〕 Open access • Journal Article • DOI:10.1007/S00222-007-0106-6

Essential dimension of finite p-groups — Source link \square

Nikita A. Karpenko, Alexander Merkurjev
Institutions: Pierre-and-Marie-Curie University, University of California
Published on: 10 Jan 2008 - Inventiones Mathematicae (Springer-Verlag)
Topics: Dimension theory (algebra), Faithful representation, Dimension (vector space), Essential dimension and Root of unity

Related papers:

- On the essential dimension of a finite group
- Essential dimension: A functorial point of view (After A. Merkurjev)
- Essential Dimensions of Algebraic Groups and a Resolution Theorem for G-Varieties
- The Book of Involutions
- On the notion of essential dimension for algebraic groups

ESSENTIAL DIMENSION OF FINITE p-GROUPS

NIKITA A. KARPENKO AND ALEXANDER S. MERKURJEV

Abstract

We prove that the essential dimension and p-dimension of a p-group G over a field F containing a primitive p-th root of unity is equal to the least dimension of a faithful representation of G over F.

The notion of the essential dimension $\operatorname{ed}(G)$ of a finite group G over a field F was introduced in (5). The integer ed (G) is equal to the smallest number of algebraically independent parameters required to define a Galois G-algebras over any field extension of F. If V is a faithful linear representation of G over F then $\operatorname{ed}(G) \leq \operatorname{dim}(V)$ (cf. [2, Prop. 4.15]). The essential dimension of G can be smaller than $\operatorname{dim}(V)$ for every faithful representation V of G over F. For example, we have ed $(\mathbb{Z} / 3 \mathbb{Z})=1$ over \mathbb{Q} or any field F of characteristic 3 (cf. [23, Cor. 7.5]) and $\operatorname{ed}\left(S_{3}\right)=1$ over \mathbb{C} (cf. [55, Th. 6.5]).

In this paper we prove that if G is a p-group and F is a field of characteristic different from p containing p-th roots of unity, then $\operatorname{ed}(G)$ coincides with the least dimension of a faithful representation of G over F (cf. Theorem 4.1).

We also compute the essential p-dimension of a p-group G introduced in [15. We show that $\operatorname{ed}_{p}(G)=\operatorname{ed}(G)$ over a field F containing p-th roots of unity.

In the paper the word "scheme" means a separated scheme of finite type over a field and "variety" an integral scheme.
Acknowledgment: We are grateful to Zinovy Reichstein for useful conversations and comments.

1. Preliminaries

1.1. Severi-Brauer varieties. (cf. 罒) Let A be a central simple algebra of degree n over a field F. The Severi-Brauer variety $P=\operatorname{SB}(A)$ of A is the variety of right ideals in A of dimension n. For a field extension L / F, the algebra A is split over L if and only if $P(L) \neq \emptyset$ if and only if $P_{L} \simeq \mathbb{P}_{L}^{n-1}$.

The change of field map deg : $\operatorname{Pic}(P) \rightarrow \operatorname{Pic}\left(P_{L}\right)=\mathbb{Z}$ for a splitting field extension L / F identifies $\operatorname{Pic}(P)$ with $e \mathbb{Z}$, where e is the exponent (period) of A. In particular, P has divisors of degree e. The algebra A is split over L if and only if P_{L} has a prime divisor of degree 1 (a hyperplane).

[^0]1.2. Groupoids and gerbes. (cf. [4]) Let \mathcal{X} be a groupoid over F in the sense of [19]. We assume that for any field extension L / F, the isomorphism classes of objects in the category $\mathcal{X}(L)$ form a set which we denote by $\widehat{\mathcal{X}}(L)$. We can view $\widehat{\mathcal{X}}$ as a functor from the category Fields/ F of field extensions of F to Sets.
Example 1.2.1. If G is an algebraic group over F, then the groupoid $B G$ is defined as the category of G-torsors over a scheme over F. Hence the functor $\widehat{B G}$ takes a field extension L / F to the set of all isomorphism classes of G torsors over L.

Special examples of groupoids are gerbes banded by a commutative group scheme C over F. There is a bijection between the set of isomorphism classes of gerbes banded by C and the Galois cohomology group $H^{2}(F, C)$ (cf. [7] Ch. 4] and [13, Ch. 4, §2]). The split gerbe $B C$ corresponds to the trivial element of $H^{2}(F, C)$.
Example 1.2.2. (Gerbes banded by μ_{n}) Let A be a central simple F-algebra and n an integer with $[A] \in \operatorname{Br}_{n}(F)=H^{2}\left(F, \mu_{n}\right)$. Let P be the Severi-Brauer variety of A and S a divisor on P of degree n. Denote by \mathcal{X}_{A} the gerbe banded by μ_{n} corresponding to $[A]$. For a field extension L / F, the set $\widehat{\mathcal{X}}_{A}(L)$ has the following explicit description (cf. [4]): $\widehat{\mathcal{X}}_{A}(L)$ is nonempty if and only if P is split over L. In this case $\widehat{\mathcal{X}}_{A}(L)$ is the set of equivalence classes of the set
$\left\{f \in L(P)^{\times}: \operatorname{div}(f)=n H-S_{L}, \quad\right.$ where H is a hyperplane in $\left.P_{L}\right\}$, and two functions f and f^{\prime} are equivalent if $f^{\prime}=f h^{n}$ for some $h \in L(P)^{\times}$.
1.3. Essential dimension. Let $T:$ Fields $/ F \rightarrow$ Sets be a functor. For a field extension L / F and an element $t \in T(L)$, the essential dimension of t, denoted $\operatorname{ed}(t)$, is the least $\operatorname{tr} . \operatorname{deg}_{F}\left(L^{\prime}\right)$ over all subfields $L^{\prime} \subset L$ over F such that t belongs to the image of the map $T\left(L^{\prime}\right) \rightarrow T(L)$. The essential dimension $\operatorname{ed}(T)$ of the functor T is the supremum of $\operatorname{ed}(t)$ over all $t \in T(L)$ and field extensions L / F.

Let p be a prime integer and $t \in T(L)$. The essential p-dimension of t, denoted $\operatorname{ed}_{p}(t)$, is the least tr. $\operatorname{deg}_{F}\left(L^{\prime \prime}\right)$ over all subfields $L^{\prime \prime} \subset L^{\prime}$ over F, where L^{\prime} is a finite field extension of L of degree prime to p such that the image of t in $T\left(L^{\prime}\right)$ belongs to the image of the map $T\left(L^{\prime \prime}\right) \rightarrow T\left(L^{\prime}\right)$. The essential p-dimension $\operatorname{ed}_{p}(T)$ of the functor T is the supremum of $\operatorname{ed}_{p}(t)$ over all $t \in T(L)$ and field extensions L / F. Clearly, $\operatorname{ed}(T) \geq \operatorname{ed}_{p}(T)$.

Let G be an algebraic group over F. The essential dimension $\operatorname{ed}(G)$ of G (respectively the essential p-dimension $\operatorname{ed}(G)$) is the essential dimension (respectively the essential p-dimension) of the functor taking a field extension L / F to the set of isomorphism classes of G-torsors over $\operatorname{Spec} L$.

If G is a finite group, we view G as a constant group over a field F. Every G-torsor over $\operatorname{Spec} L$ has the form $\operatorname{Spec} K$ where K is a Galois G-algebra over L. Therefore, $\operatorname{ed}(G)$ is the essential dimension of the functor taking a field L to the set of isomorphism classes of Galois G-algebras over L.

Example 1.3.1. Let \mathcal{X} be a groupoid over F. The essential dimension of \mathcal{X}, denoted by $\operatorname{ed}(\mathcal{X})$, is the essential dimension $\operatorname{ed}(\widehat{\mathcal{X}})$ of the functor $\widehat{\mathcal{X}}$ defined in §1.2. The essential p-dimension of $\operatorname{ed}_{p}(\mathcal{X})$ is defined similarly. In particular, $\operatorname{ed}(B G)=\operatorname{ed}(G)$ and $\operatorname{ed}_{p}(B G)=\operatorname{ed}_{p}(G)$ for an algebraic group G over F.
1.4. Canonical dimension. (cf. [3], 11]) Let F be a field and \mathcal{C} a class of field extensions of F. A field $E \in \mathcal{C}$ is called generic if for any $L \in \mathcal{C}$ there is an F-place $E \rightsquigarrow L$.

The canonical dimension $\operatorname{cdim}(\mathcal{C})$ of the class \mathcal{C} is the minimum of the tr. $\operatorname{deg}_{F} E$ over all generic fields $E \in \mathcal{C}$.

Let p be a prime integer. A field E in a class \mathcal{C} is called p-generic if for any $L \in \mathcal{C}$ there is a finite field extension L^{\prime} of L of degree prime to p and an F place $E \rightsquigarrow L^{\prime}$. The canonical p-dimension $\operatorname{cdim}_{p}(\mathcal{C})$ of the class \mathcal{C} is the least tr. $\operatorname{deg}_{F} E$ over all p-generic fields $E \in \mathcal{C}$. Obviously, $\operatorname{cdim}(\mathcal{C}) \geq \operatorname{cdim}_{p}(\mathcal{C})$.

Let $T:$ Fields $/ F \rightarrow$ Sets be a functor. Denote by \mathcal{C}_{T} the class of splitting fields of T, i.e., the class of field extensions L / F such that $T(L) \neq \emptyset$. The canonical dimension (p-dimension) of T, denoted $\operatorname{cdim}(T)$ (respectively $\operatorname{cdim}_{p}(T)$), is the canonical dimension (p-dimension) of the class \mathcal{C}_{T}.

If X is a scheme over F, we write $\operatorname{cdim}(X)$ and $\operatorname{cdim}_{p}(X)$ for the canonical dimension and p-dimension of X viewed as a functor $L \mapsto X(L)=$ $\operatorname{Mor}_{F}(\operatorname{Spec} L, X)$.

Example 1.4.1. Let \mathcal{X} be a groupoid over F. We define the canonical dimension $\operatorname{cdim}(\mathcal{X})$ and p-dimension $\operatorname{cdim}_{p}(\mathcal{X})$ of \mathcal{X} as the canonical dimension and p-dimension of the functor $\widehat{\mathcal{X}}$.

Example 1.4.2. If X is a regular and complete variety over F viewed as a functor then $\operatorname{cdim}(X)$ is equal to the smallest dimension of a closed subvariety $Z \subset X$ such that there is a rational morphism $X \rightarrow Z$ (cf. 11, Cor. 4.6]). If p is a prime integer then $\operatorname{cdim}_{p}(X)$ is equal to the smallest dimension of a closed subvariety $Z \subset X$ such that there are dominant rational morphisms $X^{\prime} \rightarrow X$ of degree prime to p and $X^{\prime} \rightarrow Z$ for some variety X^{\prime} (cf. 11, Prop. 4.10]).

Remark 1.4.3. (A relation between essential and canonical dimension) Let $T:$ Fields $/ F \rightarrow$ Sets be a functor. We define the "contraction" functor T^{c} : Fields $/ F \rightarrow$ Sets as follows. For a field extension L / F, we have $T^{c}(L)=\emptyset$ if $T(L)$ is empty and $T^{c}(L)$ is a one element set otherwise. If X is a regular and complete variety over F viewed as a functor then one can show that $\operatorname{ed}\left(X^{c}\right)=\operatorname{cdim}(X)$ and $\operatorname{ed}_{p}\left(X^{c}\right)=\operatorname{cdim}_{p}(X)$.
1.5. Valuations. Let K / F be a regular field extension, i.e., for any field extension L / F, the ring $K \otimes_{F} L$ is a domain. We write $K L$ for the quotient field of $K \otimes_{F} L$.

Let v be a valuation on L over F with residue field R. Let O be the associated valuation ring and M its maximal ideal. As $K \otimes_{F} R$ is a domain, the ideal $\widetilde{M}:=K \otimes_{F} M$ in the ring $\widetilde{O}:=K \otimes_{F} O$ is prime. The localization ring $\widetilde{O}_{\widetilde{M}}$ is
a valuation ring in $K L$ with residue field $K R$. The corresponding valuation \tilde{v} of $K L$ is called the canonical extension of v on $K L$. Note that the groups of values of v and \tilde{v} coincide.

We shall need the following lemma.
Lemma 1.1 (cf. [11, Lemma 3.2]). Let v be a discrete valuation (of rank 1) of a field L with residue field R and L^{\prime} / L a finite field extension of degree prime to p. Then v extends to a discrete valuation of L^{\prime} with residue field R^{\prime} such that the ramification index and the degree $\left[R^{\prime}: R\right]$ are prime to p.

Proof. If L^{\prime} / L is separable and v_{1}, \ldots, v_{k} are all the extensions of v on L^{\prime} then [$\left.L^{\prime}: L\right]=\sum e_{i}\left[R_{i}: R\right]$ where e_{i} is the ramification index and R_{i} is the residue field of v_{i} (cf. [20, Ch. VI, Th. 20 and p. 63]). It follows that the integer $e_{i}\left[R_{i}: R\right]$ is prime to p for some i.

If L^{\prime} / L is purely inseparable of degree q then the valuation v^{\prime} of L^{\prime} defined by $v^{\prime}(x)=v\left(x^{q}\right)$ satisfies the desired properties. The general case follows.

2. Canonical dimension of a subgroup of $\operatorname{Br}(F)$

Let F be an arbitrary field, p a prime integer and D a finite subgroup of $\operatorname{Br}_{p}(F)$ of dimension r over $\mathbb{Z} / p \mathbb{Z}$. In this section we determine the canonical dimension cdim D and the canonical p-dimension $\operatorname{cdim}_{p} D$ of the class of common splitting fields of all elements of D. We say that a basis $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ of D is minimal if for any $i=1, \ldots, r$ and any element $d \in D$ outside of the subgroup generated by a_{1}, \ldots, a_{i-1}, we have ind $d \geq$ ind a_{i}.

One can construct a minimal basis of D by induction as follows. Let a_{1} be a nonzero element of D of minimal index. If the elements a_{1}, \ldots, a_{i-1} are already chosen for some $i \leq r$, we take for the a_{i} an element of D of the minimal index among the elements outside of the subgroup generated by a_{1}, \ldots, a_{i-1}.

In this section we prove the following
Theorem 2.1. Let F be an arbitrary field, p a prime integer, $D \subset \operatorname{Br}_{p}(F)$ a subgroup of dimension r and $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ a minimal basis of D. Then

$$
\operatorname{cdim}_{p}(D)=\operatorname{cdim}(D)=\left(\sum_{i=1}^{r} \operatorname{ind} a_{i}\right)-r .
$$

We prove Theorem 2.1 in several steps.
Let $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ be a minimal basis of D. For every $i=1,2, \ldots, r$, let P_{i} be the Severi-Brauer variety of a central division F-algebra A_{i} representing the element $a_{i} \in \operatorname{Br}_{p} F$. We write P for the product $P_{1} \times P_{2} \times \cdots \times P_{r}$. We have

$$
\operatorname{dim} P=\sum_{i=1}^{r} \operatorname{dim} P_{i}=\left(\sum_{i=1}^{r} \operatorname{ind} a_{i}\right)-r .
$$

Moreover, the classes of splitting fields of P and D coincide, hence $\operatorname{cdim}(D)=$ $\operatorname{cdim}(P)$ and $\operatorname{cdim}_{p}(D)=\operatorname{cdim}_{p}(P)$. Thus, the statement of Theorem 2.1 is equivalent to the equality $\operatorname{cdim}_{p}(P)=\operatorname{cdim}(P)=\operatorname{dim}(P)$.

Let $r \geq 1$ and $0 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{r}$ be integers and $K=K\left(n_{1}, \ldots, n_{r}\right)$ the subgroup of the polynomial ring $\mathbb{Z}[x]$ in r variables $x=\left(x_{1}, \ldots, x_{r}\right)$ generated by the monomials $p^{e\left(j_{1}, \ldots, j_{r}\right)} x_{1}^{j_{1}} \ldots x_{r}^{j_{r}}$ for all $j_{1}, \ldots, j_{r} \geq 0$, where the exponent $e\left(j_{1}, \ldots, j_{r}\right)$ is 0 if all the j_{1}, \ldots, j_{r} are divisible by p, otherwise $e\left(j_{1}, \ldots, j_{r}\right)=n_{k}$ with the maximum k such that j_{k} is not divisible by p. In fact, K is a subring of $\mathbb{Z}[x]$.

Remark 2.2. Let A_{1}, \ldots, A_{r} be central division algebras over some field such that for any non-negative integers j_{1}, \ldots, j_{r}, the index of the tensor product $A_{1}^{\otimes j_{1}} \otimes \cdots \otimes A_{r}^{\otimes j_{r}}$ is equal to $p^{e\left(j_{1}, \ldots, j_{r}\right)}$. The group K can be interpreted as the colimit of the Grothendieck groups of the product over $i=1, \ldots, r$ of the Severi-Brauer varieties of the matrix algebras $M_{l_{i}}\left(A_{i}\right)$ over all positive integers l_{1}, \ldots, l_{r}.

We set $h=\left(h_{1}, \ldots, h_{r}\right)$ with $h_{i}=1-x_{i} \in \mathbb{Z}[x]$.
Proposition 2.3. Let $b h_{1}^{i_{1}} \ldots h_{r}^{i_{r}}$ be a monomial of the lowest total degree of a polynomial f in the variables h lying in K. Assume that the integer b is not divisible by p. Then $p^{n_{1}}\left|i_{1}, \ldots, p^{n_{r}}\right| i_{r}$.

Proof. We recast the proof for $r=1$ given in [8, Lemma 2.1.2] to the case of arbitrary r.

We proceed by induction on $m=r+n_{1}+\cdots+n_{r}$. The case $m=1$ is trivial. If $m>1$ and $n_{1}=0$, then $K=K\left(n_{2}, \ldots, n_{r}\right)\left[x_{1}\right]$ and we are done by induction applied to $K\left(n_{2}, \ldots, n_{r}\right)$. In what follows we assume that $n_{1} \geq 1$.

Since $K\left(n_{1}, n_{2}, \ldots, n_{r}\right) \subset K\left(n_{1}-1, n_{2}, \ldots, n_{r}\right)$, by the induction hypothesis $p^{n_{1}-1}\left|i_{1}, p^{n_{2}}\right| i_{2}, \ldots, p^{n_{r}} \mid i_{r}$. It remains to show that i_{1} is divisible by $p^{n_{1}}$.

Consider the additive operation $\varphi: \mathbb{Z}[x] \rightarrow \mathbb{Q}[x]$ which takes a polynomial $g \in \mathbb{Z}[x]$ to the polynomial $p^{-1} x_{1} \cdot g^{\prime}$, where g^{\prime} is the partial derivative of g with respect to x_{1}. We have

$$
\varphi(K) \subset K\left(n_{1}-1, n_{2}-1, \ldots, n_{r}-1\right) \subset K\left(n_{1}-1\right)\left[x_{2}, \ldots, x_{r}\right]
$$

and

$$
\varphi\left(h_{1}^{j_{1}} h_{2}^{j_{2}} \cdots h_{r}^{j_{r}}\right)=-p^{-1} j_{1} h_{1}^{j_{1}-1} h_{2}^{j_{2}} \cdots h_{r}^{j_{r}}+p^{-1} j_{1} h_{1}^{j_{1}} h_{2}^{j_{2}} \cdots h_{r}^{j_{r}} .
$$

Since $b h_{1}^{i_{1}} \cdots h_{r}^{i_{r}}$ is a monomial of the lowest total degree of the polynomial f, it follows that $-b p^{-1} i_{1} h_{1}^{i_{1}-1} h_{2}^{i_{2}} \cdots h_{r}^{i_{r}}$ is a monomial of $\varphi(f)$ considered as a polynomial in h. As

$$
\varphi(f) \in K\left(n_{1}-1\right)\left[x_{2}, \ldots, x_{r}\right],
$$

we see that $-b p^{-1} i_{1} h_{1}^{i_{1}-1}$ is a monomial of a polynomial from $K\left(n_{1}-1\right)$. It follows that $p^{-1} i_{1}$ is an integer and by Lemma 2.4 below, this integer is divisible by $p^{n_{1}-1}$. Therefore $p^{n_{1}} \mid i_{1}$.

Lemma 2.4. Let g be a polynomial in h_{1} lying in $K(m)$ for some $m \geq 0$. Let $b h_{1}^{i-1}$ be a monomial of g such that i is divisible by p^{m}. Then b is divisible by p^{m} 。

Proof. We write h for h_{1} and x for x_{1}. Note that $h^{i} \in K(m)$ since i is divisible by p^{m}. Moreover, the quotient ring $K(m) /\left(h^{i}\right)$ is additively generated by $p^{e(j)} x^{j}$ with $j<i$. Indeed, the polynomial $x^{i}-(-h)^{i}=x^{i}-(x-1)^{i}$ is a linear combination with integer coefficients of $p^{e(j)} x^{j}$ with $j<i$. Consequently, for any $k \geq 0$, multiplying by $p^{e(k)} x^{k}$, we see that the polynomial $p^{e(i+k)} x^{i+k}=$ $p^{e(k)} x^{i+k}$ modulo the ideal $\left(h^{i}\right)$ is a linear combination with integer coefficients of the $p^{e(j)} x^{j}$ with $j<i+k$.

Thus, $K(m) /\left(h^{i}\right)$ is additively generated by $p^{e(j)}(1-h)^{j}$ with $j<i$. Only the generator $p^{e(i-1)}(1-h)^{i-1}=p^{m}(1-h)^{i-1}$ has a nonzero h^{i-1}-coefficient and that coefficient is divisible by p^{m}.

Let Y be a scheme over the field F. We write $\mathrm{CH}(Y)$ for the Chow group of Y and set $\mathrm{Ch}(Y)=\mathrm{CH}(Y) / p \mathrm{CH}(Y)$. We define $\mathrm{Ch}(\bar{Y})$ as the colimit of $\mathrm{Ch}\left(Y_{L}\right)$ where L runs over all field extensions of F. Thus for any field extension L / F, we have a canonical homomorphism $\operatorname{Ch}\left(Y_{L}\right) \rightarrow \mathrm{Ch}(\bar{Y})$. This homomorphism is an isomorphism if $Y=P$, the variety defined above, and L is a splitting field of P.

We define $\overline{\mathrm{Ch}}(Y)$ to be the image of the homomorphism $\mathrm{Ch}(Y) \rightarrow \mathrm{Ch}(\bar{Y})$.
Proposition 2.5. We have $\overline{\mathrm{Ch}}^{j}(P)=0$ for any $j>0$.
Proof. Let $K_{0}(P)$ be the Grothendieck group of P. We write $K_{0}(\bar{P})$ for the colimit of $K_{0}\left(P_{L}\right)$ taken over all field extensions L / F. The group $K_{0}(\bar{P})$ is canonically isomorphic to $K_{0}\left(P_{L}\right)$ for any splitting field L of P. Each of the groups $K_{0}(P)$ and $K_{0}(\bar{P})$ is endowed with the topological filtration. The subsequent factor groups $G^{j} K_{0}(P)$ and $G^{j} K_{0}(\bar{P})$ of these filtrations fit into the commutative square

where the top map is an isomorphism. Therefore it suffices to show that the image of the homomorphism $G^{j} K_{0}(P) \rightarrow G^{j} K_{0}(\bar{P})$ is divisible by p for any $j>0$.

The ring $K_{0}(\bar{P})$ is identified with the quotient of the polynomial ring $\mathbb{Z}[h]$ by the ideal generated by $h_{1}^{\operatorname{ind} a_{1}}, \ldots, h_{r}^{\text {ind } a_{r}}$. Under this identification, the element h_{i} is the pull-back to P of the class of a hyperplane in P_{i} over a splitting field and the j-th term $K_{0}(\bar{P})^{(j)}$ of the filtration is generated by the classes of monomials of degree at least j. The group $G^{j} K_{0}(\bar{P})$ is identified with the group of all homogeneous polynomials of degree j.

The group $K_{0}(P)$ is isomorphic to the direct sum of $K_{0}(B)$, where $B=$ $A_{1}^{\otimes j_{1}} \otimes \cdots \otimes A_{r}^{\otimes j_{r}}$, over all j_{i} with $0 \leq j_{i}<$ ind a_{i} (cf. [14, §9]). The image of the natural map $K_{0}(B) \rightarrow K_{0}\left(B_{L}\right)=\mathbb{Z}$, where L is a splitting field of B, is equal to ind $\left(a_{1}^{j_{1}} \cdots a_{r}^{j_{r}}\right) \mathbb{Z}$. The image of the homomorphism $K_{0}(P) \rightarrow K_{0}(\bar{P})$
(which is in fact an injection) is generated by

$$
\operatorname{ind}\left(a_{1}^{j_{1}} \cdots a_{r}^{j_{r}}\right)\left(1-h_{1}\right)^{j_{1}} \cdots\left(1-h_{r}\right)^{j_{r}}
$$

over all $j_{1}, \ldots, j_{r} \geqq 0$.
We embed $K_{0}(\bar{P})$ into the polynomial ring $\mathbb{Z}[x]=\mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$ as a subgroup by identifying a monomial $h_{1}^{j_{1}} \cdots h_{r}^{j_{r}}$ where $0 \leq j_{i}<$ ind a_{i} with the polynomial $\left(1-x_{1}\right)^{j_{1}} \cdots\left(1-x_{r}\right)^{j_{r}}$. As the elements a_{1}, \ldots, a_{r} form a minimal basis of D, the index $\operatorname{ind}\left(a_{1}^{j_{1}} \cdots a_{r}^{j_{r}}\right)$ is a power of p with the exponent at least $e\left(\log _{p}\right.$ ind $a_{1}, \ldots, \log _{p}$ ind $\left.a_{r}\right)$. Therefore,

$$
K_{0}(P) \subset K\left(\log _{p} \text { ind } a_{1}, \ldots, \log _{p} \text { ind } a_{r}\right) \subset \mathbb{Z}[x]
$$

An element of $K_{0}(P)^{(j)}$ with $j>0$ is a polynomial f in h of degree at least j. The image of f in $G^{j} K_{0}(\bar{P})$ is the j-th homogeneous part f_{j} of f. As the degree of f with respect to h_{i} is less than ind a_{i}, it follows from Proposition 2.3 that all the coefficients of f_{j} are divisible by p.

Let $d=\operatorname{dim} P$ and $\alpha \in \mathrm{CH}^{d}(P \times P)$. The first multiplicity $\operatorname{mult}_{1}(\alpha)$ of α is the image of α under the push-forward map $\mathrm{CH}^{d}(P \times P) \rightarrow \mathrm{CH}^{0}(P)=\mathbb{Z}$ given by the first projection $P \times P \rightarrow P$ (cf. [10]). Similarly, we define the second multiplicity mult ${ }_{2}(\alpha)$.

Corollary 2.6. For any element $\alpha \in \mathrm{CH}^{d}(P \times P)$, we have

$$
\operatorname{mult}_{1}(\alpha) \equiv \operatorname{mult}_{2}(\alpha) \quad \text { modulo } p .
$$

Proof. We follow the proof of [9, Th. 2.1]. The homomorphism

$$
f: \mathrm{CH}^{d}(P \times P) \rightarrow(\mathbb{Z} / p \mathbb{Z})^{2}
$$

taking an $\alpha \in \mathrm{CH}^{d}(P \times P)$ to $\left(\operatorname{mult}_{1}(\alpha), \operatorname{mult}_{2}(\alpha)\right)$ modulo p, factors through the group $\overline{\mathrm{Ch}}^{d}(P \times P)$. Since for any i, any projection $P_{i} \times P_{i} \rightarrow P_{i}$ is a projective bundle, the Chow group $\overline{\mathrm{Ch}}^{d}(P \times P)$ is a direct some of several copies of $\overline{\mathrm{Ch}}^{i}(P)$ for some i 's and the value $i=0$ appears once. By Proposition 2.5, the dimension over $\mathbb{Z} / p \mathbb{Z}$ of the vector space $\overline{\mathrm{Ch}}^{d}(P \times P)$ is equal to 1 and consequently the dimension of the image of f is at most 1 . Since the image of the diagonal class under f is $(1,1)$, the image of f is generated by $(1,1)$.

Corollary 2.7. Any rational map $P \rightarrow P$ is dominant.
Proof. Let $\alpha \in \mathrm{CH}^{d}(P \times P)$ be the class of the closure of the graph of a rational map $P \rightarrow P$. We have $\operatorname{mult}_{1}(\alpha)=1$. Therefore, by Corollary 2.6, $\operatorname{mult}_{2}(\alpha) \neq 0$, and it follows that the rational map is dominant.

Corollary 2.8. $\operatorname{cdim}_{p} P=\operatorname{cdim} P=\operatorname{dim} P$.
Proof. As $\operatorname{cdim}_{p} P \leq \operatorname{cdim} P \leq \operatorname{dim} P$, it suffices to show that $\operatorname{cdim}_{p} P=$ $\operatorname{dim} P$. Let $Z \subset P$ be a closed subvariety and $f: P^{\prime} \rightarrow P$ and $g: P^{\prime} \rightarrow Z$ dominant rational morphisms such that $\operatorname{deg} f$ is prime to p. Let α be the class in $\mathrm{CH}^{d}(P \times P)$ of the closure in $P \times P$ of the image of $f \times g: P^{\prime} \rightarrow P \times Z$.

As mult ${ }_{1}(\alpha)=\operatorname{deg} f$ is prime to p, by Corollary 2.6, we have $\operatorname{mult}_{2}(\alpha) \neq 0$, i.e., $Z=P$. By Example 1.4.2, $\operatorname{cdim}_{p} P=\operatorname{dim} P$.

The corollary completes the proof of Theorem 2.1.
Remark 2.9. Theorem 2.1 can be generalized to the case of any finite subgroup $D \subset \operatorname{Br}(F)$ consisting of elements of p-primary orders. Let $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ be elements of D such that their images $\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{r}^{\prime}\right\}$ in D / D^{p} form a minimal basis, i.e., for any $i=1, \ldots r$ and any element $d \in D$ with the class in D / D^{p} outside of the subgroup generated by $a_{1}^{\prime}, \ldots, a_{i-1}^{\prime}$, the inequality ind $d \geq$ ind a_{i} holds. In particular, $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ generate D. Then, as in Theorem 2.1, we have

$$
\operatorname{cdim}_{p}(D)=\operatorname{cdim}(D)=\left(\sum_{i=1}^{r} \operatorname{ind} a_{i}\right)-r .
$$

Indeed, the group D and the variety $P=P_{1} \times \cdots \times P_{r}$, where P_{i} for every $i=$ $1, \ldots, r$ is the Severi-Brauer variety of a central division algebra representing the element a_{i}, have the same splitting fields. Therefore, $\operatorname{cdim}(D)=\operatorname{cdim}(P)$ and $\operatorname{cdim}_{p}(D)=\operatorname{cdim}_{p}(P)$. Corollaries 2.6, 2.7 and 2.8 hold for P since $K_{0}(P) \subset K\left(\log _{p}\right.$ ind $a_{1}, \ldots, \log _{p}$ ind $\left.a_{r}\right)$.
Remark 2.10. One can compute the canonical p-dimension of an arbitrary finite subgroup of $D \subset \operatorname{Br}(F)$ as follows. Let D^{\prime} be the Sylow p-subgroup of D. Write $D=D^{\prime} \oplus D^{\prime \prime}$ for a subgroup $D^{\prime \prime} \subset D$ and let L / F be a finite field extension of degree prime to p such that $D^{\prime \prime}$ is split over L. Then $D_{L}=D_{L}^{\prime}$ and $\operatorname{cdim}_{p}(D)=\operatorname{cdim}_{p}\left(D_{L}\right)=\operatorname{cdim}_{p}\left(D_{L}^{\prime}\right)=\operatorname{cdim}_{p}\left(D^{\prime}\right)=\operatorname{cdim}\left(D^{\prime}\right)$.

3. Essential and canonical dimension of gerbes banded by $\left(\boldsymbol{\mu}_{p}\right)^{s}$

In this section we relate the essential and canonical (p-)dimensions of gerbes banded by $\left(\boldsymbol{\mu}_{p}\right)^{s}$ where $s \geq 0$. The following statement is a generalization of [目, Th. 7.1].
Theorem 3.1. Let p be a prime integer and \mathcal{X} a gerbe banded by $\left(\boldsymbol{\mu}_{p}\right)^{s}$ over an arbitrary field F. Then

$$
\operatorname{ed}(\mathcal{X})=\operatorname{ed}_{p}(\mathcal{X})=\operatorname{cim}_{p}(\mathcal{X})+s=\operatorname{cdim}(\mathcal{X})+s
$$

Proof. The gerbe \mathcal{X} is given by an element in $H^{2}\left(F,\left(\boldsymbol{\mu}_{p}\right)^{s}\right)=\operatorname{Br}_{p}(F)^{s}$, i.e., by an s-tuple of central simple algebras $A_{1}, A_{2}, \ldots, A_{s}$ with $\left[A_{i}\right] \in \operatorname{Br}_{p}(F)$. Let P be the product of the Severi-Brauer varieties $P_{i}:=\operatorname{SB}\left(A_{i}\right)$ and D the subgroup of $\operatorname{Br}_{p}(F)$ generated by the $\left[A_{i}\right], i=1, \ldots, s$. As the classes of splitting fields for \mathcal{X}, D and P coincide, we have
(1) $\quad \operatorname{cdim}(\mathcal{X})=\operatorname{cdim}(P)=\operatorname{cdim}(D)=\operatorname{cdim}_{p}(D)=\operatorname{cdim}_{p}(P)=\operatorname{cdim}_{p}(\mathcal{X})$
by Theorem 2.1. We shall prove the inequalities $\operatorname{ed}_{p}(\mathcal{X}) \geq \operatorname{cdim}(P)+s \geq$ $\operatorname{ed}(\mathcal{X})$.

Let S_{i} be a divisor on P_{i} of degree p. Let L / F be a field extension and $f_{i} \in L\left(P_{i}\right)^{\times}$with $\operatorname{div}\left(f_{i}\right)=p H_{i}-\left(S_{i}\right)_{L}$, where H_{i} is a hyperplane in $\left(P_{i}\right)_{L}$ for $i=1, \ldots, s$. We write $\left\langle f_{i}\right\rangle_{i=1}^{s}$ for the corresponding element in $\widehat{\mathcal{X}}(L)$ (cf. §1.2).

By Example 1.4.2, there is a closed subvariety $Z \subset P$ and a rational dominant morphism $P \rightarrow Z$ with $\operatorname{dim}(Z)=\operatorname{cdim}(P)=\operatorname{cdim}_{p}(P)$. We view $F(Z)$ as a subfield of $F(P)$. As $P(L) \neq \emptyset$ and P is regular, there is an F-place $\gamma: F(P) \rightsquigarrow L$ (cf. [11, §4.1]). Since Z is complete, the valuation ring of the restriction $\left.\gamma\right|_{F(Z)}: F(Z) \rightsquigarrow L$ dominates a point in Z. It follows that $Z(L) \neq \emptyset$. Choose a point $y \in Z$ such that $F^{\prime}:=F(y) \subset L$.

Since $P\left(F^{\prime}\right) \neq \emptyset$, the P_{i} are split over F^{\prime}, hence $\operatorname{Pic}\left(P_{i}\right)_{F^{\prime}}=\mathbb{Z}$ and there are functions $g_{i} \in F^{\prime}\left(P_{i}\right)^{\times}$with $\operatorname{div}\left(g_{i}\right)=p H_{i}^{\prime}-\left(S_{i}\right)_{F^{\prime}}$, where H_{i}^{\prime} is a hyperplane in P_{i} for $i=1, \ldots, s$. As $\operatorname{Pic}\left(P_{i}\right)_{L}=\mathbb{Z}$, there are functions $h_{i} \in L\left(P_{i}\right)^{\times}$with $\operatorname{div}\left(h_{i}\right)=\left(H_{i}^{\prime}\right)_{L}-H_{i}$. We have

$$
\operatorname{div}\left(g_{i}\right)_{L}=\operatorname{div}\left(f_{i}\right)+\operatorname{div}\left(h_{i}^{p}\right),
$$

hence

$$
a_{i} g_{i}=f_{i} h_{i}^{p}
$$

for some $a_{i} \in L^{\times}$. It follows that $\left\langle f_{i}\right\rangle_{i=1}^{s}=\left\langle a_{i} g_{i}\right\rangle_{i=1}^{s}$ in $\mathcal{X}(L)$, therefore $\left\langle f_{i}\right\rangle_{i=1}^{s}$ is defined over the field $F^{\prime}\left(a_{1}, a_{2}, \ldots, a_{s}\right)$. Hence

$$
\operatorname{ed}\left\langle f_{i}\right\rangle_{i=1}^{s} \leq \operatorname{tr} \cdot \operatorname{deg}_{F}\left(F^{\prime}\right)+s \leq \operatorname{dim}(Z)+s=\operatorname{cdim}(P)+s,
$$

and therefore $\operatorname{ed}(\mathcal{X}) \leq \operatorname{cdim}(P)+s$.
We shall prove the inequality $\operatorname{ed}_{p}(\mathcal{X}) \geq \operatorname{cdim}(P)+s$. As $P(F(Z)) \neq \emptyset$, there are functions $f_{i} \in F(Z)\left(P_{i}\right)^{\times}$with $\operatorname{div}\left(f_{i}\right)=p H_{i}-\left(S_{i}\right)_{F(Z)}$, where H_{i} is a hyperplane in $\left(P_{i}\right)_{F(Z)}$. Let $L:=F(Z)\left(t_{1}, t_{2}, \ldots, t_{s}\right)$, where the t_{i} are variables, and consider the point $\left\langle t_{i} f_{i}\right\rangle_{i=1}^{s} \in \widehat{\mathcal{X}}(L)$.

We claim that $\operatorname{ed}_{p}\left\langle t_{i} f_{i}\right\rangle_{i=1}^{s} \geq \operatorname{cdim}(P)+s$. Let L^{\prime} be a finite extension of L of degree prime to p and $L^{\prime \prime} \subset L^{\prime}$ a subfield such that the image of $\left\langle t_{i} f_{i}\right\rangle_{i=1}^{s}$ in $\widehat{\mathcal{X}}\left(L^{\prime}\right)$ is defined over $L^{\prime \prime}$, i.e., there are functions $g_{i} \in L^{\prime \prime}\left(P_{i}\right)^{\times}$and $h_{i} \in L^{\prime}\left(P_{i}\right)^{\times}$ with $t_{i} f_{i}=g_{i} h_{i}^{p}$. We shall show that $\operatorname{tr} . \operatorname{deg}_{F}\left(L^{\prime \prime}\right) \geq \operatorname{cdim}(P)+s$.

Let $L_{i}:=F(Z)\left(t_{i}, \ldots, t_{s}\right)$ and v_{i} be the discrete valuation of L_{i} corresponding to the variable t_{i} for $i=1, \ldots, s$. We construct a sequence of field extensions L_{i}^{\prime} / L_{i} of degree prime to p and discrete valuations v_{i}^{\prime} of L_{i}^{\prime} for $i=1, \ldots, s$ by induction on i as follows. Set $L_{1}^{\prime}=L^{\prime}$. Suppose the fields $L_{1}^{\prime}, \ldots, L_{i}^{\prime}$ and the valuations $v_{1}^{\prime}, \ldots, v_{i-1}^{\prime}$ are constructed. By Lemma 1.1, there is a valuation v_{i}^{\prime} of L_{i}^{\prime} with residue field L_{i+1}^{\prime} extending the discrete valuation v_{i} of L_{i}^{\prime} with the ramification index e_{i} and the degree $\left[L_{i+1}^{\prime}: L_{i+1}\right]$ prime to p.

The composition v^{\prime} of the discrete valuations v_{i}^{\prime} is a valuation of L^{\prime} with residue field of degree over $F(Z)$ prime to p. A choice of prime elements in all the L_{i}^{\prime} identifies the group of values of v^{\prime} with \mathbb{Z}^{s}. Moreover, for every $i=1, \ldots, s$, we have

$$
v^{\prime}\left(t_{i}\right)=e_{i} \varepsilon_{i}+\sum_{j>i} a_{i j} \varepsilon_{j}
$$

where the ε_{i} 's denote the standard basis elements of \mathbb{Z}^{s} and $a_{i j} \in \mathbb{Z}$.
Write $v^{\prime \prime}$ for the restriction of v^{\prime} on $L^{\prime \prime}$. Let $K=F(P)$. We extend canonically the valuations v^{\prime} and $v^{\prime \prime}$ to valuations \tilde{v}^{\prime} and $\tilde{v}^{\prime \prime}$ of $K L^{\prime}$ and $K L^{\prime \prime}$ respectively (cf. §[1.5). Note that $f_{i} \in K(Z)^{\times}, g_{i} \in\left(K L^{\prime \prime}\right)^{\times}$and $h_{i} \in\left(K L^{\prime}\right)^{\times}$. We
have

$$
e_{i} \varepsilon_{i}+\sum_{j>i} a_{i j} \varepsilon_{j}=v^{\prime}\left(t_{i}\right)=\tilde{v}^{\prime}\left(t_{i} f_{i}\right) \equiv \tilde{v}^{\prime \prime}\left(g_{i}\right)(\bmod p) .
$$

Since e_{i} are prime to p, the elements $\tilde{v}^{\prime \prime}\left(g_{i}\right)$ generate a subgroup of \mathbb{Z}^{s} of finite index. It follows that the value group of $\tilde{v}^{\prime \prime}$ is of rank s, hence $\operatorname{rank}\left(v^{\prime \prime}\right)=$ $\operatorname{rank}\left(\tilde{v}^{\prime \prime}\right)=s$.

Let $R^{\prime \prime}$ and R^{\prime} be residue fields of $v^{\prime \prime}$ and v^{\prime} respectively. We have the inclusions $R^{\prime \prime} \subset R^{\prime} \supset F(Z)$ and $\left[R^{\prime}: F(Z)\right]$ is prime to p. By [20, Ch. VI, Th. 3, Cor. 1],

$$
\begin{equation*}
\operatorname{tr} \cdot \operatorname{deg}_{F}\left(L^{\prime \prime}\right) \geq \operatorname{tr} \cdot \operatorname{deg}_{F}\left(R^{\prime \prime}\right)+\operatorname{rank}\left(v^{\prime \prime}\right)=\operatorname{tr} \cdot \operatorname{deg}_{F}\left(R^{\prime \prime}\right)+s \tag{2}
\end{equation*}
$$

As $P\left(L^{\prime \prime}\right) \neq \emptyset$, there is an F-place $F(P) \rightsquigarrow L^{\prime \prime}$. Composing it with the place $L^{\prime \prime} \rightsquigarrow R^{\prime \prime}$ given by $v^{\prime \prime}$, we get an F-place $F(P) \rightsquigarrow R^{\prime \prime}$. As P is complete, we have $P\left(R^{\prime \prime}\right) \neq \emptyset$, i.e., $R^{\prime \prime}$ is a splitting field of P.

We prove that $R^{\prime \prime}$ is a p-generic splitting field of P. Let M be a splitting field of P. A regular system of parameters at the image of a morphism α : Spec $M \rightarrow P$ yields an F-place $F(P) \rightsquigarrow M$ that is a composition of places associated with discrete valuations (cf. [11, §1.4]). By [11, Lemma 3.2] applied to the restriction of α to $F(Z)$, there is a finite field extension M^{\prime} of M and an F-place $R^{\prime} \rightsquigarrow M^{\prime}$. Restricting to $R^{\prime \prime}$ we get an F-place $R^{\prime \prime} \rightsquigarrow M^{\prime}$, i.e., $R^{\prime \prime}$ is a p-generic splitting field of P.

By the definition of the canonical p-dimension,

$$
\operatorname{cdim}(P)=\operatorname{tr} \cdot \operatorname{deg}_{F} F(Z)=\operatorname{tr} \cdot \operatorname{deg}_{F} R^{\prime} \geq \operatorname{tr} \cdot \operatorname{deg}_{F}\left(R^{\prime \prime}\right) \geq \operatorname{cdim}_{p}(P)
$$

It follows that $\operatorname{tr} \cdot \operatorname{deg}_{F}\left(R^{\prime \prime}\right)=\operatorname{cdim}(P)$ by $(\mathbb{1})$ and therefore, $\operatorname{tr} \cdot \operatorname{deg}_{F}\left(L^{\prime \prime}\right) \geq$ $\operatorname{cdim}(P)+s$ by (22). The claim is proved.

It follows from the claim that $\operatorname{ed}_{p}(\mathcal{X}) \geq \operatorname{cdim}(P)+s$.

4. Main theorem

The main result of the paper is the following
Theorem 4.1. Let G be a p-group and F a field of characteristic different from p containing a primitive p-th root of unity. Then $\operatorname{ed}_{p}(G)$ over F is equal to $\operatorname{ed}(G)$ over F and coincides with the least dimension of a faithful representation of G over F.

The rest of the section is devoted to the proof of the theorem. As was mentioned in the introduction, we have $\operatorname{ed}_{p}(G) \leq \operatorname{ed}(G) \leq \operatorname{dim}(V)$ for any faithful representation V of G over F. We shall construct a faithful representation V of G over F with $\operatorname{ed}_{p}(G) \geq \operatorname{dim}(V)$.

Denote by C the subgroup of all central elements of G of exponent p and set $H=G / C$, so we have an exact sequence

$$
\begin{equation*}
1 \rightarrow C \rightarrow G \rightarrow H \rightarrow 1 \tag{3}
\end{equation*}
$$

Let $E \rightarrow \operatorname{Spec} F$ be an H-torsor and $\operatorname{Spec} F \rightarrow B H$ be the corresponding morphism. Set $\mathcal{X}^{E}:=B G \times_{B H} \operatorname{Spec} F$. Then \mathcal{X}^{E} is a gerbe over F banded by
C and its class in $H^{2}(F, C)$ coincides with the image of the class of E under the connecting map $H^{1}(F, H) \rightarrow H^{2}(F, C)$ (cf. [13, Ch. 4, §2]). An object of \mathcal{X}^{E} over a field extension L / F is a pair $\left(E^{\prime}, \alpha\right)$, where E^{\prime} is a G-torsor over L and $\alpha: E^{\prime} / C \xrightarrow{\sim} E_{L}$ is an isomorphism of H-torsors over L.

Alternatively, $\mathcal{X}^{E}=[E / G]$ with objects (over L) G-equivariant morphisms $E^{\prime} \rightarrow E_{L}$, where E^{\prime} is a G-torsor over L (cf. [19]).

A lower bound for ed (G) was established in [⿴囗 Prop. 2.20]. We give a similar bound for $\operatorname{ed}_{p}(G)$.

Theorem 4.2. For any H-torsor E over F, we have $\operatorname{ed}_{p}(G) \geq \operatorname{ed}_{p}\left(\mathcal{X}^{E}\right)$.
Proof. Let L / F be a field extension and $x=\left(E^{\prime}, \alpha\right)$ an object of $\mathcal{X}^{E}(L)$. Choose a field a field extension L^{\prime} / L of degree prime to p and a subfield $L^{\prime \prime} \subset L^{\prime}$ over F such that $\operatorname{tr} \cdot \operatorname{deg}\left(L^{\prime \prime}\right)=\operatorname{ed}_{p}\left(E^{\prime}\right)$ and there is a G-torsor $E^{\prime \prime}$ over $L^{\prime \prime}$ with $E_{L^{\prime}}^{\prime \prime} \simeq E_{L^{\prime}}^{\prime}$.

Let Z be the (zero-dimensional) scheme of isomorphisms $\operatorname{Iso}_{L^{\prime \prime}}\left(E^{\prime \prime} / C, E_{L^{\prime \prime}}\right)$ of H-torsors over $L^{\prime \prime}$. The image of the morphism $\operatorname{Spec} L^{\prime} \rightarrow Z$ over $L^{\prime \prime}$ representing the isomorphism $\alpha_{L^{\prime}}$ is a one point set $\{z\}$ of Z. The field extension $L^{\prime \prime}(z) / L^{\prime \prime}$ is algebraic since $\operatorname{dim} Z=0$.

The isomorphism $\alpha_{L^{\prime}}$ descends to an isomorphism of the H-torsors $E^{\prime \prime} / C$ and E over $L^{\prime \prime}(z)$. Hence the isomorphism class of $x_{L^{\prime}}$ belongs to the image of the map $\widehat{\mathcal{X}}^{E}\left(L^{\prime \prime}(z)\right) \rightarrow \widehat{\mathcal{X}}^{E}\left(L^{\prime}\right)$. Therefore,

$$
\operatorname{ed}_{p}(G) \geq \operatorname{ed}_{p}\left(E^{\prime}\right)=\operatorname{tr} \cdot \operatorname{deg}\left(L^{\prime \prime}\right)=\operatorname{tr} \cdot \operatorname{deg}\left(L^{\prime \prime}(z)\right) \geq \operatorname{ed}_{p}(x)
$$

It follows that $\operatorname{ed}_{p}(G) \geq \operatorname{ed}_{p}\left(\mathcal{X}^{E}\right)$.
Let $C^{*}:=\operatorname{Hom}\left(C, \mathbf{G}_{\mathrm{m}}\right)$ denote the character group of C. An H-torsor E over F yields a homomorphism

$$
\beta^{E}: C^{*} \rightarrow \operatorname{Br}(F)
$$

taking a character $\chi: C \rightarrow \mathbf{G}_{\mathrm{m}}$ to the image of the class of E under the composition

$$
H^{1}(F, H) \xrightarrow{\partial} H^{2}(F, C) \xrightarrow{\chi^{*}} H^{2}\left(F, \mathbf{G}_{\mathrm{m}}\right)=\operatorname{Br}(F),
$$

where ∂ is the connecting map for the exact sequence (3). Note that as $\mu_{p} \subset$ F^{\times}, the intersection of $\operatorname{Ker}\left(\chi^{*}\right)$ over all characters $\chi \in C^{*}$ is trivial. It follows that the classes of splitting fields of the gerbe \mathcal{X}^{E} and the subgroup $\operatorname{Im}\left(\beta^{E}\right)$ coincide. It follows that

$$
\begin{equation*}
\operatorname{cdim}_{p}\left(\mathcal{X}^{E}\right)=\operatorname{cdim}_{p}\left(\operatorname{Im}\left(\beta^{E}\right)\right) \tag{4}
\end{equation*}
$$

Let $\chi_{1}, \chi_{2}, \ldots, \chi_{s}$ be a basis of C^{*} over $\mathbb{Z} / p \mathbb{Z}$ such that $\left\{\beta^{E}\left(\chi_{1}\right), \ldots, \beta^{E}\left(\chi_{r}\right)\right\}$ is a minimal basis of $\operatorname{Im}\left(\beta^{E}\right)$ for some r and $\beta^{E}\left(\chi_{i}\right)=1$ for $i>r$. By Theorem [2.1), we have

$$
\begin{equation*}
\operatorname{cdim}_{p}\left(\operatorname{Im}\left(\beta^{E}\right)\right)=\left(\sum_{i=1}^{r} \operatorname{ind} \beta^{E}\left(\chi_{i}\right)\right)-r=\left(\sum_{i=1}^{s} \operatorname{ind} \beta^{E}\left(\chi_{i}\right)\right)-s \tag{5}
\end{equation*}
$$

In view of (4) and Theorems 3.1 and 4.2, we shall find an H-torsor E (over a field extension of F) so that the integer in (5) is as large as possible. Let U be a faithful representation of H and X an open subset of the affine space $\mathbb{A}(U)$ of U where H acts freely. Set $Y:=X / H$. Let E be the generic fiber of the H-torsor $\pi: X \rightarrow Y$. It is a "generic" H-torsor over the function field $L:=F(Y)$.

Let $\chi: C \rightarrow \mathbf{G}_{\mathrm{m}}$ be a character and $\operatorname{Rep}^{(\chi)}(G)$ the category of all finite dimensional representations ρ of G such that $\rho(c)$ is multiplication by $\chi(c)$ for any $c \in C$. Fix a representations $\rho: G \rightarrow \mathbf{G L}(W)$ in $\operatorname{Rep}^{(\chi)}(G)$. The conjugation action of G on $B:=\operatorname{End}(W)$ factors through an H-action. By descent (cf. [13, Ch. 1, §2]), there is (a unique up to canonical isomorphism) Azumaya algebra \mathcal{A} over Y and an H-equivariant algebra isomorphism $\pi^{*}(\mathcal{A}) \simeq B_{X}:=B \times X$. Let A be the generic fiber of \mathcal{A}; it is a central simple algebra over $L=F(Y)$.

Consider the homomorphism $\beta^{E}: C^{*} \rightarrow \operatorname{Br}(L)$.
Lemma 4.3. The class of A in $\operatorname{Br}(L)$ coincides with $\beta^{E}(\chi)$.
Proof. Consider the commutative diagram

The image of the H-torsor $\pi: X \rightarrow Y$ under α is the $\mathbf{P G L}(W)$-torsor

$$
E^{\prime}:=\mathbf{P G L}(W)_{X} / H \rightarrow Y
$$

where $\operatorname{PGL}(W)_{X}:=\mathbf{P G L}(W) \times X$ and H acts on $\mathbf{P G L}(W)_{X}$ by $h(a, x)=$ $\left(a h^{-1}, h x\right)$. The conjugation action of $\mathbf{P G L}(W)$ on B gives rise to an isomorphism between PGL $(W)_{X}$ and the H-torsor $\operatorname{Iso}_{X}\left(B_{X}, \operatorname{End}(W)_{X}\right)$ of isomorphisms between the (split) Azumaya \mathcal{O}_{X}-algebras B_{X} and $\operatorname{End}(W)_{X}$. Note that this isomorphism is H-equivariant if H acts by conjugation on B_{X} and trivially on $\operatorname{End}(W)_{X}$. By descent,

$$
E^{\prime} \simeq \operatorname{Iso}_{Y}\left(\mathcal{A}, \operatorname{End}(W)_{Y}\right)
$$

Therefore, the image of the class of the torsor $E^{\prime} \rightarrow Y$ under the connecting map for the bottom row of the diagram coincides with the class of the Azumaya algebra \mathcal{A}. Restricting to the generic fiber yields $[A]=\beta^{E}(\chi)$.
Theorem 4.4. For any character $\chi \in C^{*}$, we have $\operatorname{ind} \beta^{E}(\chi)=\min \operatorname{dim}(V)$ over all representations V in $\operatorname{Rep}^{(\chi)}(G)$.

Proof. We follow the approach given in [12]. Let H act on a scheme Z over F. We also view Z as a G-scheme. Denote by $\mathcal{M}(G, Z)$ the (abelian) category of left G-modules on Z that are coherent \mathcal{O}_{Z}-modules (cf. [18, §1.2]). In particular, $\mathcal{M}(G, \operatorname{Spec} F)=\operatorname{Rep}(G)$, the category off all finite dimensional representations of G.

Note that C acts trivially on Z. For a character $\chi: C \rightarrow \mathbf{G}_{\mathrm{m}}$, let $\mathcal{M}^{(\chi)}(G, Z)$ be the full subcategory of $\mathcal{M}(G, Z)$ consisting of G-modules on which C acts via χ. For example, $\mathcal{M}^{(\chi)}(G, \operatorname{Spec} F)=\operatorname{Rep}^{(\chi)}(G)$.

We write $K_{0}(G, Z)$ and $K_{0}^{(\chi)}(G, Z)$ for the Grothendieck groups of $\mathcal{M}(G, Z)$ and $\mathcal{M}^{(\chi)}(G, Z)$ respectively.

Every M in $\mathcal{M}(G, Z)$ is a direct sum of unique submodules $M^{(\chi)}$ of M in $\mathcal{M}^{(\chi)}(G, Z)$ over all characters χ of C. It follows that

$$
K_{0}(G, Z)=\coprod K_{0}^{(\chi)}(G, Z)
$$

Let q be the order of G. By [17, Th. 24], every irreducible representation of G is defined over the field $F\left(\mu_{q}\right)$. Since F contains p-th roots of unity, the degree $\left[F\left(\mu_{q}\right): F\right]$ is a power of p. Hence the dimension of any irreducible representation of G over F is a power of p. It follows by Lemma 4.3 that it suffices to show $\operatorname{ind}(A)=\operatorname{gcd} \operatorname{dim}(V)$ over all representations V in $\operatorname{Rep}^{(\chi)}(G)$.

The image of the map $\operatorname{dim}: K_{0}(A) \rightarrow \mathbb{Z}$ given by the dimension over L is equal to $\operatorname{ind}(A) \cdot \operatorname{dim}(W) \cdot \mathbb{Z}$. To finish the proof of the theorem is suffices to construct a surjective homomorphism

$$
\begin{equation*}
K_{0}\left(\operatorname{Rep}^{(\chi)}(G)\right) \rightarrow K_{0}(A) \tag{6}
\end{equation*}
$$

such that the composition $K_{0}\left(\operatorname{Rep}^{(\chi)}(G)\right) \rightarrow K_{0}(A) \xrightarrow{\text { dim }} \mathbb{Z}$ is given by the dimension times $\operatorname{dim}(W)$.

First of all we have

$$
\begin{equation*}
K_{0}\left(\operatorname{Rep}^{(\chi)}(G)\right) \simeq K_{0}^{(\chi)}(G, \operatorname{Spec} F) \tag{7}
\end{equation*}
$$

Recall that X an open subset of $\mathbb{A}(U)$ where H acts freely. By homotopy invariance in the equivariant K-theory [18, Cor. 4.2],

$$
K_{0}(G, \operatorname{Spec} F) \simeq K_{0}(G, \mathbb{A}(U))
$$

It follows that

$$
\begin{equation*}
K_{0}^{(\chi)}(G, \operatorname{Spec} F) \simeq K_{0}^{(\chi)}(G, \mathbb{A}(U)) \tag{8}
\end{equation*}
$$

By localization [18, Th. 2.7], the restriction homomorphism

$$
\begin{equation*}
K_{0}^{(\chi)}(G, \mathbb{A}(U)) \rightarrow K_{0}^{(\chi)}(G, X) \tag{9}
\end{equation*}
$$

is surjective.
Denote by $\mathcal{M}^{(1)}\left(G, X, B_{X}\right)$ the category of left G-modules M on X that are coherent \mathcal{O}_{X}-modules and right B_{X}-modules such that C acts trivially on M and the G-action on M and the conjugation G-action on B_{X} agree. The corresponding Grothendieck group is denoted by $K_{0}^{(1)}\left(G, X, B_{X}\right)$. For any object L in $\mathcal{M}^{(\chi)}(G, X)$, the group C acts trivially on $L \otimes_{F} W^{*}$ and B acts on the right on $L \otimes_{F} W^{*}$. We have Morita equivalence

$$
\mathcal{M}^{(\chi)}(G, X) \xrightarrow{\sim} \mathcal{M}^{(1)}\left(G, X, B_{X}\right)
$$

given by $L \mapsto L \otimes_{F} W^{*}$ (with the inverse functor $M \mapsto M \otimes_{B} W$). Hence

$$
\begin{equation*}
K_{0}^{(\chi)}(G, X) \simeq K_{0}^{(1)}\left(G, X, B_{X}\right) \tag{10}
\end{equation*}
$$

Now，as C acts trivially on X and B_{X} ，the category $\mathcal{M}^{(1)}\left(G, X, B_{X}\right)$ is equivalent to the category $\mathcal{M}\left(H, X, B_{X}\right)$ of left H－modules M on X that are coherent \mathcal{O}_{X}－modules and right B_{X}－modules such that the G－action on M and the conjugation G－action on B_{X} agree．Hence

$$
\begin{equation*}
K_{0}^{(1)}\left(G, X, B_{X}\right) \simeq K_{0}\left(H, X, B_{X}\right) \tag{11}
\end{equation*}
$$

Recall that $Y=X / H$ ．By descent，the category $\mathcal{M}\left(H, X, B_{X}\right)$ is equivalent to the category $\mathcal{M}(Y, \mathcal{A})$ of coherent \mathcal{O}_{Y}－modules that are right \mathcal{A}－modules． Hence

$$
\begin{equation*}
K_{0}\left(H, X, B_{X}\right) \simeq K_{0}(Y, \mathcal{A}) \tag{12}
\end{equation*}
$$

The restriction to the generic point of Y gives a surjective homomorphism

$$
\begin{equation*}
K_{0}(Y, \mathcal{A}) \rightarrow K_{0}(A) \tag{13}
\end{equation*}
$$

The homomorphism（6）is the composition of（7），（8），（9），（10），（11），（12） and（13）．It takes the class of a representation V to the class in $K_{0}(A)$ of the generic fiber of the vector bundle $\left(\left(V \otimes W^{*}\right) \times X\right) / H$ over Y of rank $\operatorname{dim}(V) \cdot \operatorname{dim}(W)$ ．

Remark 4．5．The theorem holds with min replaced by the gcd（with the same proof）in a more general context when the sequence（3）is an arbitrary exact sequence of algebraic groups with C a central diagonalizable subgroup of G ．

Example 4.6 （cf．［6］，［⿴囗十，§14］，［16，Th．7．3．8］）．Let p be a prime integer，F be a field of characteristic different from p and C_{m} the cyclic group $\mathbb{Z} / p^{m} \mathbb{Z}$ ．Let $K=$ $F\left(t_{1}, \ldots, t_{p^{m}}\right)$ and C_{m} act on the variables $t_{1}, \ldots, t_{p^{m}}$ by cyclic permutations． Then K is a Galois C_{m}－algebra over $K^{C_{m}}$ ．Assume that F contains a primitive root of unity $\xi_{p^{k}}$ for some k ．The image of the class of K under the connecting map $H^{1}\left(F, C_{m}\right) \rightarrow H^{2}\left(F, C_{k}\right) \simeq \operatorname{Br}_{p^{k}}(F)$ for the exact sequence

$$
1 \rightarrow C_{k} \rightarrow C_{n} \rightarrow C_{m} \rightarrow 1
$$

where $n=k+m$ ，is the class of the cyclic algebra $A=\left(K / K^{C_{m}}, \xi_{p^{k}}\right)$ ．The group C_{n} acts F－linearly on $F\left(\xi_{p^{n}}\right)$ by multiplication by roots of unity making the F－space $F\left(\xi_{p^{n}}\right)$ a faithful representation of C_{n} of the smallest dimension． By Theorem 4.4 and Remark 4．5，we have

$$
\operatorname{ind}(A)=\left[F\left(\xi_{p^{n}}\right): F\right]
$$

We can now complete the proof of Theorem 4．1．By Theorem 4．4，there are representations V_{i} in $\operatorname{Rep}^{\left(\chi_{i}\right)}(G)$ such that ind $\beta^{E}\left(\chi_{i}\right)=\operatorname{dim}\left(V_{i}\right), i=1, \ldots, s$ ． Let V be the direct sum of all the V_{i} ．By Theorem 4.2 （applied to the group G over L and the generic torsor E ），Theorem 3．1，（4）and（5），we have

$$
\begin{aligned}
\operatorname{ed}_{p}(G) \geq \operatorname{ed}_{p}\left(G_{L}\right) \geq \operatorname{ed}_{p}\left(\mathcal{X}^{E}\right)= & \operatorname{cim}_{p}\left(\mathcal{X}^{E}\right)+s=\operatorname{cim}_{p}\left(\operatorname{Im}\left(\beta^{E}\right)\right)+s \\
& =\sum_{i=1}^{s} \operatorname{ind} \beta^{E}\left(\chi_{i}\right)=\sum_{i=1}^{s} \operatorname{dim}\left(V_{i}\right)=\operatorname{dim}(V) .
\end{aligned}
$$

Since $\chi_{1}, \chi_{2}, \ldots, \chi_{s}$ generate C^{*}, the restriction of V on C is faithful. As every nontrivial normal subgroup of G intersects C nontrivially, the G-representation V is faithful. We have constructed a faithful representation V of G over F with $\operatorname{ed}_{p}(G) \geq \operatorname{dim}(V)$. The theorem is proved.
Remark 4.7. The proof of Theorem 4.1 shows how to compute the essential dimension of G over F. For every character $\chi \in C^{*}$ choose a representation $V_{\chi} \in \operatorname{Rep}^{(\chi)}(G)$ of the smallest dimension. It appears as an irreducible component of the smallest dimension of the induced representation $\operatorname{Ind}_{C}^{G}(\chi)$. We construct a basis $\chi_{1}, \ldots, \chi_{s}$ of C^{*} by induction as follows. Let χ_{1} be a nonzero character with the smallest $\operatorname{dim}\left(V_{\chi_{1}}\right)$. If the characters $\chi_{1}, \ldots, \chi_{i-1}$ are already constructed for some $i \leq s$, then we take for χ_{i} a character with minimal $\operatorname{dim}\left(V_{\chi_{i}}\right)$ among all the characters outside of the subgroup generated by $\chi_{1}, \ldots, \chi_{i-1}$. Then V is a faithful representation of the least dimension and $\operatorname{ed}(G)=\sum_{i=1}^{s} \operatorname{dim}\left(V_{\chi_{i}}\right)$.
Remark 4.8. We can compute the essential p-dimension of an arbitrary finite group G over a field F of characteristic different from p. (We don't assume that F contains p-th roots of unity.) Let G^{\prime} a Sylow p-subgroup of G. One can prove that $\operatorname{ed}_{p}(G)=\operatorname{ed}_{p}\left(G^{\prime}\right)$ and $\operatorname{ed}_{p}\left(G^{\prime}\right)$ does not change under field extensions of degree prime to p. In particular $\operatorname{ed}_{p}\left(G^{\prime}\right)=\operatorname{ed}_{p}\left(G_{F^{\prime}}^{\prime}\right)$ where $F^{\prime}=F\left(\mu_{p}\right)$. It follows from Theorem 4.1 that $\operatorname{ed}_{p}(G)$ coincides with the least dimension of a faithful representation of G^{\prime} over F^{\prime}.

5. An application

Theorem 5.1. Let G_{1} and G_{2} be two p-groups and F a field of characteristic different from p containing a primitive p-th root of unity. Then

$$
\operatorname{ed}\left(G_{1} \times G_{2}\right)=\operatorname{ed}\left(G_{1}\right)+\operatorname{ed}\left(G_{2}\right)
$$

Proof. The index j in the proof takes the values 1 and 2 . If V_{j} is a faithful representation of G_{j} then $V_{1} \oplus V_{2}$ is a faithful representation of $G_{1} \times G_{2}$. Hence $\operatorname{ed}\left(G_{1} \times G_{2}\right) \leq \operatorname{ed}\left(G_{1}\right)+\operatorname{ed}\left(G_{2}\right)$ (cf. [5, Lemma 4.1(b)]).

Denote by C_{j} the subgroup of all central elements of G_{j} of exponent p. Set $C=C_{1} \times C_{2}$. We identify C^{*} with $C_{1}^{*} \oplus C_{2}^{*}$.

For every character $\chi \in C^{*}$ choose a representation $\rho_{\chi}: G_{1} \times G_{2} \rightarrow$ $\mathbf{G L}\left(V_{\chi}\right)$ in $\operatorname{Rep}^{(\chi)}\left(G_{1} \times G_{2}\right)$ of the smallest dimension. We construct a basis $\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{s}\right\}$ of C^{*} following Remark 4.7. We claim that all the χ_{i} can be chosen in one of the C_{j}^{*}. Indeed, suppose the characters $\chi_{1}, \ldots, \chi_{i-1}$ are already constructed, and let χ_{i} be a character with minimal $\operatorname{dim}\left(V_{\chi_{i}}\right)$ among the characters outside of the subgroup generated by $\chi_{1}, \ldots, \chi_{i-1}$. Let $\chi_{i}=\chi_{i}^{(1)}+\chi_{i}^{(2)}$ with $\chi_{i}^{(j)} \in C_{j}^{*}$. Denote by ε_{1} and ε_{2} the endomorphisms of $G_{1} \times G_{2}$ taking $\left(g_{1}, g_{2}\right)$ to ($g_{1}, 1$) and ($1, g_{2}$) respectively. The restriction of the representation $\rho_{\chi_{i}} \circ \varepsilon_{j}$ on C is given by the character $\chi_{i}^{(j)}$. We replace χ_{i} by $\chi_{i}^{(j)}$ with j such that $\chi_{i}^{(j)}$ does not belong to the subgroup generated by $\chi_{1}, \ldots, \chi_{i-1}$. The claim is proved.

Let W_{j} be the direct sum of all the $V_{\chi_{i}}$ with $\chi_{i} \in C_{j}^{*}$. Then the restriction of W_{j} on C_{j} is faithful, hence so is the restriction of W_{j} on G_{j}. It follows that $\operatorname{ed}\left(G_{j}\right) \leq \operatorname{dim}\left(W_{j}\right)$. As $W_{1} \oplus W_{2}=V$, we have

$$
\operatorname{ed}\left(G_{1}\right)+\operatorname{ed}\left(G_{2}\right) \leq \operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)=\operatorname{dim}(V)=\operatorname{ed}\left(G_{1} \times G_{2}\right)
$$

Corollary 5.2. Let F be a field as in Theorem 5.1. Then

$$
\operatorname{ed}\left(\mathbb{Z} / p^{n_{1}} \mathbb{Z} \times \mathbb{Z} / p^{n_{2}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p^{n_{s}} \mathbb{Z}\right)=\sum_{i=1}^{s}\left[F\left(\xi_{p^{n_{i}}}\right): F\right]
$$

Proof. By Theorem 5.1, it suffices to consider the case $s=1$. This case has been done in [6]. It is also covered by Theorem 4.1] as the natural representation of the group $\mathbb{Z} / p^{n} \mathbb{Z}$ in the F-space $F\left(\xi_{p^{n}}\right)$ is faithful irreducible of the smallest dimension (cf. Remark 4.6).

References

[1] M. Artin, Brauer-severi varieties (Notes by A. Verschoren), Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981) (Freddy M. J. van Oystaeyen and Alain H. M. J. Verschoren, eds.), Lecture Notes in Math., vol. 917, Springer, Berlin, 1982, pp. 194-210.
[2] G. Berhuy and G. Favi, Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003), 279-330 (electronic).
[3] G. Berhuy and Z. Reichstein, On the notion of canonical dimension for algebraic groups, Adv. Math. 198 (2005), no. 1, 128-171.
[4] P. Brosnan, Z. Reichstein, and A. Vistoli, Essential dimension and algebraic stacks, LAGRS preprint server, http://www.math.uni-bielefeld.de/lag/, 2007.
[5] J. Buhler and Z. Reichstein, On the essential dimension of a finite group, Compositio Math. 106 (1997), no. 2, 159-179.
[6] M. Florence, On the essential dimension of cyclic p-groups, to appear in Invent. Math.
[7] J. Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin, 1971, Die Grundlehren der mathematischen Wissenschaften, Band 179.
[8] N. A. Karpenko, Grothendieck Chow motives of Severi-Brauer varieties (Russian), Algebra i Analiz 7 (1995), no. 4, 196-213; translation in St. Petersburg Math. J. 7 (1996), no. 4, 649-661.
[9] N. A. Karpenko, On anisotropy of orthogonal involutions, J. Ramanujan Math. Soc. 15 (2000), no. 1, 1-22.
[10] N. A. Karpenko and A. S. Merkurjev, Essential dimension of quadrics, Invent. Math. 153 (2003), no. 2, 361-372.
[11] N. A. Karpenko and A. S. Merkurjev, Canonical p-dimension of algebraic groups, Adv. Math. 205 (2006), no. 2, 410-433.
[12] A. S. Merkurjev, Maximal indices of Tits algebras, Doc. Math. 1 (1996), No. 12, 229-243 (electronic).
[13] J. S. Milne, Étale cohomology, Princeton University Press, Princeton, N.J., 1980.
[14] D. Quillen, Higher algebraic K-theory. I, (1973), 85-147. Lecture Notes in Math., Vol. 341.
[15] Z. Reichstein and B. Youssin, Essential dimensions of algebraic groups and a resolution theorem for G-varieties, Canad. J. Math. 52 (2000), no. 5, 1018-1056, With an appendix by János Kollár and Endre Szabó.
[16] L. H. Rowen, Ring theory. Vol. II, Pure and Applied Mathematics, vol. 128, Academic Press Inc., Boston, MA, 1988.
[17] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, New York, 1977, Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42.
[18] R. W. Thomason, Algebraic K-theory of group scheme actions, Algebraic topology and algebraic K-theory (Princeton, N.J., 1983), Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 539-563.
[19] A. Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613-670.
[20] O. Zariski and P. Samuel, Commutative algebra. Vol. II, Springer-Verlag, New York, 1975, Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29.

Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie Paris 6, 4 Place Jussieu, F- 75252 Paris CEDEX 05, FRANCE

E-mail address: karpenko@math.jussieu.fr
Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA

E-mail address: merkurev@math.ucla.edu

[^0]: Date: June, 2007 (revised October-November, 2007).
 Key words and phrases. Algebraic groups, finite p-groups, essential dimension, representations, K-theory. 2000 Mathematical Subject Classifications: 20G15; 14C35.

 The work of the first author has been partially supported by the Collaborative Research Centre 701 "Spectral Structures and Topological Methods in Mathematics" of the Bielefeld University.

 The work of the second author has been supported by the NSF grant DMS \#0652316.

