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Essential spectrum and Weyl asymptotics

for discrete Laplacians

Michel Bonnefont(1), Sylvain Golénia(2)

RÉSUMÉ. — Dans cet article, nous étudions le spectre de Laplaciens
discrets. Notre travail est basé sur l’inégalité de Hardy et l’étude des
fonctions super-harmoniques. Nous retrouvons et améliorons des bornes
inférieures pour le bas du spectre et le bas du spectre essentiel. Dans
certains cas, nous obtenons des asymptotiques de Weyl pour les valeurs
propres. Nous donnons aussi une représentation probabiliste des fonc-
tions super-harmoniques, puis avec des arguments de type couplage, nous
établissons des résultats de comparaison pour le bas du spectre, le bas du
spectre essentiel et la complétude stochastique de différents Laplaciens
discrets. Une classe de graphes faiblement symétriques est aussi étudiée
en grand détail.

ABSTRACT. — In this paper, we investigate spectral properties of dis-
crete Laplacians. Our study is based on the Hardy inequality and the use
of super-harmonic functions. We recover and improve lower bounds for
the bottom of the spectrum and of the essential spectrum. In some situ-
ation, we obtain Weyl asymptotics for the eigenvalues. We also provide a
probabilistic representation of super-harmonic functions. Using coupling
arguments, we set comparison results for the bottom of the spectrum,
the bottom of the essential spectrum and the stochastic completeness of
different discrete Laplacians. The class of weakly spherically symmetric
graphs is also studied in full detail.
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1. Introduction

The study of discrete Laplacians on infinite graphs is at the crossroad of
spectral theory and geometry. A special role is played by the bottom of the
spectrum and that of the essential spectrum of discrete Laplacians. Con-
cerning the former, a famous link is given through Cheeger/isoperimetrical
inequalities, e.g., [3, 5, 10, 11, 12, 15, 22, 23, 20, 29]. For the latter, since
the essential spectrum can be thought as the spectrum of the Laplacian “at
infinity”, the link is given through isoperimetrical inequalities at infinity,
e.g., [15, 20]. In this article we tackle the question with another standpoint
and establish a new link with the help of Hardy inequalities, see Section 3,
and positive super-harmonic functions.

We fix briefly some notation. A weighted graph G is a triple G :=
(V ,E ,m), where V denotes a countable set (the vertices of G ), E a
non-negative symmetric function on V ×V and m a positive function on
V . We say that two points x, y ∈V are neighbors and we denote x ∼ y if
E (x, y) = E (y, x) > 0. We assume that G is locally finite in the sense
that each point of V has only a finite number of neighbors.

The Laplacian then reads, for f with finite support,

∆mf(x) =
1

m(x)

∑

y,y∼x

E (x, y)(f(x)− f(y)).

We then consider its Friedrich extension and keep the same symbol. It de-
fines a non-negative self-adjoint operator. Its spectrum is thus included in
[0,∞).

Given W :V → (0,+∞), the Hardy inequality reads as follows:

〈f,∆mf〉m � 〈f, ∆̃mW

W
f〉m,

where f :V → R with finite support and ∆̃m denotes the algebraic Lapla-
cian (see Section 2.1). The heart of this article is to exploit this inequality
for some good choice(s) of W . This method is very flexible:

• We recover and improve lower bounds for the spectrum and for the
essential spectrum, see Section 4.
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• We improve some criteria for the absence of the essential spectrum,
see Section 4.

• We study the eigenvalues below the essential spectrum and obtain
Weyl asymptotics for the eigenvalues, see Section 5.

• We state an Allegretto-Piepenbrink type theorem for the spectrum
and the essential spectrum, see Section 6. This theorem links the
bottom of the spectra with the existence of positive super-harmonic
functions.

• We establish a probabilistic representation of super-harmonic func-
tions, see Section 8. As a corollary, we derive a probabilistic under-
standing of the bottom of the spectrum and of the essential spectrum.

• For weakly spherically symmetric graphs we prove that the bottom of
the spectrum and of the essential spectrum are governed only by the
radial part of the Laplacian, see Section 9.

• Using a coupling argument, we establish new comparison results for
the bottom of the spectrum and the essential spectrum of different
discrete Laplacians, see Section 10.

• We derive a comparison result for the stochastic completeness, see
Section 11.

A main part of our work is to provide geometric criterion to ensure the
existence of positive super-harmonic functions; that is functions W : V →
(0,∞) satisfying

∆̃mW (x) � λ(x)W (x),

where λ : V → [0,∞) is some non-negative function. These criterion are
based on the geometric properties of a 1-dimensional decomposition of the
graph. In many situations, this 1-dimensional decomposition is given by
the distance to a point or to a finite set. Using min-max principles, we
then derive the lower bounds for the bottom of both the spectrum and
the essential spectrum (see Theorems 4.8, 4.13 and Corollary 4.18). We
also obtain some lower and upper bounds for the eigenvalues and get Weyl
asymptotics for the eigenvalues.

The Hardy inequality was already known in this discrete setting under
different names, e.g., [8, 16, 17]. Our present work is inspired by the work
of [6], where the authors study diffusion operators in a continuous setting
and with a finite invariant measure. They give criteria based on Lyapunov
functions to show that the Super-Poincaré Inequality holds.
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We mention that the Super-Poincaré Inequality was introduced by Wang
(see [30, 31, 33]) and is equivalent to a lower bound of the essential spectrum.
We do not rely on this approach but this point of view enlightens about the
situation. For the sake of completeness, we include the proofs of their results
in Appendix B.

The Hardy inequality directly gives one direction of the Allegretto-
Piepenbrik theorem (Theorem 3.6). For the other direction, knowing a lower
bound on the spectrum or the essential spectrum, one has to construct a
positive super-harmonic function (Theorems 6.1 and 6.2). This was known
for the spectrum (e.g., [17]) but seems to be new for the essential spectrum.

We then provide a probabilistic representation of super-harmonic func-
tions (see Theorems 8.3 and 8.5). It is interesting to compare with [7]. The
difference is that they control how the stochastic process returns in a com-
pact domain whereas we control how the associated Markov process goes to
infinity. An important tool is the Harnack inequality that we borrow from
[17], see Section 7.

Next, we prove comparison results for the bottom of the spectrum and
the essential spectrum of different weighted Laplacians. Theorem 10.4 is an
improvement of Theorem 4 in [21]. The main new ingredient in the proof
of Theorem 10.4 is a coupling argument between the associated stochastic
processes (see Proposition 10.1). This coupling argument works under a
condition we called stronger weak-curvature growth which is strictly weaker
than the stronger curvature growth condition of Theorem 4 in [21]. Moreover,
we treat the case of the essential spectrum. The coupling argument also
provides a comparison result for stochastic completeness (see Theorem 11.2).

Besides, we study the class of weakly spherically symmetric graphs, see
Definition 2.1. These graphs are a slight generalization of the ones intro-
duced in [21]. We first show weakly spherically symmetric graphs are ex-
actly the graphs such that the radial part of their associated continuous time
Markov chain is also a 1-dimensional continuous time Markov chain, (see
Propositions 9.2 and 9.5). We then show that both the bottom of the spec-
trum and the essential spectrum for the Laplacian on a weakly spherically
symmetric graph coincide with the ones of their radial part (see Theorem
9.4).

The paper is organized as follows. In Section 2, we present the nota-
tion and we carefully introduce the Laplacian. Section 3 is devoted to the
statement and a new proof of the Hardy inequality. The lower bounds for
the spectrum and the essential spectrum are obtained in Section 4. In Sec-
tion 5, we focus on eigenvalues. The estimates for the eigenvalues are very
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dependent of the intrinsic geometry of the graphs. Weyl asymptotics for
eigenvalues of radial trees are given in Theorem 5.3. Theorem 5.4 treats the
case of general weakly spherically symmetric graphs. In Section 6, we state
and prove the Allegreto-Piepenbrik type theorem (Theorem 6.2). Section 7 is
devoted to Harnack inequalities for positive super-harmonic functions. The
construction of the discrete and continuous time Markov chain associated
to the Laplacian are made in Section 8. We also provide the probabilis-
tic representation of super-harmonic functions (see Theorems 8.3 and 8.5).
Section 9 is dedicated to the study of the class of weakly spherically sym-
metric graphs. In Section 10, using a coupling argument, we compare the
bottom of the spectrum and the essential spectrum of two given weighted
Laplacians. Section 11 deals with stochastic completeness. The construction
of the Friedrichs extension of the Laplacian is recalled in Appendix A and
Appendix B is devoted to the Super-Poincaré inequality.

2. Notation

2.1. The Laplacian on a graph

Let us consider a graph G := (V ,E ,m) where V denotes a countable
set of vertices of G , E a non-negative symmetric function onV ×V and m
a positive function on V . We say that two points x, y ∈V are neighbors if
E (x, y) = E (y, x) > 0. In this case we write x ∼ y. We assume that G is
locally finite in the sense that each point of V has only a finite number of
neighbors. For simplicity, we also assume that each connected component
of G is infinite.

Let Cc(V ) be the set of functions f :V → C with finite support and let
ℓ2(V ,m) be the set of functions f :V → C such that

‖f‖ℓ2(V ,m) :=
∑

x∈V

|f(x)|2m(x)

is finite. ℓ2(V ,m) is an Hilbert space with respect to the scalar product:

〈f, g〉m :=
∑

x∈V

f(x)g(x)m(x) for f, g ∈ ℓ2(V ,m).

For all f, g ∈ Cc(V ), we introduce the quadratic form

Q(f, g) :=
1

2

∑

x

∑

y

E (x, y)(f(x)− f(y)) (g(x)− g(y)) .

Note that Q is well-defined since the graph is locally finite. This quadratic
form is non-negative, i.e., Q(f, f) � 0 for all f ∈ Cc(V ) and closable. There
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is a unique self-adjoint operator ∆G such that

Q(f, f) = 〈f,∆G f〉m

for all f ∈ Cc(V ) and D(∆G
1/2) is the completion of Cc(V ) under the norm

‖ · ‖+Q(·, ·)1/2. We refer to Appendix A for its construction. We have:

∆G f(x) =
1

m(x)

∑

y∈V

E (x, y) (f(x)− f(y)) , for all f ∈ Cc(V ). (2.1)

We call this operator the Laplacian associated to the graph G . According
to the context, we will also denote it by ∆G ,m or ∆m. We mention that
∆G is the Friedrichs extension of ∆G |Cc(V ).

Note that ∆G |Cc(V ) is not necessarily essentially self-adjoint. We refer
to [16] for a review of this matter.

We write with the symbol ∆̃G the algebraic version of ∆G , i.e.,

∆̃G f(x) =
1

m(x)

∑

y∈V

E (x, y) (f(x)− f(y)) , for all f :V → C.

Recall that ∆̃ is well-defined since G is locally finite.

2.2. The Dirichlet Laplacian and Persson’s lemma

Let U be any subset of V . First, we define IntU := {x ∈U , y ∼ x ⇒
y ∈U } the interior ofU and ∂U := {x ∈U , ∃y ∈U c, y ∼ x} the boundary
of U .

We call G U :=(U ,E U ,m)

the induced graph on U where E U is defined

on U ×U by E U (x,y):=E (x,y),x,y∈U .

We denote by ∆U
G the associated Dirichlet Laplacian. It is defined as

follows: for f : U → C with finite support, we define f̃ : V → C by
f̃(x) = f(x), if x ∈U and f̃ = 0 otherwise, we set:

∆U
G f(x) := ∆G f̃(x), for all x ∈U .

Note that ∆U
G is a self-adjoint operator acting in ℓ2(U ). It is the Friedrichs

extension of ∆U
G |Cc(U ). Note also that ∆U

G and ∆G U define different op-
erators.
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The infimum of the essential spectrum of ∆G is classically described by
the Persson Lemma, e.g., [19, Proposition 18]. One reads:

inf σess(∆G ) = sup
K ⊂V finite

inf σ
(
∆G

K c
)

= sup
K ⊂V finite

inf
f∈Cc(V \K ),‖f‖=1

〈f,∆G f〉. (2.2)

Note that if ∆G is bounded from above we also have

supσess(∆G ) = inf
K ⊂V finite

supσ
(
∆G

K c
)

= inf
K ⊂V finite

sup
f∈Cc(V \K ),‖f‖=1

〈f,∆G f〉.

2.3. 1-dimensional decomposition, distance function and degrees

A 1-dimensional decomposition of the graph G := (V ,E ) is a family of
finite sets (Sn)n�0 which forms a partition of V , that is V = ⊔n�0Sn, and
such that for all x ∈ Sn, y ∈ Sm,

E (x, y) > 0 =⇒ |n−m| � 1.

Given such a 1-dimensional decomposition, we write |x| := n if x ∈ Sn. We
also write BN := ∪0�i�NSi. A function f : V → R is said to be radial if
f(x) depends only on |x|.

Typical examples of such a 1-dimensional decomposition are given by
level sets of the graph distance function to a finite set S0 that is

Sn := {x ∈V , dG (x, S0) = n}, (2.3)

where the graph distance function dG is defined by

dG (x, y) := min{n ∈ N, x ∼ x1 ∼ · · · ∼ xn = y, xi ∈V , i = 1, . . . , n}.
(2.4)

Note that for a general 1-dimensional decomposition, one has solely
dG (x, S0) � n, for x ∈ Sn. Given x ∈ Sn and k � −n, we shall denote
by

Sk,x := {y ∈ Sn+k, dG (x, y) = |k|}. (2.5)

We introduce the following unweighted degrees of x ∈ Sn:

η0(x) :=
∑

y∈Sn

E (x, y), η±(x) :=
∑

y∈Sn±1

E (x, y),
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with the convention that S−1 = ∅, i.e., η−(x) = 0 when x ∈ S0. The total
unweighted degree of x is defined by:

η(x) := η0(x) + η−(x) + η+(x) =
∑

y∈V

E (x, y).

We stress that contrary to η± and η0, η is independent of the choice of
1-dimensional decomposition. Moreover, η only depends on (V ,E ) and not
on the weight m.

We now divide by the weight and obtain new quantities of interest. We
call them the (weighted) degrees and denote them by:

dega(x) :=
ηa(x)

m(x)
, where a ∈ {0,−,+},

deg(x) :=
η(x)

m(x)
= deg−(x) + deg0(x) + deg+(x).

Again, note that deg is independent of the choice of a 1-dimensional de-
composition. When m(x) = η(x), we have deg(x) ≡ 1 and we also write
p+(x), p0(x), p−(x) for deg+(x), deg0(x), deg−(x), respectively.

In the same spirit, we also define:

deg(x, y) :=
E (x, y)

m(x)
.

We say that the graph G is simple when E : V ×V → {0, 1}. This
definition is independent of the choice of the weight m. In this case, when
m = 1, the operator ∆1 is usually called the combinatorial Laplacian on
the graph G whereas when m(x) = η(x), or equivalently when deg ≡ 1,
the operator ∆η is usually called the normalized Laplacian.

In the case of the combinatorial Laplacian ∆1 on a simple graph, one
has

deg±(x) = η±(x) = #{y, y ∼ x, |y| = |x| ± 1}

and

deg0(x) = η0(x) = #{y, y ∼ x, |y| = |x|}.

Given a function V :V → C, we denote by V (·) the operator of multi-

plication by V . It is elementary that D(deg1/2(·)) ⊂ D(∆
1/2
m ). Indeed, one
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has:

〈f,∆mf〉m =
1

2

∑

x∈V

∑

y∼x

E (x, y)|f(x)− f(y)|2

�
∑

x∈V

∑

y∼x

E (x, y)(|f(x)|2 + |f(y)|2) = 2〈f, deg(·)f〉m, (2.6)

for f ∈ Cc(V ). This inequality also gives a necessary condition for the ab-
sence of essential spectrum for ∆m (see [16, Corollary 2.3]). In [16, Proposi-
tion 4.5], we also prove that, in general, the constant 2 cannot be improved.
It is also easy to see that ∆m is bounded if and only if deg is (e.g. [16, 19, 21]).

2.4. Weakly spherically symmetric graphs

We introduce the class of weakly spherically symmetric graphs. Their
associated Laplacian will be studied deeply in Section 9 and 10.

Definition 2.1.— Let G := (V ,E ,m) be a weighted graph and let
(Sn)n�0 be a 1-dimensional decomposition on G . We say that G is weakly
spherically symmetric with respect to (Sn)n�0 if the quantities deg+(x) and
deg−(x) only depend on the quantity |x|.

It is easy to see that for a weakly spherically symmetric graph, the 1-
dimensional decomposition corresponds to the one obtained by taking the
level sets of the distance function to the set S0; that is we have

Sn = {x ∈V , dG (x, S0) = n}.
This due to the fact that for x ∈ Sn, obviously, one has deg−(x) > 0 thus
dG (y, Sn−1) = 1.

If S0 = {x0}, we also say that G = (V ,E ,m) is weakly spherically
symmetric around x0. The definition 2.1 is a slight generalization of the one
in [21] where the authors only consider the case of weakly spherically sym-
metric around a point x0. In [21], the author shows that weakly spherically
symmetric graphs with S0 = {x0} are exactly the graphs such that the heat
kernel associated to ∆m, pt(x0, ·), is a radial function.

The interest of our definition is that if G := (V ,E ,m) is weakly
spherically symmetric with respect to some 1-dimensional decomposition
(Sn)n�0 then so is the induced graph with vertex set V − Bn, n � 0. In
particular, in Proposition 9.2, we prove that with our definition, weakly
spherically symmetric graphs correspond exactly to the graphs such that
the radial part of the associated continuous time Markov chain is still a
continuous time Markov chain.
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2.5. Decomposition of the Laplacian and bipartite graphs

We fix a weighted graph G := (V ,E ,m) and (Sn)n∈N a 1-dimensional
decomposition of V . We decompose the Laplacian in the following way:

∆m = deg(·)−Am,bp −Am,sp, (2.7)

where

Am,bpf(x) :=
1

m(x)

∑

y,|y|
=|x|

E (x, y)f(y)

and

Am,spf(x) :=
1

m(x)

∑

y,|y|=|x|

E (x, y)f(y).

Here bp and sp stand for bi-partite and spherical, respectively.

Let U be unitary operator defined by Uf(x) := (−1)|x|f(x), then

U∆mU = deg(·) +Am,bp −Am,sp = 2deg(·)−∆m − 2Am,sp. (2.8)

Note if η0 ≡ 0 thus ∆m = deg(·)−Am,bp and

U∆mU = deg(·) +Am,bp = 2 deg(·)−∆m.

In particular, when m = η,

U∆ηU = 1 +Aη,bp = 2−∆η.

In this last case, this directly yields:

Proposition 2.2.— Let G := (V ,E ). Let W be any subset of V , then
the spectrum σ

(
∆W

η

)
is symmetric with respect to 1.

2.6. Upside-Down lemma

We adapt the Upside-Down-Lemma of [2] which was inspired from [13].

Lemma 2.3 (Upside-Down-Lemma).— Let G := (V ,E ,m) be a weighted
graph, q :V → R and U ⊂V . Assume there are a ∈ (0, 1), k � 0 such that
for all f ∈ Cc(U ),

(1− a)〈f, (deg + q)(·)f〉m − k‖f‖2m � 〈f,∆U
G f + q(·)f〉m,

then for all f ∈ Cc(U ), we also have

〈f,∆U
G f + q(·)f〉m � (1 + a)〈f, (deg + q)(·)f〉m + k‖f‖2m.
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Proof. — By a direct calculation we find for f ∈ Cc(U )

〈f, (2 deg(·)−∆U
G )f〉m

=
1

2

∑

x,y∈V ,x∼y

E (x, y)(2|f(x)|2 + 2|f(y)|2)− |f(x)− f(y)|2)

=
1

2

∑

x,y,x∼y

E (x, y)|f(x) + f(y)|2

�
1

2

∑

x,y,x∼y

E (x, y) ||f(x)| − |f(y)||2

= 〈|f |,∆U
G |f |〉m.

Using the assumption gives after reordering

〈f,∆U
G f〉m − 〈f, (2 deg + q)(·)f〉m � −〈|f |,∆U

G |f |〉m − 〈|f |, q(·)|f |〉m
� −(1− a)〈|f |, (deg + q)(·)|f |〉m + k〈|f |, |f |〉m
= −(1− a)〈f, (deg + q)(·)f〉m + k〈f, f〉m

which yields the assertion.

Combining the upside-down Lemma and the Persson criteria we derive
immediately the following proposition.

Proposition 2.4.— Let G := (V ,E ) be a graph. Assume that there
is a > 0 such that

inf σess(∆η) � 1− a
then

supσess(∆η) � 1 + a.

3. Hardy inequality and its links

with super-harmonic functions

In this paper, one major tool is the following Hardy inequality. The
terminology comes from [16]. The idea is to bound the Laplacian from below
by a potential and to reduce its analysis to it. This technique has already
be successfully used in [17] for some ground state related problem and in
[16] to obtain some Weyl asymptotic.

Proposition 3.1 (Hardy inequality).— Let W be a positive function
on V , then for all f ∈ Cc(V ),

Q(f, f) = 〈f,∆mf〉m � 〈f, ∆̃mW

W
f〉m. (3.1)
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Here we recall that ∆̃mW has to be understood in a algebraical sense
since W is generally not a ℓ2 function. We mention that there are other
techniques to bound the Laplacian from below by a potential and refer to
[8, 9, 24].

The inequality of Proposition 3.1 is well-known in the continuous setting.
It can be seen as an integrated version of Picone’s identity (see for example
[1]). It also appears in the work [6].

We point out that the formulation of (3.1) is equivalent to the one used
in [17, 16]. We shall present an alternative proof, which is closer to the one
of [6]. We shall only use the reversibility of the measure m.

Proof.. — Take f ∈ Cc(V ),

〈
f,

∆̃mW

W
f

〉

m

=
∑

x

∑

y

E (x, y)

(
|f |2(x)− W (y)

W (x)
|f |2(x)

)

=
∑

x

∑

y

E (x, y)

(
|f |2(x)− 1

2

(
W (y)

W (x)
|f |2(x) +

W (x)

W (y)
|f |2(y)

))
.

�
∑

x

∑

y

E (x, y)
(
|f |2(x)−ℜ

(
f(x)f(y)

))

=
1

2

∑

x

∑

y

E (x, y) |f(x)− f(y)|2 = Q(f, f).

This is the announced result.

The aim of this work is to investigate the links between some properties
of the spectrum of the Laplacian and the existence of some positive function
W which satisfies

∆̃mW

W
(x) � λ(x), (3.2)

for all x ∈ V and for some function λ which is non-negative away from a
compact. Clearly, given m,m′ : V → (0,+∞), a function W satisfies (3.2)
for m if and only if it satisfies (3.2) for m′ where:

∆̃m′W

W
(·) � ψ(·), with ψ(·) =

m(·)
m′(·)λ(·).

This simple fact enlightens about the flexibility of our method.

Note that in the literature, when λ is constant, these functions W are
sometimes called positive λ-super-harmonic functions. In a different field,
they are also called Lyapunov functions. We rely on the next definition.

– 575 –



Michel Bonnefont, Sylvain Golénia

Definition 3.2.— A positive function W is called a Lyapunov function
if there exist λ a positive function, b > 0, and a finite set Br0 such that for
all x ∈V ,

∆̃mW

W
(x) � λ(x)− b1Br0

(x). (3.3)

A positive function W is called a super-harmonic function if there exists
λ a non-negative function such that for all x ∈V ,

∆̃mW

W
(x) � λ(x). (3.4)

Remark 3.3. — Usually, for Lyapunov functions, the condition W � 1
is also required and they are used to control the return time in a compact
region (see [6]). Here we do the contrary and our Lyapunov functions control
how the process goes to infinity (see section 8). They are non-increasing in
our applications. Therefore, we shall not impose that W � 1.

Moreover, in some situations, we will have to consider family of super-
harmonic functions. We set:

Definition 3.4.— Given a graph G := (V ,E ), we call a sequence
(V n)n of finite and connected subsets of V exhaustive if V n ⊂V n+1, and
∪nV n =V .

Definition 3.5.— Set a graph G := (V ,E ,m). A family of positive
functions (Wn)n is called a family of super-harmonic functions relative to
an exhaustive sequence (V n)n if there exists a non-zero and non-negative
function λ :V → R

+ such that

∆G Wn(x) � λ(x)Wn(x), (3.5)

for all x ∈V n.

A direct link between super-harmonic functions and spectral properties
of the Laplacian is given by:

Theorem 3.6.— Let G := (V ,E ,m) be a weighted graph.

(a) Assume there exist λ � 0 and a function W : V → (0,+∞) such
that, for all x ∈V ,

∆G W (x) � λW (x).

Then
inf σ(∆G ) � λ.
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(b) Assume there exist two functions λ :V → R and W :V → (0,+∞)
such, that for all x ∈V ,

∆G W (x) � λ(x)W (x).

Then
inf σess(∆G ) � lim inf

|x|→+∞
λ(x).

Proof. — We do only the proof only for the bottom of the essential spectrum.
Let K be a finite set and let f ∈ Cc(V ) be a function on V whose support
is included in K c. By Hardy inequality (3.1), we get:

〈f,∆G f〉m � 〈f,
∆̃G W

W
f〉m �

(
inf

x∈K c
λ(x)

)
〈f, f〉m.

By the Persson Lemma (see (2.2)), we infer;

inf σess(∆G ) � sup
K ⊂V finite

(
inf

x∈K c
λ(x)

)
.

This last quantity is precisely lim inf |x|→+∞ λ(x) which ends the proof.

4. Super-harmonic functions, essential spectrum,

and minoration of eigenvalues

In this section, we precise Theorem 3.6 and construct Lyapunov and
super-harmonic functions for the Laplacian on some weighted graphs and
study the (essential) spectrum of the associated Laplacian. We compare our
approach with the ones obtained by isoperimetrical techniques and provide
some minoration of the eigenvalues which are below the essential spectrum.

4.1. A few words about the isoperimetrical approach

Given a function m :V → (0,∞) and U ⊆V , we define the isoperimetric
constant as follows:

αm(U) := inf
K,K⊆U⊂V

L(∂K)

m(K)
,

where L(∂K) := 〈1∂K ,∆m1∂K〉m = 〈1K ,∆m1K〉m.
Note that L(∂K) is independent of m. Trivially, one has that αm(U) �

inf σ(∆U
m). However, it is important to notice that this quantity is also useful

to estimate from below the Laplacian. One obtains in [20, Proposition 15]
(see also [10, 12, 18] and references therein), the following result.
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Proposition 4.1 (Keller-Lenz).— Given G := (V ,E ,m), then

inf σ
(
∆U

m

)
� dU

(
1−

√
1− αη(U)2

)
, (4.1)

where dU := infx∈U deg(x). Moreover, if DU := supx∈U deg(x) < +∞, we
obtain:

inf σ
(
∆U

m

)
�

(
DU −

√
D2

U − αm(U)2
)
.

It remains to estimate the isoperimetric constant. We adapt straightfor-
wardly the proof of [29, Theorem 4.2.2], where the author considered the
case w = η.

Proposition 4.2.— Take a graph G := (V ,E , w), w : V → (0,∞)
and U ⊂ V . Suppose that there are a 1-dimensional decomposition of G
and a > 0 such that

η+(x)− η−(x) � aw(x),

for all x ∈ U , then one obtains that αw(U) � a.

Proof. — Set r(x) := |x|. We have ∆wr(x) � −a for x ∈ U . By the Green
Formula and since r(x)− r(y) ∈ {0,±1} for x ∼ y, for any K ⊆ U , we have:

L(∂K) =
∑

x∈K,y∼x,y/∈K

E (x, y) �

∣∣∣∣∣∣

∑

x∈K,y∼x,y/∈K

E (x, y)(r(x)− r(y))

∣∣∣∣∣∣
= |〈1K ,∆wr〉w| � aw(K).

This yields the result.

4.2. Lower estimates of eigenvalues

In the continuous setting, it is possible from the Hardy inequality and
the Super-Poincaré Inequality (see the Appendix) to obtain some estimates
of the heat semigroup and then to obtain some eigenvalues comparison.
Here in this discrete setting, the situation is simpler since bounding from
below the Laplacian by a non-negative multiplication operator directly give
information on eigenvalues. In all this section we denote by

0 � λ1(∆m) � λ2(∆m) � · · · � λn(∆m) � · · · < inf σess(∆m)

the eigenvalues of ∆m which are located below the infimum of the essential
spectrum of ∆m. A priori this number of eigenvalues can be finite. We recall
some well-known results. We refer to [26, Chapter XIII.1] and [14] for more
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details and to [26, Chapter XIII.15] for more applications. We start with
the form-version of the standard variational characterization of the n-th
eigenvalue.

Theorem 4.3. — Let A be a non-negative self-adjoint operator with
form-domain Q (A). For all n � 1, we define:

µn(A) := sup
ϕ1,...,ϕn−1

inf
ψ∈[ϕ1,...,ϕn−1]⊥

〈ψ,Aψ〉,

where [ϕ1, . . . , ϕn−1]
⊥ = {ψ ∈ Q (A), so that ‖ψ‖ = 1 and 〈ψ,ϕi〉 = 0, with

i = 1, . . . , n− 1}. Note that ϕi are not required to be linearly independent.

We define also:

νn(A) := inf
En⊂Q (A),dimEn=n

sup
ψ∈En,‖ψ‖=1

〈ψ,Aψ〉.

Then, one has µn(A) = νn(A) and if µn(A) = νn(A) is (strictly) below
the essential spectrum of A, it is the n-th eigenvalue, counted with multi-
plicity, λn(A). Moreover, we have that:

dim Ran1[0,µn(A)](A) = n.

Otherwise, µn(A) = νn(A) is the infimum of the essential spectrum.
Moreover, µj(A) = νj(A) = µn(A) = νn(A), for all j � n and there are
at most n − 1 eigenvalues, counted with multiplicity, below the essential
spectrum. In that case,

dim Ran1[0,µn(A)+ε](A) = +∞, for all ε > 0.

This ensures the following useful criteria.

Proposition 4.4.— Let A,B be two self-adjoint operators, with form-
domains Q (A) and Q (B), respectively. Suppose that

Q (A) ⊃ Q (B) and 0 � 〈ψ,Aψ〉 � 〈ψ,Bψ〉,

for all ψ ∈ Q (B). Then one has inf σess(A) � inf σess(B) and

N λ(A) � N λ(B), for λ ∈ [0,∞) \ {inf σess(B)}, (4.2)

where N λ(A) := dim Ran1[0,λ](A).

In particular, if A and B have the same form-domain, then σess(A) = ∅
if and only if σess(B) = ∅ and λn(A) � λn(B), n � 1.
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Proof. — It is enough to notice that µn(A) � µn(B), for all n � 0. Theorem
4.3 permits us to conclude for the first part. Supposing now they have the
same form-domain, by the uniform boundedness principle, there are a, b > 0
such that:

〈ψ,Aψ〉 � a〈ψ,Bψ〉+ b‖ψ‖2 and 〈ψ,Bψ〉 � a〈ψ,Aψ〉+ b‖ψ‖2

for all ψ ∈ Q (A) = Q (B). By using the previous statement twice we get
the result.

We start with a direct application. We shall present examples in the
next section.

Corollary 4.5.— Let ψ be a non-decreasing non-negative radial func-
tion on V . Assume that

〈f,∆mf〉m � 〈f, ψf〉m,
for all f ∈ Cc(V ). Then,

inf σess(∆m) � lim
|x|→∞

ψ(x)

and when λ|Bn−1|+k(∆m) exists, we have:

λ|Bn−1|+k(∆m) � ψ(n), for k = 1, . . . , |Sn|. (4.3)

4.3. Upper estimates of eigenvalues

It is also possible to obtain some upper bounds for the eigenvalues.
Our method here is based on the following well-known Proposition, see
[33][Proposition 5.1] for example.

Proposition 4.6.— Let G := (V ,E ,m) be a graph and let ∆m be the

associated Laplacian. Let g1, . . . , gn ∈ D(∆
1/2
m ) be n orthonormal functions

(〈gi, gj〉m = δij)). Let λn(Mg) be the largest eigenvalue of the symmetric
matrix:

Mg := (〈gi,∆mgj〉m)1�i,j�n .

Then if λn(∆m) exists we have:

λn(∆m) � λn(Mg). (4.4)

In particular, for all non identically zero functions gi, i = 1, . . . , n such that

〈gi, gj〉m = 〈gi,∆mgj〉m = 0 for i �= j, (4.5)

λn(∆m) � max
i=1,...,n

〈gi,∆mgi〉m
〈gi, gi〉m

. (4.6)

Moreover if λn(Mg) < inf σess(∆m) then λn(∆m) exists.
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Proof. — This is a direct consequence of Theorem 4.3. One just has to note
that for En a subspace of dimension n of D(∆m) and (g1, . . . , gn) an or-
thonormal basis of En, one has: maxh∈En,‖h‖=1〈h,∆mh〉 = λn(Mg).

As a corollary, we obtain:

Corollary 4.7.—

(a) Let g1, . . . , gn ∈ D(∆
1/2
m ) be such that dG (supp gi, supp gj) � 2, for

i �= j and where supp denotes the support. Then if λn(∆m) exists we
have:

λn(∆m) � max
1=1,...,n

〈gi,∆mgi〉m
〈gi, gi〉m

.

(b) Let G i := (V i,E i,m), i = 1, . . . , n be n induced sub-graphs of G
such that for i �= j, dG (V i,V j) � 2, then if λn(∆G ,m) exists we
have:

λn(∆G ,m) � max
i=1,...,n

{
inf σ

(
∆

G i

G ,m

)}

where ∆
G i

G ,m denotes the Dirichlet Laplacian of G i in G .

4.4. The approach with super-harmonic functions

In this section we improve a result of [29] and prove that the weighted
Laplacian ∆m has empty essential spectrum for a certain class of graph and
give some estimation on the eigenvalues.

Theorem 4.8. — Take G := (V ,E ,m) and assume there is a 1-
dimensional decomposition and a constant c > 1 such that

l := lim inf
|x|→∞

(
deg+(x)− c deg−(x)

)
> 0 (4.7)

Set n0 := inf{n ∈ N, deg+(x) − c deg−(x) � 0 with |x| � n}. Then there
exists a super-harmonic function W such that

∆̃mW (x) � φcW (x), for all x ∈V , (4.8)

with

φc(x) :=
c− 1

c
(deg+(x)− c deg−(x))1Bc

n0
� 0. (4.9)

In particular, we obtain that σess(∆m) � l(c − 1)/c and σess(∆m) = ∅ if
l = ∞.
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Proof. — We construct a suitable Lyapunov function. Set W̃ (x) := c−|x|.
We have:

ψc(x) :=
∆̃mW̃ (x)

W̃ (x)
= deg+(x)

(
1− 1

c

)
+ deg−(x) (1− c) . (4.10)

Now since deg+(x)− c deg−(x) is positive outside a given ball Bn0 , W̃ is a
Lyapunov function, which satisfies

∆̃mW̃ (x) � φc(x)W̃ (x)− C1Bn0

with φc defined as in (4.9) and for some constant C.

Set now

W (x) =

{
c−n0 , if x ∈ Bn0

c−|x|, if x ∈ Bc
n0
,

(4.11)

then it satisfies (4.8). Finally, since φc(x) tends to l(c−1)/c when |x| → ∞,
Theorem 3.6 gives the statement about the essential spectrum.

Remark 4.9.— Note that condition (4.7) with l = +∞ is equivalent to
the following one: deg+(x) →∞ as |x| → ∞ and there exist a ball Bn0

and
a constant c′ > 0 such that for all x outside the ball Bn0 ,

deg+(x)− deg−(x)

deg−(x)
� c′ > 0.

Thus, when m = 1, this is better than the one of [29, Theorem 4.2.2] which
asserts: η+(x) → ∞ as |x| → ∞ and there exist a ball Bn0 and a constant
c > 0 such that for all x outside the ball Bn0 ,

η+(x)− η−(x)

η(x)
� c > 0.

His result follows for instance by Propositions 4.1, 4.2 and the Persson
Lemma (2.2).

An example where our criterion is satisfied and the one of Wojciechowski
is not satisfied is the following.

Example 4.10.— Let G := (V ,E , 1) be the simple graph with weight
m ≡ 1, whose set of vertices is

V := {(1, i1, i2, . . . , ik), k � 0, ij ∈ [[1, j]] for j ∈ [[1, k]]}
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and where E (x, y) := 1 if and only if x �= y and

{x, y} = {(1, i1, . . . , ik), (1, i1, . . . , ik, ik+1)}

or x = (1, i1, . . . , ik) and y = (1, i′1, . . . , i
′
k).

For x = (1, i1, . . . , ik) ∈V , k � 1, we have η+(x) = k+1, η−(x) = 1 and
η(x) = k + 2 + k!− 1.

S0

S1

S2

S3

S4

Figure 1. — Growing tree with complete graph on spheres

We provide an example of a weakly spherically symmetric graph. On a
weakly spherically symmetric graph, inf σess(∆1) does not depend on the
edges inside the spheres Sn (see Corollary 10.8). Therefore, it is a good
point that our criterion 4.7 does not depend on deg0.

Theorem 4.8 can also be useful to compute the asymptotics of eigenval-
ues. We improve partially the main result of [16] where one considered some
perturbation of weighted trees.

Theorem 4.11.— Take G := (V ,E ,m) and assume there is a 1-
dimensional decomposition such that

lim
|x|→∞

deg+(x) = ∞, and max(deg−(x), deg0(x)) = o(deg+(x)),

(4.12)

as |x| → ∞, then D(∆
1/2
m ) = D(deg1/2(·)), σess(∆m) = ∅, and

lim
n→∞

λn(∆m)

λn(deg(·)) = 1. (4.13)
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Proof. — We apply Theorem 4.8. Note first that l = ∞ for all c > 1. The
essential spectrum of ∆m is therefore empty. Using (4.9), (3.1) and (4.12)
we obtain that for all ε > 0 there are cε, c

′
ε > 0 such that:

〈f,∆mf〉 � (1− ε)〈f, deg(·)f〉m − cε‖f‖2m, (4.14)

for all f ∈ Cc(V ). Combined with (2.6), we get the equality of the form
domains. Using Lemma 2.3 we derive:

〈f,∆mf〉 � (1 + ε)〈f, deg(·)f〉m + cε‖f‖2m,

for all f ∈ Cc(V ). This yields:

1− ε � lim inf
n→∞

λn(∆m)

λn(deg(·)) � lim sup
n→∞

λn(∆m)

λn(deg(·)) � 1 + ε.

By letting ε go to zero we obtain the Weyl asymptotic (4.13) for ∆m.

Remark 4.12. — Inequalities (4.14) was studied in full detail in [2]. It
turns out that the graphs which satisfy (4.14) are exactly the so-called
almost sparse graphs (see the definition in [2]). Combining Proposition 4.2
and [2, Theorem 5.5] we can also reprove Theorem 4.11.

With the same method, we also obtain a result when the inner and outer
degrees are bounded.

Theorem 4.13.— Take G := (V ,E ,m) and assume there is a 1-
dimensional decomposition such that there exist n0 ∈ N and two constants
a and D with

deg+(x)− deg−(x) � a for all x ∈ Bc
n0

(4.15)

and
sup

x∈Bc
n0

deg+(x) + deg−(x) � D < +∞. (4.16)

Then there exists a positive function W such that

∆̃mW (x) � φcW (x), for all x ∈V ,

with

φc(x) :=
(
D −

√
D2 − a2

)
1Bc

n0
� 0.

In particular, inf σ
(
∆

Bc
n

m

)
� D −

√
D2 − a2, for all n � n0 and

inf σess(∆m) � D −
√
D2 − a2. (4.17)
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Proof. — Let W̃ (x) = c−|x| for some c > 1 which will be precised later. Take
ψc as in (4.10). For x ∈ Bc

n0
, conditions (4.15) and (4.16) imply that:

ψc(x) =
1

2

[(
c− 1

c

)
(deg+(x)−deg−(x))−

(
c+

1

c
−2

)
(deg+(x) + deg−(x))

]

�
1

2

[(
c− 1

c

)
a−

(
c+

1

c
− 2

)
D

]
=

1

2

[
2D − c(D − a)− 1

c
(D + a)

]

� D −
√
D2 − a2,

by taking c =
√

D+a
D−a . Then by choosing W as in (4.11), Theorem 3.6 ends

the proof.

An example where our criterion is satisfied and Proposition 4.1 does not
apply is the following:

Example 4.14.— Given d � 2, let G := (V ,E , 1) be the simple graph
given by the d-ary tree with the complete graph on each sphere and with
weight m ≡ 1, see Figure 2. The graph is constructed as follows. The set of
vertices is

V := {(1, i1, i2, . . . , ik), k � 1, ij ∈ [[1, d]] and j ∈ [[1, k]]}

and E (x, y) := 1 if and only if x �= y and

{x, y} = {(1, i1, . . . , ik), (1, i1, . . . , ik, ik+1)}

or

x = (1, i1, . . . , ik) and y = (1, i′1, . . . , i
′
k).

We have #Sk = dk, for k � 0. Moreover, for x = (i0, . . . , ik) ∈ V , k � 1,
we have deg+(x) = η+(x) = d, deg−(x) = η−(x) = 1, and deg(x) = η(x) =
#Sk + d. By Theorem 4.13, we get:

inf σ(∆1) � d+ 1− 2
√
d,

whereas the lower bound given by (4.1) is 0. Indeed, for U the complement of
a ball, by considering K = Sn for n large enough, one sees that αη(U) = 0.
Note also that the second part of Proposition 4.1 does not apply since
DU = ∞.
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S0

S1

S2

S3

Figure 2. — 3-ary tree with complete graphs on spheres

Actually, the result: inf σ(∆1) = d + 1 − 2
√
d was already known for

the above example. Since it is a weakly spherically symmetric graph, by
Corollary 6.7 in [21], the quantity inf σ(∆1) does not depend on the edges
inside the spheres Sn. Therefore one can reduce to the case of the ordinary
d-ary tree.

Remark 4.15.— In the case of the normalized Laplacian, m(x) = η(x) =∑
y E (x, y), that is deg ≡ 1, we bring some new light to [20, Corollary 16]

(which improves the original result of [12]) :

inf σess(∆η) � 1−
√

1− a2

For the d-ary tree, we also recover the sharp estimate:

inf σ(∆η) � 1− 2
√
d

d+ 1
.

4.5. Rapidly branching graphs

We now discuss the result of Fujiwara and Higushi (see [15, p 196]) con-
cerning rapidly branching graphs. In [15, Corollary 4] under the hypothesis
that σess(∆η) = {1}, the author proves the existence of an infinite sequence
of eigenvalues λi �= 1 that converges to 1. Fujiwara asks if there exist two se-
quences of eigenvalues that tends respectively to 1− and to 1+. The answer
is yes:

Proposition 4.16.— Let G := (V ,E ) be a graph such that σess(∆η) =
{1}. Then there exist two infinite sequences of eigenvalues (λ+n )n∈N and
(λ−n )n∈N such that λ+n > 1 and λ−n < 1 for all n ∈ N.

We refer to [15] for the question of 1 being an eigenvalue in the case of
a radial tree.
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Proof. — Given x0 ∼ y0 set gα = δx0 + αδy0 . We have

〈gα,∆ηgα〉
〈gα, gα〉η

= 1− sign(α)
E (x0, y0)√
η(x0)η(y0)

,

where α is chosen to be ±
√
η(x0)/η(y0). The result follows from Corollary

4.7 (applied to ±∆η).

Remark 4.17. — Note that σess(∆η) = {1} implies that that (λ+n )n∈N
and (λ−n )n∈N tend to 1 by definition of the essential spectrum. Moreover
our choice of test-functions and Corollary 4.7 also imply that:

lim
|x|→∞

inf
y∼x

η(x)η(y)

E 2(x, y)
= +∞,

where |x| is defined with respect to any choice of 1-dimensional decomposi-
tion. We point out that with the help of Corollary 4.18 it is easy to construct
a simple graph such that σess(∆η) = {1} and such that lim inf |x|→∞ η(x) <
+∞, see Figure 3.

S0

S1

S2

S3

Figure 3. — Graph with σess(∆η) = {1} and lim inf|x|→∞ η(x) < +∞

In the setting of simple graphs, the main result of [15] is the equivalence
between an isoperimetry at infinity and the fact that σess(∆η) = {1}. We
give a sufficient condition for the latter.

Corollary 4.18.— Take G := (V ,E ) be a graph and assume there
is a 1-dimensional decomposition such that :

p+(x) → 1, as |x| → ∞, (4.18)

then σess(∆η) = {1}.

Proof. — Let ε > 0. Since p+(x) → 1 as |x| → ∞, there exists a ball nε such
that for all n � nε,

p+(x)− p−(x) � 1− ε for x ∈ Bc
n.

– 587 –



Michel Bonnefont, Sylvain Golénia

Thus, by Theorem 4.13, we obtain inf σ
(
∆

Bc
n

η

)
� 1 −√

ε and Proposition

2.4 concludes.

5. Eigenvalues Comparison

5.1. The case of trees

We turn to the case of a tree T := (V ,E ). First we fix v ∈ V and
set S0 := {v} and Sn given by (2.3). Let x ∈ V , we denote by T ′

x the
induced tree in T whose set of vertices is V T ′

x
= ∪k�0Sk,x, see (2.5). This

corresponds to the sub-tree of T whose root is x. We also consider T x the
induced tree in T whose set of vertices isV T ′

x
= ∪k�−1Sk,x. We denote by

x the unique point in S−1,x, it is the father of x.

Let f ∈ Cc(V T x
) such that f(x) = 0, we can extend f in a function f̃

on the all tree T by setting f̃(y) = 0 for all y ∈V −V T x
and we have:

∆
T ′

x

T x,m
f(z) = ∆T ,mf̃(z) for z ∈V T ′

x
.

Corollary 4.7 yields:

Theorem 5.1.— Let T be a tree. Then, with the above notations:

λ#Sn
(∆m) � max

x∈Sn

inf σ
(
∆

T ′
x

T x,m

)
. (5.1)

We now turn to the case of radial simple trees (see the definition just be-
low). We give in this situation a quantitative way to estimate the eigenvalues
for the normalized and the combinatorial Laplacians.

A radial simple tree is a simple tree such that the function η depends only
on the distance | · |. By abuse of notation, we denote η(n) := η(x), x ∈ Sn.
If T is a radial tree, for all x which belongs in a same sphere Sn, all the
sub-trees T x (and T ′

x) are the same. We denote by T n one of them (and
T ′

n respectively).

If T is a radial simple tree, then (5.1) writes

λ#Sn
(∆m) � inf σ

(
∆

T ′
n

T n,m

)
. (5.2)

The next proposition gives an estimate of the bottom of the spectrum

of ∆
T ′

n

T n,m
.
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Proposition 5.2.— Let T := (V ,E ) be a radial simple tree. Let n � 1,
then with the above notation:

inf σ
(
∆

T ′
n

T n,η

)
� 1−

√
1− 1

η(n)

η(n+ 1)

and

inf σ
(
∆

T ′
n

T n,1

)
� max(η(n), η(n+ 1))


1−

√
1− 1

η(n)

η(n+ 1)


 .

Proof. — We treat first the case of the normalized Laplacian. Let x ∈ Sn.
Let g be the function on V T x

defined by g(x) := 1, g(y) := α for y ∈ S1,x,
and g(y) := 0 otherwise. Clearly,

inf σ
(
∆

T ′
x

T x,η

)
�
〈g,∆ηg〉η
〈g, g〉η

=
1 + (η(n)− 1)(1− α)2 + (η(n)− 1)(η(n+ 1)− 1)α2

η(n) + (η(n)− 1)η(n+ 1)α2

= 1− 2α(η(n)− 1)

η(n) + α2(η(n)− 1)η(n+ 1)

= 1−

√
1− 1

η(n)√
η(n+ 1)

,

where in the last line we have made the choice α =

√
η(n)√

(η(n)−1)η(n+1)
.

The same computation gives also

inf σ
(
∆

T ′
x

T x,1

)
�
〈g,∆1g〉1
〈g, g〉1

� max(η(n), η(n+ 1))
〈g,∆ηg〉η
〈g, g〉η

.

This ends the proof.

We now precise the result of Fujiwara and Higushi (see [15, p 196] and
Corollary 4.18) by estimating the eigenvalues for the normalized Laplacian
∆η. We also discuss the case of the combinatorial Laplacian.

Theorem 5.3.— Let T := (V ,E ) be a radial simple tree.

(a) Let m = η. Assume η(n) is non-decreasing and tends to +∞ as n
tends to ∞. Then

σess(∆η) = {1} and σ(∆η) = {1} ∪ {λi(∆η), 2− λi(∆η), i � 1},
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where (λi(∆η))i�1 is an infinite sequence of eigenvalues converging
to 1. Moreover, for ε > 0, and n � n(ε) we have:

1− 2

√
1

η(n)
� λ(#Bn−1+1)(∆η) � λ#Sn

(∆η) � 1− 1− ε√
η(n+ 1)

.

(b) Let m = 1. Assume that η(n)
(
1− 2

√
1

η(n)

)
is non-decreasing and

that η(n) tends to +∞ as n tends to ∞. Then,

σess(∆1) = ∅ and σ(∆1) = {λi(∆1), i � 1},

where λi(∆1) is an infinite sequence of eigenvalues which tends to
+∞. Moreover, one has:

η(n)

(
1− 2

√
1

η(n)

)
� λ(#Bn−1+1)(∆1) � η(n).

Proof. — We begin by the left inequality for the normalized Laplacian. Note
that by hypothesis, for all x ∈ Bc

n−1,

deg+(x)− deg−(x) �
η(n)− 2

η(n)
.

Therefore by Theorem 4.13 and by Corollary 4.5, if the corresponding eigen-
value exists:

λ(#Bn−1+1)(∆η) � 1−



√

1−
(
η(n)− 2

η(n)

)2

 = 1− 2

√
1− 1

η(n)√
η(n)

� 1− 2

√
1

η(n)
.

Since η tends to ∞, we have #Bn−1+1 � #Sn, for n large enough. Next the
right inequality for λ#Sn

(∆η), (if this eigenvalue exists) is a straightforward
application of Theorem 5.1 and Proposition 5.2. Finally, since the upper
estimate is strictly lower than 1, the min-max Theorem 4.3 ensures the
existence of a infinite number of eigenvalue under the essential spectrum.

We turn to ∆1. The left inequality is obtained by taking c =
√
η(n)− 1

in (4.10) since ψc can be written as

ψc(x) = η(n)−
(
c+

η(n)− 1

c

)
, x ∈ Sn.
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Corollaries 4.18 and 4.5 give the desired result for the essential spectrum.
Then we have:

λ(#Bn−1+1) � λ(#Sn) � η(n)

by taking Dirac test functions.

5.2. The case of general weakly spherically symmetric graphs

In this section, we investigate the case of general weakly spherically
symmetric graphs.

Proposition 5.4.—

(a) Let G := (V ,E ,m) be a weakly spherically symmetric graph with
m = η. Assume that p+(n)(1−p+(n)) is non-increasing. Then, if the
corresponding eigenvalues exist, we have:

λ(#Bn−1+1)(∆η) � 1− 2
√
p+(n)(1− p+(n))

and
λn(∆η) � 1−

√
p+(3n− 2)p−(3n− 2).

(b) Let G := (V ,E ,m) be a weakly spherically symmetric graph with

m = 1. Assume that both η(n) and η(n) − 2
√
η+(n)η−(n) are non-

decreasing. Then we have, if the corresponding eigenvalues exist:

λ(#Bn−1+1)(∆1) � η(n)− 2
√
η+(n)η−(n)

and
λn(∆1) � η(2n− 1).

Corollary 5.5.— Under the hypothesis of Proposition 5.4, if moreover
p+(n) → 1 as n → +∞, then σess(∆η) = {1} and the min-max Theorem
4.3 implies the existence of an infinite number of eigenvalues. Thus we have

σ(∆η) = {1} ∪ {λ−i , λ+i , i � 1}

where (λ−i )i�1 and (λ+i )i�1 are infinite sequences of eigenvalues converging

to 1 from below and from above respectively. Similarly, if η(n)−2
√
η+(n)η−(n)

→ +∞ as n → ∞, then σess(∆1) = ∅ and there is an infinite sequence of
eigenvalues tending to +∞.

Proof. — For the first inequality, note that by hypothesis, for all x ∈ Bc
n−1,

p+(x)− p−(x) � 2p+(n)− 1.
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By Theorem 4.13 and by Corollary 4.5,

λ(#Bn−1+1)(∆η) � 1−
√

1− (2p+(n)− 1)
2

= 1− 2
√
p+(n)(1− p+(n)).

For the right inequality, let gn be the function defined onV by gn(x) = 1 if
x ∈ Sn, gn(x) = αn if x ∈ Sn+1 and gn(x) = 0 otherwise, where αn will be
chosen later. Since for |i− j| � 3, dG (supp gi, supp gj) � 2, then

λn(∆η) � max
i∈{1,4,...,3n−2}

〈gi,∆ηgi〉η
〈gi, gi〉η

.

Now a computation gives

〈gn,∆ηgn〉η
〈gn, gn〉η

=
η−(Sn)12 + η+(Sn)(1− αn)2 + η+(Sn+1)α

2
n

η(Sn) + α2
nη(Sn+1)

�
η(Sn) + α2

nη(Sn+1)− 2αnη+(Sn)

η(Sn) + α2
nη(Sn+1)

= 1− 2αnη+(Sn)

η(Sn) + α2
nη(Sn+1)

= 1− η+(Sn)√
η(Sn)η(Sn+1)

= 1−
√
η+(Sn)

η(Sn)

η−(Sn+1)

η(Sn+1)

= 1−
√
p+(n)p−(n),

with the choice αn =
√

η(Sn)
η(Sn+1)

and since η+(Sn) = η−(Sn+1). For the

Laplacian ∆1, as before, we obtain

λ(#Bn−1+1)(∆1) � η(n)− 2
√
η+(n)(η(n)− η+(n)).

For the right inequality, let gn be the function defined onV by gn(x) = 1 if
x ∈ Sn and gn(x) = 0 otherwise. Since for |i−j| � 2, dG (supp gi, supp gj) �
2, then

λn(∆1) � max
i∈{1,3,...,2n−1}

〈gi,∆1gi〉1
〈gi, gi〉1

�
η+(S2n−1) + η−(S2n−1)

|S2n−1|
� η(2n− 1).

This ends the proof.
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5.3. The case of antitrees

A simple graph G is an antitree if there exists a 1-dimensional de-
composition (Sn)n�0 of V such that η+(x) = #Sn+1, η−(x) = #Sn−1 and
η0(x) = 0 for all x ∈ Sn, n � 0. Antitrees are bipartite graphs. The spectral
decomposition of the Laplacian on antitrees is made in [4]. It is shown that
the spectrum of ∆η is the union of {1} and the spectrum of a Jacobi matrix.

This comes from the fact that if f is orthogonal to radial functions then
Amf = 0 and then ∆mf = deg(·)f . Therefore for ∆η, 1 is an eigenvalue
with infinite multiplicity. The Jacobi matrix corresponds to the action of
the Laplacian on radial functions. The upper estimate for the eigenvalues in
Proposition 5.4 is in fact an estimate for the eigenvalues associated to this
radial part of the Laplacian. Therefore, in general, the upper estimate for
the eigenvalues of ∆m in Proposition 5.4 is reasonable.

6. An Allegretto-Piepenbrink type theorem

for the essential spectrum

In this section, we prove a reverse part of Theorem 3.6. The result for the
bottom of the spectrum is well-known and is sometimes called an Allegretto-
Piepenbrink type theorem (see Theorem 3.1 in [17]). As far as we know, the
result for the bottom of the essential spectrum is new.

First, we recall Theorem 3.1 in [17].

Theorem 6.1.— Let G := (V ,E ,m) be a weighted graph. Let λ0 :=
inf σ(∆m) and λ � λ0. Then there exists a positive function W on V such
that

∆̃mW (x) � λW (x).

We turn now to the case of the essential spectrum.

Theorem 6.2.— Let G := (V ,E ,m) be a weighted graph. Let λ0ess :=
inf σess(∆m). Then we have:

(a) For all ε > 0, there exist N1 := N1(ε) � 1, C := C(ε) > 0, and a
positive function W on V such that

∆̃mW (x) �
(
λ0ess − ε

)
W (x)− C1BN1

(x).

(b) If moreover:

inf{m(x), x ∈V } > 0, (6.1)
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or if G is a weakly spherically symmetric graph such that m(G ) =
+∞; then for all ε > 0, there exist N2 := N2(ε) � 1 and a positive
function W on V such that

∆̃mW (x) �
(
λ0ess − ε

)
1Bc

N2
(x)W (x).

Remark 6.3.— The condition inf{m(x), x ∈V } > 0 is equivalent to the
inclusion ℓ2(V ,m) ⊂ ℓ∞(V ,m).

Proof. — Since λ0ess := inf σess(∆m), by Persson lemma, there exists K � 1

such that the infimum of the spectrum of the Dirichlet operator ∆
Bc

K
m is

larger than λ0ess − ε.

The operator
(
∆

Bc
K

m − (λ0ess − ε)
)−1

is thus well defined on Bc
K . More-

over this operator is positive improving. The positivity improveness is proven

in [20] [Corollary 2.9] for the operator
(
∆

Bc
K

m − α
)−1

only for α < 0 but

actually by general principles it holds for all α < inf σ
(
∆

Bc
K

m

)
(see [26]

[Chapter XIII.12] p 204 and [27]).

Let ψ be a non-negative (non trivial) function in Cc(Bc
K) and consider φ

the function defined on Bc
K by φ :=

(
∆

Bc
K

m − (λ0ess − ε)
)−1

ψ. By positivity

improveness, φ > 0 and φ satisfies ∆
Bc

K
m φ(x) � (λ0ess − ε)φ(x) for x ∈ Bc

K .
Considering W to be any (positive) extension of the function φ on the all
set V gives the first point.

Now, assume that inf{m(x), x ∈ V } > 0. Since φ ∈ ℓ2(Bc
K ,m), this

implies that φ(x) → 0 when |x| → ∞. Let ε′ = 1
2 min{φ(x), x ∈ SK+1},

then the set Aε′ = BK ∪ {x ∈ Bc
K , φ(x) > ε′} is finite.

Recall that δ(Ac
ε′) is the set of points x in Ac

ε′ who have a neighbor which
belongs to Aε′ . Let u be the harmonic function in Aε′ ∪ δ(Ac

ε′) such that

{
∆mu = 0 on Aε′

u = φ on δ(Ac
ε′)

Define then the function W on V as:
{
W (x) = u(x) on Aε′

W (x) = φ(x) on Ac
ε′

Clearly, ∆mW (x) = 0 for x ∈ Aε′ and ∆mW (x) � (λ0ess − ε)W (x) for
x ∈ Int (Ac

ε′). It remains to look at the points x in δ(Ac
ε′). Let x ∈ δ(Ac

ε′).
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For y ∈ Ac
ε′ , we have W (y) = φ(y) and for y ∈ δAε′ , since δAε′ ⊂ Bc

K ∩
Aε′ = {x ∈ Bc

K , φ(x) > ε′}, by a maximum principle for harmonic functions
W (y) = u(y) � ε′ � φ(y), therefore

∆̃mW (x) � ∆̃mφ(x) = ∆̃
Bc

K
m φ(x) � (λ0ess − ε)φ(x) = (λ0ess − ε)W (x).

Now we turn to the case of weakly spherically symmetric graphs. We
use here some properties that will be established in Section 9. We repeat

the same construction as before and set φN =
(
∆

Bc
K

m − (λ0ess − ε)
)−1

ψN

with ψN a radial non-negative and non trivial function in Bc
K with finite

support. Since the Laplacian ∆
Bc

K
m preserves radial functions, φN is also a

radial function. By abuse of notation we write φN(n) := φN(x), x ∈ Sn. As
before, φN is a positive function and belongs to ℓ2(Bc

K ,m) and we have

‖φN‖2ℓ2(Bc
K
,m) =

∑

n�0

m(Sn)φN(n)2.

Since m(G ) =
∑

n�0m(Sn) = +∞, φN can not be non-decreasing. There-

fore there exists n0 � K + 1, such that φN(n0 + 1) � φN(n0). We can now
perform the cut and paste procedure by taking W to be the function on V
defined by

{
W (x) = φN(n0) if |x| � n0
W (x) = φN(n) if |x| = n with n � n0 + 1.

Clearly, W is the desired super-harmonic function.

Remark 6.4. — Note that, in the above proof, since φN can not have
any local minimum, if we have φN(n + 1) � φN(n) for some n, then φN is
non-increasing on [[n,+∞).

7. Harnack inequality and limiting procedures

In this section, we recall how to obtain a super-solution on the entire
set of verticesV given a sequence of super-solution defined on a exhaustive
sequence of finite sets. We recall that the graph is supposed to be connected.
The results of this section are taken from [17]. The only difference is that,
here, we consider a non-negative function λ in place of a constant. The
proofs adapt straightforwardly and will not be presented.

First we begin by the Harnack inequality for non-negative super-solutions.
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Theorem 7.1.— Let W ⊂V be a finite and connected set. Let λ :V →
R be a non-negative function. There exists a constant CW such that for all
non-negative function W :V → [0,+∞) satisfying (∆− λ(x))W (x) � 0 for
all x ∈ W , we have

max
x∈W

W (x) � CW min
x∈W

W (x).

As Corollary we obtain:

Corollary 7.2.— Let W ⊂ V be a connected set. Let x0 ∈ V and
let λ : V → R be a non-negative function. For all x ∈ W , there exists a
constant Cx := Cx(x0,W ) such that for all non-negative W : W → [0,+∞)
satisfying W (x0) = 1 and (∆− λ(x))W (x) � 0 for all x ∈ W , we have

C−1
x �W (x) � Cx.

Remark 7.3.— Obviously, the last corollary can be used with W =V .

We now turn to the main result of this section.

Theorem 7.4.— Let x0 ∈ V and let λ : V → R be a non-negative
function. Let (W n)n be an exhausting sequence of V . Assume that there
exists a sequence of non-negative functions Wn : W n → [0,+∞) satisfying
Wn(x0) = 1 and (∆n−λ(x))Wn(x) � 0 (respectively (∆n−λ(x))Wn(x) = 0)
for all x ∈ W n. Then there exists a positive function W : V → (0,+∞)
such that (∆n − λ(x))W (x) � 0 (respectively (∆n − λ(x))W (x) = 0) for all
x ∈V .

8. Probabilistic representation

of positive super-harmonic functions

In the classical situation of Poincaré inequality, there is a strong link be-
tween the linear Lyapunov functions and the hitting times of some compact
sets for a stochastic process, see [7]. Here we develop an analogy of these
results. In all this section, (W n)n�0 will denote an exhaustive sequence of
V , see Definition 3.4.

8.1. Discrete and continuous time Markov chains

In this section, we present the Markov processes whose generator is given
by (minus) the Laplacian on the graph. In the case of a general weighted
Laplacian, we can associate a continuous time Markov chain. In the case of
the normalized Laplacian, we can associate both a continuous time and a
discrete time Markov chain. More details about the construction and the
properties of these Markov process can be found in the monograph [25].
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8.1.1. The discrete time Markov chain associated to ∆η

We begin by the simplest case of the normalized Laplacian. Consider the
Markov chain (Xx0

k )k�1 starting in x0 on the graph whose transition prob-
abilities are given by

p(x, y) :=
E (x, y)

η(x)
,

for all x, y ∈V . Then, set Pf(x) =
∑

y p(x, y)f(y) for all f ∈ ℓ∞(V ). For
k � 0 and x ∈V , one has

P kf(x) = E [f(Xx
k )] .

The generator of the above discrete time Markov chain random walk is given
by P − Id and then equals −∆η; that is for f ∈ ℓ∞(V ),

E [f(Xx
1 )]− f(x) = −∆ηf(x), x ∈V .

The measure η satisfies η(x)p(x, y) = η(y)p(y, x) for x, y ∈V . It is symmet-
ric (and hence invariant) for the Markov chain.

8.1.2. The continuous time Markov chain associated to ∆m

Now we turn to the general case. With the above notation, the Laplacian
−∆m can be written as

∆mf(x) = deg(x)
∑

y

p(x, y)(f(x)− f(y)).

We construct here the minimal right continuous Markov chain (Xt)t�0
associated to −∆m. It corresponds to the process killed at infinity. We
denote by e(X) its explosion time (recall that X depends on the choice of
the initial law). We recall two useful constructions of the continuous time
Markov chain when the initial law is δx0 . We denote it by (Xx0

t )t�0.

First we can construct (Xx0
t )t�0 as follows: At time t = 0, Xx0

0 = x0. It
stays in x0 during an exponential random time of parameter deg(x0) and
then jumps in a point y chosen with probability p(x0, y). We then iterate
this procedure.

Another useful equivalent construction of the process (Xx0
t )t�0 is the

following. At time t = 0, Xx0
0 := x0. For each, neighbor y of x0, we let Ey be

an independent exponential random clock variable of parameter deg(x0, y).
Consider T := min{Ey, y ∼ x0}. Let z be the neighbor of x0 such that
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Ez = min{Ey, y ∼ x0}, z is unique almost surely. We set Xt := x0 for
0 � t < T , XT := z and repeat this construction.

Using the memorylessness property of the exponential distribution and
Lemma 8.1 below, it is easy to see that both constructions are equivalent
and that (Xx

t )t�0 is a Markov process. Moreover, the jump chain associated
to (Xx

t )t�0 is the discrete time Markov chain of generator −∆η.

Lemma 8.1.— Let (Ei)1�i�n be n independent exponential random vari-
ables of parameter ci > 0, then the variable min{Ei, 1 � i � n} is also an
exponential random variable of parameter c1 + · · · + cn. Moreover, for all
1 � r � n we have:

P (min{Ei, 1 � i � n} = Er) =
cr

c1 + · · ·+ cn
.

The next lemma concerns also the memorylessness property of the ex-
ponential distribution. It will be useful to add some “artificial jumps” in
the construction of the process (Xt)t�0.

Lemma 8.2.— Let n � 1 and c1, . . . , cn > 0. Let (Ei,j)i�1,1�j�n be
independent exponential random variables such that the parameter of Ei,j

is cj. Let (Ai)i�1 be independent random variables such that almost surely

Ai > 0 and

∞∑

i=1

Ai = +∞ (8.1)

Let k be defined by

k := inf{i � 1,min(Ei,1, . . . , Ei,n, Ai) �= Ai}

Then k is finite almost surely and the random variable B := A1+· · ·+Ak−1+
min(Ek,1, . . . , Ek,n) is also an exponential random variable of parameter
c := c1 + · · ·+ cn. Moreover for all 1 � r � n, we have:

P (min(Ek,1, . . . , Ek,n) = Ek,r) = P (min(E1,1, . . . , E1,n) = E1,r)

=
cr

c1 + · · ·+ cn
.

The Lemma 8.2 allows us to add some “artificial jumps” in the con-
struction of the Markov process (Xt)t�0. Indeed, it implies that we can also
construct (Xt) as follows: If at time t, Xt = x, then as before for each
neighbor y of x, we let Ey be an independent exponential random clock
variable of parameter deg(x, y). We let also Ex be another independent
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exponential random clock variable. Let deg(x, x) be its parameter. Con-
sider T̃ := min{Ey, y ∼ x or y = x}. Let z be the unique vertex such that

Ez = min{Ey, y ∼ x or y = x}. We set Xs := x for t � s < t+ T̃ , XT̃ := z
and repeat this construction. Moreover at each step, the choice of the pa-
rameter deg(x, x) can change (with the restriction that it has to satisfy
condition (8.1)). The only difference with the previous construction is that
T̃ does not really correspond anymore to a physical jump of the process.

This modification of the construction will be useful in the coupling ar-
guments of section 10.

In the above constructions, the sequence of the (random) times of the
jumps of the Markov process X is increasing, thus has a limit in (0,∞].
This limit is called the explosion time of Markov process X and is denoted
by e(X).

We can now associate a continuous time semigroup Pt for f ∈ ℓ∞(V ) by

Ptf(x) := E
[
f(Xx

t )1{t<e(Xx)}

]
, t � 0.

For t small, using exponential distributions, it is easy and well-known to
compute explicitly the first order expansion of law of Xx

t . One gets

P(Xx
t = x) = 1− deg(x)t+ o(t)

P(Xx
t = y) = deg(x)p(x, y)t+ o(t), for y �= x.

In particular for f ∈ ℓ∞(V ), the following pointwise convergences hold:

lim
t→0+

Ptf(x) = f(x)

and

lim
t→0+

Ptf(x)− f(x)

t
= −∆̃G ,mf(x).

Actually, in the sequel, we only need to consider the above Markov pro-
cess stopped outside a finite set. Let B be a finite subset of V and let

TBc := inf{t � 0, Xt ∈ Bc}

the hitting time of the set Bc for the continuous time Markov chain (Xt)t�0.
Clearly, since each connected component of G is infinite and B is finite,
by classical result on transience, TBc is almost surely finite. Moreover, we
also have TBc < e(X). We can now define a new continuous time semigroup
PDB

t for f :V → R by

PDB

t f(x) := E
[
f(Xx

t∧TBc )
]
, t � 0, x ∈V .
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A computation similar to the above shows that for f :V → R and x ∈V ,
pointwise,

lim
t→0+

PDB

t f(x)− f(x)

t
=

{
−∆̃G ,mf(x) if x ∈ B

0 if x ∈ Bc.

It is not symmetric on Cc(V ). Indeed its generator can be written as −ΠB∆
where ΠB is the projection defined by ΠBf(x) := f(x)1B(x), for all f :V →
R.

For f ∈ ℓ∞(V ) we could also define the semigroup:

P
D′

B

t f(x) := E
[
f(Xx

t )1{t<TBc}

]
, t � 0.

It corresponds to the usual Dirichlet semigroup. As before, one can compute
that its generator is: −ΠB∆ΠB . More precisely, for all f :V → R, pointwise,
one has:

lim
t→0+

P
D′

B

t f(x)− f(x)

t
= −ΠB∆ΠBf(x).

8.2. The normalized Laplacian in the discrete time setting

For simplicity, we begin with the case of the normalized Laplacian ∆η.
Actually, Theorem 8.3 below can also be seen as a corollary of the general
Theorem 8.5. A direct proof is included for the reader more familiar with
Markov chains than continuous time Markov chains.

Theorem 8.3.— Let λ :V → [0, 1) and let Λ(x) := 1
1−λ(x) . The follow-

ing assertions are equivalent:

(i) There exists a positive function W onV such that ∆̃ηW (x) = λ(x)W (x)
for all x ∈V .

(ii) There exists a positive function W onV such that ∆̃ηW (x) � λ(x)W (x)
for all x ∈V .

(iii) For all N � 1, there exists a positive functions WN on V such that
∆̃ηWN (x) � λ(x)WN (x) for x ∈ W N .

(iv) For all N � 1 and all x ∈V , we have

E

[
TN−1∏

k=0

Λ(Xx
k )

]
< +∞, (8.2)

where TN := T x
N := inf{n � 0, Xx

n ∈ W c
N} is the hitting time of the

set W c
N for Xx

n the Markov chain on G starting in x and whose
generator is −∆η.
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When the function λ is constant, one has Λ := 1
1−λ and the function in

(4.) reads also Ex[Λ
TN ] := E[ΛTx

N ].

Remark 8.4.— In this situation, one can not have λ(x) � 1 for some x
since for all positive function W and all x ∈V ,

∆̃ηW (x) =
∑

y

p(x, y)(W (x)−W (y)) <
∑

y

p(x, y)W (x) = W (x).

Proof. — Clearly, (1.) implies (2.). The equivalence between (2.) and (3.) is
given by Theorem 7.4. We now show that (3.) implies (4.). Set

An :=

n−1∏

k=0

Λ(Xx
k ), for n � 1

and A0 := 1. Let N � 1, x ∈ W N and n � 0, we have

Ex [An∧TN
] �

1

min{WN (x), x ∈ W N ∪ δW N
Ex

[
An∧TN

WN (Xx
n∧TN

)
]
.

(8.3)

Using the Abel transform
unvn = u0v0 +

∑n−1
k=0 ((uk+1 − uk)vk+1 + uk(vk+1 − vk)), we get

Ex

[
An∧TN

WN (Xx
n∧TN

)
]

=WN (x) +

(n∧TN )−1∑

k=0

Ex

[
Ak+1

(
WN (Xx

k+1)−WN (Xx
k )

)]

+

(n∧TN )−1∑

k=0

Ex [(Ak+1 −Ak)WN (Xx
k )] .

The event Ak+1 is measurable with respect to the σ-algebra σ(Xx
1 , . . . , X

x
k ),

thus

Ex

[
Ak+1

(
WN (Xx

k+1)−WN (Xx
k )

)]
=

= Ex

[
Ak+1E

[
WN (Xx

k+1)−WN (Xx
k )|σ(Xx

1 , . . . , X
x
k )

]]

= −Ex

[
Ak+1∆̃ηWN (Xx

k )
]
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and therefore

Ex

[
An∧TN

WN (Xx
n∧TN

)
]

= WN (x) +

(n∧TN )−1∑

k=0

Ex

[
−Ak+1∆̃ηWN (Xx

k )
]

+

(n∧TN )−1∑

k=0

Ex

[
Ak+1

(
1− 1

Λ(Xx
k )

)
WN (Xx

k )

]

�WN (x),

where we have used ∆̃ηWN (x) � λ(x)WN (x) =
(
1− 1

Λ(x)

)
WN (x) for x ∈

W N . Finally, since TN is almost surely finite and recalling (8.3), by letting
n→∞ we obtain (4.).

We turn to (4.) implies (1.). Set UN (x) := Ex[ATN
] for N � 1. By

hypothesis, it is finite for all N and all x ∈ V . Let x ∈ W N , by Markov
property, we have

UN (x) =
∑

y,y∼x

p(x, y)Λ(x)Ey[ATy

N
] = Λ(x)

∑

y,y∼x

p(x, y)UN (y),

thus

∆ηUN (x) = UN (x)−
∑

y,y∼x

p(x, y)UN (y)

=

(
1− 1

Λ(x)

)
UN (x) = λ(x)UN (x).

Theorem 7.4 ends the proof.

8.3. The general case: the continuous time setting

In the case of a general weight m, we obtain the analogous of Theorem
8.3 for the continuous time Markov process associated to ∆m.

Theorem 8.5.— Let λ a non-negative function on V . The following
assertions are equivalent.

(i) There exists a positive function W such that: ∆̃mW (x) = λ(x)W (x)
for all x ∈V .

(ii) There exists a positive function W such that: ∆̃mW (x) � λ(x)W (x)
for all x ∈V .

(iii) For all N � 1, there exists a positive function WN on V such that:
∆̃mWN (x) � λ(x)WN (x) for x ∈ W N .
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(iv) For all N � 1 and all x ∈V , the positive function

UN (x) := E

[
exp

(∫ TN

0

λ(Xx
s )ds

)]
(8.4)

is finite where TN := inf{t � 0, Xx
t ∈ W c

N} is the hitting time of the
set W c

N for the continuous time Markov chain (Xx
t )t�0 starting in x

and whose generator is −∆m.

Proof. — We focus on the implications: (iii) implies (iv) and (iv) implies (i).
We start with (iii) implies (iv). Let

At(x) := E

[
exp

(∫ t

0

λ(Xx
s )ds

)]
.

We have:

At∧TN
(x) �

1

min{WN (z), z ∈ W N ∪ δW N}
E

[
exp

(∫ t∧TN

0

λ(Xx
s )ds

)
WN (Xx

t∧TN
)

]
.

By the Dynkin formula we get:

E

[
exp

(∫ t∧TN

0

λ(Xx
s )ds

)
WN (Xx

t∧TN
)

]

=WN (x) + E

[∫ t∧TN

0

exp

(∫ u

0

λ(Xx
v )dv

)(
λ(Xx

u)WN (Xx
u)− ∆̃mWN (Xx

u)
)
du

]

�WN (x) < +∞

since by hypothesis ∆̃mW (Xx
u)− λ(Xx

u)W (Xx
u) � 0. As TN is finite almost

surely, letting t→∞ gives (4.).

Finally we assume (4.). Using the strong Markov property, one has, for
x ∈ W N and 0 < h � 1,

P
DW N

h UN (x) = E

[
UN

(
Xx

h∧Tx
N

)]

= E


exp



∫ T

Xx
h

N

0

λ
(
X

Xx
h

s

)
ds


1{h<Tx

N
} + 1{h�Tx

N
}




= E

[
exp

(∫ Tx
N

h∧Tx
N

λ (Xx
u) du

)]
.
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Therefore, by dominated convergence theorem, since λ is bounded on W N ,

P
DW N

h UN (x)− UN (x)

h

= E


exp

(∫ Tx
N

0

λ (Xx
u) du

)


exp
(
−

∫ h∧Tx
N

0
λ (Xx

u) du
)
− 1

h






→ −λ(x)UN (x), as h→ 0+.

But the above limit was already compute to be −∆̃mUN (x); thus

∆̃mUN (x) = λ(x)UN (x), for x ∈ W N .

Theorem 7.4 implies (1.).

Remark 8.6.— For the normalized Laplacian ∆η, both quantities (8.2)
and (8.4) coincide. Indeed, with the above notation, if Z is an exponential
random variable of parameter 1 and if 0 � λ < 1, then

E [exp(λZ)] =
1

1− λ.

9. Weakly spherically symmetric graphs

In this section, we assume that the graph G is weakly spherically sym-
metric with respect to a 1-dimensional decomposition (Sn)n∈N, see Defi-
nition 2.1. We prove that the bottom of the spectrum and the bottom of
the essential spectrum are the same as that of a 1-dimensional Laplacian.
The key point behind this result is that on a weakly spherically symmetric
graph, the radial part of the Markov process associated to the Laplacian on
G is still a Markov process. We finally construct more explicitly the global
super-solution of Theorem 7.4.

First in the next lemma, we collect some useful known results for weakly
spherically symmetric graphs.

Lemma 9.1.— Let G be a weakly spherically symmetric graph with re-
spect to a 1-dimensional decomposition (Sn)n∈N and let λ a be radial func-
tion on V . The following assertions hold.

(a) For n � 0,

m(Sn)deg+(n) = m(Sn+1)deg−(n+ 1),

where dega(n) := dega(x), where x ∈ Sn and a ∈ {−, 0,+}.
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(b) Given f :V → C we define M̃ to be the averaging operator by:

M̃f(x) :=
1

m(Sn)

∑

x̃∈Sn

f(x̃)m(x̃), x ∈ Sn.

We have the following algebraic commutation

∆̃G M̃f = M̃∆̃G f.

(c) If there exists a positive function W which satisfies

∆̃G W (x) = λ(x)W (x), for all x ∈V , (9.1)

then there also exists a positive radial function which satisfies (9.1).

(d) Assuming that deg+(n) �= 0 for all n ∈ N, then the vector space
of radial functions W which satisfy the algebraic relations (9.1) is a
1-dimensional vector space.

(e) Moreover, if W is a radial function which satisfies (9.1) and if both
λ and W are non-negative on V , then W is a non-increasing radial
function.

Proof. — The point a) is a direct consequence of the relation:

∑

x∈Sn

m(x)deg+(x) =
∑

x∈Sn

∑

y∈Sn+1

E (x, y)

=
∑

y∈Sn+1

∑

x∈Sn

E (y, x) =
∑

y∈Sn+1

m(y)deg−(y)

and the definition of weakly spherically graphs. b) and c) were already
proven in Lemma 3.2 in [21] and Lemma 3.2.1 in [29], respectively. Let now
W be a radial function; W satisfies (9.1) if and only it satisfies

{
deg+(0)W (1) = (deg+(0)− λ(0))W (0)
deg+(n)W (n+ 1) = (deg+(n) + deg−(n)− λ(n))W (n)− deg−(n)W (n− 1)

for n � 1. Thus W is determined by its value in 0. This gives d). If moreover
W and λ are non-negative, one has that W (1) �W (0) and writing

deg+(n)(W (n+ 1)−W (n)) = deg−(n)(W (n)−W (n− 1)− λ(n))W (n)

for n � 1, by immediate induction, e) holds.

We now study the radial part of the Markov process associated to a
weakly spherically symmetric graph.
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Proposition 9.2.— Let G := (V ,E ,m) be a weighted graph and let
(Sn)n�0 be a 1-dimensional decomposition of G . Let (Xt)t�0 be the minimal
continuous time Markov chain on V associated to −∆G (see section 8.1).
Then the graph G is weakly spherically symmetric with respect to (Sn)n�0
if and only if the process (|Xt|)t�0 is a continuous time Markov chain on N.

Moreover in this case, the generator LN of the Markov process (|Xt|)t�0
is given by the formula

LNf(n) = deg+(n)(f(n+ 1)− f(n)) + deg−(n)(f(n− 1)− f(n)) (9.2)

for f ∈ ℓ∞(N). It corresponds exactly to −∆̃G N
where G N := (N,E N,mN)

with

E N(n,m) :=

{
m(Sn)deg±(n), when m = n± 1

0, otherwise
mN(n) := m(Sn),

(9.3)

for all n,m ∈ N.

Note that E N is symmetric by Lemma 9.1 a).

Proof. — First we assume that G is weakly spherically symmetric. We pro-
vide an explicit construction of the process (Xt)t�0. The desired properties
for the process (|Xt|)t�0 will follow. Let x := X0, T := 0 and k := 0. We
begin to describe the iteration procedure:

1) We let run three independent (and independent of all the possible
previous steps) random exponential clock variables E+(|x|), E0(x), E−(|x|)
of parameter deg+(|x|), deg0(x), deg−(|x|), respectively. We then replace T
by the time given by T + min(E+(|x|), E0(x), E−(|x|)).

2) If the above minimum equals E+(|x|) or E−(|x|), we set Tk+1 := T
and replace k by k+1. We let the process X stay in x until the time (Tk+1)

−

and jump at time Tk+1 in a point z ∈ S|x|±1 whether the minimum equals
E±(|x|). We then go to 3).

If the above minimum equals E0(x), we let the process X stay in x until
the time T− and jump in a point x̃ ∈ S|x| at this time T and repeat 1) with
x replaced by x̃.

3) Replace x by z and repeat 1).

With the above construction, the sequence (Tk)k�0 corresponds exactly
to the sequence of times of the jumps associated to the process (|Xt|)t�0 in
N.
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By Lemma 8.2, each time Tk in the algorithm is almost surely finite.
Indeed for each n � 0, since Sn is finite, supx∈Sn

deg0(x) < ∞; this en-
sures that hypothesis (8.1) is satisfied. Moreover Tk+1 − Tk corresponds to
the minimum of two independent random exponential variables Z+, Z− of
parameter deg+(|XTk

|), deg−(|XTk
|), respectively.

It is then clear that the process (|Xt|)t�0 is a continuous time Markov
chain whose generator is given by (9.2).

Now assume (|Xt|)t�0 is a continuous time Markov chain on N. Since
(|Xt|)t�0 can only make jumps of size 1, the generator LN reads

LNf(n) = α+(n)(f(n+ 1)− f(n)) + α−(n)(f(n− 1)− f(n))

for f ∈ ℓ∞(N) and some constants α±(n) � 0, n ∈ N (and α−(0) = 0). Let Pt
and PN

t the semigroup on associated to (Xt)t�0 and (|Xt|)t�0, respectively.
Let x ∈V and set n := |x|. Consider f := 1n+1 ∈ Cc(N) and g := f ◦ | · | ∈
Cc(V ), one has

Pt(g)(x) = E [g(Xx
t )] = E [f(|Xx

t |)] = PN
t (f)(n).

Taking derivative at t = 0+ gives

deg+(x) = −∆G g(x) = LNf(n) = α+(n).

This shows that for x ∈ V , the quantity deg+(x) depends only on |x|.
Similarly, one has that deg−(x) depends also only on |x|; that is G is
weakly spherically symmetric.

Remark 9.3. — It is a remarkable fact that the quantity deg0 does not
appear in the generator of the process (|Xt|)t�0 on a weakly spherically
symmetric graph.

We now show that the bottom of the spectrum and the essential spec-
trum for the two Laplacians coincide.

Theorem 9.4.— Let G := (V ,E ,m) be a weakly symmetric weighted
graph such that m(V ) = +∞. With the above notation, we have

inf σ(∆G ) = inf σ(∆G N
) and inf σess(∆G ) = inf σess(∆G N

).

Proof. — We start with a general fact. Given f : N → C, let g :V → C be
defined by g(x) := f(|x|), then for x ∈ Sn, observe that

∆̃G g(x) = ∆̃G N
f(n) and ‖g‖ℓ2(G ,m) = ‖f‖ℓ2(N,mN).
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It follows easily that D(∆G )∩ (CV )rad=D(∆G N
), where (CV )rad denotes the

set of radial (w.r.t. the 1-dimensional decomposition) functions f :V → C.
It easily follows that σ(∆G N

) ⊂ σ(∆G ) and σess(∆G N
) ⊂ σess(∆G ). This

gives that inf σ(∆G ) � inf σ(∆G N
) and inf σess(∆G ) � inf σess(∆G N

).

For the reverse inequality, we do the proof only for the bottom of the
essential spectrum. The proof for the bottom of the spectrum is similar
and uses Theorem 6.1. Let λ0

N,ess := inf σess(∆G N
). By Theorem 6.2, for all

ε > 0, there exist n0 := n0(ε) and a positive function W on N such that

∆̃G N
W (n) � (λ0

N,ess − ε)1n�n0W (n).

Let U : G → (0,∞) be the function defined by U(x) := W (|x|). Since G
is a weakly symmetric graph, for x ∈ Sn, we have ∆̃G U(x) = ∆̃G N

W (n).
Therefore,

∆̃G U(x) � (λ0
N,ess − ε)1|x|�n0

U(x).

Finally Theorem 3.6 and letting ε→ 0 give the conclusion.

We turn to the case of the normalized Laplacian. Note that for weakly
spherically symmetric graphs, since deg ≡ 1 and since deg± are radial, deg0
is also radial. The next proposition is the discrete analogous of Proposition
9.2. The proof is straightforward. We omit it.

Proposition 9.5.— Let G := (V ,E ) be a graph and let (Sn)n�0
be a 1-dimensional decomposition of G . Let (Xk)k∈N be the discrete time
Markov chain on V whose generator is −∆G ,η (as defined in section 8.1).
Then the graph (V ,E , η) is weakly spherically symmetric with respect to
(Sn)n�0 if and only if the process (|Xk|)k∈N is a Markov chain on N.

Moreover, in this case, the transition probabilities of the Markov chain
(|Xk|)k∈N on N are given by





p(n, n+ 1) := p+(n)
p(n, n− 1) := p−(n),
p(n, n) := p0(n).

The generator of the Markov chain (|Xk|)k∈N corresponds exactly to −∆̃G N

where G N := (N,E N,mN) with

E N(n,m) :=

{
m(Sn)p±(n), when m = n± 1,
0 otherwise.

mN(n) := m(Sn).

For f ∈ Cc(N), −∆G N
can be written by as ,

−∆G N
f(n) = p+(n)(f(n+ 1)− f(n)) + p−(n)(f(n− 1)− f(n)). (9.4)
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We go back to the general setting and provide a more explicit construc-
tion of the super-harmonic function of Theorem 8.5.

Proposition 9.6.— Assume the graph G := (V ,E ,m) is weakly spher-
ically symmetric with respect to a 1-dimensional decomposition (Sn)n�0. Let
λ :V → [0, 1) a radial function which satisfies one of the assertions of The-
orem 8.5. Then the unique radial function W which satisfies W (x0) = 1 for
all x0 ∈ S0 and ∆̃mW (x) = λ(x)W (x) is given by

W (x) =
Ex

[
exp

(∫ TN

0
λ(Xx

s )ds
)]

Eν

[
exp

(∫ TN

0
λ(Xν

s )ds
)] , for |x| � N and x0 ∈ S0,

where ν is any probability measure supported on S0 and the hitting time
TN := inf{t � 0, Xν

t ∈ Bc
N} of the set Bc

N for the continuous Markov
process (Xν

t )t�0 on V whose generator is −∆m and initial law is ν.

In particular, this function W is a non-increasing radial positive func-
tion.

Proof. — Actually, the only thing to prove is that the function W in the
proposition is well-defined. For N � 1, consider the functions WN (x) :=

Ex

[
exp

(∫ TN

0
λ(Xx

s )ds
)]

. By hypothesis, these functions are well-defined.

Since G is weakly spherically symmetric, Proposition 9.2 ensures that
(|Xt|)t�0 is a continuous time Markov process. Therefore WN is a radial
function. Moreover, it is constant on S0, thus we have WN (0) =

Eν

[
exp

(∫ TN

0
λ(Xν

s )ds
)]

for any probability measure ν supported on S0.

Write also

W̃N :=
WN

WN (0)
and W̃N+1 :=

WN+1

WN+1(0)

so that W̃N (0) = W̃N+1(0) = 1. Previous computations show that

∆̃mW̃N+1(x) = λ(x)W̃N+1(x) for all x ∈ BN

and
∆̃mW̃N (x) = λ(x)W̃N (x) for all x ∈ BN

By lemma 9.1, we have W̃N+1(x) = W̃N (x) for all x ∈ BN .

It follows that the function W in the proposition is well-defined and
satisfies W > 0 and ∆̃W (x) = λ(x)W (x). It is clearly radial as a limit of
radial functions and non-increasing by Lemma 9.1.
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Remark 9.7.— In the case of the normalized Laplacian, the function W
in Proposition 9.6 can also be written as:

W (x) =
Ex[ATN

]

Eν [ATN
]

for |x| � N

with An :=
∏n−1

k=0 Λ(Xx
k ), Λ(x) := 1

1−λ(x) , ν any probability measure on S0,

and TN := inf{n � 0, Xx
n ∈ Bc

N} the hitting time of the set Bc
N for (Xν

k )k�0
the random walk on V whose generator is −∆η and initial law ν.

10. The bottom of the spectrum and of the essential spectrum

In this section, we compare the bottom of the spectrum and the essential
spectrum of different weighted Laplacians. The idea here is to compare
directly the associated stochastic Markov processes (see Proposition 10.1).
We then obtain a general comparison result (see Theorem 10.4). This result
is an important improvement of Theorem 4 in [21]

First, we provide a coupling between the Markov processes on two dif-
ferent weighted graphs.

Proposition 10.1.— Let G := (V G ,E G ,mG ) and H := (V H ,E H ,

mH ) be two weighted graphs. Let (S
G
n )n�0 and (SH

n )n�0 be 1-dimensional
decompositions for respectively G and H . Let x0 ∈ G and y0 ∈ H be
such that |x0|G = |y0|H . Let (Xt)t�0 and (Yt)t�0 be the minimal continuous
time Markov chains on G and H associated to ∆G and ∆H , respectively
and starting in x0 and y0, respectively.

Assume that for all n � 0, x ∈ SG
n , y ∈ SH

n there exist deg
G
0,0 (x) � 0

and degH
0,0 (y) � 0 such that

p̃
G
+ (x) � p̃H

+ (y), p̃
G
− (x) � p̃H

− (x) and d̃eg
G

(x) � d̃eg
H

(y); (10.1)

where

d̃eg
A

(z) := degA (z) + degA
0,0 (z) and p̃A

l (z) :=
degA

l (z)

d̃eg
A

(z)
,

for z = x, y; l = +,− and A = G ,H . Then there exists a coupling of the
processes (Xt)t�0 and (Yt)t�0 such that, almost surely,

|XGi
|G = |YHi

|H ,

|Xt|G � |Ys|H for t ∈ [Gi, Gi+1[, s ∈ [Hi, Hi+1[, i � 0,
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where [Gi, Gi+1[ and [Hi, Hi+1[ are random intervals such that, almost surely,
Gi → e(X), Hi → e(Y ) as i → +∞ where e(·) denotes the explosion time
of the minimal markov chains and

Hi+1 −Hi � Gi+1 −Gi � 0, i � 0.

Since G0 = H0 = 0, almost surely, we have

e(Y ) � e(X), (10.2)

TN (X) � TN (Y ) (10.3)

where TN (Z) := inf{t � 0, |Zt|A > N}, A = G ,H ;Zt = Xt, Yt; and

LX
N (n) � LY

N (n), 1 � n � N (10.4)

where LZ
N (n) :=

∫ TN (Z)

0
1SA

n
(Zs)ds, Zt = Xt, Yt; A = G ,H ; is the time

spent in the sphere SA
n by the process (Zt)t�0 before it reaches SA

N+1 .

Proof. — We proceed by induction on i � 0. Assume XGi
= x, YHi

= y with

|x|G = |y|H . Let us add the artificial jumps deg
G
0,0 (x) and degH

0,0 (y). Con-

sider G an independent exponential random variable of parameter d̃eg
G

(x)

and set H := d̃eg
G

(x)

d̃eg
H

(y)
G. H is thus an exponential random variable of pa-

rameter d̃eg
H

(y). Clearly by construction H � G. Moreover, we can couple
Xt and Ys in such a way that after the jumps

|XGi+G|G � |YHi+H |H .

The construction will be explained below. We then set Gi+1 := Gi + G. If
|YHi+H |H = |XGi+1 |G we set Hi+1 = Hi +H. Otherwise if |YHi+H |H <

|XGi+1 |G , we freeze the processX inXGi+1 and let evolve independently the

process Y until the time s′ defined by s′ := inf{u � Hi+H, |Yu|H = |Xt|G }.
s′ is thus the hitting time of the sphere SH

|Xt|G
. Since BN is a finite set s′

is finite almost surely. We then set Gi+1 = s′.

Now we turn to the construction of the coupling of the jumps. Label the
neighbors of x and y by x1, . . . , xr and y1, . . . , yr′ in such a way that |xk|G
and |yk|H are non-increasing with k. Note that if degA

0,0 (z) > 0 then z is
a neighbor of z, A = G ,H ; z = x, y. Let U be an independent random
variable with uniform law on [0, 1]. Set XGi+G = xj and YHi+H = y′j where
j and j′ are the unique integer in {1, . . . , r} and {1, . . . , r′} such that

p̃G (x, x1) + · · ·+ p̃G (x, xj−1) � U < p̃G (x, x1) + · · ·+ p̃G (x, xj)
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and

p̃H (y, y1) + · · ·+ p̃H (y, yj′−1) � U < p̃H (y, y1) + · · ·+ p̃H (y, yj′).

Since by hypothesis p̃
G
+ (x) � p̃H

+ (y) and p̃
G
− (x) � p̃H

− (x), it is clear that

|XGi+1 |G � |YHi+H |H .

By using Lemma 8.2, (Xt)t�0 and (Ys)s�0 are the Markov processes associ-
ated to ∆G and ∆H . The other statements are then immediate.

Actually, there is a simpler characterization of condition (10.1).

Definition 10.2.— Let G := (V G ,E G ,mG ) and H := (V H ,E H ,
mH ) be two weighted graphs. We say that G has a stronger weak-curvature
growth than H if

deg
G
+ (x) � degH

+ (y) and
deg

G
+ (x)

deg
G
− (x)

�
degH

+ (y)

degH
− (y)

(10.5)

for x ∈V G , y ∈V H , |x|G = |y|H .

Proposition 10.3.— Let G := (V G ,E G ,mG ) and H := (V H ,E H ,
mH ) be two weighted graphs. Then (10.1) holds true if and only if G has
a stronger weak-curvature growth than H .

Proof. — Indeed, condition (10.1) in Proposition 10.1 is equivalent to: there

exist z1 � degG (x) and z2 � degH (y) such that

deg
G
+ (x)

z1
�

degH
+ (y)

z2
,

deg
G
− (x)

z1
�

degH
− (y)

z2
and z1 � z2.

The above line is equivalent to

max

(
deg

G
− (x)

degH
− (y)

, 1

)
�
z1
z2

�
deg

G
+ (x)

degH
+ (y)

Therefore condition (10.1) implies condition (10.5). Reciprocally, if condi-
tion (10.5) holds, then it is possible to find α � 1 such that

max

(
deg

G
− (x)

degH
− (y)

, 1

)
� α �

deg
G
+ (x)

degH
+ (y)

It is then easy to see that one can choose z1 � degG (x) and z2 � degH (y)
in such a way that z1

z2
= α.
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We then state a general comparison result for the bottom of the spectra.

Theorem 10.4.— Let G := (V G ,E G ,mG ) and H := (V H ,E H ,mH )
two weighted graphs. Assume G has stronger weak-curvature growth than
H , then

inf σ(∆G ) � inf σ(∆H ).

If moreover inf{mH (x), x ∈V H } > 0 or H is a weakly symmetric graph
and mH (V H ) = +∞, then

inf σess(∆G ) � inf σess(∆H ).

Proof. — We keep the notation of the proof of Proposition 10.1. Let (Xx
t )t�0

and (Y y
t )t�0 be the coupled continuous time Markov chains of generator

∆G and ∆H starting in x ∈ V G and y ∈ V H such that |x|G = |y|H ,
respectively.

Let λ0H ,ess := inf σess(∆H ) and let ε > 0. With the hypothesis in The-
orem 10.4, by Theorem 6.2, there exist n0 := n0(ε) and a positive function
W on V H such that,

∆̃H W (x) � λ(|x|H )W (x).

where λ(n) := (λ0H ,ess − ε)1n�n0 , n � 0. The probabilistic representation of
Theorem 8.5 of super-harmonic functions gives that for all N � 1,

E

[
exp

(∫ TH
N

0

λ(|Y y
s |)ds

)]
< +∞.

By Proposition 10.1, for N � 1 we have:

LXx

N (n) � LY y

N (n), 0 � n � N.

By noticing that

E

[
exp

(∫ TZz

N

0

λ(|Zz
s |)ds

)]
= E

[
exp

(
N∑

k=0

λ(n)LZz

N (n)

)]
,

with Zz = Xx or Y y, this yields:

E

[
exp

(∫ T
G
N

0

λ(|Xx
s |)ds

)]
� E

[
exp

(∫ TH
N

0

λ(|Y y
s |)ds

)]
< +∞.

Then the probabilistic representation of Theorem 8.5 gives the existence of a
positive super-harmonic W̃ onV G satisfying ∆̃G ,mW̃ (x) � λ(|x|)W̃ (x), x ∈
V . Theorem 3.6 and letting ε→ 0 finally imply

inf σess(∆G ) � inf σess(∆H ).

The proof for the bottom of the spectrum is similar.
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Remark 10.5. — Theorem 10.4 is an improvement of [21, Theorem 4]
in three directions. First, contrary to the latter, our result applies also to
the bottom of the essential spectrum. Second, they suppose that one of the
graph is weakly spherically symmetric. Third and mainly, our hypothesis is
weaker, even for the comparison of the bottom of spectra. Therefore, the
condition called stronger curvature growth introduced in [21] and which can
be written as

deg
G
+ (x) � degH

+ (y) and deg
G
− (x) � degH

− (y), x ∈V G , y ∈V H , |x|G = |y|H
(10.6)

is not the optimal one to compare the bottom of the spectrum.

Remark 10.6.— When H is a weakly spherically symmetric graph, we
give a direct proof of Theorem 10.4. Let ε > 0. By Theorem 6.2, there exist
n0 := n0(ε) and a positive non-increasing function W on N such that,

∆̃H W (|y|H ) � λ(|y|H )W (|y|H ).

where λ(n) := (λ0H ,ess − ε)1n�n0 , n � 0. For A = G ,H , let ∆bd,A be
defined by

∆bd,A :=
1

d̃eg
A

(·)
∆A .

For f a radial function on H , we have

∆̃bd,H f(n) := p̃H
+ (n)(f(n)− f(n+ 1)) + p̃H

− (n)(f(n)− f(n− 1)).

Therefore, for x ∈V G , y ∈V H such that |x|G = |y|H = n,

∆̃H W (|y|H ) = d̃eg
H

(y)∆̃bd,H W (|y|H ) � d̃eg
G

(x)∆̃bd,G W (|x|G )

= ∆̃G W (|x|G ).

Indeed we have d̃eg
H

(y) � d̃eg
G

(x) and ∆̃bd,H W (|y|H ) � ∆̃bd,G W (|x|G )

since p̃
G
+ (x) � p̃H

+ (y), p̃
G
− (x) � p̃H

− (y) and W is non-increasing. The end
of the proof is now the same as before.

Here, we first recall that

inf σ(∆Td,1) = inf σess(∆Td,1) = d+ 1− 2
√
d

and

inf σ(∆Td,η) = inf σess(∆Td,η) = 1− 2
√
d

d+ 1
.

where Td denotes the simple d-ary tree.
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Example 10.7.— Let G := (V ,E ) be a simple tree such that each vertex
x satisfies η+(x) ∈ {α, β} with α � β, see Figure ??. A direct application
of Theorem 10.4 gives

inf σ(∆Tα,1) � inf σ(∆G ,1) � inf σess(∆G ,1) � inf σess(∆Tβ ,1) = inf σ(∆Tβ ,1)

and

inf σ(∆Tα,η) � inf σ(∆G ,η) � inf σess(∆G ,η) � inf σess(∆Tβ ,η) = inf σ(∆Tβ ,η),

where Tα (resp. Tβ) denotes the simple α-ary (resp. β-ary) tree. Only the
part with ∆G ,1 was covered by [21, Theorem 4].

S0

S1

S2

S3

Figure 4. — Tree with 2 or 3 sons at each generation

Note that in the setting of the previous example, it is possible to have:

inf σ(∆G ,η) < inf σess(∆G ,η)

and an infinite number of eigenvalues below the essential spectrum can occur
(see [28]).

As a corollary of Theorem 10.4, we extend Corollary 6.7 in [21] to the
case of the essential spectrum.

Corollary 10.8.— Let G and H be two weakly spherically symmetric
graphs which have the same curvature growth in the sense of [21]; that is:

deg
G
+ (x) = degH

+ (y) and deg
G
− (x) = degH

− (y), x ∈V G , y ∈V H , |x|G = |y|H .

Then

inf σ(∆G ) = inf σ(∆H ) and inf σess(∆G ) = inf σess(∆H ).

In particular, on a fixed simple weakly spherically symmetric graph, the
bottoms of the spectrum and the essential spectrum of the combinatorial
Laplacian ∆1 do not change if one adds or removes edges inside the spheres
Sn.
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Example 10.9.— Let G := (V ,E ) be a simple infinite bipartite graph
and x0 ∈V such that η+(x0) = 2, η−(x0) = 0 and

(η+(x) = 2, η−(x) = 1) or (η+(x) = 4, η−(x) = 2), x ∈V , x �= x0. (10.7)

Then (V ,E , η) is a weakly spherically symmetric graph. Thus Corollary
10.8 gives that:

inf σ(∆T2,η) = inf σ(∆G ,η) = inf σess(∆G ,η) = inf σess(∆T2,η).

and Theorem 10.4 that:

inf σ(∆T2,1) � inf σ(∆G ,1) � inf σess(∆G ,1) � 2 inf σess(∆T2,1).

Note that, if moreover one supposes that

min{deg+(x), x ∈ Sn} � max{deg−(x), x ∈ Sn},

a direct application of [21, Theorem 4] gives only that inf σ(∆G ,1) � 0.

S0

S1

S2

S3

S4

Figure 5. — A weakly spherically symmetric graph satisfying (10.7)

11. Stochastic completeness

By definition, a graph G := (V G ,E G ,mG ) is said to be stochastically
complete if for all x ∈ V , P(e(Xx) < +∞) = 0 where Xx is the minimal
right continuous Markov process constructed in section 8.1. Otherwise, it
is said to be stochastically incomplete. First we consider weakly spherically
symmetric graph. The following result was already included in Theorem 5 in
[21] (except that we slightly generalize their notion of spherically symmetric
graphs). We provide a direct stochastic proof.
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Theorem 11.1.— Let G := (V G ,E G ,mG ) be a weakly spherically
symmetric graph and let G N := (N,E N,mN) where E N and mN are
defined as in Proposition 9.2. Then G is stochastically complete if and
only if G N is.

Proof. — Let n � 0 and x ∈ Sn and let (Xx
t )t�0 be the minimal right

continuous Markov process associated to G . By Proposition 9.2, (|Xx
t |)t�0

is the minimal right continuous Markov process associated to G N and
starting in n. Clearly, one has e(Xx) = e(|Xx|). The conclusion of the
theorem follows by the definition of stochastic completeness.

The coupling argument of Proposition 10.1 implies the following com-
parison result. It is an improvement of Theorem 6 in[21].

Theorem 11.2.— Let G := (V G ,E G ,mG ) and H := (V H ,E H ,mH )
two weighted graphs. Assume G has stronger weak-curvature growth than
H . If H is stochastically incomplete then so is G . If G is stochastically
complete then so is H .

Proof. — Let n � 0, x ∈ Sn(G ) and y ∈ Sn(H ). Proposition 10.1 provides
a coupling (Xx

t )t�0 and (Y y
t )t�0 of the two minimal right continuous Markov

chains on G and H starting in x and y, respectively, such that e(Xx) �

e(Y y). The conclusion of the theorem follows by the definition of stochastic
completeness.

Appendix

A. The Friedrichs extension

In this section, we recall the construction of the Friedrichs extension of a
positive symmetric densely defined operator. Given a dense subspace D of
a Hilbert space H and a non-negative symmetric operator H on D , let H 1

be the completion of D under the norm given by Q (ϕ)2 = 〈Hϕ,ϕ〉+‖ϕ‖2.
The domain of the Friedrichs extension of H is given by

D(HF ) = {f ∈ H 1 | D ∋ g $→ 〈Hg, f〉+ 〈g, f〉 extends to a norm

continuous function on H }
= H 1 ∩ D(H∗).

For each f ∈ D(HF ), there is a unique uf such that 〈Hg, f〉 + 〈g, f〉 =
〈g, uf 〉, by Riesz’ Theorem. The Friedrichs extension of H, is given by
HF f := uf − f . It is a self-adjoint extension of H, e.g., [26, Theorem
X.23].
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We now describe the domain of the adjoint of the discrete Laplacian.
This is well-known, e.g., [8, 20]. Let G = (V ,E ,m) be a weighted graph.
We have:

D
(
(∆G |Cc(V ))

∗
)

=
{
f ∈ ℓ2(V ,m),

x $→ 1

m(x)

∑

y∈V

E (x, y)(f(x)− f(y)) ∈ ℓ2(V ,m)
}
.

Then, given f ∈ D((∆G |Cc(V ))
∗), one has:

(
(∆G |Cc(V ))

∗f
)
(x) =

1

m(x)

∑

y∈V

E (x, y)(f(x)− f(y)),

for all x ∈V . We recall that H 1 here is the completion of Cc(V ) under the
norm:

‖f‖2H 1
:=

1

2

∑

x,y∈V

E (x, y)|f(x)− f(y)|2 + ‖f‖2.

By definition, the operator ∆G |Cc(V ) is essentially self-adjoint if its closure
is equal to its adjoint. A review of recent developments of essential self-
adjointness may be found in [16].

B. Lyapunov functions, Super-Poincaré inequality

and the infimum of the essential spectrum

In this section, we explain how to use the above Lyapunov functions
so as to obtain a lower bound on the infimum of the essential spectrum
and in some cases its emptiness. This is a straightforwardly adaptation of
the continuous setting. In our discrete setting, this approach is not strictly
necessary to obtain our results (see Remark B.7) on the essential spectra.
We have included it for the sake of completeness and because it provides
some insights and a characterization for the lower bound of the essential
spectrum. We shall rely on the following Super-Poincaré Inequality, which
was introduced by Wang (see [30, 31, 33]).

Definition B.1.— We say that Super-Poincaré Inequality of parameter
s0 ∈ R holds true, if there is a function h :V → (0,∞) such that m(|h|2) = 1
and some positive non-increasing functions βh : (s0,∞) → (0,∞), such that

SPI (s0) m(|f |2) � sm
(
f ∆mf

)
+ βh(s)m(|f |h)2 for all s > s0 (B.1)

and f ∈ Cc(V ).
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Where, by abuse of notation, we wrote:

m(f) :=
∑

x∈V

f(x)m(x).

Remark B.2.— If SPI (s0) holds for some not necessarily non-increasing
function βh, then, for any µ > s0, SPI (µ) holds for the non-increasing
function β′

h(s) = infµ�s βh(s).

We start by showing how the existence of Lyapunov functions implies
SPI.

Theorem B.3.— Take ψ a non-negative function, b � 0, and some
finite set Br0 . Denote by

Ψ(r) = inf{ψ(x), x ∈ Bc
r} and s0 =

(
lim
r→∞

Ψ(r)
)−1

∈ [0,∞).

Suppose that Ψ(r) > 0 for r large enough and that W is a positive function
such that

∆mW � ψ ×W − b1Br0
(B.2)

Let h :V → (0,∞) such that ‖h‖m = 1 and let ah(r) = inf{h(x)2m(x), x ∈
Br}. Then SPI (s0) holds true with

βh(s) =

(
1 +

bs

αr0

)
1

ah(Ψ−1( 1s ))
,

where αr0 = inf{W (x), x ∈ Br0}.

We follow the proof in [6, Section 2].

Proof. — Set r � r0 such that Ψ(r) > 0,

m(|f |2) =m(
|f |2ψ
ψ

1Bc
r
) +m(|f |21Br

) �
1

Ψ(r)
m(|f |2ψ1Bc

r
) +m(|f |21Br

)

�
1

Ψ(r)
m(|f |2ψ) +m(|f |21Br

)

�
1

Ψ(r)
m

(
|f |2

(
∆mW

W
+
b1Br0

W

))
+m(|f |21Br

)

�
1

Ψ(r)
m

(
|f |2

(
∆mW

W

))
+

(
b

Ψ(r) inf{W (x), x ∈ Br0}
+ 1

)
m(|f |21Br

).
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We concentrate on the second term. Let h :V → (0,∞) such that m(h2) =
1. Since the set Br is finite,

m(|f |h1Br
)2 =

(
∑

x∈Br

|f(x)|h(x)m(x)

)2

�
∑

x∈Br

|f(x)|2h(x)2m(x)2

�

(
inf

x∈Br

h(x)2m(x)

)
m(|f |21Br

)

which gives the following local Super-Poincaré Inequality:

m(|f |21Br
) �

(
inf

x∈Br

m(x)h(x)2
)−1

m(|f |h)2.

Therefore, by combining the above estimate and the Hardy inequality (3.1),
we get:

m(|f |2) � 1

Ψ(r)
m( f∆mf)

+

(
b

Ψ(r) inf{W (x), x ∈ Br0}
+ 1

)(
inf

x∈Br

m(x)h(x)2
)−1

m(|f |h)2.

Finally, this yields the SPI (s0) with βh(s) defined as in the theorem.

Remark B.4.— Note that if the constant b = 0 in the above, the function
βh(s) is then given by

βh(s) =
1

ah(Ψ−1( 1s ))
.

We turn now to the equivalence between the Super-Poincaré Inequality
and the infimum of the essential spectrum of the operator (see Theorem 2.2
in [33]).

Theorem B.5.— Let s0 > 0. Then the following assertions are equiva-
lent:

(a) σess(∆m) ⊂ [ 1
s0
,∞).

(b) There exists a positive function h such that m(h2) = 1 and a non-
increasing function βh : (s0,∞) → (0,∞) such that (B.1) holds for
all s > s0.

(c) For any positive function h such that m(h2) = 1, there exists a non-
increasing function βh : (s0,∞) → (0,∞) such that (B.1) holds for
all s > s0.
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In particular, σess(∆m) = ∅ if and only if there exists some functions h and
βh for which (B.1) holds for s > 0.

For the seek of completeness, we will give the proof of this result. We
follow the proof of Theorem 3.2 in [31] which was originally made in the case
of probability measure. The slight difference comes from the fact that we
consider the Friedrichs extension and we are not in a essentially self-adjoint
setting.

Proof. — It is is clear that (c) implies (b). We show first that (b) implies (a).
Let h be the positive function such that m(h2) = 1 and let f ∈ Cc(V ). Let
0 < ε < 1, η > 0 and let Br such that m(1Bc

r
h2) � ε, then, for f ∈ Cc(V )

such that m(|f |2) = 1 and f |Br
= 0,

1 = m(|f |2) � (s0 + η)〈f,∆mf〉m + β(s0 + η)m(|f |h)2
� (s0 + η)〈f,∆mf〉m + β(s0 + η)m(|f |2)m(1Bc

r
h2)

� (s0 + η)〈f,∆mf〉m + β(s0 + η)ε.

Using (2.2), we get

inf σess(∆m) � sup
ε>0,η>0

1− β(s0 + η)ε

s0 + η
=

1

s0
.

Now we show that (a) implies (c). Let h be a positive function such
that m(h2) = 1. Let r′ > r > s0. Since r > s0, σ(∆m) ∩ [0, 1r ] is given by
a finite number of finite dimensional eigenvalues. Let 0 � λ1 � · · · � λnr

be these eigenvalues (including multiplicity), g1, . . . , gnr
be some associated

orthonormalized eigenfunctions, and Hr the corresponding spanned vector
space. Let f ∈ Cc(V ) and consider g := 1[0, 1

r
](∆m)f =

∑nr

i=1m( gif)gi and

k := 1( 1
r
,∞)(∆m)f . By construction m(|f |2) = m(|g|2) +m(|k|2) and

m(|k|2) � r ·m( k∆mk) � r ·m( f∆mf).

Moreover, since Hr is finite dimensional, there is a finite β1(r) such that

m(|u|2) � β1(r)m(|uh|)2, for all u ∈ Hr.

Let cr > 0 be a constant to be precised later. Then using several times the
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Cauchy-Schwarz inequality,

m(|gh|) �
nr∑

i=1

|m(fgi)|m(|hgi|) �
nr∑

i=1

m(|fgi|)

�

nr∑

i=1

(
crm(|f |h) +m

(
|fgi|1{|gi|�crh}

))

� nrcrm(|f |h) + nrε
1/2
r m(|f |2)1/2,

where εr := supi=1,...,nr
m

(
|gi|21{|gi|�crh}

)
. By dominated convergence the-

orem εr → 0 when cr →∞. Therefore

m(|g|2) � 2β1(r)
(
n2rc

2
rm(|fh|)2 + n2rεrm(|f |2)

)

and

(
1− 2β1(r)n

2
rεr

)
m(|f |2) � r ·m( f∆mf) + 2β1(r)n

2
rc

2
rm(|fh|)2.

Taking r′ > r and cr large enough such that εr �
r′−r

2β1(r)n2
rr

′ gives

m(|f |2) � r′m( f∆mf) + 2β1(r)n
2
rc

2
r

r′

r
m(|fh|)2.

Taking βh(r′) = infs0<r<r′ 2β1(r)n
2
rc

2
r
r′

r ends the proof.

The conjunction of Theorem B.3 and Theorem B.5 gives the following
result.

Corollary B.6.— Assume there exists W a positive function such that

∆̃mW � ψ ×W − b1Br0

for some non-negative function ψ, some constant b � 0 and some finite set
Br0 .

If lim inf ψ(x) = l, as |x| → ∞, then σess(∆m) ⊂ [l,∞). In particular, if
limψ(x) = +∞, then σess(∆m) = ∅.

Proof. — Indeed, with our assumptions, Theorem B.3 gives SPI (1/l) and
Theorem B.5 implies in turn that σess(∆m) ⊂ [l,∞).

Remark B.7. — One can avoid the use of Super-Poincaré Inequality in
our setting and give a direct proof of Corollary B.6 by using the Hardy
inequality 3.1 and either the Persson Lemma or the min-max principle (see
Theorem 3.6).
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