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Abstract. Various notions of essential spectrum have been defined for densely

defined closed operators on a Banach space. This paper shows that the theory for

those notions of essential spectrum simplifies if the underlying space is a Hilbert

space and the operator is reduced by its finite-dimensional eigenspaces. In that

situation this paper classifies each essential spectrum in terms of the usual language

for the spectrum of a Hilbert space operator. As an application this paper deduces the

main results of several recent papers dealing with generalizations of the Weyl theorem.

1. Introduction. The purpose of this paper is to show that the theory of essential

spectrum for Hilbert space operators is much simpler than has been suggested by

the literature on the subject. For a Hilbert space operator reduced by its finite-

dimensional geometric eigenspaces we show that most of the popular notions of

essential spectrum coincide and we classify this set using the standard terminology

for the spectrum of a Hilbert space operator. We clarify the contrast between

algebraic multiplicity and geometric multiplicity for an isolated eigenvalue and

thereby we obtain most of the results of the recent papers [1], [2], [5], and [10] which

consider the essential spectrum of a Hilbert space operator. In the final section we

list some of the applications of these results. Theorem 5 and Theorem 8 generalize

the classical theorem of Weyl for essential spectrum.

2. Preliminaries. Throughout this paper we shall use "operator" to mean a

linear operator defined on a vector space which is dense in the fixed underlying

Hilbert space H. If T is such an operator and H0 is a subspace of H invariant under

T then TjH0 denotes the restriction of F to H0. We write the scalar operator zl as

simply z when it causes no confusion and z* denotes the complex conjugate of z or

equivalently the adjoint of the scalar operator. By W(T) we mean the numerical

range of the operator T, i.e. W{T) = {(Tf, f) : fe H, \\f\\ = 1}, and the closure of

any set S is written S~. We say a is an isolated point of a(F) to mean there is no

sequence {a„ : a„# a, an e <j(F)} which converges to a.

An operator Fis said to be Fredholm if dimension [kernel T] <co, TH is closed,

and codimension TH<co. If T is Fredholm then the index of T is

[dim ker F—codim TH].
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We recall the following definitions of essential spectrum which have been given for

closed operators in a Banach space. A point A from the spectrum of F, denoted

<j(F), is in the essential spectrum of Wolf, denoted crel(F), provided that either

(T— A)// is not closed or else it has infinite codimension. The essential spectrum of

Fredholm, denoted <je2(F), is {Ae<r(F) : (T— A) is not Fredholm}; the essential

spectrum of Weyl, denoted cre3(F), is {A e o(T) : (F- A) is not a Fredholm operator

with index equal to 0}; the essential spectrum of Browder, denoted ael(T), is

{A e ct(F) : it is not the case that (F- A) is Fredholm with index equal to 0 and A

is an isolated point of o-(F)}. It is obvious that <Tei(T)<=<7e2(T)^oe3(7^<=oei(T). In

general, in a Banach space these sets are known to be distinct.

The following lemma which is well known will be crucial to the theory developed

in this paper.

Lemma 1. Let T be a closed operator on H and let A be an isolated point of a(T).

Then there is a direct sum decomposition of H, say H1 @ A(\), such that H1 and

A(X) are each invariant under (T— A); let S=(T-X)IH1 and N=(T-X)/A(X).

Furthermore S is one-to-one and onto and N is a bounded quasinilpotent operator.

There is a bounded idempotent operator P such that PH=A(X) and (I—P)H=H1.

There are many sources for this information; we have used pp. 178-181 of [6].

The conclusions about S follow from the fact that A £ a(S) and the conclusions

about A follow from the fact that a(A) = {A}. We note that any finite-dimensional

quasinilpotent operator is, in fact, nilpotent.

Using the notation of the lemma we shall refer to A(X) as the spectral subspace

associated with A and dim A(X) is the algebraic multiplicity of A. We define (7(A)

to be ker (F— A) and we refer to this as the geometric eigenspace associated with A

and dim G(A) is the geometric multiplicity of A. Of course (7(A) is contained in

^(A) and in the special case that (7(A) is nontrivial we shall refer to A(X) as the

algebraic eigenspace associated with A. It need not be the case that (7(A) is nontrivial.

Consider the Volterra integration operator, say V, and recall that ct(K) = {0},

although V is one-to-one (see pp. 94-95 of [4]).

3. Classification of essential spectrum. In this section we shall prove some basic

facts about the spectrum of Hilbert space operator; the analogous assertions for a

Banach space operator are easily seen to be false.

Theorem 1. Let Tbe a closed operator on H which is reduced by (7(A) = ker (T— A)

and let {Xn} be a sequence such that Xn e <j(F), A„^ A, and Xn A. If for each n=\,

2,... and e>0 there exists a unit vector/(e) e H such that ||(F— A„)/(e)|| <e then

(T— X)H is not closed.

Proof. For each n take a unit vector/„ such that ||(F— An)/n|| < |A — An|2. Decom-

pose /„ into f%+fi where/; e (7(A) and/; g [(7(A)]1 and note that (F-An)/n' =

{T-X)P + {X-Xn)fn = (\X-Xn)fl Because (7(A) reduces (T-Xn) we have

ll(J-An)/nll2= ll(p-An)/;||2+]|(F-An)/;T

= |A-An|2||/;||2+||(P-AnKp.
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Thus, in particular, |A — A„|*> [A-An|2(|/^||2 and consequently ||/^|| ->0 and \\fn\\2

= (1 - ((/nil2) 1. Hence we may assume that \\fn\\ ^ and it follows from ( + )

above that \\(T— An)/7|| —>0. So we may replace the original sequence {/"„} with

{fnlWfn ||} or equivalently we shall assume that fn e [(7(A)]1.

It follows that (F— A) +(T— X)fn=fn where (F-A) + is the linear transformation

inverse to (T— A): [(7(A)]X -> [(F— X)H]~. If (T-X)H is closed then (T-X)+ is

bounded by application of the closed graph theorem, noting that (T- X)I[G(X)]1

is a closed operator. By the triangle inequality we see that jl(F—A)/„[| ->0 and

consequently if (T-X)H is closed we have ||(F- X) + (T- X)fn\\ ->0. The fact that

\\(T-X) + (T-X)fn\\ = \\fn\\ = 1 shows that (T-X)H is not closed.

Corollary 1. Let T be a closed operator on H which is reduced by G*(A*)

= ker(F* —A*) and let {AJ be a sequence such that Xn e <r(F), A„#A, and Xn—> A.

If for each n the operator (F— A„) is one-to-one with closed range then (T— X)H is not

closed.

Proof. Because Ane<r(P) it must be that [(P—An)/Y]x#{0}; otherwise we could

use the closed graph theorem as in the preceding proof to conclude that (F—A„)_1

is everywhere denned and bounded. Since ker(P* — A*) = [(F— Xn)H]1 we see that

for each e>0 there exists a unit vector f(s) such that ||(P* —A*)/(e)||=0<e. We

apply the preceding theorem to T*, {A*}, and A* and thus we conclude that

(T* — X*)H is not closed. Then (P— X)H is not closed according to the closed range

theorem (see pp. 205-208 of [14]).

In the situation dealt with in the preceding corollary we can reach the weaker

conclusion that (P— A) is not a Fredholm operator with a weaker hypothesis by

using well-known theory for the stability of the index.

Lemma 2. Let T be a closed operator and let {An} be a sequence such that Xn e o(T),

Xn^=X, and Xn -s- A. If for each n the operator (F— An) is one-to-one with closed range

then (F— A) is not a Fredholm operator.

Proof. Because (F—An) converges to (F— A) in the operator norm we would

contradict Theorem 5.17, p. 235, of [6] if (F— A) were a Fredholm operator.

We are now able to complete our consideration of nonisolated points of the

spectrum.

Theorem 2. Let T be a closed operator which is reduced by the subspace (7(A)

= ker (F— A) and let {An} be a sequence such that An e o-(F), An / A, and Xn —> X. Then

(F—A) is not a Fredholm operator. Furthermore, if G*(A*) = ker (F* —A*) reduces T

then (T—X)H is not closed.

Proof. For An e a(T) there are only three possibilities: (a) (P— A„) is not one-to-

one, (b) (F— An) is one-to-one but (T—Xn)H is not closed, (c) (P—An) is one-to-one

with closed range but [(F— A,,)//]1/^}. Otherwise apply the closed graph theorem

to see that (F-An)_1 is everywhere defined and bounded.
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Assuming (a) it is obvious that for any e > 0 there exists a unit vector/(e) such

that ||(r—A„)/(e)|[ =0<e. Assuming (b) it follows from the well-known theory of

the reduced minimum modulus (see pp. 231-232 of [6]) that for any £>0 there

exists a unit vector f(s) with \\(T- \n)f(e)\\ <e.

Now let {A„} be any sequence such that An e <j(T), A„^ A, and An -> A. Either there

is an infinite subset of {An} satisfying one of the conditions (a), (b), in which case

we apply Theorem 1, or else there is an infinite subset of An satisfying (c) in which

case we apply Lemma 2. In this latter case if we have assumed that C*(A*) reduces

T then we may apply Corollary 1 to conclude that (F— X)H is not closed.

The one remaining tool that we need for this section is the next lemma which we

shall deduce from some theorems in [6]. As Kato mentions, the method of proof

for the main theorem cited is the same method used by A. E. Taylor, Dunford and

Schwartz, and others.

Lemma 3. Let T be a bounded quasinilpotent operator on H. If dim H=co then

either TH is not closed or else dim ker F=codim 77/= oo.

Proof. If TH is not closed there is nothing to prove; so we may assume that TH

is closed. By Theorem 5.30, p. 240, of [6] we have that nul' P=def P=oo. Accord-

ing to Theorem 5.10, p. 233, of the same source, nul' FädimkerF and def P

^codim TH with the equalities holding if TH is closed. Hence we have that

dim ker F=codim TH =ao as desired.

We come to the main result of this section.

Theorem 3. If T is a closed operator which is reduced by each finite-dimensional

subspace ker (T—z) for any complex number z then (2), (3), (4), and (5), from the

following sets, are identical. Furthermore if T is also reduced by each finite-dimen-

sional subspace ker (P* —z) then all five sets are identical:

(1) crel(T),

(2) oe2{T),

(3) oe3(T),

(4) cel{T),

(5) the points of a{T) which are not isolated eigenvalues of finite algebraic multi-

plicity.

Proof. By Theorem 2 if A is not an isolated point of a(T) then (P— A) is not a

Fredholm operator and it follows that A is in each of the above sets (2), (3), (4),

(5). If we assume the further hypothesis that each finite-dimensional ker (P* —z)

reduces P then either (F—AY/7 is not closed or else codim (P— A)// = co, and A is

in each of the above five sets.

Thus we may assume that A is an isolated point of a(T) and we consider two

cases according to whether .4(A) is infinite dimensional or finite dimensional. First

we assume that A{\) is finite dimensional and we apply the facts and notation of

Lemma 1. Because (P— A) = 5 © A we have dim ker (P— A) = dim ker S + dim ker A
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and since S is one-to-one and onto this simplifies to dim ker (F— A) = dim ker N< ao.

Similarly, codim (F— A)//=codim NA(X)<co. Using that A{\) is finite dimensional

and a standard isomorphism theorem for finite-dimensional vector spaces we

conclude that NA(X) is closed with dim ker N= codim NA(X). Thus (F— A) is a

Fredholm operator with index zero and A is isolated from <x(F). It is clear that any

nilpotent operator must have nontrivial kernel and so A is an eigenvalue for F.

Hence A is not in any of the sets (1), (2), (3), (4), or (5).

Finally we consider that A is an isolated point of c(F) with dim A{\) = oo. By

Lemma 1, A is a bounded quasinilpotent operator and so we can conclude from

Lemma 3 that either NA(\) is not closed (and consequently (F— X)H=H1 @ NA(X)

is not closed) or else codim NA(X) = co (and consequently codim (F- A)// = co).

Thus A is in all of the sets (1), (2), (3), (4), and (5). Since we have considered all

possibilities for A e a(T) the theorem follows.

Corollary 2. Let T be a closed operator which is reduced by each finite-dimen-

sional subspace ker (T—z) or ker (T* — z), for any complex number z. Then A is an

isolated eigenvalue of finite algebraic multiplicity for T if and only if A* is the same

for T*.

Proof. It is well known that (P— A) is Fredholm with index zero if and only if

(P* — A*) is Fredholm with index zero. Now use that (3) and (5) are the same set

for both T and P*.

4. Geometric multiplicity versus algebraic multiplicity. The papers [7], [3], [12]

proved remarkable theorems about the stability of the index of (P— A) as A varies

and then these stability theorems were used to deduce a theory for the invariance

of essential spectrum as defined by several different authors. The more recent

papers [2], [5], [1], [10] have extended the classical essential spectrum theorem of

Weyl for normal operators to larger classes of Hilbert space operators by inter-

preting the Banach space definition of the Weyl spectrum (as given in §2) for an

operator in one of these larger classes; these authors have shown that for such an

operator the Weyl spectrum is the set of points in the spectrum which are not

isolated eigenvalues of finite geometric multiplicity. We consider our Theorem 3 to

be a strong argument that the natural generalization of Weyl's theorem (see §5

Theorem 5) uses algebraic multiplicity rather than geometric multiplicity.

In this section we shall deduce a number of conditions for the two multiplicities

to coincide for an isolated eigenvalue. In Theorem 4, which summarizes these

results, condition (3) with our Theorem 3 gives a notable improvement on the

result of Berberian in [1] and, since he deduced Isträtescu's result, our (3) includes

that theorem also. Our condition has the advantage not only of being properly

weaker but also simpler. Similarly (1), in view of Theorem 3, contains Coburn's

main result in [2] and (2) contains the result of Nieto [10] in the case that the under-

lying Banach space is a Hilbert space. Part (4) has no antecedent known to us. The
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effect of Theorem 8 of §5, which applies Theorem 4, is stronger than any of the

previously mentioned results because different conditions can be applied to

different isolated points of the spectrum.

Recall that a bounded operator T is seminormal provided that T*T—TT* is

either nonnegative or nonpositive and in the former case Pis said to be hyponormal.

If Tis a bounded operator in the Hilbert space «•, •>,//) and there exists a new

inner product, say «•, •», such that T is symmetric with respect to it and

«/>/» = c</>/> f°r some constant c and aWfsH then T is said to be symmetriz-

able. Most of the following theorem can be extended to the case that T is a closed

operator. This would require generalizing the basic theory for the above operators

and such a process involves tedious considerations of domain. Therefore we state

and prove the theorem only for a bounded operator T.

Theorem 4. Let A be an isolated point of a(T) for the bounded operator T. If T

satisfies any one of the following conditions then the spectral subspace, /1(A), coincides

with the geometric eigenspace, G(A):

(1) H can be written as the direct sum of subspaces Hx, H2 each of which is

invariant under T with TjHx hyponormal and A $ a{TjH2),

(2) instead ofTlH1 being hyponormal it is symmetrizable,

(3) H0 = [G(X)Y is invariant under T and A f a(TlH0),

(4) for any half line originating at A, call it L, we have \\(T— z)~xjA{X)\ g |z — A| '1

for z eL and |z| sufficiently large.

Proof of (1). Since A^a(P///2) we may assume that H1=H. A simple computation

shows that (P— A) is hyponormal because Pis hyponormal. Since A{\) is invariant

under (P— A) and the adjoint of the restriction is P(P* — A*) where P is the orthog-

onal projection onto /1(A), it follows that (P—A)/^4(A) is hyponormal. For any

hyponormal operator the spectral radius equals the norm (see Problem 162 of [4])

and thus the quasinilpotent operator (P— X)jA{X) is zero.

Proof of (2). As in (1) we may assume H=Hl. Let «•, •>, Pf) be the usual

underlying Hilbert space and let («-, •»,//') be the Hilbert space formed by

completing H with respect to the norm arising from « •, •» where T is symmetric

with respect to «•, • ». Because a(TIH')cia{TjH) (see Theorem II of [8]) if

A e <t(P///') is an isolated point of a(TjH) it is the same for o(T/H'). Let P1 be the

orthogonal projection onto ker (P— A)///', which is also the spectral subspace

associated with A since TjTT is selfadjoint. The essential observation, which also

appeared in Nieto's work, is that

and the integral defines the idempotent onto the spectral subspace for T\H corre-

sponding to A. Since (P—A)P1///' = 0 it is clear that (T-X)P1IH=0 and so the

spectral subspace for TjH corresponding to A coincides with the geometric eigen-

space.
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Proof of (3). Let S be (P-A)///0 and note that S has a bounded everywhere

defined inverse. Thus inf {||S/||/||/|| :/*0} = inf{||S/|| : ||/|| = 1}= I/1|.S*~11[ >0 and

an easy induction argument shows that inf{||,Sn/|| : ||/|| = 1}^ l/||S_1||n. Now

H1=A(X)n [G(A)]1 is invariant under P, and thus under P—A. Then 5///, is

quasinilpotent although US"///,!! ä l/||5_1||n by the above inequality. Because

\\SnIH1\\lln^ l/il^-1!! we know that the spectral radius of S/H1 is strictly positive

and this contradicts that SjH1 is quasinilpotent unless H1={0}.

Proof of (4). We know that A(X) is invariant under P, for z $ <x(P) the resolvent

[P/^(A)-z]"1 is [T-zY^A'X) and a(P//4(A)) = {A}. By examining the proof of

Orland's result [11] we see that if \\[TjA(X)-z]-1\\ ^ |z-A| -1 for zeL and |z|

sufficiently large then W{TjA{X))~ is the closed convex hull of ct(P/^(A)). For |z|

sufficiently large we have that z# A and z $ <j(F). Hence our hypothesis is sufficient

to conclude that W{TjA(X))^ ={A}; it is well known that this suffices for T/A(X) = A

and so A{X) = G(X).

In order to replace the phrase "finite algebraic multiplicity" in Theorem 3 with

the phrase "finite geometric multiplicity" we do not have to show that A(X) and

(7(A) coincide whenever A is an isolated point of <j(F). We do have to show that if

A is an isolated point of o(T) and C7(A) is finite dimensional then A(X) is finite

dimensional.

Corollary 3. Let T be a bounded operator which is reduced by each finite-

dimensional subspace ker (P— z) for any complex number z. If for each isolated point

of cr(P), say A, either one of the properties (1), (2), (3), or (4) of Theorem 4 holds or

else (5) below holds, then the Weyl essential spectrum of T consists of the points of

<j(F) which are not isolated eigenvalues with finite geometric multiplicity:

(5) (P- X)IA(\) is nilpotent.

Proof. Let n be the index of nilpotency for (P— X)jA{\) and note that dim A(X)

= dim ker(P— X)njA{X)^n dim G(A). So A has finite geometric multiplicity if and

only if it has finite algebraic multiplicity. This corollary now follows from Theorem

4 and Theorem 3.

5. Applications. With the theorems which we have now proved we are able to

quickly write down a number of applications. The operator B is said to be A-

compact provided that {Bfn} has a convergent subsequence whenever {/„} is con-

tained in the domain of the closed operator A and {||/n|| + ||4/nl|}iS bounded. Note

that if B is compact then B is /1-compact and B is a closed operator.

Theorem 5. Let A be a closed operator which is reduced by each of its finite-

dimensional geometric eigenspaces and let B be a closed A-compact operator. A point

X is in the Weyl essential spectrum of A+B, i.e. X e ae3(A + B), if and only ifXe a(A)

and A is not an isolated eigenvalue with finite algebraic multiplicity. Any X e ae3(A + B)

is either a nonisolated point of a{A + B) or else an isolated point with infinite algebraic

multiplicity.
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Proof. The characterization of ae3(A + B) follows from the equality of sets (3)

and (5) in our Theorem 3 and from Theorem 2.1 of Schechter in [12]. It follows

from the second paragraph of the proof of Theorem 3 that if A e ae3(A + B) then A

is not an isolated point with finite algebraic multiplicity.

We say that the operator B is ^-pseudo-compact provided that {Bfn} has a

convergent subsequence whenever {/„} is contained in the domain of the closed

operator A and {}\fn\\ + \\Afn\\ + \\Bfn\\} is bounded.

Theorem 6. The conclusion of Theorem 5 holds provided that B is a closed A-pseudo-

compact operator and there are points 7) and y such that (A—v) and (B — y) are

Fredholm operators.

Proof. This follows from the equality of sets (3) and (5) in our Theorem 3 and

Schechter's Theorem 2.3 in [12].

We say that the operator B is ^2-pseudo-compact provided that {Bfn} has a

convergent subsequence whenever {/„} is contained in the domain of the closed

operator A2 and {||/„|| + \\Afn\\ + \\Bfn\\ + \\A%\\ + \\BAfn\\} is bounded.

Theorem 7. The conclusion of Theorem 5 holds provided that B is a closed A2-

pseudo-compact operator and there is a point y such that {A —y) and (B — y) are both

Fredholm operators.

Proof. Use the equality of sets (3) and (5) in our Theorem 3 and Schechter's

Theorem 2.5 in [12].

There are other similar applications that are arrived at by transcribing essential

spectrum theorems according to our Theorem 3. In particular with the hypothesis

of any one of the Theorems 5, 6, or 7 we can conclude that the essential spectrum

of Browder for A+B, i.e. aei(A + B), contains aei(A).

From Corollary 3 we get a generalization of the classical essential spectrum

theorem of Weyl and this generalization contains the main results of [2], [1], [5],

and [10].

Theorem 8. Let A be a bounded operator reduced by each finite-dimensional

subspace ker (A — z). If for each isolated point of a(A) one of the conditions (1), (2),

(3), (4) or (5) mentioned in Corollary 3 is satisfied then the largest subset of o(A)

which is invariant under all compact perturbations is the set ofAe a(A) such that A

is not an isolated eigenvalue of finite geometric multiplicity.

Proof. Use our Corollary 3 and the fact from [13] that the essential spectrum of

Weyl is the largest subset of a(A) which is invariant under all compact perturbations.

The final application is based on an observation of Coburn in [2]. We write w(A)

and r(A) for the numerical radius and the spectral radius, respectively, i.e. w(A)

= sup {|z| : z e W{A)} and r(A) = s\ip {|z| : z e a(A)}.

Theorem 9. Let A be a closed operator which is reduced by each finite-dimensional

subspace ker (A — z). If A has no isolated eigenvalues of finite algebraic multiplicity
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then r(A) £j r(A + K) for every closed A-compact operator K. Furthermore if w(A)

= \A\ then \A\S\A + K\ for every closed A-compact operator K.

Proof. The first assertion is immediate from Theorem 5. Lumer showed in [9]

that if wO0=M|| then r(A)=\\A\\ and it is always true that r(A + K)S\\A+K\\.

Thus the second assertion follows from the first one.

Remark. Our basic hypothesis has been "P is reduced by each finite-dimen-

sional subspace ker (T—z) for z a complex number". It is possible to replace this

hypothesis with a properly weaker condition which is very geometric. This improve-

ment is not free, however, since the new condition is somewhat more complicated.

An alternative development of §3 using the weaker geometric condition will be

discussed elsewhere. (See Richard Bouldin, The Weyl essential spectrum, Proc. Amer.

Math. Soc. 28 (1971), 531-536.)
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