)×, gi ∈ (KL′′)× and hi ∈ (KL′)×. We
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have
eiεi +

∑

j>i

aijεj = v′(ti) = ṽ′(tifi) ≡ ṽ′′(gi) (mod p).

Since ei are prime to p, the elements ṽ′′(gi) generate a subgroup of Zs of finite
index. It follows that the value group of ṽ′′ is of rank s, hence rank(v′′) =
rank(ṽ′′) = s.

Let R′′ and R′ be residue fields of v′′ and v′ respectively. We have the
inclusions R′′ ⊂ R′ ⊃ F (Z) and [R′ : F (Z)] is prime to p. By [20, Ch. VI, Th.
3, Cor. 1],

(2) tr. degF (L′′) ≥ tr. degF (R′′) + rank(v′′) = tr. degF (R′′) + s.

As P (L′′) 6= ∅, there is an F -place F (P ) Ã L′′. Composing it with the place
L′′

Ã R′′ given by v′′, we get an F -place F (P ) Ã R′′. As P is complete, we
have P (R′′) 6= ∅, i.e., R′′ is a splitting field of P .

We prove that R′′ is a p-generic splitting field of P . Let M be a splitting
field of P . A regular system of parameters at the image of a morphism α :
Spec M → P yields an F -place F (P ) Ã M that is a composition of places
associated with discrete valuations (cf. [11, §1.4]). By [11, Lemma 3.2] applied
to the restriction of α to F (Z), there is a finite field extension M ′ of M and
an F -place R′

Ã M ′. Restricting to R′′ we get an F -place R′′
Ã M ′, i.e., R′′

is a p-generic splitting field of P .
By the definition of the canonical p-dimension,

cdim(P ) = tr. degF F (Z) = tr. degF R′ ≥ tr. degF (R′′) ≥ cdimp(P ).

It follows that tr. degF (R′′) = cdim(P ) by (1) and therefore, tr. degF (L′′) ≥
cdim(P ) + s by (2). The claim is proved.

It follows from the claim that edp(X ) ≥ cdim(P ) + s. ¤

4. Main theorem

The main result of the paper is the following

Theorem 4.1. Let G be a p-group and F a field of characteristic different from
p containing a primitive p-th root of unity. Then edp(G) over F is equal to
ed(G) over F and coincides with the least dimension of a faithful representation
of G over F .

The rest of the section is devoted to the proof of the theorem. As was men-
tioned in the introduction, we have edp(G) ≤ ed(G) ≤ dim(V ) for any faithful
representation V of G over F . We shall construct a faithful representation V
of G over F with edp(G) ≥ dim(V ).

Denote by C the subgroup of all central elements of G of exponent p and
set H = G/C, so we have an exact sequence

(3) 1 → C → G → H → 1.

Let E → Spec F be an H-torsor and Spec F → BH be the corresponding
morphism. Set XE := BG×BH Spec F . Then XE is a gerbe over F banded by
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C and its class in H2(F, C) coincides with the image of the class of E under
the connecting map H1(F, H) → H2(F, C) (cf. [13, Ch. 4, §2]). An object of
XE over a field extension L/F is a pair (E ′, α), where E ′ is a G-torsor over L

and α : E ′/C
∼
→ EL is an isomorphism of H-torsors over L.

Alternatively, XE = [E/G] with objects (over L) G-equivariant morphisms
E ′ → EL, where E ′ is a G-torsor over L (cf. [19]).

A lower bound for ed(G) was established in [4, Prop. 2.20]. We give a
similar bound for edp(G).

Theorem 4.2. For any H-torsor E over F , we have edp(G) ≥ edp(X
E).

Proof. Let L/F be a field extension and x = (E ′, α) an object of XE(L).
Choose a field a field extension L′/L of degree prime to p and a subfield
L′′ ⊂ L′ over F such that tr. deg(L′′) = edp(E

′) and there is a G-torsor E ′′

over L′′ with E ′′

L′ ≃ E ′

L′ .
Let Z be the (zero-dimensional) scheme of isomorphisms IsoL′′(E ′′/C, EL′′)

of H-torsors over L′′. The image of the morphism Spec L′ → Z over L′′ repre-
senting the isomorphism αL′ is a one point set {z} of Z. The field extension
L′′(z)/L′′ is algebraic since dim Z = 0.

The isomorphism αL′ descends to an isomorphism of the H-torsors E ′′/C
and E over L′′(z). Hence the isomorphism class of xL′ belongs to the image of

the map X̂E
(
L′′(z)

)
→ X̂E(L′). Therefore,

edp(G) ≥ edp(E
′) = tr. deg(L′′) = tr. deg(L′′(z)

)
≥ edp(x).

It follows that edp(G) ≥ edp(X
E). ¤

Let C∗ := Hom(C,Gm) denote the character group of C. An H-torsor E
over F yields a homomorphism

βE : C∗ → Br(F )

taking a character χ : C → Gm to the image of the class of E under the
composition

H1(F, H)
∂
−→ H2(F, C)

χ∗

−→ H2(F,Gm) = Br(F ),

where ∂ is the connecting map for the exact sequence (3). Note that as µp ⊂
F×, the intersection of Ker(χ∗) over all characters χ ∈ C∗ is trivial. It follows
that the classes of splitting fields of the gerbe XE and the subgroup Im(βE)
coincide. It follows that

(4) cdimp(X
E) = cdimp

(
Im(βE)

)
.

Let χ1, χ2, . . . , χs be a basis of C∗ over Z/pZ such that
{
βE(χ1), . . . , β

E(χr)
}

is a minimal basis of Im(βE) for some r and βE(χi) = 1 for i > r. By Theorem
2.1, we have

(5) cdimp

(
Im(βE)

)
=

( r∑

i=1

ind βE(χi)
)
− r =

( s∑

i=1

ind βE(χi)
)
− s.
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In view of (4) and Theorems 3.1 and 4.2, we shall find an H-torsor E (over
a field extension of F ) so that the integer in (5) is as large as possible. Let
U be a faithful representation of H and X an open subset of the affine space
A(U) of U where H acts freely. Set Y := X/H. Let E be the generic fiber
of the H-torsor π : X → Y . It is a “generic” H-torsor over the function field
L := F (Y ).

Let χ : C → Gm be a character and Rep(χ)(G) the category of all finite di-
mensional representations ρ of G such that ρ(c) is multiplication by χ(c) for any

c ∈ C. Fix a representations ρ : G → GL(W ) in Rep(χ)(G). The conjugation
action of G on B := End(W ) factors through an H-action. By descent (cf. [13,
Ch. 1, §2]), there is (a unique up to canonical isomorphism) Azumaya algebra
A over Y and an H-equivariant algebra isomorphism π∗(A) ≃ BX := B × X.
Let A be the generic fiber of A; it is a central simple algebra over L = F (Y ).

Consider the homomorphism βE : C∗ → Br(L).

Lemma 4.3. The class of A in Br(L) coincides with βE(χ).

Proof. Consider the commutative diagram

1 −−−→ C −−−→ G −−−→ H −−−→ 1

χ

y ρ

y α

y
1 −−−→ Gm −−−→ GL(W ) −−−→ PGL(W ) −−−→ 1

The image of the H-torsor π : X → Y under α is the PGL(W )-torsor

E ′ := PGL(W )X/H → Y

where PGL(W )X := PGL(W ) × X and H acts on PGL(W )X by h(a, x) =
(ah−1, hx). The conjugation action of PGL(W ) on B gives rise to an isomor-
phism between PGL(W )X and the H-torsor IsoX

(
BX , End(W )X

)
of isomor-

phisms between the (split) Azumaya OX-algebras BX and End(W )X . Note
that this isomorphism is H-equivariant if H acts by conjugation on BX and
trivially on End(W )X . By descent,

E ′ ≃ IsoY

(
A, End(W )Y

)
.

Therefore, the image of the class of the torsor E ′ → Y under the connecting
map for the bottom row of the diagram coincides with the class of the Azumaya
algebra A. Restricting to the generic fiber yields [A] = βE(χ). ¤

Theorem 4.4. For any character χ ∈ C∗, we have ind βE(χ) = min dim(V )

over all representations V in Rep(χ)(G).

Proof. We follow the approach given in [12]. Let H act on a scheme Z over F .
We also view Z as a G-scheme. Denote by M(G, Z) the (abelian) category
of left G-modules on Z that are coherent OZ-modules (cf. [18, §1.2]). In
particular, M(G, Spec F ) = Rep(G), the category off all finite dimensional
representations of G.
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Note that C acts trivially on Z. For a character χ : C → Gm, let M(χ)(G, Z)
be the full subcategory of M(G, Z) consisting of G-modules on which C acts

via χ. For example, M(χ)(G, Spec F ) = Rep(χ)(G).

We write K0(G, Z) and K
(χ)
0 (G, Z) for the Grothendieck groups of M(G, Z)

and M(χ)(G, Z) respectively.
Every M in M(G, Z) is a direct sum of unique submodules M (χ) of M in

M(χ)(G, Z) over all characters χ of C. It follows that

K0(G, Z) =
∐

K
(χ)
0 (G, Z).

Let q be the order of G. By [17, Th. 24], every irreducible representation
of G is defined over the field F (µq). Since F contains p-th roots of unity, the
degree [F (µq) : F ] is a power of p. Hence the dimension of any irreducible
representation of G over F is a power of p. It follows by Lemma 4.3 that it
suffices to show ind(A) = gcd dim(V ) over all representations V in Rep(χ)(G).

The image of the map dim : K0(A) → Z given by the dimension over L is
equal to ind(A) · dim(W ) · Z. To finish the proof of the theorem is suffices to
construct a surjective homomorphism

(6) K0

(
Rep(χ)(G)

)
→ K0(A)

such that the composition K0

(
Rep(χ)(G)

)
→ K0(A)

dim
−−→ Z is given by the

dimension times dim(W ).
First of all we have

(7) K0

(
Rep(χ)(G)

)
≃ K

(χ)
0 (G, Spec F ).

Recall that X an open subset of A(U) where H acts freely. By homotopy
invariance in the equivariant K-theory [18, Cor. 4.2],

K0(G, Spec F ) ≃ K0

(
G, A(U)

)
.

It follows that

(8) K
(χ)
0 (G, Spec F ) ≃ K

(χ)
0

(
G, A(U)

)
.

By localization [18, Th. 2.7], the restriction homomorphism

(9) K
(χ)
0

(
G, A(U)

)
→ K

(χ)
0 (G, X).

is surjective.
Denote by M(1)(G, X, BX) the category of left G-modules M on X that

are coherent OX-modules and right BX -modules such that C acts trivially on
M and the G-action on M and the conjugation G-action on BX agree. The

corresponding Grothendieck group is denoted by K
(1)
0 (G, X, BX). For any

object L in M(χ)(G, X), the group C acts trivially on L⊗F W ∗ and B acts on
the right on L ⊗F W ∗. We have Morita equivalence

M(χ)(G, X)
∼
→ M(1)(G, X, BX)

given by L 7→ L ⊗F W ∗ (with the inverse functor M 7→ M ⊗B W ). Hence

(10) K
(χ)
0 (G, X) ≃ K

(1)
0 (G, X, BX).
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Now, as C acts trivially on X and BX , the category M(1)(G, X, BX) is
equivalent to the category M(H, X, BX) of left H-modules M on X that are
coherent OX-modules and right BX -modules such that the G-action on M and
the conjugation G-action on BX agree. Hence

(11) K
(1)
0 (G, X, BX) ≃ K0(H, X, BX).

Recall that Y = X/H. By descent, the category M(H, X, BX) is equivalent
to the category M(Y,A) of coherent OY -modules that are right A-modules.
Hence

(12) K0(H, X, BX) ≃ K0(Y,A).

The restriction to the generic point of Y gives a surjective homomorphism

(13) K0(Y,A) → K0(A).

The homomorphism (6) is the composition of (7), (8), (9), (10), (11), (12)
and (13). It takes the class of a representation V to the class in K0(A) of
the generic fiber of the vector bundle

(
(V ⊗ W ∗) × X

)
/H over Y of rank

dim(V ) · dim(W ). ¤

Remark 4.5. The theorem holds with min replaced by the gcd (with the same
proof) in a more general context when the sequence (3) is an arbitrary exact
sequence of algebraic groups with C a central diagonalizable subgroup of G.

Example 4.6 (cf. [6], [4, §14], [16, Th. 7.3.8]). Let p be a prime integer, F be a
field of characteristic different from p and Cm the cyclic group Z/pmZ. Let K =
F (t1, . . . , tpm) and Cm act on the variables t1, . . . , tpm by cyclic permutations.
Then K is a Galois Cm-algebra over KCm . Assume that F contains a primitive
root of unity ξpk for some k. The image of the class of K under the connecting
map H1(F, Cm) → H2(F, Ck) ≃ Brpk(F ) for the exact sequence

1 → Ck → Cn → Cm → 1,

where n = k + m, is the class of the cyclic algebra A =
(
K/KCm , ξpk

)
. The

group Cn acts F -linearly on F (ξpn) by multiplication by roots of unity making
the F -space F (ξpn) a faithful representation of Cn of the smallest dimension.
By Theorem 4.4 and Remark 4.5, we have

ind(A) =
[
F (ξpn) : F

]
.

We can now complete the proof of Theorem 4.1. By Theorem 4.4, there are
representations Vi in Rep(χi)(G) such that ind βE(χi) = dim(Vi), i = 1, . . . , s.
Let V be the direct sum of all the Vi. By Theorem 4.2 (applied to the group
G over L and the generic torsor E), Theorem 3.1, (4) and (5), we have

edp(G) ≥ edp(GL) ≥ edp(X
E) = cdimp(X

E) + s = cdimp

(
Im(βE)

)
+ s

=
s∑

i=1

ind βE(χi) =
s∑

i=1

dim(Vi) = dim(V ).
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Since χ1, χ2, . . . , χs generate C∗, the restriction of V on C is faithful. As ev-
ery nontrivial normal subgroup of G intersects C nontrivially, the G-representation
V is faithful. We have constructed a faithful representation V of G over F with
edp(G) ≥ dim(V ). The theorem is proved.

Remark 4.7. The proof of Theorem 4.1 shows how to compute the essential
dimension of G over F . For every character χ ∈ C∗ choose a representa-
tion Vχ ∈ Rep(χ)(G) of the smallest dimension. It appears as an irreducible

component of the smallest dimension of the induced representation IndG
C(χ).

We construct a basis χ1, . . . , χs of C∗ by induction as follows. Let χ1 be a
nonzero character with the smallest dim(Vχ1

). If the characters χ1, . . . , χi−1

are already constructed for some i ≤ s, then we take for χi a character with
minimal dim(Vχi

) among all the characters outside of the subgroup generated
by χ1, . . . , χi−1. Then V is a faithful representation of the least dimension and
ed(G) =

∑s
i=1 dim(Vχi

).

Remark 4.8. We can compute the essential p-dimension of an arbitrary finite
group G over a field F of characteristic different from p. (We don’t assume that
F contains p-th roots of unity.) Let G′ a Sylow p-subgroup of G. One can prove
that edp(G) = edp(G

′) and edp(G
′) does not change under field extensions of

degree prime to p. In particular edp(G
′) = edp(G

′

F ′) where F ′ = F (µp). It
follows from Theorem 4.1 that edp(G) coincides with the least dimension of a
faithful representation of G′ over F ′.

5. An application

Theorem 5.1. Let G1 and G2 be two p-groups and F a field of characteristic
different from p containing a primitive p-th root of unity. Then

ed(G1 × G2) = ed(G1) + ed(G2).

Proof. The index j in the proof takes the values 1 and 2. If Vj is a faithful
representation of Gj then V1⊕V2 is a faithful representation of G1×G2. Hence
ed(G1 × G2) ≤ ed(G1) + ed(G2) (cf. [5, Lemma 4.1(b)]).

Denote by Cj the subgroup of all central elements of Gj of exponent p. Set
C = C1 × C2. We identify C∗ with C∗

1 ⊕ C∗

2 .
For every character χ ∈ C∗ choose a representation ρχ : G1 × G2 →

GL(Vχ) in Rep(χ)(G1 × G2) of the smallest dimension. We construct a basis
{χ1, χ2, . . . , χs} of C∗ following Remark 4.7. We claim that all the χi can be
chosen in one of the C∗

j . Indeed, suppose the characters χ1, . . . , χi−1 are already
constructed, and let χi be a character with minimal dim(Vχi

) among the char-

acters outside of the subgroup generated by χ1, . . . , χi−1. Let χi = χ
(1)
i + χ

(2)
i

with χ
(j)
i ∈ C∗

j . Denote by ε1 and ε2 the endomorphisms of G1 × G2 taking
(g1, g2) to (g1, 1) and (1, g2) respectively. The restriction of the representation

ρχi
◦ εj on C is given by the character χ

(j)
i . We replace χi by χ

(j)
i with j such

that χ
(j)
i does not belong to the subgroup generated by χ1, . . . , χi−1. The claim

is proved.
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Let Wj be the direct sum of all the Vχi
with χi ∈ C∗

j . Then the restriction
of Wj on Cj is faithful, hence so is the restriction of Wj on Gj . It follows that
ed(Gj) ≤ dim(Wj). As W1 ⊕ W2 = V , we have

ed(G1) + ed(G2) ≤ dim(W1) + dim(W2) = dim(V ) = ed(G1 × G2). ¤

Corollary 5.2. Let F be a field as in Theorem 5.1. Then

ed
(
Z/pn1Z × Z/pn2Z × · · · × Z/pnsZ

)
=

s∑

i=1

[
F (ξpni ) : F

]
.

Proof. By Theorem 5.1, it suffices to consider the case s = 1. This case has
been done in [6]. It is also covered by Theorem 4.1 as the natural representation
of the group Z/pnZ in the F -space F (ξpn) is faithful irreducible of the smallest
dimension (cf. Remark 4.6). ¤
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