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Abstract. In this paper, we give some estimates for the essential norm and a new char-
acterization for the boundedness and compactness of weighted composition operators from
weighted Bergman spaces and Hardy spaces to the Bloch space.

Keywords: Bloch space; weighted Bergman space; Hardy space; essential norm; weighted
composition operator

MSC 2010: 30H30, 47B38

1. INTRODUCTION

Let D be the open unit disk in the complex plane C and H(D) be the space of
analytic functions on D. For 0 < p < oo and a > —1, the weighted Bergman space,
denoted by AP, is the set of all functions f € H (D) satisfying

1FI, = (@ +1) / PP = 227 dA(z) < oo,

where A is the normalized Lebesgue area measure in D such that A(D) = 1. The
Hardy space H? is the space consisting of all f € H(D) such that

2n

[ f» = sup |f(re'?)|P df < co.

0<r<1 2T Jg
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The Bloch space, denoted by B = B(D), is the space of all f € H(D) such that
1£lls = sup(1 — |2[*)]f'(2)] < oo.
zeD

Under the norm || f||g = |f(0)] + || flls, the Bloch space is a Banach space. See [26]
for more information on the Bloch space.

Let v: D — R4 be a continuous, strictly positive and bounded function. An
f € H(D) is said to belong to the weighted space, denoted by HS®, if

I £llo = supv(2)|f(2)] < .
zeD

HS® is a Banach space with the norm ||-||,. The weight v is called radial, if v(z) =
v(|z|) for all z € D. For a weight v, the associated weight ¥ is defined as

0= (sup{|f(2)]: feHY, |Ifl.<1})7!, 2€D.

When v = v,(2) = (1 — |2]2)%, 0 < a < oo, it is easy to check that 04 (2) = va(2).
In this case, we denote H3° by Hg° and || f||,, = sup |f(2)|(1 — |z]*)*.
zeD

Let S(D) denote the set of all analytic self-maps of D. Let u € H(D) and ¢ € S(D).
For f € H(D), the composition operator C,, and the multiplication operator M, are
defined by

(Cof)(2) = f(p(2)) and (M, [)(z) = u(z)f(2),

respectively. The weighted composition operator uC,, is defined by

(uCof)(2) = u(2)f(#(2)), fe€ H(D).

It is clear that the weighted composition operator uC, is the generalization of C,
and M,. A basic and interesting problem concerning concrete operators (such as
composition operator, multiplication operator, Volterra operator, Toeplitz operator,
Hankel operator and other integral-type operators) is to relate operator-theoretic
properties to the function-theoretic properties of their symbols, which attracted a lot
of attention recently, we refer the reader to [3] and [26].

It is well known that C, is bounded on B by the Schwarz-Pick lemma for any
¢ € S(D). The compactness of C,, on B was studied for example in [13], [19], [21].
In [21], Wulan, Zheng and Zhu proved that for any ¢ € S(D), C,: B — B is com-
pact if and only if Jlglolo l¢?|ls = 0. This result has been generalized to Bloch-type

spaces by Zhao in [25] and shows that C,: B* — B? is compact if and only if
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lim j* !|¢?||gs = 0. For some results on composition operator and related op-
—00

erators mapping into the Bloch space see, for example, [1], [2], [7]-[14], [16]-]18],
[22]-[25], [27] and the related references therein.

In [7], Li and Stevi¢ obtained a characterization of the boundedness and compact-
ness of the weighted composition operator uCy: AE — B. Among others, we proved
the following result.

Theorem A. Let 1 < p < oo, @« > —1, u € H(D) and ¢ € S(D) such that
uCy,: AP — B is bounded. Then uCy,: AP, — B is compact if and only if

(1= [z (2)] , (1 —|z[)]ulz)¢ ()]
o) (1= [p(2)2) CFe/p 0 and o)1 (1 — |p(2)[2) Crata)/p 0

In [2], Colonna obtained a new characterization by using two families of functions,
among others, she obtained the following result.

Theorem B. Let 1 < p < o0, a > —1, w € H(D) and ¢ € S(D) such that
uCy,: AP, — B is bounded. Then uCy,: AP, — B is compact if and only if

lim | uC,falls =0 and lim ||uC,g.ls =0,
al—1 al—1

where
(1 — |a|?) +E+a)(1=1/p) (1 — |af?)tHE+a)(1=1/p)+1/p

fa(2) = (1 —az)3+ » 9a(2) = (1 —az)3tati/p

In [2], Colonna also obtained two characterizations for the compactness of weighted
composition operator uCy,: HP — B.

Theorem C. Let 1 < p < oo, u € H(D) and ¢ € S(D) such that uC,: H? — B
is bounded. Then the following statements are equivalent:
(a) uC,: HP — B is compact.
(b)

lim ||[uCypalls =0 and lim |[uC,q.|8 =0,
al—1 a|—1

where
(1= |a|2)> 1/ (1—la[*)?
ped) =g @)= Aoy
© (1= () (1 [Pl )
. — PO, m — PR PRI
e Oy s 1 s el s o v By e
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The purpose of this paper is to give some estimates for the essential norm of
the operator uC,: A% — B (as well as uCy,: H? — B), in particular, by using
|uCy fallz and [[uCypgalls (as well as [|[uCypalls and ||uCyqal/s). Moreover, we give
a new characterization for the boundedness, compactness and essential norm of the
operator uCy,: AP — B (as well as uC,: HP — B) by using ¢/.

Recall that the essential norm of a bounded linear operator T: X — Y is its
distance to the set of compact operators K mapping X into Y, that is,

IT|es,x -y = inf{||T — K||x>y: K is compact},
where X, Y are Banach spaces and ||| xy is the operator norm.

Throughout this paper, we say that A < B if there exists a constant C' such that
A < CB. The symbol A ~ B means that A < B < A.

2. ESSENTIAL NORM OF uC,

In this section, we give two estimates for the essential norm of the operator uC.,:
AP — B and the operator uCy,: H? — B, respectively.

Theorem 2.1. Let 1 < p < o0, @« > —1, u € H(D) and ¢ € S(D) such that
uCy,: AP — B is bounded. Then

||UC<P||es,A£—>B ~ maX{Av B} ~ maX{Pa Q}v

where
A = limsup [|[uCy(fa)|ls, B :=limsup ||[uCy,(g4)] 5,
la]—1 |a]—1
. (1= 2P|/ (2)] . (1= |z[P)[uz)¢' (2)]
P := limsup , @ := limsup .
lo(z)| =1 (1= [p(2)[?)E+e)/p lo(2)|—1 (1 = |@(2)]?)@+atr)/p

Proof. First we prove that
maX{AaB} 5 HUC‘P||ES,A£~>B'

Let a € D. It is easy to check that f,, g, € A2 and ||f.]
all a € D and f,, g, converge to zero uniformly on compact subsets of D as |a| — 1.

a2 S 1, [lgallaz <1 for
Thus, for any compact operator K : A2 — B, by Lemma 3.7 of [20] we have

lim ||Kf.|lg=0, lim ||Kg.|s=0.

la]—1 la]—1
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Hence
[uCy — K|laz 5 2 [(uCy — K) fallg 2 [uCy falls — | K fall5,

and
[uCp — Kllaz 5 2 [(uCyp — K)galls = [[uCygallz — [ K galls.

Taking lim sup to the last two inequalities on both sides, we obtain
|a]—1

[uCyp — Kllazp 2 A, |uCy — K425 2 B.
Therefore, by the definition of the essential norm, we get
[uCslles.az 5 = Wf [[uCy — K|l 4z 5 £ max{4, B}.

Next, set
3+«

3ta+1/p’e

It is also easy to check that hq,k, € A% and ||ha|laz S 1, [[kallaz S1forallacD
and h,, k, converge to zero uniformly on compact subsets of D as |a| — 1. Hence,

ha(z):fa_ga; ka(z):fa_

for any b; € D such that |¢(b;)] — 1 and any compact operator K: AP — B, we
have

[uCy — K|laz—5 2 [[(uCy — K)hyo,) 8 = [[uCohyw,) B — [[Khp,) |8,
and

o8 2 [(uCo = K)kpwp s 2 [[uCokpw) 5 = 1Ko 18-

Taking limsup to the last two inequalities on both sides we get
le(bs)|—1

(1= 1B 1)’ (b;)]
|uCyp — K|l a2 5 2 hmsup luCohyw) B 2 limsup =P,
U el o (P O DI

and

: (1= 1551 u(b;) " (b;)]
[uCyp — K| ar_g 2 limsup [[uCykym,)lls 2 limsup =Q.
v AamB lo(b;)]|—1 v lo(b,)|—1 (1 = [(by)[2)EHatr)/p

By the definition of the essential norm, we obtain
[uClles,az 5 = Wf [[uCy — K| 4z Z max{P, Q}.
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Finally, we prove that
[uColles,az—p S max{A, B} and  [[uColles a5 S max{P, Q}.
For r € [0,1), set K,: H(D) — H(D) by
(K f)(2) = fr(2) = f(rz), [fe H(D).
It is clear that K, is compact on A? and |K,|4r_,4» < 1. Let {r;} C (0,1) be

a sequence such that r; — 1 as j — oco. Then for all positive integers j, the operator
uC,K,,: A? — B is compact. By the definition of the essential norm we have

(2.1) [uC ez 5 < limsup [[uCyp — uC Sy, g5
j—o0

Thus, we only need to show that

(2.2) limsup |[uCy — uC, Ky, || az g S max{A, B},
j—o0

and

(2.3) limsup ||[uCy — uC, K, || sz 5 S max{P, Q}.
j—o0

For any f € AP such that || f||4» <1, we consider

[(uCy — uCpoKr)) flls = [u(0)f(2(0)) — w(0)f (rj ()| + u(f = fr;) o ¢llp-

It is clear that lim |u(0)f(¢(0)) —u(0)f(r;4(0))| = 0. Now we estimate

J—00
limsup [[u(f — fr;) o ¢lls

<limsup  sup (1= [2)[(f = fr,) (9(2)]l¢' (2)[u()]

J=00 |p(e)|<ry

+limsup  sup (1= [2°)|(f = fr,) (@())]|¢' (2)||u(2)]

J=oo |p(z)|>rN

+limsup - sup (1= [2*)[(f = fr,)(0(2))][ ()]

J=oo Jp(z)|Srn

+limsup sup (1 —|z]?)|(f — frj)(¢(z))||“/(z)|

J=roo fe(2)|>rN

(2.4) =01+ Q2+ Q3+ Qq,
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where N € N is large enough such that r; > 1/2 for all j > N,

Q1 :=limsup sup (1—[z[*)[(f — fr,) (¢(2))ll¢' (2)]Ju(2)],

J—=oo e(z)I<rn

Q2 :=limsup  sup (1= |2P)|(f = fr,) (¢(2))ll¢' (D)llu(2)],

J—roo fe(2)>rN

Qs :=limsup  sup (1 - |2*)|(f = fr,)(p(2))l[/ ()],

J—=oo |e(z)ISrN

and

Qs :=limsup  sup (1—|2*)|(f = fr,)(p(2))l[/ (2)].

j—=oo |e(2)[>rn
Since uC,: AP — B is bounded, applying the operator uC, to 1 and z, we easily
get that v € B and
K = sup(1 — |2[*)|¢' (2)]|u(2)] < oc.
zeD

Since 7 f,fj — f’ uniformly on compact subsets of D as j — oo, we have

(2.5) Q1 < I?limsup sup |f'(w) —r; f'(rjw)| = 0.

j—o0 \w\gm\z

Also, from the fact that v € B and f,; — f uniformly on compact subsets of D as
j — 00, we have

(2.6) Qs < |[ullslimsup sup |f(w) — f(rjw)] = 0.

j—oo  |w|<rn

Next we consider (2. We have Q2 < lim sup(S{ + Sg ), where

j—roo
s = (1= 12P)If (p(2))ll¢ (2)llu(2)]
w(z)|>rN
and '
S = (1 = [=P)rs 1 (ryo(2 ) ()lu(2)]-
w(z)|>rN

First we estimate S7. Using the fact that | fllar < 1, we have

Si= suw (1P (el (2)lu(2)]
e ()[>ry

1 lo(2)]
S fllar sup (1= |2]?)|¢'(2)]|u(z
N || | AL |4p(z)|>7-N( | | | ( || )| (1 IR |@(2)|2)(2+a+p)/p

o (=)l
|o(2)[?)EHetn)/e

1
S— suposup (1= [2)]@(2)|[u(2)| .
P o) |>ry lal>rN ( -

sup  [|uCy(fa = 9a)lls

la|>rN

sup [[uCyfalls + sup [[uCy,galls-

la|>rN la|>rN

A

A
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Taking limit as N — oo we obtain

(1 = [z’ (2)[Ju(2)]

limsup $¢ < limsu =
B T P S [ T
< limsup ||uCly fal| 5 + limsup || uCgq || 5.
la]—1 |a]—1
Similarly, we have
. P 1 (1= [2P)l¢"()Jul2)]
limsup S5 < limsup =Q
ioee 27 Taor (1= p(z)]2)@rete)/p
< limsup [|uCy, fo|| g + limsup [|[uCyga|| 8,
la|—1 |a]—1
i.e., we get that
(2.7) Q2 S Q < A+ B <Smax{A, B}.
Next we consider Q4. We have Q4 < lim sup(Sg + SZ), where
j—o0
Sii= s (L= RN, S= s (1— 2Pl )]
lp(z)|>rN lo(2)|>rN

Similarly, we have

: 1
{5 swp - suwp (1= [ (2)]
’ le(2)|>rn lal>ry (1= J(z)]2)@+a)/p
3+«
S sup ’UC f L R—Te g
alsen I 20 3+a+1/p # s
3+a
< sup |JuCufullp+ ————— sup |[uCuygallB
" la>ry o 3+a+1/pjasry oo
< sup |[uCy,falls + sup [[uCyugallB-
la|>rN la|>rN

Taking limit as N — oo we obtain

(1= [z (2)]

lim sup Sg < limsup

oo als1 (1= Jp(2)[2)@+e)/p
S limsup ||uCy fol| 5 + limsup ||uCygalls = A+ B.
|a]—1 la]—1

Similarly, we have lim sup Sﬁ S P < A+ B,ie., we get that

j—o0
(2.8) Qi<P<A+B.
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Hence, by (2.4), (2.5), (2.6), (2.7) and (2.8) we get

(2.9) limsup ||uCy, — uC, Ky || ar 5 = limsup sup |(uC, —uC,K,)fl5

i—o0 =00 |fll4p <1

= limsup sup ||u(f—frj) opllg

i=00 ||fll,p <1

SP+Q<A+B.
Therefore, by (2.1) and (2.9), we obtain
HUCAPHBS,Af',—)B S P+ Q S maX{Pa Q}
and
||UC<P||es,A§—>B S A+ B S maX{Av B}
This completes the proof of the theorem. ([

The Hardy space H? can be viewed as the limiting space of A? as a decreases
to —1. In fact, carefully check the proof of Theorem 2.1 and replacing A2 and « by
H? and —1, respectively, we get the following result.

Theorem 2.2. Let 1 < p < o0, v € H(D) and ¢ € S(D) such that uC,: HP — B
is bounded. Then

JuCiplle, 05 ~ max{ i sup [[uCo (pa) [, limsup [uCis (gl }
la|—1 la]—1
1— 2 / 1 — 2 ’
:5Inax{lhnsup.L__Jletggéu,lhnsup ( 'Z|”“§i¥igi”}~
lo(2)]—»1 (L= ()PP o> (1= [(z)2)HP)/P

From Theorems 2.1 and 2.2, we immediately get the following two corollaries.

Corollary 2.1. Let 1 < p < 00, a > —1 and ¢ € S(D) such that C,: AP, — B is
bounded. Then

1Colles, az 5 = limsup [|Cy(fa) |5 = limsup || Ce(ga) |5

|a]—1 a|l—1

(1= |2P) ' ()
(= Tp () P)EFatre’

~ limsup
le(2)|—1
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Corollary 2.2. Let 1 < p < 0o and ¢ € S(D) such that C,: H? — B is bounded.
Then ) )
1Coplles, rrr—5 = limsup || (pa )5 = lim sup |G (ga) || 5
a|l—1 la]—1
1— 2 /
< s RN
lo(2)]—1 (1 - |SD(Z)| )( +p)/p

3. NEW CHARACTERIZATION OF uCl,

In this section, motivated by [4], we give a new characterization for the bound-
edness, compactness and essential norm for the weighted composition operators
uCy: AP — B and uCy,: HP? — B. For this purpose, we state some lemmas which
will be used.

Lemma 3.1 ([15]). Let v and w be radial, non-increasing weights tending to zero
at the boundary of D. Then the following statements hold.
(a) The weighted composition operator uCy,: H3° — HS° is bounded if and only if

sup ———|p(2)| < 0.
e LA
Moreover,
|[uCy, || Hoo = oo = sup ———~|p(2)]-
| <P| oo H T ~cD ’U(QO(Z))| )|
uppose uCl,: — is bounded. Then
(b) S C,: HX® — H is bounded. Th
. w(2)
||uC<P||es,H,3°—>Hff = lim sup lo(2)].

s=17 | (2)>s 0((2))

Lemma 3.2 ([5]). Let v and w be radial, non-increasing weights tending to zero
at the boundary of D. Then the following statements hold.
(a) uCy,: H® — H® is bounded if and only if

[
sup ——
k20 125w

< o0,

with the norm comparable to the above supremum.
(b) Suppose uC,: HS® — HS° is bounded. Then

*lw

. U
||Ucap||es,H,lj'°_>Hloﬂo = thup H ka .
k—o0 ||Z H’U
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Lemma 3.3 ([6]). For o > 0, we have klim kY2510, = (2a/e)>.
—00

Theorem 3.1. Let 1 < p < o0, a > —1, u € H(D) and ¢ € S(D). Then the
operator uCy,: AP — B is bounded if and only if

(3.1) sglfj(2+“>/pllfu(<pj)lls < oo and sgl?j(2+a)/p|\Ju(s0j’1)llzs < o0,
]/ j/

where
uma—[ﬁm&w@&,quw—AEQM@wa 2 €D, ge HD).

Proof. By Theorem A, uC,: AP, — B is bounded if and only if

(1— ) () (1 |22 u(2)'(2)]
(B2 s R Er < M ST et <%

which are equivalent to the conditions that the weighted composition operator u'Cl, :
o0 oo 3 / . oo

Hy .., — H7 is bounded and ue'Cy: HF

tively. By Lemma 3.2, we see that the two inequalities in (3.2) are equivalent to

— Hy7 is bounded, respec-

1 Ag—1 / j—1
wup L o sy 5

- - < 0
321 127 o/ 21 127 Moy aim/o 7

respectively. Since I, f(0) = 0, J, f(0) =0,

(Iu(¢))(2)) = ju(2)¢'(2)" 1 (2),  (Ju(@?7)(2)) = /()" (2),
by Lemma 3.3, we see that uCy,: AP, — B is bounded if and only if
(3.3) sup j 2P, ()5 = Sulfj(”a)/pll’tt'@jfl|\v1

jz1 Jjz
GO o o,

= Sup - - < o0
21§y
and
(3.4) sup j*TV/P|| L, (¢7)||g = sup TP a0,
j=1 j=1
j(2+a+”)/”||u<p’<pj_1||m
X sup - — < o0.
j=1 j(2+a+p)/szj le(2+a+p)/P
The proof is complete. O
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Theorem 3.2. Let 1 < p < oo, a > —1,u € H(D) and ¢ € S(D) such that the
operator uCy, : AY — B is bounded. Then

1Clen a5 = mac{ i sup jH/2 1, (7).l sup 34077 .1, (1) s}

J—0 J—00

Proof. By Theorem A and Lemma 3.1, uC,: AP — B is bounded if and only if
the weighted composition operator u'C,: HﬁéM)/p — H° is bounded and up'Cy,:
H — HY is bounded. By Lemmas 3.2 and 3.3, we get

V(2+a+p)/p

(35) en — timsup 1 o
: plles,HZ® —>H,$ = lmsup o1

(@+e)/p J—00 ||Z ||'U(2+(:V)/p
j(2+(’)/p||u'<pj_1||vl

= Hmsup S o2

1||v(2+a>/p

lim supj(”a)/”||u’<,0j71 [,

Q

Jj—o0
= limsup /7| 1, (o5
j—o0
and
/=1
. uyp es,Hg® —H = imsupM
3.6 (Cplles, 1 =1 oy
(24a+p)/p 1 j—00 [| 2 ||'U(2+a+p)/:0

~ limsup jZHe+P/P|lug' 0?1,
j—o0

= limsup j*T/?|| I, (¢7)|5.
Jj—o0
The upper estimate. From the fact (uC,f) (z) = «/(2)f(p(2)) + u(z) x
@' (2)f'(¢(2)), it is easy to see that

(3.7 NuColles,az—5 < 1v/Colles, e

!
st 0 Collr,

Y(2+a+p)/p
Then, by (3.5), (3.6) and (3.7) we get
[uClplles, az 5 S limsup jETP| 1, (o7)||5 + limsup /7| 1 () |15
Jj—o0 j—o0

< mac{limsup j /P 1,(¢7) s, Timsup 3+ .1, (¢ .
j—o0

j—o0
The lower estimate. From Theorem 2.1 and Lemma 3.1, we have

luClles a8 2 P = 0 Colles i, >tz ~ limsup 5H/7 1, (07~ s
‘]A)OO
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and

, > — / oo o &~ 11 (2+a)/p J
HUCKP||ES,A52~>B 2 Q = [Jup C@HeS,H,,(Haﬂ)/pﬁHvl h?l_f)lip] 11 (2?5

Therefore,

1Cillen a5 2 mac{ T sup j 2+ 1, (7)1, T sup 3+ .1, (1) s}

j—oo j—oo
This completes the proof. O

From Theorem 3.2, we immediately get the following result.

Theorem 3.3. Let 1 < p < o0, @« > —1, u € H(D) and ¢ € S(D) such that
uCy,: AP — B is bounded. Then the operator uCy: AP, — B is compact if and only
if

lim sup jF9/?|| L, () ||[s =0 and limsup j@+9/P||J, (" ~Y)|s = 0.
Jj—o0 J—©

We end this section with a new characterization of boundedness, compactness
and essential norm of the operator uCy,: HP? — B. Carefully check the proofs of
Theorems 3.1 and 3.2, by replacing AP and a by H? and —1, respectively, we get
the following result.

Theorem 3.4. Let 1 < p < o0, u € H(D) and ¢ € S(D). Then the following
statements hold.
(a) The operator uCy,: HP — B is bounded if and only if

sup j1/7|| I(¢7)||s < o0 and sup /P . (¢ )]s < 0.
j>1 j>1

(b) If the operator uCy,: HP — B is bounded, then uCy,: H? — B is compact if
and only if

limsup j'/7||L(¢') |5 =0 and limsupj'/?|Ju(¢’ )|z = 0.

J—00 J—0o0

Moreover,

Cplls, s~ max { Tin sup 772 () s, T sup 52/2 a7~ s

J—00 J—00

From the above results, we immediately get the following new characterization of
the operator C,,: A?, (or HP) — B.
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Corollary 3.1. Let 1 < p < o0, @ > —1 and ¢ € S(D). Then the following
statements hold.

(a) The operator C,: AP, — B is bounded if and only if sg}fj(a+2)/p||§0j||6 < oo.
j>
b) If the operator C,: AP — B is bounded, then C,: AP — B is compact if and
@ « » (¢

only if limsup j(*t2)/?| o7 ||z = 0. Moreover,
j—o0

1Cylles, az—p = limsup j*F2/P[|7 | 5.
j—o0

Corollary 3.2. Let 1 < p < oo and ¢ € S(D). Then the following statements
hold.

(a) The operator C,: HP — B is bounded if and only if $1>111)j1/p||<ﬂj||8 < 00.
1z
(b) If the operator C,: HP — B is bounded, then C,: HP — B is compact if and

only if limsup j'/?||¢7 |5 = 0. Moreover,
j—o0

IC, lles,rr—s5 ~ limsup /71 | 5.
j—o0
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