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We theoretically investigate the microscopic conditions for emergent nonreciprocal magnons to-
ward unified understanding on the basis of a microscopic model analysis. We show that the products
of the Bogoliubov Hamiltonian obtained within the linear spin wave approximation is enough to ob-
tain the momentum-space functional form and the key ingredients in the nonreciprocal magnon
dispersions in an analytical way even without solving the eigenvalue problems. We find that the
odd order of an effective antisymmetric Dzyaloshinskii-Moriya interaction and/or the even order
of an effective symmetric anisotropic interaction in the spin rotated frame can be a source of the
antisymmetric dispersions. We present possible kinetic paths of magnons contributing to the anti-
symmetric dispersions in the one- to four-sublattice systems with the general exchange interactions.
We also test the formula for both ferromagnetic and antiferromagnetic orderings in the absence of
spatial inversion symmetry.

I. INTRODUCTION

Conductive phenomena in solids have long been stud-
ied in various fields of condensed matter physics, such as
the giant magnetoresistance [1–5] and the anomalous Hall
effect [6–14]. For these physical phenomena, the elec-
tronic band structures play an important role. The flat
band structures give rise to magnetism, superconductiv-
ity, and the fractional quantum Hall effect [15–20], while
the linear band dispersions around the Dirac/Weyl points
lead to unconventional topological properties [21–25].
Besides, the spin splittings in the band structure bring
about fascinating physical phenomena, such as the Edel-
stein effect in noncentrosymmetric systems [26–29], spin
current generation in antiferromagnetic systems without
the relativistic spin-orbit coupling [30–33], and the spin-
orbit-momentum locking in magnetic quadrupole sys-
tems [34].

Under space-time inversion symmetry, the electronic
band structures are categorized into four groups: the
k-symmetric band dispersion with the spin degeneracy
in the presence of both spatial inversion (P) and time-
reversal (T ) symmetries, the k-(anti)symmetric spin-
split band dispersion without T (P) while keeping P (T ),
and the k-antisymmetric band dispersion without both P
and T , where k is the wave vector of electrons. In par-
ticular, the k-antisymmetric band dispersion has been
extensively studied in recent years, since it becomes a
source of nonreciprocal conductive phenomena owing to
the inequivalence between k and −k [35]. The nonrecip-
rocal nonlinear optical effect is a typical example [36–39].
The microscopic origin of the k-antisymmetric band dis-
persion is accounted for by the active magnetic toroidal
moment, which corresponds to a polar tensor with time-
reversal odd [40–47].

The nonreciprocal phenomena have also been discussed
in magnetic insulators [35, 48–69]. In spite of the absence
of carriers, the collective excitaions of magnons lead to
directional-dependent dynamical properties, where we re-
fer it to the nonreciprocal (asymmetric) magnons [35, 62].
Similar to the electron band dispersion, an appear-

ance of nonreciprocal magnons is attributed to the ac-
tive magnetic toroidal moment [70]. Although they
were mainly studied for ferromagnetic slabs [48, 49] and
for magnetic orderings in the noncentrosymmetric crys-
tals [50, 51, 59, 71, 72], where the magnetic dipolar inter-
action and/or the Dzyaloshinskii-Moriya (DM) interac-
tion are important [73, 74], it was shown that they occur
even via other mechanisms, such as frustrated exchange
interactions [75, 76] and bond-dependent symmetric ex-
change interactions [77, 78]. The nonreciprocal magnons
have a potential to exhibit further intriguing nonrecipro-
cal phenomena, such as the magneto-optical effect [79–81]
and spin Seebeck effect [82], which avoid Joule heating.

Engineering asymmetric band deformations in the sys-
tems without P and T symmetries is important for
nonreciprocal conductive phenomena irrespective of elec-
trons and magnons. Meanwhile, the microscopic con-
ditions have not been fully clarified yet, although active
magnetic toroidal multipoles are necessary from the sym-
metry aspect [47, 83–85]. Recently, a useful framework
to extract essential model parameters for the asymmetric
band structure in the electron systems has been proposed
on the basis of augmented multipoles [86]. Similar ap-
proach has also been performed in the magnon systems
by introducing the bond-type magnetic toroidal dipole
degree of freedom, which is only applied to the mecha-
nism induced by the DM interaction [72]. It is desired to
have a simple formula to investigate which model param-
eters contribute to the asymmetric band deformations in
magnon systems with arbitrary spin interactions.

In the present study, we investigate the microscopic
conditions for emergent nonreciprocal magnons in multi-
sublattice systems in an analytical way. We show that the
product of the Bogoliubov Hamiltonian after the linear
spin wave approximation provides two important infor-
mation for nonreciprocal magnons without the cumber-
some Bogoliubov transformation. One is the momentum-
space functional form and the other is the essential model
parameters to cause the antisymmetric band deforma-
tions. We demonstrate that our scheme ubiquitously ac-
counts for the microscopic key ingredients irrespective of
the mechanisms by analyzing a spin Hamiltonian with
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the general exchange interactions in the one- to four-
sublattice systems. We discuss the important magnon-
hopping processes that arise from the exchange interac-
tions in real space. We also test our scheme for both
ferromagnetic and antiferromagnetic orderings with the
DM interaction and the symmetric anisotropic interac-
tion. Our results will be useful to extract the significant
model parameters in inducing the nonreciprocal magnons
under complicated noncollinear magnetic orderings.

The remaining of the paper is organized as follows. In
Sec. II, we present a general method of extracting the
essential model parameters from the Bogoliubov Hamil-
tonian. We present a general expression contributing to
nonreciprocal magnons on the basis of the spin Hamilto-
nian with both symmetric and antisymmetric exchange
interactions in the one- to four-sublattice systems in
Sec. III. We apply the method for the ferromagnetic
ordering in the breathing kagome lattice structure and
the collinear/noncollinear antiferromagnetic orderings in
the honeycomb and breathing kagome lattice structures
in Sec. IV. Section V is devoted to a summary of the
present paper. Appendix A provides lengthy expressions
in terms of momentum-space functions in the three- and
four-sublattice cases.

II. APPROACH

Let us start a general spin Hamiltonian, which is given
by

H =
∑
ll′

∑
αβ

Sαl J
αβ
ll′ S

β
l′ , (1)

with

Jll′ =

 J⊥ll′ + Jvll′ Jxyll′ +Dz
ll′ Jzxll′ −D

y
ll′

Jxyll′ −Dz
ll′ J⊥ll′ − Jvll′ Jyzll′ +Dx

ll′

Jzxll′ +Dy
ll′ Jyzll′ −Dx

ll′ Jzll′

 , (2)

where Sαl is an α (= x, y, and z) component of classical
spin at site l. J⊥ll′ , J

z
ll′ , J

v
ll′ , J

xy
ll′ , Jyzll′ , and Jzxll′ are the

symmetric exchange interactions, while Dx
ll′ , D

y
ll′ , and

Dz
ll′ are the antisymmetric exchange interactions. The

latter corresponds to the DM interaction. The nonzero
components of Jll′ are determined by point group sym-
metry of the bond. For later convenience, the spin is
rotated so as to align the local axis along the z direction:

(Sxl , S
y
l , S

z
l )T = Rz(φl)Ry(θl)(S̃

x
l , S̃

y
l , S̃

z
l )T, (3)

where Rz(φl) and Ry(θl) are the rotation matrices
around the z and y axes, respectively, and T is the trans-
pose of the vector. Then, the Hamiltonian in Eq. (1) is
rewritten as

H =
∑
ll′

∑
αβ

S̃αl J̃
αβ
ll′ S̃

β
l′

=
∑
ll′

(
H⊥ll′ +HDM

ll′ +Hv
ll′ +Hxy

ll′ +Hz
ll′ +H

yz/zx
ll′

)
,

(4)

where

H⊥ll′ =
J̃⊥ll′

2
(S̃+
l S̃
−
l′ + S̃−l S̃

+
l′ ), (5)

HDM
ll′ =

iD̃ll′

2
(S̃+
l S̃
−
l′ − S̃

−
l S̃

+
l′ ), (6)

Hv
ll′ =

J̃vll′

2
(S̃+
l S̃

+
l′ + S̃−l S̃

−
l′ ), (7)

Hxy
ll′ = −

iJ̃xyll′

2
(S̃+
l S̃

+
l′ − S̃

−
l S̃
−
l′ ), (8)

Hz
ll′ = J̃zll′ S̃

z
l S̃

z
l′ . (9)

Hzx
ll′ and Hyz

ll′ consist of the product of S̃xS̃z and S̃yS̃z,

respectively. The interaction tensor J̃ll′ is represented by
rotating Jll′ .

We investigate magnon spectra within a linear spin
wave approximation. By applying the Holstein-Primakov
transformation, which is given by S̃+

iη =
√

2Saiη, S̃−iη =√
2Sa†iη, and S̃ziη = S − a†iηaiη (the subscripts i and η

denote the indices for a unit cell and a sublattice, respec-
tively, and aiη is the boson operator for sublattice η), to
the spin Hamiltonian in Eq. (4), the Bogoliubov Hamil-
tonian is derived. By performing the Fourier transforma-
tion as aiη → aqη, the resultant Bogoliubov Hamiltonian
in the n-sublattice system is given by

HB =
S

2

∑
q

Ψ†qH
B
q Ψq, (10)

HB
q =

(
Xq Yq
Y†q X ∗−q

)
, (11)

where Ψ†q = (a†q1, a
†
q2, · · · , a†qn, a−q1, a−q2, · · · , a−qn)

and Xq and Yq are the n× n matrices.
In Eq. (4), Hz

ll′ corresponds to the diagonal elements
of Xq, while H⊥ll′ , H

DM
ll′ , Hv

ll′ , and Hxy
ll′ correspond to the

off-diagonal elements Xq and Yq. In other words, only

the spin components perpendicular to S̃zl contribute to

a magnon hopping process. Meanwhile, H
yz/zx
ll′ does not

appear in Eq. (10), since it consists of the odd number
of boson operators.

When HB
q is a positive-definite matrix, the Cholesky

decomposition is possible as HB
q = K†qKq, where Kq is

the upper triangular matrix. Then, HB
q is transformed

into the Hermitian matrix Hq as

Hq = KqgK
†
q, (12)

where the 2n× 2n matrix g satisfies (g)ηη′ = [Ψqη,Ψ
†
qη′ ].

The eigenvalues ωqm (m is the band index) in Eq. (11)
are obtained by diagonalizing Hq.

Nonreciprocal magnon excitations mean that the
eigenvalues have an antisymmetric component with re-
spect to q, i.e., ωqm 6= ω−qm. To investigate important
model parameters for the nonreciprocal magnons in a
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systematic way, we introduce a following quantity as

E(s)
q = Tr[HqHq · · ·Hq︸ ︷︷ ︸

s

], (13)

= Tr[(HB
q g)(HB

q g) · · · (HB
q g︸ ︷︷ ︸

s

)], (14)

which is related to the eigenenergy. A similar quantity
has been discussed in the antisymmetric band modula-
tion and spin splittings in the electron system [86–88].
The antisymmetric component is extracted by

F (s)
q =

1

2
(E(s)
q − E

(s)
−q). (15)

Thus nonzero F
(s)
q signals the appearance of nonrecipro-

cal magnons.

From the expression of Eq. (14), one can deduce
the essential model parameters inducing nonreciprocal
magnons, as detailed in Sec. III. In Eqs. (5)-(9), there
are four types of magnon hoppings and one onsite poten-
tial in the real space Bogoliubov Hamiltonian, which are
expressed as

H⊥ll′ = SJ̃⊥ll′(ala
†
l′ + a†l al′), (16)

HDM
ll′ = iSD̃ll′(ala

†
l′ − a

†
l al′), (17)

Hv
ll′ = SJ̃vll′(alal′ + a†l a

†
l′), (18)

Hxy
ll′ = −iSJ̃xyll′ (alal′ − a†l a

†
l′), (19)

Hz
ll′ = SJ̃zll′(S − a

†
l al − a

†
l′al′). (20)

From theses expressions, one finds that the real (imagi-

nary) part of the standard hopping a†iηajη′ is related to

H⊥ll′ (HDM
ll′ ), which corresponds to the off-diagonal part

of Xq, while the real (imaginary) part of the anomalous

hopping a†iηa
†
jη′ is related to Hv

ll′ (Hxy
ll′ ), which corre-

sponds to the off-diagonal part of Yq. As only the hop-
ping processes to satisfy the magnon-number conserva-
tion are important, one can find that an even order of J̃vll′
and J̃xyll′ can contribute to nonreciprocal magnon excita-
tions. In addition, when taking into account the fact that
an odd order of imaginary hopping can also contribute
to nonreciprocal magnon excitations, we expect that the
antisymmetric magnon band structure is related to the
odd order of an effective antisymmetric DM interaction
or the even order of an effective symmetric anisotropic in-
teraction. This indicates that the antisymmetric magnon
band structure can be reversed regarding q by the sign
of D̃ll′ , while that is not by the sign of J̃vll′ and J̃xyll′ .

As we will show the general feature of F
(s)
q in Sec. III

and the specific examples in Sec. IV, the quantity F
(s)
q

gives a microscopic condition of nonreciprocal magnons
irrespective of ferromagnets and antiferromagnets.

A A

FIG. 1. Schematic picture of the magnon-hopping process

contributing to nonreciprocal magnons (F
(1)
q 6= 0) in real

space in the one-sublattice case.

III. GENERAL FEATURE OF F
(s)
q

In this section, we discuss a general behavior of F
(s)
q

independent of the lattice structures and the exchange
interactions. We show the microscopic processes con-
tributing to nonreciprocal magnons in the multisublattice
systems with n = 1-4: one-sublattice case in Sec. III A,
two-sublattice case in Sec. III B, three-sublattice case in
Sec. III C, and four-sublattice case in Sec. III D. It is
noted that the present scheme can be also applied to the
systems with the sublattice n > 4 in a straightforward
way.

A. One-sublattice case

We consider the one-sublattice system with η = A,
which describes only the ferromagnetic state without the
sublattice degree of freedom. In the one-sublattice sys-
tem, Xq and Yq are the 1×1 matrices. By using Eqs. (16)-
(20), the expressions of Xq and Yq are given by

Xq = J̃zhz(s)q + J̃⊥h⊥(s)q − D̃zhD(as)
q , (21)

Yq = J̃vhv(s)q + iJ̃xyhxy(s)q , (22)

where h
ζ(s)
q and h

ζ(as)
q for ζ = z,⊥, D, v, xy are arbitrary

symmetric and antisymmetric functions with respect to

q: h
ζ(s)
q = h

ζ(s)
−q and h

ζ(as)
q = −hζ(as)−q . Owing to the one-

sublattice degree of freedom, h
⊥(as)
q = h

D(s)
q = h

v(as)
q =

h
xy(as)
q = 0 and h

z(s)
q has a q dependence, which are dif-

ferent from the multisublattice cases, as will be discussed
in Secs. III B-III D.

Although the magnon dispersions in the one-sublattice
case with the 2×2 matrixHB

q are analytically obtained by
performing the Bogoliubov transformation, we test the
expressions in Eqs. (14) and (15) for later complicated

multisublattice systems. The lowest contribution of F
(s)
q

is given by

F (1)
q = −2D̃zhD(as)

q . (23)

The expression in Eq. (23) indicates that only the ef-

fective DM interaction D̃z contributes to nonreciprocal
magnon dispersions. When calculating the higher order

of F
(s)
q , one finds that the (2m+1)th-order terms of F

(s)
q
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A B AA B A

FIG. 2. Schematics of two magnon-hopping processes giving

F
(3)
q 6= 0 in real space in the two-sublattice case. The left

panel corresponds to the first term in Eq. (29) and the right
panel corresponds to the second term in Eq. (29).

are proportional to D̃zh
D(as)
q , while the 2mth-order ones

vanish for an integer m. This means that the nonrecipro-
cal magnon in the one-sublattice system is induced when
D̃z 6= 0 irrespective of other interactions. This result is
consistent with that obtained by the direct diagonaliza-
tion.

The above result is intuitively understood from the
magnon-hopping process in the real-space picture, as

shown in the case of F
(1)
q in Fig. 1. The process in Fig. 1

gives rise to effective imaginary magnon hopping that is a
source of nonreciprocal magnons along the hopping direc-
tion. Furthermore, the functional form of nonreciprocal
magnons are obtained in an analytic form from Eq. (23).

In the crystal system, the q dependence of F
(s)
q is de-

rived to satisfy the magnetic point group symmetry in
the system, as shown in Sec. IV.

B. Two-sublattice case

Hereafter, we examine F
(s)
q in the multisublattice case.

In this section, we show F
(s)
q in the two-sublattice case

with η = A and B, where Xq and Yq are the 2×2 matrices.
By considering the general exchange interactions between
A and B sublattices, Xq and Yq are represented by

Xq =

(
ZA FABq

F ∗ABq ZB

)
, (24)

Yq =

(
0 GABq

GAB−q 0

)
, (25)

where

FABq = J̃⊥(h
⊥(s)
ABq + ih

⊥(as)
ABq ) + iD̃z(h

D(s)
ABq + ih

D(as)
ABq ),

(26)

GABq = J̃v(h
v(s)
ABq + ih

v(as)
ABq ) + iJ̃xy(h

xy(s)
ABq + ih

xy(as)
ABq ),

(27)

Zη = Jzzη, (28)

and η = A and B. In contrast to the one-sublattice case,

h
⊥(as)
q 6= 0, h

D(s)
q 6= 0, h

v(as)
q 6= 0, and h

xy(as)
q 6= 0 and

there is no q dependence in Zη; h
z(s)
q corresponds to zη

and h
z(as)
q = 0.

The lowest contribution of F
(s)
q is given by s = 3,

whose expression is represented as

F (3)
q = 12J̃zD̃zJ̃⊥(zA + zB)(h

D(s)
ABqh

⊥(as)
ABq − h

⊥(s)
ABqh

D(as)
ABq )

− 12J̃zJ̃vJ̃xy(zA − zB)(h
xy(s)
ABq h

v(as)
ABq − h

v(s)
ABqh

xy(as)
ABq ).

(29)

The first term in Eq. (29) represents the contribution

from the effective DM interaction proportional to D̃z,
which is similar to the result in the one-sublattice case
in Sec. III A. Meanwhile, the second term in Eq. (29)
represents the contribution from the effective symmetric
anisotropic exchange interaction including J̃v and J̃xy,
which does not appear in the one-sublattice case. In
other words, the symmetric anisotropic exchange inter-
action can become a source of nonreciprocal magnons in
the multisublattice system [see also the results in Eq. (35)
in the three-sublattice case (Sec. III C) and in Eq. (38)
in the four-sublattice case (Sec. III D)]. The real-space
pictures in terms of the magnon-hopping processes for
each term are shown in Fig. 2. It is noted that the ef-
fective symmetric anisotropic interaction contributes to
the nonreciprocal magnons in the form of J̃vJ̃xy in or-
der to satisfy the magnon-number conservation and the
space-time inversion symmetry. We also note that the
q dependence of nonreciprocal magnons can be different
for different mechanisms, as found in the first and second
terms in Eq. (29).

In addition, there are three differences from the one-
sublattice case in Eq. (23). The one is the appearance of

J̃z in Eq. (29), which means that J̃z is also important
to induce the nonreciprocal magnons. The second is the
sublattice-dependent factor zA + zB and zA − zB; the
nonreciprocal magnons by D̃z (J̃vJ̃xy) vanish when zA =
−zB (zA = zB). The third is the q dependence in the first

term in Eq. (29) owing to nonzero h
⊥(as)
q and h

D(s)
q .

We note that the expression in Eq. (29) does not di-
rectly reduce to that in Eq. (23) when regarding A and
B sublattices as the same sublattice, i.e., zA = zB: The
essential model parameter in Eq. (29) is J̃zD̃zJ̃⊥, while

that in Eq. (23) is D̃z. At first glance this result appears
to contradict with each other, but it is due to the fact
that the factor J̃zJ̃⊥ is canceled out with the denomina-
tors when evaluating the energy spectrum [72]. Hence,
from the viewpoint of obtaining the essential model pa-

rameters, it is useful to calculate F
(s)
q in the minimal unit

cell.

By using the expression in Eq. (29), one obtains the
essential model parameters for the emergence of non-
reciprocal magnons in the two-sublattice antiferromag-
netic orderings and the ferromagnetic ordering in the
two-sublattice noncentrosymmetric structures. We show
the example of the staggered antiferromagnetic ordering
in the honeycomb lattice structure in Sec. IV B.
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FIG. 3. Schematics of seven magnon-hopping processes giving

F
(3)
q 6= 0 in real space in the three-sublattice case. Each panel

corresponds to Hµq (µ = 1-7) in Eq. (35).

C. Three-sublattice case

We consider a behavior of F
(s)
q in the three-sublattice

case with η = A, B, and C. For the general exchange
interactions between different sublattices, the 3 × 3 ma-
trices, Xq and Yq, are represented by

Xq =

 ZA FABq FACq

F ∗ABq ZB FBCq

F ∗ACq F ∗BCq ZC

 , (30)

Yq =

 0 GABq GACq

GAB−q 0 GBCq

GAC−q GBC−q 0

 , (31)

where

Fηη′q = J̃⊥(h
⊥(s)
ηη′q + ih

⊥(as)
ηη′q ) + iD̃z(h

D(s)
ηη′q + ih

D(as)
ηη′q ),

(32)

Gηη′q = J̃v(h
v(s)
ηη′q + ih

v(as)
ηη′q ) + iJ̃xy(h

xy(s)
ηη′q + ih

xy(as)
ηη′q ),

(33)

Zη = Jzzη, (34)

and η, η′ = A, B, and C.

The lowest contribution of F
(s)
q corresponds to the s =

3 term similar to the two-sublattice case, which is given
by

F (3)
q =D̃z

[
J̃⊥J̃zH1q + (J̃⊥)2H2q + (J̃v)2H3q

+ (J̃xy)2H4q

]
+ (D̃z)3H5q

+ J̃vJ̃xy(J̃zH6q + J̃⊥H7q), (35)

where Hµq (µ = 1-7) is the antisymmetric function

consisting of odd number of h
ζ(as)
q and even number

of h
ζ(s)
q : Hµq = −Hµ−q. For example, H2q includes

h
D(s)
ηη′qh

⊥(s)
η′η′′qh

⊥(as)
η′′ηq for η 6= η′ 6= η′′. The specific ex-

pressions of Hµq are shown in Appendix A owing to the
lengthy expressions.

There are mainly three contributions in the nonrecip-
rocal magnon dispersions in Eq. (35), which are propor-

tional to D̃z including H1q-H4q, (D̃z)3 including H5q,

and J̃vJ̃xy including H6q and H7q. We schematically
show the magnon-hopping processes corresponding to
Hµq (µ = 1-7) in Fig. 3. Among Hµq, H2q, H3q, H4q,
H5q, and H7q consist of three magnon hoppings be-
tween three sublattices, while H1q and H6q consist of two
magnon hoppings between two sublattices. Indeed, H1q

and H6q correspond to the left and right panels of Fig. 2,
respectively, while other Hµq have no correspondence to
the two-sublattice case. In other words, this indicates
that contributions from H2q, H3q, H4q, H5q, and H7q

can appear when the exchange interaction path includes
the triangle geometry, such as the triangular and kagome
lattices, while those from H1q and H6q do not need the
triangle geometry. Thus, only the latter processes can
contribute to the nonreciprocal magnons in the case of
the one-dimensional three-sublattice chain in the absence
of FACq and GACq.

The general expression in Eq. (35) describes the model
parameter conditions for the nonreciprocal magnons in
the three-sublattice antiferromagnetic orderings, such as
the 120◦ antiferromagnetic ordering on the triangular and
breathing kagome lattices. We show three examples in
the breathing kagome system in Secs. IV A, IV C, and
IV D.

D. Four-sublattice case

Finally, we consider the four-sublattice case, where Xq
and Yq are represented by

Xq =


ZA FABq FACq FADq

F ∗ABq ZB FBCq FBDq

F ∗ACq F ∗BCq ZC FCDq

F ∗ADq F ∗BDq F ∗CDq ZD

 , (36)
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A

B

C

D

A B

D C
(a) (b)

FIG. 4. Four-sublattice clusters in the shapes of (a) a tetra-
hedron and (b) a square.

Yq =

 0 GABq GACq GADq

GAB−q 0 GBCq GBDq

GAC−q GBC−q 0 GCDq

GAD−q GBD−q GCD−q 0

 , (37)

where Fηη′q, Gηη′q, and Zη are the same as Eqs. (32),
(33), and (34), respectively.

Similar to the two- and three-sublattice cases, the low-

est contribution of F
(s)
q in the four-sublattice case is F

(3)
q ,

which is given by

F (3)
q =D̃z

[
J̃⊥J̃zH ′1q + (J̃⊥)2H ′2q + (J̃v)2H ′3q

+ (J̃xy)2H ′4q

]
+ (D̃z)3H ′5q

+ J̃vJ̃xy(J̃zH ′6q + J̃⊥H ′7q), (38)

where H ′µq (µ = 1-7) is similar to Hµq in the three-
sublattice case, and the only difference is found in the
number of hopping paths due to the different number of
the sublattice, as found in Appendix A. Similar to the
three-sublattice case, H ′2q, H ′3q, H ′4q, H ′5q, and H ′7q can
appear when exchange interaction path includes the tri-
angle geometry, while H ′1q and H ′6q do not depend on
such a geometry. For example, in the tetrahedron cluster
structure shown in Fig. 4(a), all H ′µq can contribute to
the nonreciprocal magnons, whereas in the square clus-
ter structure with the nearest-neighbor exchange inter-
actions in Fig. 4(b), only H ′1q and H ′6q can contribute
as

F (3)
q = D̃zJ̃⊥J̃zH ′1q + J̃vJ̃xyJ̃zH ′6q. (39)

In this way, the expressions in Eqs. (38) and (39) de-
scribe the microscopic process contributing to nonrecip-
rocal magnons under the four-sublattice antiferromag-
netic orderings, such as the pyrochlore antiferromagnets
and the four-sublattice tetragonal antiferromagnets.

IV. APPLICATION TO
NONCENTROSYMMETRIC MAGNETS

In this section, we apply the expression in Eq. (15) to
noncentrosymmetric ferromagnets and antiferromagnets
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(b)

(c)

(d)

K
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M

Σ

Σ’
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FIG. 5. (a) Breathing kagome lattice structure under the
point group D3h. The red spheres represent the magnetic
moments along the z direction. The different colors for bonds
stand for the different magnitudes of the exchange coupling.
(b) The first Brillouin zone in (a). The color plot represents
angle dependence of nonreciprocal magnons characterized by
qx(q2x − 3q2y). (c, d) The magnon band structures under the
ferromagnetic ordering for D = 0.2 and Ja = 0 (c) and D = 0
and Ja = 0.5 (d). The other parameters are set as J⊥ = −0.9,
Jz = −1, and γ = 0.5.

to host nonreciprocal magnons. As the ferromagnets,
we consider the ferromagnetic ordering in the breathing
kagome lattice structure in Sec. IV A. As the antifer-
romagnets, we consider three types of antiferromagnetic
orderings: the staggered collinear antiferromagnetic state
in the honeycomb lattice structure in Sec. IV B, the up-
up-down ferrimagnetic state in the breathing kagome lat-
tice structure in Sec. IV C, and the noncollinear 120◦

antiferromagnetic state in the breathing kagome lattice
structure in Sec. IV D. In each section, we first show
the Bogoliubov Hamiltonian and then we discuss magnon
spectra and essential model parameters.

A. Breathing kagome ferromagnets

1. Model

We consider a breathing kagome lattice structure as an
example of noncentrosymmetric crystal structures [72].
The breathing kagome lattice structure consists of up-
ward and downward triangles with the different sizes, as
shown in Fig. 5(a).

The interaction matrix corresponding to Eq. (2) is
given by

J4ηη′ =

J⊥ + Ja cosχηη′ D − Ja sinχηη′ 0
−D − Ja sinχηη′ J⊥ − Ja cosχηη′ 0

0 0 Jz

 ,

(40)
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J5ηη′ = γJ4ηη′ , (41)

where the superscript 4 (5) denotes the interaction
for the upward (downward) triangles where γ is the
breathing parameter, and χAB = 0, χBC = 2π/3 and
χCA = 4π/3. We here consider four independent in-
teractions from the symmetry analysis: the isotropic in-
plane interaction J⊥, the DM interaction D, the bond-
dependent anisotropic interaction Ja, and the z spin in-
teraction Jz. The direction of the DM vector is taken
along the +z (−z) direction for the upward (down-
ward) triangle. The anisotropic interactions, D, Ja, and
Jz − J⊥ originates from the relativistic spin-orbit cou-
pling and/or dipole-diople interactions. Compared to
Eq. (2), one finds the correspondence of (Jvηη′ , J

xy
ηη′) and

(Ja cosχηη′ ,−Ja sinχηη′).
In the ferromagnetic state with magnetic moments

along the z direction, we do not need the rotation of the
spin frame, i.e., J̃⊥ηη′ = J⊥, D̃ηη′ = D, J̃vηη′ = Ja cosχηη′ ,

J̃xyηη′ = −Ja sinχηη′ , and J̃zηη′ = Jz in Eqs. (5)-(9). By
performing the Holstein-Primakov transformation and
then the Fourier transformation, the 3 × 3 matrices Xq
and Yq in the Bogoliubov Hamiltonian matrix HB

q are
given by [72]

Xq =

 Z FABq F ∗CAq

F ∗ABq Z FBCq

FCAq F ∗BCq Z

 , (42)

Yq =

 0 GABq GCA−q
GAB−q 0 GBCq

GCAq GBC−q 0

 , (43)

where

Fηη′q =
(
J⊥ − iD

) (
eiq·ρηη′ + γe−iq·ρηη′

)
, (44)

Gηη′q =Jae−iχηη′
(
eiq·ρηη′ + γe−iq·ρηη′

)
, (45)

Z =− 2(1 + γ)Jz, (46)

where ρηη′ is the displacement vector between η and η′

sublattices in the breathing kagome lattice structure. It
is noted that the length of a side of both the upward
and downward triangles is taken as one for notational
simplicity.

2. Result

The ferromagnetic spin configuration becomes stable
when Jz is dominant and ferromagnetic. We show the
magnon dispersions along high symmetry lines in the
Brillouin zone [Fig. 5(b)] in the ferromagnetic state after
the numerical Bogoliubov transformation. Figure 5(c)
shows the magnon spectra ωq for D = 0.2 without Ja,
while Fig. 5(d) shows ones for Ja = 0.5 without D.
Both cases clearly exhibit that the magnon bands are
modulated antisymmetrically in the functional form of
qx(q2x − 3q2y) [72]. The angle dependence in the limit

of |q| → 0 is given by cos 3φ when setting (qx, qy) =
q(cosφ, sinφ), as shown in Fig. 5; the antisymmetric
modulation appears along the K’-Γ-K line, while it does
not along the M(Σ)-Γ-M(Σ′) line.

The above result means that both D and Ja become
the origin of the nonreciprocal magnons. Such model
parameter conditions are easily obtained by evaluating

F
(s)
q in Eq. (15) without solving the eigenvalue problems.

For a general case at D 6= 0 and Ja 6= 0, the lowest-

order contribution from F
(s)
q is of third order as shown

in Sec. III C, which is given by

F (3)
q =− 12γ(1− γ)(

√
3J⊥ +D)

× [2D(
√

3J⊥ −D) + 3(Ja)2]f3φq , (47)

where

f3φq =
(

cos qx − cos
√

3qy

)
sin qx. (48)

Thus, one finds that the antisymmetric functional form of

f3φq = (cos qx− cos
√

3qy) sin qx in F
(3)
q is consistent with

that in the magnon dispersions in Figs. 5(c) and 5(d).
Furthermore, the expression in Eq. (47) clearly presents
the essential parameters in nonreciprocal magnons: γ,
D, and Ja. The condition of γ 6= 1 represents the impor-
tance of the breathing structure, which is reasonable in
terms of spatial inversion symmetry; it is recovered for

γ = 1. In a similar way, F
(3)
q shows that no antisymmet-

ric magnon dispersions appear when D = −
√

3J⊥. This
is rather surprising, as such a condition is not obtained by
the symmetry argument. Indeed, we confirmed that the
magnon dispersions become symmetric at D = −

√
3J⊥.

The other essential parameters are D and Ja, as in-
ferred from the results in Figs. 5(c) and 5(d). In the case
of Fig. 5(c) for nonzero D and Ja = 0, Eq. (47) reduces
to

F (3)
q = −24γ(1− γ)D(3J⊥2 −D2)f3φq . (49)

The result indicates that asymmetric feature vanishes for
D = 0 and D =

√
3J⊥ in addition to γ 6= 0, 1 and

D = −
√

3J⊥ in Eq. (47). Thus, D is one of the essential
parameters, and its odd order contributes to the asym-
metric dispersions. On the other hand, for nonzero Ja

and D = 0, Eq. (47) turns into

F (3)
q = −36

√
3γ(1− γ)J⊥(Ja)2f3φq . (50)

We find that the even order of Ja becomes the essential
parameters in the case of D = 0. These results are con-
sistent with those obtained from the general expression
in Sec. III C.

B. Honeycomb antiferromagnets

1. Model

The honeycomb lattice structure consists of two sublat-
tices A and B, as shown in Fig. 6(a). From the presence
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FIG. 6. Honeycomb lattice structure under the point group
D6h. The red (blue) spheres represent the up (down) spins
along the z direction. The three bond vectors, d0, d1, and d2,
are also shown. (b) The first Brillouin zone in (a). The color
plot represents angle dependence of nonreciprocal magnons
characterized by qy(q2y − 3q2x). (c, d) The magnon band
structures under the staggered antiferromagnetic ordering for
D = 0.05 and Ja = 0 (c) and D = 0 and Ja = 0.1 (d). The
other parameters are set as J⊥ = 0.99 and Jz = 1.

of threefold rotational symmetry around the z axis and
mirror symmetry perpendicular to the xy plane along the
bond direction at each local site, the interaction tensor
for the nearest-neighbor spins is given by

J νAB =

J⊥ + Ja cosχν −Ja sinχν 0
−Ja sinχν J⊥ − Ja cosχν 0

0 0 Jz

 , (51)

where ν = 0-2 is the bond index for the nearest-neighbor
spins and χν = 0, 2π/3, 4π/3 for ν = 0-2. The three

bond vectors are d0 = (1, 0), d1 = (−1/2,
√

3/2), and

d2 = (−1/2,−
√

3/2). The DM interaction vanishes ow-
ing to inversion symmetry on the A-B bond center. The
contribution of the DM interaction arises in the interac-
tion tensor for the next-nearest-neighbor spins belonging
to the same sublattice, which is given by

J ν
′

AA = −J ν
′

BB =

 0 D 0
−D 0 0

0 0 0

 , (52)

where ν′ = 0-5 is the bond index for the next-nearest-
neighbor spins. We ignore the other symmetric exchange
interactions in JAA and JBB. The opposite sign of the
DM interaction for the A and B sublattices is owing to
inversion symmetry in the system.

We consider the staggered antiferromagnetic state with
SzA = 1 and SzB = −1, as schematically shown in
Fig. 6(a). In contrast to the ferromagnetic ordering in
Sec. IV A, the spin frame is required to be locally ro-
tated according to Eq. (3) in order to use Eq. (15). After

rotating the spin frame, the effective interactions corre-
sponding to Eqs. (5)-(9) are given by

J̃
⊥(ν)
AB = −Ja cosχν , (53)

J̃vAB = −J⊥, (54)

J̃zAB = −Jz, (55)

D̃
(ν)
AB = −Ja sinχν , (56)

D̃AA = D̃BB = D, (57)

for the νth bond (J̃vAB and J̃zAB do not depend on ν).
Owing to the π rotation of the spin frame for the sub-
lattice B, the bond-dependent interaction Ja is trans-
formed into J̃⊥AB and D̃AB in Eqs. (53) and (56), and
the sublattice-dependent DM interaction turns into the
uniform DM interaction in Eq. (57). By performing the
Holstein-Primakov transformation and then the Fourier
transformation, the 2×2 matrices Xq and Yq in Eq. (11)
are given by [70, 78]

Xq =

(
Zq Fq
F ∗q Zq

)
, (58)

Yq =

(
0 Gq

G−q 0

)
, (59)

where

Fq = −Ja
∑
ν

ei(q·dν−χν), (60)

Gq = −J⊥
∑
ν

eiq·dν , (61)

Zq = 3Jz + 4D

(
cos

3qx
2
− cos

√
3qy
2

)
sin

√
3qy
2

. (62)

2. Result

The staggered antiferromagnetic spin configuration is
stabilized by supposing that Jz is the dominant antifer-
romagnetic interaction. We take Jz = 1 and J⊥ = 0.99,
respectively. The magnon dispersions in the antiferro-
magnetic state are shown in Figs. 6(c) and 6(d), where
the Brillouin zone is shown in Fig. 6(b). The magnon
spectra ωq in Fig. 6(c) are calculated for D = 0.05 and
Ja = 0 and those in Fig. 6(d) are for D = 0 and Ja = 0.1.
Similar to the result in Sec. IV A, the asymmetric modu-
lations occur in both situations. The antisymmetric func-
tional form is given by qy(3q2x−q2y), as shown by the color
plot in Fig. 6(b), which means that the angle dependence
is expressed as sin 3φ in the limit of |q| → 0.

From Eq. (15), the essential model parameters are
straightforwardly computed. The lowest-order contribu-
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tion in terms of D is given by

F (1)
q =8(D̃AA + D̃BB)

(
cos

3qx
2
− cos

√
3qy
2

)
sin

√
3qy
2

(63)

=16D

(
cos

3qx
2
− cos

√
3qy
2

)
sin

√
3qy
2

. (64)

Meanwhile, the lowest-order contribution in terms of Ja

is of third-order, which is given by

F (3)
q =72J̃zAB

[
sin
√

3qy(D̃
(2)
ABJ̃

⊥(1)
AB − D̃(1)

ABJ̃
⊥(2)
AB )

− J̃⊥(0)AB

{
D̃

(1)
AB sin

(
3qx +

√
3qy

2

)

+ D̃
(2)
AB sin

(
3qx −

√
3qy

2

)}]
(65)

=72
√

3Jz(Ja)2

(
cos

3qx
2
− cos

√
3qy
2

)
sin

√
3qy
2

,

(66)

where we set D = 0. These results are consistent with
those in Eqs. (23) and (29) in Sec. III. Similar to the
ferromagnetic ordering in Sec. IV A, the result obtained
from Eq. (15) gives the same functional form as that
in the magnon dispersions in Figs. 6(c) and 6(d). Fur-
thermore, the expressions in Eqs. (63) and (65) indicate
the odd order of the effective DM interaction causes the
asymmetric magnon dispersions as obtained in Sec. III.

C. Breathing kagome ferrimangets

1. Model

We discuss the other example of the nonreciprocal
magnons in the ferrimagnetic state. We consider the
up-up-down magnetic ordering in the breathing kagome
lattice structure as a fundamental example. The up-up-
down spin configuration is shown in Fig. 7(a).

The spin Hamiltonian is common to Eqs. (40) and
(88) in Sec. IV A. The effective interaction tensors cor-
responding to Eqs. (5)-(9) are modified from those in
Sec. IV A for the antiparallel spin pairs, i.e., A-C and
B-C spins. The interactions are given by

J̃ ′
⊥
CA =− Ja cosχCA, (67)

J̃ ′
⊥
BC =− Ja cosχBC, (68)

J̃ ′
v

CA =J̃ ′
v

BC = −J⊥, (69)

J̃ ′
z

CA =J̃ ′
z

BC = −Jz, (70)

J̃ ′
xy

CA =−D, (71)

J̃ ′
xy

BC =D, (72)

y
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FIG. 7. Breathing kagome lattice structure under the point
group D3h. The red (blue) spheres represent the up (down)
spins along the z direction. (b) The first Brillouin zone in (a).
The color plot represents angle dependence of nonreciprocal
magnons characterized by a linear combination of qx(q2x−3q2y)
and qx(q2x−q2y)(q2x−3q2y). (c, d) The magnon band structures
under the up-up-down magnetic ordering for D = 0.2, Ja = 0,
and J‖ = −2 (c) and D = 0, Ja = 0.5, and J‖ = −2.4
(d). The other parameters are set as J⊥ = 0.9, Jz = 1, and
γ = 0.5.

D̃′CA =Ja sinχCA, (73)

D̃′BC =− Ja sinχBC. (74)

The π rotation of the spin frame around the y axis for
the C sublattice leads to the correspondence between
(J̃ ′⊥ηη′ , D̃

′
ηη′ ↔ J ′vηη′ , J

′xy
ηη′ ) and (J̃ ′vηη′ , J̃

′xy
ηη′ ↔ J ′⊥ηη′ , D

′
ηη′).

Then, the 3× 3 matrices Xq and Yq in the Bogoliubov
Hamiltonian in momentum space are obtained as [72]

Xq =

 0 FABq F ′∗CAq

F ∗ABq 0 F ′BCq

F ′CAq F ′∗BCq Z

 , (75)

Yq =

 0 GABq G′CA−q
GAB−q 0 G′BCq

G′CAq G′BC−q 0

 , (76)

where

F ′BCq =− Jae−iχBC
(
eiq·ρBC + γe−iq·ρBC

)
, (77)

F ′CAq =− JaeiχCA
(
eiq·ρCA + γe−iq·ρCA

)
, (78)

G′BCq =
(
−J⊥ + iD

) (
eiq·ρBC + γe−iq·ρBC

)
, (79)

G′CAq =
(
−J⊥ − iD

) (
eiq·ρCA + γe−iq·ρCA

)
, (80)

Z =2(1 + γ)Jz. (81)

FABq and GABq are common to Eqs. (44) and (45), re-
spectively.
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2. Result

The up-up-down spin configuration is not simply sta-
bilized by the spin Hamiltonian owing to the degeneracy
arising from the kagome lattice structure. We here in-
troduce the interlayer ferromagnetic exchange coupling
with the coupling constant J‖ by supposing the quasi-
two-dimensional structure [72]. Then, the diagonal ma-
trix element (Xq)ii = (0, 0, Z) in Eq. (75) turns into

(Xq)ii = (J‖, J‖, Z + J‖), which opens the gap in the
magnon spectra. In the following, we fix J⊥ = 0.9,
Jz = 1, and γ = 0.5.

Figures 7(c) and 7(d) show the magnon dispersions un-
der the up-up-down magnetic ordering along high sym-
metry lines in the Brillouin zone in Fig. 7(b). The data
in Fig. 7(c) is obtained at D = 0.2, Ja = 0, and J‖ = −2
and that in Fig. 7(d) is D = 0, Ja = 0.5, and J‖ = −2.4.
In contrast to the magnon dispersions in the ferromag-
netic state in Sec. IV A, threefold rotational symmetry
in the dispersions does not hold, which is consistent with
the symmetry of the magnetic orderings. This result in-
dicates that there is an additional angle dependence of
cosφ to cos 3φ, whose behavior is schematically shown
as the color plot in Fig. 7(b). We also confirm that the
magnon dispersions in Figs. 7(c) and 7(d) are character-
ized by the above angle dependence.

By evaluating F
(s)
q in Eq. (15), the essential model

parameters are extracted. The lowest-order contribution
is given as the same form of Eq. (47) except for the sign.
In other words, the lowest-order contribution gives the
angle dependence of cos 3φ. The other cosφ dependence

is obtained by the second lowest-order contribution F
(5)
q .

For Ja = 0, F
(5)
q is given by

F (5)
q =10γ2(1− γ)h1

[
D̃AB(J̃ ′

v

BCJ̃
′v
CA + J̃ ′

xy

BCJ̃
′xy
CA)

+ J̃AB(J̃ ′
v

BCJ̃
′xy
CA − J̃ ′

v

CAJ̃
′xy
BC)
]
q5 cos(a) (82)

=40γ2(1− γ)D(3J⊥2 −D2)(J⊥2 +D2)q5 cosφ,
(83)

where h1 = 2D̃2
AB+2J̃2

AB+(J̃ ′
v

BC)2+(J̃ ′
v

CA)2+(J̃ ′
xy

BC)2+

(J̃ ′
xy

CA)2. On the other hand, for D = 0, F
(5)
q is repre-

sented by

F (5)
q =10γ2(1− γ)h2

[
D̃′BC(J̃⊥ABJ̃

′⊥
CA − J̃vABJ̃

′v
CA)

+ D̃′CA(J̃⊥ABJ̃
′⊥
BC − J̃vABJ̃

′v
BC)
]
q5 cosφ (84)

=60
√

3γ2(1− γ)J⊥(Ja)2[J⊥2 − (Ja)2]q5 cosφ,
(85)

where we omit the irrelevant contributions and h2 =

D̃′
2

BC + D̃′
2

CA−2(J̃⊥AB)2 + (J̃ ′
⊥
BC)2 + (J̃ ′

⊥
CA)2 + 2(J̃vAB)2−

(J̃ ′
v

BC)2 − (J̃ ′
v

CA)2. Thus, the additional antisymmetric
modulation in the up-up-down state is given by q5 cosφ,
indicating that the modulation of cosφ affects the large
q region in the Brillouin zone. Also in these cases in
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FIG. 8. (a) Breathing kagome lattice structure in the absence
of the horizontal mirror plane under the polar point group
C3v. The arrows represent the magnetic moments to form
the 120◦ antiferromagnetic ordering. (b) The first Brillouin
zone in (a). The color plot represents angle dependence of
nonreciprocal magnons characterized by qx(q2x − 3q2y), which
is the same as that in Fig. 5(b). (c, d) The magnon band
structures under the 120◦ antiferromagnetic ordering for D′ =
0.2 and J ′a = 0 (c) and D′ = 0 and J ′a = 0.2 (d). The other
parameters are set as J⊥ = 1, Jz = 0.8, D = −0.2, Ja = 0.5,
and γ = 0.5.

Eqs. (82) and (84), the odd order of the effective DM
interaction and the even order of the effective symmetric
anisotropic interaction can be a source of the antisym-
metric dispersions.

Such qn dependence in cosφ depends on the model pa-
rameters. For example, we consider the situation where
the breathing parameter for the DM interaction γDM is
different from γ, γDM 6= γ [72]. In this case, the cosφ

dependence appears in F
(3)
q as

F (3)
q =Dg1(cos qx − cos

√
3qy) sin qx

+Dg2 cos
√

3qy sin qx, (86)

where g1 = −24γDM(1− γDM)D2 + (γ2 − 2γ + 2γγDM −
γDM)J⊥2 and g2 = −48(1 + γ)(γ − γDM)J⊥Jz. The ex-
pression in the form of the effective interaction is omitted
due to its length. Owing to nonzero g2, i.e., γDM 6= γ,

F
(3)
q has the contribution of q cosφ in the limit of |q| → 0,

which means the linear band modulation is found in the
small q region [72].

D. Breathing kagome noncollinear 120◦

antiferromagnets

1. Model

Finally, we discuss the nonreciprocal magnons in the
noncollinear antiferromagnetic state. We consider the
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120◦ antiferromagnetic ordering in the breathing kagome
lattice structure in Fig. 8(a). Here, we consider the situa-
tion where the horizontal mirror symmetry in the kagome
plane is broken owing to the presence of polar field along

the z direction, which means that the point group sym-
metry is lowered to C3v. Then, the spin Hamiltonian is
given by

J4ηη′ =

 J⊥ + Ja cosχηη′ D − Ja sinχηη′ −D′ cosχηη′ − J ′a sinχηη′
−D − Ja sinχηη′ J⊥ − Ja cosχηη′ −D′ sinχηη′ + J ′a cosχηη′

D′ cosχηη′ − J ′a sinχηη′ D′ sinχηη′ + J ′a cosχηη′ Jz

 , (87)

J5ηη′ = γJ4ηη′ , (88)

where D′ and J ′a are additional exchange interactions
that arise from the horizontal mirror symmetry breaking
under the polar field.

The effective interactions in the rotated spin frame are
given by

J̃⊥ηη′ =− 1

4

(
J⊥ − 2Ja + 2Jz −

√
3D
)
, (89)

J̃vηη′ =
1

4

(
J⊥ − 2Ja + 2Jz −

√
3D
)
, (90)

J̃xyηη′ =0, (91)

J̃zηη′ =− 1

2

(
J⊥ + 2Ja −

√
3D
)
, (92)

D̃z
ηη′ =− 1

2

(√
3J ′a +D′

)
, (93)

where η, η′ = A, B, and C, and we neglect J̃zxηη′ and D̃x
ηη′

owing to the linear spin wave approximation. The ex-
pressions are the same for the different bonds (A-B, B-C,
and C-A) owing to the symmetry.

The 3 × 3 matrices Xq and Yq in the Bogoliubov
Hamiltonian in momentum space are the same as those
in Eqs. (42) and (43), respectively. Meanwhile, Fηη′q,
Gηη′q, and Z have different forms as

Fηη′q =

[
−J
⊥ − 2Ja + 2Jz −

√
3D

4
+
i(
√

3J ′a +D′)

2

]
×
(
eiq·ρηη′ + γe−iq·ρηη′

)
, (94)

Gηη′q =
J⊥ − 2Ja + 2Jz −

√
3D

4

(
eiq·ρηη′ + γe−iq·ρηη′

)
,

(95)

Z =(1 + γ)
(
J⊥ + 2Ja −

√
3D
)
. (96)

2. Result

The 120◦ spin configuration is obtained as a metastable
state by taking the exchange model parameters as J⊥ =
1, Jz = 0.8, D = −0.2, Ja = 0.5, and γ = 0.5. Fig-
ures 8(c) and 8(d) show the magnon dispersions under

the 120◦ antiferromagnetic ordering along high symme-
try lines in the Brillouin zone in Fig. 8(b). The data
in Fig. 8(c) is obtained at D′ = 0.2 and J ′a = 0 and
that in Fig. 8(d) is at D′ = 0 and J ′a = 0.2. Although
the interaction tensor under the 120◦ antiferromagnetic
ordering is different from that in the ferromagnetic order-
ing in Eq. (40), the functional form of the antisymmetric
dispersions is the same with each other, which is char-
acterized by qx(q2x − 3q2y) satisfying threefold rotational
symmetry in both cases in Figs. 8(c) and 8(d).

The lowest-order contribution of F
(s)
q is of third order.

In the case at D′ 6= 0 and J ′a = 0, F
(3)
q is given by

F (3)
q =− 3γ(1− γ)D′f3φq

×
[
6Jz

(
J⊥ −

√
3D − 2Ja

)
+D′2

]
, (97)

and in the case at D′ = 0 and J ′a 6= 0, F
(3)
q is given by

F (3)
q =− 9γ(1− γ)J ′af3φq

×
{√

3
[
2Jz(J⊥ − 2Ja) + (J ′a)2

]
− 6DJz

}
.

(98)

where we omit the expressions for the effective exchange
interactions. The above results indicates that we obtain
the different conditions in terms of the essential model
parameters from the ferromagnetic state in Eqs. (49) and
(50): The former are D′ and J ′a, while the latter are D
and Ja. In this way, our scheme can be applied to non-
collinear antiferromagnetic orderings straightforwardly.

V. SUMMARY

To summarize, we have investigated the microscopic
conditions for emergent nonreciprocal magnons on the
basis of the model calculations. We presented the use-
ful expression in Eqs. (14) and (15) to provide essential
model parameters for nonreciprocal magnon excitations
in an analytical way. The method does not require the
diagonalization of the bosonic Hamiltonian. After pre-
senting the generic results in the one- to four-sublattice
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cases, we tested the method to four magnetic systems:
the ferromagnetic state on the breathing kagome lattice
system, the staggered collinear antiferromagnetic state
on the honeycomb lattice system, the up-up-down ferri-
magnetic state on the breathing kagome lattice system,
and the noncollinear 120◦ antiferromagnetic state on the
breathing kagome lattice system. We found that our
scheme extracts the key model parameters, which are well
consistent with the result by the direct diagonalization.

The present expression can be applied to any mag-
netic structures including noncollinear one in the mag-
netic systems with any symmetric and antisymmetric bi-
linear exchange interactions. In particular, this method
has an advantage of obtaining the analytical expressions
for the essential model parameters in multisublattice sys-
tems with long-period magnetic structures that are dif-
ficult to obtain the analytical expressions of the magnon
band dispersions. Moreover, the systematic analysis pro-
vides an insight to construct an effective spin model so as

to include essential model parameters in real materials,
where targeting materials are easily found by using mag-
netic structure database, MAGNDATA [89], and clus-
ter multipole analyses [85, 90], from the symmetry view-
point. In this way, our result will not only give a deep un-
derstanding of nonreciprocal magnon excitations in non-
centrosymmetric magnets, such as α-Cu2V2O7 [91–94],
but also be a good indicator to examine the microscopic
origin under complicated magnetic orderings.

Appendix A: Expressions of F
(s)
q in three- and

four-sublattice cases

In this Appendix, we show the lengthy expressions of
Hµq (µ = 1-7) in the three-sublattice case in Sec. III C
and those of H ′µq (µ = 1-7) in the four-sublattice case in
Sec. III D.

For the three-sublattice case, Hµq (µ = 1-7) are given by

H1q =12{zA(h
D(s)
ABqh

⊥(as)
ABq + h

D(s)
ACqh

⊥(as)
ACq − h

⊥(s)
ABqh

D(as)
ABq − h

⊥(s)
ACqh

D(as)
ACq )

+ zB(h
D(s)
ABqh

⊥(as)
ABq + h

D(s)
BCqh

⊥(as)
BCq − h

⊥(s)
ABqh

D(as)
ABq − h

⊥(s)
BCqh

D(as)
BCq )

+ zC(h
D(s)
ACqh

⊥(as)
ACq + h

D(s)
BCqh

⊥(as)
BCq − h

⊥(s)
ACqh

D(as)
ACq − h

⊥(s)
BCqh

D(as)
BCq )} (A1)

H2q =12(−hD(s)
ABqh

⊥(s)
ACqh

⊥(as)
BCq + h

D(s)
ABqh

⊥(s)
BCqh

⊥(as)
ACq + h

D(s)
ACqh

⊥(s)
ABqh

⊥(as)
BCq + h

D(s)
ACqh

⊥(s)
BCqh

⊥(as)
ABq + h

D(s)
BCqh

⊥(s)
ABqh

⊥(as)
ACq

− hD(s)
BCqh

⊥(s)
ACqh

⊥(as)
ABq − h

⊥(s)
ABqh

⊥(s)
ACqh

D(as)
BCq − h

⊥(s)
ABqh

⊥(s)
BCqh

D(as)
ACq − h

⊥(s)
ACqh

⊥(s)
BCqh

D(as)
ABq − h

D(as)
ABq h

⊥(as)
ACq h

⊥(as)
BCq

+ h
D(as)
ACq h

⊥(as)
ABq h

⊥(as)
BCq − h

D(as)
BCq h

⊥(as)
ABq h

⊥(as)
ACq ) (A2)

H5q =12(−hD(s)
ABqh

D(s)
ACqh

D(as)
BCq + h

D(s)
ABqh

D(s)
BCqh

D(as)
ACq − h

D(s)
ACqh

D(s)
BCqh

D(as)
ABq − h

D(as)
ABq h

D(as)
ACq h

D(as)
BCq ) (A3)

H6q =12{zA(h
v(s)
ABqh

xy(as)
ABq + h

v(s)
ACqh

xy(as)
ACq − h

xy(s)
ABq h

v(as)
ABq − h

xy(s)
ACq h

v(as)
ACq )

+ zB(−hv(s)ABqh
xy(as)
ABq + h

v(s)
BCqh

xy(as)
BCq + h

xy(s)
ABq h

v(as)
ABq − h

xy(s)
BCq h

v(as)
BCq )

+ zC(−hv(s)ACqh
xy(as)
ACq − h

v(s)
BCqh

xy(as)
BCq + h

xy(s)
ACq h

v(as)
ACq + h

xy(s)
BCq h

v(as)
BCq )} (A4)

H7q =12(h
⊥(s)
ABqh

v(s)
BCqh

xy(as)
ACq + h

⊥(s)
ACqh

v(s)
BCqh

xy(as)
ABq − h

v(s)
BCqh

xy(s)
ABq h

⊥(as)
ACq − h

v(s)
BCqh

xy(s)
ACq h

⊥(as)
ABq + h

⊥(s)
ABqh

v(s)
ACqh

xy(as)
BCq

− h⊥(s)BCqh
v(s)
ACqh

xy(as)
ABq − h

v(s)
ACqh

xy(s)
ABq h

⊥(as)
BCq + h

v(s)
ACqh

xy(s)
BCq h

⊥(as)
ABq − h

⊥(s)
ABqh

xy(s)
ACq h

v(as)
BCq − h

⊥(s)
ABqh

xy(s)
BCq h

v(as)
ACq

− h⊥(s)ACqh
v(s)
ABqh

xy(as)
BCq + h

⊥(s)
ACqh

xy(s)
ABq h

v(as)
BCq − h

⊥(s)
ACqh

xy(s)
BCq h

v(as)
ABq − h

⊥(s)
BCqh

v(s)
ABqh

xy(as)
ACq + h

⊥(s)
BCqh

xy(s)
ABq h

v(as)
ACq

+ h
⊥(s)
BCqh

xy(s)
ACq h

v(as)
ABq + h

v(s)
ABqh

xy(s)
ACq h

⊥(as)
BCq + h

v(s)
ABqh

xy(s)
BCq h

⊥(as)
ACq + h

⊥(as)
ABq h

v(as)
ACq h

xy(as)
BCq − h

⊥(as)
ABq h

v(as)
BCq h

xy(as)
ACq

− h⊥(as)ACq h
v(as)
ABq h

xy(as)
BCq + h

⊥(as)
ACq h

v(as)
BCq h

xy(as)
ABq + h

⊥(as)
BCq h

v(as)
ABq h

xy(as)
ACq − h

⊥(as)
BCq h

v(as)
ACq h

xy(as)
ABq ), (A5)

where H3q and H4q are obtained by replacing the superscript ⊥ in H2q with v and xy, respectively, and multiplying
−1.

For the four-sublattice case, H ′µq (µ = 1-7) are given by

H ′1q =12{zA(h
D(s)
ABqh

⊥(as)
ABq + h

D(s)
ACqh

⊥(as)
ACq + h

D(s)
ADqh

⊥(as)
ADq − h

⊥(s)
ABqh

D(as)
ABq − h

⊥(s)
ACqh

D(as)
ACq − h

⊥(s)
ADqh

D(as)
ADq )

+ zB(h
D(s)
ABqh

⊥(as)
ABq + h

D(s)
BCqh

⊥(as)
BCq + h

D(s)
BDqh

⊥(as)
BDq − h

⊥(s)
ABqh

D(as)
ABq − h

⊥(s)
BCqh

D(as)
BCq − h

⊥(s)
BDqh

D(as)
BDq )

+ zC(h
D(s)
ACqh

⊥(as)
ACq + h

D(s)
BCqh

⊥(as)
BCq + h

D(s)
CDqh

⊥(as)
CDq − h

⊥(s)
ACqh

D(as)
ACq − h

⊥(s)
BCqh

D(as)
BCq − h

⊥(s)
CDqh

D(as)
CDq )

+ zD(h
D(s)
ADqh

⊥(as)
ADq + h

D(s)
BDqh

⊥(as)
BDq + h

D(s)
CDqh

⊥(as)
CDq − h

⊥(s)
ADqh

D(as)
ADq − h

⊥(s)
BDqh

D(as)
BDq − h

⊥(s)
CDqh

D(as)
CDq )} (A6)

H ′2q =12(−hD(s)
ABqh

⊥(s)
ACqh

⊥(as)
BCq − h

D(s)
ABqh

⊥(s)
ADqh

⊥(as)
BDq + h

D(s)
ABqh

⊥(s)
BCqh

⊥(as)
ACq + h

D(s)
ABqh

⊥(s)
BDqh

⊥(as)
ADq + h

D(s)
ACqh

⊥(s)
ABqh

⊥(as)
BCq
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− hD(s)
ACqh

⊥(s)
ADqh

⊥(as)
CDq + h

D(s)
ACqh

⊥(s)
BCqh

⊥(as)
ABq + h

D(s)
ACqh

⊥(s)
CDqh

⊥(as)
ADq + h

D(s)
ADqh

⊥(s)
ABqh

⊥(as)
BDq + h

D(s)
ADqh

⊥(s)
ACqh

⊥(as)
CDq

+ h
D(s)
ADqh

⊥(s)
BDqh

⊥(as)
ABq + h

D(s)
ADqh

⊥(s)
CDqh

⊥(as)
ACq + h

D(s)
BCqh

⊥(s)
ABqh

⊥(as)
ACq − h

D(s)
BCqh

⊥(s)
ACqh

⊥(as)
ABq − h

D(s)
BCqh

⊥(s)
BDqh

⊥(as)
CDq

+ h
D(s)
BCqh

⊥(s)
CDqh

⊥(as)
BDq + h

D(s)
BDqh

⊥(s)
ABqh

⊥(as)
ADq − h

D(s)
BDqh

⊥(s)
ADqh

⊥(as)
ABq + h

D(s)
BDqh

⊥(s)
BCqh

⊥(as)
CDq + h

D(s)
BDqh

⊥(s)
CDqh

⊥(as)
BCq

+ h
D(s)
CDqh

⊥(s)
ACqh

⊥(as)
ADq − h

D(s)
CDqh

⊥(s)
ADqh

⊥(as)
ACq + h

D(s)
CDqh

⊥(s)
BCqh

⊥(as)
BDq − h

D(s)
CDqh

⊥(s)
BDqh

⊥(as)
BCq − h

⊥(s)
ABqh

⊥(s)
ACqh

D(as)
BCq

− h⊥(s)ABqh
⊥(s)
ADqh

D(as)
BDq − h

⊥(s)
ABqh

⊥(s)
BCqh

D(as)
ACq − h

⊥(s)
ABqh

⊥(s)
BDqh

D(as)
ADq − h

⊥(s)
ACqh

⊥(s)
ADqh

D(as)
CDq − h

⊥(s)
ACqh

⊥(s)
BCqh

D(as)
ABq

− h⊥(s)ACqh
⊥(s)
CDqh

D(as)
ADq − h

⊥(s)
ADqh

⊥(s)
BDqh

D(as)
ABq − h

⊥(s)
ADqh

⊥(s)
CDqh

D(as)
ACq − h

⊥(s)
BCqh

⊥(s)
BDqh

D(as)
CDq − h

⊥(s)
BCqh

⊥(s)
CDqh

D(as)
BDq

− h⊥(s)BDqh
⊥(s)
CDqh

D(as)
BCq − h

D(as)
ABq h

⊥(as)
ACq h

⊥(as)
BCq − h

D(as)
ABq h

⊥(as)
ADq h

⊥(as)
BDq + h

D(as)
ACq h

⊥(as)
ABq h

⊥(as)
BCq − h

D(as)
ACq h

⊥(as)
ADq h

⊥(as)
CDq

+ h
D(as)
ADq h

⊥(as)
ABq h

⊥(as)
BDq + h

D(as)
ADq h

⊥(as)
ACq h

⊥(as)
CDq − h

D(as)
BCq h

⊥(as)
ABq h

⊥(as)
ACq − h

D(as)
BCq h

⊥(as)
BDq h

⊥(as)
CDq − h

D(as)
BDq h

⊥(as)
ABq h

⊥(as)
ADq

+ h
D(as)
BDq h

⊥(as)
BCq h

⊥(as)
CDq − h

D(as)
CDq h

⊥(as)
ACq h

⊥(as)
ADq − h

D(as)
CDq h

⊥(as)
BCq h

⊥(as)
BDq ) (A7)

H ′5q =12(−hD(s)
ABqh

D(s)
ACqh

D(as)
BCq − h

D(s)
ABqh

D(s)
ADqh

D(as)
BDq + h

D(s)
ABqh

D(s)
BCqh

D(as)
ACq + h

D(s)
ABqh

D(s)
BDqh

D(as)
ADq − h

D(s)
ACqh

D(s)
ADqh

D(as)
CDq

− hD(s)
ACqh

D(s)
BCqh

D(as)
ABq + h

D(s)
ACqh

D(s)
CDqh

D(as)
ADq − h

D(s)
ADqh

D(s)
BDqh

D(as)
ABq − h

D(s)
ADqh

D(s)
CDqh

D(as)
ACq − h

D(s)
BCqh

D(s)
BDqh

D(as)
CDq

+ h
D(s)
BCqh

D(s)
CDqh

D(as)
BDq − h

D(s)
BDqh

D(s)
CDqh

D(as)
BCq − h

D(as)
ABq h

D(as)
ACq h

D(as)
BCq − h

D(as)
ABq h

D(as)
ADq h

D(as)
BDq − h

D(as)
ACq h

D(as)
ADq h

D(as)
CDq

− hD(as)
BCq h

D(as)
BDq h

D(as)
CDq ) (A8)

H ′6q =12{zA(h
v(s)
ABqh

xy(as)
ABq + h

v(s)
ACqh

xy(as)
ACq + h

v(s)
ADqh

xy(as)
ADq − h

xy(s)
ABq h

v(as)
ABq − h

xy(s)
ACq h

v(as)
ACq − h

xy(s)
ADq h

v(as)
ADq )

+ zB(−hv(s)ABqh
xy(as)
ABq + h

v(s)
BCqh

xy(as)
BCq + h

v(s)
BDqh

xy(as)
BDq + h

xy(s)
ABq h

v(as)
ABq − h

xy(s)
BCq h

v(as)
BCq − h

xy(s)
BDq h

v(as)
BDq )

+ zC(−hv(s)ACqh
xy(as)
ACq − h

v(s)
BCqh

xy(as)
BCq + h

v(s)
CDqh

xy(as)
CDq + h

xy(s)
ACq h

v(as)
ACq + h

xy(s)
BCq h

v(as)
BCq − h

xy(s)
CDq h

v(as)
CDq )

+ zD(−hv(s)ADqh
xy(as)
ADq − h

v(s)
BDqh

xy(as)
BDq − h

v(s)
CDqh

xy(as)
CDq + h

xy(s)
ADq h

v(as)
ADq + h

xy(s)
BDq h

v(as)
BDq + h

xy(s)
CDq h

v(as)
CDq )} (A9)

H ′7q =12(h
⊥(s)
ABqh

v(s)
ACqh

xy(as)
BCq + h

⊥(s)
ABqh

v(s)
ADqh

xy(as)
BDq + h

⊥(s)
ABqh

v(s)
BCqh

xy(as)
ACq + h

⊥(s)
ABqh

v(s)
BDqh

xy(as)
ADq − h

⊥(s)
ABqh

xy(s)
ACq h

v(as)
BCq

− h⊥(s)ABqh
xy(s)
ADq h

v(as)
BDq − h

⊥(s)
ABqh

xy(s)
BCq h

v(as)
ACq − h

⊥(s)
ABqh

xy(s)
BDq h

v(as)
ADq − h

⊥(s)
ACqh

v(s)
ABqh

xy(as)
BCq + h

⊥(s)
ACqh

v(s)
ADqh

xy(as)
CDq

+ h
⊥(s)
ACqh

v(s)
BCqh

xy(as)
ABq + h

⊥(s)
ACqh

v(s)
CDqh

xy(as)
ADq + h

⊥(s)
ACqh

xy(s)
ABq h

v(as)
BCq − h

⊥(s)
ACqh

xy(s)
ADq h

v(as)
CDq − h

⊥(s)
ACqh

xy(s)
BCq h

v(as)
ABq

− h⊥(s)ACqh
xy(s)
CDq h

v(as)
ADq − h

⊥(s)
ADqh

v(s)
ABqh

xy(as)
BDq − h

⊥(s)
ADqh

v(s)
ACqh

xy(as)
CDq + h

⊥(s)
ADqh

v(s)
BDqh

xy(as)
ABq + h

⊥(s)
ADqh

v(s)
CDqh

xy(as)
ACq

+ h
⊥(s)
ADqh

xy(s)
ABq h

v(as)
BDq + h

⊥(s)
ADqh

xy(s)
ACq h

v(as)
CDq − h

⊥(s)
ADqh

xy(s)
BDq h

v(as)
ABq − h

⊥(s)
ADqh

xy(s)
CDq h

v(as)
ACq − h

⊥(s)
BCqh

v(s)
ABqh

xy(as)
ACq

− h⊥(s)BCqh
v(s)
ACqh

xy(as)
ABq + h

⊥(s)
BCqh

v(s)
BDqh

xy(as)
CDq + h

⊥(s)
BCqh

v(s)
CDqh

xy(as)
BDq + h

⊥(s)
BCqh

xy(s)
ABq h

v(as)
ACq + h

⊥(s)
BCqh

xy(s)
ACq h

v(as)
ABq

− h⊥(s)BCqh
xy(s)
BDq h

v(as)
CDq − h

⊥(s)
BCqh

xy(s)
CDq h

v(as)
BDq − h

⊥(s)
BDqh

v(s)
ABqh

xy(as)
ADq − h

⊥(s)
BDqh

v(s)
ADqh

xy(as)
ABq − h

⊥(s)
BDqh

v(s)
BCqh

xy(as)
CDq

+ h
⊥(s)
BDqh

v(s)
CDqh

xy(as)
BCq + h

⊥(s)
BDqh

xy(s)
ABq h

v(as)
ADq + h

⊥(s)
BDqh

xy(s)
ADq h

v(as)
ABq + h

⊥(s)
BDqh

xy(s)
BCq h

v(as)
CDq − h

⊥(s)
BDqh

xy(s)
CDq h

v(as)
BCq

− h⊥(s)CDqh
v(s)
ACqh

xy(as)
ADq − h

⊥(s)
CDqh

v(s)
ADqh

xy(as)
ACq − h

⊥(s)
CDqh

v(s)
BCqh

xy(as)
BDq − h

⊥(s)
CDqh

v(s)
BDqh

xy(as)
BCq + h

⊥(s)
CDqh

xy(s)
ACq h

v(as)
ADq

+ h
⊥(s)
CDqh

xy(s)
ADq h

v(as)
ACq + h

⊥(s)
CDqh

xy(s)
BCq h

v(as)
BDq + h

⊥(s)
CDqh

xy(s)
BDq h

v(as)
BCq + h

v(s)
ABqh

xy(s)
ACq h

⊥(as)
BCq + h

v(s)
ABqh

xy(s)
ADq h

⊥(as)
BDq

+ h
v(s)
ABqh

xy(s)
BCq h

⊥(as)
ACq + h

v(s)
ABqh

xy(s)
BDq h

⊥(as)
ADq − h

v(s)
ACqh

xy(s)
ABq h

⊥(as)
BCq + h

v(s)
ACqh

xy(s)
ADq h

⊥(as)
CDq + h

v(s)
ACqh

xy(s)
BCq h

⊥(as)
ABq

+ h
v(s)
ACqh

xy(s)
CDq h

⊥(as)
ADq − h

v(s)
ADqh

xy(s)
ABq h

⊥(as)
BDq − h

v(s)
ADqh

xy(s)
ACq h

⊥(as)
CDq + h

v(s)
ADqh

xy(s)
BDq h

⊥(as)
ABq + h

v(s)
ADqh

xy(s)
CDq h

⊥(as)
ACq

− hv(s)BCqh
xy(s)
ABq h

⊥(as)
ACq − h

v(s)
BCqh

xy(s)
ACq h

⊥(as)
ABq + h

v(s)
BCqh

xy(s)
BDq h

⊥(as)
CDq + h

v(s)
BCqh

xy(s)
CDq h

⊥(as)
BDq − h

v(s)
BDqh

xy(s)
ABq h

⊥(as)
ADq

− hv(s)BDqh
xy(s)
ADq h

⊥(as)
ABq − h

v(s)
BDqh

xy(s)
BCq h

⊥(as)
CDq + h

v(s)
BDqh

xy(s)
CDq h

⊥(as)
BCq − h

v(s)
CDqh

xy(s)
ACq h

⊥(as)
ADq − h

v(s)
CDqh

xy(s)
ADq h

⊥(as)
ACq

− hv(s)CDqh
xy(s)
BCq h

⊥(as)
BDq − h

v(s)
CDqh

xy(s)
BDq h

⊥(as)
BCq + h

⊥(as)
ABq h

v(as)
ACq h

xy(as)
BCq + h

⊥(as)
ABq h

v(as)
ADq h

xy(as)
BDq − h

⊥(as)
ABq h

v(as)
BCq h

xy(as)
ACq

− h⊥(as)ABq h
v(as)
BDq h

xy(as)
ADq − h

⊥(as)
ACq h

v(as)
ABq h

xy(as)
BCq + h

⊥(as)
ACq h

v(as)
ADq h

xy(as)
CDq + h

⊥(as)
ACq h

v(as)
BCq h

xy(as)
ABq − h

⊥(as)
ACq h

v(as)
CDq h

xy(as)
ADq

− h⊥(as)ADq h
v(as)
ABq h

xy(as)
BDq − h

⊥(as)
ADq h

v(as)
ACq h

xy(as)
CDq + h

⊥(as)
ADq h

v(as)
BDq h

xy(as)
ABq + h

⊥(as)
ADq h

v(as)
CDq h

xy(as)
ACq + h

⊥(as)
BCq h

v(as)
ABq h

xy(as)
ACq

− h⊥(as)BCq h
v(as)
ACq h

xy(as)
ABq + h

⊥(as)
BCq h

v(as)
BDq h

xy(as)
CDq − h

⊥(as)
BCq h

v(as)
CDq h

xy(as)
BDq + h

⊥(as)
BDq h

v(as)
ABq h

xy(as)
ADq − h

⊥(as)
BDq h

v(as)
ADq h

xy(as)
ABq

− h⊥(as)BDq h
v(as)
BCq h

xy(as)
CDq + h

⊥(as)
BDq h

v(as)
CDq h

xy(as)
BCq + h

⊥(as)
CDq h

v(as)
ACq h

xy(as)
ADq − h

⊥(as)
CDq h

v(as)
ADq h

xy(as)
ACq + h

⊥(as)
CDq h

v(as)
BCq h

xy(as)
BDq
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− h⊥(as)CDq h
v(as)
BDq h

xy(as)
BCq ) (A10)

where H ′3q and H ′4q are obtained by replacing the superscript ⊥ in H ′2q with v and xy, respectively, and multiplying
−1.
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Rev. B 99, 184432 (2019).
[31] M. Naka, S. Hayami, H. Kusunose, Y. Yanagi, Y. Mo-

tome, and H. Seo, Nat. Commun. 10, 4305 (2019).
[32] S. Hayami, Y. Yanagi, and H. Kusunose, J. Phys. Soc.

Jpn. 88, 123702 (2019).
[33] L.-D. Yuan, Z. Wang, J.-W. Luo, and A. Zunger, Phys.

Rev. Materials 5, 014409 (2021).
[34] S. Hayami and H. Kusunose, Phys. Rev. B 104, 045117

(2021).
[35] Y. Tokura and N. Nagaosa, Nat. Commun. 9, 3740

(2018).
[36] K. Sawada and N. Nagaosa, Phys. Rev. Lett. 95, 237402

(2005).
[37] S. Toyoda, N. Abe, and T. Arima, Phys. Rev. B 93,

201109(R) (2016).
[38] S.-W. Cheong, D. Talbayev, V. Kiryukhin, and A. Sax-

ena, npj Quantum Mater. 3, 1 (2018).
[39] F. Foggetti, S.-W. Cheong, and S. Artyukhin, Phys. Rev.

B 100, 180408(R) (2019).
[40] B. Volkov, A. Gorbatsevich, Y. V. Kopaev, and V. Tu-

gushev, Zh. Eksp. Teor. Fiz 81, 742 (1981).
[41] Y. V. Kopaev, Physics-Uspekhi 52, 1111 (2009).
[42] N. A. Spaldin, M. Fiebig, and M. Mostovoy, J. Phys.:

Condens. Matter 20, 434203 (2008).
[43] Y. Yanase, J. Phys. Soc. Jpn. 83, 014703 (2014).
[44] S. Hayami, H. Kusunose, and Y. Motome, Phys. Rev. B

90, 024432 (2014).
[45] S. Hayami, H. Kusunose, and Y. Motome, J. Phys. Soc.

Jpn. 84, 064717 (2015).
[46] H. Watanabe and Y. Yanase, Phys. Rev. B 98, 220412(R)

(2018).
[47] S. Hayami, M. Yatsushiro, Y. Yanagi, and H. Kusunose,

Phys. Rev. B 98, 165110 (2018).
[48] R. Damon and J. Eshbach, J. Appl. Phys. 31, S104

(1960).
[49] R. W. Damon and J. Eshbach, J. Phys. Chem. Solids 19,

308 (1961).
[50] R. L. Melcher, Phys. Rev. Lett. 30, 125 (1973).
[51] M. Kataoka, J. Phys. Soc. Jpn. 56, 3635 (1987).
[52] P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and

H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).



15

[53] P. X. Zhang and W. Zinn, Phys. Rev. B 35, 5219 (1987).
[54] K. Di, S. Feng, S. Piramanayagam, V. Zhang, H. S. Lim,

S. C. Ng, and M. H. Kuok, Sci. Rep. 5, 1 (2015).
[55] H. T. Nembach, J. M. Shaw, M. Weiler, E. Jué, and T. J.
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